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Abstract

Compressed sensing is an emerging field that allows for the recovery of a sparse signal
from fewer measurements than permitted by the Nyquist theorem. This new paradigm
can be used to create new imager architectures that are simpler, more compact, and
cheaper than traditional imagers, acquiring images in a compressed manner and thereby
reducing the amount of data to handle. These characteristics are appealing for potential
implementation in Earth observation satellites, where size and weight are critical factors,
and where the amount of collected data is substantial, with limited storage capacity and
transfer rates to the ground.

This master’s thesis focuses on the implementation of the optical part of a compressive
sensing imager in the laboratory, with the objective of performing a particular compres-
sive sensing reconstruction method, known as inpainting. A comprehensive review of the
state of the art in compressive sensing and various imager architectures is first provided.
Afterwards, the design of the instrument and the selection of all its components are exten-
sively detailed. A digital micromirror device is used for producing incomplete, damaged
images of a scene, and a camera detector records the resulting image. Subsequently, a
calibration procedure for the damaged images was established to prepare them for recon-
struction through inpainting. This calibration includes dark and flat frame corrections, as
well as post-reconstruction image perspective correction. The instrument’s point spread
function is also measured, and a dithering method is implemented to improve its resolu-
tion. Furthermore, the pattern mask used for the reconstruction is studied and calibrated
using morphological erosion.

Keywords— compressive sensing, inpainting, optical imaging device, digital micromirror
device, Scheimpflug principle, pattern mask, point spread function, dithering
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1 Introduction

In most modern cameras and imaging devices, images are captured using detector arrays
made of millions of small pixels. Each of them collects a small portion of the overall image,
by converting the incident photons into a measurable current. This type of technology,
facilitated by the development of Complementary Metal Oxide Semiconductor (CMOS)
and Charge-Coupled Device (CCD) sensors, mainly made of silicon, has enabled high-
definition, cheap and high-performance imaging instruments, with a constant increase in
the number of pixels on those detectors [1].

However, this multi-pixel camera design is at the expense of a continuously larger
amount of data per image, as each pixel collects a finite quantity of information stored in
a certain number of bits in a memory. Additionally, imagers generally do not acquire data
in a single wavelength, but in multiple spectral bands. Most consumer cameras capture
images in three spectral bands: red, blue and green. This increases the amount of image
information by a factor of three. Furthermore, many domains in modern science demand
ever-increasing amounts of data both spatially and temporally, to the point where the
limitations of this traditional data sensing method begin to appear [2]. This problem is
particularly true in the field of Earth observation, which requires the acquisition of a large
quantity of images almost continuously. Additionally, it is now more and more common to
acquire several hundred spectral bands at once, as it is the case of hyperspectral imaging.
This poses challenges in data storage, transmission to Earth, and ground-based processing,
among other issues.

Combined with a constant increase in computing power, recent advances in Compres-
sive Sensing (CS) have led to the creation of numerous new imaging device designs that
could be credible candidates for addressing these challenges. CS is a new branch in the
field of data acquisition, which involves acquiring a signal, such as an image, in a com-
pressed manner and subsequently reconstructing this compressed signal to retrieve the
original signal [3]. CS is made possible by the fact that most natural signals are consid-
ered sparse or can be well approximated by sparse representations. A signal is considered
sparse when it can be represented by only a few non-zero coefficients in a certain domain.
In a simplified way, the compressed signal used for the image reconstruction is generally
obtained by applying sequentially different masks to the image to acquire, blocking or not
its pixels, which then forms a series of modulated measurements. Knowing which masks
were used to collect these measurements, it is then possible to retrieve the original image
using reconstruction algorithms. The image is effectively compressed when the number
of these measurements is lower than the number of pixels in the original image. This
new paradigm therefore offers the possibility of reducing the amount of data to handle
because the imager only measures a compressed version of the image. Additionally, CS
allows for optical instruments with much simpler, smaller, and cheaper architectures than
traditional imagers. For example, the instrument might not contain any lenses, or it might
be equipped with only one pixel on its detector.

1



CHAPTER 1. INTRODUCTION

While a major difficulty of CS lies in the reconstruction algorithms and their optimiza-
tion, this work focuses on the implementation and calibration of a compressive sensing
imager in the laboratory. As a starting point for future work, this imager focuses first
on performing inpainting. Inpainting is an image reconstruction technique that can be
carried out through CS. This allows for an easier implementation of a compressive sensing
imager. This manuscript is structured into three main parts. First, an overview of the
state of the art in compressive sensing are presented, covering its mathematical concept,
various reconstruction techniques, the different architectures and components used in CS
imagers. Secondly, the design and fabrication of the imager in the laboratory are detailed
and explained. Finally, the calibration phase and post-processing of the images taken
with the instrument are presented. The calibration process prepares the images so that
they can be properly injected into a reconstruction algorithm.
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2 State of the art

In this chapter, the state of the art of compressive sensing will be described. Its basics
will first be introduced to have a better intuition of how it works. Next, compressive
sensing and the concept of inpainting will be mathematically explained. Finally, a state
of the art concerning the hardware and imagers using CS will be introduced.

2.1 Basics of compressive sensing
The traditional approach of acquiring a signal, such as an image, is to take at least as
many measurements as the number of elements in the signal. In image processing, the
hypothesis of the sparsity of the image is often taken. Sparsity principle corresponds
to saying that a signal can be represented with much fewer data than the number of
elements in the signal. With the knowledge of the signal sparsity, it seems that the
traditional signal acquisition approach is not optimized and wastes resources. Indeed,
all the efforts of measuring all the elements of the signal are lost because the signal is
finally compressed and most of the null elements are discarded. Instead, it would be
more interesting to directly measure the compressed signal to maximize the use of the
observational and hardware resources. This is the basic idea behind compressive sensing
[3]. Although pixelated images cannot directly be seen as sparse signals, it turns out that
they are generally sparse after an appropriate change of basis such as Wavelet Transform
(WT) and Discrete Cosine Transform (DCT). In these bases, images can therefore be
compressively sensed.

Before going into the mathematical formulation of compressive sensing, it is important
to have a good intuition of how CS is possible and how fewer samples than the number
of pixels of an image can be used to reconstruct the image. One possible interpretation
of why CS works is presented below and follows the work of [4].

Suppose that an imager is used to acquire a picture of a scene. Let us also consider
that the observed scene is known ahead of time and consists of only one single illuminated
pixel located in the picture, and all the other pixels are black. This image is hence
considered very sparse, because most of the data it contains are zeros, corresponding to
the dark background. Only one component of the image vector will be non-zero and will
have a value equal to the intensity of this point source. In conventional imaging with
a Focal-Plane Array (FPA) comprising N detector elements, every pixel of the image
will be individually measured by each element of the detector. As a consequence, most
of the measurements will have a null value, and only one will contain the source. This
observational strategy is depicted in Fig. 2.1a, the measurement xj is the inner product
of the scene image f ∗ and the indicator image Ij of the j-th active pixel. However, a
better strategy can also be applied to localize the position of the bright pixel. One can
use a binary sensing strategy shown in Fig. 2.1b. It is obvious that each pattern will
provide an increasing precision on the position of the non-zero pixel of the image. Indeed,
each additional measure divides by 2 the search area where the bright source is located.
Hence, it is possible to accurately localize the pixel with a number of measurements equal
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to M = log2N , whereas the first traditional method uses N samples. As explained in [1],
this observational method is comparable to playing the ”twenty questions” game where
one player has to guess a specific person by asking questions to the second player who has
to answer only by ”yes” or ”no”. It is far more interesting to ask question that concerns
as many individuals as possible such as the gender, hairstyle and eye color, rather than
guessing names randomly.

It is clear that this intuitive method only works for images with only one single non-
zero pixel. When the image is composed of some non-zero pixels, or when the image is
not arbitrary but contains well-defined structures such as edges and uniform surfaces that
can be expressed with few non-zero elements in other bases, compressive sensing provides
mechanisms to still be able to reconstruct the image with M ≪ N measurements. These
two cases of images are shown in Fig. 2.1c and Fig. 2.1d respectively, where the sensing
matrices are random binary patterns. It corresponds to the same underlying intuition
than the case shown in Fig. 2.1b but applied for more complex scenes.

(a) (b)

(c) (d)

Figure 2.1: Different observational strategies to sense an image. Each measurement corre-
sponds to the inner product of the image and an indicator image. (a) It corresponds to a
classical FPA sensor where each pixel detector samples a small portion of the scene. (b) This
intuitive method uses increasing smaller binary checkerboard patterns to locate the position
of the bright pixel in M = log2N measurements. (c) CS strategy to acquire an image with
some unknown nonzero pixels with, for this example, pseudo-random binary patterns. (d) This
strategy is identical to the previous method but for the case where the image contains structures
and that are sparse in other bases. From [4].
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2.2 Mathematical description of compressive sensing
This section describes the mathematical background of CS. The developments presented
below follow the work of [3, 5] and the lecture notes of [6].

Let us suppose a signal x ∈ RN . This signal can be, for example, a gray levels image
containing N pixels in it. The compressive sensing problem consists in reconstructing x
based on its indirect measurement y ∈ RM with M < N . The relation between these two
vectors is

y = Ax+ n, (2.1)

where the matrix A ∈ RM×N is called the measurement matrix and represents the linear
measurement system that will sample the signal x. Therefore, this matrix A models
the whole imager for the case of image acquisition. The vector n is the additional noise
during the measurements and is associated with the physics of the sensing device. In the
following of this section, one will consider a noiseless system, therefore neglecting n.

The system in Eq. 2.1 has N unknowns and onlyM equations. AsM < N , this system
is underdetermined and there is an infinite number of solutions, provided that there exists
at least one. This result is closely related to the Nyquist-Shannon sampling theorem which
describes how to sample a continuous-time signal without loss of information. It states
that the signal can be perfectly reconstructed if the sampling frequency is at least twice
the highest frequency of the original signal. Therefore, one needs at least N different
samples of x in order to retrieve the signal with classical linear algebra.

However, as it has previously been said, compressive sensing introduces the hypothesis
that the signal is sparse. A signal of size N is called K-sparse if it contains K non-
zero elements with K ≪ N . Images are generally not sparse in the canonical (”pixel”)
basis, but it is possible to change the basis of the image and express it into a different
Orthonormal Basis (ONB), where the images are sparse. Discrete Cosine Transform
(DCT), Discrete Fourier Transform (DFT) or Wavelet Transform (WT) are examples
of ONBs in which images can be considered as sparse vectors [2, 7, 4]. Under a certain
orthonormal transform domain, the signal x can be expressed as a weighted sum of simple
functions and is written as

x = Ψs =
N∑
i=1

siψi, (2.2)

where Ψ ∈ RN×N is the orthonormal basis matrix, also called the sparsity matrix, and
s is a sparse vector containing the coefficients corresponding to each basis vector of Ψ.
Eq. 2.1 without noise can now be written as

y = AΨs = A′s, (2.3)

whereA′ ≜ AΨ is the sensing matrix. If a sparse solution of y = A′s is found, the original
signal can then be recovered using Eq. 2.2. A graphical representation of the equation
above can be seen in Fig. 2.2 with a 3-sparse s vector as an example. The difficulty of CS
lies in the fact that the non-zero, or at least, the most significant coefficients of s are not
known a priori. Indeed, knowing the K significant coefficients in advance would be easier,
as this would make it possible to measure them directly and reconstruct the signal. Hence,
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CS aims to take M well-chosen measurements with K < M ≪ N to retrieve accurately
the relevant K coefficients of s.

x

=

y A s

NM =

y A' s

K-sparse

Figure 2.2: Graphical representation of the compressive sensing measurement process of
Eq. 2.3. In this example, the s vector is K-sparse with K = 3, and the significant coeffi-
cients are highlighted as well as their corresponding columns in the sensing matrix A′. Adapted
from [4, 2].

For practical applications, one needs fast and efficient reconstruction algorithms to
solve the underdetermined system y = A′s with the hypothesis of a sparse solution
and retrieve the desired signal x. Some of the main reconstruction algorithms used in
compressive sensing are listed and explained in Sec. 2.3.

In addition to an efficient recovery method, the sensing matrix A′ is an essential
parameter in CS. It must allow an accurate signal reconstruction using the appropriate
algorithm. Hence, the choice of the measurement matrix A and the sparsity matrix Ψ is
primordial in the quality of the compressive sensing device. In this discussion, a commonly
used criteria is the Restricted Isometry Property (RIP). The sensing matrix A′ satisfies
RIP of order δS ∈ (0, 1) if

1− δS ≤ ∥A′s∥22
∥s∥22

≤ 1 + δS (2.4)

where s is an arbitrary sparse vector, and δS is called the restricted isometry constant and
corresponds to the smallest constant to which Eq. 2.4 holds. The above equation uses the

p-norm notation and is defined as ∥s∥p =
(∑N

i=1 |si|
p
)1/p

. Physically, the RIP ensures

that the signal is modulated such that all the compressed samples contain all the needed
information to reconstruct it, and that one can find a unique solution to the system of
Eq. 2.3 [4]. Furthermore, the sensing matrix should satisfy the incoherence condition: it
requires that the rows Aj of A cannot sparsely represent the columns Ψi of the basis
matrix Ψ, and conversely [8]. A low incoherence will prevent the measurement matrix
to be aligned with the basis matrix, and will allow each measurement to be sufficiently
varied to capture all the information of s.

It can be demonstrated that pseudo-random matrices satisfy with a high probability
the RIP property and the incoherence condition, and can therefore be employed as a
sensing matrix for CS applications. For example, the matrix elements of A′ can be i.i.d.
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random variables from a Normal distribution N (0, 1/N). A sensing matrix of this form
allows the retrieval of the original signal with M ≥ cK log(N/K) ≪ N with c a small
constant [8]. However, the use of pseudo-random matrices can introduce several problems,
according to [9] and a personal communication with L. Jacques of UCLouvain. First, it
requires to store each element of the sensing matrix, as there is very low coherence between
the elements, giving rise to a memory complexity O(MN). Secondly, the computational
complexity of the reconstruction is also O(MN) which can rapidly become too demanding
for large signals, especially for high resolution images.

These issues of pseudo-random matrices can be solved by using deterministic families
of measurement matrices, such as Hadamard or Fourier matrices [10]. Hadamard patterns
are binary and have a mosaic shape, while Fourier matrices are composed of grayscale
fringes. Such deterministic measurement matrices offer some advantages. First, they the-
oretically allow perfect image reconstruction, as the patterns are orthogonal. The image
can be losslessly retrieved when it is fully sampled. Secondly, because natural images can
often be sparsely represented in the Hadamard and Fourier domain, these matrices enable
reducing the number of measurements needed to achieve a clear image reconstruction.
Lastly, efficient algorithms exist to deal with signals in the Hadamard/Fourier domain.
Therefore, the computational complexity can be reduced to O(N logN). Examples of
pseudo-random, Hadamard, and Fourier measurement matrices can be seen in Fig. 2.3.

(a) (b) (c)

Figure 2.3: Examples of 32 × 32 measurement matrices. (a) Pseudo-random binary matrix
with a filling ratio of 50%. (b) Example of a binary Hadamard basis matrix. (c) Sine basis
matrix in the Fourier domain, the matrix is no longer binary but in grayscale.

2.3 Reconstruction algorithms
As it has been said, the goal of CS is to solve the underdetermined system of Eq. 2.3
knowing a sparse solution. This additional information on the solution is a form of
regularization, i.e., a process that supposes the solution to be simple. The problem
becomes better posed and can be solved with the right algorithm. The key of CS imaging
lies in the efficiency and the quality of the reconstruction algorithms. Different recovery
methods have been found since the beginning of compressive sensing. In the following of
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this section, the primary algorithms will be explained: optimization, greedy, thresholding-
based methods and deep-learning methods. These methods are presented in [3, 2, 11].

2.3.1 Optimization methods

In order to find a sparse vector ŝ, solution of Eq. 2.3, it could be adequate to use the
ℓq-minimization problem, written as

ŝ = argmin
s

∥s∥q subject to y = A′s, (2.5)

where q ∈ [0,∞[. A classical method for solving inverse problem is to use the ℓ2-
minimization problem, where it minimizes the norm of the vector. Unfortunately, this
approach is not suited for the system, because it will never find a sparse solution and will
return a ŝ vector containing many low amplitude elements.

Alternately, one can define an optimization problem that tries to minimize the number
of non-zero elements in ŝ, or in other words, find the sparsest vector consistent with the
measurement y. This is equivalent to Eq. 2.5 with q = 0, and where ∥·∥0, the 0-norm,
simply corresponds to the number of non-zero elements in the vector. This ℓ0-minimization
problem is also a poor choice because it is a non-convex problem, and NP-complete. It
means that this approach requires to enumerate all of the

(
N
K

)
possible locations of the non-

zero entries in s [8]. Therefore, it is impossible to use the ℓ0-optimization for practical
applications. Actually, the method stays non-convex for 0 < q < 1, and is in general
impossible to solve. Fortunately, for the limit case q = 1, the ℓ1-minimization problem
written as

ŝ = argmin
s

∥s∥1 subject to y = A′s (2.6)

becomes a convex problem, and it is now possible to solve the system. This approach,
also known as Basis Pursuit (BP), can exactly recover K-sparse signal, as long as the
sensing matrix satisfies RIP of order δ2K [2]. Many extensively studied algorithms exist
for solving efficiently the ℓ1-minimization problem, such as the homotopy method [12] and
NESTA algorithm [13].

In order to understand why the ℓ2-optimization fails to find a sparse solution, Fig. 2.4
depicts the ℓ1- and ℓ2-minimization problem in a three-dimensional space. Here, the sparse
solution of interest s is a point located on one of the axes, its coordinate has thus only one
non-zero value. In both Fig. 2.4a and Fig. 2.4b, the red structure represents the ℓp ball, and
is a generalization of the hypersphere in the p-norm. The green plane corresponds to the
translated sensing matrix null space H = N (A′) + s, with N (A′) = {z | A′z = 0}. This
plane thus contains all the vectors s∗ such that y = A′s∗. The ℓp-optimization method
consists in intersecting the ℓp ball with the null space plane H, giving an approximate
solution of the problem. It can be seen that the roundness and the isotropy of the ℓ2
ball will not give a sparse solution because the intersection will most often be far away
from the main axes, where the K-sparse subspace vectors are [14]. On the other hand,
the pointiness of the ℓ1 ball represented by an octahedron in R3 has points aligned with
the coordinate axes. It will therefore first contact H at a point near the coordinate axes,
precisely where the sparse vector s is positioned [8].
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(a) (b)

Figure 2.4: Representation of the optimization problem in R3, the sparse solution is located
at the point s. (a) Visualization of the l2-minimization problem, with the ℓ2 ball in red, and
the sensing matrix null space H in green. The solution of the optimization problem is at the
intersection point ŝ of the two structures. (b) Visualization of the ℓ1-minimization problem,
where the pointiness of the ℓ1 ball allows finding a sparse solution. Adapted from [8].

So far, the presence of noise was disregarded in the measurements and the sensing
system. However, Eq. 2.6 can be generalized taking into account noise such that y =
A′s+ n, leading to the following algorithm known as the quadratically constrained basis
pursuit:

ŝ = argmin
s

∥s∥1 subject to ∥A′s− y∥2 ≤ ϵ, (2.7)

where ϵ is the size of the noise term n. If the sensing matrix A′ satisfies RIP of order
δ2K <

√
2 − 1, it is proved that the error of sK , the best K-sparse approximation of s,

obeys

∥ŝ− s∥2 ≤ C1,Kϵ+
C2,K√
K

∥s− sK∥1 , (2.8)

where ŝ is the solution to Eq. 2.7, s is the signal to recover, and sK is the best K-sparse
approximation of s [15]. The two constants C1,K and C2,K are function of the restricted
isometry constant δ2K . This relation shows that, if the signal to recover is K-sparse, the
accuracy of the solution obtained with Eq. 2.7 is bounded by the noise level ϵ only.

2.3.2 Greedy methods

Greedy algorithms are methods that make the locally optimal choice at each iteration,
regardless if this choice leads to the global optimal solution [16]. In many computational
problems, greedy methods do not produce an optimal solution, but generally can lead to
a local solution that approximates well the global solution. The basic principle of greedy
algorithms for the case of CS is to iteratively find the support set of the sparse vector s,
and use the constrained least-squares estimation method to reconstruct the signal [5].

9 Centre Spatial de Liège
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A common greedy algorithm used for sparse signal recovery is the Orthogonal Match-
ing Pursuit (OMP). This method is based on another reconstruction algorithm called
Matching Pursuit (MP). MP tries to find a solution that best fits the signal, while strictly
imposing a K-sparse solution:

ŝ = argmin
s

1

2
∥x−Ψs∥22 subject to ∥s∥0 ≤ K. (2.9)

Orthogonal matching pursuit performs this algorithm but in a slightly different manner,
and is capable to reliably recover a K-sparse signal s of size N with a number of random
linear measurements equal to M = O(K lnN). It shows comparable performance to
basis pursuit, but can recover the signal faster and with more ease in some settings [17].
The idea behind OMP is to determine and select in a greedy fashion the columns of the
sensing matrix A′ that take part in the measurement vector y. At each iteration, the most
correlated column of A′ to y is chosen. Subsequently, its influence on y is subtracted, and
the iteration continues on the residual. At the end of the iterations, the algorithm should
have found the index set S comprising the right columns of A′, and as a consequence, the
reconstructed signal s. More precisely, the OMP algorithm is structured as follows and is
adapted from [3, 17]:

1) Start with the residual r0 = y and the index set S0 = ∅. The iteration starts at
t = 1.

2) Iterate with the following equations until t =M :

S(t) = S(t−1) ∪ {jt}, with jt = argmax
j=1,...,N

∣∣〈r(t−1),A′
j

〉∣∣ , (2.10)

s(t) = argmin
z

{
∥y −A′z∥2 , supp(z) ⊂ St

}
, (2.11)

where A′
j is the j-th column of the sensing matrix. The residual for the next iteration is

r(t) = y −A′s(t).

2.3.3 Thresholding-based methods

The idea behind thresholding-based algorithms is to iteratively find the solution of the
under-determined system and perform a threshold on the solution at the end of each
iteration, i.e., only the largest elements of the result are kept for the next iteration. The
intuition of this method is hence similar to Eq. 2.9 where the sparsity of the solution is
strictly imposed.

One of the simplest algorithms of this category is called the Iterative Hard Thresholding
(IHT) [18]. This iterative method performs a gradient descent to tend to the solution,
and then proceed to a hard threshold on the result to ensure sparsity of the solution. One
starts the iterative process with s(0) = 0 and k = 0:

β = s(k) + µA′⊺(y −A′s(k)), (2.12)

s(k+1) = HH
S (β). (2.13)
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Eq. 2.12 corresponds to a gradient descent controlled by µ > 0, and Eq. 2.13 is the hard
thresholding of the estimate β. The thresholding operator HH

S is graphically represented
in Fig. 2.5a and is expressed as follows:

HH
S (x) =

{
x, if |x| ≥ T,

0, otherwise.
(2.14)

HH
S allows controlling the sparsity of the solution, by means of tuning T . This parameter

can either be a fixed value, or it can change during the iterations.

A variation of IHT is called the Iterative Shrinkage Thresholding Algorithm (ISTA)
[19]. This algorithm improves the previous method in the thresholding of the solution
estimate at each iteration, by introducing a soft thresholding operator HS

S . The latter,
shown in Fig. 2.5b, scales all the values by T , and then set the elements smaller than T
in absolute value to zero:

HS
S(x) =

{
x− sgn(x)T, if |x| ≥ T,

0, otherwise,
(2.15)

where sgn(x) is the sign function of x.

−T
T

x

HH
S (x)

(a)

−T
T

x

HS
S(x)

(b)

Figure 2.5: Thresholding operators. (a) Hard thresholding operator used in the iterative
hard thresholding algorithm. (b) Soft thresholding operator used in the iterative shrinkage
thresholding algorithm. Adapted from [2].

2.3.4 Deep-learning methods

Even though the previous reconstruction methods have been extensively studied in the
literature and their mathematical properties are well known, these techniques are limited
for practical applications. Indeed, they suffer from relatively long computational time,
which is not suitable for real-time image acquisition. In this context, the introduction of
Deep Learning (DL) algorithms in compressive sensing helps to improve the time com-
plexity of the reconstruction often by two orders of magnitude with respect to traditional
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recovery methods, because the majority of the algorithm’s complexity is shifted to the
training phase [11]. In addition, the use of DL has shown improvements in terms of qual-
ity of the signal reconstruction. Therefore, DL techniques are good candidates for the
implementation of compressive sensing algorithms for real-life application, even though
their properties have not yet been thoroughly studied.

There exist different possible ways to implement deep learning in the CS chain, as
shown in Fig. 2.6. The first application, depicted in Fig. 2.6a, is to handle the reconstruc-

(a)

(b)

Figure 2.6: Possible ways of DL implementation in a compressive sensing sampling and re-
construction chain. (a) DL is used for the reconstruction of the signal. (b) DL is used for the
sampling and the reconstruction process. From [11].

tion of the signal with a deep learning algorithm, based on the collected samples. It can
be divided into two subtypes: iterative reconstruction or direct reconstruction. The first
tries to copy the iterative methods mentioned in the previous sections. This technique is
based on an algorithm architecture called algorithm unrolling: it maps each iteration into
a network layer, and each layer is eventually stacked. The weights of the networks are to
be learned, and they are optimized during the iterations. ISTA-Net+ [20] is an example
of this type of algorithm. On the other hand, the DL algorithm for direct reconstruction
does not imitate the iterative schemes, but reconstructs the sparse signal with a complete
neural network. This method offers a great flexibility in its implementation. However, it
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has more of a black box nature, which makes it less interpretable, and it requires more
learning parameters than DL iterative reconstruction for comparable recovery quality [21].

Secondly, the sampling matrix can also be controlled by a DL network, as it is shown
in Fig. 2.6b. In this manner, the sampling matrix is learned with the goal of optimizing
signal acquisition. Applied to CS imaging, this technique determines the most effective
way to code the image for efficient sensing [22].

2.4 The case of inpainting
While compressive sensing focuses on capturing a signal, the reconstruction algorithms
mentioned above and the sparsity principle also finds utility in the reconstruction of dam-
aged images, where part of the information is missing. This technique, called inpainting,
consists indeed in solving an underdetermined system, where the measured signal y is the
damaged image, and the objective is to retrieve the undamaged image, i.e., x.

The damaged image of size n × n = N can be linked to the original image by the
element-wise product of the undamaged image with a binary mask:

f = Φ⊙ f0 (2.16)

where f ∈ Rn×n is the damaged image, f0 ∈ Rn×n is the original image to recover,
and Φ ∈ Rn×n is the binary pattern mask defining which pixel has to be reconstructed.
Eq. 2.16 can easily be rearranged into the compressive sensing basic vector equation
y = Ax, with A ∈ RM×N . The value ofM is equal to the number of original pixels of the
image, and therefore the number of one-valued pixels in Φ. Knowing the binary mask,
i.e., the location of the holes in the image, the latter can be reconstructed with one of the
recovery methods shown in Sec. 2.3.

2.5 Optical multiplexing technologies
Now that the mathematical and algorithmic formalisms are well established, this section
aims to introduce the different optical multiplexing devices that are used to code the
image in the CS acquisition process. Borrowed from the field of telecommunications, the
term multiplexing means the combination of signals to share a scarce resource, such as
a communication cable. In the field of CS, signal information shares the scarce resource
of limited measurements [2]. These devices can be categorized into passive and active
multiplexing. Passive technologies are composed of static optical elements that are not
controllable. On the other hand, active multiplexing allows changing the optical multi-
plexing of the scene during its recording, via a Spatial Light Modulator (SLM). In the
following of this section, two passive and two active multiplexers will be presented.

2.5.1 Coded aperture

A coded aperture is a type of passive multiplexer, made of a perforated opaque material
[2]. The pattern formed by the holes on the aperture constitutes a binary mask, and allows
the incident light to be multiplexed. Coded apertures first found utility in X-rays and γ-
rays imaging, where the use of lenses is made impossible for these types of radiations, and
where massive grazing incidence telescope mirrors are not feasible. This type of aperture
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can drastically reduce the complexity of the imager, simplifying the system down to a
coded aperture in front of a FPA, as shown in Fig. 2.7. The coded aperture design is an
improved version of the pinhole camera, which is the simplest form of image modulation,
but that suffers from high light losses through the very limited aperture. Coded apertures
hence increase the amount of light coming to the detector by adding multiple holes. As
a consequence, this introduces a more complex point spread function than that from a
single pinhole, but it is used advantageously to reconstruct the images with the knowledge
of the pattern on the aperture [23].

Several families of patterns have been studied for coded aperture imaging. It has been
proven that randomly distributed pinholes with 50% opening can efficiently image stars in
the X-rays domain [24]. Structured patterns have also been explored, such as Uniformly
Redundant Array (URA) [25] and Modified Uniformly Redundant Array (MURA) [26].

Figure 2.7: Schematic of a coded aperture detector. From [26].

2.5.2 Diffuser

One way to obtain a passive pseudo-random multiplexing of the image is to use diffusers. A
diffuser is a transparent material that refracts and scatters the incident light in a diffusive
manner, thanks to its surface roughness [2]. As shown in Fig. 2.8, a diffuser has a spatially
random refractive index, which results in a pseudo-random coding of the scene. This
spatially varying refraction induces a spatial phase modulation of the signal, in contrast
to the coded aperture, which modulates the amplitude. This phase modulation creates
caustic patterns on the detector. Because this pattern is not predictable in advance, the
diffuser has to be calibrated by imaging a point source far from the detector. Any other
points located on the scene will shift and/or change size of the caustic pattern on the
camera sensor. A difference with coded aperture is that a diffuser does not block light,
but refracts it. Therefore, more light can hit the detector and the system can provide a
better Signal-to-Noise Ratio (SNR) than coded apertures [2].
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DetectorDiffuserScene

Figure 2.8: Schematic of diffuser used to randomly multiplex information from the scene onto
the camera detector. Adapted from [2].

2.5.3 Digital micromirror device

A Digital Micromirror Device (DMD) is a microoptoelectromechanical system constituted
of a rectangular array of tiltable micromirrors [27]. Consequently, it constitutes an active
multiplexing system. Each mirror has a typical size of about 10 µm and can be rotated
around their diagonal axis with a torsional hinge, as it can be seen in Fig. 2.9. The mirrors
have two stable orientations noted as an ON/OFF state, and usually corresponding to
a ±10 ◦ or ±12 ◦ tilt respectively. The orientation of each mirror is electrostatically
controlled with a memory cell formed from two CMOS memory elements, the memory
state stored in the memory cell is transferred to the mirror by a clocking pulse. A DMD
allows coding binary patterns at a frequency of several tens of thousands of Hertz. When
displaying a pattern on the device, a normal incident light is either reflected to one or
another direction, and the reflected light is thus coded according to the pattern. In
addition, one can play with the fast pattern rate and the duration of the tilt of each
mirror to tune precisely the reflected light of the mirrors. This allows creating shades of
gray in the pattern mask, rather than a simple binary pattern, at the cost of a slower
pattern rate. Due to the small size of the micromirrors and their periodicity on the 2D
array, a DMD can be seen as a grating for wavelengths of the same order of magnitude
as the dimensions of the mirrors [28]. Therefore, the reflected light will be diffracted, and
create unwanted rays, leading to reduced performance. The usable wavelength range of
the DMD is by consequence limited by diffraction effects.

DMDs have originally been designed by Texas Instruments and are part of the Digital
Light Processing technology to display images with video projectors. DMDs have enabled
the miniaturization of such devices.

2.5.4 Liquid crystal spatial light modulators

A Liquid Crystal (LC) modulator is a type of active SLM, which uses the optical anisotropy
of liquid crystals to modulate the incident light [30]. This property is due to the long
molecules which compose the crystal and that have a tendency to get aligned to each
other. This anisotropy, such as birefringence, depends on the orientation of the crystal
molecules, which can be modified by the presence of an electric field. The incident light
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Figure 2.9: Schematic of the mechanism inside the pixel mirrors of a DMD with the different
components highlighted. Figure from [29].

can therefore be modulated by controlling the applied electric field on the LC. In the
context of compressive sensing, the LC equivalent of the DMD is the Liquid Crystal On
Silicon (LCOS). It is a small two-dimensional array of individual LC modulators, allowing
the spatial patterning of light. As shown in Fig. 2.10, each liquid crystal pixel is built on a
silicon backplane, which contains CMOS electronics for the control of the individual mod-
ulator. Above this backplane and below the liquid crystal layer lays an aluminum layer,
which reflects the incident light. This modulation device is therefore used in reflection, in
the same fashion as DMDs.

CMOS silicon backplane

Aluminum layer (pixel arrays)

Glass substrate

Indium tin oxide
Alignment layer

Alignment layer

Spacer
Liquid
crystal
layer

Glue seal

Figure 2.10: Structure of one pixel of a LCOS device. On the top, each pixel has a glass
substrate, and a transparent indium tin oxide electrode. The LC layer is between two alignment
layers that define the preferred direction of the crystals. Below that are placed the reflective
aluminum coating and the CMOS silicon backplane. Each pixel is separated from each other by
a glue seal and a spacer. Adapted from [31].

The modulation of light can be done in amplitude, in phase, and in grayscale. On
the other hand, liquid crystal SLM are typically the optical modulators with the lowest
refresh rate, being limited to around 100 Hz. This slow frame rate can be compromising
for real-time CS applications.
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2.6 Imaging devices using compressive sensing
This next section introduces several imaging device architectures that use compressive
sensing to acquire images.

2.6.1 Single-pixel imaging

The single-pixel camera is certainly one of the most well-known imaging applications
of compressive sensing. As its name implies, it is a camera composed of only one single
photon detector [32]. Traditionally, cameras are equipped with a Focal-Plane Array (FPA)
made of millions of pixels. This architecture of detector, boosted by the democratization
of CCD and CMOS technology, allows acquiring high-quality images mainly in the visible
domain. However, this comes at the cost of a large quantity of data to handle, and
more importantly, imaging with FPA in wavelengths that are invisible to silicon such as
infrared is substantially more challenging and expensive than in the visible, for comparable
image resolution. It is in this context that Single-Pixel Imaging (SPI) was proposed, with
the aim to build a cheaper and simpler camera, capable to image in a broader range of
wavelengths than silicon-based FPA. Indeed, using only one detector pixel enables the use
of exotic detectors that can operate in specific wavelengths, and that would be impossible
to use in classical focal-plane arrays. The use of a single-pixel detector can offer improved
performance with respect to FPA, in terms of quantum efficiency, dark counts, and thus
can have a better imaging in low light conditions [1].

The general architecture of a single-pixel camera is shown in Fig. 2.11. The incident
light of the scene is focused by a collecting lens on a DMD, which modulates the image.
A condensing lens focuses the reflected light on a photodetector that measures the signal.
The DMD displays random or structured patterns, for each of which an individual light

Figure 2.11: General architecture of a single-pixel imager. Figure taken from [33].

intensity is measured with the photodetector. The resulting set of measurements is fed to
the proper compressive sensing algorithm to retrieve the image. Because of its interesting
characteristics such as its fast modulation rate, the DMD has been the preferred choice of
SLM since the first developments of SPI [34]. For one binary pattern Am applied on the
DMD, the photodiode measures ym = ⟨Am,x⟩, which corresponds to the inner product
of the mask and the scene. By taking M measurements with different masks, it allows
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returning to Eq. 2.1. The spatial resolution of SPI is hence limited by the resolution of
the DMD.

The SPI architecture presented in Fig. 2.11 is not the only possibility to acquire spatial
information of a scene. This DMD can also be used to illuminate the scene in a struc-
tured manner. As illustrated in Fig. 2.12, the light that illuminates the scene is coded by a
DMD. The backscatter of the exposed scene is then returned to a photodetector, where its
intensity is measured. By consequence, this reciprocal configuration is a passive sensing
method. Equipped with a pulsed laser as illumination source, the structured illumina-

Figure 2.12: General architecture of the structured illumination single-pixel imaging. Figure
from [1].

tion single-pixel architecture can be used to perform time-of-flight imaging, allowing 3D
representation of a scene [34]. Equipped with a time-resolving detector, one mask of the
SLM now corresponds to a series of measured intensities at different depths. A 3D image
cube can then be obtained by associating the different masks with their corresponding
intensities at different depths. By processing this data cube, the reflectivity and depth
information of the scene can be retrieved [35].

The simplification of the architecture of the imager and the broadening of the spectral
range with the use of a single-pixel detector comes with a price. Indeed, with only one
measuring element, the different measurements needed to reconstruct the image have to
be taken sequentially, which lengthens the acquisition time of a scene. On the other side,
a classical imager equipped with a FPA can acquire a picture in one shot. Therefore, there
is a space-time trade-off to make between the number of measurements and the number
of pixels in the camera. It is thus essential to have fast-modulating SLMs to shorten the
duration of the acquisition. Additionally, the reconstruction of the image can also take a
substantial amount of time, which handicaps SPI for real-time applications. Nevertheless,
it is possible to make a compromise between single-pixel and classical FPA imaging by
using more than one pixel but less than the resolution of the imager. The number of
measurements is then divided by the number of pixels present on the detector.

Single-pixel imaging and its trade-off version with multiple pixels introduce the concept
of Super-Resolution (SR) imaging. SR is an imaging configuration where the final image
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has a greater resolution than the detector array. For the case of CS imaging, the resolution
of the image is determined by the resolution of the SLM that multiplexes the image. The
number of pixels on the detector can therefore be fewer than the number of pixels on the
SLM. The super-resolution factor is used to measure the degree of SR of an imager. This
factor corresponds to the size of the group of SLM micro-pixels that are integrated into
one single detector pixel [36]. The working principle of super-resolution is illustrated in
Fig. 2.13. It is clear that the single-pixel imager is the extreme case of super-resolution,
with a SR factor equal to the whole size of the SLM.

Scene

Macro pixel

SLM Detector array

Micro pixel 
(= SLM
micromirror)

Detector pixel

Figure 2.13: Working principle of the super-resolution. Adapted from [36].

2.6.2 Coded aperture spectral imaging

As its name implies, compressive sensing has the ability to acquire a signal compressively.
By consequence, the technique is of interest in domains where large amount of data are
involved, such as hyperspectral imaging. Therefore, several CS spectral imager archi-
tectures have been proposed in the literature, including the Coded Aperture Snapshot
Spectral Imager (CASSI). This imager capable of sensing an entire data cube with just a
few FPA measurements, and in most cases, in a single FPA shot [37].

There exist several optical architectures of CASSIs. The simplest design is certainly the
single disperser CASSI, which is presented in Fig. 2.14. It has three main components: a
coded aperture used to code the image, a dispersive element used to separate the different
wavelengths of the data cube, and finally, a FPA detector to take the measurements. The

Figure 2.14: Optical arrangement of single disperser CASSI. Adapted from [38].

sensing mechanism of the imager is illustrated in Fig. 2.15. The data cube F(x, y, λ) of
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the scene has N × N spatial pixels and L different spectral bands. One vertical slice of
this data cube hence represents the scene viewed at one specific wavelength. This data
cube is first modulated by the coded aperture T (x, y) of size N ×N , which has the effect
of allowing the spectral information of only some selected spatial pixels to pass through.
Next, the modulated data cube traverses a dispersive element such as a prism. The
spectral dispersion induces a spatial shear of the data cube along one direction, because
each vertical slice will be shifted proportionally to the wavelength of that slice, i.e., its
spectral position in the data cube. Lastly, the sheared data is integrated and measured
by means of the FPA detector. The dispersion of light implies the detector to be larger
in the direction of dispersion, along x in this case, in order to completely measure all the
data matrix. To have completely resolved spectral bands, the detector should have a size
of N × (N + L− 1).

Figure 2.15: Schematics of the spectral optical flow of CASSI. The q-th horizontal slice of the
data matrix F containing the spectral information of a horizontal row of the scene is coded by
its corresponding row of the coded aperture and then dispersed by the prism. The detector then
measures the intensity of the coded and dispersed light. From [37].

The data cube F = [F0, . . . ,FL−1] with L spectral bands can be denoted by Fj,ℓ,k,
where j, ℓ are the two spatial indices and k is the index of the wavelength band. The
modulated and dispersed cube is integrated on the detector and the measured intensity
of the pixel (j, ℓ) on the N × (N + L− 1) FPA array is [39]

Yj,ℓ =
L−1∑
k=0

Fj,(ℓ+k),kTj,(ℓ+k) + ωj,ℓ, (2.17)

with ωj,ℓ the additional noise of the system. Note that this equation is only valid for
the general case near the center of the detector, but not necessarily at its borders. For
simple scenes, a single shot might be sufficient to compressively capture their spatial and
spectral information. However, for more complex scenes, multiple shots with different
coded apertures are required. For the i-th measurement, Eq. 2.17 can be written in a
vectorized form:

yi = Hif + ωi, (2.18)
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where Hi ∈ RN(N+L−1)×(N2L) combines the effects of the i-th coded aperture and the
dispersive element, and f is the data cube of the scene in vector form. The different
measurements can be regrouped as y = [(y0)⊤, . . . , (yK−1)⊤]⊤, with K the total number
of acquisitions. The expression of Eq. 2.18 of each shot can be regrouped into one system
of equations

y = Hf + ω. (2.19)

The problem is now stated in the standard form of an underdetermined system of linear
equations, which can be solved with the adequate algorithms of Sec. 2.3.

2.6.3 Lensless imaging

A lensless camera is an optical instrument that is not equipped with any complex optical
elements such as lenses or mirrors. It is only composed of a diffuser in front of a focal-
plane array detector. This type of camera offers a certain number of advantages compared
to conventional lens-based devices [40]. The use of lenses requires to have a certain
focal length between them and the detector. By contrast, lensless cameras can have
the diffuser located very close to the sensor, reducing incomparably the total size of
the imager. In addition, the camera can be much lighter, by removing the weight of
the lenses, which makes up most of the mass of traditional cameras. The cost can also
be drastically reduced, because high-quality optics is no longer required. Furthermore,
lensless cameras can provide a better Field Of View (FOV) than lens-based cameras for
comparable resolution, which can break the FOV versus resolution trade-off of traditional
optical devices.

On the opposite, there are some limitations in the use of lensless imaging [40]. Most
importantly, the quality of the images is not as good as lens-based imagers. Hence,
for 2D-imaging applications that do not require the benefits of lensless cameras such as
cost, weight, and size, traditional imaging is preferred. Another limiting factor, which is
inherited from compressive sensing, is the reconstruction time. As for the previous CS
imagers, the recovery of the scene with computational algorithms adds data processing
difficulties, additional power consumption, and can make it difficult to use lensless cameras
for real-time applications. Moreover, the light collected by the camera is limited by the
size of the detector, while camera lenses are often designed to be larger than the detector
to collect more light.

One of the most well known lensless camera is the DiffuserCam, developped by [41].
This camera is capable of taking one-shot 3D images of a scene. The DiffuserCam has a
diffuser made of a thin transparent phase plate with smoothly varying thickness, placed at
a small distance in front of the sensor. As mentioned in Sec. 2.5.2, the diffuser modulates
the phase of the incident light and, for a point source placed in the scene, forms pseudo-
random caustic patterns on the detector, which is the Point Spread Function (PSF) of the
system. As shown in Fig. 2.16, a lateral shift of a point source causes a lateral translation
of the caustic pattern, and a change in depth causes a scaling of the PSF. Therefore,
different point sources located in the 3D scene will create a unique caustic pattern on the
detector. A scene to image can be assumed to be a combination of different incoherent
point sources. The measured intensity on the detector of the DiffuserCam can then be
modelled as a linear combination of all the different caustic patterns of these points. This
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problem can be written in the form of [41]

b = Hv, (2.20)

where b is the vector of the 2D sensor measurements, and v is the vector containing the
intensity of all the 3D points of the scene to image. H is called the forward model matrix,
and contains in its columns the different caustic patterns created by all the 3D points of the
scene. The shape of the PSF can be obtained with a calibration procedure by imaging
a point source at different positions. Such DiffuserCam and its associated calibration
procedure and processing were also developed in the master’s thesis of S. Gramegna, as
first exploration of CS imaging at the CSL [42]. Eq. 2.20 is an underdetermined inverse
problem, and can be solved with CS algorithms, relying on the sparsity of the 3D scene in
some basis. However, the addition of a third dimension increases dramatically the amount
of data to handle, and the computation time. These issues can be solved by implementing
specific algorithms for 3D problems.

(a)

(b)

Figure 2.16: Effect of the lateral and axial displacement of a point source on the pattern
created on the camera detector of the DiffuserCam. (a) Effect of a lateral shift. (b) Effect of a
change in depth. From [41].
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3 Optical setup of a compressive
sensing imager

The main objective of this work is to build and improve a complete compressive sensing
imaging device. This chapter will present and explain the design and realization of a
CS imager in the visible light in laboratory. First, its general layout will be discussed.
Afterwards, the choice of the optical elements and their final disposition will be analyzed.
The computer control of the built imager will eventually be detailed. This work falls
within the continuity of the master’s thesis of C. Thomas [43] at the CSL.

The realization of a true CS imager such as a single-pixel camera is particularly chal-
lenging, both at the level of the optical system and at the level of image reconstruction.
The largest difficulty lies in the acquisition of the large number of image samples. For
example, compressively sensing an image with a resolution of 256 × 256 = 65536 pixels
with CS ratio of only 10 % requires taking 6554 measurements of the image with the
same number of different masks. As a consequence, the pattern rate of the SLM used in
the imager must be sufficiently high to be able to capture such samples in an acceptable
amount of time. Such pattern rate is currently not reachable in the CSL laboratory, and
would require to optimize the SLM. The reconstruction process must also be optimized
to handle these data. As a beginning, it has thus been decided to start with a simpler
reconstruction algorithm: image inpainting.

Starting with inpainting has several advantages. First, the reconstruction process and
the algorithm are simpler to put in place. Secondly, the optical layout is very similar to
a CS imager such as a single-pixel camera. The image is intentionally damaged by the
masking of the SLM, and then captured with a FPA requiring only one acquisition to
perform the reconstruction. Therefore, it constitutes a good means to familiarize with
the optical constraints of CS imagers, and it lays the groundwork for future work in the
realization of CS cameras.

3.1 General layout
In the following of this section, the general optical layout of the setup will be described.
As it has been explained in Sec. 2.5 and Sec. 2.6, there exist a multitude of different
designs of compressive sensing imagers, with a large choice of modulating devices. The
goal of this inpainting imager is to intentionally damage the image via a modulating
device and then acquire the image, with the aim to reconstruct it afterwards with CS
algorithms. In fact, the damaging operation is identical to the coding of a scene done by
a CS imager to perform one measurement. Therefore, the general layout of the imager
will have similarities with the architecture of a CS imaging system.

After reviewing the existing configurations that have already been done in the litera-
ture, the layout presented in Fig. 3.1 has been chosen. This simple configuration is similar
to the one used for single-pixel imaging [32]. The imager is first composed of a collecting
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lens that gathers the light coming from the scene. This lens focuses the light on the surface
of a DMD that will serve to damage the image. As it has already been seen, a DMD is an
array of micro-mirrors that can tilt in ON and OFF directions via an electronic control.
The light focused on the ON-state mirrors is reflected toward a condensing lens, while
the OFF-state mirrors direct the light out of the imager. The condensing lens collects
the light coded by the DMD and focuses it on a camera detector that will capture the
modulated image. Contrary to SPI, the detector here is a FPA sensor, because the goal
is to obtain a good-quality image, but not to perform any super-resolution.

Scene
DMD

Camera
detector Condensing lens

Collecting lens

Figure 3.1: General layout of the imager. The gray dashed lines indicate some rays of light
coming from the scene and projected on the detector via the DMD.

It has been seen that the square mirrors of a DMD rotate around their diagonal line.
Therefore, if the DMD is placed vertically on the laboratory bench with its longest sides
parallel to the surface of the table, a ray parallel to the table hitting a tilted mirror will
be reflected with a 45◦ angle with respect to the plane of the table. This effect is not
desirable for practical reasons. Indeed, in this configuration, the secondary arm composed
of the condensing lens and the detector would have to be tilted and lifted above the table,
which is not functional for precise tuning of the position of these elements. Instead, it is
easier to have the rays of light that stay parallel to the bench, so that the optics stays in
the plane of the table. This is achieved by rotating the DMD by 45◦ around the optical
axis. As a consequence, the scene element as well as the camera detector will also have
to be rotated by 45◦ to have the image well contained within the sensor array.

3.2 Description of the DMD
Since the DMD is a central component in the optical setup of the imager, it is important
to first describe its characteristics and specifications. The DMD model available in the
optical laboratory and used in the assembly is the DLP7000 manufactured by Texas
Instruments [44]. A picture of this DMD is shown in Fig. 3.2 and its main characteristics
are summarized in Tab. 3.1.
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Figure 3.2: DLP7000 [44].

Table 3.1: Main characteristics of the DLP7000.
From [44].

Parameter Value
Number of columns (micromirrors) 1024
Number of rows (micromirrors) 768
Micromirror pitch (µm) 13.68
Micromirror array width (mm) 14.008
Micromirror array height (mm) 10.506
Micromirror tilt angle ±12◦

Maximum binary pattern rate (Hz) 32552

The DLP7000 is a high-resolution DMD, with high-performance for spatial light modu-
lation. It is optimized for use in visible light (between 400 and 700 nm), with a reflectivity
of its micromirrors reaching 88%.

A DMD is a pertinent choice of SLM for the imager, because inpainting requires a
binary coding in amplitude of the image while having a full control of the damaging of
the scene. This is precisely what the DMD is capable of. The computer control of the
DLP7000 will be explained in more detail in Sec. 3.5.

3.3 Choice of the optical elements
In this section, the choice of the different optical elements constituting the laboratory
setup will be described in detail, as well as their characteristics. Each element will be
discussed starting by the scene to image, and following the light path to finish with the
detector.

3.3.1 Scene object

The setup has to be designed to acquire 2D images of a scene, in the visible light. Because
it is a laboratory demonstration, one has a total control of the characteristics of the scene,
such as its luminosity and the elements present in it. The scene must meet a number of
criteria. Firstly, it must be sufficiently bright to provide enough photons to the imager.
If its luminosity is too low, the Signal-to-Noise Ratio (SNR) of the instrument will not
be high enough, but the luminosity should not be too high either to avoid saturating
the detector. Secondly, this scene must be easy to set up in the laboratory and readily
interchangeable. This is in order to be able to easily image different scenes in a reduced
amount of time, and without too many manipulations.

The solution chosen for the display of the scene is an image printed on a sheet of
paper, and held vertically by the mechanism shown in Fig. 3.3. This method allows for
obtaining a scene with good-quality images, and easily interchangeable since it simply
requires replacing the paper image on the support. This solution also ensures that the
entire scene is at the same distance from the imager, thereby enabling a sharp focus across
the entire image. The illumination of the scene is managed by a desk lamp positioned in
front of the image and out of the imager’s Field Of View (FOV). In this way, the scene is
uniformly illuminated, and in a controlled and repeatable manner. In addition, standard
printer paper is not a shiny material, its surface being relatively rough, giving it a diffuse
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CHAPTER 3. OPTICAL SETUP OF A COMPRESSIVE SENSING IMAGER

Figure 3.3: Mechanism holding the scene in the right position and orientation on the laboratory
bench. The scene is printed on a sheet of paper and held flat at 45◦ with respect to the table.
Here, the scene is a calibration target made to test the instrument.

reflectivity property. Therefore, the light of the lamp will be reflected uniformly towards
the imager, thus avoiding the presence of unwanted specular reflection.

Regarding the dimensions of the scene and its position with respect to the instrument,
several parameters have to be taken into account. First, for practical reasons, the instru-
ment and the scene should both be positioned on the laboratory table. By consequence,
the two objects cannot be spaced more than the usable length of the table, which is the
distance between the DMD and the end of the table. Secondly, the dimensions of the
scene and its distance from the imager can be summarized by one parameter: the field of
view. The FOV is the solid angle through which the imager sees the scene, and is equal
in the case of a rectangular scene to [45]

FOV = 4 arctan
wh

2d
√
4d2 + w2 + h2

, (3.1)

with w and h, the width and height of the scene, and d, its distance to the imager. It means
that, in terms of FOV, a small scene close to the aperture of the instrument is equivalent
to a large scene placed further away. The field of view is an important parameter in the
design of optical instruments, as it is linked to the image quality. Indeed, a larger FOV
increases optical aberration that can degrade the quality of the pictures [46]. In order to
achieve a good image quality, a small FOV is thus preferred. On the other hand, because
the scene is an image printed on paper, it should be sufficiently large to have good printed
details on it. Based on that, the scene must be positioned as far away as possible from
the imager. The precise position of the scene will be determined in the next section, when
the collecting lens will be chosen.

Concerning its dimensions, the height of the image is set to be 65 mm, which allows
obtaining a good printing quality of detailed images, and also provides a relatively small
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FOV, as it will be seen during its calculation in the following of this work. This height is
also based on the size of a phone screen, which was used as a scene by [43] in a similar
optical configuration than the one shown here. The width of the image is determined by
the aspect ratio of the screen of the DMD, because all the image has to be displayed on
it. The DMD used in this laboratory setup has an aspect ratio of 4 : 3 (see Sec. 3.2).
This gives a scene width of 87 mm.

3.3.2 Collecting lens

The collecting lens is placed between the scene and the DMD, as shown in Fig. 3.1. The
role of this lens is to collect the light coming from the objects of the scene and focus
this light on the screen of the DMD to produce a sharp image on it. In this section, the
characteristics of the collecting lens will be determined.

The main physical properties of a lens are its focal length f , and its diameter ϕ. These
two parameters influence the qualities of optics. For a given focal length, a larger diameter
allows for more light to be collected, resulting in a brighter image, but it also increases
aberrations as it deviates from the paraxial approximation. On the other hand, for a
given diameter, a longer focal length increases the magnification and depth of field of the
image but reduces its field of view, brightness, and increases the effects of diffraction. It
is clear that these two parameters are interconnected, and this is mediated through the
f -number

F# =
f

ϕ
. (3.2)

This dimensionless parameter, often used to characterize the performance of telescopes,
expresses the angular aperture of a lens. The angular aperture θ of a lens focused at
infinity is the half-angle made by a marginal ray with the optical axis, as illustrated in
Fig. 3.4. An optical system with a very low f -number can be a source of severe aberrations
in the image, necessitating complex optics to correct them. In the case of a simple lens, a
too low f -number would induce too many aberrations and greatly impair image quality.
Conversely, a lens with a large f -number would take up more space on the laboratory
bench and also produce a dimmer image. Determining the f -number of the collecting
lens, i.e., its focal length and diameter, is therefore a compromise, among other factors,
between optical quality, image brightness, and device size.

Figure 3.4: Schematic illustrating the angular aperture defined by the f -number.

The choice of the collecting lens is subject to several geometric constraints within the
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optical system. The first obvious constraint is that the lens must be available in the
laboratory’s optical store. Since this store is not infinite, the selection of the lens must
be limited to the available materials. Secondly, the size of the optical table is of finite
length, and the entire primary arm of the imager consisting of the scene, the collecting
lens, and the DMD must be accommodated on this table. The geometry of the primary
arm is illustrated in Fig. 3.5. The object distance so and the image distance si are varying
as a function of the focal length of the lens, accordingly to the thin lens equation

1

so
+

1

si
=

1

f
. (3.3)

In the case of simple and relatively thin lenses, and within the scope of a simple setup on
an optical bench, the thin lens approximation is considered acceptable. Additionally, the
transverse magnification MT of a lens is a dimensionless parameter that represents the
ratio of the height of the image and the height of the object, and can also be expressed
in terms of image and object distances:

MT =
hi
ho

=
si
so
. (3.4)

The transverse magnification of the collecting lens is thus equal to the ratio between the
width (or height) of the scene and that of the DMD. The dimensions of the DMD are
14×10.5 mm (see Sec. 3.2), which gives MT = 0.16, which means that the image is about
6.25 times smaller than the object.

DMDCollecting lensScene

Figure 3.5: Schematic of the primary arm, including the scene, the collecting lens, and the
DMD.

In the simple geometry of Fig. 3.5, the total distance between the scene and the DMD
should not be larger than the usable length of the laboratory bench

so + si ≤ lt, (3.5)

where lt = 1.35 m is the usable length of the table. From this inequality, Eq. 3.3 and
Eq. 3.4, a condition on the focal length of the lens can be found

f ≤ lt
MT

(1 +MT )2
. (3.6)

28 Centre Spatial de Liège
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Replacing the variables with the numerical values, the upper limit of the focal length is
found to be f < 162 mm. The object and image distances, as well as the total distance
between the scene and the DMD as a function of the focal length of the collecting lens is
shown in Fig. 3.6, with the maximum focal length allowed highlighted. These distances
increase linearly with the focal length. This graph indicates the relative position of each
element of the primary arm, depending on the focal length of the lens that will be chosen.

Figure 3.6: Evolution of the object distance so, the image distance si and the total distance
si+ so as a function of the focal length of the collecting lens from 20 mm to 200 mm. The range
of permissible focal lengths is highlighted in green.

The third constraint on the collecting lens is that the latter must not obstruct the light
reflected by the DMD, and must give enough place for the condensing lens, as shown in
the schematic of the setup in Fig. 3.1. This constraint is directly related to the angle of
the light cone from the lens, which is expressed by its f -number . Indeed, the light cone
reflected by the DMD and directed towards the condensing lens has the same aperture
as the incident cone. If this aperture is too large (small f -number), the two cones will
overlap, and the collecting lens will obstruct the passage of light in the secondary arm,
hindering the view of the condensing lens. This non-obstruction constraint will therefore
define the minimum f -number of the lens.

Geometrically, the critical light ray that will be obstructed first by the collecting lens
is the ray starting from the upper end of the lens and reflecting at the lower end of the
DMD. It is also necessary to consider the additional diameter taken by the lens mount
in the non-obstruction condition, as illustrated in Fig. 3.7, where the path of the critical
ray is depicted along with the geometry of the problem. Instead of performing expensive
computations with ray-tracing, a simple 2D modelling of the problem can be set. This
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model introduces the characteristic diameter of the DMD defined as

DDMD =
√
w2

DMD + h2DMD, (3.7)

where wDMD and hDMD are respectively the width and height of the DMD. This charac-
teristic diameter is used to take into account the rectangular shape of the DMD in the
2D model, and corresponds to the diagonal of the SLM. The critical ray will not hit the
lens mount if

θr > θ∗, (3.8)

where θr is the angle of the reflected critical ray with respect to the optical axis, and θ∗ is
the angle made by the lens mount when viewed from the point of reflection of the critical
ray on the DMD. The critical angle θ∗ is determined by the geometry of the problem

θ∗ = arctan

(
ϕm +DDMD

2si

)
, (3.9)

with ϕm, the total diameter of the lens with its mount. The incident ray with an angle θi
is reflected on the micromirror surface, whose normal is inclined by the DMD mirror tilt
angle ψDMD = 12◦ with respect to the optical axis. By the law of reflection, the incident
and reflected angles are linked by

θr = 2ψDMD − θi, (3.10)

all the angles being considered positive when defined clock-wise. The incident ray angle
θi can also be expressed as a function of the lens diameter, in the same fashion as θ∗ in
Eq. 3.9. The non-obstruction condition in Eq. 3.8 can now be rewritten as a function of
the parameters of the lens and the DMD, therefore giving a condition on the diameter of
the lens as well as its focal length by the presence of the image distance si = f(1 +MT ).
The non-obstruction condition is fulfilled if

arctan

(
ϕ+DDMD

2f(1 +MT )

)
+ arctan

(
pmϕ+DDMD

2f(1 +MT )

)
< 2ψDMD. (3.11)

The parameter pm is the ratio between ϕm and ϕ. After measuring the different lenses
and the corresponding mounts available in the laboratory, a value of pm = 1.5 is found to
cover the majority of the lenses.

To summarize, the constraint defined by Eq. 3.6 limits the focal length of the lens to 162
mm, and the non-obstruction constraint in Eq. 3.11 allows for defining a set of diameter
and focal length that avoids obstructing the light reflected by the DMD. As mentioned
above and in the previous section, the largest focal length possible is desired to provide
the best image quality and reduce the aberrations. Therefore, the chosen collecting lens
should have a focal length as close as, but below fmax = 162 mm. By fixing f = fmax in
the non-obstruction condition expressed by Eq. 3.11, the maximum lens diameter allowed
is ϕmax = 50 mm. A lens with diameter and focal length equal to ϕmax and fmax has an
f -number equal to 3.2. This f -number is considered to be not too low, thus preventing
significant optical degradation, but it is also sufficiently small to provide enough photons
to the imager and achieve a bright image. The lens available in the optical store with
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Figure 3.7: Geometry of the non-obstruction constraint, with the critical ray represented in
red, and the lens mount drawn as gray boxes. The drawing is not to scale.

characteristics closest to ϕmax and fmax is a lens with a diameter of 40 mm and a focal
length of 160 mm. Its main characteristics are summarized in Tab. 3.2. This lens has the
advantage to be a doublet lens. Composed of two pieces of glass with different optical
properties glued together, this type of lens corrects chromatic aberrations, which cause
the different wavelengths of the image to be focused differently and degrade the overall
quality. The f -number of the lens is higher than the goal lens due to a smaller diameter,
but the diameter is considered sufficiently large to give bright images for the purpose of
a laboratory setup.

Table 3.2: Characteristics of the chosen collecting lens.

Parameter Value

Type of lens doublet
Diameter (mm) 40
Outer diameter (with mount) (mm) 60
Focal length (mm) 160
f -number (-) 4

Now that the characteristics of the lens are known, its position can be calculated using
Eq. 3.3. The object distance so is 1150 mm and the image distance si is 186 mm. The
total distance between the scene and the DMD is thus 1336 mm, which is indeed less
than the total length of the laboratory table. The non-obstruction condition is also met,
as shown by the ray-tracing simulation of the collecting lens-DMD assembly in Fig. 3.8,
calculated with a personal code in Matlab. Thanks to Eq. 3.1, the field of view of the
primary arm can be computed, and is 0.0064 sr or 20.94 deg2.
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Figure 3.8: Ray-tracing simulation of the chosen collecting lens (left) and the DMD (right)
done with a personal code in Matlab. The lens mount is represented in pink, the rays incident
to the DMD are drawn in blue, and the reflected rays are in red. Only the rays focused on the
four corners of the DMD are shown.
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3.3.3 Spatial light modulator

As previously mentioned, the DMD used to modulate the images is a DLP7000. It is
placed at the focal plane of the collecting lens and is tilted at 45◦ along the optical axis.
Due to the rotation of the micromirrors around their diagonal, this 45◦ tilt keeps the
optical path in a plane parallel to the table, thus simplifying the setup construction and
facilitating its alignment. To properly position the DMD, a protective box was originally
3D printed and placed horizontally on the table. To rotate this box at the right angle, a
new support had to be created. This support was designed to hold the protective box that
was originally made but with a tilt of 45◦ with respect to the horizontal while facing the
scene. This new support was designed with the Computer-Aided Design (CAD) software
NX and was further 3D printed. The 3D CAD view of this support is shown in Fig. 3.9a,
and the complete device mounted on the optical bench is visible in Fig. 3.9b.

(a) (b)

Figure 3.9: Assembly of the DMD. (a) CAD view of the support holding the DMD at the cor-
rection orientation. (b) Picture of the DMD and its 3D-printed support fixed on the laboratory
bench.

3.3.4 Condensing lens

At this stage, the collecting lens has focused an image of the scene on the DMD. Placed
after the DMD, the condensing lens collects the light rays reflected by it and focuses them
onto the FPA of the detector located at the focal plane of the lens. From the point of
view of the condensing lens, the scene to image now corresponds to the DMD screen and
the image must be located within the camera detector.

The condensing lens must be capable of collecting as much light as possible reflected
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by the DMD in order to achieve the best possible radiometric resolution at the detector.
As shown in Fig. 3.8, this reflected light (in red) diverges, forming a cone. Therefore, to
collect the same amount of light, a condensing lens placed further away from the DMD
must have a larger diameter than a lens placed closer to the DMD. The focal length of this
lens defines the distance from the DMD. The larger the focal length, the further the lens
is placed from the object, and thus, the larger the diameter must be to capture enough
light. The motivation to keep the imager compact and given the limited diameters of
the lenses available in the optical store implies choosing a lens with a relatively short
focal length. Consequently, decreasing the focal length increases the field of view and
also increases optical aberrations. Therefore, it was decided to choose a camera objective
as the condensing lens rather than a simple lens or a doublet. The presence of multiple
complex lenses inside the objective allows for better aberration correction and much better
performance than a simple lens. Moreover, the small size of the object (the DMD screen)
and the small size of the FPA where the image will be focused require high-quality optics
to ensure that the obtained image is sharp. All the camera objectives available in the
laboratory are listed in Tab. 3.3.

Table 3.3: List of the available camera objectives in the laboratory.

Camera objective Focal length (mm) Diameter (mm) f -number (-)

Pentax 6 mm 6 5 1.2
HR 16 mm 16 11.4 1.4
HR 25 mm 25 17.9 1.4
Rodenstock Rodagon 28 mm 28 7 4
FA 2/3” 35 21.9 1.6
Ernitec TV lens 50 38.5 1.3
Zuiko auto-macro 50 14.3 3.5
Tamron 75 19.2 3.9
Rodenstock Rodagon 210 mm 210 37.5 5.6

By handling and testing different camera lenses, it was noticed that lenses with an
f -number lower than approximately 2 produce too many aberrations in the corners of the
image. In terms of focal length, lenses with focal below 35 mm are considered too close
to the DMD, and the distance between the detector and the lens is too short to achieve
proper focus on the FPA. Conversely, above 75 mm focal length, the condensing lens is
placed too far from the DMD, resulting in a dim image. This reduces the possibilities to
the Zuiko 50 mm and the Tamron 75 mm.

It can be noticed that the f -number of the Zuiko objective is slightly lower than the
Tamron lens, and most importantly, the Zuiko is a macro camera objective. It means that
it has been designed to be used at close distances, for photographing small objects [47].
Considering the dimensions of the sensor (see Sec. 3.3.5) and the DMD, the transverse
magnification of this lens is MT = 0.39. The magnification being relatively large, the use
of a macro lens is hence more appropriate to obtain good quality pictures of the image
formed on the DMD. Therefore, using the Zuiko lens allows a more compact imager, with
slightly brighter images. Based on all this, the Zuiko lens is chosen to be the condensing
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lens for the secondary arm of the imager. A picture of this camera objective is shown in
Fig. 3.10.

Figure 3.10: Picture of the Zuiko auto-macro 50 mm f/3.5 objective used as the condensing
lens of the imager. From [48].

One particularity to notice is that, unlike the collecting lens, the object to be imaged
here is not perpendicular to the optical axis. Indeed, due to the off-axis reflection of the
DMD, its screen is seen by the condensing lens at an angle of 2ψDMD = 24◦. This angle is
calculated thanks to Eq. 3.10 with θi = 0◦. As a result, the image plane is also no longer
perpendicular to the optical axis. This phenomenon, illustrated in Fig. 3.11, is called
the Scheimpflug principle. It states that the object, lens, and image planes intersect in a
common point. This principle will be further explained and detailed in Sec. 3.3.5, as it
has a great impact of how the image forms on the detector.

Object
plane

Image
plane

Figure 3.11: Scheimpflug principle. Because the lens and the object plane are not parallel,
the image plane is not parallel to the lens.

The chosen lens is composed of several complex lenses, and it has a non-negligible
thickness compared to its diameter. Hence, the thin lens approximation does not stand
anymore. Nevertheless, the thin lens equation can still be used in the context of multiple
lens systems or thick lenses by introducing the concept of principal planes. The principal
planes of a system of lenses are two hypothetical planes at which all the refraction can
be considered to happen [49]. As shown in Fig. 3.12, they are composed of the principal
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object plane H1 and the principal image plane H2. These planes are the location from
which the effective focal plane of the optical system is measured. They depend on the
characteristics of the lens system but do not change with the position of the object to
image. Their positions, which can be located outside the instrument, are measured in
practice with a collimated laser, by measuring the distance between the focus point and
a fixed reference on the lens. The position of the principal planes with respect to this
reference is then found thanks to Fig. 3.12. For the Zuiko 50 mm f/3.5, the reference has
been set to the end plate of the lens mount, and the principal object and image planes are
located respectively 0 and 7 mm toward the front of the objective. The thin lens equation
can be used with multiple lens systems, but it leaves out the distance between the two
principal planes. It is thus necessary to add this relative distance to obtain the correct
position of the optics, and the position of the image.

Lens system

Figure 3.12: Illustration of the principal planes H1 and H2 of a multiple lens system.

The image and object distances si and so can also be calculated to determine the
position of the condensing lens with respect to the DMD, and with the detector. To do
this, the angle made by the DMD and the object plane due to the Scheimpflug principle
must be taken into account. Thus, for a given object distance, the images of the ends of the
DMD’s medians are calculated using the simple lens equation. Then, the lengths of these
median images in the image plane are calculated. The object distance is incremented
until the lengths of these medians match the dimensions of the detector. When this
condition is met, the image of the DMD is contained across the entire FPA, and we
obtain the distances so and si for the condensing lens. For a thin lens, these distances are
measured from the center of the lens, but for a lens system like in the present case, they
are measured from their respective principal planes H1 and H2. For the chosen camera
objective, the object and image distances are respectively equal to 148 mm and 76 mm. It
should be noted that, especially for the condensing lens, the optical elements are manually
positioned according to the distances calculated above, but slight adjustments are made
to take into account more complex behaviors in terms of object and image distance that
could not be predicted with the simple thin lens equation, with the goal to achieve the
best focus and image quality.
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3.3.5 Detector

The camera used to acquire the images is the UI 3240CP-M-GL-TL from IDS [50], and is
shown in Fig. 3.13. It is a monochromatic CMOS camera working in the visible spectrum,
and whose main characteristics are summarized in Tab. 3.4. Because it has a bit-depth
of 8, the pixel intensities of the output image can take values between 0 and 255.

Figure 3.13: Picture of
the camera [50].

Table 3.4: Characteristics of the camera [50].

Characteristic Value

Type CMOS Mono
Resolution (pixel) 1280× 1024
Aspect ratio 5:4
Pixel size (µm) 5.3
Sensor dimensions (mm) 6.784× 5.427
Bit-depth (bits) 8

In a conventional imager such as a digital camera, the detector is fixed to its objective
lens, and the sensor’s surface is perpendicular to the optical axis. However, as previously
mentioned, the image plane is not perpendicular to the optical axis due to the Scheimpflug
principle. By maintaining a classic positioning of the camera relative to the condensing
lens, the image plane where the rays are focused will not be exactly aligned with the
detector. This misalignment can result in a lack of sharpness and blurriness in most of
the image. The Depth Of Field (DOF) of the condensing lens allows for measuring the
impact of the Scheimpflug effect on sharpness and determining whether it is necessary
to correct it. The depth of field is the range of distances within which objects appear
acceptably sharp in an image captured by a camera [51], and for close object photography,
it can be expressed as [52]

DOF = 2CF#
(1 +MT )

M2
T

, (3.12)

whereMT is the transverse magnification of the condensing lens, F# is its f -number, and
C is the circle of confusion. The circle of confusion is the diameter of the circular light
disk that can form on the detector and still be perceived as a point in the final image.
This value of the circle of confusion is typically equal to the size of 1-3 sensor pixels [53].
Because the DMD is seen by the condensing lens with an angle, a side of the SLM is closer
to the lens than the other side. If the difference in depth between the two sides is larger
than the DOF of the lens, the effects of the Scheimpflug principle will begin to be visible
and degrade the image quality. For the condensing lens, the DOF is 1.03 mm, which is
more than 5 times smaller than the depth of the DMD viewed from the lens. Therefore,
most of the image will appear blurry, making it crucial to correct this to achieve good
image quality.

The blur caused by the Scheimpflug principle can be corrected in two ways. First, it
can be compensated by tilting the condensing lens so that the lens plane is once again
parallel to the object plane, and thus the image plane is also perpendicular to the optical
axis. This first solution implies that the incident rays enter the lens at a much greater
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angle of incidence, which induces many non-desired optical aberrations. The second
solution is to keep the lens plane perpendicular to the optical axis and tilt the DMD so
that it is perfectly aligned with the image plane. This second solution is chosen for the
imager because it provides the best image quality while eliminating the Scheimpflug blur.
Therefore, the condensing lens and the camera detector have to be decoupled to allow
this correction.

The rotation angle ψs of the camera relative to the lens plane can be calculated geo-
metrically using the Scheimpflug principle. As previously mentioned, this principle states
that the object plane, lens plane, and image plane intersect at a single point when the
object plane is not parallel to the lens plane. Therefore, two right triangles sharing a com-
mon side can be constructed, as illustrated in Fig. 3.14. From this geometric construction,
the following relationship is derived:

ψs = arctan

(
si
so

tan(24◦)

)
, (3.13)

where si and so are the image and object distances of the condensing lens computed
in the previous section. The computed horizontal rotation angle of the camera is ψs =
12.6◦. Complementary to this rotation, the camera must also be rotated 45◦ relative to
the horizontal so that the detector can capture the image of the DMD with the correct
orientation, because the latter is tilted 45◦ relative to the table, as explained in Sec. 3.3.3.

Detector DMD

Figure 3.14: Schematic of the secondary arm with the Scheimpflug principle. The DMD is
inclined of 24◦ with respect to the condensing lens. The lens is represented as a thin lens for
the sake of clarity.

In order to correct the Scheimpflug blur, it is necessary to precisely position the detector
at the correct distance from the camera lens and with the right orientation. To achieve
this, a camera mount was designed in NX and 3D printed. This mount, whose CAD
model is shown in Fig. 3.15a, consists of two parts, the base and the cover, each with a
U-shaped portion, and joined together by two bolts. The cylindrical mount of the camera
fits between the base and the cover, and tightening these two pieces with the bolts holds
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the camera firmly in place like a hose clamp. This setup allows the camera to be freely
tilted relative to the horizontal axis. This camera mount is, in turn, bolted onto a 1-
axis precision vertical stage, allowing fine adjustment of the camera’s height. The entire
camera assembly is positioned at the correct tilt angle ψs relative to the condensing lens
plane using a stop fixed on the optical table. A top view of the final camera assembly is
shown in Fig. 3.15b.

(a) (b)

Figure 3.15: Camera detector assembly. (a) CAD view of the camera holder. Four bolts
are inserted into the premade holes to fix the structure and the camera. (b) Top view of the
complete assembly of the camera and the condensing lens. The tilt angle ψs of the camera with
respect to the condensing lens’ plane is highlighted.

3.4 Final setup
The imager is now assembled, and is capable to image a scene. Fig. 3.16 shows the full
imager with the different components highlighted. As a summary of the results obtained
in the previous sections, a top view scheme of the imager with the main measurements
relative to the position, orientation and dimensions of the optical elements is shown in
Fig. 3.17.

Fig. 3.18 shows the original image used as a scene and the raw image of the scene.
All the mirrors of the DMD have been set to the ON-state to obtain an undamaged
image of the scene. The original image in Fig. 3.18a is an aerial view of the CSL and
the Liège Science Park. This image has been printed on a sheet of paper and placed in
front of the imager. It can be seen in Fig. 3.18b that the obtained image is in gray levels
because the sensor is monochromatic. The image also appears relatively sharp with a good
image quality, demonstrating the effective assembly and selection of the imager’s optical
elements. It can be noted that print marks of the image on the paper are slightly visible as
closely spaced lines, but their presence is not considered disruptive for the continuation of
the work. Furthermore, the image of the scene does not take all the available space of the
detector, which leaves dark margins all around the image. This is due to the placement of
the camera sensor with respect to the condensing lens that is not perfect. However, even
if the camera placement was perfect, the image would not be fully framed on the detector,
because as can be seen, the image is not perfectly rectangular but rather trapezoidal. This
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CMOS CAMERA

DMDCONDENSING LENS

COLLECTING LENS

Figure 3.16: Picture of the assembled imager in the laboratory. The scene is located outside
the picture toward the left of the optical setup. The different optical components are highlighted.

Scene

Collecting lens

DMD

Condensing lensCamera detector

Figure 3.17: Top view scheme of the imager with its main dimensions.
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distortion is due to the tilt of the DMD relative to the condensing lens and the proximity
of these two elements. This creates a perspective effect that enlarges the parts of the
DMD closer to the lens and shrinks the parts that are further away. Additionally, the raw
image does not have a uniform illumination, with the presence of a darker area near the
bottom left corner of the image. This effect, known as vignetting, is certainly due to a
slight misalignment between the DMD, the condensing lens, and the camera sensor. The
calibration and post-processing of the raw image is necessary to correct all these defects,
and is presented in Chap. 4. Eventually, it is important to note that the framing of the
image taken by the instrument is deliberately different from that of the original image.
This is because, for a scene where orientation matters little, such as the aerial view of
the CSL, it is easier to simply print the image in dimensions larger than the size of the
scene and place this paper at the correct distance from the imager. However, for scenes
requiring precise orientation, the device shown in Fig. 3.3 must be used.

(a) (b)

Figure 3.18: Raw images of a scene taken by the imager. All the mirrors of the DMD are set
to the ON-state. (a) Satellite view of the CSL used as the original image for the scene. (b) Raw
image of the scene taken by the imager. Note that the framing of the two images is deliberately
different.

The previously obtained image was captured with all the mirrors of the DMD activated.
However, the imager needs to perform inpainting. By applying a binary pattern on the
DMD, the image of the scene can be damaged in a controlled manner. Fig. 3.19a shows
an example of binary pattern given by the DMD to damage the image. It is randomly
generated with a filling ratio of 50%. The filling ratio is defined as the ratio of the number
of active (white) pixels, and the total number of pixels on the DMD. This parameter allows
controlling the amount of data of the original image that is kept or destroyed during the
damage process. The random pattern has a binning of 3 × 3, which means that it is
made of pixels of 3× 3 micromirrors. The raw image damaged by the DMD is shown in
Fig. 3.19b. It can be seen that the mask is accurately printed on the scene.

The instrument is located on an optical bench in a laboratory. Surrounding it are light
sources such as a desk lamp used to illuminate the scene, the light for the computer screen
used to control the imager, and, when turned on, the room lighting. All these non desired
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(a) (b)

Figure 3.19: Raw images of a scene damaged by applying a binary pattern on the DMD.
(a) Binary pattern applied on the DMD. (b) Raw image of the damaged scene taken by the
instrument.

lights can contaminate the final image and greatly reduce its contrast. To prevent this,
a housing has been installed around the imager, as shown in Fig. 3.20. This housing is
made using two metal optical covers and black cardboard to fill all the openings. Only
one opening at the collecting lens allows light from the scene to enter the imager. A
trapdoor located on the top of the housing allows accessing and manipulating the optical
elements of the imager. To measure the effects of adding the housing on the final image,
two images of the same scene were taken: one before the housing was placed around the
imager, and one after its installation. To compare the results, these two photos were
taken under identical external illumination conditions, with the room lighting left on to
simulate the worst external illumination conditions. The two pictures without and with
the housing are shown in Fig. 3.21. The addition of the housing to the imager has an
undeniable effect on the final result, significantly improving the contrast of the image.
The principal cause of the non-desired illumination detector is by the gap between the
camera and the condensing lens. This gap leaves indeed the CMOS sensor at open air,
unprotected from the external light. A particular care has thus been taken to fully cover
this gap during the housing process. As it has been said, the images of Fig. 3.21 are taken
with the room lights turned on to simulate the worst case. However, the room lights are
in practice turned off when imaging, to not pollute the results with unwanted light.

42 Centre Spatial de Liège



CHAPTER 3. OPTICAL SETUP OF A COMPRESSIVE SENSING IMAGER

Figure 3.20: Picture of the complete imager with the housing built around it.

(a) without housing (b) with housing

Figure 3.21: Raw images of a scene taken before and after installing a housing around the
optical setup. All the mirrors of the DMD are set to the ON-state. The lights of the laboratory
room are turned on for both pictures.
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3.5 Control of the imager with LabVIEW
This section focuses on the computer control of the imager during image acquisition.
Automatic control of the instrument is an important feature to avoid having to perform all
acquisitions manually, which could be very time-consuming and potentially cause errors.
The goal is that the user only needs to provide a list of patterns to be displayed on the
DMD, and the program will handle initializing the DMD, displaying the pattern, and
finally saving on the computer the obtained image. To automate this acquisition, the
LabVIEW software is used. LabVIEW is a system development platform commonly used
for data acquisition, instrument control, and industrial automation. This software uses a
visual programming language and is developed by National Instruments. The operation
of the visual code that has been designed and programmed in LabVIEW to control the
instrument is represented by the flowchart in Fig. 3.22. First, the list of binary patterns
provided by the users is loaded in the software and transformed to be readable by the
DMD. Then, the program will loop through all the patterns, apply the current pattern to
the DMD, take a picture with the camera detector, and then save this image in a folder
on the computer.

Load
patterns

Apply
pattern

Capture
image

Save
image

Loop through the patterns

Figure 3.22: Flowchart of the LabVIEW program that controls the imager.

To control the DMD, it is connected to a controller board using a flexible PCB cable.
The controller board is the DLP Discovery 4100 Development Platform. This controller,
which is capable to precisely apply patterns at speed rates of up to 32 kHz [54], is con-
nected to a computer via a USB 2.0 cable. The development platform is directly control-
lable in LabVIEW by built-in functions present in the DLP Discovery 4100 Development
Platform ActiveX API. To understand how the DMD is controlled, it is interesting to
know how the device loads and displays a pattern. First, each micromirror has a memory
state and a mirror state. The memory state corresponds to the state of the mirror loaded
in the CMOS memory underneath the pixel. On the other hand, the mirror state is the
actual binary state of the pixel displayed on the DMD, i.e., the tilt of the micromirror.
These two states are linked together but can be different. Indeed, when a pattern is
loaded in the DMD, the memory state is changed but not the mirror state. To transfer
the memory state to the mirror state, the micromirror must undergo a reset operation.
This reset releases the mirror and then re-lands the mirror based on the state of the
CMOS memory below [55].

In the LabVIEW program, the patterns are first taken from a folder where they are
placed by the user. These binary patterns are under the format of binary bitmap images,
and are first converted into binary files that are readable by the DLP Discovery 4100
Development Platform. These binary files are then stored into another folder. During the
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CHAPTER 3. OPTICAL SETUP OF A COMPRESSIVE SENSING IMAGER

acquisition loop illustrated in Fig. 3.22, the current binary file is taken from the binary
folder, and then loaded in the DMD via a buffer, and finally proceeds to a reset operation
in order to display the pattern. In the current setup, these two operations that happen in
the loop take about 0.52 s to complete, giving a pattern rate of 1.92 Hz. This speed is well
below the achievable 32 kHz rate of the DMD. This slowness is primarily due to the way
we interact with the DLP Discovery 4100 Development Platform. Indeed, the USB 2.0
connection between the computer and the control module greatly limits the data transfer
rate of the patterns, limiting the module from operating at its full potential speed [56].
In the context of image acquisition using compressive sensing, for example, in single-pixel
imaging, this speed is much too low. As mentioned at the beginning of this chapter,
imaging with a single-pixel camera requires several thousand individual measurements
with the same number of different patterns. At the current pattern rate, this would take
several hours to be able to compressively sense just a single image. The control of the DMD
is therefore not perfect, and the improvement of its pattern rate is primordial to acquire
images with CS camera equipped with low resolution detectors in a short time. Fast
pattern rates can be achieved using Field-Programmable Gate Array (FPGA) circuits,
and using more sophisticated electronics to communicate with the controller board [56].
However, this low speed is sufficient to perform inpainting, because it only requires a few
image acquisitions with a FPA. The slow pattern change speed is one of the main reasons
why this work focuses on inpainting rather than compressive sensing acquisition.

After applying the pattern on the DMD, the camera detector can take a picture. The
control of the camera is also performed in LabVIEW with the IMAQdx interface, allowing
to control all the settings of the camera by code. These settings and their respective range
of value are shown in Tab. 3.5. Brightness allows controlling the overall luminosity of the
image by increasing or decreasing the intensity values of all the pixels. Exposure is the
time interval during which the detector’s pixels accumulate photons from the scene to form
an electrical signal. Contrast allows controlling the differences in brightness between the
dark and bright areas of the image. Gamma is a parameter that controls the nonlinear
relationship between the incident light intensity at the pixel level and the numerical value
of that intensity. Finally, sharpness controls the level of sharpening applied to the image
during its processing by the camera’s internal digital processing software. After adjusting
the correct settings on the detector, an image of the scene is captured. This image is then
saved in a folder and is now available to the user.

Table 3.5: Controllable parameters of the camera and their range of value.

Brightness Exposure (s) Contrast Gamma Sharpness

Min value 0 1.6 · 10−5 0 0.01 0
Max value 255 0.125 1 10 2

The LabVIEW software has the advantage of being able to create user interfaces for
programs. Fig. 3.23 shows the interface of the imager control program. In the top left,
there is the IMAQdx session of the camera, allowing its control. Additionally, it will
be seen later in this work that it is necessary to take two types of photos with different
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camera settings. Therefore, it is beneficial to be able to easily switch from one camera
configuration to another. The ”Perform flat-frame” button at the top right of the interface
allows switching from one configuration to another. In the middle, the camera settings for
the two types of shots can be found. These settings can be modified as desired. Finally,
the addresses of the file where the patterns are located and the file where the images taken
by the instrument are to be placed must be specified in the two boxes at the bottom of
the interface.

Figure 3.23: Picture of the control panel interface of the imager in LabVIEW.
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4 Calibration and post-processing

In the previous chapter, an imager capable of photographing a scene and encoding the
image with a DMD was constructed. Although the optical system was built with the
intention of obtaining the best possible image, the image obtained on the detector contains
defects. These defects are the instrument’s mark on the light passing through it. As
discussed in Sec. 3.4, the main defects of the raw images coming from the imager are,
firstly, that the image projected by the DMD does not cover the entire surface of the
detector, leaving dark edges around the image. Secondly, the DMD image is distorted by
a perspective effect. And thirdly, the image on the detector shows vignetting, resulting
in darker area, independently of the content of the scene.

Apart from these three optical effects, the scene is also degraded in other ways. Due
to the imperfect nature of the optics, and the possibly imperfect adjustments made pre-
viously, some aberrations are inevitable. A point source present in the scene will not be
acquired by the detector as a point after passing through the instrument, but rather as a
spread-out spot. This results in blurring of the image and an overall decrease in sharp-
ness. Additionally, the detector that records the image is not made of perfect pixels, and
introduces noise into the measurements.

The objective of this chapter is to calibrate the image and perform processing to achieve
the best possible quality before the reconstruction by inpainting. First, the calibration
procedure will be explained in detail, along with all the images necessary for calibration
and later for reconstruction. Then, each element of the calibration will be explained in
detail. Finally, the results after calibration, as well as a reconstruction by inpainting of
an image, will be presented.

4.1 Calibration procedure
The goal of calibration is to take the raw images from the instrument as input and produce
usable images ready for reconstruction. The entire process of image reconstruction is not
explored in this work. Reconstructing an image through inpainting requires three different
images:

• A damaged image: This is the image of the scene that has been damaged by the
DMD. It should be calibrated such that the remaining pixels are as close as possible
as the original picture of the scene.

• A pattern mask: This is a binary mask with the same dimensions as the damaged
image, indicating which pixel of this image is part of the scene or which is damaged
and needs to be reconstructed by inpainting. In this mask, a white pixel corresponds
to a pixel of the scene, and a black pixel corresponds to a damaged pixel.

• An undamaged image: This is the image of the scene taken with all the mirrors of the
DMD in the ON-state. This image is not strictly necessary for the reconstruction,
but it is useful as a ground truth to evaluate the quality of the reconstruction.
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To obtain these three images, a calibration procedure was developed and is diagrammed
in Fig. 4.1. Two images are present (in orange) at the input of this procedure. The first
image is the uncalibrated damaged image coming from the imager. The second image is
an image of a completely white scene that has been damaged by the same pattern used
for the scene image. It is based on this illuminated pattern image that the binary pattern
mask defined above is obtained. These two images first undergo a subtraction of the dark

Unprocessed
damaged image

 Illuminated
pattern image

Dark frame subtraction

Master flat frame

Master dark
frames

Pattern mask

Image reconstruction with
inpainting

Point spread
function

Reconstructed image

Perspective correction

Flat frame correction

Processed
damaged

image

Binary
thresholding

Figure 4.1: General flowchart of the calibration and post-processing of an image.

frame. This initial correction removes the noise caused by the detector and the electronics
of the imager. For this, the correction uses Master Dark Frames (MDFs), which will be
explained in more detail in Sec. 4.2. Next, both images are corrected for vignetting and
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spatial illumination variations through flat frame correction, which is explained in Sec. 4.3.
As with the dark frame, this correction uses a Master Flat Frame (MFF). At this point,
the damaged image is ready to be reconstructed by an algorithm. The illuminated pattern
image, on the other hand, must undergo binary thresholding to become the binary pattern
mask usable during reconstruction. The process of pattern mask creation is covered in
Sec. 4.4.

Then, the actual reconstruction of the image takes place. As it will be seen in Sec. 4.5,
this reconstruction is coupled with image deblurring. The blur in the image caused by
the optical instrument itself can be corrected using the Point Spread Function (PSF),
which represents the impulse response of the optical system. By injecting a deblurring
operator using the PSF into the forward model of the reconstruction algorithm, the image
is deblurred and reconstructed simultaneously. However, it is still not rectangular because
the perspective effect has not yet been corrected. This final correction is developed in
Sec. 4.6. After this step, the reconstruction and calibration is over.

This calibration procedure is made to calibrate and reconstruct a damaged image, but
it can also be used to calibrate the undamaged image of the scene. This is done by
injecting a mask of a completely white pattern. Thus, no pixel will be reconstructed by
the algorithm, and only the deblurring of the image will take place. It is important that
the undamaged image undergoes the same calibration process as the damaged image so
that the reconstruction phase is the only difference between these two images. Thanks to
this, the reconstruction quality can be objectively evaluated. This statement needs to be
nuanced because the deblurring correction with the PSF is included in the reconstruction
algorithm, and the results of this deblurring could depend on the input image. In any
case, it is important that both images undergo calibration as identically as possible.

The camera uses two different settings to image the damaged scene and the illumi-
nated pattern (or flat frame), depending on the luminosity of the imaged scene. These
are summarized in Tab. 4.1. These settings were obtained by adjusting each individual
parameter to achieve a good output image without saturation or underexposure. It can
be seen that only the exposure time varies between the two types of images, and it is
shorter for the illuminated pattern. This is because the pattern is photographed with a
completely white scene, which is brighter than a structured scene like the aerial view of
the CSL in Fig. 3.18a. The exposure must therefore be reduced to avoid saturation.

Table 4.1: Camera settings for the two different types of images.

Brightness Exposure (s) Contrast Gamma Sharpness

Scene 160 0.05 0 1.6 2

Illuminated pattern
(flat frame)

160 0.04 0 1.6 2

4.2 Dark frame subtraction
The camera detector is an electronic device that converts photons into electrical signals.
In any electrical system, unwanted disturbances creep into the signal, degrading it. This is
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no exception for the camera detector, and noise from the electronics and photon conversion
thus finds its way into the raw images. A correction that can be made to mitigate the
noise on the image is called the dark frame subtraction.

A dark frame is an image taken by the imager with the instrument’s aperture blocked,
allowing no light from the scene to enter. The resulting image therefore contains only the
noise generated by the detector and electronics. This noise can then be subtracted from
the images taken with the instrument. The dark frames subtraction process only removes
the noise components that remain the same from one shot to another. In particular,
the dark frame contains noise caused by the dark current and fixed-pattern noise. Dark
current noise is the constant response of the detector when it is not illuminated [57], and
is due to small currents that flows through the CMOS pixels even when no photons hit
them [58]. Fixed-pattern noise is a type of systematic noise where particular pixels of
the detector show brighter intensities than the others and forming a fixed-pattern shape.
Since systematic noise does not vary from one exposure to another, it can be subtracted
from the image using a dark frame. The noise generally varies with the detector’s exposure
time and temperature. Therefore, it is important to perform dark frame correction using
a dark frame taken under the same camera settings and conditions as the image to be
processed. Here, two different camera settings are used: one for photographing the scene,
and another for capturing the illuminated pattern image and the flat frames (see next
section). Consequently, two types of dark frames need to be created. Additionally, the
dark frame must be taken under the same external lighting conditions as during the
scene captures. This is done to ensure that any parasitic light potentially entering the
instrument and reaching the detector is captured in the dark frame.

Image noise also has a variable component that is fluctuating from image to image.
This is due to the randomness of noise. To counter this random noise, one solution
involves taking multiple photos of the dark frame and averaging all the images pixel by
pixel. This stacking of images averages the random fluctuations of the noise and tend to
diminish it, while the dark-current and fixed-pattern noise remains the same. This image
stacking effectively increases the SNR of the image. As illustrated in Fig. 4.2, this process
is used for the dark frame. Typically, 50 dark photos are taken for each of the two camera
settings. These 50 frames are then stacked to form a single image, called the Master Dark
Frame (MDF). This MDF is used for subtracting the noise of the scene image. Similarly,
the image (whether damaged or not) of the scene can also be stacked to reduce random
image noise. Since the initial SNR of this image is much higher than that of a dark frame,
stacking only a few photos is sufficient to reduce this noise.

Dark frame

Dark frame

Dark frame

Image
stacking

Master
dark frame

Figure 4.2: Flowchart of the creation of the master dark frame.
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CHAPTER 4. CALIBRATION AND POST-PROCESSING

The MDFs of the two different camera settings are shown in Fig. 4.3 with their contrast
increased by 8 to emphasize the noise. The image noise has a salt-and-pepper appearance
that is not uniform across the image. It is observed that for both MDFs, the noise is more
prevalent in the upper part of the image. This could be due to a higher level of parasitic
external light affecting one side of the detector, or it could be that this part of the detector
has electronics behind it that heats up its surface, giving it a higher temperature than
the rest, which increases the noise. Additionally, it is noticeable that the noise is more
present in the MDF taken with the scene camera settings. This is because the scene’s
exposure time is longer than that used for imaging the flat frame, and the image noise
increases with exposure time.

(a) Scene image settings (b) Flat frame settings

Figure 4.3: Master scene and flat dark frames with the contrast of the image increased by 8
to emphasize the noise.

It is interesting to analyze the noise content in the MDFs and compare the noise present
in the images for the two types of camera settings. To do this, the intensity distribution of
the pixels in the two MDFs is shown in Fig. 4.4. On the x-axis is the pixel intensity, and
on the y-axis is the number of pixels in the image having that intensity. It can be seen
that both curves follow the same trend, but the curve with the scene settings is above
that of the flat frame, indicating the presence of brighter noise. This is indeed clearly
visible in the MDFs in Fig. 4.3. It can also be noted that for both types of dark frames,
the intensity distribution can be divided into three parts. From left to right on the graph,
we find:

• 0 in intensity. It corresponds to completely dark pixels that do not contain any
measurable noise. The noise level in these pixels is below their sensitivity. The
majority of the image contains this type of pixels.

• Between 1 and 60 in intensity. It corresponds to the dark current noise. The number
of pixels decreases exponentially with the intensity. In the master dark frames, it
corresponds to the salt-and-pepper regions.

• Above 60 in intensity. These are pixels with a relatively high intensity, but in very
few numbers, generally 1 or 2 pixels at some intensities. These pixels, called hot
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pixels, are defective pixels that accumulate a lot of signal even when no light is
hitting them [59]. Therefore, they have higher dark currents than the other pixels.
These hot pixels are in very few numbers and are generally the same from one shot
to the other.

Figure 4.4: Pixel intensity distribution of the two master dark frames.

The MDFs created earlier were made with all the DMD mirrors turned on. However,
in practice, the mirrors are either turned towards the detector or away from it depending
on the pattern loaded on the DMD. This can slightly vary the parasitic light hitting the
detector, and therefore change the dark frames. To measure the impact of the mirrors’
state on the dark frame, a MDF was taken with all the DMD mirrors turned on or off,
and their pixel intensity distributions are compared in Fig. 4.5. It can be observed that
the two curves overlap almost perfectly up to an intensity of about 65 with the curve of
the mirrors-OFF being slightly above the mirrors-ON curve. Then, the distribution is
similar for hot pixels with an intensity above 65. In order to quantify this difference, the
average of the pixel-wise intensity difference between the two images can be computed

∆D =

∑w
i=0

∑h
j=0 |DON(i, j)−DOFF(i, j)|

wh
, (4.1)

where DON and DOFF are the pixel intensities of the MDF with all mirrors ON and OFF
respectively. The number of pixels on the width and height of the image is noted w and h.
This average intensity difference is equal to ∆D = 0.903. Therefore, on average, the pixels
of the two dark frames have less than 1 unit of intensity in difference. By consequence, the
state of the mirrors on the DMD are considered to have negligible effects on the MDFs.
These computations were made for the MDF with the scene camera settings, but the
conclusion is identical for the MDF with the illuminated pattern settings.
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Figure 4.5: Pixel intensity distribution of the master dark frame for the scene camera settings,
with the DMD’s mirrors fully ON or OFF.

4.3 Flat frame correction
With an ideal imager, photographing a completely white and perfectly homogeneous scene
should result in an entirely white image uniformly distributed across the entire detector
surface. However, the design of the optics, distortions in the light path, imperfections in
the lenses, and many other factors cause the image formed on the detector to have non-
uniform exposure. Additionally, none of the detector’s pixels are identical, and each one
has slight differences in terms of light sensitivity. By consequence, the images obtained by
the imager have darker regions which need to be corrected. A solution to this non-uniform
exposure is to perform flat frame correction. A flat frame is the image obtained by taking
a picture of a uniform white field. This gives a map summarizing all the non-uniformities
of the instrument which can then be corrected.

Similarly to master dark frames, a Master Flat Frame (MFF) can be created. As
illustrated in Fig. 4.6, this is done by taking several flat frames and proceed for each
of them to a dark frame subtraction using the master dark frame corresponding to the
camera settings used for capturing the flat frames. These flat frames are then stacked to
form the master flat frame. Since the signal from the scene is relatively high compared to
the camera noise, it is not necessary to stack many flat frames to obtain a high-quality
master flat frame.

In practice, the MFF is created by imaging a white sheet of paper illuminated by
a desk lamp and placed at an out-of-focus distance from the camera. This prevents the
texture of the paper from appearing on the flat frame and results in a more uniform scene.
Additionally, the paper is slightly offset relative to the instrument for each flat frame to
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Figure 4.6: Flowchart of the creation of the master flat frame.

further avoid capturing the paper’s texture in the MFF. The MFF of the imager is shown
in Fig. 4.7. It can be noted that the obtained image is far from being uniformly white.
Apart from the upper right corner of the DMD image, all other corners are darkened,
particularly the lower left corner. This can be explained by a vignetting effect, which can
be caused by the design of the optical setup or by a misalignment of the secondary arm
of the imager. In addition to this vignetting, the brightness can naturally be reduced
in the periphery of images due to the natural light falloff [60]. This is due to the cos4

law of illumination, which states that the light falloff is proportional to the fourth power
of the cosine of the angle at which the incident angle hit the detector. Because rays at
the periphery of the image arrive at greater angle than in the center, the intensity of the
incident light as seen by the pixel is lower. In addition to these two effects, dark circular
spots can be seen in some areas of the image, indicating the presence of some dust on the
surface of the optical elements. All these imperfections are present in all images taken
with the instrument, and the flat frame correction aims to effectively correct them.

Figure 4.7: Master flat frame.

The camera settings used for the flat frame are summarized in Tab. 4.1. They were
chosen such that the image brightness is in the upper part of the detector’s dynamic range,
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but without saturating it. The intensity distribution of the MFF, shown in Fig. 4.8,
illustrates the composition of the MFF. The high peak corresponds to the majority of
white pixels in the flat frame. If the latter was perfect, there would be only this narrow
peak in the distribution. However, it extends to the left of its base over an intensity range
of around 50 to 130. This spread corresponds to the darker areas and vignetting present
in the MFF. It must be noted that this intensity distribution was computed only on the
detector pixels comprising the image of the DMD. Therefore, the pixels of the dark margin
around the image as shown in Fig. 4.7 are not accounted for in the intensity distribution.

Figure 4.8: Pixel intensity distribution of the master flat frame. This distribution only accounts
for pixels being part of the image of the DMD.

Once the master flat frame is obtained, the non-uniformities of the image can be
corrected. The corrected image C after the flat frame correction can be expressed as

C =
R−DR

F
m, (4.2)

where R is the raw image to calibrate, F is the master flat frame image, and DR is the
MDF taken with the scene camera settings. The scalar m is the mean intensity of the
pixels composing the MFF. In this equation, the terms R −DR corresponds to the dark
frame correction of the raw scene image.

A comparison between a raw image of the aerial view of the CSL and this image
corrected with the MDF and the MFF is shown in Fig. 4.9. The corrected image now
has a uniform exposure, and the previously dark corners are now at the same level of
brightness as the rest of the image. Apart from this flat frame correction, the intensity of
the pixels composing the dark borders of the image have all been set to 0, because they
are not part of the image of the scene.
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(a) Raw image (b) Corrected image

Figure 4.9: Comparison between the raw image, and the image corrected by the dark and flat
frames.

4.4 Pattern mask
At this stage, the damaged image of the scene is ready to be reconstructed. For this
reconstruction to take place, the algorithm needs information about the positions of the
pixels that belong to the image as well as the positions of the pixels that were destroyed
by the DMD pattern and therefore need to be reconstructed. For this purpose, a pattern
mask must be created. This is a binary image where each black pixel corresponds to a
pixel to be reconstructed by the algorithm, and each white pixel is an undamaged pixel.
Using the binary pattern employed to code the DMD is not an adequate way to obtain
an accurate pattern mask. Indeed, it does not pass through the entire instrument and
therefore does not undergo the optical distortions that the damaged image of the scene
has undergone. As a result, there will not be an exact match between the pixels of the
mask and those of the image. A solution to have a pixel-perfect pattern mask is to take
a picture of a uniformly illuminated white scene with the imager while the pattern is
projected on the DMD. Thus, the resulting image, visible in Fig. 4.10, is similar to a flat
frame, except that the DMD pattern is imprinted on it. To obtain the binary mask, this
uniform illumination of the pattern is used, and a binary thresholding is applied to it.
Image thresholding is a method of binarizing a grayscale image, based on the intensity of
each pixel to define the binary state of the binary image.

4.4.1 Binary thresholding

As explained just above, thresholding the image allows converting the grayscale image of
the pattern into a binary mask of the pattern. The simplest solution for achieving this is
the simple binary thresholding operation. Each pixel in the image is replaced by a black
pixel if its intensity is below a predefined threshold, otherwise it is replaced by a white
pixel. Mathematically, the simple binary threshold operator can be written as:

I ′(x, y) =

{
1, if I(x, y) ≥ T,

0, otherwise,
(4.3)
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Figure 4.10: Raw image of the uniformly illuminated pattern. The applied mask is a random
pattern, and binning of 3× 3 and has a filling ratio of 50%.

where I(x, y) is the grayscale image, T is the threshold, and I ′(x, y) is the binarized
image. Although this thresholding method is simple, it yields good results for images
with constant illumination across the entire field of view, which is the case here since,
after flat frame correction, the image has a generally homogeneous illumination. However,
the main drawback of this method is that the threshold parameter T must be chosen
manually. This can be tedious, especially during development phases and fine-tuning of
the imager, because it is necessary to repeat the operation every time the camera settings
are changed, as this affects the pixel intensities of the image.

An improved version of the simple binary thresholding is the Otsu’s binarization
method [61]. This method avoids the need to manually choose a threshold, as it se-
lects one automatically. To do this, it uses the image intensity distribution to find the
optimal threshold. This method works particularly well when the image consists of two
distinct categories of pixels, i.e., when the intensity distribution has two well-separated
peaks. It is thus well adapted for the uniformly illuminated pattern image, as it has well-
defined dark and light areas. A zoomed-in view of the uniformly illuminated calibrated
pattern image and the zoomed-in view of its binary mask obtained by the Otsu’s method
are shown in Fig. 4.11. It can be observed that the binary mask faithfully represents the
general shape of the pattern, but a few pixels are still missing in certain areas.

To determine if the created mask accurately represents the mask applied to the image,
the pixels of the damaged image marked as black on the pattern mask can be replaced
with the pixels from the undamaged image. If the pattern mask accurately reflects the
damaged image, this reconstruction using the original image should result in an image
without any defects and without black pixels from the DMD mask. The result of this
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(a) (b)

Figure 4.11: Pattern binary thresholding with the Otsu’s method. (a) Zoom at the center of
the processed illuminated pattern image. (b) Binary thresholding of the same portion obtained
with the Otsu’s binarization method.

artificial image reconstruction is shown in Fig. 4.12. It can be seen that this reconstruction
using the undamaged image is poor. The reconstructed image shows small dark patterns
scattered across the image. These small patterns correspond to the edges around the
pattern present in the damaged image that were not perceived as damaged pixels during
the thresholding operation. These edges, visible in the processed image in Fig. 4.11a,
are gray transition pixels between the dark areas of the pattern and the white areas.
The gray edges are caused by several factors. Firstly, the damaged image reflected by
the DMD passes through the condensing lens and lands on the detector. Like any optical
system, achieving infinite sharpness is impossible, because the optics blurs the image. This
blurring causes a spreading of the pattern edges. Additionally, the focus on the detector

Figure 4.12: Zoomed-in view of the damaged image where the damaged pixels are replaced by
the pixels of the undamaged image of the scene. The damaged pixels are determined based on
the pattern mask binarized with the Otsu’s method.

is certainly not perfect either, which also leads to the spreading of the edges. Moreover,
the pixel grid of the DMD is not aligned with that of the detector. This misalignment
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causes the edges of the pattern contours to sometimes fall in the middle of the detector’s
pixels. These pixels will thus capture a portion of the white image and a portion of the
black. The light integration of this edge by the pixel will therefore produce a gray pixel.

The result in Fig. 4.12 therefore indicates that the current pattern mask has too many
white pixels and that the mask considers some pixels of the image as undamaged when
they are actually partially or completely damaged by the DMD. This is confirmed by
the filling ratio of the created pattern mask, which is 55.9%, while the filling ratio of
the binary pattern displayed on the DMD is 50%. If this problem is not addressed, all
these edge pixels of the mask will be included in the reconstruction algorithm and will be
considered as part of the image, thus distorting the measurements. This will ultimately
reduce the quality of the image reconstruction.

4.4.2 Morphological erosion

Binary thresholding alone does not allow for obtaining a satisfactory pattern mask. One
solution to eliminate the gray edges of the pattern is to erode the white areas in the
pattern mask by a sufficient number of pixels. By proceeding in this manner, the gray
edges will no longer be considered among the undamaged pixels of the scene image. The
technique used to perform this operation is called morphological erosion. Morphological
erosion uses a structuring element of a specified size and shape. A structuring element is
a 2D matrix that identifies the pixel to be processed as well as the adjacent pixels used
in this processing. The algorithm loops through all the different pixels of the image. For
each pixel, the center of the structuring element is placed on the current pixel. The new
intensity of this pixel is the minimum intensity of all the pixels contained within this
superimposed structuring element. In other words, the erosion of a pixel is the minimum
intensity of the pixels in its neighborhood defined by the structuring element. In the case
of the pattern mask, it is a binary image composed of 0s and 1s. Therefore, as soon as a
black pixel is included in a structuring element, the pixel associated with this structuring
element will become a black pixel. Thus, this is indeed an erosion at the expense of the
white pixels in the pattern mask.

As it can be seen in Fig. 4.11a, the thickness of the gray edges is generally one pixel.
Therefore, the structuring element must have the smallest possible size, which is 3 pixels
on each side. After several tests of the structuring element’s shape, it turns out that
the rectangular shape is the best for eliminating the gray edges while preserving the
maximum number of undamaged white pixels. Hence, the structuring element is simply
a 3 × 3 square. The result of the eroded pattern mask is shown in Fig. 4.13. It can be
seen that the erosion has thickened the pattern on average by one pixel on all the edges.

To determine if this erosion has effectively removed the gray edges, a reconstruction
using the undamaged image, as in Fig. 4.12, can be performed with the eroded pattern
mask. A zoom of this new reconstructed image is shown in Fig. 4.14. It can be observed
that the image is perfectly recovered, and that the gray edges are no longer present.
This ensures that the pattern mask only selects the pixels undamaged by the DMD, thus
allowing for optimal image reconstruction. Another more precise way to verify that the
pattern mask no longer includes the gray edges is to use the pixel intensity distribution of
the uniformly illuminated pattern image. More specifically, the intensity distribution of
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(a) (b)

Figure 4.13: Comparison between the pattern mask before and after morphological erosion.
(a) Zoomed-in view at the center of the pattern mask before erosion. (b) Same portion of the
pattern mask after the morphological erosion.

the pixels in the pattern image before binarization is calculated only at the positions in the
image that have a white pixel on the binary pattern mask. Thus, the distribution should
contain only the pixels of the uniformly illuminated scene and should therefore present a
single, well-defined sharp peak. Fig. 4.15 shows the intensity distributions of the uniformly
illuminated pattern masked by the pattern mask before and after the erosion. First, it can

Figure 4.14: Zoomed-in view of the damaged image reconstructed by the undamaged image
of the scene. The damaged pixels are determined based on the pattern mask binarized with the
Otsu’s method, followed by a morphological erosion.

be observed that before erosion, the remaining pixels in the pattern image form a peak
distribution, but there is also a plateau between the pixels with intensities between 85
and 150. These are mainly the gray pixels composing the edges of the image. The effect
caused by the thresholding can also clearly be seen, as no pixels with intensities below 85
are present. The second curve, in orange, represents the remaining pixels in the pattern
image after the erosion of the pattern mask. This second distribution now contains only a
sharp peak, representing the undamaged pixels of the uniformly illuminated scene. Thus,

60 Centre Spatial de Liège
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it can be concluded that the erosion operation has effectively eliminated the gray edges
around the pattern. It can also be observed that the peak in the distribution after erosion

Figure 4.15: Pixel intensity distribution of the uniformly illuminated pattern image covered
by the binary pattern mask before and after the morphological erosion.

is lower than before erosion. This means that the erosion also impacts white pixels that are
not supposed to be damaged. This is an undesirable effect of the morphological erosion.
The consequence of this effect is that some undamaged information from the image is lost
and will not be used in the reconstruction process. This is particularly evident in the
filling ratio of the pattern mask after erosion, which is now only 26.9%. This decrease in
the filling ratio is due both to the elimination of the gray borders and to the removal of
undamaged pixels by the erosion. It is clear that the impact of erosion on the filling ratio
is related to the initial shape of the pattern applied to the DMD. More specifically, the
filling ratio is influenced by the number of pixels forming the boundary between the white
and black areas of the binary pattern mask. The larger the contact surface between the
two areas, the more gray borders there will be in the image, and the more morphological
erosion will remove pixels. Random patterns, like the one used in this section, have a
very large contact surface between the white and black regions, so the erosion operation
has a significant effect on the filling ratio. Conversely, for the same filling ratio, a pattern
composed of a simple rectangular shape offers much less contact surface between the two
binary areas of the pattern. Therefore, morphological erosion will have less effect on the
filling ratio of this simple pattern mask.

It must be noted that this simpler type of mask is not advantageous for image re-
construction because it damages a large area in the photo. The more one moves inside
this area, the less undamaged information is available in the neighborhood. As a result,
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the reconstruction in this large area is poor. On the contrary, using masks with ran-
dom patterns allows for a better distribution of damaged pixels across the entire image.
Thus, each damaged area is smaller and always has information about the image nearby,
enabling higher quality reconstruction.

Looking at Fig. 4.15, one might think that a better-positioned binary threshold (around
an intensity of 150) could remove the gray borders without eliminating pixels in the peak
of the distribution. However, experimentation with the threshold shows that this method
alone does not entirely remove the gray borders as erosion does. This can be explained by
the fact that binary thresholding applies to the entire image based solely on each pixel’s
intensity. In contrast, morphological erosion specifically targets contact areas between
light and dark pixels, effectively eliminating the gray borders. Additionally, this method
requires manually setting the threshold, which was not desirable initially.

4.5 Point spread function
When light from the scene enters the instrument, the optics through which it passes
deforms it. Due to aberrations generated by the lenses, diffraction effects, or lack of focus
on the detector, the image becomes blurred in one way or another. The quality of an
optical instrument can be characterized by the Point Spread Function (PSF). A PSF is
the image of a point source placed at infinity and captured by the instrument. The PSF
hence represents the instrument’s impulse response and includes all the deformations
the wavefront undergoes as it passes through the imager. These deformations cause a
spreading of the image of the point source, reducing the overall image quality. When the
optical system is considered invariant, meaning that a shift in the scene in the object
plane simply results in a corresponding shift of the image in the image plane, then the
image of the scene through the instrument is expressed as the convolution of the original
image with the PSF

f = h ∗ fpure, (4.4)

where f is the observed image on the detector, h is the PSF of the instrument, and
fpure is the pure image before its acquisition with the imager. The knowledge of the
instrument’s PSF therefore allows deconvolving the image, which is the inverse operation
of Eq. 4.4, to recover the original image. This deconvolution operation is widely used in
astrophotography to improve the quality and sharpness of images.

In the case of our imager, the presence of the DMD in the optical chain alters the
method for acquiring the PSF. Instead of imaging a point source with all the mirrors of
the DMD activated, it is obtained by activating only a single micromirror at the center
of the DMD and imaging a uniformly illuminated scene. The image obtained on the
detector is therefore the impulse response of a single micromirror. When imaging a scene
with a pattern applied to the DMD, the image on the detector is the combination of the
individual contributions of each micromirror. By knowing the impulse response of a single
micromirror, it is thus possible to return to the expression of Eq. 4.4. An image of the PSF
of the imager is shown in Fig. 4.16. It can be seen that the PSF has a non-symmetrical
shape and spreads over several pixels. The lack of symmetry in the PSF is caused by
the fact that the instrument itself is not symmetrical, as shown in the general schematics
of the imager in Fig. 3.1. This spreading of the response from a single micromirror over
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several pixels on the detector will induce blurring of the image. With this PSF, it is
now possible to deconvolve the image obtained on the detector with this PSF, thereby
unblurring it and improving image quality. In fact, the deconvolution operation can be
performed with compressive sensing and sparsity principles, and can be implemented
during the reconstruction process. Indeed, the convolution of Eq. 4.4 can be expressed as

f = Hfpure, (4.5)

where H is a block circulant matrix representing the convolution of the pure image by the
PSF. This system cannot be directly inverted to retrieve the original image because the
matrix H is generally badly conditioned or non-invertible [6]. Instead, it can be solved by
adding the prior information that fpure is sparse in some basis. With this hypothesis, the
algorithms seen in Sec. 2.3 can be used to deconvolve the image. In the context of image
inpainting, the initial reconstruction problem can be expressed as y = Ax (see Sec. 2.4),
where A expresses the effect of the patterning of the image by the DMD. The addition of
the deconvolution in this equation yields

y = Ax = AHfpure, (4.6)

where matrix AH now becomes the new measurement matrix. The deconvolution of the
image now takes place during the reconstruction process of the image.
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Figure 4.16: Zoomed-in view of the central PSF of the imager. The image is obtained by
activating only the central micromirror of the DMD, and imaging a uniformly illuminated scene.

4.5.1 Improvement of the PSF quality

Since the region of interest of a PSF is generally very small, it only spreads across a few
pixels of the detector, as seen in Fig. 4.16. In its operation, a detector pixel samples
a portion of the scene by integrating all the incident light of this portion on its surface
and outputs a single intensity. Therefore, small objects like the PSF are significantly
affected by the sampling of the detector. The integration by the detector thus results in
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a substantial loss of information about the initial shape of the PSF. Moreover, due to
this sampling, the pixelated image of the PSF obtained on the detector strongly depends
on the relative position of the PSF image on this detector. In order to be less impacted
by the detector’s sampling effect on the PSF, it is beneficial to enhance the PSF image
quality by increasing its resolution. This will firstly allow for better characterization of
the instrument, and secondly, improve the quality of the deconvolution.

To increase the resolution of the PSF, a straightforward solution would be to replace
the current camera with a detector that has a higher resolution. However, this is not
ideal because there are no other higher resolution cameras available in the optical store,
and even if there were, the PSF resolution would rapidly become limited. A solution
that does not require different or more advanced equipment is to implement dithering.
Dithering is a process that introduces small fluctuations in the instrument’s orientation
or the detector’s position between exposures to improve the final image quality. It can
be employed in various ways. In astrophotography, dithering involves slightly shifting the
telescope’s pointing between exposures of the same object [62]. This causes the scene
to move slightly on the detector in each image. During post-processing, the images are
stacked and realigned. This method eliminates fixed-pattern noise and defective pixels,
thereby increasing the SNR of the final image. Dithering can also be achieved by slightly
shifting the detector on the image plane between each acquisition. This way, each im-
age corresponds to the same scene but sampled differently by the camera’s pixels. This
increases the number of different measurements for the same object. Each of these acqui-
sitions are then stacked and realigned in a precise manner to form a single image of the
scene. Thanks to this realignment of images, the sampling rate of the new image is artifi-
cially increased, thereby enhancing its resolution [63]. This dithering method thus allows
for achieving a higher image resolution than the resolution of the instrument’s detector.
It is this second use of dithering that will be employed here to increase the sampling rate
of the PSF.

Here, it is not possible to move the camera relative to the image plane to perform
dithering. However, the DMD can be used to artificially shift the PSF image on the
detector. Instead of illuminating the central micromirror of the DMD, an adjacent mirror
can be illuminated, creating a slightly shifted PSF image on the detector. The detector
will sample the PSF differently and extract additional information from this image. By
repeating this operation for several micromirrors adjacent to the center of the DMD, all
the different images of the shifted PSFs can then be realigned and stacked, and a complete
PSF image with a higher sampling rate than initially can be obtained.

To realign the different PSF images, it is important to quantify the shift of the PSFs
image on the detector based on which micromirror is activated on the DMD. To do this,
two coordinate systems are introduced and represented in Fig. 4.17. The first coordinate
system defines the coordinates of points in the detector plane and is shown in blue in the
figure. It has a domain corresponding to (x, y) ∈ [0, 1280]× [0, 1024], which corresponds
to the number of pixels on the detector. This coordinate system represents the positions
of the camera pixels in the image. The second coordinate system, illustrated in red
in the figure, represents the coordinates of the micromirrors in the plane of the DMD
surface. This coordinate system has its origin located in the lower right corner of the
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DMD image since the collecting lens flips the image of the DMD. It can be observed that
this micromirror axis system is not orthonormal in the detector domain. Indeed, due to
the perspective effect, the image of the DMD and thus the position of the micromirrors on
it are distorted. The domain of this coordinate system corresponds to (x, y) ∈ [0, 1024]×
[0, 768]. By knowing the coordinates of the four corners of the DMD image in the detector
domain (see Sec. 4.6.1), it is now possible to establish the relation between a coordinate
on the DMD and its coordinates on the detector. In other words, this allows us to obtain
the position (x, y) on the image of a micromirror for which we only know the coordinates
(x′, y′) on the DMD.

Figure 4.17: Definition of the different coordinate systems. The rectangular frame represents
the border of the image taken by the camera, and the trapezoidal frame represents the image of
the DMD. The coordinate system of the detector pixels is shown in blue while the coordinate
system of the DMD’s micromirrors is shown in red.

First, let’s see how to realize dithering using only two PSF acquisitions. In the detector
domain, the central micromirror mc is located at the coordinate (xc, yc). Let introduce a
micromirror mi neighboring this central micromirror. In the detector domain, its coordi-
nate is

(xi, yi) = (xc + dx, yc + dy), (4.7)

where dx and dy are the relative shifts in position in the detector domain between the
two mirrors. They can be decomposed into two components{

dx = dX + dpx

dy = dY + dpy
(4.8)

where dX and dY are the integer parts of the displacement, and dpx and dpy are the
decimal parts of the displacement. As previously mentioned, a detector pixel takes a
measurement by integrating the intensity of the incident light on its surface. Knowing
that, if dpx = dpy = 0, the two images are then identical, except for an integer pixel
translation. This is not interesting because, in both images, the pixels sample the PSF
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in the same way, just with different pixels. This case, where the image undergoes only
an integer pixel shift, is illustrated in Fig. 4.18a. In this figure, the PSF is represented
by a yellow disc. The pixel grid of the first image is shown in green, while the pixel
grid of the shifted image is shown in red. It can be seen that the two images contain
the same information about the scene. However, if the decimal shifts dpx and dpy are
non-zero, then the two images will be different. As shown in Fig. 4.18b, different pixels
sample the PSF differently. It is possible to recombine the two images taking this shift
into account. Therefore, the image of a PSF generated by the mirror mi that is shifted
by (dx, dy) relative to mc, is equivalent to obtaining the image of this central PSF but
sampled with a pixel grid shifted by (dpx, dpy). In other words, photographing the two
PSFs individually generated by the mirrors mc and mi is equivalent to photographing the
same object from a different viewpoint, with each pixel integrating the object in a slightly
different way. Since the micromirror grid of the DMD is not aligned with the pixel grid
of the detector, and the mirrors do not have the same apparent size as the pixels in the
image, it is unlikely to obtain dpx = dpy = 0.

(a) (b)

Figure 4.18: Illustration of the effect of the shift between two dithered images. The object
to image in the scene is depicted as yellow disc. The pixels grid of the first image is shown in
green while the pixels grid of the dithered image is presented in red. (a) The shift between the
two images is an integer, the two pixels grids superimposes themselves. (b) the shift between
the two images is not an integer, the two grids do not overlap.

In order to recombine these two images into one single image, let Si,j,dx,dy be the
intensity measured by the pixel (i, j) on the PSF image obtained by the activating the
micromirror mi, which is shifted by (dx, dy) relative to the central micromirror mc in the
detector domain. Fig. 4.19 illustrates the stacking and alignment of the two images. In
the black grid are shown the intensities of each pixel of the PSF image corresponding to
the mirrormc. The intensities of this black grid is therefore Si,j,0,0. In purple are displayed
the intensities of the pixels from the PSF image generated by mi. These intensities form
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a grid that is shifted by (dpx, dpy) relative to the first grid. By placing these two grids
in this manner, we now obtain a PSF image with twice as much information as initially.
The dithered image has filled in the information between the pixels of the original PSF
image generated by mc. By adding more PSF images from other micromirrors, the sample
rate of the image can be significantly increased. Unlike dithering achieved by moving the
detector on the image plane, where the offsets between two images can be finely adjusted,
it is not possible to have complete control over the offsets dpx and dpy here. These offsets
are indeed imposed by the array of micromirrors on the DMD, which determines the
displacement between each PSF image on the detector.

Figure 4.19: Stacking of the PSF images obtained by mc and mi. The two measurements are
shifted from each other by dpx and dpy in the respective directions.

It is important to note that for the dithering to work, it is assumed that the PSFs
created by all the individual micromirrors are identical. Considering this hypothesis to
be true, all these PSFs can be superimposed. To ensure they are as similar as possible
and not altered by a field effect due to the instrument, the micromirrors closest to the
central mirror mc are used in the dithering operation. Specifically, we define a square
of micromirrors centered on mc with a half-side length of Ndit. The parameter Ndit is
an integer value that controls the number of images to include in the dithering. Thus,
this square composed of (2Ndit + 1) × (2Ndit + 1) mirrors includes all the micromirrors
that will be used to generate the different PSFs in the dithering operation. Increasing
Ndit allows for more data, but it also quadratically increases the number of images to
be acquired. Therefore, it is important to find the right value for Ndit, to obtain the
best superposition of the data to cover the detector plane while minimizing the number
of pictures to take. After several manipulations, it turns out that Ndit = 3 is a good
compromise between the quantity of images to make and the sample rate of the final
image. For Ndit below 3, there are not enough measurements, which leaves large area in
the detector plane empty. On the other hand, for Ndit larger than 3, the data from the
different images begin to overlap without bringing any essential new information about
the PSF. Consequently, with Ndit = 3, 49 PSF images are needed to form the dithered
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image. Each image is taken with the flat frame settings of the camera and is composed of
5 identical images stacked to increase its SNR. These images are then calibrated with a
dark frame subtraction and a flat frame correction. A zoomed-in view of the raw result of
the PSF obtained by dithering with Ndit = 3 is presented in Fig. 4.20. It can be seen that

Figure 4.20: Raw data of the PSF obtained with dithering and Ndit = 3.

this is not an image composed of square pixels. Instead, it is an arrangement of points,
each with its own intensity, as shown in Fig. 4.19. Each point corresponds to the intensity
of a pixel from one of the 49 PSFs images. The points are relatively evenly spaced, but
there are some areas not covered by data. Additionally, the points do not form a perfectly
straight grid. These two observations are directly caused by the shape of the micromirror
grid as seen from the camera and the fact that the PSFs can only be shifted to discrete,
predetermined positions by the DMD. Aside from this, it can be observed that all the
images have been successfully combined, and the PSF is visible as a well-defined spot
with high intensity. This PSF is approximately 2 pixels in diameter, which is consistent
with the PSF image obtained without dithering in Fig. 4.16.

As it stands, the measurements in Fig. 4.20 are not usable. To obtain a manipulable
image, the values of the points must be mapped onto a straight and rectilinear grid. To
achieve this, all the data from this figure are linearly interpolated onto a regular grid. The
size of this grid, i.e., the sampling rate, should not be too small to avoid over-interpolation,
which could create artifacts in the image. Likewise, the grid size should not be too large
to ensure that the dithering operation’s efforts are not wasted by excessively reducing
the sampling rate. The grid size is determined based on the average spacing between the
points. This yields to a mesh size of 0.14. This mesh size indicates that the dithering
operation has increased the sampling rate by approximately 7. The interpolated image
of the PSF on a regular grid is shown in Fig. 4.21. One can see in this image that the
PSF consists of a bright central part and a tail spreading to the left of it. It can be noted
that the shape of the obtained structure is generally the same as the low-resolution PSF
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Figure 4.21: Zoomed-in view of the PSF obtained by linearly interpolating the data of the
PSF retrieved by dithering.

obtained in Fig. 4.16. Both images have a bright central part roughly the size of two
detector pixels. They also both have a tail extending to the left and downward from the
center of the spot. Furthermore, it can be inferred that the central part of the PSF does
not have a circular shape but rather a square shape. This shape corresponds to that of
the micromirror tilted towards the camera, forming the instrument’s PSF. This increase
in the sampling rate of the image naturally comes at a cost. To capture a single photo of
the PSF, it is necessary to obtain (2Ndit + 1) × (2Ndit + 1) PSF images, which amounts
to 49 images for Ndit = 3. Each of these 49 images are also taken multiple times to be
stacked in order to improve the SNR of the image. Ultimately, several hundred images
are needed to achieve the final result. The number of images required can rapidly become
prohibitive if a higher sampling rate is desired by increasing Ndit, as the total number of
images required grows quadratically with Ndit.

The PSF obtained through dithering can be used to improve the deconvolution process
of the image. To do this, the resolution of the image to be deconvolved must also be
increased so that the PSF has the appropriate size relative to this scene image. This can
be achieved by sampling each pixel of the image in such a way that these new pixels are
the same size as the pixels of the PSF shown in Fig. 4.21. In this case, the resolution
increase should approximately be by a factor 7, corresponding to the increase in the PSF
sampling rate by the dithering operation. A single pixel of the image will thus be converted
into a 7x7 pixel square with the same intensity as the original pixel. Consequently, the
dimensions of the image to be reconstructed are also enlarged, which is detrimental for
the reconstruction step as it increases the problem size and computation time. To limit
this effect while retaining the benefits of dithering, the mesh size of the PSF during the
linear interpolation operation on the structured grid should be increased. This way, the
image size will be less enlarged, at the expense of the PSF resolution.
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To test this dithering method with the instrument, it is interesting to verify if the
result obtained in Fig. 4.21 is repeatable across multiple observations. Indeed, due to the
constant presence of noise in measurements, the result may be heavily influenced by noise,
rendering it unreliable and unusable. Therefore, obtaining the same result twice indicates
that the process is robust to noise and that the results can be trusted. Thus, the same
series of PSF images was captured one day after the one presented in Fig. 4.21, under
the same conditions. The comparison of the two images obtained after dithering is shown
in Fig. 4.22. The image on the left corresponds to the previously obtained PSF, and the

Figure 4.22: Repeatability test of the image of the PSF obtained with dithering. The PSF on
the left is the image of Fig. 4.21. The PSF on the right is the image obtained one day after,
with the same dithering parameters as in Fig. 4.21.

image on the right corresponds to the new PSF captured one day after the first. We notice
that the two images are almost identical and exhibit the same characteristics. The center
of the PSF has the same shape in both, and the overall shape of the tail is the same. It is
in this tail area that slight differences appear, likely caused by noise, as the signal level is
much lower there. These results demonstrate that the dithering method produces reliable
results that are not significantly affected by noise. We can see in both images that there
is a dimmer area in the central part of the PSF. One possible explanation for this spot is
the characteristics of the DMD micromirrors’ surface. As shown in Fig. 2.9, each mirror
is attached to its mechanical support by a square stem. At the point where this stem
connects to the mirror, it leaves a small non-reflective square area. Thus, the center of
the mirror does not reflect incident light and remains dark. However, it is not possible
to definitively assert that this non-reflective part is the cause of the observed decrease in
brightness near the center of the PSF.

4.5.2 Variability of the PSF

To perform the deconvolution operation, it was assumed that the PSF was identical
across the entire field of view of the instrument, and thus only one PSF was needed for
the deconvolution. However, in reality, the PSF varies depending on the field of view
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and is never identical to the one at the center of the image. There will generally be
more aberrations on the edges of the image, resulting in a more spread-out and less
concentrated PSF. If these edges of the image are deconvolved with a smaller central
PSF, this region will remain blurry or will be distorted by the deblurring operation.
Therefore, it is important to study the behavior of the instrument’s PSF as a function
of its position on the image. To do this, multiple micromirrors can be activated across
the entire DMD screen. These micromirrors must be sufficiently spaced apart to ensure
that one micromirror does not influence the PSFs of the others. Thus, a 5 × 5 grid of
micromirrors is displayed on the DMD, spaced out over its entire surface. The image
obtained by the imager is shown in Fig. 4.23, with the different PSFs highlighted by a
yellow circle. A zoomed-in view of each of the 25 PSFs present in this image is shown in

Figure 4.23: Image of the grid of PSFs taken by the instrument. The positions of the different
PSFs are highlighted with yellow circles.

Fig. 4.24. Regardless of their location, the PSFs generally have the same size, with their
bright central part being approximately two to three pixels wide everywhere. Also, They
all have a lower intensity tail extending from this central part. This indicates that the
PSFs exhibit a uniform behavior throughout the entire image, indicating the absence of
substantial aberrations in any specific areas. However, these tails do not all point in the
same direction. For the PSFs located in the upper left corner of the image, the spreading
of the tail is directed towards the upper left corner of the image. Conversely, for the PSFs
in the lower left corner of the image, the tail is directed towards the lower left corner. In
fact, all the tails of the PSFs seem to align along lines that converge at the same point.
This point appears to be located towards the center of the right edge of the image. This
phenomenon, can be caused by the asymmetry of the optical instrument or imperfections
in the lenses or alignment. However, these PSF images should not be over-interpreted
since they are of low resolution and thus suffer from the sampling effect of the detector.
Nevertheless, the main characteristics of the PSFs, such as size and general shape, are
sufficiently visible to not consider using dithering to increase the sampling rate in order
to study their behavior.

Knowing the shape of the PSF at different locations in the image allows for increased
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Figure 4.24: Zoomed-in view of the different PSFs shown in Fig. 4.23.
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accuracy in the deconvolution process through block deconvolution. This method divides
the image into regions, each associated with different PSFs. Each of these regions are
deconvolved using their respective PSFs. The deconvolved regions are then recombined
to reconstruct the image. The areas between each region can be obtained through inter-
polation to avoid sharp transitions between regions.

Although they are similar, the PSFs exhibit variations in shape depending on their
position within the detector’s field of view. Therefore, the assumption of PSF invariance
made in the previous section for performing dithering is not valid across the entire de-
tector. Consequently, during the dithering operation, it is crucial to only recombine PSF
images from the same location, very locally on the detector. Failing to do so would result
in recombining images with different PSFs, which would distort the outcome.

In conclusion, several deconvolution techniques have been highlighted. The first is
to perform dithering on the PSF at the center of the image and deconvolve the entire
image with this PSF. The second method is block deconvolution with a grid of PSFs
without dithering, as explained earlier in this section. Each of these methods has its
own characteristics and will certainly yield different results. Determining which of these
methods is best suited for this problem requires the practical implementation of these
various deconvolution methods in the reconstruction algorithm, which is beyond the scope
of this work. A hybrid method can also be envisioned, combining the two approaches.
This would involve block deconvolution where each PSF in the grid is dithered to increase
its resolution.

4.6 Perspective correction
At this stage, the image taken with the instrument has been calibrated and reconstructed
using an inpainting algorithm. The resulting image is no longer damaged, but it is still
distorted by the perspective, and the scene occupies only a portion of the total image. This
final step presented in this section, which serves as post-processing for the reconstructed
image, should produce a straightened and correctly oriented image of the scene. This
step is performed last in the calibration chain because it involves image deformation.
Therefore, it is placed after the reconstruction step to avoid influencing it by degrading
the scene image and the mask before reconstruction. The algorithm used to redress the
image is called perspective warping. It takes as input the coordinates of the four corners
of the image to be straightened. The output is a rectangular, straightened image with
the desired dimensions. The first step is to locate the corners of the DMD in the image,
which is done in the initial part of this section. Then, the algorithm will be explained,
and the results of the perspective correction will be shown.

4.6.1 Corner detection algorithm

The image to be straightened is a quadrilateral with sides that are not parallel to each
other. As mentioned earlier, the perspective correction algorithm requires as an input the
coordinates of the four corners of this quadrilateral. The most straightforward solution
would be to manually select the coordinates of these points based on the images obtained
by the imager. However, this assumes that the DMD will never move in the detector’s
image. A slight change in a geometric parameter in the imager’s secondary arm, such as
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CHAPTER 4. CALIBRATION AND POST-PROCESSING

the focus of the condensing lens, would result in a different position of the DMD in the
final image. This would necessitate redetermining the corner positions with each change,
which would rapidly become tedious. A more suitable solution would be to develop an
algorithm for detecting automatically the DMD corners. Thus, the corners of the image
will be detected with each new image processed. Assuming the algorithm is effective, this
ensures that the corners correspond to the image regardless of any changes made to the
optical setup. It is this automatized solution that was chosen, and the principle of this
algorithm is presented in the following of this section.

As seen in the MFF shown in Fig. 4.7, the sides of the scene image are straight.
The corners of the image are located at the ends of these sides, so finding the Cartesian
equations of the DMD sides is necessary to then find the intersections of these lines to
obtain the coordinates of the four corners. An illustration of the corner detection method
is shown in Fig. 4.25. The first step is to find these line equations. The starting point
of this step is the MFF, as it is the image where the corners are the most clearly visible.
Based on this MFF, a screen mask is created by performing a simple binary thresholding,
which will make appear the DMD as fully white and the outer margins as black. Next,
the transition pixels between the DMD and the margins, which constitute the sides, can
be found by applying a gradient operator to the screen mask. Indeed, since the sides are
characterized by a transition between a pixel of maximum intensity (white) and a pixel of
minimum intensity (black), the gradient is high at these locations. Denoting I(x, y) the
pixel intensity of the screen mask for the pixel (x, y), the gradient operator of this image
can be approximated by a finite central difference method

∇⃗I(x, y) =


dI(x, y)

dx

dI(x, y)

dy

 ≈

(
I(x+ 1, y)− 2I(x, y) + I(x− 1, y)

I(x, y + 1)− 2I(x, y) + I(x, y − 1)

)
. (4.9)

By taking the norm of this gradient, and performing again a binary thresholding on the
results, an image is obtained where only the edges of the DMD are marked as white
pixels, forming an edge mask. Then, the image is divided into 9 identical regions as
shown in Fig. 4.25, in order to isolate each side and obtain their Cartesian equations.
Since the DMD occupies most of the space in the image, its corners must each be located
in one of the image’s corners. From this, we can identify four regions, each containing a
segment of one side. For each segment, a linear interpolation is performed on the white
pixels of the edge mask, which allows obtaining the coefficients ai and bi of the linear
Cartesian equation fi(x) = aix + bi. Once the equations of the four sides are calculated,
it is now possible to find the coordinates of the four corners. To do this, we calculate
the intersection of the two lines corresponding to the two sides forming that corner. The
coordinate of one corner is

(x, y) =

(
bj − bi
ai − aj

, ai
bj − bi
ai − aj

+ bi

)
, (4.10)

where ai, bi, aj and bj are the respective coefficient of fi(x) = aix+bi and fj(x) = ajx+bj
the two intersecting edges. The coordinates of the four corners are now known. The
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algorithm is able to provide results that are only a few pixels away from the visually
identified corner in the image. The accuracy of the method is therefore more than sufficient
for the perspective correction application.

Figure 4.25: Illustration of the algorithm for the detection of the corners of the DMD. The
image is divided into 9 equal regions. When the equations of the edges of the DMD are found,
the coordinates of the corners are the intersections of these edges.

4.6.2 Perspective warping

The perspective warping algorithm, based on four points in an image, allows for the
perspective transformation of the image subtended by these four points. It returns the
corrected, rectangular image in the desired dimensions. The principle of this algorithm
is illustrated in Fig. 4.26. In general, the perspective transformation can be expressed as
[64] tix′tiy

′

ti

 =

α1 α2 β1
α3 α4 β2
γ1 γ2 1

xy
1

 = M

xy
1

 , (4.11)

where (x, y) is a point from the input image, (x′, y′) is the transformed coordinate of
the input point and M is called the transformation matrix. Within this transformation
matrix, the terms in αi define transformations related to rotation and scaling, and other
deformations. The terms in βi define the translation vector, that does not deform the
image but shift it in the image plane. Finally, the terms in γi define a projection vector.
In the transformed domain, the term ti is a scaling factor. It can be seen that ti is directly
related to the value of γ1 and γ2. In total, the transformation matrix M has 8 unknowns.
In order to find these unknowns, the algorithm uses the coordinates of the four corners,
which are injected into Eq. 4.11. Given that the coordinates in the transformed domain
of the four corners are known, since we are defining the final dimensions of the image,
this gives a linear system of 8 equations with 8 unknowns that is easy to solve.
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Input image
Transformed image

Figure 4.26: Principle of the perspective warping algorithm. On the left, the input image
which contains the DMD image inside it. Based on the coordinates of the four corners of this
image, the image is transformed into a rectangular image, as seen on the right of the figure.
Adapted from [64].

Regarding the dimensions of the final image, they should be as close as possible to
the dimensions of the trapezoidal image to minimize image scaling and avoid resolution
loss. If the final dimensions are too small compared to the original image, compression
will occur, leading to a loss of information. Conversely, if the dimensions are too large,
the image will be enlarged. This means that the image will contain more pixels than the
original. The pixels will therefore be artificially enlarged, resulting in a loss of resolution,
even though no information is lost. Therefore, to choose these dimensions appropriately,
we start with the dimensions of the initial distorted image. The largest width, either AB
or CD in Fig. 4.26, is chosen as the width of the transformed image. Then, the height of
the image is determined using the aspect ratio of the DMD, which is 4:3. Consequently,
the transformed image has the right aspect ratio and has undergone minimal information
loss with the scaling. The result of the perspective correction on an undamaged image of
the scene taken by the imager is shown in Fig. 4.27. It can be observed that the image
has been successfully rectified. It no longer exhibits perspective distortion, and the black
margins around the scene are no longer present. Additionally, the detection of the corners
and the framing of the DMD during the transformation were precise, as the scene was
not cropped or cut by the perspective correction. For this image, the new dimensions are
1180× 885.
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(a) (b)

Figure 4.27: Comparison of the scene image (a) before, and (b) after perspective correction.
The observed scene is the undamaged aerial view of the CSL, imaged with all the mirrors of the
DMD activated. The image after this correction is straightened and rectangular.

4.7 Results
This last section summarizes the results obtained in this chapter on the imager calibration
phase. The image shown in Fig. 4.28 represents the calibrated damaged image of the
scene, ready for reconstruction. This image has undergone dark frame subtraction and
flat frame correction. The scene represents the aerial view of the CSL and the image has
been damaged with the random pattern shown in Fig. 3.19a and having a filling ratio
of 50% on the DMD. It should be noted that this calibrated image has been masked by
the pattern mask, which now has a filling ratio of only 26.9% due to the morphological
erosion operation. This pattern mask is shown in full in Fig. 4.29. As can be seen, the
pixels corresponding to the black margins in the damaged image are indicated as white
pixels in the pattern mask. Indeed, since these margins are not part of the scene image,
the algorithm should not attempt to reconstruct them. These two images in Fig. 4.28
and Fig. 4.29 thus correspond to the two images presented in yellow in the calibration
flowchart in Fig. 4.1.
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Figure 4.28: Processed damaged image of the scene.

Figure 4.29: Processed pattern mask of the random pattern.
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The present work focused only on the optical part of an imager performing inpainting,
as well as the calibration of the images obtained to prepare them for reconstruction. As
such, no discussion of image reconstruction is included. Nevertheless, it is worth showing
the result of the reconstruction of the image of Fig. 4.28 to illustrate the potential of
compressive sensing and its applications. This reconstruction is shown in Fig. 4.30 and
was carried out by C. Thomas using an IHT algorithm. It can be seen that all the areas
damaged by the pattern have been filled in and reconstructed by the algorithm. Most of
the objects and details present in the scene are recognizable, despite a number of artifacts
in the image. It is important to note that most of the difficulty in compressive sensing
lies in the quality of the algorithms and their optimization, which is not the subject
of this master’s thesis. The reconstruction of the image in Fig. 4.30 has therefore not
been pushed very far and has been carried out with a basic algorithm without much
optimization. Furthermore, the deconvolution of the image by the PSF is not included in
the reconstruction. This image reconstruction is presented in this manuscript as a glimpse
of the CS’s capabilities, but is not the subject of this work.

Figure 4.30: Example of the reconstruction of the damaged image shown in Fig. 4.28 performed
by C. Thomas.

To follow the calibration flowchart of Fig. 4.1, the perspective correction can be applied
to the reconstructed image. The image after this correction is shown in Fig. 4.31, placed
next the undamaged image of the same scene. It can be seen that indeed the reconstruction
allowed to retrieve the full image with most of the details of the scene being present. The
fairly quality of the reconstruction can be partially due to the choice of the damaging
pattern. Indeed, the pattern being random, the damaged pixels are spread out over
the entire scene, which always leaves undamaged pixels close to these damaged pixels.
Therefore, there are no large regions where no information concerning the scene is present.
This recovered image concludes the calibration and reconstruction flowchart of the imager.
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(a)

(b)

Figure 4.31: Comparison between the reconstructed image of the scene with perspective cor-
rection (top) and the undamaged image taken by the imager, also with its corrected perspective
(bottom).
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5 Conclusion

The objective of this master’s thesis was to study the optical part of a compressive sensing
imager and to build this optical system in the laboratory. This imager must be capable
of masking images using a spatial light modulator so that these damaged images can be
reconstructed afterwards through inpainting using compressive sensing algorithms. This
work follows the work done by C. Thomas at CSL, who implemented a compressive sensing
chain and investigated the applications of this technology for Earth observation. The first
chapter of this work focused on the state of the art in compressive sensing, in terms of
reconstruction algorithms, and the different architectures of CS imagers.

Afterwards, the architecture of the imager was decided. It uses a DMD to apply
the desired masks to the image and has an FPA detector to record the image. The
characteristics of the scene were studied, as well as all the components constituting the
instrument. The instrument is divided into a primary and a secondary arm. The primary
arm includes a collecting lens that focuses the light onto the DMD. The light is then
reflected to the secondary arm, which consists of the condensing lens and the detector.
The detector is tilted relative to the condensing lens to eliminate image blur caused by
the Scheimpflug principle. The imager is controlled by a computer thanks to an interface
programmed with the LabVIEW software.

The final chapter focuses on the calibration and post-processing of the images obtained
by the instrument. Although the instrument was designed to avoid image defects, some
remain and must be corrected before reconstruction. This correction includes a dark frame
subtraction and a flat frame correction. The PSF of the instrument is also measured by
activating only one micromirror of the DMD. This PSF is used for deconvolving the
image during reconstruction. Additionally, a dithering method for improving the quality
of this PSF has been developed and implemented. A cropping and perspective correction
method has also been developed to obtain a rectified and rectangular image of the scene
after reconstruction. Furthermore, a pattern mask was created based on the uniform
illumination of the pattern on the DMD. This pattern mask indicates to the reconstruction
algorithm which pixels of the image are to be reconstructed or not. A morphological
erosion was applied to this mask to completely eliminate artifacts present around the
pattern that could degrade the image reconstruction.

This work has explored the practical implementation of a compressive sensing imager in
a laboratory. Concrete solutions were provided to achieve the best possible image quality
with the available setup and resources in the laboratory. Additionally, the calibration
phase allowed the improvement of the image quality and helped to better understand
the effects of image masking by the DMD. Subsequently, a method for measuring the
instrument’s PSF was tested.

In light of this work, several improvements and future perspectives naturally emerge.
First, the control of the DMD could be enhanced with suitable electronics to achieve
higher pattern change speeds. This would enable compressed image acquisition. Sec-
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ondly, another perspective would be to implement the acquisition of images at multiple
spectral bands, for example, using a color camera. It would also be interesting to ex-
plore the architecture of multispectral imagers such as CASSI. Additionally, investigating
the behavior of the DMD under the harsh temperature and pressure conditions of space
would be valuable to assess the feasibility of its implementation for Earth observation.
Alternatively, exploring other types of SLMs besides the DMD would be interesting. This
non-exhaustive list showcases the vast range of possibilities and research directions in the
implementation of compressive sensing for image acquisition.

82 Centre Spatial de Liège
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