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ABSTRACT

This thesis examines the whirl-flutter phenomenon in urban air mobility vehicles, crucial for
the safety and efficiency of next-generation aircraft. The rise of Electric Vertical Take-Off and
Landing (E-VTOL) vehicles, driven by the demand for fast urban transport, emphasizes the need
to understand and mitigate aeroelastic instabilities like whirl-flutter, particularly in designs with
distributed electric propulsion systems. Historically, whirl-flutter has caused catastrophic failures,
highlighting the need for comprehensive analysis in modern aircraft designs.

The objective of this work is to develop a comprehensive computational model using the Finite
Element Method to fully capture the dynamics between rotating, expressed in a floating frame of
reference, and stationary parts of a structure, enabling a more accurate study of the whirl-flutter
phenomenon. This analysis is conducted using the Floquet theory to study the stability of the
system, particularly in a fixed-rotating frame of reference. The model includes an innovative
time dependent mechanical coupling strategy for the mass, gyroscopic, and centrifugal stiffness
structural matrices therefore fully preserving the dynamics of the structure, a first in the literature.

The research methodology involves the validation of various finite element matrices and com-
ponents derived from Euler-Bernoulli 3D beam elements, followed by the implementation of time-
dependent coupling between rotating and stationary components. This coupling is validated
through case studies, including a ground resonance model and a rotating shaft with blades. Fi-
nally, the developed model is applied to a wing-propeller structure, illustrating its capability to
work on complex geometry structures.

The results show that the partial coupling, specifically the coupling between translational de-
grees of freedom of rotating structures and those of stationary structure at the hub, is successfully
validated. However, it is demonstrated that the Newmark integration scheme does not provide
consistent results, highlighting the need for alternative approaches such as Runge-Kutta scheme
for accurate time integration. Although the full coupling is not entirely validated, the initial
results suggest that the implementation is correctly performed and shows promise for future val-
idation efforts. This partial success demonstrates the potential of the developed model as a tool
for accurately capturing critical dynamics in whirl-flutter analysis, contributing to the design and
certification of future urban air mobility vehicles.

Keywords: Floquet Theory, whirl-flutter, validation model, rotating structure, rotating/stationary
time coupling, finite element modeling, floating frame of reference, Newmark, Runge-Kutta.





RÉSUMÉ

Cette thèse explore le phénomène de flottement gyroscopique dans les véhicules de mobilité aéri-
enne urbaine, essentiel pour la sécurité des aéronefs de nouvelle génération. Avec l’essor des
véhicules à décollage et atterrissage verticaux electriques, il devient crucial de comprendre et de
contrôler les instabilités aéroélastiques telles que le flottement gyroscopique, particulièrement dans
les conceptions utilisant des systèmes de propulsion électrique distribuée.

L’objectif de ce travail est de développer un modèle computationnel complet utilisant la méth-
ode des éléments finis pour capturer entièrement les dynamiques entre les parties rotatives, ex-
primées dans un repère flottant, et les parties stationnaires d’une structure, permettant ainsi une
étude plus précise du phénomène de flottement gyroscopique. Cette analyse est réalisée en util-
isant la théorie de Floquet pour étudier la stabilité du système, en particulier dans un repère
fixe-rotatif. Le modèle inclut une stratégie novatrice de couplage mécanique dépendant du temps
pour les matrices structurelles de masse, gyroscopique et de raideur centrifuge, préservant ainsi
pleinement les dynamiques de la structure, une première dans la littérature.

La méthodologie de recherche implique la validation de diverses matrices et composants
d’éléments finis dérivés des éléments de poutre 3D d’Euler-Bernoulli, suivie par la mise en œuvre
du couplage dépendant du temps entre les composants rotatifs et stationnaires. Ce couplage est
validé à travers des études de cas, incluant un modèle de résonance de sol et un arbre rotatif avec
des pales. Enfin, le modèle développé est appliqué à une structure aile-moteur à hélices, illustrant
sa capacité à travailler sur des structures de géométrie complexe.

Les résultats montrent que le couplage partiel, en particulier le couplage entre les degrés
de liberté de translation des structures rotatives et ceux des structures stationnaires au hub, est
validé avec succès. Cependant, il est démontré que le schéma d’intégration de Newmark ne fournit
pas de résultats cohérents, soulignant la nécessité d’approches alternatives telles que le schéma
d’intégration de Runge-Kutta pour une intégration temporelle précise. Bien que le couplage
complet ne soit pas entièrement validé, les résultats initiaux suggèrent que la mise en œuvre
est correctement réalisée et montre un potentiel pour les futurs efforts de validation. Ce succès
partiel démontre le potentiel du modèle développé en tant qu’outil pour capturer avec précision
les dynamiques critiques dans l’analyse du flottement gyroscopique, contribuant à la conception
et à la certification des futurs véhicules de mobilité aérienne urbaine.

Mots-clés : Théorie de Floquet, flottement gyroscopique, modèle de validation, structure
rotative, couplage temporel rotatif/stationaire, modélisation par éléments finis, repère flottant,
Newmark, Runge-Kutta.
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INTRODUCTION

Context and motivation

Urban air mobility vehicles are emerging types of air transport systems used in cities and
their surroundings in order to transport people or cargo. Urban air mobility vehicles exper-
iment new types of aircraft design in the aim of transporting safely people in metropolitan
areas [1]. This new type of means of transportation is often presented as capable of quickly
responding to medical emergencies or to being able to reduce urban traffic congestion. How-
ever, a study made by McKinsey & Company [2] concludes that urban air mobility vehicles
cannot be considered, nowadays, as a valid option to reduce traffic congestion in urban
areas due to the expected high cost of operations of such solutions at the beginning of its
operating life and the difficulties of providing door-to-door transport in most urban areas.
These difficulties can be although overcome in certain megalopolises such as New York and
Paris. Recently, the French government won its battle with the Paris City Council over
the use of urban taxis during the 2024 Olympic Games [3]. The courts have authorized a
maximum of 900 hours of urban taxi flights in the French capital until the end of the year
2024. The purpose of these 900 flight hours will be to demonstrate the ability to use urban
taxis as a means of transport in a major city. Three different routes have been approved.
These will be used to link the French capital with various airports on the outskirts of the
city.

This new type of aircraft features innovative structures and complex levels of flight
automation. These new features make civil certification of these aircraft even more complex
[4]. In fact, most companies that offer such types of aircraft aim to market aircraft using
Electrical Vertical take-off and landing (E-VTOL) technology (Figure 1). Major players
in the industry, some of whom have been around for decades, such as Airbus with its
CityAirbus NextGen (Figure 2), are developing urban air mobility aircraft. However, there
are also new companies taking up the challenge of developing new types of aircraft that
have never been designed and certified before, as is the case with Archer, which is currently
developing and certifying its Midnight aircraft [5].

1



INTRODUCTION

Figure 1 – E-VTOL Midnight tilt-rotor
configuration manufactured by Archer [6].

Figure 2 – CityAirbus NextGen manufactured
by Airbus [7].

Most of the current proposed configurations suggest the usage of tilt-rotor configuration
or tilt wing-rotor configuration. The usage of electrical motors authorizes the exploitation
of a distributed electrical propulsion (DEP) system, which involves the use of multiple ro-
tors, each of them connected to an electrical motor [8]. Tilt-rotor configuration alters the
rotor configuration to perform vertical take-off and landing along with forward flight [9].
This extra degree of freedom, along with a large-diameter rotor, can expose the structure
of the aircraft to the widely recognized phenomenon known as whirl flutter [10].

First mathematically discovered in 1938 by Browne and Taylor [11], whirl flutter is an
instability that occurs when the rotor aerodynamic loads couples with wing flexibility from
the wing mounted pylon during the flight of propeller-driven aircraft. This phenomenon
tended to be forgotten in the design process of aircraft until 1960 when two Electra aircraft
manufactured by Lockheed Martin crashed. After those tragic events, tests were conducted,
in the Nasa’s Transonic Dynamic Tunnel (TDT), on a reduced model (Figure 3).

(a) Lockheed Electra 188 model in TDT before test. (b) Lockheed Electra 188 model in TDT after test.

Figure 3 – Lockheed Martin Electra 188 wind tunnel testing on a reduced size model [12].

It was then demonstrated that the failure of the aircraft was due to a damaged pylon
mount weakening the aircraft allowing whirl flutter to occur, then leading to the failure of
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the entire aircraft [13].

More recently, with the current development of the new generation of engines to power
aircraft in 2040 horizon, the CFM consortium, which is a joint venture between the US
company GE Aerospace and the French engine manufacturer Safran Aircraft Engines, is
currently developing a new engine called CFM RISE (Figure 4 ).

Figure 4 – CFM Rise engine concept [14].

This engine aims to achieve a technological breakthrough and is in no way similar to
its predecessor’s turbofan engine. It should be noted that this type of engine is composed
of an unshrouded fan, which leaves room for the phenomenon of whirl flutter to take place
if the design of the aircraft on which it is placed is poorly carried out. This once again
demonstrates the importance of studying the whirl-flutter phenomenon.

Despite its importance in aeronautics, the whirl flutter phenomenon is also important in
the energy sector. With the energy transition underway worldwide, fuelled by a global desire
to reduce CO2 emissions, both onshore and offshore wind turbines are a major solution for
reducing carbon emissions from power generation. The European Union (EU) has issued
an action plan aimed at reducing carbon emissions by 55% compared with 2005 levels by
2030, intending to achieve carbon neutrality by 2050 [15]. In 2020, the energy production
sector accounted for 42% of CO2 emissions worldwide [16]. The use of renewable means
of production is therefore a solution for reducing this number in the future. To meet the
EU’s reduction target, many countries have opted to step up the deployment of renewable
energy production plants on land or at sea, in particular by using wind turbines and wind
farms [17]. Wind turbines therefore need to be designed to meet safety standards, but also
to maximize their energy output and operating range of operation. To achieve this, it is
important to identify the critical rotation speed and wind speeds that initiate the whirl
flutter phenomenon.

State of the art
Propeller whirl flutter was firstly discovered in 1938 by Browne and Taylor [11]. The study
conducted detailed the interaction of vibrations coming mainly from the engine and elastic
mounting measures to reduce the vibratory loads on the accessory equipment surrounding
the engine. The model used to prove the concept used a reduced friction model as well
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as an equal ratio of pylon stiffness ratio in the pitch and yaw degree of freedom. At this
time in history, aircraft were not in danger to meet such instability because the stiffness
of the pylon was such that any loading on it would not cause any problem of instability.
However, with the emergence of new engines and aircraft structures, the aim has always
been to be lighter and lighter. Two plane crashes in the early 1960s forced scientists to
reconsider the discoveries made by Brown and Taylor. As a result, whirl flutter has emerged
as a phenomenon to be taken into account when designing new aircraft and certifying them.

Figure 5 highlights the two types of possible whirl-flutter instabilities, respectively the
backward whirl-flutter and the forward whirl flutter. The backward whirl flutter corre-
sponds to instability causing the blade to move in the opposite direction of the flight
direction whereas the forward whirl flutter corresponds to instability causing the blade to
move in the direction of rotation.

Figure 5 – Natural vibration modes of system with rigid propeller [18].

A study published in 1962 by Hublot and Reed [19] identified the key parameter in-
fluencing whirl flutter instability to occur. They identified these parameters as being a
combination of pitch and yaw stiffness of the nacelle, structural damping, and propeller
speed. The propeller used in this study had equal pylon stiffness in the yaw and pitch di-
rections. A study conducted by Reed [12] highlights that a system using an equal stiffness
in yaw and pitch directions is a worse scenario for propeller whirl than if the stiffness in one
direction is different from the one in another direction. Having an equal stiffness in both
directions makes the system more prone to flutter.

The model originally presented by Reed [18] (Figure 6) is a basic model that consists
of a propeller that is modeled using two degrees of freedom. The propeller consists of a
rotor of radius R, rotating at an angular velocity Ω, with a moment of inertia Ix about its
rotational axis. This rotor is allowed to move around a pivot point in pitch and yaw. The
pivot point is represented by a moment of inertia In. The equations of motion characterizing
the presented model reads

Inθ̈ + cθθ̇ − IxΩψ̇ +Kθθ = Mθ;
Inψ̈ + cψψ̇ + IxΩθ̇ +Kψψ = Mψ,
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where cθ and cψ corresponds respectively to the structural damping in the related direc-
tion, Kθ and Kψ to the stiffness in their relative direction, Mθ and Mψ to the aerodynamic
moment acting on the system.

Figure 6 – Basic whirl-flutter model. Taken from [20].

Aerodynamic instability has long been studied whether for individual aircraft parts or
coupled systems parts. A well-known aerodynamic instability is wing flutter [21] which is
also called classical flutter. Wing flutter is usually modelled using a flexible wing coupled
with an unsteady aerodynamic model such as Doublet Lattice Method (DLM) for example.
A study conducted by Strong et al.[22] explores how prestressed mode shapes and frequen-
cies affect wing flutter response calculations. The research suggests prestressing impacts the
dynamic aeroelastic response, especially in configurations prone to body freedom flutter,
like high aspect ratio blended wing body configurations.

Propeller whirl-flutter theory was first developed for a propeller attached to its pylon
assuming that propeller blades were rigid and could not deform under any type of load
(gravitational, aerodynamics, ...) [19]. Hoover and Shen [23] studied the whirl flutter phe-
nomenon in free flying condition of the X-57 aircraft developed by NASA. Their study adds
the tailplane to previous studies made. This addition enables the analysis of a free-flying
model. The study revealed that the primary bending modes of the wing remain stable
even at speeds up to double the anticipated cruising speed of the X-57. The impact of
unsteady aerodynamics is significant only on the damping ratio of the symmetric torsion
mode. Although the long-period phugoid mode doesn’t affect elastic modes as initially
thought, the frequency of the short-period mode does influence the symmetric mode of
out-of-plane bending, thereby reducing the stability of both modes. Furthermore, when the
stiffness of the pylon spring is decreased to mimic the condition of a significantly damaged
pylon mount, propeller whirl flutter is observed at speeds where the short-period flight
dynamic mode merges with the wing’s elastic modes. Another study conducted by Yeo and
Kreshock [24] investigates generic hingeless propeller rotor whirl flutter in cruise flight us-
ing comprehensive rotorcraft analysis codes CAMRAD II and RCAS which are multibody
dynamics codes. Their main conclusion is that the elasticity of the rotor blades influences
the direction of the pylon whirl. Specifically, when the rotor is rigid, pylon motion that
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goes against the rotor rotation direction becomes unstable. Conversely, with an elastic
rotor, pylon motion in the same direction as the rotor rotation tends to become unstable.
In addition, the frequency of the rotor blade significantly affects how the wing modes are
damped. Generally, as the blade frequency increases, the damping of the wing mode also
increases. Finally, they concluded that decreasing the air density increases significantly
damping value due to lower dynamic pressure.

Although not employing multibody dynamics code as Yeao and Kreshock [24] did, the
study conducted by Koch [25] focuses on how various substructures, from the stiffness of
local engine mounts to the overall dynamics of the aircraft, affect the aeroelastic stabil-
ity of the propeller. Findings highlight the significant impact that the complexity of the
aeroelastic model has on flutter behavior. Particularly critical is the interaction with the
lifting surface, which can stabilize the whirl-flutter mode. Incorporating the wing’s un-
steady aerodynamics into the analysis can also alter whirl flutter behavior, underlining the
critical need to consider whirl flutter in comprehensive aeroelastic stability evaluations at
the aircraft level. Multibody dynamics code usually employs simplified aeroelastic behavior.

The wing propeller interaction is of particular interest in the study of whirl flutter.
The first wing propeller model was developed in 1964 by Bennett and Bland [26]. They
analysed different configurations of a wing propeller system (Figure 7). Experimental and
analytical results are obtained. Results indicate that the effect of the wing deformation
on the whirl-flutter boundary was large in some system configurations, most of the time
having a stabilising effect on the system. In addition, the study highlights that in the case
of wing large deformation, the aerodynamic of the wing has a tendency to have a stabilising
effect on the system’s motion.

Figure 7 – Whirl flutter boundary and dependencies on wing motion given in the literature [27].

A study conducted by Bohnisch et al [28] studied distributed masses onto critical aeroe-
lastic velocities of a wing propeller system. They concluded that the distributed mass,
the propellers, along the wingspan influences natural frequencies, damping, and therefore
flutter speed with the appearance of a hump-mode and critical flutter mode-switching. The
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influence of discrete mass is intensified by the gyroscopic effect of rotating mass such as
propellers (Böhnisch et al [27]). The study conducted by Böhnisch et al [27] introduce a
time independant mechanical coupling between the rotating propellers and the hub in their
finite element model thus neglecting partial dynamics of the rotating structure. In addition,
Quanlong et al. [29] demonstrated that thrust produced by propellers on aircraft could not
be neglected in predicting flutter boundary and must therefore be included in determining
flutter boundary. Finally, Guruswamy [30] highlights in his study that current calculations
indicate that incorporating a tip propeller results in a diverging response. Furthermore, an
increase in rotation speed generally enhances stability of the wing propeller system.

Looking at the aerodynamics of air vehicles, many studies have been conducted to pre-
dict wing and propeller aerodynamic loads. A study conducted by Kosch [25] highlights
different aerodynamic models used to study the whirl flutter phenomenon as unsteady aero-
dynamic for calculating the aerodynamic forces acting on the wing. His results show that
the level of detail of the aeroelastic model used influences the prediction of the flutter
behavior. In addition, his study demonstrates that the coupling with the different lifting
surfaces has a strong tendency to stabilize whirl-flutter behavior.

The computation of aerodynamic forces and moments has evolved continuously over
time. The first estimation of aerodynamic forces acting on a propeller was proposed during
wartime by Ribner [31]. Later, a solution based on first-order strip theory is proposed
by Houblot and Reed [19]. This method consists of three perturbation quantities: the
local section angle of attack, the perturbation velocity in the propeller plane, and the per-
turbation velocity out of the propeller plane. Due to the high radial velocity of rotating
propellers, Houblot and Reed also suggested adding a compressibility factor to their initial
theory in order to better predict the aerodynamic force. Bennet and Bland [26] suggested
a model improving on the original model proposed by Brown and Taylor. Their model
takes into consideration wing deformation such as wing bending and wing torsion, which
has been proven by Zwan and Bergh to have, in general, a stabilizing effect on whirl flutter
[32]. Hamond et al [33] applied unsteady lifting surface theory to a rotating propeller in a
compressible subsonic flow. The integral equation is generally solved using DLM [34].

With the emergence of new computing methods and the increasing availability of com-
puting power, new techniques can be used to predict the aerodynamic forces acting on a
system. Recent studies have investigated the whirl flutter phenomenon using computa-
tional fluid dynamics (CFD) as a means of predicting the aerodynamic forces acting on
the various parts contributing to the phenomenon. One of the first contributions of this
kind was made by Srivastava and Reddy [35] who developed a CFD code using the three-
dimensional unsteady compressible Euler equations. More recently, Higgins and Barakos
[36] developed a numerical model to predict whirl and flutter coupling CFD solver and a
NASTRAN [37] derived model. Another computational tool which includes fluid-structure
coupling has been developed by ONERA [38]. This computational tool can deal with either
compressible viscid or inviscid flows. The computational method used to solve fluid dynam-
ics is based either on RANS or URANS models with a large set of turbulence models being
available. The main disadvantage of using CFD method to compute aerodynamic load on
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lifting surfaces is the computational time required to acquire good-quality results. This
might not be efficient in the conceptual design of an aircraft, where a quick approximation
of whirl flutter might be necessary. However, the use of CFD can prove useful in the more
advanced phases of aircraft design.

Aim of this work
The aim of this thesis is to develop, using the Finite Element Method (FEM), an innovative
mechanical coupling strategy between a rotating part and a static part to study the whirl-
flutter phenomenon. This coupling, being the most complete, enables the dynamics of the
rotating parts to be fully preserved, by enabling a time coupling on the mass, gyroscopic
and centrifugal stiffness matrix, during modal analysis and, more particularly, during a
stability study. To date, this type of coupling has never been fully realized or published
in the literature using the finite element method. A paper published by Zuo et al. [39]
indeed performed a time coupling between the rotating elements of a shaft and the shaft
itself, but only on the stiffness matrix. Consequently, the total dynamics of the system is
not represented in their equation of motion as there is no time coupling on the mass matrix
and the gyroscopic matrices, making their study incomplete. This thesis therefore starts
from a blank page, where each of the matrices and phenomena in play must be validated
in order to ensure the correct implementation of this mechanical coupling.

Thesis outline
In Chapter 1, notions of stability analysis are explained. From the stability of linear time
invariant (LTI) systems to the stability of linear time periodic systems (LTP) using Floquet
theory. In addition, the stability of a system undergoing a Coleman transformation is
studied. The different perks and drawbacks of the different stability analysis are presented.
The derivation of the main equations and the main results of the Floquet theory are also
presented.

Chapter 2 aims at establishing and validating the different finite element matrices and
components computed using Euler-Bernoulli 3D beam elements that are used later in the
coupled matrix formulation of the problem. The various results and matrices obtained are
validated against results in literature.

Chapter 3 deals with the time-dependent mechanical coupling between rotating and
static parts. A fairly substantial mathematical review is carried out to present the various
coupling equations. A numerical implementation strategy is also presented. Finally, the
various coupled matrices are validated using two distinct validation models. The first model
consists of a ground resonance model with which a partial coupling is validated, while the
second, which consists of a rotating shaft with four blades being attached in its middle,
leading to a complete validation of the coupled model.

Chapter 4 consists in an application of the developed finite element code to study an
aerospace structure. First, the finite element model is applied to a Goland wing structure
and the model is validated. Then, different way to compute the aerodynamics force acting
on the wing are presented as well as the methodology to compute the flutter speed of a wing.
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In addition, the propeller aerodynamics equations are presented. Finally, an application of
the developed time coupling finite element model to a wing propeller structure is studied.

The conclusion discusses and summaries the main findings of this thesis. In addition,
perspectives and possible future improvements are suggested.
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CHAPTER 1

STABILITY ANALYSIS

The aim of this chapter is to present the main theories that can be used to study the
stability of rotor systems, together with their advantages and disadvantages. In addition,
the various methods required to numerically compute this stability are also presented.

1.1 Stability of linear time invariant system
A linear time invariant system (LTI) is a system that produces an output signal from any
input signal that is, among other possible characteristic, linear and time invariant. Time
invariant system can be used in many fields such as electricity and mechanics. To study the
stability of LTI systems, the state space representation of the system is used. The system
of equations characterising the state space representation of LTI system reads

ẋ(t) = Ax(t) + Bu(t), (1.1)
y(t) = Cx(t) + Du(t), (1.2)

where x is the state vector, y the output vector, u is the input vector, A is the state matrix,
B is the input matrix, C is the output matrix, and D is the feedforward matrix.

The stability of LTI system is studied by analyzing the eigenvalues of the state space
matrix A. The state space matrix A of time invariant mechanical system reads

A =
[

0 I
−M−1K −M−1C

]
, (1.3)

where M, K, C respectively represent the structural mass matrix, the structural stiffness
matrix and the structural damping matrix. The stability of LTI system is characterized by
the sign of the eigenvalues λn characterising the system. The system is said to be:

• asymptotically stable if R(λn) < 0;

• marginally stable if R(λn) = 0;
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• unstable if R(λn) > 0.

The eigenfrequencies and the modal damping ratio are retrieved thanks to

ω =
√
R(λ)2 + I(λ)2; (1.4)

ξ = −R(λ)
ω

. (1.5)

1.2 Coleman Transformation
The aim of this thesis is to study the dynamics of time varying systems. However, this
is a hazardous task that will be later proved to be complicated. That’s why a Coleman
transformation is often carried out [40]. Coleman-based analysis lies between LTI analysis
and a full periodic analysis of the studied system. Bir [41] published a full review of the
transformation in his work. Fisker [42] highlights the main steps to ensure a modal analysis
of rotating structures using Coleman transformation. The main steps are:

• location of a steady state operating conditions;

• linearization of the equations of motion around the previously found steady state;

• modal decomposition of the linearised system providing modal frequencies, modal
damping and modes shapes of the vibrating structure.

Using the Coleman transformation consists in applying the first two steps but, before doing
the third steps, applying the Coleman transformation matrix. More information about the
Coleman transformation matrix can be found in [40]. The transformation matrix reads, in
its most general form,

x = B(t)xb, (1.6)

where xb is the state variable vector and where B(t) is the transformation matrix and reads

B(t) =



INb
cosψ1 INb

sinψ1 · · · INb
cos B̃ψ1 INb

sin B̃ψ1 −INb
0

INb
cosψ2 INb

sinψ2 · · · INb
cos B̃ψ2 INb

sin B̃ψ2 INb
0

INb
cosψ3 INb

sinψ3 · · · INb
cos B̃ψ3 INb

sin B̃ψ3 −INb
0

... ... . . . ... ... ... ...
INb

cosψB INb
sinψB · · · INb

cos B̃ψB INb
sin B̃ψB (−INb

)B 0
0 0 · · · 0 0 0 INs


, (1.7)

where B̃ = (B − 1)/2 for B odd and B̃ = (B − 2)/2 for B even, where ψj = Ωt +
2π(j − 1)/B is the mean azimuth angle to blade number j = 1, 2, . . . , B, and INb

and INs

are identity matrices of sizes Nb and Ns. In addition, Nb corresponds to the number of state
variables in the rotating frame of reference and Ns is the number of inertial state variablse
of the rotor support.

The study of the stability of a system having undergone a Coleman transformation is
established by the same stability criteria as the one previously established for LTI system.

The main advantages of the Coleman transformation is that it can be used to enable
the extraction of the different modal quantities of a rotating structure by describing the
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rotor degrees of freedom in the inertial frame of reference. Although it has its advantages,
the Coleman transformation method also has its disadvantages. The first one is that this
transformation can only be applied to isotropic systems. Therefore, studying an unbalance
rotor, or studying a rotor under wind shear cannot be performed using Coleman transfor-
mation [42]. Another disadvantage of this transformation is that it is able to change the
harmonic content of the different structural matrices by only leaving a small contribution
of the periodicity of the studied rotating system in it. The remaining periodicity is removed
by an average of the structural matrices over one period of revolution. Although it limits
the contribution made by the periodicity of the system in the modal analysis, using the
transformation still allows to obtain information on the frequency content of the system
while still considering, to a lesser extent, the dynamics of the rotor.

1.3 Floquet Theory - Stability analysis of linear time
periodic system

To study the stability of stationary and rotor system coupled together, a stability analysis
must be carried out. In order to capture the dynamics of the system as a whole, a stability
study of the system using Floquet theory must be carried out. Floquet theory enables
to study the stability of linear time periodic systems. This theory was mainly developed
by Floquet and Lyapunov [43]. The following subsections recall the main mathematical
derivation of the Floquet theory. The main developments are based on the work of Nayfey
and Balachandran [44], Riva [45] and Bottasso and Cacciola [46].

1.3.1 Mathematical derivation
The state space representation of a linear time periodic system is written as

ẋ(t) = A(t)x(t) + B(t)u(t), (1.8)
y(t) = C(t)x(t) + D(t)u(t). (1.9)

Such a system is said to be periodic if the conditions:

A(t+ T ) = A(t), B(t+ T ) = B(t), (1.10)
C(t+ T ) = C(t), D(t+ T ) = D(t), (1.11)

are fullfield simultaneously. The period T of the system is the smallest time interval for
which the previous conditions hold.

The study of the stability of linear time periodic system is achieved by studying, as
for LTI system, with the state space matrix A(t). Looking at the autonomous version of
Eq.1.9 and associating an initial condition. One can rewrite the state space representation
as

ẋ(t) = A(t)x(t) with x(0) = x0. (1.12)

If the state of the system at time τ is known, the state at a subsequent time tis given
via the state transition matrix Φ(t, τ), such that

ẋ(t) = Φ(t, τ)x(τ). (1.13)
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The evolution of the state transition matrix is governed by

Φ̇(t, τ) = A(t)Φ(t, τ) with Φ(τ, τ) = I. (1.14)

The state transition matrix over one period T is the most important piece of the Floquet
theory and is called the monodromy matrix.

The eigenvalues ρm of the monodromy matrix Φ are called the Floquet multipliers.
There exists a unique set of Floquet multipliers associated with matrix A. Each Floquet
multiplier is a measure of the local convergence or divergence of the studied system along
a particular direction over one period of the closed orbit. Introducing the transformation,

Y(t) = V(t)P−1, (1.15)

where V is a non singular matrix and P is matrix such as its columns are the right eigen-
vector of the monodromy matrix. Thus, the equation

Y(t+ T ) = V(t)Φ (1.16)

can be rewritten as

V(t+ T ) = V(t)P−1ΦP. (1.17)

If all the Floquet multipliers are distinct, Eq.1.17 can be rewritten as

Vm(t+ T ) = ρmVm(t) ∀m = 1, ...., n. (1.18)

From the previous equation, it follows that

Vm(t+NT ) = ρNmVm(t). (1.19)

Therefore, if t → +∞, then N → +∞, and

Vm(t)→ 0 if |ρm| < 1→ stable (1.20)
Vm(t)→∞ if |ρm| > 1→ unstable (1.21)

A particular case must be considered when ρm = 1. In fact, when this condition is
fullfield, the system’s response Vm(t) is periodic with period T and when ρm = -1, the
system’s response is 2T periodic. The representation of the different possible cases of ρm
in the complex plane is highlighted in Figure 1.1.
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Figure 1.1 – Complex-plane. Positions of the eigenvalue represented by different asterisks *. * -
eigenvalue leading to a periodic stable system,* - eigenvalue leading to an asymptotically

periodic stable system,* - eigenvalue leading to an unstable system, Unit circle.

An important property of the Floquet multipliers associated with perodic solution X0(t)
of an autonomous system of equation is always unit. The details leading to this affirmation
are left to the reader but the demonstration can be found in [44].

By multiplying Eq.1.18 by e−γm(t+T ), one gets

e−γm(t+T )Vm(t+ T ) = ρme
−γm(t+T )Vm(t), (1.22)

where γm is defined by the relationship

ρm = eγmT ⇒ γm = 1
T

ln(ρm). (1.23)

γm are called the characteristic exponents. They are unique and integer multiple of 2πi
T

.

Using the periodicity property, Eq.1.22 can be rewritten as

e−γm(t+T )Vm(t+ T ) = ρme
−γm(t)Vm(t). (1.24)

If ρm ̸= 0, every Vm can be expressed in the normal form

Vm(t) = eγmtϕm(t), (1.25)

with ϕm(t) = ϕm(t + T ). Therefore, the stability of the system may also be deduced from
the characteristic exponents. In fact, one can conclude that if

R(γm) < 0,Vm(t)→ 0, t→∞→ stable, (1.26)
R(γm) > 0,Vm(t)→∞, t→∞→ unstable. (1.27)

The previously established normal form can be used to determine the solution of

ẋ(t) = A(t)x(t). (1.28)
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One seeks a solution of the form
x(t) = eγtϕ(t). (1.29)

To solve,
ϕ̇ =

[
A(t)− γI

]
. (1.30)

Expending ϕ in a Fourier series leads to

ϕ =
k=+∞∑
k=−∞

ak exp
(

2ikπt
T

)
. (1.31)

Using the expression in the previous relation and equating each harmonic on both sides
lead to an infinite dimensional eigenvalue problem, where the determinant of the coefficient
matrix is called the Hill’s determinant and is a key point when studying the stability of
linear time periodic system.

1.4 Numerical integration schemes
As previously stated, the stability of the studied structure is characterised by analysing its
stability over a period of revolution T of the rotating system. Therefore, it is necessary to
solve the equation of motion characterising the motion of the system. To do so, different
numerical schemes can be exploited, each of them having their perks and drawbacks. To
study the stability of the studied system, the monodromy matrix must be computed. In
the following sections, a mathematical derivation is proposed for some numerical scheme
or an algorithm is presented to understand how to compute it when using Runge-Kutta
integration scheme.

1.4.1 Newmark time integration scheme
The first time integration scheme being studied is the Newmark integration scheme. Start-
ing from given initial conditions, Newmark integration scheme is used to advance the solu-
tion in time. The procedure related to the Newmark integration scheme is represented in
Appendix C.

This integration scheme is characterized by three distinct variables, each of them hav-
ing its influence in the obtained solution. The three variable are the time step h and the
parameters β and γ. The latter is set to 0.5 leading to a minimum integration error [47].
In addition, as this value corresponds to a stability limit, it means that no artificial ampli-
fication nor numerical damping is introduced in the resolution process. The parameter β
must be higher or equal than 0.25 to ensure unconditional stability of the numerical scheme.
However, it is proven that the maximum accuracy is reached when β = 0.25. Therefore, in
the following computations, β is set to 0.25. The last parameter, the time step h is defined
such that the response of the system is correctly captured, with the constraint that a small
time step can lead to expensive computational cost, whereas a larger time step can lead to
a larger periodicity error. As a result, a compromise has to be made between the desired
accuracy and calculation time.
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It is worth noting that the Newmark integration scheme is not made to handle time
varying mass matrix. Therefore, when being used in the scope of this thesis, it is assumed
that the mass matrix between two time step is being constant. This is a large approximation
which can be eliminated by using other numerical integration schemes.

1.4.1.1 Mathematical derivation of the monodromy matrix for Newmark inte-
gration scheme

The aim of this thesis is to study the whirl flutter phenomenon. It is therefore of interest to
derive the amplification matrix of such a scheme. From this, the monodromy matrix is de-
rived. The mathematical derivations are skipped but are available in [47]. The monodromy
matrix of the Newmark scheme reads:

Ψ =
T∏
t=0

H1
−1(t+ 1)H0(t),

where

H1 =
[
M + h2βK βh2C

γhK M + γhC

]
,H0 =

[
M− h2(0.5− β)K hM−

(
1
2 − β

)
h2C

−(1− γ)hK M− (1− γ)hC

]
. (1.32)

An issue with the presented formulation is that the acceleration terms contain the mass
matrix which varies over time. In fact, the aim of this thesis is to deal with a complete
implementation of the coupling between stationnary and rotating components, therefore
the mass matrix will vary overtime. An alternative could be to pre-multiply the equation
of the dynamics by the inverse mass matrix M−1, and therefore to only get an identity
matrix I term on the acceleration term to get this term constant. This operation can only
be carried out on the assumption that the mass matrix is invertible. This is the case because
the matrices encountered are the structural matrices assembled with the degrees of freedom
specific to the structure already blocked. This makes the structural matrices invertible. As
a result, the iteration matrix constituting the monodromy matrix reads

H1 =
[
I + h2βKM−1 βh2CM−1

γhKM−1 I + γhCM−1

]
;

H0 =
[
I− h2(0.5− β)KM−1 hI− (1/2− β)h2CM−1

−(1− γ)hKM−1 I− (1− γ)hCM−1

]
.

This new formulation of the monodromy matrix will be called Newmark-V2 when being
used in the following of the thesis.

1.4.2 Generalised α scheme
To compensate for the large approximation made in Newmark’s integration scheme for the
time-dependent mass matrix. It may make sense to use the generalised α method. First,
Hilbert et al [48] proposed a way of introducing numerical damping in Newmark’s scheme
without degrading the second order accuracy of the latter by using a single parameter
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CHAPTER 1. STABILITY ANALYSIS

ranging from 0 to 1. Their method consists of averaging the internal forces and the external
forces between two succesives time step. Later, Chung and Hulbert [49] proposed to use
the same concept as the one proposed by Hilbert et al, but this time using two different
averaging parameters. One of them, αm, acting on inertia forces and the other one, αf ,
acting on elastic and damping forces. The equation representing this numerical scheme
reads

(1− αm)Mq̈n+1 + αmMq̈n + (1− αf ) (Kqn+1 + Cq̇n+1) + αf (Kqn + Cq̇n)
= (1− αf )g(qn+1, t) + αfg(qn, t).

Note that when αm and αf are equal to 0 simultaneously, the Newmark integration
scheme is recovered. Omitting the details leading to this result, it is shown that the scheme
remains second-order accurate and is unconditionally stable if

γ = 1
2 + αf − αm

β = 1
4(1 + αf − αm)2

 with 0 ⩽ αm ⩽ αf ⩽
1
2 .

It is worth noting that the solution obtained with this numerical integration scheme
depends on the values given to the parameters αf and αm. These parameters can be
determined from the value given to the spectral radius

αm = 2ρ∞ − 1
ρ∞ + 1

αf = ρ∞

ρ∞ + 1

 with 0 ⩽ ρ∞ ⩽ 1.

The closer the spectral radius ρ is to one, the less numerical dissipation there is. The closer
the spectral radius is to zero, the more numerical dissipation there is in the high frequencies.

An in-depth parametric study is later carried out on the effect of the spectral radius on
the solution obtained. However, a study carried out by Gufler et al [50] shows that having
a spectral radius of less than 0.4 will often lead to a significant delay in the behaviour of
the solution. Beyond this limit, the significant addition of numerical dissipation can also
remove physical vibrations that are important in the behaviour of the solution.

1.4.2.1 Mathematical derivation of the monodromy matrix for the Generalised
α scheme

Similarly to the Newmark scheme, the monodromy matrix corresponding to the generalized
alpha scheme reads

H1 =
M + γh

( 1−αf

1−αm

)
C γh

( 1−αf

1−αm

)
K

βh2
( 1−αf

1−αm

)
C M + βh2

( 1−αf

1−αm

)
K

 ,
H0 =

 M−
(
αf

αm

)
h(1− γ)C −

(
αf

αm

)
h(1− γ)K

hM− h2(0.5− β)
(
αf

αm

)
C M− h2(0.5− β)

(
αf

αm

)
K

 .
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It is worth noting that the H0 and H1 matrices are similar to the matrices obtained for
the Newmark integration scheme with the only difference being that in the expression of
the matrices in the case of the generalized α scheme, the influence of the various weighting
parameters on the inertia, elastic and damping forces can be seen. In addition, it is impor-
tant to note that the different matrices involved in the amplification matrices H0 and H1
correspond to the structural matrices calculated at time tn and tn+1 respectively.

1.4.3 Runge-Kutta integration scheme

The last numerical method used is the Runge-Kutta method. This method is widely used
to solve differential equations numerically. It is an explicit solution scheme. In this thesis,
the Runge-Kutta method employed is based on a Dormand-Prince Runge-Kutta method
[51] that uses fourth- and fifth-order approximations to estimate the solution of ordinary
differential equations. The main advantage of this method, which has an adaptive time step,
is that it speeds up the resolution when the solution is no longer subject to large variations,
but also reduces the time step when large variations are encountered while guaranteeing
a relatively low relative error. In conclusion, its major advantage over other numerical
schemes is its error control.

1.4.3.1 Derivation of the monodromy matrix

As with the other numerical schemes employed, it is in the interest of this thesis to derive
the expression of the monodromy matrix to study the stability of the structure studied.
For the Runge-Kutta numerical scheme, deriving an explicit formulation of the monodromy
matrix is not possible. However, it is still possible to compute it numerically. To do so, the
monodromy matrix is built up progressively. Each column of the monodromy matrix at a
time t is constructed by imposing an unitary initial condition on the displacement U(i) =
1, where i corresponds to the degree of freedom being studied. The others are left to zero.
The numerical scheme is then solved using the previously computed initial condition vector.
The solution vector corresponds to the column i of the monodromy matrix being build at
time t. This operation is repeated for each degree of freedom i composing the structure.
This procedure is summarised in the Algorithm 1.

Algorithm 1 Computation of Monodromy Matrix for Runge-Kutta Integration Scheme
1: for j=1 to 2× Number of dof do
2: Initialize U0 as a zero vector of size (2× number of dof, 1)
3: U0[j] = 1
4: Define t as [0,Period]
5: Solve the ODE using Runge-Kutta integration scheme with initial condition vector
U0

6: Update monodromy matrix Φ(:, j) with the last value of U , the solution of the
integration scheme

7: end for
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CHAPTER 1. STABILITY ANALYSIS

1.5 Campbell diagram and the advantage of the peri-
odic Campbell diagram

The Campbell diagram is used to show the evolution of the natural frequencies of a sys-
tem containing rotating components as a function of the speed of rotation of these same
components.

The most commonly used approximation being made is the linear time invariant system
approximation. However, this approximation has the effect of neglecting the time expendi-
ture of the terms influencing the dynamics of the system under study. In addition, it only
reveals one natural frequency per rotating structure. This approximate the obtained final
results and therefore it neglects an important part of the system dynamics as can be seen
in Figure 1.2. Although this approximation has its advantages, it is beginning to reach
its limits. In fact, the aeronautics and energy industries are tending to make increasingly
bulky structures while trying to reduce their weight as much as possible to gain in efficiency.

The Coleman transformation, explained before, allows several harmonics to appear for
each mode, which improves the accuracy of the result obtained compared to when an ap-
proximation of a LTI system, while still approximating the real solution. This improvement
in capturing the system dynamics is shown in Figure 1.3 and by comparing it with Figure
1.2.

Finally, the linear time periodic method, which is the method used in this thesis, allows
theoretically to compute an infinite number of frequencies associated with each mode and
therefore, to fully capture the dynamics of the rotating system. Each of the frequencies
has a modal participation factor and therefore has their impact on the solution. It is worth
noting that when the participating factor of a harmonic is exactly one, while the other
one is equal to zero, the Campbell diagram obtained for this mode of deformation will
be equivalent to the one obtained with the linear time invariant method. The Campbell
diagram obtained using such a method is represented in Figure 1.4

Ω

ω

1P

2P
3P
4P

NP

Figure 1.2 – Campbell diagram with LTI ap-
proximation. Reproduced from [45]

Ω

ω

1P

2P
3P
4P

NP

Figure 1.3 – Campbell diagram with Coleman
transformation. Reproduced from [45].
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CAMPBELL DIAGRAM
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Figure 1.4 – Campbell diagram using LTP method. Reproduced from [45]
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CHAPTER 2

FINITE ELEMENT OF ROTATING STRUCTURE

2.1 Finite element selection
To build the finite element model, it is mandatory to choose the type of element that
will model the studied structure. An Euler-Bernoulli beam element is chosen to study the
structure.

x1,φ1

y1,θ1

z1,ψ1

y2,θ2

x2,φ2

z2,ψ2

Figure 2.1 – Euler-Bernoulli beam element constitute of two nodes, each node containing 3
translational degrees of freedom and 3 rotational degrees of freedom.

Euler-Bernoulli elements are constructed using several kinematic assumptions. Accord-
ing to Bauchau and Craig [52], Euler-Bernoulli are made of the following kinematic as-
sumptions:

• The cross-section is infinitely rigid in its own plane.

• The cross-section of a beam remains plane after deformation.

• The cross-section remains normal to the deformed axis of the beam.

It is proved that these assumptions are valid for long, slender, and isotropic beams. When
one of these conditions is not met, a loss of precision is to be expected.

The first structure being studied is a single rotating beam which is clamped at the root.
The structure is subject to physical effects which are linked to its rotation. The equation
describing the motion of this structure in a rotating frame of reference reads

Mq̈(t) + (D + G)q̇(t) + (K + P−KΩ)q(t) = r(t),
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CHAPTER 2. FINITE ELEMENT OF ROTATING STRUCTURE

where q is the generalized coordinate vector. In the present study, only the behavior of the
structure rotating at a constant speed is carried out so that the term corresponding to the
angular acceleration matrix P is null. This term cannot be neglected when studying motor
powering, which is not the case in this thesis. Consequently, the equation of motion of a
particle rotating at constant speed is

Mq̈(t) + (D + G)q̇(t) + (K−KΩ)q(t) = r(t). (2.1)

Defining N as the shape function matrix and B as the deformation matrix, the mathe-
matical definitions of the various terms making up the above equation are:

• The mass matrix M:
M =

∫
V
ρNTN dV ;

• The gyroscopic matrix G:
G =

∫
V

2ρNTΩN dV ;

• The elastic stiffness matrix K:

K =
∫
V

BTCB dV ;

• The centrifugal acceleration matrix KΩ:

KΩ =
∫
V
ρNTΩ2NdV.

• The internal force vector:
r = −

∫
V
ρNTΩ2xdV,

where x is the location vector taken from the axis of rotation of the structure and Ω is
the rotation matrix matrix directly coming from the rotation vector ω = [ω1, ω2, ω3]T ,
which reads

Ω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 .
The definition of the different shape function is available in Appendix B. To gain so com-
putation time, it might useful to directly use the predefined formulations of the elementary
mass and elementary elastic stiffness matrix for 3D Euler-Bernoulli beam elements. These
different matrices are available in Appendix A and Appendix C.

To build the structural damping matrix C, the methodology introduced by Gerardin
and Rixen [47] is followed. The modal damping coefficients ϵs are defined by

ϵs = βs
2ωsµs

, (2.2)

where ωs corresponds to the pulsation of mode xs and µs is computed as

µs = xTs Mxs (2.3)

24



2.1. FINITE ELEMENT SELECTION

To build a damping matrix that guarantees diagonal modal damping, a proportional damp-
ing approach is chosen and reads as

C =
n∑
s=1

Kxs
2εs
ω2
sµs

xT
sK, (2.4)

where n represents the number of modes considered.

In general, only a small amount of modes are identified and therefore the damping
matrix C is computed as

C =
m<n∑
s=1

Kxs
2εs
ω2
sµs

xT
sK, (2.5)

where the diagonal elements of the modal damping matrix ΦTCΦ, where Φ is the modal
matrix are given by

βs = 2εsωsµs (2.6)

with the conditions,

βs =
2εsωsµs, if s ⩽ m

0, if s > m.
(2.7)

This equation is quite a big approximation as it assumes no modal damping for missing
nodes. Therefore, to correct this truncated approximation, a linearly increasing damping
coefficient is assumed for the higher modes. The damping of the higher modes is given by

C = aK, (2.8)

such that
εs = aωs

2 , s > m. (2.9)

Therefore, the diagonal off terms of ΦTCΦ are expressed as:

βs = aω2
sµs, s > m. (2.10)

As a result, the damping matrix is built as

C = aK +
m<n∑
s=1

Kxs

(
2εs
ω3
sµs
− a

ω2
sµs

)
xTs K.

In this work, a modal damping coefficient of 0.01% is assumed (Megson [53]) for the first six
modes of deformation, whereas a linearly increasing damping coefficient for a mode higher
than 6 is supposed. This is an approximation and it goes without saying that to find true
damping values, laboratory tests of the various materials and structures studied must be
carried out.

The various integrals presented in this work are computed using Gauss-Legendre numer-
ical integration. This integration method has the advantage of being exact when dealing
with polynomials, which is the case given the expression of the matrix of shape functions.
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CHAPTER 2. FINITE ELEMENT OF ROTATING STRUCTURE

More details on this method are available in Appendix E.

In this study, all physical phenomena are taken into account. Therefore, it is necessary
to introduce in Eq. 2.1 the geometrical stiffness matrix originating from the deformation
of the beam due to the centrifugal force. The equation of motion of a particle rotating at
constant speed is

Mq̈(t) + (D + G)q̇(t) + (K−KΩ + Kg)q(t) = r(t). (2.11)

The expression of the geometrical stiffness matrix Kg is

Kg =
∫
V
ρN′Tσ0N′ dV. (2.12)

To compute the geometrical stiffness matrix, the initial stress of the structure is required.
To do so, the axial displacement of each element is computed. As a result, the static problem

Kq = r(t)

is solved. Knowing the generalized displacement of the structure, the initial stress tensor
σ0 of the element is computed thanks to Young’s modulus E linking the stress and the
deformation.

2.1.1 Validation of the centrifugal force
To validate the first model, it is crucial to validate the different components taking part
in the dynamic of the future coupled structure. Therefore, to begin with, the computation
of the centrifugal force is validated. To do so, a validation comparing the implementation
of the computational code with a reference solution provided by the ASTER code [54].The
validation reference reports [55] provides numerous results using different types of elements.
The analytical solution for a rotating beam in the local reference frame of the beam reads

∂2Ux
∂x2 + ρ

E
ω2x = 0 with

Ux(0) = 0
∂Ux

∂x
(L) = σxx(L) = 0

. (2.13)

Therefore, the displacement in local frame of reference reads:

Ux(x) = ρω2

2E

(
xL2 − x3

3

)
, with Uy = Uz = 0. (2.14)

The displacements of all points of the beam can be written in the global reference frame,
by

Ux(X, Y, Z) = ρω2

2
√

3E

(
rL2 − r3

3

)
with r =

√
X2 + Y 2 + Z2, (2.15)

which is used to compare the obtained results of the developed model. The obtained results
and the comparison with the analytical solution are represented in Figure 2.2. The result
is obtained by discretising the beam using 100 elements.
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Figure 2.2 – Axial displacement uX in global frame of reference. The beam is directed along the
direction vector [1 1 1] with a rotation speed vector Ω = [Ω 0 -Ω] with Ω = 3000 rad/s. uX is the
displacement along the X direction in the global frame of reference.

Figure 2.2 highlights the good correlation between the finite element solution implemented
and the analytical solution. In addition, the finite element solution corresponds to the
solution obtained via ASTER with a relative error of 0.04 % at the tip of the beam. Code
Aster only provides a single result, the one at the tip of the beam. Therefore, it is safe to
conclude that the finite element implementation of the centrifugal force via the developed
finite element code is correct.

Figure 2.3 reveals that, by taking into account the geometric stiffness in addition to the
elastic stiffness when calculating the displacement due to centrifugal forces, the displace-
ment is less since the structure is stiffer. This calculation has no real physical meaning but is
intended to show that the geometric stiffness matrix does have a stiffening effect. Given that
no validation data for the geometric stiffness matrix has been found and that the observed
behavior is indeed a stiffening effect, it is reasonable to assume that the implementation is
correct and can therefore be used in the remaining of this work.

2.1.2 Analyticcal model validation
The mathematical model previously expressed is developed in Matlab [56]. Results ob-
tained via the implemented model are compared to results obtained via commercial soft-
ware. The commercial software chosen to validate the model is Ansys Workbench [57].
Ansys Workbench is a well-known finite element analysis software that has already proven
its capability to provide accurate and reliable results of rotating structures (Hisham et al
[58]).

To validate the analytical model implemented in Matlab, the case of a propeller com-
pound of four propeller blades is studied. More precisely, an analysis is performed on a
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Figure 2.3 – Axial displacement uX in a global frame of reference taking into account K and Kg.
The beam is directed along the direction vector [1 1 1] with a rotation speed vector Ω = [Ω 0
-Ω] with Ω = 3000 rad/s. uX being the displacement along the X direction in the global frame of
reference.

single blade of the propeller. The blade is assumed to be a circular beam rotating clamped
to the rotor. A schematic of the studied structure is represented in Figure 2.4.

The different simulations leading to the validation of the model are carried out using
identical material properties.

2.1.2.1 Eigenfrequencies computation and Campbell diagram

As mentioned previously, given that the structure under study undergoes a rotational move-
ment, it is expected that a shift in the natural frequencies of the structure due to this ro-
tation is possible. This shift itself is a function of the rotational speed of the structure. To
ensure that the natural frequencies match when the structure rotates at different speeds,
a natural frequency tracking system is set up using the modal assurance criterion matrix
(MAC Matrix) as proposed by Pastor et al [59]:

MAC = |ψT
i ψi−1|2

(ψT
i ψi)(ψT

i−1ψi−1)
, (2.16)

where i corresponds to the studied rotation speed, i− 1 to the previous rotation speed and
ψ to a mode shape of the structure. The MAC matrix is the ideal candidate for implement-
ing the tracking system since only the natural frequencies vary as a function of rotation
speed, therefore tracking them allows us to follow the evolution of the system’s dynamics
as its speed of rotation changes. Consequently, these are a good indicator for identifying
the natural eigenfrequencies between different speeds of rotation of the studied structure.
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Ω

Figure 2.4 – Validation model: single clamped rotating beam.
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Figure 2.5 – Campbell diagram using Ansys
model.
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Figure 2.6 – Campbell diagram using
Matlab model.

Model Mode Direction 100 Hz 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz
Ansys 1 BW 7.83 Hz 7.83 Hz 7.82 Hz 7.82 Hz 7.81 Hz 7.81 Hz

Matlab 1 BW 7.83 Hz 7.83 Hz 7.82 Hz 7.82 Hz 7.81 Hz 7.81 Hz
Ansys 2 FW 7.84 Hz 7.85 Hz 7.85 Hz 7.86 Hz 7.86 Hz 7.87 Hz

Matlab 2 FW 7.84 Hz 7.85 Hz 7.85 Hz 7.86 Hz 7.86 Hz 7.87 Hz
Ansys 3 BW 48.88 Hz 48.85 Hz 48.81 Hz 48.78 Hz 48.74 Hz 48.71 Hz

Matlab 3 BW 48.88 Hz 48.85 Hz 48.81 Hz 48.78 Hz 48.74 Hz 48.71 Hz
Ansys 4 FW 48.95 Hz 48.99 Hz 49.02 Hz 49.06 Hz 49.09 Hz 49.13 Hz

Matlab 4 FW 48.95 Hz 48.99 Hz 49.02 Hz 49.06 Hz 49.09 Hz 49.13 Hz
Ansys 5 BW 136.05 Hz 135.96 Hz 135.88 Hz 135.80 Hz 135.72 Hz 135.63 Hz

Matlab 5 BW 136.05 Hz 135.96 Hz 135.88 Hz 135.80 Hz 135.72 Hz 135.63 Hz
Ansys 6 FW 136.21 Hz 136.29 Hz 136.38 Hz 136.46 Hz 136.54 Hz 136.63 Hz

Matlab 6 FW 136.21 Hz 136.29 Hz 136.38 Hz 136.46 Hz 136.54 Hz 136.63 Hz

Table 2.1 – Comparison of Matlab and Ansys results for different rotation speeds. BW =
backward whirl and FW = forward whirl.
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The results obtained using the analytical model and Ansys are highlighted in Table 2.1,
in Figure 2.5 and Figure 2.6. Looking at the different results, it is concluded that the de-
veloped analytical model has been correctly implemented and can be used in more complex
models to study the whirl-flutter phenomenon.

The influence of the matrices Kg and KΩ is twofold: on one hand, it causes a stiffening
effect due to the tensile stresses induced by rotation, and on the other hand, a softening
effect is induced due to the non-inertial frame in which the equations of motions are ex-
pressed. The combination of these effects results in a net stiffening effect, leading to an
increase in the absolute value of both the forward and backward branches of the Campbell
diagram. This effect is clearly visible in Figure 2.6. In fact, as the frequencies relating to
the whirl flutter phenomena come in pairs, it can be seen that as the speed of rotation of
the structure increases, the frequencies become further apart. This phenomenon confirms
the correct implementation of the analytical model.

2.2 Single clamped beam
Always with the same objective of continuing the validation of the finite element model
developed, the second structure being studied is a cantilever beam (Figure 2.7).

Fixed support
Cantilever beam

b

h

L

Figure 2.7 – Validation model: single cantilever beam.

The equation of motion describing the movement of structure in a static frame of refer-
ence reads

Mq̈ + Cq̇ + Kq = f . (2.17)
An analytical solution has been developed by Meirovitch [60]. The analytical solution
assume that the mass of the beam is distributed along with the stiffness of the beam. The
analytical equation of motion reads

d

dx2

[
EI(x)d

2Y (x)
dx2

]
= ω2m(x)Y (x). (2.18)

For a cantilever beam the equations are simplified as
d4Y (x)
dx4 − β4Y (x) = 0, (2.19)

where β4 = ω2m/EI. Finally, the first three in-plane eigenfrequencies computes as

ωn = α2
n

√
EI

ρAL5 , (2.20)
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where for the three first in-plane eigenfrequencies, αn = 1.875, 4.694 and 7.885.

2.2.1 Validation of the model
The finite element model is tested using beam elements. Material and geometrical properties
are highlighted in Table 2.2.

Parameter Value Units
Young’s modulus E 210 GPa

Poisson’s ratio ν 0.30 -
Density ρ 7800 kg/m3

Length L 5.7 m
Height h 0.05 m
Width b 0.03 m

Table 2.2 – Material properties and geometrical properties of the constituting beam.

The results are highlighted in Table 2.3 and compared to analytical model predictions. It
is noticeable that the FEM model develops 3 new eigenfrequencies that the analytical model
developed by Meirovitch does not highlight (Figure 2.8). These three new eigenfrequencies
come from out-of-plane/torsion modes of deformation which are not considered in the 2D
model developed by Meirovitch. Looking at the relative error between the eigenfrequencies
computed by the finite element model and the analytical model, it makes sense to deduce
that the implemented finite element model has been correctly set up and can be used
subsequently.

Figure 2.8 – Out of plane mode of deformation. From left to right: first mode, third mode, and
fifth mode of deformation.

Frequency f1 f2 f3 f4 f5 f6

Matlab FE model frequency [Hz] 0.7740 1.2899 4.8504 8.0841 13.58 22.64
Analytical model frequency [Hz] / 1.2898 / 8.0835 / 22.8095

Relative error [%] / ≈ 0 / ≈ 0 / -0.8

Table 2.3 – First six natural frequencies obtained using Matlab with 10 elements discretising
the beam, and comparison with the analytical model. Relative error computed assuming

analytical solution frequency being the reference.
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2.3 Conclusion
In this chapter was demonstrated the good implementation of the different structural matrix
and of the centrifugal force using the finite element method. The different mathematical
derivation of the matrices are presented and are validated against results obtained using
a finite element commercial software. The centrifugal force implementation is validated
using an analytical solution and the usage of result obtained using open-source code. The
analysis performed for the single rotating beam is carried out in the static frame of reference.
Therefore, it is now of interest to express the rotating element finite element formulation in
the rotating frame of reference using a time coupling between the rotating elements namely
the blades and the stationary component, the hub. This temporal coupling is the subject
of the third chapter.
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CHAPTER 3

COUPLING BETWEEN STATIONARY AND ROTATING
PARTS

3.1 Preamble
The present work aims to establish a new method to study the whirl-flutter phenomenon.
To do so, a full coupling between stationary and rotating parts of a structure is established.
The coupling is a time dependent coupling. This coupling takes place on the mass matrix,
the gyroscopic matrix, and the centrifugal stiffness matrix. The coupling strategy employed
aims to couple the dynamics of the rotating parts of a structure expressed in the rotating
frame of reference with the rest of the structure, which is expressed in the inertial frame of
reference. Thanks to this coupling, all the dynamics of the structure can be captured and
no information is lost.

According to the author, the implementation of this full finite element coupling strategy
has never been performed or published in the literature before. A recent attempt to perform
partial time coupling on the stiffness matrix using finite element method was made by Zuo
et al.[39] who also employed the Floquet theory to determine the stability of the system
under study. However, they study performed only a partial coupling, not a full coupling
between stationary and rotating parts thus neglecting a lot of the dynamics of the rotating
components.

3.2 Theoretical and mathematical background
The mathematical derivation is mainly based on the work produced by Vollan and Komzsik
[61] with additional information and mathematical development being included.

3.2.1 Full coupling of stationary and rotating parts
Before going into the mathematical derivation of the coupling for the finite element formu-
lation of the problem. It is of interest to understand beforehand, the coupling of particles
of mass m. Less complete types of coupling also exists, they might be useful to capture
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some physical phenomena. However, there are not of interest in the developed model and
therefore only a focus on the full coupling of the particles of mass m is achieved. The cou-
pling of stationary and rotating parts allows translational and rotational displacements on
both stationary and rotating particles. A schematic of the studied coupling is highlighted
in Figure 3.1.
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Figure 3.1 – Schematic of the full coupled stationary and rotating parts. Reproduced from [61].

In Figure 3.1, s, ρ and Aα represents respectively the translation vector of the stationary
part, the translation vector of the rotating part, and the transformation matrix of the
rotational deformation of the rotating part. The location vector of a rotating particle
reads, in its most general form,

r̄ = s + BHr + Hρ+ HAα+ Hr, (3.1)

where the {̄} makes reference to the fixed coordinate system. The matrix B corresponds
to the transformation matrix of the small nodal translations. This matrix reads as

B =

 0 −θ̄ ψ̄

θ̄ 0 −φ̄
−ψ̄ φ̄ 0

 . (3.2)

It is also of interest to introduce the transformation matrix H which allows switching
from a location vector located in the rotating frame of reference to the fixed coordinate
system. This transformation matrix reads

H =

cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1

 . (3.3)

This transformation matrix is only valid for a rotation around the z-axis. One also in-
troduces the matrix A, which is simply the matrix containing the coordinates of rotating
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nodes. This matrix reads

A =

 0 z′ −y′

−z′ 0 x′

y′ −x′ 0

 , (3.4)

, where the notation {’} refers to the coordinates of the rotating mass points.

3.2.1.1 Mathematical properties of the transformation matrix H

It is of interest to introduce some mathematical properties of the transformation matrix H.

HTH =

1 0 0
0 1 0
0 0 1

 = I; (3.5)

Ḣ = Ω

− sin Ωt − cos Ωt 0
cos Ωt − sin Ωt 0

0 0 0

 = ΩH̄; (3.6)

Ḧ = Ω2

− cos Ωt sin Ωt 0
− sin Ωt − cos Ωt 0

0 0 0

 = Ω2 ¯̄H; (3.7)

H̄TH =

 0 1 0
−1 0 0
0 0 0

 = P; (3.8)

HT H̄ =

0 −1 0
1 0 0
0 0 0

 = PT = −P; (3.9)

H̄T H̄ =

1 0 0
0 1 0
0 0 0

 = J = H̄H̄T . (3.10)

To take into account the rotation of the stationary part, it is of interest to rewrite the
second term of Eq.3.1. The following transformations allow the rotation of the stationary
part to be taken into account:
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BHr =

 0 −θ̄ ψ̄

θ̄ 0 −φ̄
−ψ̄ φ̄ 0


 cos Ωt − sin Ωt 0

sin Ωt cos Ωt 0
0 0 1



x
y
z


=

 0 −θ̄ ψ̄

θ̄ 0 −φ̄
−ψ̄ φ̄ 0



x cos Ωt− y sin Ωt
x sin Ωt+ y cos Ωt

z


=


−θ̄(x sin Ωt+ y cos Ωt)
θ̄(x cos Ωt− y sin Ωt)

−ψ̄(x cos Ωt− y sin Ωt) + φ̄(x sin Ωt+ y cos Ωt)


=

 0 0 −x sin Ωt− y cos Ωt
0 0 x cos Ωt− y sin Ωt

x sin Ωt+ y cos Ωt −x cos Ωt+ y sin Ωt 0



φ̄

ψ̄

θ̄


= B0β.

(3.11)

As a result, the augmented generalised coordinate vector reads

g =



s
β
ρ
α
r


, (3.12)

and the governing matrix M of the motions becomes

M =
[

I B0 H HA H
]
. (3.13)

The Lagrange equations are not rewritten in this particular case, but will be in the next
sub-section, when applied to the finite element method.

3.2.2 Finite element coupling of stationary and rotating parts
Now that the basic mathematics related to the coupling between stationary and rotating
parts have been established, it is of interest to apply it to the finite element formulation
of the problem. In the fully coupled behavior presented before, the offset vector of the
stationary part ρ and the vector β respectively produce the degrees of freedom of a node of
the stationary part. As for the stationary part, the offset vector ρ and the rotation vector
α produce the degrees of freedom of a node of the rotating structure.

It is important to note that the rotation, in finite element, using Euler-Bernoulli 3D
beams elements, is given via the type of element chosen and the discretisation of the studied
structure. Consequently, the term A α in the generalised coordinate vector of the rotating
part should no longer be considered. In addition, the position of a mass located at a distance
r from its center of rotation will never vary, therefore the term corresponding to Hr in Eq.
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3.1 will also cancel out. Therefore, the position vector of a rotating structural component
with respect to a stationary component is written as

r̄ = s + BHr + (I + B)Hρ. (3.14)

An energetic approach is adopted to identify the matrices on which time coupling takes
place.

3.2.2.1 Potential energy

The potential energy of a structural system that undergoes elastic deformation reads

U = 1
2

∫
V

(σ0 + σ)T (ϵ+ ϵl) dV ; (3.15)

= 1
2

∫
V
σT0 ϵ+ σT0 ϵl + σTϵ+ σTϵl dV, (3.16)

where σ0 and ϵl represent the initial stresses and large deformation due to the initial
pre-stressed structure in rotation. The first and last products are ignored as they can
be considered as second-order small quantities, having little impact on the finite element
structure. Therefore, the potential energy reads

U = 1
2

∫
V
σT0 ϵl dV + 1

2

∫
V
σTϵ dV. (3.17)

Assuming that the material used remains within its elastic deformation range, the link
between the constraint and the deformation is established by the material matrix E, which
contains the Young’s modulus and Poisson ratio relative to the material used. The second
integral in Eq.3.17 represents the potential energy of the structure. By using the relationship
between the nodal generalised displacement ϵ = Bg and the relationship between strain
and stress, the potential energy related to elastic deformation reads

UE = 1
2

∫
V

gTBTEBg dV. (3.18)

As the aim is to build the Lagrange equation of motion in finite element formulation, the
potential energy is derived with respect to the generalised coordinate

dUE
dg

=
∫
V

BTEBg dV = K g. (3.19)

This equation highlights the fact that no coupling in the elastic stiffness matrix takes place
when taking into account the coupling between stationary and rotating parts.

The first term of Eq.3.17 corresponds to the potential energy of the structure due to
initial stress. Initial stress comes from a pre-loading of the structure. In the case of a
rotating structure, the initial stress comes from the pre-loading due to centrifugal force in
the rotating frame of reference. As a result, it reads

UG = 1
2

∫
V

(σT0 ϵl) dV = 1
2

∫
V

eTl σ0el dV. (3.20)
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where σ0 contains the initial stress of the structure. The vector el = Bg contains the
displacement via the derivative of the shape function. Therefore, the derivative of the
initial stress-based potential energy yields

dUG
dg

=
∫
V

B′Tσ0B′g dV = Ω2KG g. (3.21)

Like the elastic stiffness matrix, the geometric stiffness matrix contains no coupling between
the rotating and static sub-structures.

3.2.3 Kinetic energy
The kinetic energy of a coupling of a structure undergoing a full coupling between stationary
and rotating parts reads

T = 1
2

∫
V
ρ ˙̄rT r̄ dV. (3.22)

The expression of the displacement vector with respect to the stationary parts reads
r̄ = s + BHr + (I + B)Hρ+ Hr, (3.23)

where the rotation of the rotating parts is neglected as the rotation is brought via the finite
element discretization. In addition, it is assumed that the location vector r is fixed and
does not vary with respect to time. Therefore, the velocity vector reads

˙̄r = ṡ + ḂHr + BḢr + Ḣρ+ IHρ̇+ ḂHρ+ BḢρ+ BHρ̇+ Ḣr. (3.24)

By using the relationship
BHr = B0β, (3.25)

the governing coupling matrix then writes
M =

[
I B0 H

]
. (3.26)

Therefore, the kinetic energy writes

T = 1
2m(ġTMTMg + gTṀTṀg + 2gTṀTMġ). (3.27)

However, a finite element approach to the problem is being formulated. Consequently, in the
finite element formulation, mass m is replaced by density ρ, and the generalised coordinate
vector g is expressed as a function of the shape functions matrix N, which depend solely on
space variable, and the nodal displacement vector u(t), which depends on time. Therefore,
the kinetic energy in finite element formulation with coupling matrices writes

T = 1
2ρ
∫
V

NT u̇TMTMNu̇ + NTuṀTṀNu + 2NTuṀTMNu̇ dV. (3.28)

Analysing the previous equation, different characteristic matrix expressions can be identi-
fied. In fact, the first term corresponds to the mass matrix expression in finite element while
having added a coupling product to its formulation. The second term corresponds to the
coupled formulation of the centrifugal stiffness matrix. Finally, the last term corresponds
to the coupled formulation of the gyroscopic matrix.

Therefore, it is concluded that a coupling only originates, in a floating frame of reference
formulation, in the mass matrix, centrifugal stiffness matrix, and gyroscopic matrix.

38
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3.2.3.1 Lagrange equation of motion

Making use of all the previously established relationships, it is possible to derive the La-
grange equation of motion for the fully coupled case. The equation is not written in finite
element formulation, so as to have a more readable solution and to highlight the coupling
matrices. To obtain the finite element formulation of the equation, the mass m must be
replaced by the density and the volume of the element studied. Therefore the Lagrange
equation of motion reads, in the fully coupled case,

m

 I B0 H
BT

0 BT
0 B0 BT

0 H
HT HTB0 I




s̈
β̈
ρ̈

+ 2mΩ

0 B̄0 H̄
0 BT

0 B̄0 BT
0 H̄

0 HT B̄0 HT H̄




ṡ
β̇
ρ̇


+mΩ2


0 ¯̄B0

¯̄H
0 BT

0
¯̄B0 BT

0
¯̄H

0 HT ¯̄B0 HT ¯̄H




s
β
ρ

 =


−m ¯̄Hr
−mBT

0
¯̄Hr

fρ

 ,
(3.29)

where the different component in the vector on the right-hand side of the equation cor-
responds to the various forces applying to the system under study. The first force is an
unbalanced force, the second one corresponds to a Coriolis force and the third one being
the centrifugal force.

3.3 Numerical implementation of the coupling between
stationary and rotating parts

3.3.1 General considerations
The main difficulty of this thesis, in addition to the understanding of the phenomena
involved, is the implementation of the coupling between stationary and rotating parts of the
structure. To simplify the explanation of the numerical implementation of the coupling, one
defines the different sub-structures that can be encountered. The different sub-structures
that can be encountered are

• the stationary structure;

• the hub;

• the rotating structure(s).

The stationary consist of a structure composing the global structure. For a wing propeller
system, the wing would be the stationary structure. The hub is the attachment point of the
rotating structures. The hub is the stationary part of the coupling in the previous section.
Finally, the rotating structures are the structure rotating and mechanically linked to the
hub. In the present study, the rotating structures are not linked to each others anywhere
other than at the hub node. Therefore, the dynamics of each of the rotating structures
cannot influence the dynamics of the other rotating structure except at the hub node. A
schematic of the implementation to derive the equations of motion is represented in Figure
3.2.
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3D Euler-Bernoulli beam elements

Stationary structure
matrices

computation in the
fixed frame of reference

Rotating structure
matrices

computation in the
rotating frame of

reference

Assembled system matrices in the
fixed-rotating

frame of reference

System equations of motion

Figure 3.2 – Schematic of the implementation to derive the equation of motion. Partially
reproduced from Zuo et al [39].

3.3.2 Time coupling implementation and assembly strategy
The formulation of the coupling between stationary and rotating parts is well established
when dealing with particle of mass m. However, concerning its finite element formulation
and especially its implementation and the matrices assembly, it is a void. A representation
of an assembled structural matrix constituting the equation of motion of the studied system
is represented in Figure 3.3. Analysis of the Figure 3.3 reveals the coupling between the
rotor hub and the rotating structures, as well as the coupling between the rotating structure
and the rotor hub. All this shows that the coupling only affects the rotating system and
not the stationary structure.

It is important to pay attention to a few details: The different coupling matrices are
expressed in the rotating frame of reference. However, the different matrices are computed
at the element level. Therefore, the different coupling matrices must be transformed to
the element frame of reference via the transformation matrix Re before being used to
build the finite element elementary matrices. The transformation of the different coupling
matrices is used to take into account the phase shift between each rotating part. This
phase shift between each rotating part is important and must be respected in order to
correctly represent the physics of the system under study. An algorithm presenting an
implementation of the coupling is available in Appendix F.

Looking at the different boundary conditions, in the rotating frame of reference, the
rotating elements are clamped to the hub. In addition, in the fixed frame of reference, the
studied structure also has its own boundary conditions, influencing the assembly of the
different matrices. Finally, the addition of the mass in rotation to the corresponding degree
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Figure 3.3 – Representation of a structural matrix undergoing time coupling between the
rotating structure and the hub. The different rows and columns (not represented) of the matrix

represents the different degrees of freedom of the complete structure.

of freedom of the hub, in the fixed-rotating frame of reference must be accomplished to fully
take into account the physical phenomena. This addition of mass must be made. If this
is not achieved, the system dynamics obtained will be incorrect. This must be done when
using partial coupling, i.e. when only the translational degrees of freedom of the rotating
structures are coupled with those of the hub, but also when the full coupling is performed,
i.e. when the translational degrees of freedom of the rotating structure are also coupled
with the rotational degrees of freedom of the hub. When a full coupling is used, the inertia
of the rotating structures must be added to the rotational degrees of freedom of the hub in
order to correctly represent the physics of the problem.

3.4 Validation of the coupling

The aim now is to validate this mechanical coupling and to validate the time integration
scheme employed. In order to achieve this, a validation of the temporal integration on a
Ground resonance (GR) model is proposed for a rigid model but also offering temporal
coupling. Subsequently, the mechanical coupling is also validated on a GR model but with
the finite element method by applying the procedure presented previously. Furthermore, a
validation of the unbalanced force is proposed. Finally, an attempt to validate the complete
time coupling is carried out.
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3.4.1 Coupling validation model: Ground resonance model

In the first instance, the aim is to partially validate the coupled finite element model
established previously. The coupling is tested on a ground resonance model established by
Hammond et al [62]. The studied model is represented in Figure 3.4.

kx

e

Ω

cx

k
y

c y

ζi

Figure 3.4 – Validation case: Ground resonance model. Reproduced from Hammond et al [62].

The different parameters used to perform the validation are available in Table 3.1.
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Parameter Value Units
Number of blade N 4 -

Rotor radius R 5.64 m
Operational rotor speed Ω0 31.42 rads−1

Blade mass mb 94.9 kg
Blade mass moment Sb 281.1 kg m

Blade mass moment of inertia Ib 1084.7 kg m2

Lag hinge offset e 0.3048 m
Longitudinal hub mass Mx 8026.6 kg

Lateral hub mass My 3283.6 kg
Longitudinal hub spring kx 1240481.08 N/m

Lateral hub spring ky 1240481.08 N/m
Lag damper cb 4067.5 mNs/rad

Table 3.1 – Ground resonance model parameters (Hammond et al [62]).

3.4.1.1 Rigid model

A rigid model has already been developed by former student Sviatoslav Tezikov [63]. In
his work, a rigid model is studied which does not take into account the deformation of
the helicopter blades and therefore their potential impact on the stability of the system
under study. The equations governing the motions of such a system have been derived by
Hammond [62] and read

(mx +Nmb)ẍh + cxẋh + kxxh = Sb
N∑
i=1

[
(ζ̈i − Ω2ζi) sinψi + 2Ωζ̇i cosψi

]
;

(my +Nmb)ÿh + cyẏh + kyyh = −Sb
N∑
i=1

[
(ζ̈i − Ω2ζi) cosψi − 2Ωζ̇i sinψi

]
.

This system of equations consists of N+2 differential equations which are coupled. The
periodic coefficient arise because the blades equations are developed in a rotating frame
of reference whereas the hub equations are developed in a fixed frame of reference. An
alternative consist of writing the hub equations of motion in the rotating frame of reference.
The equations thus read:

¨̄x+ ηh ˙̄x+ (ω2
h − Ω2)x̄− 2Ω ˙̄y − Ωηhȳ = ν2

h

N∑
j=1

[
(ζj − Ω2ζj) sin 2π

N
(j − 1) + 2Ωζj cos 2π

N
(j − 1)

]
;

¨̄y + ηh ˙̄y + (ω2
h − Ω2)ȳ + 2Ω ˙̄x+ Ωηhx̄ = −ν2

h

N∑
j=1

[
(ζj − Ω2ζj) cos 2π

N
(j − 1)− 2Ωζj sin 2π

N
(j − 1)

]
,
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where the bar notation refers to the global frame of reference and where the following
parameters have been introduced

ν2
h = Sb

mx +Nmb

;

ω2
h = kx

mx +Nmb

;

ηh = cx
mx +Nmb

.

3.4.1.2 Validation of the different numerical schemes

Again intending to validate the various tools used in the validation of the different finite
element models, it seeks to validate the numerical integration schemes employed. To achieve
this, the various previously presented numerical schemes are tested and compared to results
available in the literature. The different results obtained with the various numerical schemes
are highlighted in Figure 3.5, Figure 3.6, Figure 3.7 and Figure 3.8.
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Figure 3.5 – Relative modal damping ratio
obtained using Newmark integration scheme

using rigid model.
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Figure 3.6 – Relative modal damping ratio
obtained using Runge-Kutta integration

scheme using rigid model.
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Figure 3.7 – Relative modal damping ratio
obtained using Newmark V2 integration

scheme using rigid model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.05

0

0.05

Figure 3.8 – Relative modal damping ratio
obtained using α generalised integration

scheme using rigid model.
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The different numerical schemes employed provide results in agreement with results
presented by Ignacio et al in [64].The different results are obtained neglecting the exter-
nal damping on the hub cx and cy and the blade damping cb, but taking into account the
coupling term corresponding to the gyroscopic term . However, one can observe that the
results obtained using the Runge-Kutta integration scheme are quite different from the ones
obtained using the Newmark integration scheme. In fact, the zone of instability which cor-
responds to a positive modal damping is larger than the zone of instability obtained using
the Newmark integration scheme. In addition, the Newmark integration scheme detects
two zones of instability, each separated by a stability zone. These results seem to be more
in accordance with results obtained in the literature. The difference in the instability zone
is probably coming from the particularity of the different integration schemes. In fact, the
Runge-Kutta integration scheme employs a variable time step to limit the relative error be-
tween two integration steps whereas the Newmark integration scheme employs a constant
time step. The results obtained using α generalised numerical scheme are a bit higher than
the one obtained using Newmark numerical scheme but this is due to the fact that the
spectral radius is taken into in the computation of the value of the parameter β and γ of
the scheme, which makes them different from the one of the Newmark scheme.

Although Floquet theory and the analysis of Floquet exponents have enabled us to
conclude whether the rigid model under study is stable or not, it is interesting to study the
behavior of the dynamic system under study at a speed of rotation concluded by Floquet
theory to be stable or unstable. To do so, the Newmark integration scheme is employed
using as an initial condition an initial displacement, over one blade, of 0.001 m and no initial
velocity. Figure 3.9 and Figure 3.11 each represent the movement in the x and y degrees of
freedom plane of the hub. It can be seen that when the rigid system is rotated at a speed
of 3 rad/s, which is a stable speed according to Floquet theory, the movement remains
bounded around its equilibrium position, which is confirmed by analyzing the movement
over ten periods of revolutions (Figure 3.10), whereas when this system is rotated at a speed
of rotation said to be unstable by Floquet’s theory, it can be seen that the hub’s movement
is not bounded and could lead to its destruction if operated at this speed of rotation. This
critical behavior is visible when looking at Figure 3.12, when the movement of the hub is
studied over ten periods of revolution of the propeller.

Now that the time integration has been validated for the rigid model without damping,
it is of interest to analyse the behavior of the GR model when damping is present on
the various blades and when the hub has isotropic damping. Figure 3.13 and Figure 3.14
highlights the behavior of the system when taking into account the damping acting on the
blade but also on the hub. Results highlights an unconditional stability stability of the
system. In addition, the obtained results are in accordance with results obtained in the
literature by [62]. It is clear that the results obtained are not the same but this is due to
the fact that the integration scheme is not the same and that the relative error and absolute
error can be controlled when using Runge-Kutta integration scheme, which is not the case
when using the Newmark scheme.

To illustrate the stable behavior predicted by Floquet exponents, one can also analyse
the behavior of the displacement of the system when subject to an unitary displacement on
the hub in the x direction. The behavior obtained when using Newmark integration scheme
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Figure 3.9 – Hub displacement over one period
of revolution when rotor rotating at Ω = 3 rad/s.
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Figure 3.10 – Hub displacement over ten peri-
ods of revolution when rotor rotating at Ω = 3
rad/s
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Figure 3.11 – Hub displacement over one pe-
riod of revolution when rotor rotating at Ω = 30
rad/s.
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Figure 3.12 – Hub displacement over ten peri-
ods of revolution when rotor rotating at Ω = 30
rad/s

are highlighted in Figure 3.15.
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Figure 3.13 – Relative modal damping ratio
obtained using Newmark integration scheme

using rigid model with dampers acting on the
hub and on the different blades.
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Figure 3.14 – Relative modal damping ratio
obtained using Runge-Kutta integration

scheme using rigid model with dampers acting
on the hub and on the different blades.
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Figure 3.15 – Displacement of the hub in the X direction for an initial displacement of 1m on
the hub in the X direction. Comparison between the Newmark integration scheme and

Runge-Kutta integration scheme.

3.4.1.3 Finite element model

Now that the different results characterising the ground resonance model have been es-
tablished for the rigid problem, the finite element implementation is studied. To get as
close as possible to the rigid model, partial coupling is used. In other words, we will only
consider a coupling between the degrees of freedom in translation of the elements located
on each of the blades and those of the hub, and vice versa. Consequently, the coupling
terms on the rotational degrees of freedom of the hub, which is the static part, are ne-
glected. Consequently, the Lagrange equation characterising the dynamics of the system in
the fixed-rotating frame of reference reads:

47



CHAPTER 3. COUPLING BETWEEN STATIONARY AND ROTATING PARTS

m

[
I H

HT I

]{
σ̈
ρ̈

}
+ 2mΩ

[
0 H̄
0 HT H̄

]{
σ̇
ρ̇

}
+mΩ2

0 ¯̄H
0 HT ¯̄H

{σ
ρ

}
=
{
−m ¯̄Hr

fρ

}
. (3.30)

To get as close as the rigid model, an equivalent beam model is used. The different material
et beam properties are highlight in Table 3.2. The properties of the fuselage remaining
unchanged.

Parameter Value Units
Number of blade N 4 -

Rotor radius R 5.64 m
Operational rotor speed Ω0 31.42 rads−1

Beam diameter D 0.026 m
Young modulus 210 GPa

Density 7800 kgm3

Poisson coefficient 0.3 -

Table 3.2 – Ground resonance equivalent model parameters for finite element formulation of the
problem.

The aim of this subsection is therefore to validate the implementation of the partial
coupling via comparing the obtained results with the one obtained with the rigid model,
keeping in mind that the previously obtained results are the obtained under the assumption
of a rigid model, therefore neglecting a large part of the dynamics of the system under study
and its stability.

When different numerical integration schemes are used with the finite element model,
the results obtained are not always consistent. The use of the Newmark integration scheme
indeed leads to different solutions than the Runge-Kutta integration scheme. Observing
the modal damping ratio behavior with the Newmark scheme for the undamped case in
Figure 3.16, one can notice that for relative rotor speeds greater than 0.3 the system is
unstable with very large modal damping ratio values that make very little physical sense.
The Runge-Kutta integration scheme, on the other hand, predicts total system stability
over the speed range tested in Figure 3.17. In fact, all the relative modal damping ratios
have a negative real part, which allows to conclude that the system studied is stable. The
values obtained for the modal damping are all negative but all very close to zero. Since it is
the undamped case that is being studied, these values are due to numerical noise introduced
by the Runge-Kutta integration scheme.

Looking at the results obtained for the damped case in Figure 3.18 and Figure 3.19, one
can remark that the solution obtained for the damped is similar as the one obtained for the
undamped case, meaning that the system is unstable even when damping is introduced in
the system. Furthermore, Figure 3.19 highlights similar stability conclusion as the results
obtained with the rigid model, with the difference that now the different blades can deform
in the finite element model. One can see that the different relative modal damping of the
different blades coincides. This result in not surprising as the different blades all have the
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same material properties ,are modeled using the same number of element on each blades and
the different blades are connected via a same node (the hub) which is also an assumption
made in this study.
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Figure 3.16 – Relative modal damping for the
undamped case using Newmark integration

scheme.
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Figure 3.17 – Relative modal damping for the
undamped case using the Runge-Kutta

integration scheme.

Figure 3.18 – Relative modal damping for the
damped case using Newmark integration

scheme.
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Figure 3.19 – Relative modal damping for the
damped case using the Runge-Kutta

integration scheme.

A further way of supporting the validation of the partial coupling is to observe the
imaginary part of gamma as a function of relative rotor speed when using the implemented
finite element model and compare this with the rigid model. Figure 3.20 and Figure 3.21
both show similar behavior. The different points in each mode are not connected to keep
the different graphs legible. The behavior of the two models is similar, although more
modes are present with the finite element model because the number of degrees of freedom
is greater with the finite element model. In addition, there are more crossings with the 0
axis in the case of the finite element model compared to the rigid model. The crossings
with the 0 axis, i.e. going from an imaginary part which is positive to negative and vice
versa, correspond to a transition from one type of oscillation to another. There are more
crossings with the 0 axis when using the finite element model. This is due to the fact that
the finite element model describe the studied structure more accurately. This increase in
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the number of modes can therefore lead to more complex and more frequent interactions
between modes, resulting in a greater number of transitions (sign changes) in the imaginary
part of Γ.
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Figure 3.20 – Evolution of the imaginary part
of Γ as a function of the rotor speed for the

damped case using the rigid model.
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Figure 3.21 – Evolution of the imaginary part
of Γ as a function of the rotor speed for the
damped case using the finite element model.

One might question the fact that the results obtained with Runge-Kutta predict a
stability of the system studied using the finite element model. However, this result is
not surprising at all when knowing that taking into account the flexibility of both the
rotating and static parts improves the stability prediction of the system studied. The
results obtained using Runge-Kutta integration scheme with the finite element model are
produced after conducting an relative error sensitivity of the results. In fact, the numerical
scheme is resolved for a rotation speed being unstable in the rigid case. In this case, a
rotation speed of 27 rad/s is selected. The numerical scheme is computed using an initial
unit displacement on the hub along the X direction and the response of the first blade at
the tip along the Y direction is observed. The results obtained for the undamped case are
highlight in Figure 3.22 and in Figure 3.23.

It is clearly visible that admitting a relative error too large leads to an unstable system
response but as soon that the relative error decrease to 10−2 %, the undamped system
remains stable following the unit solicitation on the hub. The main problem with the Runge-
Kutta integration scheme is its computational cost. In fact, as all the structural matrices
have to be computed by solving the integral defining them, the number of integration
that must be undertaken is very large and so as the computational cost associated to this
computation (Figure 3.24). The CPU time is obviously lower than the real time taken to
compute the different solution at the different relative rotor speed as it is only the time
during which the CPU was used to do computation. Therefore, the following computation
using Runge-Kutta integration scheme will be done using a relative error of 10−6 % which
is a compromise between precision and computational time.
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Figure 3.22 – Relative error analysis using
Runge-Kutta integration scheme for the

undamped. Comparing the displacement in the
Y direction at the tip of blade n°1 at Ω = 27

rad/s.
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Figure 3.23 – Relative error analysis using
Runge-Kutta integration scheme for the

undamped case. Comparing the displacement
in the Y direction at the tip of blade n°1 at Ω

= 27 rad/s for different relative error.
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Figure 3.24 – CPU time for the computation of the undamped case using Runge-Kutta
integrartion scheme.

When using the Newmark integration scheme, a similar analysis as the one performed
using Runge-Kutta can be performed. As the Newmark integration scheme uses a constant
time step, to achieve a consistent analysis, it is of interest to perform an analysis over
the number of steps in which it is desired to fragment the time interval of the period of
revolution.

The results in Figure 3.25 and Figure 3.26 show a total divergence of the response of
the system to a step increment on the hub in the X-direction whether with the undamped
model or the damped model. This results is totally surprising as it does not agree with what
is observed when using Runge-Kutta integration scheme. In fact, taking into account the
blades deformation can deform should increase the stability of the studied system compared
to the rigid solution. There are several potential reasons to explain this divergence in results
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Figure 3.25 – Displacement of the first blade
after a unit initial displacement on the hub
along X direction for an undamped system.

Comparison between different discretisation of
the time interval.
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Figure 3.26 – Displacement of the first blade
after a unit initial displacement on the hub

along X direction for a damped system.
Comparison between different discretisation of

the time interval.

compared to the one obtained with the rigid model:

• The Newmark scheme may not be sufficiently stable or suitable, especially for systems
with high modal frequencies or non-linear behavior.

• The conditioning of the resulting matrices following numerical coupling may also
partly explain this discrepancy in the results obtained with the Newmark integration
scheme.

As a result, it can be concluded that the Newmark integration scheme is not suitable to
be used when studying the stability of linear time periodic system with the finite element
method.

3.4.2 Coupling validation model: Rotating shaft
The next structure being studied with the aim to validate the previously established finite
element model is a rotating shaft composed of a rotating shaft and four blades attached at
its center. The studied structure is represented in Figure 3.27.

Ω

Hub

Shaft

Blade

Hub

Ω

Blade

Figure 3.27 – Schematic of the rotating shaft. Left side - side view. Right side - front view.
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This final model consists at validating the complete coupling between stationary and
rotating structures. In this case, the Lagrange equations of motion reads

m
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0 BT
0 B0 BT
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fρ

 .
(3.31)

Therefore, it means that now the full dynamic of the rotating structures is being taken into
account. There is a coupling between the degrees of freedom in translation of the rotating
components and the degrees of freedom in translation of the hub but also a coupling between
the degrees of freedom in translation of the rotating components and the degrees of freedom
in rotation of the hub. Regarding the boundary condition imposed, in the fixed frame of
reference, the shaft is clamped at both ends whereas in the rotating frame of reference, the
blades are clamped to the hub. The different dimensions and material being used for this
validation are available in Table 3.3.

Parameter Value Units
Blade length 2 m

Blade Young modulus 75.76 GPa
Blade Poisson coefficient 0.42 -

Blade’s cross section 2500 mm2

Rotation shaft length 1 m
Rotation shaft Young modulus 200 GPa

Rotation shaft Poisson coefficient 0.3 -
Rotation shaft cross section 31414 mm2

Table 3.3 – Rotating shaft model parameters.

The material constituting the blades is gold has it is wanted to have blades as heavy
as possible and with a Young modulus different from the one of the shaft to prevent mode
coalescence between the blades and the shaft. The results obtained via the developed finite
element code are partially compared to results obtained using Ansys. Even though Ansys
performed its analysis in the fixed frame of reference and without taking any time coupling
on the rotating structure, the obtained results are good indicator on whether or not the
developed code is well implemented. To compare the results, Campbell diagram are used.
In order, to gain in computation time, only 1 element per rotating blades is taken into
account. Although this is a fairly onerous assumption, it should not overly endorse the
stability result obtained. In addition, the results of the Campbell diagrams start at 50
rad/s for obvious reasons of saving computing time. It goes without saying that having the
evolution of the different modes of the structure from 0 rad/s would help this case to be
fully validated. The obtained results using the developed finite element model are highlight
in Figure 3.28 and Figure 3.29.
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Figure 3.28 – Evolution of the modal damping
with respect to the rotation speed of the shaft.
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Figure 3.29 – Evolution of the imaginary part
of Γ as a function of the rotor speed of the

shaft.

The results obtained start at a rotation speed of 50 rad/s in order to save calculation
time. As the number of degrees of freedom in the analysis of this model is greater than for
the GR model, the calculation times are longer and as the necessary computing power is not
available, the study is carried out over an interval of 50 rad/s to 500 rad/s by segmenting
the interval into 10 values. The analysis of Figure 3.28 shows the stable behavior of the
structure studied with the finite element model developed. In addition, the obtained value
for one mode strongly negative, meaning that this mode of vibration is over-damped. In
addition, the relative modal damping ratio remains constant and oscillates slightly around
its mean position as the speed of rotation increases, suggesting that this structure is highly
stable as the speed of rotation increases. Looking at Figure 3.29, one can see that the
imaginary part of Γ continues to grow as a function of the speed of rotation. This means
that the natural frequencies of the modes diverge more and more as the speed of rotation
increases. The increase in frequencies with rotation speed is linked to gyroscopic effects,
which tend to increase the natural frequencies of certain modes but also to the complete
coupling between the degrees of freedom of the rotating elements and the degrees of freedom
of the hub which perfectly models the dynamics of the studied structure.

The original aim of this validation was to validate the implementation of the complete
coupling between stationary and rotating elements by comparing the solution obtained by
the implemented model and results of Ansys. However, Ansys does not offer suitable
results as the stability analysis is performed in a static frame of reference therefore totally
neglecting the time varying coupled term that are used for the complete coupling with
the implemented finite element code. Therefore, the results obtained via Ansys are not
exploitable to validate the complete coupling model. Although the results provided by
Ansys cannot be exploited directly, the stability indication can serve as an indicative basis.
In fact, Ansys predicts the stability of the system studied over the speed range studied,
thereby supporting the conclusion drawn previously. The results obtained using Ansys
are available in Table 3.4. The results highlight the fact that there is no mode coalescence
between the modes of the shaft and the one from the blades. To fully validate this model,
a link between the modes obtained using Ansys and the one obtained using the Floquet
theory must be established but this is outside the scope of this master thesis and therefore
must be investigated in a future work.
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Stability Mode Type 100 Hz 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz
Stable 1 Torsion 48.352 Hz 48.352 Hz 48.352 Hz 48.352 Hz 48.352 Hz 48.352 Hz
Stable 2 BW 132.62 Hz 132.61 Hz 132.6 Hz 132.59 Hz 132.58 Hz 132.42 Hz
Stable 3 FW 132.62 Hz 132.62 Hz 132.63 Hz 132.64 Hz 132.65 Hz 132.81 Hz
Stable 4 BW 298.59 Hz 298.57 Hz 298.49 Hz 298.43 Hz 298.38 Hz 297.27 Hz
Stable 5 FW 298.59 Hz 298.62 Hz 298.7 Hz 298.75 Hz 298.8 Hz 299.9 Hz
Stable 6 Bending 387.83 Hz 387.83 Hz 387.83 Hz 387.83 Hz 387.83 Hz 387.83 Hz

Table 3.4 – Ansys results for different rotation speeds. BW = backward whirl, FW = forward
whirl.

3.4.3 Unbalanced force validation
The unbalanced force can be validated using an analytical solution as a reference solution.
To do so, consider a system similar to the ground resonance model presented in Figure 3.4
except that the model is now no longer composed of four blades but of one single blade.
The unbalanced force takes its origin with the combination of two phenomena. The first
one is when the axis of inertia of the studied system is parallel to the axis of rotation. The
second one is when the axis of inertia of the studied system and the axis of rotation are
secant to each other. The analytical solution corresponding to an unbalance force reads

Fx = mRω2 cos(ωt), (3.32)
Fy = mRω2 sin(ωt). (3.33)

The finite element equation characterising the unbalance force reads:

Fu = −NT ¯̄Hr. (3.34)

Figure 3.30 and Figure 3.31 both highlights the perfect correlation between the finite
element solution implemented and the analytical solution. This correlation can be seen
for both the Fx and FY forces. Therefore, it is safe to conclude that the finite element
implementation of the unbalanced force via the developed finite element code is correct and
can be used safely.
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Figure 3.30 – Unbalanced force along X
direction. Comparison between analytical

solution and finite element solution.
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Figure 3.31 – Unbalanced force along Y
direction. Comparison between analytical

solution and finite element solution.

3.5 Conclusion
This chapter demonstrated an innovative way to couple rotating structures to a static
one by using finite element formulation and expressing rotational structures in a floating
frame of reference. The different integration scheme that could be used are validated on
the basis of results available in the literature for a ground resonance model. The partial
coupling between the rotating structures and the stationary one is validated also using a
ground resonance model. In this validation was demonstrated the inability of the Newmark
scheme to converge to stability for the finite element formulation whereas Runge-Kutta
time integration scheme was able to converge to a stable solution but at the cost of a very
long computation time. Finally, an attempt to validate the full time coupling between
stationary and rotating structures is performed on a structure consisting of a shaft and
four blades. It is unable to fully validate the full time coupling as the commercial software
performs its stability analysis in the static frame of reference.However, the two formulations
of the problem both predict the stability of the system at the rotation speeds tested, which
suggests that the coupling has been correctly implemented. Finally, Finally, the finite
element implementation of the unbalance force is validated on the basis of an analytical
solution of the unbalance force for a single clamped rotating beam.
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CHAPTER 4

TEST CASE OF A WING PROPELLER SYSTEM

The objective of this section is to apply the finite element model previously developed and
apply it to an aerospace structure. In order to carry out a complete study of this system
and to validate the various elements making up this structure, a modal analysis of a wing is
achieved. Finally, the validated partial coupling is applied to a wing and propeller structure
and the results are analysed.The aim of this chapter is to apply the previously established
and validated finite element model coupling.

4.1 Standalone wing
The first structure being studied in this chapter is a wing clamped at the root. In order to
validate this model, a Goland wing (Goland and Buffalo [65]), a type of wing extensively
studied since its creation in the 1940s, is referred to in this context. The Goland wing’s
properties are referred to in Table 4.1. Examining this type of wing allows for the validation

Parameter Value Units
Half span b/2 6.096 m

Chord c 1.8288 m
Mass per unit of length m 35.71 kg/m

Span-wise elastic axis 33%/chord -
Center of gravity 43%/chord -

Spanwise bending rigidity 9.77 · 107 Nm2

Torsional rigidity 0.987 · 107 Nm2

Table 4.1 – Mechanical Properties of the Goland wing.

of both the finite element model that describes the structure’s dynamics. Span-wise elastic
axis and center of gravity positions value being expressed from the leading edge of the wing.

The equation describing the motion of the wing in a static frame of reference reads

Mq̈w + Cq̇w + Kqw = fw. (4.1)
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4.1.0.1 Eigenfrequencies computation of the undamped wing

The eigenfrequencies of the undamped wing and their related mode shape are of interest
in the case of the whirl flutter phenomenon. Therefore, it is of interest to compute them.
The wing equation of motion undergoing free vibration about a stable equilibrium position
is given by

Mq̈w + Kqw = 0. (4.2)
One can then solve the eigen value problem

Kx = ω2Mx. (4.3)

A convergence study is performed over the number of elements constituting the structure;

A total number of 20 elements constituting the beam is chosen. The results obtained
with the Matlab model are highlighted in Table 4.2

Frequency f1 f2 f3 f4 f5 f6

Matlab model frequency [Hz] 7.8765 14.9369 44.8519 49.3612 74.8895 105.1326
Reference FEM model [66] [Hz] 7.664 15.245 39.053 55.583 72.276 /

Relative error [%] 2.77 -2.02 14.93 -11.19 3.61 /

Table 4.2 – First six natural frequencies obtained on Matlab with 20 elements discretising the
beam. Comparison with the FEM model developed by Akpinar [66]. Relative error computed

assuming FEM model of Akpinar being the reference.

By analysing the obtained results and their relative error compared to a reference in
Table 4.2, it is visible that there is a good correlation between the established Matlab
model and the reference FEM model on which the relative error is computed. A relative
error of less than 3%, in absolute terms, is obtained on the first two frequencies, which
can be considered sufficient to validate the accuracy of the model created. Moreover, the
lowest relative error is reached on these frequencies. This is important given that the first
bending and torsion modes of the wing impact the dynamic behavior of the wing-propeller
system, which will be studied later. Looking at third and fourth eigenfrequencies, a larger
relative error is achieved. This is mainly due to the type of finite element chosen. In
fact, the Matlab model developed is based on 3D Euler-Bernoulli elements whereas the
reference obtains its results using a 2D finite element formulation. In addition, the first
corresponding bending mode obtained with the developed model is in agreement with the
reference. The first torsional mode cannot be concluded as the wing is modeled as a simple
beam with wing inertia properties.

4.1.1 Wing aerodynamics
In this section, the main theories used to calculate the aerodynamic forces on a wing and
on a propeller are presented, but will not be applied in the rest of this project.

4.1.1.1 Theodorsen’s theory

The theory developed by Theodorsen [67] is a 2D theory which models the unsteady lift
on bi-dimensional flat plate with a simple harmonic motion. The main assumption of
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Theodorsen’s theory is that attached flow conditions are always assumed, the wake is mod-
eled via a planar wake meaning that the movement of the wake is directly linked to the
movement of the freestream. The effect effect of the wake history changes the circulation
of the fluid around the flat plate. The bi-dimensional lift force and pitching moment for a
flat plate in a freestream of density ρ and speed V reads

L = πρb2(ḧ+ V α̇− baα̈) + 2πρV bC(k)w, (4.4)

M = πρb2
[
abḧ− V b

(1
2 − a

)
α̇− b2

(1
8 + a2

)
α̈
]

+ 2πρV b2
(
a+ 1

2

)
C(k)w, (4.5)

where b is the airfoil semi-chord, h is the vertical displacement of the airfoil, α is the rotation
of the airfoil about the elastic axis, a is the relative location of the elastic axis compared
to the semichord, and w is the total aerodynamic downwash at the three quarter chord
position in the airfoil. The total aerodynamic downwash reads

w = ḣ+ V α+ b
(1

2 − a
)
α̇. (4.6)

Finally, the term C(k) is called the Theodorsen function. When studying fluter, Theodorsen
function generally takes the form

C(k) = 1− 0.165
1− 0.0455

k
j
− 0.335

1− 0.3
k
j
, (4.7)

where k corresponds to the reduced frequency and is computed as

k = ωb

V
, (4.8)

where ω corresponds to the frequency of motion of the flat plate. The first term of each
equation of Eq.4.5 corresponds to the non circulatory lift and the non circulatory moments
whereas the second term of equation of Eq.4.5 corresponds to the circulatory lift and the
circulatory moment. The non circulatory lift and moments corresponds are results of added
mass effect whereas the circulatory lift and moments both includes the wake history effect
of the lift and on the moment acting on the airfoil. It is of interest to notice that the set
of equations in Eq.4.5 is a combination of time dependent term and frequency dependent
term. When studying flutter, this is not a problem and it can be handled. However, when
the evolution of lift and moment over time is needed, this is a problem. To remove this
frequency dependency, a method proposed by Wagner or by Leishman can be used but this
is not developed in the scope of this work.

4.1.1.2 Strip theory

Applying Theodorsen’s theory to a finite wing is an enormous simplification. In fact,
the theory suggets that each strips constituting the wing is infinite. This simplification
is only valid for large aspect ratio wing. In reality, three dimensional effect takes place
thus decreasing the total lift produced by the wing altering the lift distribution over the
wing. Yates Jr. [68] suggest to modify the previously establish lift and moment expression
by Theodorsen’s theory. Its theory modify the constant lift coefficient by a variable lift
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coefficient over the wing Clα and a variable aerodynamic center position ac. Therefore, the
lift , the moment and the downwash over a strip reads

L = πρb2(ḧ+ V α̇− baα̈) + ClαρV bC(k)w, (4.9)

M = πρb2
[
abḧ− V b

(
Clα
2π + ac − a

)
α̇− b2

(1
8 + a2

)
α̈
]

+ ClαρV b
2 (a− ac)C(k)w,

(4.10)

w = ḣ+ V α+ b
(
Clα
2π + ac − a

)
α̇. (4.11)

If the strip lift coefficient is not known, the elliptical lift curve slope can be used. The
elliptical lift curve slope is computed as

Clα = 2π
√

1− y2

b2 , (4.12)

where y is the distance of the strip from the wing root and b is the semi-span of the wing.

4.1.2 Flutter speed computation
The flutter speed is computed using a p − k method (Hassig [69]). The derivation of the
flutter is presented by Güner [70] and the main derivation is presented here. The dynamics
equation in its most general form reads:

Mẍ(t) + Cẋ(t) + Kx = f . (4.13)

Using the transformation between the coordinate and the modal coordinates

x(t) = Φq(t), (4.14)

Eq. 4.13 can be written in modal coordinates

Mqq̈(t) + Cqq̇(t) + Kqq(t) = fq(t), (4.15)

where Mq, Cq and Kq are respectivly the modal mass matrix, the modal damping matrix
and the modal stiffness matrix. Making the assumption of a damped sinusoidal motion, it
is possible to define the damping which control the flutter to occur.

q(t) = q̂(t)ep
U∞

l
t = q̂epτ , (4.16)

where τ is the non-dimensional time, ω is the oscillatory frequency, and q̂ is the amplitude.
The non-dimensional parameter p is defined as:

p = g + ik, (4.17)

where k is the reduced frequency and g = γk, where gamma is the true damping coefficient
and is defined as

γ = 1
2π ln

(ai+1

ai

)
, (4.18)
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where ai+1 and ai corresponds to the amplitude of successive cycles. As a result, using
Eq.4.16, the flutter equation reads:[

U∞

l2
Mqp

2 + U∞

m
Cqp+ Kq −

1
2ρ∞U

2
∞Q(p)

]
q̂ = 0, (4.19)

where U∞ is the freestream velocity and Q(p) is the complex modal aerodynamic force
matrix for a harmonic motion of reduced frequency ℑ(p) = k and damping characterised
by ℜ(p) = g. The p− k method assumes that the modal aerodynamic force is only valide
for an undamped simple harmonic motion (g = 0 ). Therefore, the flutter equation reads:[

U∞

l2
Mqp

2 + U∞

m
Cqp+ Kq −

1
2ρ∞U

2
∞Q(ik)

]
q̂ = 0. (4.20)

To determine the flutter speed of a structure, this equation must be solved for every free-
stream Uinf and every single mode constituting the structure must be tested separately.

4.2 Propeller Aerodynamics
To better predict whirl flutter frequency and get as close as possible to reality, it is nec-
essary to compute the aerodynamic load acting on the propeller. The aim of this thesis is
to mainly apply the finite element model and more specifically the coupling between the
stationary part (the hub) and the rotating part (the propeller blades). Therefore, the aero-
dynamic model is just presented for anyone wishing to follow up on this thesis and wanting
to improve the whirl flutter prediction. The aerodynamic model is based on the model pub-
lished by Rodden and Rose [71]. In this theory, the propeller blades are assumed to be rigid.
This is a strong assumption which could affect the results obtained later. In addition, the
effect of the wing downwash on the propeller aerodynamic forces is also considered which,
on the other hand, helps to get as close as possible to the physical phenomena present. The
formulation is based on a quasi-steady approach. The main equations of the different forces
and moments are presented here while details of all the terms in the equation are given in
reference [71] for clarity.

First, the effective angles are defined as

θ̄P = θp −
e

V
θ̇P ; (4.21)

ψ̄P = ψP −
e

V
ψ̇P . (4.22)

The forces and moments acting on the propeller hub are defined as:

Fz,P = 1
2ρV

2πR2
(
cz,θθ̄P + cz,ψψ̄P + cz,q

R

V
˙̄θP + cz,r

R

V
˙̄ψP
)

; (4.23)

Fy,P = 1
2ρV

2πR2
(
cy,θθ̄P + cy,ψψ̄P + cy,q

R

V
˙̄θP + cy,r

R

V
˙̄ψP
)

; (4.24)
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My,P = ρV 2πR3
(
cm,θθ̄P + cm,ψψ̄P + cm,q

R

V
˙̄θP + cm,r

R

V
˙̄ψP
)

; (4.25)

Mz,P = ρV 2πR3
(
cn,θθ̄P + cn,ψψ̄P + cn,q

R

V
˙̄θP + cn,r

R

V
˙̄ψP
)
. (4.26)

4.3 Application to an aerospace structure
The aim is now to apply the previously established coupling model to an aerospace structure.
The structure being studied is a wing and a flexibly attached propeller. The propeller is
flexibly attached at middle of the wing half span. In this study, the aerodynamic forces
acting on both the wing and the propeller are neglected. In addition, as Euler-Bernoulli
beam elements are being used to represent the wing, the bending center and the center of
gravity are at the same position. Finally, a partial coupling is applied between the hub and
the rotating blades and vice versa. A schematic of the studied structure is represented in
Figure 4.1. A stiffness and a damper in pitch and yaw direction are added at the pivoting
point, to help controlling the whirl flutter phenomenon.

MotorD

xMN

e

Pivoting point
(PP):

flexible
attachment in
yaw and pitch

Figure 4.1 – Wing Propeller structure. Propeller being flexibly attached to the wing via springs
and dampers in pitch and yaw direction. Partially reproduced from [27].
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The different properties of the wing and of the propeller are highlighted in Table 4.3,
Table 4.4 and Table 4.5. The different values are taken from [72].

Parameter Value Units
Wing span 11.4 m
Root chord 1.25 m
Tip chord 0.8 m

Mass per unit length 25 kg/m
Radius of gyration (about CG) 25% chord -
Spanwise elastic axis (from LE) 50% chord -

Centre of gravity (from LE) 50% chord -
Bending rigidity (EI) 7× 105 Nm2

Torsional rigidity (GJ) 2× 105 Nm2

Table 4.3 – Mechanical properties of the wing.

Parameter Value Units
Rotor mass 8 kg

Motor-nacelle mass 35 kg
Position of rotor CG e 1.16 m

Position of motor CG xMN 0.86 m
Pitch damping, gθ 0.005 %
Yaw damping, gψ 0.005 %
Pitch stiffness kθ 70 kN/m
Yaw stiffness kψ 70 kN/m

Table 4.4 – Mechanical properties related
to Pitch and Yaw Axes of the propeller.
The position of the rotor CG and motor

CG are expressed from the wing CG.

Parameter Value Units
IQ 1.55 kg · m2

Iθ,P 36.65 kg · m2

Iψ,P 36.65 kg · m2

Sθ,P -39.38 kg · m
Iθα,P 36.65 kg · m2

Iα,P 36.65 kg · m2

Sα,P -39.38 kg · m

Table 4.5 – Inertial and structural
properties of the propeller.

The obtained results are available in Figure 4.2 and Figure 4.3. The results are obtained
over a speed range from 400 rad/s to 600 rad/s, by segmenting this speed range into
6 distinct calculation points. This decision is taken with the sole aim of reducing the
calculation time, which is already very substantial. The only purpose of the study carried
out on this aerospace application is to demonstrate the capacity of the code developed
to work on complex structures. Analysing Figure 4.2, one can establish the studied wing
propeller structure is stable at the different rotation speed tested. It is clear that no
conclusion on the stability can be drawn between the different rotation speeds tested. In
addition, there are a lot of real part of the characteristic exponents Γ located around 0,
meaning that the system might become unstable for greater rotation speed. The system
might be unstable on the speed range tested. However, one is unable to capture it because
of the discretization of the interval adopted. Some modes might be over damped but this
is probably due to the choice of the parameters adopted at the connecting point between
the propeller and the wing structure and triggering the whirl-flutter phenomenon. To find
out for sure, a study of the influence of these parameters on whirl-flutter should be carried
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out. Looking at the evolution of the imaginary part of the characteristic exponent Γ in
Figure 4.3, one can see the influence of the gyroscopic term on the imaginary part of Γ so
as demonstrated in 4.3.

400 420 440 460 480 500 520 540 560 580 600

-20

-15

-10

-5

0

Figure 4.2 – Evolution of the relative modal
damping ratio with respect to the rotation

speed of the propeller.
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-300

-200

-100

0

100

200

300

Figure 4.3 – Evolution of the imaginary part
of Γ as a function of the rotor speed of the

propeller.

4.4 Conclusion
In this chapter is studied the case of a wing propeller aerospace structure. First, the case of
a Goland wing is studied to validate the finite element mass and elastic stiffness matrices
used in this study. The different aerodynamic force acting on the structure ,although not
use in this study, are presented. The ability of the developed finite element code to work
on such type of complex structure is highlighted.
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Conclusions.
The aim of this work was to developed a finite element code that is able to predict whirl
flutter using the Floquet theory to establish the stability of aerospace structure. The devel-
oped finite element code highlights the capability to study rotor dynamics when enabling
a partial coupling between the different rotating structures and the hub to which there
are linked. From the author’s knowledge, it is the first time that a full coupling between
stationary and rotating structure is established under a finite element formulation.

Chapter 1 presents the different possibility to study the stability of structures from the
hypothesis of a LTI system and to study the stability of a LTP system using the Floquet
theory, but also presenting the Coleman transformation. Each of the different methods
presented have their advantages , disadvantages and their different degree of precision
on the stability analysis. The different numerical schemes that can be used to study the
stability of an LTP system are presented, and the methodology to compute the monodromy
matrix or its expression as a function of the numerical integration scheme used is presented.

Chapter 2 consists in studying a rotating structure and presenting the different equation
related to it in a rotating frame of reference. The studied structure and its implementation
are validated comparing obtained results using a commercial software and literature. It
came to the conclusion that the implementation of the different matrices is well executed.
The validation is performed by analysing the Campbell diagram of the clamped rotating
beam. The results obtained show a perfect correlation between the implemented finite
element code and the commercial software. This result also highlights the impact of the
centrifugal stiffness matrix on the natural frequencies of the system.

Chapter 3 is the most important contribution of this thesis. Indeed, the theory allowing
a coupling between a static and a rotating part is explained at the particle level. A finite
element formulation is then proposed by identifying the different matrices on which tempo-
ral coupling occurs. In addition, an implementation strategy for this coupling is developed
for the finite element formulation. The partial coupling is then validated using a ground
resonance validation model. First, the rigid model of the validation case is studied and used
to validate the numerical integration model. The various integration schemes are validated
using the literature. Then, the finite element formulation, which features a partial coupling
between the hub degrees of freedom in translation and those of the rotating elements, is
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studied. The study of the system with the finite element formulation allows the validation
of the finite element implementation of the coupling while highlighting the inability of the
Newmark integration scheme to converge to a solution for the prediction of the stability.
Finally, the full coupling is studied but not validated. However, the results obtained are
optimistic about the possibility of validating it.

Chapter 4 applies the finite element model developed earlier to an aerospace structure.
First, the natural frequencies of a Goland wing are studied in order to validate the imple-
mentation of the finite element model on a wing. Next, the calculation of aerodynamic
forces on a wing is presented. In addition, the aerodynamic forces acting on a propeller are
presented. Finally, the finite element model is applied to the aeronautical structure, using
a partial coupling. The results obtained are studied using a Campbell diagram.

Perspectives.
The work carried out highlights the potential benefits of using Floquet’s theory to study
the dynamics of rotating systems. This theory is applied using a full time coupling on the
mass, gyroscopic and centrifugal stiffness matrices of the rotating parts expressed in the
rotating frame of reference. However, certain assumptions have been made. As a result,
the work and the code used to produce the results can be improved, either to increase the
accuracy of the results or to reduce the computation time required to obtain the results.

The following is a list of potential improvements to be made for improvement on the
precision of the results, computational time and the full validation of the code

• The present model use Euler-Bernoulli 3D beam elements to model the structural
properties of the different structures incorporating the global structure. As stated in
Chapter 2, Euler-Bernoulli 3D beam elements has assumptions limiting its range of
validity. Therefore, it is of interest to implement and to use Timoshenko beam ele-
ments [73]. Timoshenko beam elements incorporate shear deformation effects, making
this type of element more suitable to study short beams, thick beams or beams made
of a material with low shear stiffness. The inclusion of shear deformation makes
Teemochenko beam elements more suitable to accurately predict the dynamic re-
sponse of such a structure.

• The present work highlights Chapter 3 the inability of the Newmark integration
scheme to give consistent results when employing the finite element formulation of
the problem although the numerical scheme is able to produce consistent results when
using the rigid formulation of the problem. Some possible avenues for this failure have
been put forward but need to be investigated in more detail. Depending on whether
or not the results of this investigation are conclusive, one will have to be taken on
the choice of time integration scheme to study stability of the studied structure over
a period of revolution. A compromise will have to be made between the accuracy of
the desired results and the computing time required to obtain them.

• Chapter 3 revealed that computing time was a real issue in obtaining results. This
could be reduced by using another programming language, such as Python, which has
a number of open-source libraries for efficient parallelization of computations.

• Identify the link between the mode shapes obtained in Ansys and the one obtained
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using the Floquet theory in order to try to validate the complete time dependent
coupling.

• Another potential method for reducing calculation times is to use a reduction tech-
nique, such as the one proposed by Craig-Bampton [74], then to apply the coupling on
the terms retained in this reduction. This will significantly reduce calculation times,
thus making the developed code faster.

• A simplification of the current code architecture may also be considered. Although
not addressed in this report, this may prove useful for anyone wishing to continue
this work from the code already established. The identification of the nodes on which
coupling takes place can be simplified by effectively tagging them.

• Currently, the dynamics of the various rotating elements are only linked via the hub
node. This is a simplification of the solution. To compensate this, it would be wise
to add a spring linking each of the rotating parts together. With this addition, the
dynamics of each of the rotating components would be linked by more than just the
hub node to which they are connected. In addition, the hub is actually modeled using
a single node, whereas in reality it is a complex geometry. Therefore, representing
the real geometry of the hub will help to obtain more accurate results for predicting
the whirl-flutter phenomenon.

• The code developed has been partially validated using results from the literature.
However, it would be of interest to find analytical validation cases to confirm the
good behavior of the coupling terms on the dynamics of the system using results from
a problem with a known analytical solution.

• The current code only deals with the first stress on the structure due to centrifugal
force. If external forces have to be taken into account in the analysis, it is advisable to
take these forces into account when calculating the stiffness matrix of the externally-
loaded structure.

• An important aspect that has been neglected in this study is the consideration of
aerodynamic forces. Taking these forces into account and studying their impact on
the prediction of whirl flutter must be carried out in future work. Various methods
for calculating aerodynamic forces have been presented but were not employed in the
study. It would be interesting to study the difference in whirl-flutter prediction using
different methods for aerodynamic force prediction. Since two parameters will now
have an influence on the prediction of the phenomenon, namely air speed and rotor
speed, the study of whirl flutter should be carried out as a function of the advance
ratio.

• The most challenging perspectives and the last one is the validation of the full code
on an aerospace structure against experimental data available. If not available, such
experimental data may be obtained carrying out wind tunnel tests. This perspective
is the most important one as it will allow to fully validate the developed code ,even
though parts of the code have already been validated against analytical solutions, and
to know the limitations of this code when predicting whirl-flutter instability.
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APPENDIX A

ELEMENTARY MASS MATRIX

The elementary mass matrix for 3D Euler-Bernoulli beam elements is developed by Gerardin
and Rixen [47]. The elementary mass matrix is given by

Melm=mℓ



1
3
0 13

35
0 0 13

35 Sym.
0 0 0 r2

⊥
3

0 0 − 11ℓ
210 0 ℓ2

105
0 11ℓ

210 0 0 0 ℓ2

10
1
6 0 0 0 0 0 1

3
0 9

70 0 0 0 13ℓ
420 0 13

35
0 0 9

70 0 − 13ℓ
420 0 0 0 13

35
0 0 0 r2

⊥
6 0 0 0 0 0 r2

⊥
3

0 0 13ℓ
420 0 − ℓ2

140 0 0 0 11ℓ
210 0 ℓ2

105
0 − 13ℓ

420 0 0 0 − ℓ2

140 0 − 11ℓ
210 0 0 0 ℓ2

105
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APPENDIX B

SHAPE FUNCTION MATRIX

The transposed shape function matrix NT for Euler-Bernoulli beam elements is derived by
Przemieniecki [75] and reads:

ξ = x

l
;

η = y

l
;

ζ = z

l
.

where l corresponds to the length of the element.

NT =



1− ξ 0 0
6(ξ − ξ2)η 1− 3ξ2 + 2ξ3 0
6(ξ − ξ2)ζ 0 1− 3ξ2 + 2ξ3

0 −(1− ξ)lζ −(1− ξ)lη
(1− 4ξ + 3ξ2)lζ 0 (−ξ + 2ξ2 − ξ3)l

(−1 + 4ξ − 3ξ2)lη (ξ − 2ξ2 + ξ3)l 0
ξ 0 0

6(−ξ + ξ2)η 3ξ2 − 2ξ3 0
6(−ξ + ξ2)ζ 0 3ξ2 − 2ξ3

0 −lξζ −lξη
−2ξ + 3ξ2)lζ 0 (ξ2 − ξ3)l
(2ξ − 3ξ2)lη (−ξ2 + ξ3)l 0



T
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APPENDIX C

ELEMENTARY STIFFNESS MATRIX

The elementary stiffness matrix for 3D Euler-Bernoulli beam elements is develloped by
Gerardin and Rixen [47]. The elementary stiffness matrix is given by

Kelm =



EA
ℓ

0 12EIz

ℓ3

0 0 12EIy

ℓ3
Sym.

0 0 0 GJx

ℓ

0 0 −6EIy

ℓ2
0 4EIy

ℓ

0 6EIz

ℓ2
0 0 0 4EIz

ℓ
−EA
ℓ

0 0 0 0 0 EA
ℓ

0 −12EIz

ℓ3
0 0 0 −6EIz

ℓ
0 12EIz

ℓ3

0 0 −12EIy

ℓ3
0 6EIy

ℓ2
0 0 0 12EIy

ℓ3

0 0 0 −GJx

ℓ
0 0 0 0 0 GJx

ℓ

0 0 −6EIy

ℓ2
0 2EIy

ℓ
0 0 0 6EIy

ℓ
0 4EIy

ℓ

0 6EIz

ℓ2
0 0 0 2EIz

ℓ
0 −6EIz

ℓ2
0 0 0 4EIz

ℓ
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APPENDIX D

NEWMARK INTEGRATION SCHEME

Figure D.1 – Flowchart of the Newmark integration scheme for linear systems. Taken from [47].
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APPENDIX E

GAUSS LEGENDRE INTEGRATION

The different integrals used in this work are computed using Gauss Legendre integration
also know as Gauss quadrature. The Gauss quadrature states that a single variable function
can be computed as

∫ 1

−1
f(κ) dκ ≈

n∑
i=1

wif(κi),

where κi with i = 1, ..., n are the n abscissa location the n Gauss point. The abscissa and
their respective weights are related to the Legendre polynomials. The abscissa κ1,...,κn are
the roots of the n Legendre polynomial and the weights are computed as:

ωi = −2
(n+ 1)P ′

n(κi)Pn+1(κi)
= 2

(1− κ2
i )P ′

n(κi)2 .

Looking at the precision of the integration. If n refers to the numbers of Gauss point
and p is the degree of the polynomial to be integrated, then the number of Gauss points n
needed to perform exact integration is given by

p = 2n− 1.

As the highest degree of the polynomial encountered by the product NTN is 6, it is nec-
essary to have, at least, 4 Gauss points to perform an exact integration of the polynomial.
This number of Gauss points is therefore chosen.

The location of the different Gauss points and their respective weights are available in
Table E.1
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n Roots κ∗
i Weight wi

2 0.5773502692 1.0000000000
-0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
-0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
-0.3399810436 0.6521451549
-0.8611363116 0.3478548451

5 0.9061798459 0.2369268850
0.5384693101 0.4786286705
0.0000000000 0.5688888889
-0.5384693101 0.4786286705
-0.9061798459 0.2369268850

Table E.1 – Roots and weights of nth Legendre polynomials for n = 2, 3, 4 and 5.
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STRUCTURAL COUPLING BETWEEN HUB AND
ROTATING COMPONENTS

79



APPENDIX F. STRUCTURAL COUPLING BETWEEN HUB AND ROTATING
COMPONENTS

Algorithm 2 Structural Coupling between Hub and Rotating Components
1: for each element requiring a time coupling do
2: Compute the transformation matrix Re
3: Construct the transformation matrix Te = diag(Re,Re,Re,Re)
4: Calculate the Gauss point position in the rotating frame of reference
5: Compute the matrices B0, dB0, ddB0 in the rotating frame of reference for the

desired time step
6: Transform these matrices to the element frame using the transformation matrix Re
7: Compute the matrices H, dH, ddH for the desired time step
8: Transform the matrices H, dH, ddH to the element frame Re
9: Compute the rotating structure/rotating structure coupling matrix Mrot

10: Transform Mel with Te and add to Mrot

11: Update Mrot matrix:
12: Mrot_current ← M_rot(elm_dof, elm_dof)
13: MeS_slice ← MeS(:, :)
14: Mrot_updated ← Mrot_current + MeS_slice
15: M_rot(elm_dof, elm_dof) ← Mrot_updated

16: Compute the hub/rotating structure coupling matrix M1 for translational dof
17: Transform Mel with Te and add to M1
18: Update M1 matrix:
19: M1_current ← M_1(hub_dof_translation, elm_dof)
20: MeS_slice ← MeS(1:3, :)
21: M1_updated ← M1_current + MeS_slice
22: Propeller.M_1(hub_dof_translation, elm_dof) ← M1_updated

23: Compute the hub/rotating structure coupling matrix M1 for rotational dof
24: Transform Mel with Te and add to M1
25: Update M1 matrix:
26: M1_current ← M_1(hub_dof_rotation, elm_dof)
27: MeS_slice ← MeS(4:6, :)
28: M1_updated ← M1_current + MeS_slice
29: M_1(hub_dof_rotation, elm_dof) ← M1_updated
30: Compute the rotating structure/hub coupling matrix M2 for translational dof
31: Transform Mel with Te and add to M2
32: Update M2 matrix:
33: M2_current ← M_2(elm_dof, hub_dof_translation)
34: MeS_slice ← MeS(:, 1:3)
35: M2_updated ← M2_current + MeS_slice
36: M_2(elm_dof, hub_dof_translation) ← M2_updated
37: Compute the rotating structure/hub coupling matrix M2 for rotational dof
38: Transform Mel with Te and add to M2
39: Update M2 matrix:
40: M2_current ← M_2(elm_dof, hub_dof_rotation)
41: MeS_slice ← MeS(:, 4:6)
42: M2_updated ← M2_current + MeS_slice
43: M_2(elm_dof, hub_dof_rotation) ← M2_updated
44: end for
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