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Abstract

Simulation-based inference methods have been shown to be inaccurate in the data-
poor regime, when training simulations are limited or expensive. Under these
circumstances, the inference network is particularly prone to overfitting, and using
it without accounting for the computational uncertainty arising from the lack of
identifiability of the network weights can lead to unreliable results. To address this
issue, we propose using Bayesian neural networks in low-budget simulation-based
inference, thereby explicitly accounting for the computational uncertainty of the
posterior approximation. We design a family of Bayesian neural network priors
that are tailored for inference and show that they lead to well-calibrated posteriors
on tested benchmarks, even when as few as O(10) simulations are available. This
opens up the possibility of performing reliable simulation-based inference using
very expensive simulators, as we demonstrate on a problem from the field of
cosmology where single simulations are computationally expensive. We show
that Bayesian neural networks produce informative and well-calibrated posterior
estimates with only a few hundred simulations.

1 Introduction

Simulation-based inference aims at identifying the parameters of a stochastic simulator that best
explain an observation. In its Bayesian formulation, simulation-based inference approximates the
posterior distribution of the model parameters given an observation. This approximation usually takes
the form of a neural network trained on synthetic data generated from the simulator. In the context of
scientific discovery, Hermans et al. (2022) stressed the need for posterior approximations that are
conservative – not overconfident – in order to make reliable downstream claims. They also showed
that common simulation-based inference algorithms can produce overconfident approximations that
may lead to erroneous conclusions.

In the data-poor regime (Villaescusa-Navarro et al., 2020; Zhang and Mikelsons, 2023; Zeng et al.,
2023), where the simulator is expensive to run and only a small number of simulations are available,
training a neural network to approximate the posterior can easily lead to overfitting. With small
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amounts of training data, the neural network weights are only loosely constrained, leading to high
computational uncertainty (Wenger et al., 2022). That is, many neural networks can fit the training data
equally well, yet they may have very different predictions on test data. For this reason, the posterior
approximation is uncertain and, in the absence of a proper quantification of this uncertainty, potentially
overconfident. Fortunately, computational uncertainty in a neural network can be quantified using
Bayesian neural networks (BNNs) (Gal et al., 2016), which account for the uncertainty in the neural
network weights. Therefore, in the context of simulation-based inference, BNNs can provide a
principled way to quantify the computational uncertainty of the posterior approximation.

Hermans et al. (2022) showed empirically that using ensembles of neural networks, a crude approx-
imation of BNNs (Lakshminarayanan et al., 2017), does improve the calibration of the posterior
approximation. A few studies have also used BNNs as density estimators in simulation-based infer-
ence (Cobb et al., 2019; Walmsley et al., 2020; Lemos et al., 2023). However, these studies have
remained empirical and limited in their evaluation. This lack of theoretical grounding motivates the
need for a more principled understanding of BNNs for simulation-based inference. In particular, the
choice of prior on the neural network weights happens to be crucial in this context, as it can strongly
influence the resulting posterior approximation. Yet, arbitrary priors that convey little or undesired
information about the posterior density have been used so far.

Our contributions are twofold. Firstly, we provide an improved understanding of BNNs in the context
of simulation-based inference by empirically analyzing their effect on the resulting posterior approxi-
mations. Secondly, we introduce a principled way of using BNNs in simulation-based inference by
designing meaningful priors. These priors are constructed to produce calibrated posteriors even in
the absence of training data. We show that they are conservative in the small-data regime, for very
low simulation budgets. The code is available at https://github.com/anonymous/anonymous.

2 Background

Simulation-based inference We consider a stochastic simulator that takes parameters θ as input
and produces synthetic observations x as ouput. The simulator implicitly defines the likelihood
p(x|θ) in the form of a forward stochastic generative model but does not allow for direct evaluation
of its density due to the intractability of the marginalization over its latent variables. In this setup,
Bayesian simulation-based inference aims at approximating the posterior distribution p(θ|x) using
the simulator. Among possible approaches, neural simulation-based inference methods train a neural
network to approximate key quantities from simulated data, such as the posterior, the likelihood, the
likelihood-to-evidence ratio, or a score function (Cranmer et al., 2020).

Recently, concerns have been raised regarding the calibration of the approximate posteriors obtained
with neural simulation-based inference. Hermans et al. (2022) showed that, unless special care is
taken, common inference algorithms can produce overconfident posterior approximations. They
quantify the calibration using the expected coverage

EC(p̂, α) = Ep(θ,x)[1(θ ∈ Θp̂(α))] (1)

where Θp̂(α) denotes the highest posterior credible region at level α computed using the posterior
approximate p̂(θ|x). The expected coverage is equal to α when the posterior approximate is calibrated,
lower than α when it is overconfident and higher than α when it is underconfident or conservative.

The calibration of posterior approximations has been improved in recent years in various ways.
Delaunoy et al. (2022, 2023) regularize the posterior approximations to be balanced, which biases
them towards conservative approximations. Similarly, Falkiewicz et al. (2024) regularize directly the
posterior approximation by penalizing miscalibration or overconfidence. Masserano et al. (2023) use
Neyman constructions to produce confidence regions with approximate Frequentist coverage. Patel
et al. (2023) combine simulation-based inference and conformal predictions. Schmitt et al. (2023)
enforce the self-consistency of likelihood and posterior approximations to improve the quality of
approximate inference in low-data regimes.

Bayesian deep learning Bayesian deep learning aims to account for both the aleatoric and epistemic
uncertainty in neural networks. The aleatoric uncertainty refers to the intrinsic randomness of the
variable being modeled, typically taken into account by switching from a point predictor to a density
estimator. The epistemic uncertainty, on the other hand, refers to the uncertainty associated with
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the neural network itself and is typically high in small-data regimes. Failing to account for this
uncertainty can lead to high miscalibration as many neural networks can fit the training data equally
well, yet they may have very different predictions on test data.

Bayesian deep learning accounts for epistemic uncertainty by treating the neural network weights as
random variables and considering the full posterior over possible neural networks instead of only
the most probable neural network (Papamarkou et al., 2024). Formally, let us consider a supervised
learning setting where x denotes inputs, y outputs, D a dataset of N pairs (x,y), and w the weights
of the neural network. The likelihood of a given set of weights is

p(D|w) ∝
N∏
i=1

p(yi|xi,w), (2)

where p(yi|xi,w) is the output of the neural network with weights w and inputs xi. The resulting
posterior over the weights is

p(w|D) =
p(D|w)p(w)

p(D)
, (3)

where p(w) is the prior. Once estimated, the posterior over the neural network’s weights can be used
for predictions through the Bayesian model average

p(y|x,D) =

∫
p(y|x,w)p(w|D)dw ≃ 1

M

M∑
i=1

p(y|x,wi),wi ∼ p(w|D). (4)

Estimating the posterior over the neural network weights is, however, a challenging problem due
to the high dimensionality of the weights. Variational inference (Blundell et al., 2015) optimizes
a variational family to match the true posterior, which is typically fast but requires specifying a
variational family that may restrict the functions that can be modeled. Markov chain Monte Carlo
methods (Welling and Teh, 2011; Chen et al., 2014), on the other hand, are less restrictive in the
functions that can be modeled but require careful tuning of the hyper-parameters and are more
computationally demanding. The Bayesian posterior can also be approximated by an ensemble
of neural networks (Lakshminarayanan et al., 2017; Pearce et al., 2020; He et al., 2020). Laplace
methods leverage geometric information about the loss to construct an approximation of the posterior
around the maximum a posteriori (MacKay, 1992). Similarly, Maddox et al. (2019) use the training
trajectory of stochastic gradient descent to build an approximation of the posterior.

3 Bayesian neural networks for simulation-based inference

In the context of simulation-based inference, treating the weights of the inference network as random
variables enables the quantification of the computational uncertainty of the posterior approximation.
In particular, the posterior approximation p̂(θ|x) can be modeled as the Bayesian model average

p̂(θ|x) =
∫

p(θ|x,w)p(w|D)dw, (5)

where p(θ|x,w) is the posterior approximation parameterized by the weights w and evaluated at
(θ,x) and where p(w|D) is the posterior over the weights given the dataset D.

Remaining is the choice of prior p(w). While progress has been made in designing better priors
(Fortuin, 2022) in Bayesian deep learning, we argue that none of those are suitable in the context
of simulation-based inference. To illustrate our point, let us consider the case of a normal prior
p(w) = N (0, σ2I) on the weights, in which case

p̂normal prior(θ|x) =
∫

p(θ|x,w) N (w|µ = 0,Σ = σ2I)dw. (6)

As mentioned in Section 2, a desirable property for a posterior approximation is to be calibrated.
Therefore we want EC(p̂normal prior, α) = α,∀α. Although it might be possible for this property to
be satisfied in particular settings, this is obviously not the case for all values of σ and all neural
network architectures. Therefore, and as illustrated in Figure 1, the Bayesian model average is not
even calibrated a priori when using a normal prior on the weights. As the Bayesian model average is
not calibrated a priori, it cannot be expected that updating the posterior over weights p(w|D) with a
small amount of data would lead to a calibrated a posteriori Bayesian model average.
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3.1 Functional priors for simulation-based inference

We design a prior that induces an a priori-calibrated Bayesian model average. To achieve this, we
work in the space of posterior functions instead of the space of weights. We consider the space of
functions taking a pair (θ, x) as input and producing a posterior density value f(θ,x) as output.
Each function f is defined by the joint outputs it associates with any arbitrary set of inputs, such
that a posterior over functions can be viewed as a distribution over joint outputs for arbitrary inputs.
Formally, let us consider M arbitrary pairs (θ,x) represented by the matrices Θ = [θ1, ...,θM ] and
X = [x1, ...,xM ] and let f = [f1, ..., fM ] be the joint outputs associated with those inputs. The
distribution p(f |Θ,X) then represents a distribution over posteriors f = [p̃(θ1|x1), ..., p̃(θM |xM )].
The functional posterior distribution given a dataset D is then p(f |Θ,X,D) and the Bayesian model
average is obtained through marginalization, that is

p(θi|xi,D) =

∫
fi p(f |Θ,X,D)df , ∀i. (7)

Computing the posterior over functions requires the specification of a prior over functions. We first
observe that the prior over the simulator’s parameters is a calibrated approximation of the posterior.
That is, for the prior function pprior : (θ,x) → p(θ), we have that EC(pprior, α) = α,∀α (Delaunoy
et al., 2023). It naturally follows that the a priori Bayesian model average with a Dirac delta prior
around the prior on the simulator’s parameters is calibrated

p̂(θi|xi) =

∫
fi δ([fj = pprior(θj ,xj)]) df ,∀i

=

∫
fi δ(fi = p(θi)) dfi,∀i ⇒ EC(p̂, α) = α,∀α.

(8)

However, this prior has limited support, and the Bayesian model average will not converge to the
posterior p(θ|x) as the dataset size increases. We extend this Dirac prior to include more functions in
its support while retaining the calibration property, which we propose defining as a Gaussian process
centered at pprior.

A Gaussian process (GP) defines a joint multivariate normal distribution over all the outputs f given
the inputs (Θ, X). It is parametrized by a mean function µ that defines the mean value for the outputs
given the inputs and a kernel function K that models the covariance between the outputs. If we
have access to no data, the mean and the kernel jointly define a prior over functions as they define
a joint prior over outputs for an arbitrary set of inputs. In order for this prior over functions to be
centered around the prior pprior, we define the mean function as µ(θ,x) = p(θ). The kernel K, on
the other hand, defines the spread around the mean function and the correlation between the outputs
f . Its specification is application-dependent and constitutes a hyper-parameter of our method that
can be exploited to incorporate domain knowledge on the structure of the posterior. We denote the
Gaussian process prior over function outputs as pGP(f |µ(Θ,X),K(Θ,X)). Proposition 1 shows
that a functional prior defined in this way leads to a calibrated Bayesian model average.
Proposition 1. The Bayesian model average of a Gaussian process centered around the prior on the
simulator’s parameters is calibrated. Formally, let pGP be the density probability function defined by
a Gaussian process, µ its mean function, and K the kernel. Let us consider M arbitrary pairs (θ,x)
represented by the matrices Θ = [θ1, ...,θM ] and X = [x1, ...,xM ] and represent by the vector
f = [f1, ..., fM ] the joint outputs associated with those inputs. The Bayesian model average on the
ith pair is expressed

p̂(θi|xi) =

∫
fi pGP(f |µ(Θ,X),K(Θ,X)) df

If µ(θ,x) = p(θ),∀θ,x, then,
EC(p̂, α) = α,∀α,

for all kernel K.

Proof. As pGP is, by definition of a Gaussian process, a multivariate normal, the expectations of the
marginals are equal to the mean parameters

p̂(θi|xi) = µ(θi,xi) = p(θi).
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The joint evaluation of the Bayesian model average of the Gaussian process is hence equivalent
to the joint evaluation of the prior for any matrices Θ and X . We can therefore conclude that p̂
is equivalent to pprior : (θ,x) → p(θ). Since EC(pprior, α) = α,∀α (Delaunoy et al., 2023), then,
EC(p̂, α) = α,∀α.

3.2 From functional to parametric priors

In the remainder of this section, we discuss how the GP prior over posterior density functions can be
used in practice to perform Bayesian inference over neural networks in the simulation-based inference
setting. Let us first observe that a neural network architecture and a prior on weights jointly define a
prior over functions. We parameterize the prior on weights by ϕ and denote this probability density
over function outputs by

pBNN(f |ϕ,Θ,X) =

∫
p(f |w,Θ,X) p(w|ϕ) dw

=

∫
δ([fi = p(θi|xi,w)]) p(w|ϕ) dw.

(9)

To obtain a prior on weights that matches the target GP prior, we optimize ϕ such that
pBNN(f |ϕ,Θ,X) matches pGP(f |µ(Θ,X),K(Θ,X)). Following Flam-Shepherd et al. (2017),
given a measurement set M = {θi,xi}Mi=1 at which we want the distributions to match, the KL
divergence between the two priors can be expressed as

KL [pBNN(f |ϕ,M) || pGP(f |µ(M),K(M))]

=

∫
pBNN(f |ϕ,M) log

pBNN(f |ϕ,M)

pGP(f |µ(M),K(M))
dy

= −H [pBNN(f |ϕ,M)]− EpBNN(f |ϕ,M) [log pGP(f |µ(M),K(M))] ,

(10)

where the second term EpBNN(f |ϕ,M) [log pGP(f |µ(M),K(M))] can be estimated using Monte-
Carlo. The first term H [pBNN(f |ϕ,M)], however, is harder to estimate as it requires computing
log pBNN(f |ϕ,M), which involves the integration of the output over all possible weights combi-
nations. To bypass this issue, Sun et al. (2018) propose to use Spectral Stein Gradient Estimation
(SSGE) (Shi et al., 2018) to approximate the gradient of the entropy as

∇H [pBNN(f |ϕ,M)] ≃ SSGE (f1, ...,fN ∼ pBNN(f |ϕ,M)) . (11)

We note that the measurement set M can be chosen arbitrarily but should cover most of the support of
the joint distribution p(θ,x). If data from this joint distribution are available, those can be leveraged
to build the measurement set. To showcase the ability to create a prior with limited data, in this
work, we derive boundaries of the support of each marginal distribution and draw parameters and
observations independently and uniformly over this support. If the support is known a priori, this
procedure can be performed without (expensive) simulations. We draw a new measurement set at
each iteration of the optimization procedure. If a fixed measurement set is available, a subsample of
this measurement set should be drawn at each iteration. Also note that other methods can be used in
practice to perform inference on the neural network’s weights with our GP prior. Those are described
in Appendix A.

As an illustrative example, we chose independent normal distributions as a variational family p(w|ϕ)
over the weights and minimize (10) w.r.t. w. In Figure 1, we show the coverage of the resulting
a priori Bayesian model average using the tuned prior, p(w |ϕ), and normal priors for increasing
standard deviations σ, for the SLCP benchmark. We observe that while none of the normal priors are
calibrated, the trained prior achieves near-perfect calibration. This prior hence guides the obtained
posterior approximation towards more calibrated solutions, even in low simulation-budget settings.

The attentive reader might have noticed that pBNN(f |ϕ,Θ,X) and pGP(f |µ(Θ,X),K(Θ,X)) do
not share the same support, as the former distribution is limited to functions that represent valid
densities by construction, while the latter includes arbitrarily shaped functions. This is not an issue
here as the support of the first distribution is included in the support of the second distribution, and
functions outside the support of the first distribution are ignored in the computation of the divergence.
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Figure 1: Visualization of the prior tuned to match the GP prior on the SLCP benchmark. Left:
examples of posterior functions sampled from the tuned prior over neural network’s weights. Right:
expected coverage of the prior Bayesian model average with the tuned prior and normal priors for
varying standard deviations.

4 Experiments

In this section, we empirically demonstrate the benefits of replacing a regular neural network with
a BNN equipped with the proposed prior for simulation-based inference. We consider both Neural
Posterior Estimation (NPE) with neural spline flows (Durkan et al., 2019) and Neural Ratio Estimation
(NRE) (Hermans et al., 2020), along with their balanced versions (BNRE and BNPE) (Delaunoy et al.,
2022, 2023) and ensembles (Lakshminarayanan et al., 2017; Hermans et al., 2022). BNNs-based
methods are trained using mean-field variational inference (Blundell et al., 2015). As advocated
by Wenzel et al. (2020), we also consider cold posteriors to achieve good predictive performance.
More specifically, the variational objective function is modified to give less weight to the prior by
introducing a temperature parameter T ,

Ew∼p(w|τ )

[∑
i

log p(θi|xi,w)

]
− T KL[p(w|τ )||p(w|ϕ)], (12)

where τ are the parameters of the posterior variational family and T is a parameter called the
temperature that weights the prior term. In the following, we call BNN-NPE, a Bayesian Neural
Network posterior estimator trained without temperature (T = 1), and BNN-NPE (T = 0.01), an
estimator trained with a temperature of 0.01, assigning a lower weight to the prior.

A detailed description of the Gaussian process used can be found in Appendix A. For simplicity,
in this analysis, we use an RBF kernel in the GP prior. If more information on the structure of the
target posterior is available, more informed kernels may be used to leverage this prior knowledge. A
description of the benchmarks can be found in Appendix B, and the hyperparameters are described in
Appendix C. For clarity, only NPE-based methods are shown in this section; results using NRE can
be found in Appendix D.

Following Delaunoy et al. (2022), we evaluate the quality of the posterior approximations based on
the expected nominal log posterior density and the expected coverage area under the curve (coverage
AUC). The expected nominal log posterior density Eθ,x∼p(θ,x) [log p̂(θ|x)] quantifies the amount of
density allocated to the nominal parameter that was used to generate the observation. The coverage
AUC

∫ 1

0
(EC(p̂, α)−α) dα quantifies the calibration of the expected posterior. A calibrated posterior

approximation exhibits a coverage AUC of 0. A positive coverage AUC indicates conservativeness,
and a negative coverage AUC indicates overconfidence.

BNN-based simulation-based inference Figure 2 compares simulation-based inference methods
with and without accounting for computational uncertainty We observe that BNNs equipped with
our prior and without temperature show positive coverage AUC even for simulation budgets as
low as O(10). The coverage curves are reported in Appendix D and show that this corresponds to
conservative posterior approximations. We conclude that BNNs can hence be reliably used when
the simulator is expensive and few simulations are available. We also observe that the nominal log
posterior density is on par with other methods for very high simulation budgets but that more samples
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Figure 2: Comparison of different simulation-based inference methods through the nominal log
probability and coverage area under the curve. The higher the nominal log probability, the more
performant the method is. A calibrated posterior approximation exhibits a coverage AUC of 0. A
positive coverage AUC indicates conservativeness, and a negative coverage AUC indicates overconfi-
dence. 3 runs are performed, and the median is reported.
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Figure 3: Examples of 95% highest posterior density regions obtained with various algorithms and
simulation budgets on the SLCP benchmark for a single observation. The black star represents the
ground truth used to generate the observation.

are required to achieve high values. Cold posteriors can help achieve high nominal log posterior
values with fewer samples at the cost of sometimes producing overconfident posterior approximations.

Examples of posterior approximations obtained with and without using a Bayesian neural network
are shown in Figure 3. Wide posteriors are observed for low budgets for BNN-NPE, while NPE
produces an overconfident approximation and excludes most of the relevant parts of the posterior. As
the simulation budget increases, BNN-NPE converges slowly towards the same posterior as NPE.
BNN-NPE (T = 0.01) converges faster than BNN-NPE but, for low simulation budgets, excludes
parts of the region that should be accepted according to high budget posteriors. Yet, the posterior
approximate is still less overconfident than NPE’s.

Comparison of different priors on weights We analyze the effect of the prior on the neural
network’s weights on the resulting posterior approximation. The posterior approximations obtained
using our GP prior are compared to the ones obtained using independent normal priors on weights
with zero means and increasing standard deviations. In Figure 4, we observe that when using a normal
prior, careful tuning of the standard deviation is needed to achieve results close to the prior designed
for simulation-based inference. The usage of an inappropriate prior can lead to bad calibration for
low simulation budgets or can prevent learning if it is too restrictive.
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Uncertainty decomposition We decompose the uncertainty quantified by the different methods.
Following Depeweg et al. (2018), the uncertainty can be decomposed as

H [p̂(θ|x)] = Eq(w) [H [p̂(θ|x,w)]] + I(θ,w), (13)

where Eq(w) [H [p̂(θ|x,w)]] quantifies the aleatoric uncertainty, I(θ,w) quantifies the epistemic
uncertainty, and the sum of those terms is the predictive uncertainty. Figure 5 shows the decomposition
of the two sources of uncertainty, in expectation, on the SLCP benchmark. Other benchmarks can
be found in Appendix D. We observe that BNN-NPE and NPE ensemble methods account for the
epistemic uncertainty while other methods do not. BNPE artificially increases the aleatoric uncertainty
to be better calibrated. The epistemic uncertainty of BNN-NPE is initially low because most of the
models are slight variations of pΘ. The epistemic uncertainty then increases as it starts to deviate
from the prior and decreases as the training set size increases. BNN-NPE (T = 0.01) exhibits a
higher epistemic uncertainty for low budgets as the effect of the prior is lowered.

Infering cosmological parameters from N -body simulations To showcase the utility of Bayesian
deep learning for simulation-based inference in a practical setting, we consider a challenging inference
problem from the field of cosmology. We consider Quijote N -body simulations (Villaescusa-Navarro
et al., 2020) tracing the spatial distribution of matter in the Universe for different underlying cosmo-
logical models. The resulting observations are particles with different masses, corresponding to dark
matter clumps, which host galaxies. We consider the canonical task of inferring the matter density
(denoted Ωm) and the root-mean-square matter fluctuation averaged over a sphere of radius 8h−1

Mpc (denoted σ8) from an observed galaxy field. Robustly inferring the values of these parameters is
one of the scientific goals of flagship cosmological surveys. These simulations are very computation-
ally expensive to run, with over 35 million CPU hours required to generate 44100 simulations at a
relatively low resolution. Generating samples at higher resolutions, or a significantly larger number
of samples, is challenging due to computational constraints. These constraints necessitate methods
that can be used to produce reliable scientific conclusions from a limited set of simulations – when

8



few simulations are available, not only is the amount of training data low, but so is the amount of test
data that is available to assess the calibration of the trained model.

In this experiment, we use 2000 simulations processed as described in Cuesta-Lazaro and Mishra-
Sharma (2023). These simulations form a subset of the full simulation suite run with a uniform prior
over the parameters of interest. 1800 simulations are used for training and 200 are kept for testing.
We use the two-point correlation function evaluated at 24 distance bins as a summary statistic. The
observable is, hence, a vector of 24 features. Figure 6 compares the posterior approximations obtained
with a single neural network against those obtained with a BNN trained with a temperature of 0.01.
We observe from the coverage plots that while a single neural network can lead to overconfident
approximations in the data-poor regime, the BNN leads to conservative approximations. BNN-NPE
also exhibits higher nominal log posterior probability. Additionally, we observe that it provides
posterior approximations that are calibrated and have a high nominal log probability with only a few
hundred samples.
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Figure 6: Comparison of the posterior approximations obtained with and without a Bayesian neural
network on the cosmological application. First plot: An example observation: particles representing
galaxies in a synthetic universe. Second plot: example of 95% highest posterior density regions
for increasing simulation budgets. The black star represents the ground truth used to generate the
observation. Third plot: Expected coverage with and without using a Bayesian neural network for
increasing simulation budgets. Fourth plot: The nominal log posterior.

5 Conclusion

In this work, we use Bayesian deep learning to account for the computational uncertainty associated
with posterior approximations in simulation-based inference. We show that the prior on neural
network’s weights should be carefully chosen to obtain calibrated posterior approximations and
develop a prior family with this objective in mind. The prior family is defined in function space
as a Gaussian process and mapped to a prior on weights. Empirical results on benchmarks show
that incorporating Bayesian neural networks in simulation-based inference methods consistently
yields conservative posterior approximations, even with limited simulation budgets of O(10). As
Bayesian deep learning continues to rapidly advance (Papamarkou et al., 2024), we anticipate
that future developments will strengthen its applicability in simulation-based inference, ultimately
enabling more efficient and reliable scientific applications in domains with computationally expensive
simulators.
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A Prior tuning details

We tune the parameters ϕ of a variational distribution over neural network weights p(w|ϕ). The vari-
ational distribution is chosen to be independent normal distributions, with parameters ϕ representing
the means and standard deviations of each parameter of w. This variational family defines a prior
over function outputs

pBNN(f |ϕ,Θ,X) =

∫
p(f |w,Θ,X)p(w|ϕ)dw. (14)

The parameters ϕ are optimized to obtain a prior on weights that matches the target Gaussian process
functional prior pGP(f |µ(Θ,X),K(Θ,X)). To achieve this, we repeatedly sample a measurement
set M = {θi,xi}Mi=1 and N function outputs from the BNN prior f1, ...,fN ∼ pBNN(f |ϕ,M)
and perform a step of gradient descend to minimize the divergence

KL [pBNN(f |ϕ,M) || pGP(f |µ(M),K(M))] . (15)

The mean function µ of the Gaussian process is selected as:

µ(θ,x) = p(θ). (16)

The kernel K is a combination of two Radial Basis Function (RBF) kernels

K(θ1,θ2,x1,x2) =
√

RBF(θ1,θ2) ∗
√

RBF(x1,x2). (17)

such that the correlation between outputs is high only if θ1 and θ2 as well as x1 and x2 are close.
The RBF kernel is defined as

RBF(x1,x2) = σ2 exp

(
− 1

N

N∑
i

(x1,i − x2,i)
2

2l2i

)
, (18)

where σ is the standard deviation and li is the lengthscale associated to the ith feature. The lengthscale
is derived from the measurement set. To determine li, we query observations x from the measurement
set and compute the 0.1 quantile of the squared distance between different observations for each
feature. We then set li such that 2l2i equals this quantile. All the benchmarks have a uniform prior
over the simulator’s parameters. The mean function is then equal to a constant C for all input values.
The standard deviation is chosen to be C/2. To ensure stability during the inference procedure, we
enforce all standard deviations defined in ϕ to be at least 0.001 by setting any parameters below this
threshold to this value.

Note that there are various methods that can be used to perform inference on the neural network’s
weights with our GP prior. Instead of minimizing the KL-divergence, the parameters ϕ can be
optimized using an adversarial training procedure by treating both priors as function generators
and training a discriminator between the two (Tran et al., 2022). Another approach to performing
inference using a functional prior is to directly use it during inference by modifying the inference
algorithm to work in function space. Variational inference can be performed in the space of function
(Sun et al., 2018; Rudner et al., 2022). The stochastic gradient Hamiltonian Monte Carlo algorithm
(Chen et al., 2014) could also be modified to include a functional prior Kozyrskiy et al. (2023).
Alternatively, a variational implicit process can be learned to express the posterior in function space
(Ma and Hernández-Lobato, 2021).

B Benchmarks description

SLCP The SLCP (Simple Likelihood Complex Posterior) benchmark (Papamakarios et al., 2019)
is a fictive benchmark that takes 5 parameters as input and produces an 8-dimensional synthetic
observable. The observation corresponds to the 2D coordinates of 4 points that are sampled from the
same multivariate normal distribution. We consider the task of inferring the marginal over 2 of the 5
parameters.

Two Moons The Two Moons simulator (Greenberg et al., 2019) models a fictive problem with
2 parameters. The observable x is composed of 2 scalars, which represent the 2D coordinates of
a random point sampled from a crescent-shaped distribution shifted and rotated around the origin
depending on the parameters’ values. Those transformations involve the absolute value of the sum of
the parameters leading to a second crescent in the posterior and, hence making it multi-modal.
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Lotka Volterra The Lotka-Volterra population model (Lotka, 1920; Volterra, 1926) describes
a process of interactions between a predator and a prey species. The model is conditioned on 4
parameters that influence the reproduction and mortality rate of the predator and prey species. We
infer the marginal posterior of the predator parameters from a time series of 2001 steps representing
the evolution of both populations over time. The specific implementation is based on a Markov Jump
Process, as in Papamakarios et al. (2019).

SpatialSIR The Spatial SIR model (Hermans et al., 2022) involves a grid world of susceptible,
infected, and recovered individuals. Based on initial conditions and the infection and recovery rate,
the model describes the spatial evolution of an infection. The observable is a snapshot of the grid
world after some fixed amount of time. The grid used is of size 50 by 50.

C Hyperparameters

All the NPE-based methods use a Neural Spline Flow (NSF) (Durkan et al., 2019) with 3 transforms
of 6 layers, each containing 256 neurons. Meanwhile, all the NRE-based methods employ a classifier
consisting of 6 layers of 256 neurons. For the spatialSIR and Lotka Volterra benchmarks, the
observable is initially processed by an embedding network. Lotka Volterra’s embedding network is
a 10 layers 1D convolutional neural network that leads to an embedding of size 512. On the other
hand, SpatialSIR’s embedding network is an 8 layers 2D convolutional neural network resulting in an
embedding of size 256.

Bayesian neural network-based methods use independent normal distributions as a variational family.
During inference, 100 neural networks are sampled to approximate the Bayesian model average. En-
semble methods involve training 5 neural networks independently. The experiments were conducted
on a private GPU cluster, and the estimated computational cost is around 25, 000 GPU hours.

D Additional experiments

In this section, we provide complementary results. Figure 7 illustrates the performance of the various
NRE variants. Figures 8 and 9 display the coverage curves, demonstrating that a higher positive
coverage AUC corresponds to coverage curves above the diagonal line. Figures 10 and 11 present the
uncertainty decomposition of all methods on all the benchmarks.
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Figure 8: Coverage of different NPE simulation-based inference methods. A calibrated posterior
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Figure 9: Coverage of different NRE simulation-based inference methods. A calibrated posterior
approximation exhibits a coverage AUC of 0. A coverage curve above the diagonal indicates
conservativeness and a curve below the diagonal indicates overconfidence. 3 runs are performed, and
the median is reported.
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Figure 10: Quantification of the different forms of uncertainties captured by the different NPE-based
methods. 3 runs are performed, and the median is reported.
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Figure 11: Quantification of the different forms of uncertainties captured by the different NRE-based
methods. 3 runs are performed, and the median is reported.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims are based on either theoretical developments or empirical results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the experiments.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Proposition 1 is proved and all the assumptions are clearly stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is made available. The link is in the introduction. All the hyperpa-
rameters are described in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The link to the code is available in the introduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The code is made available, and all the hyperparameters are described in
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to computational constraints, only 3 runs were made. This is not sufficient
to report meaningful error bars. The median over 3 runs is always reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Those pieces of information are disclosed in Appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper respects the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no negative societal impact. Our method provides a way to do
reliable simulation-based inference. We do not foresee any negative impact in improving
the reliability of simulation-based inference.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: our method does not need safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The source of N-body simulation data is mentioned.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our contribution is about methodological development. No pre-trained models
are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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