
https://lib.uliege.be https://matheo.uliege.be

Representing Jupyter Notebooks with Knowledge Graphs to Address Data

Lineage Problems

Auteur : Birtles, Alixia

Promoteur(s) : Debruyne, Christophe

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée

Année académique : 2023-2024

URI/URL : http://hdl.handle.net/2268.2/20479

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

UNIVERSITY OF LIÈGE
SCHOOL OF ENGINEERING

Representing Jupyter Notebooks with
Knowledge Graphs to Address Data

Lineage Problems

Master Thesis carried out to obtain the degree of Master in
Data Science and Engineering

Author
BIRTLES Alixia

Supervisor
DEBRUYNE Christophe

Academic year 2023-2024

Abstract

In data science, data lineage is a crucial aspect that is often insufficiently considered. To
address challenges related to data lineage, the approach presented in this thesis leverages
knowledge graphs and data provenance.

The PROV-Oontology and the FOAF vocabulary are harnessed to design a structure, along
with defined terms. This ontology aims to represent the information extracted from Jupyter
notebooks, tools often used in data science. Additionally, public APIs are leveraged to enrich
the graph.

Initially, the RML language was used to map the data, but it was too limiting and led to
the consideration of the RDFLib library in Python. RMLMapper and Morph-KGC have been
considered, but the former does not have the required extension to access the desired data
in the source code, while the latter has iterator challenges and does not support theta-joins.

The correctness of the approachwas validatedwith visualization inGraphDbandSPARQL
queries. A complex query related to the extraction of licenses demonstrated the feasibility of
the approachand theability to answerquestions aboutdata lineage. Moreover, experimenta-
tion with queries on a real-world dataset, the KGTorrent dataset, showed the effectiveness of
the approach. Performancemeasurements on the construction of the graph and on SPARQL
queries in real-world conditions led to promising results.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem statement . 2
1.3 Objectives . 3
1.4 Outline . 3

2 Background 5
2.1 Graph Data Model . 5
2.2 RDF . 6

2.2.1 Relevance of RDF . 8
2.3 Ontologies . 9

2.3.1 Vocabularies . 10
2.4 Knowledge Graphs . 10

2.4.1 Knowledge Graph and RDF . 11
2.5 Data Lineage . 12

2.5.1 Provenance Ontology . 12
2.6 Mapping and Querying Languages . 13

2.6.1 RML . 14
2.6.2 SPARQL . 14

2.7 Summary of Background . 17

3 Related Work 18
3.1 Exploring Key Challenges in Data Science . 18
3.2 Leveraging Ontologies and Knowledge Graphs in Data Science 20
3.3 Summary of Related Work . 22

4 Knowledge Graph Design 23
4.1 Data Sources for the Knowledge Graph . 23

4.1.1 Jupyter Notebooks . 23
4.1.2 Public APIs . 25

4.2 Structure of the Knowledge Graph . 26

ii

4.2.1 Extension of the PROV-O Ontology . 28
4.3 Data Enriching with Source Code Annotations 28
4.4 Overview of the Extracted Data . 30
4.5 Summary of Knowledge Graph Design . 30

5 Implementation 32
5.1 Overview of the Implementation . 32
5.2 Mapping Rules . 33

5.2.1 RMLMapper . 34
5.2.2 Morph-KGC . 34

5.3 Addressing Mapping Tool Limitations with RDFLib 36
5.3.1 Issues with Function Ontologies in RMLMapper 36
5.3.2 File Format Issues in Morph-KGC . 36
5.3.3 Iterator Challenges in Mapping Rules with Morph-KGC 37
5.3.4 RDFLib to Address RML Limitations . 39

5.4 Construction of the Knowledge Graph . 39
5.4.1 RDFLib to Overcome the Limitations of RML 39
5.4.2 Author as a Blank Node . 41

5.5 Summary of the Implementation . 41

6 Evaluation and Experimentation 43
6.1 Visualization of the Knowledge Graph . 43
6.2 Basic SPARQL Queries for Graph Validation . 45
6.3 SPARQL Query to Answer Questions about Data Lineage 47
6.4 Exploration of the KGTorrent Dataset . 49
6.5 Knowledge Graph with a Realistic Dataset . 49

6.5.1 Performance Measurements to Generate the Knowledge Graph 50
6.5.2 Simple Queries with the Realistic Dataset 53

6.6 Summary of the Evaluation and Experimentation 55

7 Discussions 57
7.1 A Declarative Approach to Knowledge Graph Generation 57
7.2 Generalization to a Uniform Notebook Format 58
7.3 Extension of the PROV-O Ontology . 58
7.4 Deployment of the Knowledge Graph . 59
7.5 Blank Nodes in the Construction of the Graph 59
7.6 Exploring Evaluation and Experimentation Results 60

7.6.1 Evaluation of the Knowledge Graph . 60
7.6.2 Addressing Data Lineage Challenges . 60
7.6.3 Experimentation on a Real-world Dataset 61

7.7 Summary of Discussions . 62

iii

8 Conclusions 63
8.1 Future Work . 64

A Structure of a Jupyter Notebook in JSON Format 70

B Joins 73

iv

Acknowledgements

I would like to express my warmest thanks to my supervisor, Christophe Debruyne, who
made thiswork possible. His guidance and advice carriedme through all the stages ofwriting
mymaster’s thesis. This work is the result of his continuous support, his insightful feedback,
and his patience. His interest in my thesis and his availability have been invaluable. He also
gave me the opportunity to present my work during the FWO Scientific Research Network
Knowledge Graphs for Data Integration seminar organized at the University of Liège, which
was a rewarding experience.

I am also deeply thankful to my parents and my siblings as a whole for their continuous
support and understandingwhen undertakingmy academic journey and achievingmymas-
ter thesis. Their belief in me and their encouragement during challenging times have been a
constant source of strength. Specifically, I would like to thank my mother, Cécile Moitroux,
for her unwavering support. She has helped me overcome difficulties and motivated me to
pursue my goals. She let me become the best version of myself.

Finally, I would like to thankmy friends for their support and encouragement. They have
been a source of liberty and joy throughout my studies. Their kindness has been a source of
inspiration.

Their contributionshaveprofoundly influenced this thesis, and I am truly grateful to them
for their support.

Chapter 1

Introduction

1.1 Context

Data science is a rapidly growingfield that plays an increasingly important role in technology.
This field is related to extracting knowledge from data, which has been experiencing growth
in volume, variety, and velocity in the last few years. This data can be represented in different
formats, such as structured, semi-structured, and unstructured. This diversity induces the
need for a robust datamanagement system to store, process, and analyze the data. One crit-
ical aspect of data management is understanding data lineage, which is the ability to trace
the origin of data and their movements: transformations and dependencies. According to
Robert Ikeda et al., "Lineage, or provenance, in its most general form describes where data
came from, how it was derived, and how it was updated over time" [1]. This lineage, often
related to data provenance, provides a way to understand how data evolves and ensure its
reproducibility and reliability.

Nowadays, the use of Jupyter notebooks is significant in the field of data science. Jupyter
notebooks are Web-based interactive computing platforms that allow users to create and
share documents that contain code, equations, visualizations andnarrative text. These note-
books are stored in JSON, which is a semi-structured data format that is easy for humans to
read and write [2]. Metadata is present, within the JSON format of notebooks, regarding the
structure of a notebook, the execution order of cells, and the source code, all of which can be
extracted and exploited. This metadata also includes implicit information, such as the rela-
tionships between cells or notebooks. In the context of this thesis, this implicit information
is transformed into an explicit representation.

The provenance of the data in Jupyter notebooks can be used to answer some questions
related to a project developed using this platform. This data might help users reproduce the
results of an experiment or analysis, understand the transformationprocess of the data along

1

a pipeline, andbe aware of the documentation of data transformationswithin a Jupyter note-
book. Given that Jupyter notebooks are not always associated with high code quality stan-
dards, ensuring data lineage and reproducibility of results poses a significant challenge [3].

1.2 Problem statement

The field of data science presents significant challenges in terms of data provenance man-
agement, more specifically data lineage, and reproducibility [4, 5]. Data lineage refers to
the ability to trace the origin of data and its movement across various systems, while repro-
ducibility entails the capability to replicate the results of experiments or analyses reliably.

Considering these challenges, somemain issues related to data lineagemanagement can
be identified. The re-execution of workflow does not reuse previous provenance data, which
can lead to issues related to the storage or the updates. The sharing of data provenance suf-
fers froma lack of clear annotations and explanations in the shared provenance data,making
its interpretation difficult for other users or researchers. In more detail, specific challenges
in data lineage management include data redundancies, difficulties in tracing transforma-
tions, and dependencies between data [4, 6]. These challenges highlight the critical impor-
tance of developing more effective approaches to dealing with data provenance to ensure
transparency, reproducibility, and quality of research results in data science.

Therefore, when it comes to understanding challenges related to data lineage, numerous
questions naturally arise, such as :

Q1 What quality assurance measures have been applied to the data?

Q2 What is the transformation process of the data along a pipeline and how the transforma-
tions are documented?

Q3 What are the licenses or restrictions associated with the datasets used to train a given AI
model, and how are these pieces of information are documented?

Addressing these challenges can have several positive impacts. It might help to obtain a
better comprehension of decision-making processes andprovide confidence in the results of
an analysis. Indeed, wewould have a further understanding of the data. Moreover, improved
data lineage management can lead to more efficient data sharing and the reuse of valuable
datasets, which can be beneficial for the scientific community as a whole.

We must recognize the widespread use of Jupyter notebooks in data science. The prove-
nance data in Jupyter notebooks is implicitly stored in its JSON format serialization, although
this may vary depending on use cases or user preferences. This data can be leveraged to ad-
dress challenges related to data lineage. The provenance data in Jupyter notebooks opens
up new opportunities to explore innovative approaches to solve data lineage challenges in

2

data science. We believe that extracting, structuring, and storing such provenance data in a
knowledge graphwith explicit semantics provides a feasible approach tobetter comprehend-
ing the aforementioned transformationprocesses, thedataorigins, anddependencieswithin
a Jupyter notebook. Considering the discussion on the importance of data lineage manage-
ment and the potential of leveraging provenance data and knowledge graphs, it naturally
leads us to ask: How can provenance information and knowledge graphs be leveraged to
address data lineage challenges in data science?

1.3 Objectives

The main purposes of this thesis are to extract the provenance of the data in Jupyter note-
books and to represent it as a knowledge graph to answer some questions related to the
challenges of data lineage in data science. The knowledge graph is used to represent the
provenance data in a structured way by adopting an extension of the PROV-O ontology. This
ontology provides a standard and generic framework to represent provenance information
related to interactions between entities, activities, and agents in different applications and
domains [7].

To achieve this, there are some specific objectives to meet:

1. Literature Review and Understanding of Challenges: Review the literature on data
lineage and provenancemanagement in the field of data science to gain a comprehen-
sive understanding of the data lineage in this context.

2. KnowledgeGraphConstruction: Investigatemethods to represent the structureof the
knowledge graph using an extension of the PROV-O ontology. Then, identify the most
suitable language to design themapping rules between the provenance data, extracted
from Jupyter notebooks, and the knowledge graph.

3. Validation Analysis of Knowledge Graph: Analyze the correctness of the constructed
knowledge graph through a visualization tool and SPARQL queries [8].

4. Queries and Performance Measurements: Utilize queries to get an overview of the
kinds of questions related to the data lineage that can be answered. Additionally, build
the knowledge graph in real-world conditions, query it, and analyze the performance
measurements and the obtained results.

1.4 Outline

To ensure a clear and structured work for this thesis, it is essential to present a well-defined
plan. This section outlines its structure, providing a detailed description of each chapter.

3

• Chapter 1: Introduction
This chapter presents the context and the problem to be addressed, as well as the ob-
jectives to address the central research question.

• Chapter 2: Background
The background chapter provides an overview of the concepts related to the research
question and the method employed. It covers fundamentals concepts, such as prove-
nance data, knowledge graphs, and ontologies. By providing a brief introduction to
these concepts, this chapter lays the foundation for the subsequent chapters.

• Chapter 3: Related Work
The relatedwork chapter examines the literature ondata lineage andprovenanceman-
agement in the field of data science. This chapter provides an overview of what has
been done in the field and the challenges that have been addressed or those that re-
main to be addressed.

• Chapter 4: Knowledge Graph Design
The design chapter describes the data sources fromwhich the information is extracted
and the structureof theknowledgegraph. It alsoapproaches theextensionof thePROV-
O ontology to address specific needs in this work.

• Chapter 5: Implementation
In the implementation chapter, the language used to map the provenance data from
JupyterNotebooks to the structure of the knowledge graph is described. It also includes
the limitations encountered during the implementation process and the solutions to
overcome them.

• Chapter 6: Evaluation and Experimentation
This chapter aims to provide a visualization and demonstration of queries with test
notebooks. Additionally, it includes experimentation on a real-world dataset with per-
formance measurements on the construction of the knowledge graph and on queries.

• Chapter 7: Discussions
This chapter discusses the implications of the results and the limitations faced during
the implementation and evaluation of the knowledge graph.

• Chapter 8: Conclusions
This chapter summarizes the main findings of the thesis and provides recommenda-
tions for future work in the fields of data lineage and provenance management.

4

Chapter 2

Background

This chapter aims to familiarize readers with the fundamental concepts and tools that are
used in the subsequent chapters. Furthermore, we highlight the importance and relevance
of the following theoretical aspects in the context of this thesis. This aspires to aid readers
in understanding specific concepts detailed and covered throughout the research, and to
provide a solid foundation for future discussions and analyses.

As part of the research question, which aims to take the advantages of knowledge graphs
to address challenges related to data lineage, it is essential to understand the fundamentals
of the graph datamodel. Thismodel provides an intuitive and flexible representation of rela-
tionships between data, serving as a robust foundation for constructing knowledge graphs.
Moreover, it facilitates easy visualization, making it a versatile tool for data analysis and in-
terpretation.

2.1 Graph Data Model

Data can be represented in various ways. The one we are interested in is the directed graph
data model. In this model, data is represented as a graph composed of nodes and edges,
wherenodes represent entities andedges represent relationshipsbetweenentities. Theedges
are directed, meaning that they have a direction from one node to another.

An example of a directed graph data model is illustrated in Figure 2.1. In this example,
nodes are people or flowers, while edges represent relationships between them.

Directed graph data models offer an intuitive way to represent entities and the relation-
ships between them, but how these graphs are formalized and exchangedbetween systems is
another question. This is where the Resource Description Framework (RDF) comes into play.
In the following section, we discuss RDF and its importance in the context of this thesis.

5

is allergic to

Romain

Likes Gathers

Alixia

Peonies Tulips

Likes Likes

Lara

Figure 2.1: An example of a directed graph data model.

2.2 RDF

RDF stands for ResourceDescription Framework. Standardized by theWorldWideWebCon-
sortium (W3C), RDF is a data model for describing and exchanging resources on the Web in
a structured and interoperable way. Interoperability is a key aspect of RDF, as it allows data
to be shared and integrated across different systems and applications.

In RDF, resources are described using triples, which is a statement that consists of three
parts: a subject, a predicate, and an object.

<subject> <predicate> <object>

The statement aims to formulate a relationship between two resources: the subject and the
object, with the predicate defining the nature of their relationship.
As an example, consider the following triple: "Lara likes Tulips". Lara is the subject, Tulips
is the object, and likes is the predicate that represents the relationship between Lara and
Tulips.

LikesLara Tulips

Figure 2.2: An example of an RDF triple.

To uniquely identify resources, RDF uses Internationalized Resource Identifiers (IRIs),
which can be used as a subject, object, or predicate in a triple. In addition, literals are used

6

to represent values such as strings, numbers, and dates, with only the object in the triple that
canbe a literal. Thenotionof ablanknode is used to represent a resource that doesnot have a
unique identifier to represent it; it is only assigned a local identifier [9]. Resume the previous
example with the use of IRIs:

Subject: <http://example.org/Person/Lara>
Predicate: <http://example.org/likes>
Object: <http://example.org/Flower/Tulips>

In this example, the IRIs http://example.org/Person/Lara and
http://example.org/Flower/Tulips represent the resourcesLaraandTulips, respectively,
and the IRI http://example.org/likes represents the relationship between them. This
demonstrates how IRIs can uniquely identify resources in RDF triples, enabling the repre-
sentation of relationships within data structures. As these relationships are interconnected,
RDF statements form a graph structure.

Statements in RDF can be represented as a graph when they are connected by their rela-
tionships. An RDF graph is thus a set of RDF triples that represent a network of relationships,
allowing the representation of knowledge in a structured way. This characteristic leads to
RDF being described as a "Directed label graph data format for representing information on
the Web" [9].

In particular, a collection of RDF graphs defines an RDF dataset. In an RDF dataset, each
graph is identified by a unique IRI or a blank node, except for one, which is considered the
default graph and does not have a name, represented by an IRI [10]. An example of an RDF
dataset illustrated inListing2.1 is composedof twonamedgraphs: g_flowers andg_preferences,
and a default graph. The g_flowers graph contains information about flowers, while the
g_preferences graph contains information about preferences of people. The last triple in the
dataset is part of the default graph as it is not associated with a named graph.

@prefix ex: <http :// example.org/> .

@prefix flower: <http :// example.org/flowers#> .

@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .

Graph about flowers

ex:g_flowers {

ex:Tulip rdf:type flower:Flower ;

flower:color "red" ;

flower:height "30cm" .

ex:Rose rdf:type flower:Flower ;

flower:color "pink" ;

flower:height "40cm" .

}

Graph about preferences

ex:g_preferences {

ex:Lara rdf:type ex:Person ;

ex:likes ex:Tulip .

7

ex:John rdf:type ex:Person ;

ex:likes ex:Rose .

}

Default graph

ex:Sunflower rdf:type flower:Flower ;

flower:color "yellow" ;

flower:height "50cm" .

Listing 2.1: An example of an RDF dataset.

A visualization of the RDF dataset represented in turtle format in Listing 2.1 is illustrated
in Figure 2.3.

g_flowers

RDF Dataset
g_preferences

default graph

Figure 2.3: An example of an RDF dataset.

RDF data can be serialized in different formats, each with its own advantages and use
cases. The one we use for this thesis is the Turtle format, which is a human-readable format
that allows the representation of RDFdata in amore compactway. In addition toTurtle, there
are several other serialization formats, such as JSON-LD, N-Triples, and RDF/XML [9].

2.2.1 Relevance of RDF

RDF plays a crucial role in this thesis by providing a flexible and standard framework to rep-
resent and share data on the semanticWeb. By adopting RDF, this work benefits from a stan-
dardizedmethod to represent complex relationsbetweenentities and concepts. This enables
a transparent integration of data from heterogeneous sources, facilitating the discovery of
new knowledge. Furthermore, RDF offers inference capabilities that allow the extraction of

8

implicit knowledge from explicit data, enhancing the power of the analysis drawn from this
thesis.

2.3 Ontologies

An ontology can be viewed as a formal representation of knowledge in a specific domain,
defining concepts and relationships between them in a structured way. The idea behind the
creation of ontologies is to provide a common understanding of a domain, enabling knowl-
edge sharing, reuse, and interoperability between systems and applications.

Ontologies are typically stored in a machine-readable format, often as Resource Descrip-
tion Framework, which allows for easy integration with other semantic web technologies.
They offer various benefits, such as the ability to structure knowledge, to provide a common
vocabulary, and to enable automated reasoning and inference about data. They can also be
easily extended to meet specific requirements by adding new concepts and relationships. It
is therefore an adaptable and flexible tool that evolves depending on the data.

For example, let us focuses on the class Person by considering an ontology in the context
of genealogy. A genealogy ontology can be used to describe relationships between people,
including parents, children, and siblings. It can also define properties such as hasFather
and hasMother to describe the relationships between a child and their parents. The hier-
archy of classes is illustrated in Figure 2.4. This ontology describes a family tree with the

Figure 2.4: An example of a genealogy ontology: Structure of the classes.

following classes: Person, Father, Mother, and Child. The Person class is the parent class
of the Father, Mother and Child classes. The relationships between classes are defined by
properties such as hasFather and hasMother and are illustrated in Figure 2.5.

There are different types of ontology languages; among them are Resource description
Framework Schema (RDFS) and theWebOntology Language (OWL). OWL is a SemanticWeb
language that allows the creation of ontologies with rich and complex knowledge, as RDFS is
limited in its expressive power. OWL allows the description of resources and their relation-
ships in a more detailed way, enabling the creation of more complex ontologies [11].

9

Figure 2.5: An example of a genealogy ontology: Relationships between classes.

2.3.1 Vocabularies

Thenotionof vocabulary is different from that of ontology. A vocabulary is a set of termsused
to describe resources within a specific domain. It is used as a foundational element to build
ontologies, providing a list of classes and properties to describe resources and relationships.
We can view the vocabulary as the terminology that defines the concepts, while the ontology
formalizes these concepts and their relationships.

For instance, the FOAF (Friend of a Friend) vocabulary is a set of terms used to describe
people and their relationships, which includes terms like foaf:Person, foaf:name, and
foaf:knows [12]. While the FOAF vocabulary describes basic concepts for individuals, an
ontology can be built upon it to definemore complex relationships by including constraints
and axioms to describe the domain more precisely.

In the context of this thesis, we will use ontologies and vocabularies to represent knowl-
edge in a structured way, enabling the creation of knowledge graphs to address data lineage
challenges.

2.4 Knowledge Graphs

A knowledge graph is a graph thatmeets specific criteria. We have already seen in Section 2.1
the concept of a graph data model, which is a way to represent data as a graph composed of
nodes and edges. The concept of knowledge graphs is to represent knowledge with this kind
of graph. A knowledge graph needs to meet certain criteria to be considered as such. These
criteria are the following:

• Ontologies are used to define the schema of the graph: the concepts and relationships

10

between them.

• The graph is enriched with data from various domains, organizations, and sources.

• There is a support for reasoning and inference to derive new knowledge from existing
data.

If those criteria are met, the graph can be considered as a knowledge graph. Otherwise it
is just a graph. Therefore, all knowledge graphs are graphs, but not all graphs are knowledge
graphs [13].

It is important to note that both ontologies and data are part of the knowledge graph.
Ontologies define the schema and structure, specifying the concepts ans the relationships
within it, while data enriches the graph with information from several sources.

There are several knowledge graphs that are widely used, such as DBpedia [14], a knowl-
edge graph extracted from data from Wikipedia and with an RDF format. Another example
is the Google Knowledge [15], which presents information in response to search queries on
Google, based on the search behavior of web users. Knowledge graphs are used in various
domains, including Finance, Healthcare, and Distribution. In finance, they are used for de-
tecting fraud and analyzing the flow of money for their clients [16].

The use of knowledge graphs offers several advantages in different domains. First, they
can handle heterogeneous data, which is essential in the context of data science and there-
fore in this thesis. Second, they support inference and reasoning, allowing the discovery of
hidden knowledge and the derivation of new knowledge fromexisting data. Finally, they pro-
vide a structuredway to represent knowledge, enabling the integration of data fromdifferent
sources and domains.

However, knowledge graphs also present challenges and limitations, mainly related to the
quality of the data and the construction andmaintenance of the graph.

2.4.1 Knowledge Graph and RDF

Knowledge graphs are often represented in RDF format that provides a structured and in-
teroperable way to represent data. This format facilitates the representation of a wide range
of knowledge on the Web. IRIs play a crucial role as they provide a unique identifier for re-
sources, enabling the representation of distributed graphs with data from different sources.

With RDF, data are interconnected from diverse sources on the Web, facilitating the dis-
covery of new knowledge via knowledge graphs. RDF also provides a flexible data represen-
tation framework that enables the integration of new data and the evolution of the graph
using ontologies such as RDF Schema and OWL. A significant advantage of RDF is its ability
to support semantic inference through complex queries, enabling the extraction of valuable

11

information from the graph.

Therefore, RDF is a powerful tool to represent knowledge graphs, enabling the integration
and interconnectionof data fromdifferent sources, aswell as thediscovery of newknowledge
through reasoning and inference.

2.5 Data Lineage

The main objective of this thesis is to address data lineage challenges. This underscores the
need to introduce the concept of data lineage and its importance in our research.

Let us return to the definition of data lineagementioned in the introduction, which states
that "Lineage, or provenance, in itsmost general form, describeswhere data came from, how
itwas derived, andhow itwas updated over time" [1]. Data lineage is essential in data science
as it provides informationabout theorigin, history, and transformationof data, enablingdata
scientists to understand the data andmake informed decisions. It is used to track the flow of
data from its source to its destination, providing insights into the data quality, reliability and
reproducibility of the results. As noted above, lineage can also be called provenance, and in
the context of this thesis, we also use the term provenance to refer to the origin and history
of data.

Provenance informationgathers variousdetails, including the authorof adataset, thedate
of creation, the transformations applied to the data, etc. For instance, knowing such infor-
mation enables a better understanding of the quality of the data, as well as the semantic
implications.

To achieve the main objective of this thesis, we need to represent provenance data in a
structured way to enable the extraction of valuable information from the data. This is where
the provenance ontology [7] comes into play, as it provides a formal representation of prove-
nance data as RDF. The following section introduces the provenance ontology and its impor-
tance in the context of this research.

2.5.1 Provenance Ontology

Provenance, in the context of data, refers to the origin, the history, and transformations ap-
plied to data throughout their lifecycle. A provenance ontology is a formal representation of
such data.

The provenance ontology known as PROV Ontology (PROV-O) is an OWL2 ontology that
enables the mapping of the provenance data model to RDF. This ontology is composed of a
set of classes, properties, and restrictions designed to enable the structured representation of
provenancedata. OWL2 is the second versionof theWebOntology Language, whichprovides

12

a formal way to define ontologies and vocabularies as explained in Section 2.3.

PROV-O provides a framework of Starting Point classes and properties to represent prove-
nance data, which can be further extended to meet specific requirements. Two levels of ex-
tension exist: the Expanded framework, followed by the Qualified framework. The Starting
Point framework is illustrated in Figure 2.6.

Figure 2.6: PROV-O Starting Point classes and properties [7].

At the Starting Point level, the base ontology includes three fundamental classes:

• prov:Entity represents anentity, which is aphysical, digital, conceptual, or other kind
of thing.

• prov:Activity represents an action that occurs over a period of time.

• prov:Agent represents someone or something that is attributed as responsible for the
occurrence of an entity.

These three classes are interconnected through properties, as shown in Figure 2.6. For ex-
ample, the prov:wasGeneratedBy property links an Entity to an Activity, indicating that
the Entitywas generated by that specific Activity [7].

To clarify, the prov prefix is used to refer to the PROV-O namespace. It is a shorthand to
avoid repeating the full namespace IRI each time a class or property is mentioned.

2.6 Mapping and Querying Languages

In this section, we introduce two essential elements for the achievement of the research ob-
jectives: the query language SPARQL and the mapping language RDF Mapping Language
(RML). These tools play central roles in materializing our approach.

13

2.6.1 RML

RML stands for RDF Mapping Language and is the extension of R2RML (RDB to RDF Map-
ping Language), aW3CRecommendationused tomap relational databases toRDF [17]. RML
is a language that allows the mapping of heterogeneous data structure, such as CSV, JSON,
andXMLtoRDFdatamodels inadeclarativeway. Althoughnot aW3CRecommendation, it is
used in the context of this thesis tomap JSONdata to anRDFdatamodel tobuild a knowledge
graph [18]. The RML community has started to consolidate its efforts and recently published
a new version of the specification [19] with the aim of standardizing it.

Several tools are available for generating RDFdata from JSONusingRML. These tools pro-
vide functionalities for efficiently mapping heterogeneous data structures, facilitating the
creation of knowledge graphs. The following sections present two notable tools for generat-
ing RDF data from JSON using RML.

RMLMapper

RMLMapper is a tool which executes rules to generate linked data from heterogenous data
sources. It is a Java-based tool which can be used to generate RDF data from JSONdata using
RML rules [20].

Morph-KGC

Morph-KGC is a tool that constructs RDF knowledge graphs based on heterogenous data
sources. This tool supports both RML and R2RMLmapping languages and is built on top of
a Python library: Pandas.

Morph-KGC offers various features, including the ability to declare transformation func-
tions via RML-FNML [21] and to define RML views to create virtual datasets based on the
original data. The latter enables the use of functions, complex joins ans mixed content han-
dling using the SQL query language. This task is possible only over tabular data and JSON
files [22].

2.6.2 SPARQL

The query language and protocol used to query RDF data is SPARQL. SPARQL stands for
SPARQL Protocol and RDF Query Language, which is a recursive acronym. This declarative
language allows executingqueries overRDFdatasets. It encompasses various functionalities,
and among them are the following:

• Retrieving data from RDF datasets.

• Updating RDF datasets (Deletion, Insertion, Modification).

14

• Creating new RDF datasets.

SPARQL enables the use of different types of query, such as SELECT, CONSTRUCT, DESCRIBE,
and ASK. The SELECT query retrieves data from a dataset, while the CONSTRUCT query gener-
ates new triples to form a new RDF graph based on the query results. The DESCRIBE query
provides a description of a resource that matches the pattern defined in the query, and the
ASK query checks if a pattern or condition holds true in an RDF graph. SPARQL encompasses
both a query language and a protocol, enabling communication and interaction with RDF
data sources by applying queries and updates operations.

A SPARQL query is composed of different parts. It starts with the definition of the prefixes
used in the query followed by the result clause (e.g., SELECT) specifying the variables to be
returned. Datasets to be queried can be defined using the FROM and FROM NAMED clauses. The
mandatory WHERE clause is used to define the pattern to bematched in the RDF dataset, and
the query can be further modified with solution modifiers such as ORDER BY and LIMIT [8].

An example of a SPARQL query is illustrated in Listing 2.2. In this query, we aim to retrieve
the first name, last name, nickname, andbirth date of a person from the dataset. In the WHERE
clause, the ?person variable is used to represent a person, and the keyword ”a” serves as a
shorthand for the rdf:type predicate. The FILTER keyword is used to apply a condition on
the birth date: we only want to retrieve the persons born after January 1, 1900. The OPTIONAL
keyword signifies that thenickName is optional information. If it is not present in thedataset,
the query will still return the first name, last name, and birth date of the person. Finally, the
results are ordered by last name and first name.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?firstName ?familyName ?birthDate

WHERE {

?person a foaf:Person ;

?person foaf:firstName ?firstName ;

?person foaf:lastName ?familyName ;

?person dbo:birthDate ?birthDate .

OPTIONAL {

?person foaf:nickname ?nickname .

}

FILTER (?birthDate >= "1900-01-01"^^xsd:date)

}

ORDER BY ?familyName ?firstName

Listing 2.2: An example of a SPARQL query.

SPARQL offers a wide range of functionalities for querying RDF datasets, making it a pow-

15

erful tool for extracting valuable information. Its abilities extend with features such as sub-
queries and aggregate functions that enable to perform more complex queries. In addition,
SPARQL allows the execution of federated queries, enabling querying of multiple endpoints
and integration of external services [8].

In SPARQL, a property path is a way to traverse a graph by following a sequence of edges.
The trivial case considers a path of length 1, which is a triple pattern. The property path
can be used to represent more complex patterns, to get more information from the graph.
For example, we can use SPARQL queries to access the friends of friends of a person, or the
siblings of a person. The Listing 2.3 illustrates an example of a SPARQL query using property
paths. In this query, we aim to retrieve the names of friends of friends of a person named
Lara. The property path is a powerful feature of SPARQL that allows for the representation of
complex patterns in a simple way [8].

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?friendName

WHERE {

?person foaf:Name <Lara> ;

foaf:knows/foaf:knows ?friend .

?friend foaf:Name ?friendName .

}

Listing 2.3: An example of a SPARQL query using property path.

The query in the Listing 2.3 can also be written with explicit triple patterns and variables
as illustrated in Listing 2.4.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?friendName

WHERE {

?person foaf:Name <Lara> ;

?person foaf:knows ?x ;

?x foaf:knows ?friend ;

?friend foaf:Name ?friendName .

}

Listing 2.4: An example of a SPARQL query using property path.

In this thesis, SPARQL is the tool used to query the knowledge graph built from prove-
nance data extracted from Jupyter notebooks. This highlights the importance of SPARQL in
the context of this work and its significant role in data science research.

16

2.7 Summary of Background

This chapter introduced fundamental concepts and tools that are be used in the following
chapters. We introduced the notions of graph data models and RDF, highlighting their sig-
nificant role in the structuring and interconnecting data. In addition, we discussed the im-
portance of ontologies and vocabularies in the context of knowledge graphs and their use in
representing knowledge.

Furthermore, we explored the concept of data lineage, which is themain focus of this the-
sis. Finally, we presented the tools necessary for achieving the research objectives, including
RML for mapping heterogeneous data to RDF and SPARQL for querying RDF datasets.

17

Chapter 3

Related Work

The research question addressed in this thesis highlights several aspects related to the rep-
resentation of data and how knowledge can be harnessed. This work, situated at the inter-
section of several research fields, is centered around the use of provenance information and
knowledge graphs to tackle challenges related to data lineage in data science. Data science is
the most obvious field, as the thesis aims to analyze, interpret, and extract knowledge from
Jupyter notebooks. Data management can be mentioned, as data lineage is a key aspect of
data management: it is essential to the traceability of data. Knowledge graphs are also con-
sidered as a key component of thiswork, as theyhavebeen chosenas the approach to achieve
the objectives of the thesis.

The evolution across time in this field is traced to obtain a detailed understanding of re-
cent advancements. In this chapter, we explore previous works that have paved the way for
the subsequent research, highlighting the most significant contributions that have shaped
our current understanding of the problem.

To tackle the objectives of this thesis, the research question is considered in the broad
context of existing literature on the subject. In the subsequent sections, we delve into the
most relevant works published in the field of data science with challenges related to data lin-
eage. Additionally, the most significant contributions to knowledge graphs and provenance
information are explored.

3.1 Exploring Key Challenges in Data Science

The field of data science has been the subject of numerous studies due to its exponential
growth over the past few years. This interdisciplinary domain, which combines statistics,
computer science, algorithm development, and domain knowledge, aims to extract knowl-
edge fromdata. Effective datamanagement plays a central role in the success of data science

18

projects [23, 24].

Numerous challenges in data science have been identified in the literature, potentially
negatively impacting theworkofdata scientists and thequalityof their results. In this section,
some of the most significant challenges identified in data science are explored. We want
to have a better comprehension of the challenges researchers are faced with, by examining
some of them closer.

Victor Cuevas-Vicenttín et al. have addressed several challenges in the context of prove-
nance and scientific workflows [6]. They highlighted open issues, including the visualization
and analysis of provenance data, that were not largely explored. They also discuss the poten-
tial of those techniques to improve the understanding of scientists and help them to debug
their tasks. Moreover, the authors identify the need for better integration and standard rep-
resentation of provenance data to facilitate their sharing.

The challenges of provenance in the context of scientific workflow management system
have been discussed by K. Alam et al. [4]. The authors highlight that provenance information
can become large and complex in scientific workflows to enable reproducibility, sharing and
reuse of knowledge. They also emphasize the challenges of maintaining and storing such
data effectively.

Besides challenges related to provenance, others appear inmore specific contexts of data
science, such as code duplication in Jupyter notebooks. This issue has been addressed byAn-
dreas P. Koenzen et al. [25]. The authors have analyzedmultiple Jupyter notebooks to identify
code duplication and recurring patterns. They found out that code duplication is a common
practice for expediting experimentation processes, despite its effects on code readability. In-
deed, the duplication of code increases the burden on the maintenance process.

Through an examination of the various stages of data analysis processes, significant chal-
lenges associated with the use of pipelines to execute these processes are identified. In data
science, pipelines are widely used to execute data processing workflows. However, these
pipelines show limitations in terms of reproducibility, compatibility, and recovery of data
analysis processes. Additionally, the abstract composition and reuse of pipeline steps based
on a semantic description remains an unresolved challenge. This issue is related to the data
lineage that aims to track the data flow across the steps of the pipeline [26].

Hassan Hussein et al. have also mentioned the importance of reproducibility and the
challenges it presents in the context of scientific work. They explore the relation between
reproducibility and elements in a work such as data, scripts, and simulations. The authors
mentioned that there are fourmainpillars that impact the reproducibility: Availability, acces-
sibility, linkability (using ontologies to link elements from different sources), and license [5].

19

3.2 Leveraging Ontologies and Knowledge Graphs in Data
Science

Indata science, the resolutionof complex challengesoftenneeds tobeaddressed throughad-
vanced and innovative approaches. Among these, ontologies and knowledge graphs appear
to be powerful tools for representing, managing, and leveraging knowledge across various
domains, as presented in some articles presented in this section. These approaches offer a
semantic structure to extract the richness of relationships between data to facilitate the res-
olution of complex problems.

Ontologies give a formal representationof knowledgeby enabling a commonunderstand-
ing of concepts and their relationships in a domain. Knowledge graphs, on the other hand,
are a way to represent knowledge in a graph structure, enabling an intuitive way to explore
the knowledge and facilitating the discovery of new insights. These approaches have been
used in the literature to address different challenges and are related, as ontologies act as a
schema for knowledge graphs. This section explores some of themost significant works that
have used ontologies and knowledge graphs in such contexts.

A recent work discussed the use of ontologies in different dimensions, focusing its re-
searchonapplyingontologies tomodeldata scienceprocesses themselves [26]. In theirwork,
the authors have used ontologies (OBOE [27] and OBCS [28]) to annotate, enrich, and doc-
ument data pipelines, as well as explored approaches to link metadata semantically to the
data and transformations. They have used Apache Beam to integrate semantic descriptions
in pipelines to facilitate research tasks and reuse of pipelines. However, the authors do not
provide information about queries on semantic metadata. Moreover, they do not introduce
the aspect of reasoning, which could be a key aspect in certain contexts. Indeed, reasoning
allows for harnessing the potential of semanticmetadata by facilitating the deduction of new
information, for example. Finally, no use cases of their ontology in a real-world scenario are
mentioned in their work.

Jupyter notebooks are a popular tool in data science where results might change between
each execution. Sheeba Samuel et al. highlight reproducibility issues due to that as men-
tioned in Section 3.1 [29]. They propose an ontology called ProvBook to describe Jupyter
notebooks with provenance information. The ontology the authors have developed,
REPRODUCE-ME, is based on PROV-O [7] and P-Plan [30] to describe Jupyter notebooks
with provenance information. Their work aims to track the complete path of scientific ex-
periments for trust and reproducibility. For example, they have access to the start and the
end of execution of each cell, to changes in the markdown cells, and to the output of each
cell. The tool the authors have developed, ProvBook, uses their ontology to let users share
their notebooks with provenance information in RDF format. This work brings a new per-
spective onhow to represent Jupyter notebookswithprovenance information. However, they

20

only provide base information about a notebook anddonot includedetails about its content,
such as datasets used, author(s) of the notebook, imported libraries, etc. Moreover, they do
not provide any information about inference or logical deduction in their work.

The use of knowledge graphs in data science has been explored by several authors. Has-
sanHussein et al. have proposed to improve reproducibility by defining a semantic template
for knowledge graphs that provides a standard way to describe the elements of a work, in-
cluding data, software scripts, and simulations [5]. The research aims to ensure the repro-
ducibility of a work through knowledge graphs with the introduction of a semantic template
to build a standard way to describe the elements. The authors use the template and a score
of reproducibility to evaluate the reproducibility. This score is computed from four pillars:
availability, accessibility, linkability, and license. Open Research Knowledge Graph (ORKG)1
gives access to a template system to define the structure of contributions. The authors have
shown that the use of knowledge graphs can improve the reproducibility of a work, but the
use and filling of the template can be complex and time-consuming. Moreover, the score
computed based on the four pillars does not capture all the aspects of reproducibility, open-
ing up uncertainty related to the reliability of results.

In another context, Shivani Choudhary et al. have used knowledge graphs as embeddings
to represent knowledge for several applications, such as predicting missing information in
knowledge graphs completion and facilitating question answering [31]. While knowledge
graph information is structured, its consumption can be challenging in real-world applica-
tions. The authors use embeddings to represent the knowledge of knowledge graphs in a low-
dimensional vector space, where the resulting vectors correspond to graph properties. The
authors focused on translation-basedmodels, which are an addition of vectors, and showed
howthismodel improvedover time. Furthermore, theauthorshavealsodescribed real-world
applications of their workwith knowledge graphs embeddings, including link prediction and
triple classification.

Finally, a recent work by I. Dasoulas et al. has proposed a set of tools composed of an
ontology (MLSO), taxonomies (MLST), and knowledge graphs (MLSea-KG) to improve the
search, explainability, and reproducibility of ML pipelines [32]. This set is called MLSea and
integrates ML experiment data and metadata. The ontology and the taxonomies provide a
flexible schema to represent ML pipelines, implementations, etc. The knowledge graph, on
theotherhand, is used todiscover andexplore theMLdata. Todefinemapping rules between
the ontology and the data, the authors have used RML with the help of Morph-KGC. With
these tools, they have shown, for example, the possibility of finding a dataset with its relevant
code notebook and the scientific papers related to it.

Certain research discussed above directly relates to the objectives of this thesis andwill be
1https://orkg.org/

21

https://orkg.org/

used as a basis for the development of our approach in the subsequent chapters. The work
of Sheeba Samuel et al. [29] will be mainly used as a reference to develop our approach.

3.3 Summary of Related Work

Challenges related to provenance, code duplication, and data analysis pipelines highlight
the complexity of data science and underscore the need to develop approaches to overcome
these challenges.

Ontologies and knowledge graphs have been used in various contexts to address different
challenges in data science. Based on the research discussed in Section 3.2, we can see that
these approaches have been used to represent, manage, and leverage knowledge across dif-
ferent domains. These works have shown the potential of ontologies and knowledge graphs
to address complex challenges in data science, such as reproducibility and provenance in-
formation in Jupyter notebooks.

22

Chapter 4

Knowledge Graph Design

The design of the knowledge graph intended to represent the information contained in note-
books establishes the initial stage in leveraging knowledge graphs and provenance data to
address challenges related to data lineage. The design of the knowledge graph is crucial to
ensuring the correct representation of the information contained in the notebooks. It also
influences the querying process for the questions we want to address.

In this chapter, the design and structure of the knowledge graph are described, as well
as the strategies employed in its construction. Additionally, different subjects are discussed,
such as the data sources used, their formats, and the extracted data.

4.1 Data Sources for the Knowledge Graph

Theprimary data sources used in thiswork are notebooks, but additional sources of informa-
tion can complement the information extracted from the notebooks. Public APIs offer this
valuable means to gather more information, thus complementing and enriching the knowl-
edge graph with external information based on the data contained in the notebooks.

4.1.1 Jupyter Notebooks

Jupyter notebooks serve as the primary source of information to be represented and inte-
grated in the knowledge graph. These notebooks contain a rich set of information, including
code cells, output cells, markdown cells, and metadata. Additionally, they also contain im-
plicit information, such as the relationships between notebooks, the dependencies between
cells, and provenance information.

Notebooks are stored in JSON format, which offers a flexible, hierarchical, and structured
way of representing semi-structured data, unlike relational databases that have a tabular

23

structure. However, the structure of the JSON format can vary significantly between note-
books, depending on the environment in which they were created and executed. It means
that the keys can be different between two JSON files. For example, consider two cells from
two different notebooks from the KGTorrent dataset [33]. The first cell is represented in List-
ing 4.1, and the second in Listing 4.2. The structures of the JSON format in the twonotebooks
are different; Notebook 2 includes a unique id in the metadata, while Notebook 1 contains
no metadata.

...

{"cell type": "code",

"execution_count ": 3,

"metadata ": {},

"outputs ": [],

"source ": [

"def get_df(dir_15_name ,

dir_19_name):\n",

...

]

}

Listing 4.1: A cell in Notebook 1 of the
KGTorrent dataset.

...

{"metadata ":{

"id":" g1XbinSCkjfv",

"trusted ":true

},

"cell_type ":" code",

"source ":

"NAMES_LIST = \"/ kaggle/

input/a3data/y

..."

}

Listing 4.2: A cell in Notebook 2of the
KGTorrent dataset.

Understanding these various structures is crucial when extracting data from notebooks
to construct a knowledge graph. Two structures have been identified in the above examples;
nonetheless, other variations exist. The goal of this thesis is to assess the feasibility of rep-
resenting notebooks as a knowledge graph to formulate queries about provenance. There-
fore, in this work, we focus on notebooks created and executed on Google Colab1 to ensure
a consistent structure of the JSON format of the notebooks and facilitate the extraction of
information.

The key-value structure of a notebook created and executed on Google Colab is the fol-
lowing:

• cells: list of cells in the notebook.
Each cell is represented by the following elements:

– cell_type: type of the cell (code or Markdown).

– execution count: position of the cell in the execution order (null if the cell is not
executed).

– metadata: metadata of the notebook, including the cell id and the output id
1https://colab.research.google.com/

24

https://colab.research.google.com/

when there is an output.

– source: content of the cell.

• metadata: metadata of the notebook, including the kernel information, language in-
formation, and metadata about Google Colab. All the previous cited information do
not always exist in the metadata.

• nbformat: version of the notebook format.

• nbformat_minor: minor version of the notebook format.

A typical structure of a Jupyter notebook in JSON format is shown in Listing A.1 in the Ap-
pendix.

4.1.2 Public APIs

Public APIs offer a valuable source of information to enrich a knowledge graph with external
dataderived fromthe content of notebooks. In thiswork,weuse threedifferentAPIs to enrich
the graph representationsof notebookswith additional informationabout libraries, datasets,
and authors within the graphs.

The first API is the PyPi API [34], which retrieves information about the libraries used in
the code cells of notebooks. Based on the name of the library, this API provides details such
as the required Python version of a library, the author of a library, a homepage where the
library is presented, etc.

Second API is the GitHub REST API endpoints for users [35]. This API is used to retrieve
additional information about the author of a notebook. Based on the username of a GitHub
account, the API returns the URL of the GitHub account, an associated email address, infor-
mation about repositories, and more.

The third API is the Kaggle API [36], which provides access to details about datasets that
are manipulated in notebooks. These details includes the title of the dataset, the license of
the dataset, the author of the dataset, the number of downloads, and a description, based on
the reference of the dataset.

Some information from these APIs has been selected to be extracted and represented in
the knowledge graphs. This information is collected through an HTTP GET request to the
APIs. The response is in JSON format, which is parsed to extract the desired information.
In the PyPi API, the information that is extracted is the homepage and the required Python
version of the library. In the GitHub API, the information is the GitHub profile URL of a user.
And in theKaggle API, the information that is extracted is the title and the license of a dataset.

25

The integration of data collected from public APIs enriches considerably the richness of
availabledata in the knowledge graphs. Thanks to these external sources, all the criteriamen-
tioned in Section 2.4 aremet, and the graph is thus a knowledge graph. By incorporating this
external data, we create a more complete and dynamic representation of the information,
offering new opportunities for analysis and exploration of the data contained in the note-
books.

4.2 Structure of the Knowledge Graph

To represent the information extracted from notebooks in the knowledge graph effectively,
a coherent and clear structure is necessary. As explained in Section 2.3, the information can
be structured using an ontology that defines the classes and properties of the information to
represent. The structure of the knowledge graph used to represent the provenance informa-
tion is designed to rely on the PROV-O ontology introduced in Section 2.5.1.

The design of the structure must consider the conventions defined by the PROV-O ontol-
ogy. To be compatiblewith this ontology, the datamust be organized in amanner that clearly
identifies each element (cell, dataset, author, etc.) as either an Entity, an Activity, or an
Agent. Thedata structuremust assign each element to oneof these classes anddescribe their
relationships and interactions to ensure their representation in a semantically coherent way
as part of the PROV-O ontology.

Before diving into the representation of a notebook with the PROV-O ontology, it is es-
sential to providemore explanation about PROV-O itself. This ontology is composed of three
different levels, with theonewebaseourworkonbeing theStartingPoint, serving as thebasis
of the ontology. However, for a complete representation of the provenance information, the
second level has been considered. This level extends the base ontology by introducing ad-
ditional classes and properties. The second level, called the Expanded Terms, is represented
in Figure 4.1. In the Expanded Terms derived from the base ontology, we consider the class
Collection that is a subclass of Entity, and represents a collection of entities. Another rele-
vant class is Person, a subclass of Agent, representing an individual. These two classes, along
with their associated properties represented in the second level of the ontology, contribute
to defining the desired structure.

The structure of the knowledge graph can be defined on the grounds of the PROV-Oontol-
ogyby considering the StartingPoint and the few terms introducedabove from theExpanded
Terms. We begin by considering each notebook as a Collection of cells where each cell is
an Entity. Thus, every cell is linked to the notebook to which it belongs. Additionally, each
notebook is associated with its author(s), which is represented as Person. It is also related to
all the librariesmentioned in the source codeof eachcell of thenotebook that are represented
as Agent. In a notebook, it is possible to access manipulated datasets, each represented as

26

Figure 4.1: The Expanded Terms PROV-O Ontology [7].

Entity. Furthermore, a notebook can also be associated with licenses that are also repre-
sented as Entity. These licenses can either be extracted from the code as a comment, as
explained in Section 4.3, or obtained from datasets manipulated in the code. The execution
of a cell is an Activity that is associated with the cell that has been executed. Finally, the
output of a cell is considered as an Entity and is related to the cell that has produced it and
to the execution of the code that has generated it. The schema of the different elements of a
notebook, sorted by categories, and their relationships is shown in Figure 4.2.

hadMember

wasAttributedTo

wasAttributedTo

wasDerivedFrom wasDerivedFrom

Notebook Cell wasDerivedFrom

wasGeneratedBy

Output
used

Execution

License

Library

wasInfluencedBy
Dataset

Author

Entity

Legend

Activity
Agent

Figure 4.2: Structure of the knowledge graph.

27

All other collected information is associatedwith the threemain classesmentioned above
but is storedas literals in theknowledgegraph. For example, thedateof thenotebook is repre-
sented as a literal related to the notebook using the property generatedAtTime, as specified
in the expanded terms of the PROV-O ontology.

4.2.1 Extension of the PROV-O Ontology

The PROV-O ontology is a generic ontology that is used to represent provenance informa-
tion. However, all the information that can be extracted fromanotebook is not representable
solely with the PROV-O ontology. As this ontology is meant to be extended for specific ap-
plication domains, we have decided to undertake its extension to represent all the desired
information.

First, the FOAF (Friend of a Friend) vocabulary is used to represent the information about
the authors of the notebooks. As explained, the authors are represented as Person in the
PROV-O ontology. The use of the FOAF vocabulary facilitates the representation of informa-
tion about the authors [12].

Second, some of the information that can be extracted is specific and not representable
with any known ontology, such as the type of cell (code or Markdown). Therefore, we have
decided to create our expanded terms. These terms are represented in Table 4.1.

To ensure the coherence and interoperability of our representation of knowledge, we have
introduce a namespace, which is used to identify newly created expanded terms in the knowl-
edge graph. This one is the following: http://example.com/knowledge-graph/. The prefix
associated with the namespace in this work is myns.

4.3 Data Enriching with Source Code Annotations

For each key-value pair in the JSON format of a notebook, there is relevant information to
extract and represent in the knowledge graph. Nevertheless, our interest also extends beyond
these key-value pairs to include the content within each cell, more specifically the source
code, which serves as the core of the notebook, retrieved from the source key of each cell.
However, the extraction of information from the source code, such as libraries, authors, or
datasets, is not well-structured and may even be absent. To address this challenge, we have
established an imposed structure to facilitate the process.

The concept of the imposed structure is to define a specific format for the information
that need to be extracted from the source code. This information is written as a key-value
pair in comments:

Key : Value

28

http://example.com/knowledge-graph/

Table 4.1: The predicates created to extend the PROV-O ontology. The hasExecutionCount
predicatehas astring for rangebecause it canhaveanull valuewhen thecell is not executed.

Predicates Definition Domain Range
myns:hasCellType The type of the cell (code Entity string

or markdown)
myns:hasExecutionCount The execution position of an Entity string

activity in a sequence of activities
myns:hasOutputType The type of the output (stream Entity string

or display)
myns:hasLanguage The programming language Entity string

used in the notebook
myns:hasLanguageExtension The extension file of the Entity string

language
myns:hasLanguageVersion The version of the programming Entity string

language used in the notebook
myns:hasDefinedFunction The name of the function defined Entity string

in the code
myns:hasCalledFunction The name of the function called Entity string

in the code
myns:hasGithubAccount The GitHub account of the Agent string

user who created the notebook
myns:hasGithubURL The github URL of the Person Person string

myns:hasIRI The IRI of the entity Entity, string

Agent

myns:hasRequiredVersion The required version of the Agent string

language for a library
myns:hasSourceCode The source code of the cell Entity string

where Key is the keyword that identifies the information, such as Date, License, Dataset,
and Value is the information that needs to be extracted.

Consider an example of a code cell represented by Listing 4.3. This cell contains informa-
tion about the date, the authors, and the URI of the notebook on Google Colab. The keys are
identified by the keywords Date, Author, URI. The values can be extracted and processed if
needed before being represented in the knowledge graph.

"source ": [

"# Date : 12/01/2024\n",

"# Author : Alixia Birtles - GitHub : alixiabirtles\n",

"# Author : Lara Birtles\n",

"# URI : https :// colab.research.google.com/drive /19

29

Ce_h7_oxxphYomDEksc8N04vd -3RL9p\n",

"\n"

]

Listing 4.3: Representation of the structure of the information in the source code of a cell.

This way of collecting information provides additional information about the notebook,
complementing the base data extracted from the JSON format structure.

4.4 Overview of the Extracted Data

Considering the basic structure of a notebook, with the source code and the additional APIs,
notebooks provide a rich source of information. This richness of data can be extracted and
incorporated in the knowledge graph.

Consider first the information that we are interested in, which primarily includes data
related to the structure of the notebook, such as the unique identifier of each cell, the exe-
cution order, the output, and information about the notebook itself. These data enable us to
understand the structure of the notebook and the dependencies between the cells.

Then, the source code of the cells provides further details about the content of a note-
book and tells a story about what the notebook is about. It contains information about used
libraries, manipulated datasets, notebook authors, and datasets licenses, etc.

Finally, more detailed information based on those collected in a notebook can be added
to the knowledge graph. This information is extracted from public APIs as specified in Sec-
tion 4.1.2.

4.5 Summary of Knowledge Graph Design

This chapter presented the data sources considered in thiswork, which include Jupyter note-
books created and executed on Google Colab. As we have shown that notebook formats vary
depending on the environment in which they are executed, we have focused on notebooks
fromGoogle Colab. Moreover, three public APIs are used to enrich the information extracted
from the notebooks: the PyPi API, the GitHub REST API endpoints for users, and the Kaggle
API. The combinationof all thesedata sources ensures that the knowledge graph is a trueone,
as one of the criteria to consider a graph as a knowledge graph is to aggregate information
frommultiple data sources.

The information extracted from the notebooks and the APIs is then structured within
knowledge graphs using the PROV-O ontology. Although the base ontology provides foun-
dational structure, we extend it by incorporating additional terms from the second level of

30

PROV-O in our namespace. This augmentation allows for a more detailed representation
of the extracted information. We have also extended the PROV-O ontology with the FOAF
vocabulary and with defined terms that are too specific to be represented with the PROV-O
ontology.

Finally, an explanation of how thedata are extracted from the source codebased on an im-
posed structure is provided. Indeed, the metadata fields in notebooks are often limited and
may vary from one notebook to another. Therefore, to consider more data, we have defined
a structure to extract information from the source code of the cells. This structure is based
on key-value pairs written in comments in the source code. In the discussions chapter, we
explain why a uniform format and additionalmetadata fieldsmight be beneficial to improve
interoperability.

Based on all the sources of information and methods of extraction, we have a complete
overview of the knowledge graph design and the data that is extracted from the notebooks.

31

Chapter 5

Implementation

In the context of this work, we have established a structured schema aimed at represent-
ing the information collected from several data sources, in particular Jupyter notebooks and
public APIs. This schema, referred to as anontology, is composedof several classes andprop-
erties to structure the information in an organized way. This stage of conception, detailed in
the previous chapter, is essential to defining the basis of this work and to guiding the imple-
mentation of the knowledge graph.

The process of implementation of the knowledge graph starts by collecting the informa-
tion from the data sources mentioned, followed by mapping this information to the ontol-
ogy with the help of mapping rules. The final result is a turtle file with RDF mappings. In
this chapter, we look into the details of this implementation, highlighting the different stages
needed to manipulate the data and represent it in the form of a graph.

The subsequent sections start by contextualizing the importance of this stage of imple-
mentation, underscoring its crucial role in the researchprocess. Then themethod to lead this
implementation is detailed, highlighting the technological choices and the obstacles faced
during this process. Finally, the chapter is organized in a manner that provides a complete
overviewof the implementationprocess, approachingkeyaspects, suchas themapping rules
of the information to the ontology.

5.1 Overview of the Implementation

The implementation of the knowledge graph is a crucial stage in the research process, as it
allows materializing the theoretical concepts defined in the previous chapters. This stage is
essential to demonstrating the feasibility of the approach and evaluating the performance of
the knowledge graph in representing the information collected from the data sources. The
implementation of the knowledge graph is also essential to identifying the limitations of the

32

proposed approach. If the knowledge graph cannot be represented as desired, it will not be
possible to use this approach to face the challenges introduced by the research question.

To implement a knowledge graph, several elements must be considered. We need first
data sources that have a structure that can be mapped to the ontology. This structure can
be tabular, such as in CSV files, or more complex, in JSON files. Then, we need to define the
mapping rules between the information contained in the data sources and the classes and
predicates defined in the ontology. These rules are defined through a language that allows
representing the relations between the different classes, or between a class and a literal. Each
mapping rule specifies how the information corresponds to a triplet RDF (subject, predicate,
object), also referred to as a mapping. Finally, the data is transformed into a structure that is
compatible with the ontology. Additionally, the RDF mappings that represent the relation-
ships between the data are generated in a turtle file that represents the knowledge graph. An
example of an RDF triplet representing the information contained in a Jupyter notebook is
shown in Listing 5.1.
@prefix myns: <http :// example.com/knowledge -graph/> .

@prefix prov: <http ://www.w3.org/ns/prov#> .

@prefix xsd: <http ://www.w3.org /2001/ XMLSchema#> .

myns:Cell_Dfq -kZ57PgaT a prov:Entity ;

myns:hasCellType "code"^^xsd:string ;

Listing 5.1: Example of a RDF triplet representing themapping of the information contained
in a Jupyter notebook. It represents a Cell that is of type Entity with a hasCellType

predicate.

5.2 Mapping Rules

The mapping of the information to the ontology is a main step in the implementation of
the knowledge graph. This process consists of associating the information collected from
the data sources to the classes and predicates defined in the ontology and its extension as
detailed in Section 4.2.

The mapping rules are defined with a language that allows for the representation of in-
formation in a structured way and defines the relations between the different classes. The
language can either be declarative or imperative, depending on the tool used. A declarative
language allows one to define the mapping rules in a declarative way, while an imperative
language must specify all the operations to perform on the data to transform it into the de-
sired format.

The declarative language ismore suitable for themapping of the information to the ontol-
ogy, as it allows for defining themapping rules in a concise and intuitiveway. In addition, the

33

mapping rules are detailed independently of the implementation details, which isolates the
logic of themapping from the logic of the datamanipulations. Finally, declarative languages
are designed to effectively manage the complexity of the mapping process and to improve
the reusability of the mappings [37].

In this work, we aimed to use a declarative language to map the information to the on-
tology. The first choice of language is based on the tools available and the simplicity of the
language used to define the mappings. Therefore, RML is considered as it is a standard lan-
guage for mapping information to RDF, and it is supported by several tools that facilitate
the mapping process. In addition, this language allows for defining the mappings for data
sources that are not tabular, such as Jupyter notebooks (JSON).

There are several tools that support the RML language, such as RMLMapper and Morph-
KGC, which allow executing the mappings and generating the RDF graph from the informa-
tion sources. In the subsequent sections, the different tools used to map the information
with RML are detailed.

5.2.1 RMLMapper

The first tool used to map the information to the ontology is RMLMapper. This tool allows
executing the mappings defined in the RML language and generating the RDF graph from
the information sources, as explained in Section 2.6.1.

However, the use of RMLMapper has shown some limitations in the mapping process,
which has led to the exploration of another tool, Morph-KGC.

5.2.2 Morph-KGC

Morph-KGC is another tool that supports theRML languageandallows the executionofmap-
ping rulesdefined inRML.This tool ismoreadvanced thanRMLMapper, as it allowsperform-
ing operations on the data during themapping process through the use of the extensions fno
and fnml.

The two extensions aim to use functions tomanipulate the data during themapping pro-
cess. The fno extension is a way to describe and declare functions for use in RML mapping
rules. These functions are called to transform the data in a specific way by imposing all the
letters to be in uppercase, for example [38]. To connect these functions with the mapping
rules, the fnml extension is used. Its purpose is to define structure, input parameters, and
return types of functions.

In addition, Python user-defined functions are also supported by Morph-KGC. The
decoratorsof these functionsmustbewell-specified to link to theparameters fromthePython
script function to the fnml parameters [21, 22].

34

Consider the piece of code written in RML in Listing 5.2. This code uses a notebook as
a data source. It starts by defining a Logical source that specifies the data source and the
iterator, which is, in this case, the cells of the notebook. The CellEntity is then defined,
representing the cells of the notebook. It has a subject map that defines the subject with
a unique identifier created based on the id of the cell. Finally, a predicate object map is
defined to represent the relationship between the cell and its timestamp. The timestamp is
not directly available; it is extracted through the call of a function getTimestamp, defined in
Python. The function getTimestamp is linked to the RML mapping rules through the fnml
extension.

1 @pre f i x rml : <ht tp : / / w3id . org / rml /> .
2 @pre f i x ex : <ht tp : / / example . com/> .
3 @pre f i x g r e l : <ht tp : / / use r s . ugent . be/~ bjdmeest / func t ion / g r e l . t t l #> .
4

5 <Ce l l s Source >
6 a rml : Log i ca lSource ;
7 rml : source "ExampleJSON . j son " ; # The data source
8 rml : re fe renceFormula t ion q l : JSONPath ; # The source format
9 rml : i t e r a t o r "$. c e l l s [∗] " . # I t e r a t e over c e l l s
10

11 < C e l l E n t i t y >
12 rml : l o g i c a l S ou r c e <Ce l l s Source > ; # Source of the data
13

14 rml : subjectMap [# Def ine the sub j e c t
15 rml : template " ht tp : / / example . com/code−redundancy / Ce l l −{ metadata . id } " ;
16 rml : c l a s s prov : En t i t y ;
17] ;
18

19 rml : predicateObjectMap [# Def ine a p red i ca t e
20 rml : p r ed i c a t e prov : generatedAtTime ;
21 rml : objectMap [# Def ine the ob j e c t
22 # Apply a func t ion to ge t the timestamp
23 rml : func t ionExecu t ion <#getTimestamp> ;
24] ;
25] ;
26 .
27

28 <#getTimestamp>
29 rml : func t ion ex : getTimestamp ; # The py func t ion
30 rml : input [
31 rml : parameter g r e l : valueParam ;
32 rml : inputValueMap [
33 rml : r e f e r ence " source " ; # The input va lue
34] ;
35] .

Listing 5.2: Example of RMLmapping rules with Morph-KGC to extract the timestamp from
a JSON file using the extensions fno and fnml.

Therefore, with these extensions, it is possible to extract the information that is located
within the source code of the Jupyter notebooks, and map them to the ontology through
RMLmapping rules.

35

5.3 Addressing Mapping Tool Limitations with RDFLib

In theprevious section, two tools tomap thedata to theontologywere introduced: RMLMap-
per andMorph-KGC.However, these tools have shown some limitations in themapping pro-
cess while working with Jupyter notebooks.

The limitations related to RMLMapper are described in Section 5.3.1 and is the reason
for the introduction of Morph-KGC. However, Morph-KGC also showed some limitations in
the mapping process that led to the use of another tool: a imperative language that allows
representing the structure of thedata asdesired. The limitations and the solutionaredetailed
in the following subsections.

5.3.1 Issues with Function Ontologies in RMLMapper

RMLMapper is limited due to its FnO (Function Ontology) implementation, which aims to
define functions to manipulate the data during the mapping process [38].

As explained in Section 4.3, wewant to have access to the source code in the Jupyter note-
books to extract the information contained in the cells. Whenwe have access to the informa-
tion that corresponds to the valueof the keywordsource in the JSONfile, this needs tobema-
nipulated to extract the relevant data. This operation is complex to perform with RMLMap-
per, as it is unable to perform operations on the data in the mapping rules, such as deletion
of parts of the source code.

5.3.2 File Format Issues in Morph-KGC

Morph-KGCwas introduced to address the limitations of RMLMapper. However, an issue oc-
curred with Morph-KGC, which was not encountered with RMLMapper. This issue is linked
to the data source. It is known that Jupyter notebooks are stored in JSON format, but have
the extension .ipynb. When trying to use the JSONPath, like in the line 8 of Listing 5.2, to
extract the information from the notebook, Morph-KGC does not recognize the extension
and throws an error. This issue does not occur with RMLMapper, as it can directly extract the
information from the .ipynb file. The problem has been reported to the Morph-KGC team,
and they recommended transforming each notebook file to a JSON file before using it as a
data source.

This limitation was overcome by converting the notebook files to JSON files before using
them as data sources. One could think that this solves the problem, but the goal of a map-
ping is to ensure that the whole process is self-contained. Renaming files and changing file
extensions before transformation do not comply with that principle. That being said, there
is another, more important, limitation in the mapping process that led to the use of an im-
perative language.

36

5.3.3 Iterator Challenges in Mapping Rules with Morph-KGC

The conceptual idea of the structure was to represent a notebook as a collection of multiple
cells as represented in Figure 4.2. As the notebook does not have a unique identifier within
the keys of the JSON file, we thus need to create one to represent the notebook. Therefore,
we imposed a unique identifier on each notebook, based on the URI of the Google Colab the
notebook was executed on. For example, if the URI is https://colab.research.google.
com/drive/19Ce_h7_oxxphYomDEksc8N04vd-3RL9p, then the last part after the last "/" is
kept as the identifier, resulting in: 19Ce_h7_oxxphYomDEksc8N04vd-3RL9p. Thiswas doneby
addinganewkey-valuepair as a comment inacell of thenotebook, as specified inSection4.3,
and extracting it with a user-defined function during the mapping process.

The mapping rules to extract the notebook identifier are shown in Listing 5.3. As a user-
defined function is used to extract thenotebook identifier, the subjectmapcannotbedefined
within a template: a URI based on the identifier. Instead, the subject map of the notebook
must be defined as a blank node.

1 <NotebookEnt i ty >
2 rml : l o g i c a l S ou r c e <MainSource> ; # i t e r a t o r on notebook
3

4 rml : subjectMap [
5 rml : c l a s s prov : Co l l e c t i on ;
6 rml : func t ionExecu t ion <# getNotebookId> ; # ge t notebook id
7 rml : termType rml : BlankNode ; # blank node d e f i n i t i o n
8] ;
9 .
10

11 <#getNotebookId>
12 rml : func t ion ex : getNotebookId ;
13 rml : input [
14 rml : parameter g r e l : valueParam ;
15 rml : inputValueMap [
16 rml : r e f e r ence " source " ;
17] ;
18] .

Listing 5.3: Example of RMLmapping rules with Morph-KGC to define a notebook.

The issue is related to the missing link there is between the cells and the notebook. Only
one cell contains the identifier of the notebook and is related to the notebook, while the
other cells do not. When the function getNotebookId is called, it returns the identifier of
the notebook, but it also state sthat the notebook is only linked to the cell where the identi-
fier is written. Even if the data source was initially the whole JSON file, by using the function
getNotebookId, the data source of the subject, after defining it, is limited to the cell con-
taining the identifier of the notebook. Thus, there are no direct relations between the cells,
except the one that contains the identifier of the notebook, and the notebook itself.

However, to respect the structure defined in the Chapter 4, we need to connect all the
cells to the notebook. RML does not allow the creation of a predicate linking each cell with

37

https://colab.research.google.com/drive/19Ce_h7_oxxphYomDEksc8N04vd-3RL9p
https://colab.research.google.com/drive/19Ce_h7_oxxphYomDEksc8N04vd-3RL9p

the notebook if there is no direct relationship between them. Indeed, RML only supports
equi-joins, a conditional join based on an equality condition. It does not allow creating a
relationship with the other cells of the notebook, as the only equality that exists between the
notebook and the cells is the cell that contains the identifier of the notebook. To create the
missing links between the other cells and thenotebook, theta-joins are required, which are
not supported by RML. This would let us create a condition that is not based on equality, to
link all the cells to the notebook. More detailed explanations of the types of joins mentioned
are available in Appendix B. The problem is illustrated in Figure 5.1, where each cell contains
its own unique identifier. In contrast, the notebook has access to both its own identifier and
the identifier of the cell it belongs to. More specifically, in the figure, the notebook has its
identifier that is written in the cell i in the notebook; the cell is thus linked to the notebook.
Therefore, the notebook has access to its identifier and the identifier of the cell i.

Figure 5.1: Representation of the missing relationship between cells and the notebook to
which they belong. The framed identifiers correspond to the unique identifiers accessible
from the element the framed identifiers are linked to; either a notebook or a cell.

As the issue is not solvable with RML because the language itself does not support it, we
need to use another tool to perform the mappings. The final tool used is an imperative lan-
guage that allows structuring the data as desired, creating themissing links between the cells
and the notebook. This tool is detailed in the following section.

38

5.3.4 RDFLib to Address RML Limitations

The tool that was finally chosen is RDFlib as it allows structuring the data as desired, thus
overcoming the limitations of RML. This tool is a Python package that enable to work with
RDF. It is simple to use when knowing Python, and allows for creating RDF graphs and seri-
alizing them in different formats such as, Turtle, N-Triples, or RDF/XML [39].

5.4 Construction of the Knowledge Graph

The construction of the knowledge graph is the final step of the implementation. The idea
is to create one graph and include in it several notebooks. Therefore, following the RDFLib
documentation, an empty graph is first created. Then each .ipynb file is added to the graph
through several functions that aim at extracting the information from the JSON format and
mapping it to the ontology. At each step, the graph is serialized in Turtle format to visualize
and check if the information is correctly represented.

5.4.1 RDFLib to Overcome the Limitations of RML

Section 5.3.3 highlighted a limitation faced while using RML to map the information to the
ontology. The issue was related to the missing links between the cells and the notebook.
This issue can be overcome by using the RDFLib library, as it allows creating instructions
to generate the knowledge graph, which includes keeping a reference to each cell with its
metadata in a notebook. Therefore, the missing links between the cells and the notebook
can be created. The code in Listing 5.4 shows how to create the missing links between the
cells and the notebook using RDFLib.

1 for cell in CellsSource:

2 # Get the id of the notebook

3 id_notebook = getNotebookId(cell.value['source '])

4

5 if id_notebook is not None:

6 label_notebook = id_notebook

7 notebook_uri = URIRef(f"http :// example.com/knowledge -graph/

8 Notebook -{ id_notebook}")

9 # Get the date at which the notebook has been created

10 if getTimestamp(cell.value['source ']) is not None:

11 date_notebook = getTimestamp(cell.value['source '])

12

13 for cell in CellsSource:

14

15 notebook = f"""

16 @prefix prov: <http ://www.w3.org/ns/prov#> .

17 @prefix myns: <http :// example.com/knowledge -graph/> .

18 @prefix foaf: <http :// xmlns.com/foaf /0.1/> .

19 @prefix xsd: <http ://www.w3.org /2001/ XMLSchema#> .

20

21 <{notebook_uri}>

22 a prov:Collection;

39

23 prov:label "{ label_notebook }"^^ xsd:string ;

24 prov:hadMember myns:Cell_{current_cell} ;

25 .

26 """

27 graph.parse(data=notebook , format="turtle")

28

29 if date_notebook is not None:

30 graph.add((notebook_uri , prov.generatedAtTime ,

31 Literal(date_notebook , datatype=XSD.dateTime)))

Listing 5.4: Example of Python code using RDFLib to create the missing links between the
cells and the notebook.

In this piece of code, we first iterate over each cell to extract the unique identifier of the
notebook and the timestamp of the notebook, if there is one. Then, we iterate over each cell
again, and we create a notebook for each cell. As the notebook is the same for all the cells,
each cell is linked to the same notebook. This is due to the functioning of RDFLib, which
does not allow creating multiple instances of the same information. If it is created multiple
times, it will only keep one instance of it.

Despite its approach to themapping process, RDFLib has the capacity to handle this issue
effectively. Indeed, the resulting mappings represented in Listing 5.5 align with the desired
representation of a notebook and its cells: all the cells belonging to the notebook are linked
to it. In this turtle file, the notebook is represented as a prov:Collection, and the cells are
linked to it through the prov:hadMember predicate. Other information, such as the language
of the notebook, the language version, and the language extension, is also included in the
graph.
@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

@prefix myns: <http :// example.com/knowledge -graph/> .

@prefix prov: <http ://www.w3.org/ns/prov#> .

@prefix xsd: <http ://www.w3.org /2001/ XMLSchema#> .

myns:Notebook_16Jql -jK1yN7SAVAsy7mZtLBfn39D6gCB a prov:Collection ;

myns:hasCalledFunction "abcd"^^xsd:string ,

"backward"^^xsd:string ,

"item"^^xsd:string ,

"print"^^xsd:string ,

"range"^^xsd:string ,

"torch.linspace"^^xsd:string ,

"torch.no_grad"^^xsd:string ,

"torch.randn"^^xsd:string ,

"torch.set_default_device"^^xsd:string ,

"torch.sin"^^xsd:string ;

myns:hasDefinedFunction "abcd"^^xsd:string ,

"get_loss"^^xsd:string ,

"get_model"^^xsd:string ,

"get_predictions"^^xsd:string ;

myns:hasLanguage "python"^^xsd:string ;

myns:hasLanguageExtension ".py"^^xsd:string ;

myns:hasLanguageVersion "3.12.0" ;

prov:generatedAtTime "2024 -03 -04 T00 :00:00"^^xsd:dateTime ;

prov:hadMember myns:Cell_7xnK -vgy52Mo ,

40

myns:Cell_A7xY7DuX1l3B ,

myns:Cell_LSMxxEuDH2yt ;

prov:label "16Jql -jK1yN7SAVAsy7mZtLBfn39D6gCB"^^xsd:string ;

prov:wasAttributedTo [a prov:Person ;

foaf:name "Felix_Mendelssohn"],

[a prov:Person ;

foaf:name "Lara_Birtles"],

myns:Library_math ,

myns:Library_torch .

Listing 5.5: Example of RDF graph created with RDFLib to represent the missing links
between the cells and the notebook. The cells linked to the notebooks are listed after the
prov:hadMember predicate. The blank nodes describing a Person are represented between
brackets [...].

5.4.2 Author as a Blank Node

In Section 2.2, blank nodes were introduced as a way to represent classes that do not have a
unique identifier. In the creation of the knowledge graph, Author represented as a Person
in the ontology, was defined as a blank node. This is attributed to the manner in which the
author of thenotebook is extracteddirectly from the JSONfile. While thenameand the family
name of the author are accessible, no unique identifier is provided. Blank nodes allow us
to create a unique identifier based on this information within the graph without relying on
an external identifier. Therefore, if the author of notebook A is the same as the author of
notebook B, the blank node will be the same for both notebooks. The code in Listing 5.5
shows how the mappings of blank nodes are defined.

5.5 Summary of the Implementation

This chapter has detailed the implementation of the knowledge graph, highlighting the dif-
ferent stages needed to manipulate the data and represent it in the form of a graph.

The mapping of the information to the ontology was detailed, as were the different tools
used to perform the mappings. We faced some limitations concerning the mapping process
while trying to createmapping ruleswithRML. Two tools, RMLMapper andMorph-KGC, that
allow writing mappings rules in a declarative language, were tested before switching to an
imperative language, as they do not allow designing the graph as desired. RMLMapper was
not able to perform operations on the data during the mapping process, while Morph-KGC
had iterator challenges and file format issues. The solution to overcome these limitations
is the use of RDFLib, a Python package that allows structuring the data as planned in the
previous chapter.

Finally, the construction of the knowledge graph was mentioned, detailing some key as-
pects such as the creation of the missing links between the cells and the notebook, and the

41

representation of the author as a blank node.

42

Chapter 6

Evaluation and Experimentation

An ontology was defined in the previous chapter as well as mapping rules with the aim of
generating the RDF triples to construct the knowledge graph. By considering a dataset with
notebooks, a knowledge graph can be generated, evaluated, and queried to answer several
questions of interest related to data lineage. In this chapter, the evaluation of a generated
knowledge graph is presented, and the experimentation with it in real-world conditions is
discussed.

The evaluation phase is essential to ensure the information extracted from notebooks is
correctly represented within the knowledge graph and to identify any errors in the mapping
process. To conduct this evaluation, a knowledge graph based on two test notebooks is built
and visualized using a tool called GraphDB. Several queries are executed on that graph, and
their results are analyzed to validate it.

The experimentation phase aims to test the approach under real-world conditions with
a dataset composed of notebooks from various sources. The KGTorrent dataset, on which
simple queries are executed, is the pillar of this stage. It is a dataset of Jupyter Notebooks in
Python from the Kaggle community. Additionally, performancemeasurements of the gener-
ation of the knowledge graph and of the querying process are realized.

6.1 Visualization of the Knowledge Graph

The visualization of the knowledge graph is useful to check if the information is correctly
represented and to identify errors in the mapping process. The visualization has been done
with GraphDB. It is a graph database that allows visualizing RDF graphs and querying them
with the support of RDF and SPARQL [40].

In the knowledge graph, notebooks are of the type Collection, and many properties are
associatedwith them, suchas the cells theyhave asmembers, the libraries they are attributed

43

to, the licenses they derived from, and the datasets they derived from. Figure 6.1 shows a
visualization of one of the notebooks that are stored in the graph and its properties. The
literal values are not displayed in the directed graph in Figure 6.1, but they can be accessed
within the application as a list, by clicking on the node. Another aspect of GraphDB is that it
does not allow displaying the blank nodes, which are the authors of a notebook in this case.

Figure 6.1: Visualization of a notebook and its properties in the knowledge graph with
GraphDB. The notebook is of type Collection and is represented with its cells, libraries
(datetime,math, etc.), datasets, and licenses.

The visualization tool allowsnoticing link between twonotebooks, for example. Figure 6.2
illustrates themath library that is shared between two different notebooks. The visualization
of the graph enables to illustrate interlinks.

As explained in Section 4.2, the licenses in the knowledge graph can be handled in various
ways. They can be deduced fromaKaggle dataset using the Kaggle API orwritten in the note-
book as a key-value pair: # License: license_name. Indeed, a license can be attributed
to a dataset or to a piece of code. In Figure 6.3, the license is deduced from a Kaggle dataset,
and in Figure 6.4, the license is written in the notebook. These two figures show the different
ways a license can be represented in the knowledge graph. Figure 6.3 specifically visualizes
license information related to datasets.

44

Figure 6.2: Visualization of themath library shared between two different notebooks in the
knowledge graph with GraphDB.

Figure 6.3: Visualization of a license
deduced from a Kaggle dataset with
GraphDB.

Figure 6.4: Visualization of a license as a
comment in the notebookwithGraphDB.

GraphDB also provides a tabular visualization of the RDF triples. A table of RDF triples
with the cell Cell_LSMxxEuDH2yt as the subject is illustrated in Figure 6.5. This tabular visu-
alization provides access to the properties of the selected cell, along with the objects associ-
ated with those properties.

In addition to checking the correctness of the constructed knowledge graph, the visual-
ization helps to conceptually understand how the information is represented and how the
different classes are interlinked together in the knowledge graph.

6.2 Basic SPARQL Queries for Graph Validation

To validate of the constructed knowledge graph, some simple queries have been executed
using SPARQL. Several queries were written and tested on a knowledge graph built from two

45

Figure 6.5: Table visualization of RDF triples associated with a specific cell in the knowledge
graph with GraphDB.

test notebooks.

Among these queries, one aims at retrieving all the markdown cells. It returns the identi-
fier for each cell and its corresponding notebook. This query is illustrated in Listing 6.1, and
the result is shown in Table 6.1. The obtained results can be compared to the actual con-
tent of the notebook. In the two test notebooks, there are two markdown cells, one in each
notebook, which is the result obtained from the query.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX myns: <http://example.com/knowledge-graph/>

PREFIX prov: <http://www.w3.org/ns/prov#>

SELECT ?Cell ?notebook WHERE {

?Cell myns:hasCellType "markdown" .

?notebook a prov:Collection .

?notebook prov:hadMember ?Cell.

}

Listing 6.1: SPARQL query that aims to get all the markdown cells and the notebook they
belong to.

Manyotherquerieshavebeen testedandhave returned theexpected results. Among them
were some simple queries, such as retrieving the libraries used in two different notebooks,
and the licenses associated with a dataset. On the other hand, more complex queries were
also considered. Those include retrieving identical cells or information about the author of
a notebook, for example.

46

Table 6.1: Result of a SPARQL query applied to a knowledge graph based on two test note-
books. The query aims to get all the markdown cells and their corresponding notebooks.

Cell Notebook
http://example.com/

knowledge-graph/Cell_

LSMxxEuDH2yt

http://example.com/

knowledge-graph/Notebook_

16Jql-jK1yN7SAVAsy7mZtLBfn39D6gCB

http://example.com/

knowledge-graph/Cell_a0o8vP2_

8Hlw

http://example.com/

knowledge-graph/Notebook_19Ce_

h7_oxxphYomDEksc8N04vd-3RL9p

6.3 SPARQLQuery toAnswerQuestions aboutData Lineage

Several challenges related to the data lineage were identified in Chapter 3. We aim to ad-
dress these challenges by converting Jupyter notebooks into a knowledge graph and enabling
queries with SPARQL.

In the introduction, the discussion around data lineage in notebooks led to various ques-
tions whose answersmight help scientists in their researchwork. Among the given examples
of questions, question Q3 relates to licenses and restrictions in a
file. Listing 6.2 illustrates the SPARQL query to answer the part related to the licenses of this
question. The query returns licenses and their corresponding notebooks. In addition, if the
license is associated with a dataset, it also returns that dataset. Every license is related to a
notebook. However, for the licenses deduced fromadataset through theKaggleAPI, there is a
second relationship with the dataset using the predicate: prov:wasInfluencedBy. Since not
all licenses are linked to a dataset, the query comprises anOPTIONAL clause to find a dataset
related to a license. Therefore, if no dataset is found, the query still returns the license, but
only with the associated notebook.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX prov: <http://www.w3.org/ns/prov#>

PREFIX myns: <http://example.com/knowledge-graph/>

SELECT DISTINCT ?label_license ?label_notebook (IF(BOUND(?label_dataset), "

Yes", "No") AS ?hasDataset) ?label_dataset

WHERE {

License

?license a prov:Entity.

?license prov:label ?label_license.

Notebook

?notebook a prov:Collection.

?notebook prov:label ?label_notebook.

?notebook prov:wasDerivedFrom ?license.

47

http://example.com/knowledge-graph/Cell_LSMxxEuDH2yt
http://example.com/knowledge-graph/Cell_LSMxxEuDH2yt
http://example.com/knowledge-graph/Cell_LSMxxEuDH2yt
http://example.com/knowledge-graph/Notebook_16Jql-jK1yN7SAVAsy7mZtLBfn39D6gCB
http://example.com/knowledge-graph/Notebook_16Jql-jK1yN7SAVAsy7mZtLBfn39D6gCB
http://example.com/knowledge-graph/Notebook_16Jql-jK1yN7SAVAsy7mZtLBfn39D6gCB
http://example.com/knowledge-graph/Cell_a0o8vP2_8Hlw
http://example.com/knowledge-graph/Cell_a0o8vP2_8Hlw
http://example.com/knowledge-graph/Cell_a0o8vP2_8Hlw
http://example.com/knowledge-graph/Notebook_19Ce_h7_oxxphYomDEksc8N04vd-3RL9p
http://example.com/knowledge-graph/Notebook_19Ce_h7_oxxphYomDEksc8N04vd-3RL9p
http://example.com/knowledge-graph/Notebook_19Ce_h7_oxxphYomDEksc8N04vd-3RL9p

FILTER(!regex(str(?license), "Dataset_"))

OPTIONAL{

Dataset

?dataset a prov:Entity.

?dataset prov:label ?label_dataset.

FILTER(regex(str(?dataset), "Dataset_"))

?notebook prov:wasDerivedFrom ?dataset.

?dataset prov:wasInfluencedBy ?license.

}

}

Listing 6.2: SPARQL query that aims to return the licenses associated with a notebook. If the
license is retrieved fromadataset, it also returns that dataset in addition to the corresponding
notebook.

The result of the query is represented in Table 6.2. The first two licenses are retrieved
through a notebook; they were mentioned in comments in the code. The third one is a li-
cense that has been retrieved through the Kaggle public API. Therefore, it is associated with
a notebook and a dataset: Iris_Species.

Table 6.2: Result of a SPARQL query applied to a knowledge graph based on two test note-
books. The query aims to retrieve the licenses associated with a notebook. If the license is
retrieved from a dataset, it also returns that dataset in addition to the corresponding note-
book.

License Notebook FromDataset? Dataset
BSD_3_clause 19Ce_h7_oxxphYomDEksc8N04vd No None

-3RL9p
License_Test2 19Ce_h7_oxxphYomDEksc8N04vd No None
_ok-kjh -3RL9p
CC0-1.0 19Ce_h7_oxxphYomDEksc8N04vd Yes Iris_Species

-3RL9p

This query helped to retrieve important information about thenotebookwithout theneed
to look at the code. It is even more helpful when the license is related to a Kaggle dataset.
Indeed, it is through external data that the information is accessible, thusmaking it less easily
accessible to find the information by hand. This query is an example of the kind of query that
can help provide easy access to specific information.

Other queries can be designed to answer questions related to the faced challenges. For
example, as the knowledge graph contains the source code of each cell of a notebook, it is
thus possible to retrieve identical cells in one or more notebook and detect duplicate cells.

48

6.4 Exploration of the KGTorrent Dataset

In the introduction, we have mentioned the significant role of Jupyter notebooks in the field
of data science. In this thesis, we focus primarily on analyzing these files, as they serve as
the main source of data. To carry out the desired analyses, access to a real-world dataset of
Jupyter notebooks is essential. Once the basic case is considered with a few files that have
been visualized and queried, this dataset is used to designed analyses under real-world con-
ditions.

TheKGTorrentdataset is a collectionofPython JupyterNotebooksproposedbyLuigiQuan-
ranta et al. in [33]. This dataset is composed of 248.761 publicly available Python Jupyter
Notebooks. The authors have collected the data from Kaggle1, a platform dedicated to data
science andmachine learning. The dataset offers a large variety of notebooks, each enriched
with rich metadata and content. The main objective of the KGTorrent dataset is to provide a
large collection of data to analyze the content of Jupyter notebooks. Additionally, it aims to
identify potential weaknesses in these notebooks for future extensions.

Moreover, this dataset has already let severalworks highlight the importance of codequal-
ity and style in Jupyter Notebooks. It has been used to analyze how data scientists use note-
books and how these notebooks are typically used in data science workflows [33]. Md Saeed
Siddik et al. have used the KGTorrent dataset to answer the question: Do Code Quality and
Style IssuesDifferAcross (Non-)MachineLearningNotebooks? [3]. Theauthors analyzewhether
the code quality is related to the use of machine learning. With the help of the KGTorrent
dataset, they have found that the code quality is hugely different betweenmachine learning
and non-machine learning notebooks.

In this thesis, we leverage the KGTorrent dataset to construct a knowledge graph and then
query it. The following section illustrate these two stages.

6.5 Knowledge Graph with a Realistic Dataset

Thanks to the KGTorrent Dataset from Kaggle, which is a large dataset, the construction of
a knowledge graph can be simulated in real-world conditions. This dataset contains various
types of notebooks, as explained in Section 4.1.1. The focus as been made on notebooks
created and executed on Google Colab to ease the process. Therefore, all the notebooks in
the dataset were filtered to keep only the desired ones. The remaining number of notebooks
went from 248.761 to 3.536. It means that only 7% of the initial dataset was built fromGoogle
Colab.

Among the 3.536 filtered notebooks, 100 notebooks are then randomly selected to build
1https://www.kaggle.com/

49

https://www.kaggle.com/

the knowledge graph. 10% of those notebooks were manually enriched with key-value pairs
to include more metadata. Indeed, those notebooks do not follow the convention explained
in Section 4.3, which specifies how to comment the code to add information about the note-
book. In the subsections, the modified dataset composed of the 100 notebooks is called the
small dataset.

6.5.1 Performance Measurements to Generate the Knowledge Graph

To generate the knowledge graph, all the notebooks have to be transformed into RDF triples
through the mapping rules. This operation might take time, depending on the amount of
information that has to be processed. We have observed with the two tests notebooks that
the time increases if a connection with an external source is required. For example, when
a dataset is mentioned as originating from Kaggle, the time to generate the RDF triples in-
creases. Indeed, a connection to the Kaggle public API is thus made to retrieve data related
to that dataset.

Two points of view have been considered to analyze the performance measurements of
generating a knowledge graph constructed on the small dataset. First, the generation time of
RDF triples for each notebook is represented using a histogram illustrated in Figure 6.6. The
histogram illustrates a right-skewed distribution of the generation time. It means that most
of the notebooks are generated in a short time (less than 5 seconds), while the others take
significantly longer to be generated (long tail). The mean time of 8 seconds arises slightly
after the peak of the histogram, which is consistent with the observed skewness.

0 5 10 15 20 25 30 35 40
Generation time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f s
am

pl
es

Figure 6.6: Histogram of the time needed for each notebook of the small dataset to generate
their RDF triples.

50

Buildingupon theprevious analysis, whichexhibits a right-skeweddistribution, Figure 6.7
provides a more granular view. It illustrates the time required for each notebook to generate
their RDF triples, alongwith themeanand the standarddeviation time. Additionally, it shows
that the time required to generate the triplesmight vary fromone notebook to another; some
notebooks take less than 1 second to generate the triples, while others take over 30 seconds.

0 20 40 60 80 100
Samples

0

5

10

15

20

25

30

35

40

Ge
ne

ra
tio

n
tim

e
(s

)

Mean
Mean ± Std

Figure 6.7: Representation of the time required for each notebook of the small dataset to
generate its RDF triples.

The performance measurements analyzed in Figures 6.6 and 6.7 let us consider that the
time required to generate the knowledge graph for the small dataset is acceptable, although
some notebooks might take more time.

Nevertheless, we must keep in mind that only 10% of the notebooks in the small dataset
have been modified. If more notebooks are modified, or if all the notebooks follow the con-
vention of annotation and thus contain more information to process, the time required to
generate the knowledge graphmight increase.

To gain further insight about the variation in generation time between notebooks, Ta-
ble 6.3 is generated. It corresponds to ten notebooks with the highest generation time of
RDF triples. The table also includes the file size and the number of imports for each note-
book. In this table, three of the ten notebooks aremodified, and all are in the top four slowest
notebooks.

First, the size of the notebook is analyzed and compared with the generation time of RDF
triples. As somenotebooks in the small dataset are huge anddonot appear in Table 6.3, while
others are smaller and do appear, it might seem that there is no relationship between the

51

size of the notebook and the generation time. The correlation between these two variables is
computed and corroborates this assumption, as the correlation coefficient is close to 0.

Table 6.3: Ten notebooks with the highest generation time of RDF triples from the small
dataset. The size of each notebook and the number of imports are also presented. The note-
book with the biggest generation time was modified and contains a Kaggle dataset, which is
retrieved through the Kaggle API.

File Index Time [s] Modified Size [ko] Number of Import
2 38.15 yes 1.226 69
91 30.22 no 89 68
7 25.65 yes 4.123 49
0 21.79 yes 170 48
28 21.42 no 2.488 38
94 18.72 no 54 33
95 18.11 no 47 25
96 16.70 no 195 33
24 16.66 no 216 28
64 16.47 no 71 30

With the two test notebooks, we have observed that the generation time of RDF triples
increased when connections with external sources are required. This might be the case for
the notebooks in Table 6.3. There are three possible reasons to initiate the connection to one
of the three public APIs considered in this thesis: a Kaggle dataset is mentioned, an import is
made, or a GitHub account is specified. Among the 10% of the modified notebooks, we have
added three Kaggle datasets to three different notebooks and no GitHub account. There-
fore, themost significant amount of connection is caused by the number of imports. Indeed,
each imported library requires a connection to the PyPI API to retrieve the metadata of the
library. For example, the slowest notebook in Table 6.3 contains 69 imports, which leads to
69 connections to the PyPI API in addition to one connection to the Kaggle API to retrieve the
dataset.

For every notebook in the small dataset, we have counted the number of imports to ana-
lyze it in relation to the generation time. The correlation coefficient between the number of
imports and the generation time of RDF triples is around 0.96, which means that there is a
strong correlation between the number of imports and the generation time. Figure 6.8 illus-
trates the relationship between these variables for each notebook of the small dataset. From
this, we can assume that the connection to external sources is the reasonwhy the generation
time of RDF triples is higher for some notebooks.

52

Figure 6.8: Illustration of the relationship between the generation time of RDF triples and
the number of imports for each notebook of the small dataset. The correlation coefficient is
around 0.96.

6.5.2 Simple Queries with the Realistic Dataset

The knowledge graph based on the small dataset is operable and can thus be queried. This
graph contains more RDF triples; it is thus interesting to measure the execution time of
queries that are performed. The SPARQLqueries are executed on the knowledge graph based
on the small dataset using Apache Jenna Fuseki. It acts as a SPARQL server that enables the
retrieval of data from the knowledge graph through SPARQL queries. It also provides the
SPARQLGraph Store protocol [41]. This lets us query the knowledge graphwehave built with
the small dataset with a dedicated tool. Multiple queries have been applied to the knowledge
graph, but only two queries are presented in this section. The first one is a complex query,
while the second is less complex and executed faster.

Consider that we want to have access to the number of libraries that are shared between
two different notebooks. The query that answers this question is illustrated in Listing 6.3,
and the result is in Table 6.4. The execution time of this query is around 0.339 seconds, and
the results are composed of more than 3500 notebook pairs.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX prov: <http://www.w3.org/ns/prov#>

SELECT DISTINCT (COUNT(?label_library1) AS ?count) ?label_notebook1

?label_notebook2

WHERE {

?notebook1 a prov:Collection.

?notebook1 prov:label ?label_notebook1.

53

?notebook2 a prov:Collection.

?notebook2 prov:label ?label_notebook2.

?library1 a prov:Agent.

?library2 a prov:Agent.

?notebook1 prov:wasAttributedTo ?library1.

?notebook2 prov:wasAttributedTo ?library2.

?library1 prov:label ?label_library1.

FILTER (STR(?notebook1) < STR(?notebook2) && ?library1 = ?library2).

}

GROUP BY ?label_notebook1 ?label_notebook2

Listing 6.3: SPARQL query that returns the number of libraries shared between two different
notebooks.

Table 6.4: Result of a SPARQL query applied to a knowledge graph built upon the small
dataset. The query aims at returning the number of libraries shared between two different
notebooks.

Notebook 1 Notebook 2 Nb Libraries
BvmocDG28ClAd2mvN5sO XsYlYy5pCwAJYg7XyiqY 6
BvmocDG28ClAd2mvN5sO nHnYKVuT4CuSR1LeJWDX 10
EEKPxhv9VCLQK5SoSI05 Ew6bwQ6H06CrnO8l8roZ 2
fYAJe8odeBBQ1p5eOW4O uiXTyhe4ByHRTOcT0ecJ 6
XsYlYy5pCwAJYg7XyiqY sILgX1sZ8IY2epTTSJdN 5
Gsz1G0PCnIDdzvNxuDIh nHnYKVuT4CuSR1LeJWDX 6
2VIjhTvZV46Em86wuc0f EtowdzXJDmlihxhQ9RB4 7
...
WnRc1PHODvua1wHoi1Zd uiXTyhe4ByHRTOcT0ecJ 1
WnRc1PHODvua1wHoi1Zd x7bln8bN5zl2aP1VcK2E 1

A secondquery, which aims at returning all the defined functions and their corresponding
notebooks, is illustrated in Listing 6.4. This query is less complex and fast compared to the
first one, with an execution time of 0.03 seconds. In the results, the overall number of defined
functions is around 300, and some are represented in Table 6.5.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX prov: <http://www.w3.org/ns/prov#>

PREFIX myns: <http://example.com/knowledge-graph/>

SELECT DISTINCT ?functions ?label_notebook WHERE {

?notebook a prov:Collection.

?notebook prov:label ?label_notebook.

54

?notebook myns:hasDefinedFunction ?functions.

}

Listing 6.4: SPARQL query, which aims to retrieve all the defined functions in each notebook.

Table 6.5: Result of a SPARQL query applied to a knowledge graph built upon the small
dataset. The query aims to retrieve all the defined functions and their corresponding note-
books.

Function Notebook
create_np_array_from_input_list 2VIjhTvZV46Em86wuc0f
make_decision_tree 2VIjhTvZV46Em86wuc0f
check_keywords 2tAPlqe4Ny9e0bEx27bD
... ..
backwardelimination wTkiUIrs3NXbC5OM4IhI
build_model wTkiUIrs3NXbC5OM4IhI

The two above queries show that a realistic knowledge graph built on a small dataset can
be queried and return answers to various questions. Additionally, the execution time seems
dependent on the complexity of the query and the amount of processed data. The first query
is complex, deals with a lot of data, and takes 10 times longer than the second to be executed.

6.6 Summary of the Evaluation and Experimentation

This chapter aims at evaluating the structure of the knowledge graph and experimenting the
approach with complex queries, as well as with a realistic dataset.

The evaluation was realized with a knowledge graph built upon two test notebooks to
check the correctness of the designed and implemented structure. This was done through
the visualization of the graph with GraphDB and the execution of several simple SPARQL
queries. These two steps have led to the conclusion that the graph structure is correctly built
and represents the information contained in the notebooks as expected by the design of the
structure.

After the validation of the structure, it comes the querying phase of the knowledge graph
related to data lineage challenges. A complex query related to licenses shows the expected
results and proves that the knowledge graph can be useful to face these challenges.

Finally, we investigated and build a knowledge graph on a realistic dataset: a dataset of
100 notebooks randomly selected from the KGTorrent dataset. Performance measurements
to build the knowledge graph were analyzed and have shown that the generation time of
RDF triples is dependent on the number of connectionswith a public API. Queries were then

55

applied to this knowledge graph, and the execution time of each query was analyzed. We
observed that themore complex the query, themore time it takes to execute it. However, the
execution times are acceptable for both simple and complex queries.

56

Chapter 7

Discussions

This thesis aims to present a knowledge graph-based approach to solving the challenges of
tracingdata lineage indata science. We constructed a structured approachusingprovenance
data, which has then been evaluated. However, through the entire process of the construc-
tion of the approach, several challenges were faced, and some limitations were identified.
Additionally, certain choices were made, such as the use of notebooks created and executed
with Google Colab for the creation of the knowledge graph. This chapter presents a discus-
sion of the results, the limitations faced, and the constraining choices made.

7.1 ADeclarativeApproach toKnowledgeGraphGeneration

Themain limitation faced during the construction of the knowledge graph was the language
used to map the data. Initially, we wanted to use RML, which is a declarative language that
enables the mapping of data from heterogeneous sources. This choice was for several rea-
sons detailed in Section 5.2. However, two issues were faced during the construction of the
knowledge graph that led us to use an imperative language: Python.

The first issue is the lack of extensions for the RMLMapper tool. Indeed, we needed to
be able to access and extract the desired information directly from the source code of each
cell. However, this tool does not allow for the extraction of the desired data to populate the
knowledge graph effectively. An alternativewasMorph-KGC. This tool enables the extraction
of the desired data from the source code of the cells.

The second issue is the iterator problems in the RML language. When a notebook is cre-
ated, thewhole JSONfile is considered as the notebook. However, the unique identifier of the
notebook is specified in one of the cells by following the convention of annotation explained
in Section 4.3. With RML, whenwe get access to the identifier of the notebook, the accessible
information is reduced to that cell. All the other cells and other information contained in the

57

JSON file are no longer accessible. Essentially, the link between the cells and the notebook
itself was broken, except for one cell. Furthermore, the limited join capabilities of RML were
insufficient for our needs. We required a theta-join to set relationships between each cell and
the notebook itself.

We must mention that RML is a language that is not yet standardized and is thus in de-
velopment. The issues we faced could be solved in the future with the evolution of the lan-
guage, as some research is currently done related to this language and its issues. For example,
BURP [42] is a reference implementation of the RML language, which supports the newRML
modules and has shown several problems related to them.

7.2 Generalization to a Uniform Notebook Format

In this work, we decided to focus on a specific type of notebook: the Google Colab note-
books. Indeed, there are different types, each with a different format of key-value pair When
we consider two different formats, the bodies share the same idea, but the names of the keys
can be different, or the same keys can be present at two different levels of the JSON file. This
consideration is important, as the approach presented in this work is not generalizable to all
types of notebooks. This has been noticed during the evaluation of a real-world dataset in
Section 6.5, where the majority of notebooks are not in the Google Colab format.

Moreover, the metadata fields in the notebooks are often limited. To consider more data,
we have defined a structure to extract information from the source code of the cells, as ex-
plained in Section 4.3. However, this convention is strict and is not followed by the majority
of the notebooks. Therefore, information about authors, dates, or datasets cannot be easily
collected. This is a binding choice that has been made to be able to collect the information
we need to build the knowledge graph.

Additionally, thepresented structure led tomanualmodificationsof somenotebooks from
theKGTorrent dataset for the experimentation phase. This intervention underscores the lim-
itation related to the generalization of the approach presented in this work. It also highlights
the challenges that we faced during the construction of the knowledge graph: the lack of a
standardized structure for all the different types of notebooks and the fewmetadata fields.

7.3 Extension of the PROV-O Ontology

The PROV-O ontology is considered as the basis of this work to represent the provenance
data. However, this ontology is not enough to represent all the information that we want to
store in the knowledge graph. Therefore, it was extended with the FOAF vocabulary to rep-
resent the authors of the notebooks in a more detailed way. In addition, some new terms

58

were defined to describe data that was too specific to be representedwith the PROV-O ontol-
ogy or the FOAF vocabulary. For example, the predicate hasSourceCode has been defined to
represent the source code of a cell.

Approximately ten predicates have then been created, all with a range of string. How-
ever, some of these terms could have been defined with a more specific range, such as
hasCellType, which could have a range restricted to Code or Markdown. This would have
beenmore precise to describe the type of cell in a notebook. The same could have been done
for the hasOutputType term, which could have a range restricted to stream or display.

7.4 Deployment of the Knowledge Graph

The structure of the knowledge graph has been designed to represent a notebook and its
content. As provenance data is the main source of information, the PROV-O ontology was
considered. To complete the ontology, the FOAF vocabulary and additional created terms
have been used. Thus, a namespace was created to represent the combination of PROV-O,
the FOAF vocabulary and the new terms. http://example.com/knowledge-graph/ is the
namespace used in this thesis, where example.com is a usual fictive placeholder in the con-
text of a researchwork, andknowledge-graph is here to specify the context of thenamespace.
Note that it is a fictive namespace and it is not registered. This namespace is thus dedicated
to the research field and cannot be used in a real-world application.

The deployment of the ontology needs to be done in a real-world application to be able
to use the knowledge graph in a real-world context. This would need to ask for a persistent
identifier from the W3id service, which is a service that provides persistent identifiers for
the Web [43]. However, these identifiers are granted only for "serious" projects and not for
projects from students or Master thesis. In the future, the deployment of the ontology and
the knowledge graph could be used in the field of data science to answer questions related
to data lineage and provenance data.

7.5 Blank Nodes in the Construction of the Graph

In the constructionof the knowledge graph, someconstraining choiceshavebeenmade. One
of them is related to the use of blank nodes to represent the authors of notebooks. Indeed,
the name of the author of a notebook is an information that can be found in the source code
of a cell by following the comment convention presented in Section 4.3.

During the construction of the knowledge graph, we faced an issue related to the repre-
sentation of the authors of notebooks. Indeed, the name of an author might be contained in
the source code of a cell, but this information is not sufficient to create a unique identifier
for each author, as multiple authors can have the same name. Therefore, we had to store the

59

http://example.com/knowledge-graph/

author as a blank node in the knowledge graph. However, the consequence of this choice is
that if two notebooks have the same author name, these authors will be considered as the
same person in the graph even if they are two different persons.

This is a limitation of the approach because, if two different researchers have the same
name, these cannot be distinguished in the knowledge graph. A solution to this issue would
be to use the GitHub account of the author, as a unique identifier; this information is already
extracted from the source code of a cell and stored as triples. However, the latter is not con-
sidered a unique identifier as we suppose that not all the authors have a GitHub account.
Additionally, this information is not always present in the source code of a cell.

7.6 Exploring Evaluation and Experimentation Results

After defining mapping rules to match the structure established in the design of the knowl-
edge graph, the construction of a knowledge graph with data from two test notebooks has
been done. This initial graph was evaluated and queried to ensure its validity. Then some
experiments with a knowledge graph built upon a real-world dataset were made.

7.6.1 Evaluation of the Knowledge Graph

The results of the evaluation have proved the correctness of the definedmapping rules, lead-
ing to a valid knowledge graph; the representation of the data stored in the knowledge graph
is consistent with the design of the graph. This evaluation has been done with the visualiza-
tion of the graph and with the use of SPARQL queries.

This evaluation is crucial, as it enables highlighting if there are anyprogrammingmistakes
or misunderstandings. Indeed, it is easy to make spelling mistakes in the name of the predi-
cates while defining the mapping rules (wasAttributedto instead of wasAttributedTo) or
forget to define a label for a given class, for example.

7.6.2 Addressing Data Lineage Challenges

The graph, composed of triples from the two test notebooks, was queried with a SPARQL
query that was designed to answer a question related to the data lineage challenges. The
question was about licenses that are associated with a notebook through source code or
datasets. The query lets a user have easy access to those licenses, even if they are not ex-
plicitly mentioned in the notebook (retrieved from a dataset through the Kaggle API). This
query, which takes less than a second to be executed, provides quick access to some infor-
mation that can be useful in the context of data lineage.

However, theremight be questions that wewould like to ask, but that cannot be answered

60

with the current structure of the knowledge graph. For example, if we want to have access to
transformations that were applied to a dataset, wewould need to considermore information
and think of its representation in the structure of the knowledge graph. Of course, some snip-
pets of information that can answer a part of that question are already present in the graph.
All the functions called in the code cells are stored in the graph; in those, we can find, for
example, scaling functions, exponential or logarithmic functions, etc. With this information,
we can have an idea of the transformations that have been applied to a dataset. We can also
have information about the machine learning model that has been used in the notebook, or
which metric is used to evaluate the model.

To address other questions, the graph needs to be enriched. This requires thinking about
the representation of the information, the consideration of valuable information, and the
extraction of this information. Moreover, it would be interesting to explore other external
sources of information.

7.6.3 Experimentation on a Real-world Dataset

In the experimentation phase on a real-world dataset, some queries were executed on a
knowledge graph built on 100 notebooks from the KGTorrent dataset. Additionally, perfor-
mance measurements were considered to evaluate the generation time of the knowledge
graph and the performances of the queries.

With some statistical analysis of the generation time of RDF triples, we have observed that
somenotebooks needmore time than others to generate the triples. The size of the notebook
file was first investigated as a possible explanation for this generational difference. However,
no relationship was found between the size of each notebook file and the generation time.
Then, we have considered the number of accesses to APIs, as a request has to be sent to an
external server every time a library is imported, a Kaggle dataset is specified, or a GitHub
account is mentioned. This consideration has led to the discovery of a relationship between
the number of imported libraries, which translates to the number of accesses to the PyPI API,
and the generation time of RDF triples for each notebook.

Several querieswere thenexecutedon theknowledge graph. Theexecution timewas stud-
ied to evaluate the efficiency of the queries in real-world conditions. We have observed that
some complex queries have a longer execution time compared to simple ones. Nevertheless,
the time of execution is under a second for all the tested queries, which is acceptable for a
real-world application.

The experimentation considered one hundred notebooks, of which only 10% were modi-
fied to follow the convention imposed to extract data from the source codeof the cells. There-
fore, if all the notebooks follow the convention, more informationmight be extracted, and it
might take longer to generate the graph and query it.

61

7.7 Summary of Discussions

This chapter explored the limitations, the binding choices, and the results of our work. Key
areas for potential enhancement include the enrichment of the graph to address other ques-
tions related to the data lineage challenges and the RML mapping language. These consid-
erations lead us to the conclusion in the next chapter.

62

Chapter 8

Conclusions

Data science is a field that uses data to extract knowledge. However, tracking the origin
and transformations of this data (data lineage) often leads to challenges. Jupyter notebooks,
stored as JSONfiles, are frequently used tools in data science. These allow thewriting of code,
data visualizing, the documentation of the work, and the sharing of results in a single doc-
ument. This thesis focuses on the challenges related to data lineage in Jupyter notebooks;
specifically the aim is to present an approach to overcoming challenges related to data lin-
eage using knowledge graphs and provenance data.

To address data lineage challenges, we designed an approach that first build a structure
that represents the information extracted from notebooks in the form of a graph. In this way
the data sources, including notebooks generated and executed on Google Colab, along with
external sources like public APIswere analyzed. The purposewas to understand the data and
represent it in a graph with themost appropriate structure. Since the JSON format of a note-
book varies depending on the tool used to generate and execute it, only notebooks built from
Google Colab are considered to ensure consistency. The three APIs that were used to enrich
the notebooks are PyPi API, GitHub REST API, and Kaggle API. To design the structure of the
data the PROV-O ontology was chosen as a foundation, extended with the FOAF vocabulary
and some newly defined terms to globally represent the information.

Once the structure was well-defined, the data from the data sources was mapped to the
ontology using mapping rules. Those rules were initially defined in RML, but this language
has some limitationswhichmake RMLnot suitable in the context of this research. Therefore,
we coded the RDFGeneration process imperatively in Python using RDFLib, as it overcomes
the limitations of RML.

The approach was then validated by checking the correctness of a generated knowledge
graph on a small and non-realistic dataset composed of two test notebooks. A visualization
tool called GraphDB was used to visualize the graph and check for any errors in the data

63

that could be found visually. Additionally, several queries were executed on that graph to
answer questions about all the information that was collected and represented in the graph.
These queries successfully retrieved the expected results and thus demonstrated the ability
to correctly represent the data in the knowledge graph.

Finally, some experimentation was done to assess whether the approach was able to an-
swer questions about data lineage challenges and if the approach is viable in the context
of a real-world dataset. A complex query related to the access of licenses associated with a
notebook or a dataset was designed and demonstrated the ability of the knowledge graph
to answer a question in the context of data lineage. Then, more experimentation was per-
formed on a knowledge graph built upon a dataset composed of one hundred notebooks.
The generation time of that graph was analyzed, and it was proven that the number of con-
nections to an API for one notebook is related to the generation time of RDF triples for that
notebook. Additionally, several queries were executed on that knowledge graph, resulting in
the expected results and obtained in an acceptable amount of time.

In conclusion, the use of knowledge graphs and data provenance to overcome challenges
related to data lineage in the case of Jupyter notebooks has proven to be a promising ap-
proach. Indeed, the presented results highlight that the approach enables the answering of
specific questions that help to provide access to information without the need to read the
whole notebook or to perform manual research. In addition, the time to answer questions
or generate a knowledge graph on more than one hundred notebooks is short enough to be
used in real-world conditions. From this work, we have learned that notebooks can be rep-
resented semantically with a knowledge graph, that public APIs related to information con-
tained in notebooks can enrich the knowledge graph, and that the graph can be queried to
answer specific data lineage questions. However, the approach is still a prototype, and some
improvements in the design of the ontology might help to answer more questions related to
data lineage, and work on the mapping rules might allow the use of any type of notebook.

8.1 Future Work

Thisworkhas led topromising results in themappingof notebooks to a knowledge graphand
the leveraging of SPARQL queries to address data lineage challenges. However, it also opens
the door to opportunities for further improvement. Indeed, there are two main limitations
that have been identified, and it might be interesting to improve them in the future.

In data integration, the declarative language RML and the limitations associated with it
encountered in this work constitute a possible future work. It would be interesting to inves-
tigate how this language can be improved to allow better data representation.

In data science, the heterogeneity of the JSON format of Jupyter notebooks does not allow

64

adequate sharing of data or the use of data from various sources in one context. It might
be interesting to explore the reasons of this heterogeneity and investigate the feasibility of
developing a standard format for Jupyter notebooks. This standardization might improve
interoperability and would highly enhance this work.

65

Bibliography

[1] Robert Ikeda and Jennifer Widom. Data lineage: A survey. Stanford University, 2009.
https://api.semanticscholar.org/CorpusID:7079031.

[2] Oracle. Json defined. https://www.oracle.com/uk/database/what-is-json/. Ac-
cessed 05-04-2024.

[3] Md Saeed Siddik and Cor-Paul Bezemer. Do code quality and style issues differ across
(non-)machine learning notebooks? yes! In 2023 IEEE 23rd InternationalWorking Con-
ference on Source Code Analysis and Manipulation (SCAM), pages 72–83, 2023.

[4] Khairul Alam and Banani Roy. Challenges of provenance in scientific workflow man-
agement systems. In 2022 IEEE/ACMWorkshop onWorkflows in Support of Large-Scale
Science (WORKS), pages 10–18, 2022.

[5] Hassan Hussein, Kheir Eddine Farfar, Allard Oelen, Oliver Karras, and Sören Auer.
Increasing reproducibility in science by interlinking semantic artifact descriptions
in a knowledge graph. In Dion H. Goh, Shu-Jiun Chen, and Suppawong Tuarob, edi-
tors, Leveraging Generative Intelligence in Digital Libraries: Towards Human-Machine
Collaboration, pages 220–229, Singapore, 2023. Springer Nature Singapore.

[6] Susan B. Davidson and Juliana Freire. Provenance and scientific workflows: challenges
and opportunities. In Proceedings of the 2008 ACM SIGMOD International Conference
onManagement of Data, SIGMOD ’08, page 1345–1350, New York, NY, USA, 2008. Asso-
ciation for Computing Machinery.

[7] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James Cheney,
David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, and Jun Zhao. PROV-
O: The PROV Ontology. W3C Recommendation. World Wide Web Consortium, United
States, April 2013.

[8] Eric Prud’hommeaux, Steve Harris, and Andy Seaborne. SPARQL 1.1 Query Language.
W3C Recommendation. World Wide Web Consortium, March 2013.

66

https://api.semanticscholar.org/CorpusID:7079031
https://www.oracle.com/uk/database/what-is-json/

[9] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Recommendation. World
Wide Web Consortium, June 2014.

[10] Olaf Hartig, Pierre-Antoine Champin, Gregg Kellogg, and Andy Seaborne. RDF 1.2 Con-
cepts andAbstract Syntax. W3CRecommendation.WorldWideWebConsortium,March
2024.

[11] W3COWLWorkingGroup. OWL2WebOntology LanguageDocumentOverview (Second
Edition). W3C Recommendation. World Wide Web Consortium, December 2012.

[12] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.99. RDF and Semantic
Web developer community, January 2014.

[13] Christophe Debruyne. Knowledge representation and reasoning lecture 2: Knowledge
graphs, 2023.

[14] DBpedia Community. Global and unified access to knowledge graphs. https://www.
dbpedia.org/. Accessed: 12-04-2024.

[15] Google. Api google knowledge graph search. https://developers.google.com/

knowledge-graph?hl=fr. Accessed: 12-04-2024.

[16] IBM. Qu’est-ce qu’un graphe de connaissances ? https://www.ibm.com/fr-fr/

topics/knowledge-graph. Accessed 05-04-2024.

[17] Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF Mapping
Language. W3C Recommendation. World Wide Web Consortium, September 2012.

[18] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik Mannens,
and Rik Van de Walle. RML: a generic language for integrated RDF mappings of het-
erogeneous data. In Christian Bizer, TomHeath, Sören Auer, and Tim Berners-Lee, edi-
tors, Proceedings of the 7thWorkshop on Linked Data on theWeb, volume 1184 of CEUR
Workshop Proceedings, April 2014.

[19] Ana Iglesias-Molina, Dylan Van Assche, Julián Arenas-Guerrero, Ben De Meester,
ChristopheDebruyne, Samaneh Jozashoori, PanoMaria, FranckMichel, David Chaves-
Fraga, and Anastasia Dimou. The rml ontology: A community-drivenmodular redesign
after a decade of experience in mapping heterogeneous data to rdf. In Terry R. Payne,
Valentina Presutti, Guilin Qi, María Poveda-Villalón, Giorgos Stoilos, Laura Hollink, Zoi
Kaoudi, Gong Cheng, and Juanzi Li, editors, The SemanticWeb – ISWC 2023, pages 152–
175, Cham, 2023. Springer Nature Switzerland.

[20] RML.io. RMLMapper. https://github.com/RMLio/rmlmapper-java, accessed: 2024-
04-02.

67

https://www.dbpedia.org/
https://www.dbpedia.org/
https://developers.google.com/knowledge-graph?hl=fr
https://developers.google.com/knowledge-graph?hl=fr
https://www.ibm.com/fr-fr/topics/knowledge-graph
https://www.ibm.com/fr-fr/topics/knowledge-graph
https://github.com/RMLio/rmlmapper-java

[21] De Meester, Ben and Jozashoori, Samaneh and Maria, Pano and Chaves-Fraga, David
and Dimou, Anastasia. RML-FNML. Knowledge Graph Construction Community
Group, March 2024. https://kg-construct.github.io/rml-fnml/spec/docs/.

[22] Julián Arenas-Guerrero, David Chaves-Fraga, Jhon Toledo, María S. Pérez, and Oscar
Corcho. Morph-KGC: Scalable knowledge graph materialization with mapping parti-
tions. Semantic Web, 15(1):1–20, 2024.

[23] AmazonWeb Services. What is data science? https://aws.amazon.com/fr/what-is/
data-science. Accessed 19-05-2024.

[24] Paramita (Guha) Ghosh. Data management vs. data science. https://www.

dataversity.net/data-management-vs-data-science/, Mar 2022. Accessd 19-05-
2024.

[25] Andreas P. Koenzen, Neil A. Ernst, and Margaret-Anne D. Storey. Code duplication and
reuse in jupyter notebooks. In 2020 IEEE Symposium on Visual Languages andHuman-
Centric Computing (VL/HCC), pages 1–9, 2020.

[26] Miguel-Ángel Sicilia, Elena García-Barriocanal, Salvador Sánchez-Alonso, Marçal
Mora-Cantallops, and Juan-José Cuadrado. Ontologies for data science: On its appli-
cation to data pipelines. In Emmanouel Garoufallou, Fabio Sartori, Rania Siatri, and
Marios Zervas, editors, Metadata and Semantic Research, pages 169–180, Cham, 2019.
Springer International Publishing.

[27] Mark Schildhauer, Matthew B. Jones, Shawn Bowers, Joshua Madin, Sergeui Krivov,
DeanaPennington, FerdinandoVilla, BenjaminLeinfelder, Christopher Jones, andMar-
garet O’Brien. Oboe: the extensible observation ontology, version 1.2. KNBData Repos-
itory, 2016.

[28] J. Zheng, M.R. Harris, and A.M. et al. Masci. The ontology of biological and clinical
statistics (obcs) for standardized and reproducible statistical analysis. Biomed Semant,
7:53, 2016.

[29] Sheeba Samuel andBirgitta König-Ries. Provbook: Provenance-based semantic enrich-
ment of interactive notebooks for reproducibility. Heinz-Nixdorf Chair for Distributed
Information Systems Friedrich-Schiller University, Jena, Germany, 2018.

[30] Daniel Garijo and Yolanda Gil. Augmenting prov with plans in p-plan: Scientific pro-
cesses as linked data. In LISC@ISWC, 2012.

[31] Shivani Choudhary, Tarun Luthra, Ashima Mittal, and Rajat Singh. A survey of knowl-
edge graph embedding and their applications. ArXiv, abs/2107.07842, 2021.

68

https://kg-construct.github.io/rml-fnml/spec/docs/
https://aws.amazon.com/fr/what-is/data-science
https://aws.amazon.com/fr/what-is/data-science
https://www.dataversity.net/data-management-vs-data-science/
https://www.dataversity.net/data-management-vs-data-science/

[32] Ioannis Dasoulas, Duo Yang, and Anastasia Dimou. Mlsea: A semantic layer for discov-
erablemachine learning. In Albert Meroño Peñuela, Anastasia Dimou, Raphaël Troncy,
Olaf Hartig, Maribel Acosta, Mehwish Alam, Heiko Paulheim, and Pasquale Lisena, ed-
itors, The Semantic Web, pages 178–198, Cham, 2024. Springer Nature Switzerland.

[33] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. Kgtorrent: A dataset of python
jupyter notebooks from kaggle. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). IEEE, May 2021.

[34] PyPi. Json api. https://warehouse.pypa.io/api-reference/json.html. Accessed:
20-03-2024.

[35] GitHub. Rest api endpoints for users. https://docs.github.com/en/rest/users/

users?apiVersion=2022-11-28. Accessed: 20-03-2024.

[36] Kaggle. How to use kaggle. https://www.kaggle.com/docs/api. Accessed: 04-04-
2024.

[37] codefresh by Octopus Deploy. Declarative vs. imperative programming: 4
key differences. https://codefresh.io/learn/infrastructure-as-code/

declarative-vs-imperative-programming-4-key-differences/. Accessed
25-04-2024.

[38] DeMeester, Ben andDimou, Anastasia and Kleedorfer, Florian. The FunctionOntology.
May 2023. https://fno.io/spec/.

[39] RDFLib Team. rdflib 7.0.0 documentation. https://rdflib.readthedocs.io/en/

stable/, 2023. Accessed: 2024-04-24.

[40] Ontotext. What is graphdb? https://graphdb.ontotext.com/documentation/10.

6/, April 2024. Accessed: 2024-04-25.

[41] Apache Jena. Apache jena fuseki. https://jena.apache.org/documentation/

fuseki2/index.html. Accessed 18-05-2024.

[42] Dylan Van Assche and ChristopheDebruyne. BURPing through RML test cases. In Sub-
mitted to Fifth International Workshop on Knowledge Graph Construction@ESWC2024,
2024. under review.

[43] W3ID Community. Permanent identifiers for the web. https://w3id.org/. Accessed:
24-05-2024.

[44] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database system concepts.
McGraw-Hill, New York, 7 edition, 2010.

69

https://warehouse.pypa.io/api-reference/json.html
https://docs.github.com/en/rest/users/users?apiVersion=2022-11-28
https://docs.github.com/en/rest/users/users?apiVersion=2022-11-28
https://www.kaggle.com/docs/api
https://codefresh.io/learn/infrastructure-as-code/declarative-vs-imperative-programming-4-key-differences/
https://codefresh.io/learn/infrastructure-as-code/declarative-vs-imperative-programming-4-key-differences/
https://fno.io/spec/
https://rdflib.readthedocs.io/en/stable/
https://rdflib.readthedocs.io/en/stable/
https://graphdb.ontotext.com/documentation/10.6/
https://graphdb.ontotext.com/documentation/10.6/
https://jena.apache.org/documentation/fuseki2/index.html
https://jena.apache.org/documentation/fuseki2/index.html
https://w3id.org/

Appendix A

Structure of a Jupyter Notebook in JSON
Format

Jupyter notebooks are stored in JSON format, and the structure of the JSON format can vary
depending on the environment used to create and execute the notebook. In this work, we fo-
cus on notebooks created and run onGoogle Colab. The typical structure of those notebooks
is illustrated in Listing A.1.

{

"cells ": [

{

"cell_type ": "markdown",

"metadata ": {

"id": "LSMxxEuDH2yt"

},

"source ": [

"## Hello world!"

]

},

{

"cell_type ": "code",

"execution_count ": 1,

"metadata ": {

"colab ": {

"base_uri ": "https :// localhost :8080/"

},

"id": "qx -hpBoYPgaO",

"outputId ": "fefad968 -9647 -498f-ce97 -4 be474378ac7"

70

},

"outputs ": [

{

"name": "stdout",

"output_type ": "stream",

"text": [

"Accuracy: 0.9666666666666667\n"

]

}

],

"source ": [

"y_pred = knn.predict(X_test)\n",

"\n",

"accuracy = knn.score(X_test , y_test)\n",

"print(f\" Accuracy: {accuracy}\")"

]

}

],

"metadata ": {

"colab ": {

"provenance ": [],

"toc_visible ": true

},

"kernelspec ": {

"display_name ": "TFE",

"language ": "python",

"name": "python3"

},

"language_info ": {

"codemirror_mode ": {

"name": "ipython",

"version ": 3

},

"file_extension ": ".py",

"mimetype ": "text/x-python",

"name": "python",

"nbconvert_exporter ": "python",

"pygments_lexer ": "ipython3",

"version ": "3.12.0"

}

71

},

"nbformat ": 4,

"nbformat_minor ": 0

}

Listing A.1: Structure of a Jupyter notebook in JSON format.

72

Appendix B

Joins

Relational algebra is a language that aims at performing operations, including joins. The join
operation is used to associate several relationships. The equi-join is a conditional join that
will perform the join operation based on an equality. Tables B.1 and B.2 show an example of
the equi-join operation between two tables, where the equality condition is,

T1.id_Cell = T2.id_Cell

Table B.1: Example of two tables to join. On the left is the table Notebook (T1) and on the
right, the table Cell (T2).

id_Notebook id_Cell
ID N1 ID Ci

id_Cell att1 att2
ID C1 att1 C1 att2 C1
ID C2 att1 C2 att2 C2
...

ID Ci att1 Ci att2 Ci
...

ID Cn att1 Cn att2 Cn

Table B.2: Result of the equi-join operation between the tables Notebook and Cell.

id Notebook id Cell att1 att2
ID N1 ID Ci att1 Ci att2 Ci

The theta-join is a conditional join that will perform the join operation based on a spec-
ified condition. Table B.3 shows the results of the theta-join operation between the two
tables illustrated in Tables B.1 [44], where the condition is,

T1.id_Cell = T2.id_Cell ∨ T1.id_Cell ̸= T2.id_Cell

73

TableB.3: Result of thedesiredtheta-joinoperationbetween the tablesNotebookandCell.

id Notebook id Cell att1 att2
ID N1 ID C1 att1 C1 att2 C1
ID N1 ID C2 att1 C2 att2 C2
ID N1
ID N1 ID Ci att1 Ci att2 Ci
ID N1
ID N1 ID Cn att1 Cn att2 Cn

74

