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“It’s not the plane, it’s the pilot.”

Maverick



iii

Abstract

Advancements in numerical methods have increasingly allowed for the modeling and sim-
ulation of complex problems with greater accuracy. However, as these simulations grow in
complexity, they become computationally expensive, especially as the growth in computer
processing speed appears to have plateaued. In industrial applications, where computational
resources are limited, it is essential to find techniques that reduce these costs without compro-
mising accuracy.

This thesis presents a framework that integrates dimensionality reduction methods into
an aerostructural optimization process, aiming to improve the performances of the Onera M6
wing, a well-known wing that operates under transonic conditions where shockwaves occur.
The wing geometry is modified using the Free-Form Deformation (FFD) method, which allows
for smooth deformations based on a parameterization involving 125 design variables. How-
ever, this high-dimensional (HD) problem poses challenges for optimization, as the vast design
space makes it difficult for the optimizer to locate the global maxima that would enhance the
wing performances.

To address this, the study employs dimensionality reduction techniques to simplify the op-
timization problem. Specifically, the feature selection method, particularly the filter method,
is used to rank design variables by their impact on wing performances, setting aside the less
influential ones. This approach reduces the dimensionality of the problem, making the opti-
mization process more manageable and cost-effective.

The research is organized into five key sections. The first section focuses on developing
a Computational Fluid Dynamics (CFD) setup to accurately model the Onera M6 wing per-
formances, using OpenFOAM to simulate the transonic, compressible, and steady-state fluid-
body interaction. The second section details the FFD method and its parameterization. The
third section introduces and applies dimensionality reduction methods to the problem at hand.
The fourth section covers the optimization process, using two different algorithms to optimize
the wing performances. Finally, the last section provides recommendations for further research
and potential enhancements to the framework.

This study demonstrates that even with a reduction in dimensionality, the optimization
process can yield significant performance improvements while maintaining accuracy, offering
valuable insights for industrial applications where computational efficiency is critical.

Keywords: Dimensionality Reduction — Feature Selection — Multidisciplinary Design Opti-
mization — Free-Form Deformation — Computational Fluid Dynamics — Onera M6 wing —
Aerodynamic Shape Optimization
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Chapter 1

Introduction

1.1 Context

Since the dawn of aviation, aircraft manufacturers have been working on improving their cre-
ations. The pursuit of the perfect aircraft is driven by a desire for innovation. Crafting planes
that are not only technologically advanced and comfortable but, most importantly, highly effi-
cient. Efficiency in aviation has a wide range of applications. Manufacturers aim at extending
the ranges of flights, increasing payload capacity and cruise velocity, reducing both construc-
tion and maintenance costs, enhancing safety and ensuring reliability. Yet, among those goals,
there is one other aspect that is crucial in today’s world: minimizing fuel consumption.

The aviation industry faces huge challenges driven by global efforts in reducing and even-
tually annihilating CO2 emissions. With recent technological advances, the future of aviation
will provide airplanes that are no longer powered by fossil fuels. This bright vision cannot be
achieved at large scale with today’s technology. Alternating sources of energy are being ex-
plored but their reliability remain a challenge. Consequently, the aviation sector must continue
to push the actual planes boundaries by fine-tuning every aspect of the aircraft.

The analysis presented in this study focuses on a crucial airplane component: the wings.
These play a major role in its performance as they are the primary source of lift, the very
essence of flying. Lift, however, comes hand in hand with drag, and the balance between these
two forces is a key parameter when talking about plane efficiency. This thesis delves into the
lift-to-drag ratio, a parameter that must be optimized to enhance wing performances.

This optimization of 3D wings involves dealing with numerous parameters leading to a
high dimensional problem that can be challenging for optimizers. This well-known mathe-
matical issue, called the curse of dimensionality, is a common challenge in machine learning or
computational assisted methods. Hopefully, there exist methods that can mitigate this issue
by reducing the dimensionality of the problem. Those methods must be analysed to asses their
reliability.

1.2 Objectives

This work is dedicated to the development of a robust framework designed to optimize the
performance of an aircraft wing. While the primary goal is wing optimization, this framework
introduces several key objectives. Optimization is a well-known topic with many algorithms
designed for a wide range of applications. However it still offers plenty of opportunities for
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innovation, especially in industrial settings. This thesis aims to propose a process or method-
ology that could be smoothly integrated into industrial applications.

In addition to presenting this framework, the study also introduces a more and more pop-
ular machine learning technique known as dimensionality reduction. This technique is precious
for simplifying complex problems by reducing the number of parameters involved. In many
applications, optimization algorithms are challenged by the high dimensionality of problems,
sometimes involving thousands of parameters. The objective here is to illustrate how di-
mensionality reduction can be effectively applied and to highlight the benefits it could offer.
While there are plenty dimensionality reduction techniques, more or less complex, this work
focuses more on introducing this dimensionality reduction approach rather than comparing
techniques. However, determining and integrating the best method, for this case, into the
framework would enhance accuracy.

Reducing the dimensionality of a problem leads to a loss of information, which must be
carefully managed. The main limitation of those techniques is to avoid introducing significant
errors in the low dimensional model. This thesis seeks to explore the balance between simpli-
fication and accuracy, demonstrating how the careful application of these techniques simplify
the optimization process.

In summary, the main research question arises here: How can dimensionality reduction
methods be applied to optimize wing performances?

1.3 State of the art

In the context of high-fidelity aerostructural optimization, Kenway et al. [1] presented a CAD-
free approach aimed at addressing the limitations of traditional CAD-based methods in multi-
disciplinary design optimization (MDO). The proposed method employs a free-form deforma-
tion (FFD) volume approach, enabling the efficient computation of analytic derivatives, which
are essential for gradient-based optimization. The authors integrate Computational Fluid Dy-
namics (CFD) and Computational Structural Mechanics (CSM) into the optimization process,
highlighting the advantages of the CAD-free method in managing complex geometries and
multidisciplinary interactions. Compared to traditional methods, they conclude that the CAD-
free, high-fidelity aerostructural optimization approach provides significant improvements.
However, it is important to note that they still requires costly numerical simulations, which
may be impractical for low-budget projects.

To improve the computational time of the optimization process, Queipo et al. [2] proposed
Surrogate-Based Optimization (SBO). This approach is particularly beneficial when the objec-
tive function requires high-fidelity numerical simulations, such as CFD, where evaluating the
objective can take several hours. The high computational cost associated with numerous eval-
uations makes the optimization process expensive and sometimes impractical. SBO addresses
this issue by drastically reducing computational time, relying on a metamodel built upon pre-
vious observations. However, constructing accurate metamodels can become challenging due
to the curse of dimensionality, especially when dealing with a large number of parameters.

To mitigate the dimensionality issue, integrating dimensionality reduction techniques into
the optimization process proves effective, as suggested by Gaudrie et al. [3]. They proposed
a dimensionality reduction approach using eigenshapes to characterize CAD parameters. In
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the context of wing shape optimization, the number of CAD parameters required to accu-
rately define the geometry can be substantial. Directly working with these parameters poses
challenges for the optimization process, potentially leading to costly and inaccurate results,
especially with limited computational budgets.

The mapping between CAD parameters and eigenshapes is performed using Principal
Component Analysis (PCA) [4]. This method, applied to the high-dimensional feature space
Φ, identifies the eigenvectors vj of the matrix Φ⊤Φ. These eigenvectors are ranked according
to the variance (or dispersion) they capture, as indicated by their corresponding eigenvalues
λj. Consequently, any design can be represented as a combination of these eigenvectors, facil-
itating a more efficient optimization process.

In other words, the eigenshape space effectively compresses the CAD parameters into a
smaller number of significant components, allowing the surrogate model to focus on the most
relevant dimensions. With the mentioned strategy, Gaudrie et al. [3] provided a more accurate
metamodel and faster optimization compared to traditional approaches that operate directly
in the full CAD parameter space.

PCA is not the only technique available for dimensionality reduction. Originally intro-
duced as a preprocessing step in data analysis, this approach is critical for eliminating redun-
dant, noisy, and irrelevant data, as explained by van der Maaten et al. [5] and confirmed by
Velliangiri et al. [6]. This reduction is instrumental in improving the accuracy of learning
models and decreasing training time. These methods have a broad range of applications, in-
cluding deep learning, machine learning, medical imaging, and optimization. By simplifying
the data, dimensionality reduction enhances the performance of algorithms, making it easier
to visualize, manipulate, and classify.

While van der Maaten emphasizes the importance of dimensionality reduction for creating
efficient and accurate models, Hou et al. [7] further validate this by summarizing various
techniques and underscoring the need for more sophisticated non-linear methods capable of
handling complex problems. They highlight that integrating dimensionality reduction with
surrogate modeling offers significant potential for improving computational efficiency and
accuracy across various engineering fields. However, both van der Maaten and Hou agree
that ongoing research is essential to refine these methods and expand their applicability to
manage the increasing complexity and size of modern datasets.

1.4 Methodology and flowchart

As stated in the objectives, the methodology consists of several interconnected modules, each
with its own specific goals, all working together to achieve the primary objective: optimizing
the performances of a wing.

The process begins with selecting a baseline wing. A widely recognized choice for aero-
dynamic validation is the Onera M6 wing [8]. This transonic wing is small enough for wind
tunnel testing and is frequently used to validate CFD simulations due to available experimen-
tal data.

With the selected wing, the next step is to deform it using the Free-Form Deformation
(FFD) method. FFD allows for smooth and controlled morphing of the baseline wing. Before
deformation, a parameterization must be established to guide the process. In this case, 125
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design variables are chosen, and the reasoning behind this choice and its implications are
discussed in chapter 3.

Once the surface mesh is deformed, a 3D mesh is generated and used in the CFD simu-
lation. The CFD simulation is a critical component of the methodology, as it takes the mesh
as input and produces the lift-to-drag ratio as output; this metric is used here for evaluating
performances. The setup for this CFD simulation is carefully constructed using OpenFOAM
[9] as detailed in chapter 2.

To achieve the goal of finding a better wing, the next module in the process is optimization.
The primary objective here is to maximize the lift-to-drag ratio, which requires navigating a
high-dimensional problem involving 125 parameters. This is where dimensionality reduction
comes into play, reducing the problem complexity. The reduction is achieved through fea-
ture selection, which ranks the design variables based on their influence on the lift-to-drag
ratio. The most impactful parameters are retained, while less significant ones are set aside, as
described in chapter 4.

To apply dimensionality reduction, a Design of Experiment (DoE) must first be generated.
This involves creating a set of samples (deformed wings) that are linked to the CFD output
(lift-to-drag ratio). With this DoE, a regression model is trained to build a metamodel. The
optimization process then uses this metamodel to predict the lift-to-drag ratio based on given
parameters. This entire process is detailed in chapter 5. This optimization process focuses
solely on the lift-to-drag ratio, which, while important, does not consider several key parame-
ters critical to evaluating the overall performances of the wing. A more comprehensive study
should also account for factors such as stability effects, control mechanisms, manufacturability,
resistance to loads, and many other vital flight parameters.

This methodology is represented as a flowchart in Figure 1.1.
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Baseline: Onera M6 wing

Defining a parametrization
FFD method

Mesh generation
CFD simulation

Design of Experiment ( CL
CD

)

Dimensionality reduction
Training of regression model

Optimization

Deformed wing with potential improved performances

FIGURE 1.1: Methodology flowchart.

1.5 DAFoam

DAFOAM [10] [11] is a tool that will be referenced frequently throughout the discussion. Un-
derstanding DAFoam is crucial for anyone interested in advancing this research. Developed
by renowned experts in the field of numerical simulation: H. Ping, C. Mader, J. Martins, and
K. Maki. DAFoam stands for Discrete Adjoint with OpenFOAM for High-Fidelity Multidisci-
plinary Design Optimization. It is an open-source software based on OpenFOAM, designed
to perform optimization using the FFD method.

DAFoam is an excellent tool that closely aligns with the framework described in this the-
sis. Initially, the plan was to use DAFoam as a reference and foundation for this work, which
would have saved significant time and resources in establishing a reliable CFD setup. How-
ever, DAFoam’s baseline case does not align with the specified requirements as the Onera M6
case appears to be corrupted.

DAFoam documentation provides files for the Onera M6 wing case, allowing users to run
CFD simulations directly. However, the developers made modifications to these files, most
notably by coarsening the mesh. Even after refining the mesh, the results did not align with
DAFoam’s claims. For instance, DAFoam documentation promises a drag coefficient of 1.66×
10−2. The best result achievable, by modifying mesh refinement, numerical schemes and even
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residual control, produces a drag coefficient of 1.79× 10−2, which is a 7.5% error. Moreover,
obtaining this result was computationally expensive, requiring three hours on 32 CPUs with
100 GiB of memory. Reducing computational resources led to further increases in the drag
coefficient.

While the drag coefficient discrepancy is within a reasonable range compared to NASA’s
numerical data [12], the primary issue with DAFoam lies in its inability to accurately capture
shock waves. These shocks were either shifted towards the leading edge or entirely absent.
The pressure coefficient curves Figure 1.2, particularly at station η = 0.8 (Figure 1.2d), clearly
show the missing shocks. For comparison, the pressure coefficient curves obtained with the
CFD setup used in this thesis are shown in Figure 2.13.

Another challenge with DAFoam is its use of a custom solver, DARhoSimpleCFoam, a vari-
ant of rhoSimpleFoam. Ensuring the reliability of this solver is not straightforward, especially
since it lacks some of OpenFOAM’s built-in utilities (such as tools for obtaining y+ or τw) that
are essential for verifying and debugging results.

Integrating dimensionality reduction methods within the DAFoam framework could have
produced a highly impactful scientific report and saved time for exploring more advanced
dimensionality reduction techniques. It is possible that DAFoam functioned well under pre-
vious conditions or could still be effective with the right adjustments. Additionally, more
experienced CFD and OpenFOAM users might be able to identify and rectify the underlying
problems. As a general guideline, the use of DAFoam should therefore be carefully analyzed,
and its results compared with reference data, before using it for data processing or optimiza-
tion purposes.
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(A) Cp at span station η = 0.2.
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(B) Cp at span station η = 0.44.
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(C) Cp at span station η = 0.65.
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(D) Cp at span station η = 0.8.
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(E) Cp at span station η = 0.9.
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(F) Cp at span station η = 0.96.
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(G) Cp at span station η = 0.99.

FIGURE 1.2: Cp comparisons between DAFoam and reference data.
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Chapter 2

Computational Fluid Dynamics

This chapter aims to present and describe the numerical simulation. Computational fluid dy-
namics (CFD) allows to approximate the behavior of the interaction between a fluid and a
given body by solving the governing laws of motion of fluids. These numerical methods are a
key step in every aeronautical (and other sector) manufacturing process. Even if those meth-
ods have strong limitations due to the amount of approximations, they are useful to guide and
help designers find the best designs. It must be noted that those numerical simulations are less
expensive (depending on the accuracy required) than experimental testing. CFD is a great tool
but it cannot be used as a black-box, the user must ensure the theoretical validity of the simu-
lation, and every CFD output experimentally validated. CFD is used to approximate complex
phenomena but it cannot ensure a perfect accuracy. Every CFD user must keep in mind that
the CFD output might be very far from experimental observations.

This chapter will describe the whole simulation performed to obtain the wing perfor-
mances. There are different types of CFD simulations, but this research will only focus on
solving the Reynolds-Averaged Navier-Stokes (RANS) equations. More advanced numerical
computations can be conducted but are not adapted for the current presentation.

2.1 CFD: usage and limitations

During CFD simulations a trade-off between accuracy and computational cost must always
be made. The goal of this work is to optimize the performances of a wing. This can only be
achieved by giving the optimizer an extended database, called a Design of Experiment (DoE).
For the record the DoE, described in chapter 4, is composed of about 800 wings. Due to this
huge amount of samples, and due to the limitation in time and computational resources, the
overall accuracy had to be reduced.

Another point that should be mentioned is that the Onera M6 wing is a transonic wing.
Therefore there are shockwaves that will develop on the extrados. This is a complex phe-
nomenon that can generate errors if the models are not wisely selected. Moreover, at such
high speed the flow becomes turbulent, particularly in the boundary layer, and is no more
uniformly laminar. The presence of turbulence is another source of errors in the CFD simu-
lation as turbulence is one of the most complex phenomena. Nowadays there are no perfect
models that could approximate these chaotic and randomness flows. Therefore a major source
of the global errors might come from these approximated turbulence models.

To evaluate the required lift and drag forces, it could be useful to explain in a few lines
how they are computed. The mesh is composed of cells and nodes. The job of the CFD solver
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is to solve the RANS equations within each cell. At the end of the whole iteration process of
the solver, the relevant fields are available. Amongst them are the pressure and the wall shear
stress fields. From those values, it is possible to extract the two relevant forces for this work:
lift and drag. These are computed by integrating the pressure and the shear stress distributions
over the surface of the wing. The pressure force contribution can be computed using,

Fp =
∫

S
pndS . (2.1)

The viscous force contribution is obtained by using

Fτ =
∫

S
τdS . (2.2)

Bringing these equations together, the total force acting on the wing can be expressed:

F = Fp + Fτ . (2.3)

From this, the lift and drag forces can be obtained using their respective unit vector direction.

L = F · eL (2.4)
D = F · eD (2.5)

2.2 Computational resources

This thesis is part of an aero-structural demonstrator developed in Cenaero [13], a Belgian
applied research center. Thanks to Cenaero the simulations were performed on their high
performance computing resource: Lucia [14]. The supercomputer is composed of 300 CPU
and 50 GPU nodes. The final baseline case runs in 30 minutes on 32 CPU cores, using less than
15 GiB of memory. This case can runs on a personal computer, however it might take a lot
more time. For information, Figure 2.1 shows the computational time evolution as a function
of the number of CPU used.
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FIGURE 2.1: Computational resources required to run the baseline case.
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2.3 Physical and computational domain

The goal of the CFD analysis is to obtain the lift-to-drag ratio of the Onera M6 wing that will
be used later for the optimization process. Beside this measure of the performances, other
quantities can be obtained from the simulation (pressure fields, velocity fields, etc.). The op-
timization part, chapter 5, focuses on a single operating point, that is described later on. For
that reason, quantities like Mach number, angle-of-attack or Reynolds number remain con-
stant. The description of this operating point is described in this section, but in short, it is a
transonic simulation at ground atmospheric conditions.

There are several assumptions that are made to simplify the problem. One of them, is that
only the flow over the half wing is modeled and there is no interaction taken into account
between the fuselage of the plane and the wing. Moreover the wing is assumed to have no
ailerons, spoilers, slats or flaps. The potential aero-elasticity, deflection and bending of the
wing are not taken into account. This work is made assuming a steady-state behavior (i.e.,
there is no time dependence). This allows a lighter computational cost and makes the wing
comparisons easier, as only the fully developed flow is studied. The fluid is air, which is
considered as a calorically perfect gas at room temperature.

One of the main characteristics of this wing is that it is designed to fly at transonic speed.
The value of the Mach number, defined as the ratio between flow velocity and speed of sound,
is 0.8395. With this value, compressibility effects cannot be neglected as the Mach number is
higher than the commonly used 0.3 threshold. These compressibility effects will be illustrated
through the formation of multiple shocks on the extrados of the wing.

Another point to describe the flow is through the Reynolds number. In this work is has a
value of 11.72 · 106 based on the mean aerodynamic chord (Table 2.2). With such high values, a
transition from laminar to turbulence occurs in the boundary layer. This transition will interact
with the shocks, and must be correctly modeled.

The last element describing the operating point is the angle-of-attack that has a strong
influence over the wing performances. A value of 3.06 degree is chosen, and will remain
unchanged throughout the whole analysis. This is a key parameter as it has a strong impact
on the lift and the drag. The value here is not the one leading to the maximal lift-to-drag
ratio. For practical implementation reasons, the chord remains aligned with the x-axis, and
it is the incoming flow that changes direction. Therefore all the figures in this thesis will be
aligned with the x-axis (the airflow coming slightly from the bottom). However this is only for
simplification the implementation process but does not change the behavior of the fluid-body
interaction. These three flow conditions are gathered in Table 2.1

TABLE 2.1: Flow conditions from NASA[12].

Dimension Value

Mach number (M) [-] 0.8395

Reynolds number (Re) [-] 11.72 · 106

Angle-of-attack (AoA) [◦] 3.06
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The Onera M6 wing is a famous wing that is well documented. It is a quite small wing that
can fit inside a wind tunnel making it very attractive for validation. The wing was designed
based on the airfoil represented in Figure 2.2. This is called the Onera D profile, that is here
non-dimensional. This profile can be found by slicing the Onera M6 dorsal view (Figure 2.3)
using a 30◦angle. For more details, the original Onera’s drawing can be found in Appendix A.

0.0 0.2 0.4 0.6 0.8 1.0

−0.05

0.00

0.05

FIGURE 2.2: Onera M6 wing ’D’ section.

D profile

30◦

FIGURE 2.3: Dorsal view of the Onera M6 wing, with the D profile cut.

All the characteristics of this wing can be found in Table 2.2.

2.4 Turbulence model

This simulation is performed at a really high speed and the appearance of shockwaves is ex-
pected as previously explained. Moreover, at such high velocity, the boundary layer will be
turbulent. It is therefore needed to use equations that can approximate the turbulence. The
most suitable turbulence model for the Onera M6 wing, is the well known Spalart-Allmaras
[15], that is used in number of referenced cases including the NASA Turbulence Modeling
Resource [12] that will be used to asses the validity of the results. The simulation is thus per-
formed in a fully turbulent regime.
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TABLE 2.2: Onera M6 wing dimensions according to Onera[8] and NASA[12].

Dimension Value

Mean Aerodynamic Chord (MAC) [m] 0.64607

Aspect Ratio (AR) [-] 3.8

Taper Ratio (λ) [-] 0.562

Sweep Ratio (Λ0.25) [◦] 26.7

Semi-Span (b) [m] 1.1963

2.5 Numerical methods

2.5.1 OpenFOAM

The current study utilizes the well-known OpenFOAM [9] CFD software. The main reason
is that it is free and open source. However, the main drawback is that it is low level (only
terminal interaction) and the absence of graphical interface might be a source of wasted time
for unfamiliar users, as errors might be hard to catch and understand.

Numerous solvers are implemented in OpenFOAM and choosing the appropriate solver
can be tricky. To determine the best solver, one needs to highlight the key property of the
studied case. Here the goal is to perform a steady-state simulation of a compressible and tur-
bulent flow. The solver that meets those criteria is rhoSimpleFoam that is based on the SIMPLE
algorithm. SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations. This al-
gorithm is an iterative process that is inherently segregated. In fact, the momentum equation
is solved first and injected into the pressure equation. Once the latter is derived, the new pres-
sure is used to solve a second time the momentum equation. Finally the turbulence momen-
tum equations can be solved. This whole procedure is explained by Sim-flow [16]. It would
have been more efficient to use a solver that is coupled, where all the equations are solved si-
multaneously, but there is no such solver available within OpenFOAM library adapted to this
problem.

2.5.2 Numerical schemes

The selection of numerical schemes is a critical factor in the accuracy and stability of a CFD
simulation. The goal is to strike a balance between precision and robustness, avoiding the
pitfalls of numerical oscillations and instability while capturing the essential physics of the
flow.

In this simulation, the flow is assumed to be steady-state, which simplifies the governing
equations by eliminating the time derivative ∂

∂t . The spatial gradients within the domain are
computed using the Gauss Gradient Theorem (Equation 2.6), a fundamental principle in vector
calculus that converts a volume integral into a surface integral. This approach is coupled with
a second-order accurate linear interpolation scheme, ensuring a higher degree of precision in
capturing the variations within the field.
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∫
V
∇p dV =

∮
S

p dS (2.6)

The convective terms, which describe the transport of quantities like momentum, energy,
and species concentration due to fluid motion, are approximated using the Gauss Divergence
Theorem (Equation 2.7). This theorem transforms the volume integral of a divergence into a
surface integral, making it a powerful tool for CFD. The interpolation schemes applied to these
terms vary depending on the specific field. For instance, the convective flux of velocity em-
ploys a second-order accurate linear upwind scheme, which combines the accuracy of central
differencing with the stability of upwind schemes. Meanwhile, fields such as energy and en-
thalpy are discretized using the first-order accurate upwind scheme. The later is less accurate
but highly robust as it avoids spurious oscillations in regions with steep gradients.∫

V
∇ · (uu) dV =

∮
S

uu · dS (2.7)

Viscous terms, which represent the diffusive transport of momentum due to viscosity, are
discretized using a second-order accurate linear scheme. This choice ensures that the momen-
tum diffusion is captured with high fidelity, preserving the smoothness of the solution without
introducing artificial diffusion.

Laplacian terms, commonly arising in diffusion equations and the pressure Poisson equa-
tion, are discretized using the Gauss theorem with a second-order accurate linear corrected
scheme. This approach accounts for mesh non-orthogonality, ensuring that the solution re-
mains accurate even on complex or distorted meshes.

A summary of the numerical schemes applied in this CFD simulation is presented in Ta-
ble 2.3.

TABLE 2.3: Summary of numerical schemes.

Term Scheme Order of accuracy

Time derivative steadyState -

Gradient Gauss linear Second-order

Convective term for velocity Gauss linearUpwindV grad(U) Second-order

Convective term for energy Gauss upwind First-order

Viscous term Gauss linear Second-order

Other divergence terms Gauss upwind First-order

Laplacian Gauss linear corrected Second-order

Interpolation linear Second-order
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2.6 Boundary and initial conditions

The boundary conditions are summarized in a schematic diagram in Figure 2.4, where all the
faces of the domain are inlet or outlet flows except the front face (in blue) that is a symme-
try plane. This symmetry plane acts as a mirror and allows to model the influence of the
other wing and the aircraft body. This boundary condition involves zero normal velocity and
gradients. The inlet boundary condition assumes a uniform velocity profile, while the outlet
condition supposes a zero gradient. The last boundary condition is the wing body that is con-
sidered as an adiabatic solid wall, ensuring a no-slip condition, i.e., the velocity at the wall is
zero and the fluid sticks to it.

Inlet/Outlet

Symmetry

FIGURE 2.4: Representation of the boundary conditions.

The initial conditions are summarized in Table 2.4 and are based on the classic atmospheric
conditions of air at room temperature.

TABLE 2.4: Summary of the initial conditions.

Field Value

Pressure (p) [Pa] 101325

Temperature (T) [K] 300

Velocity (U) [m/s] 291.65

Kinematic viscosity (ν) [m2/s] 4.5 · 10−5

Turbulent kinematic viscosity (ν̃) [m2/s] 4.5 · 10−5

Turbulent thermal diffusivity (αt) [m2/s] 10−4
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2.7 Generating an appropriate mesh

The mesh is a crucial aspect of the CFD simulation. Indeed if the mesh is too coarse then the
results won’t be accurate, but if it is too refined then the simulation will be too computationally
expensive. The objective is thus to generate a mesh that allows a good accuracy whilst being
moderately resource demanding.

The first element to be modeled is the Onera M6 surface wing. There are many different
surface meshes available online, as software that can produce this kind of geometry. However
to be able to deform the wing, every step must be achieved from command line, and using soft-
ware is therefore not the best way to automate the meshing process. Therefore the other option
is implemented: taking a surface mesh from online resources. The target of this work being
the optimization process and the dimensionality reduction, the focus is not on the meshing
nor the CFD simulation. Luckily DAFoam [10][11] is an open-source framework developed
for this kind of optimization with the automatization required to perform this work. DAFoam
is made of several modules that are extracted for this process. The first part of the meshing
strategy comes from DAFoam.

First of all, the surface mesh is obtained, and it must be refined to ensure accuracy. But
again, what is good enough? To determine the best refinement of the surface, it is common
practice to perform a mesh refinement study. Before presenting the results of this study, the
whole meshing strategy is discussed and described in details. Once the surface mesh has
the desired refinement it is deformed following a given parametrization using the Free-Form
Deformation method as presented later in chapter 3. Finally DAFoam proposes a method to
extrude a 3D mesh based on a given surface mesh. However it required some parameters that
also need to be studied. The three most important parameters of this tool are the total height of
the mesh H, the number of layers N and the first (adjacent to the wall) layer thickness y1. These
parameters are important because, if not well defined, they will cause a loss of information.
These three parameters are linked through the expansion ratio r, that is the ratio at which the
thickness of each successive layer increases, i.e., how the the cells grow in the wall normal
direction. This ratio is defined thanks to expression 2.8.

H = y1
1− rN

1− r
(2.8)

There is no exact value for this parameter to be found in the literature. However in this case r
must be greater than 1 as fine grids are required in the boundary layer, while coarser cells have
less influence over the response far away from the walls. Depending on the case that is studied
the maximal value can vary up to values of approximately 1.2 (from CFD Online forum [17]).
For this setup, fine cells are required in the boundary layer to capture the complex phenomena
described previously. After a discussion with an experienced CFD user, Pr. Koen HILLEWAERT

(ULiège), the value of the expansion ratio should be in the range [1.05 - 1.1]. It could have been
possible to implement another strategy in order to have really low cell sizes near the wall and
shifting to higher cells far away. Such a strategy is beyond reach for the presented framework.

Before diving into this mesh refinement analysis, some points about the mesh are worth
discussing. First of all, the mesh is a non-uniform structured O-type grid. This is illustrated in
a very coarse mesh in Figure 2.5.

https://www.uliege.be/cms/c_11403609/en/koen-hillewaert
https://www.uliege.be/cms/c_8699436/en/uliege
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FIGURE 2.5: Illustration of the non-uniform structured O-type grid on a very
coarse mesh.

2.7.1 Surface mesh

In this part of the study, four different meshes are compared to each other. Once again the
objective is to determine the mesh refinement that performs best whilst being not too compu-
tationally expensive. This is summarized in Table 2.5. Note that the very fine case needs more
tuning to be able to converge. Here it ran for 4000 iterations and has not reached the residual
threshold. Despite not achieving convergence, it provides valuable insights and predictions
for this case.

TABLE 2.5: Summary of mesh refinement data.

Mesh refinement levels

Coarse Middle Fine Very fine

Number of cells 216,840 867,360 3,469,440 13,877,760

Number of nodes 223,300 883,260 3,513,580 14,015,820

Computational time
(32 CPU) [hh:mm:ss]

00:01:39 00:04:47 00:46:32 06:44:32

CL 0.2725 0.2720 0.2712 0.2709

CD 0.0368 0.0222 0.0185 0.0180

CL/CD 7.40 12.27 14.68 15.07



18 Chapter 2. Computational Fluid Dynamics

These results can also be plotted to have a better view of the convergence. This is done in
Figure 2.6, where both CL and CD are represented.
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FIGURE 2.6: Quantities of interest depending on the mesh refinement level.

The conclusions are quite straightforward. On one hand the coarse and middle meshes
are not sufficiently accurate. On the other hand, the very fine mesh is too computationally
expensive. Therefore the fine mesh is the one retained to perform the optimization.

2.7.2 First layer thickness

The first layer thickness is a parameter that can be tuned to be able to capture more information
in the boundary layer. However it is more common to analyse its influence through y+ the
dimensionless number that characterizes the first layer that is defined as:

y+ =
uτy1

ν
(2.9)

Where y1 is the first layer thickness, uτ is the friction velocity and ν is the kinematic viscosity of
the fluid. Note that y+ is an output of the CFD simulation and there exist empirical formulas
to predict the y+ that can be used for the first run. Every CFD user aims for a value of y+ that is
lower than 1. In fact, the velocity near the surface is much lower than the free-stream velocity.
It is therefore required (in this kind of application) to have very thin cells near the walls to
accurately capture the velocity profile. However such a low value increases the required com-
puting resources. Another strategy is to aim for a larger y+ and apply correction methods to
approximate this complex velocity profile near the wall. This allows to reduce computational
resources but the price to pay is a loss of accuracy. A trade-off must again be made but the
complexity of the flows forces to use very thin cells as it is shown hereafter. Moreover there
are three important zones: the viscous sublayer (y+ ⪅ 5), the log-law region (y+ ⪆ 40) and
the in-between buffer layer (5 ⪅ y+ ⪅ 40). The intent is not to dive into details but it must
be said that every CFD user should avoid the buffer region[18] because this zone might not
be accurately modeled. The two other zones are fine but in the log-law region, the use of wall
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function is required and may lead to errors. Therefore it is best practice to solve governing
equations in the viscous sublayer.

For this analysis only the average value of the y+ is taken. Indeed, there is one y+ value
for each cell. The average value is a good point of comparison if the maximal value is in a
reasonable range. Moreover, the high y+ cells cannot be located in regions of interest, e.g.,
the leading edge and the shocks location zone. In Figure 2.7 the plot of the lift coefficient
confirms that having y+ below 1 results in the best performances. The drag coefficient does
not behave well, as the value increases in the viscous sublayer and decreases afterwards. The
orange zone is the buffer region that should be avoided. Hopefully the lift-to-drag ratio gives
a better insight. Indeed two regions emerge: the first one is at y+ < 1 and the other is at
y+ ≈ 64. Both values appear to give good performances, but for the rest of this study, being in
the viscous sublayer is preferable. In the boundary layer complex phenomena take place and
must be accurately captured. A plateau behavior is observed when y+ < 1, which shows a
stability to converge to the same value. Therefore it is decided to keep a low value of the first
layer thickness so that y+ stays in this zone.
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FIGURE 2.7: Evolution of quantities of interest with averaged y+ values.

A final glance into computational resources confirms the choice to have low y+. Actually,
the case corresponding to y+ ≈ 64 takes 30% more time. This can be explained by the high
cells size that couldn’t capture enough information to converge rapidly. In the plateau zone,
the computational time is almost constant which allows to set the first layer thickness with
ease.
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2.7.3 Number of layers

Taking into account the previous results, this analysis focuses on the importance of the number
of layers. The height of the mesh is fixed to a value of 15 times the chord length, which should
be reasonable to capture a large part of the far-field effects. With both values of H and y1
constant, the values of N can be determined by keeping the expansion ration r in its range.
The results of this part of the study are summarized in the Figure 2.8.
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FIGURE 2.8: Evolution of quantities of interest as function of the numbers of
layers.

As expected, the more layers there are, the more information is captured. This leads to
a lower overall value of the lift-to-drag ratio due to a higher accuracy. However, this has a
non-negligible cost. In fact, there is a 250% time increase between N = 140 and N = 250.
This is a huge limitation for the rest of the study. Indeed keeping a high N value would not be
affordable for the scope of this study. If one would want to increase the accuracy, a higher value
of N would be better. But here, it is decided to reduce the required computational resources
by having a low number of layers and therefore a high expansion ratio.

2.7.4 Mesh height

This last part of the mesh refinement study will focus on the meshing distance: the height. The
objective is to progressively increase this value to assess the good capture of far-field effects. To
be meaningful, this comparison must keep a constant stretching ratio value. In fact, changing
the cell size will influence the results. Therefore r is fixed at an arbitrary value of 1.05. The
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reader must therefor keep in mind that even if the results are presented with increasing height
values, the number of layers also vary according to expression 2.8 previously introduced.

Obviously an infinite mesh height would be the most accurate case, but it is not computa-
tionally feasible. Again a trade-off must be made between accuracy and computational time.
Increasing the height of the mesh leads to a reduced value of the lift-to-drag ratio as can be
observed in Figure 2.9 with the height nondimensionalized by the mean aerodynamic chord
(MAC). These three curves show a rapid convergence to a constant value without taking into
account the bump shape at H/MAC = 80. The main conclusion is that the more the mesh
height, the more far-field effects are captured, and the more accurate is the setup.
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FIGURE 2.9: Evolution of quantities of interest for multiple heights.

An interesting phenomenon is represented in Figure 2.10. When the height increases, the
computational time decreases. This might be explained by the fact that the extra information
helps to solve the equations.
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FIGURE 2.10: Evolution of computational time as function of the mesh height.

2.7.5 Conclusion

Thanks to this refinement mesh study, the most suitable configuration can be highlighted. The
final mesh that is used in this whole research can now be fully described. Its main characteris-
tics and properties are summarized in Table 2.6. The reader must keep in mind that this setup
is selected to give the most accurate results within the allocated budget. Keeping in mind that
an optimization process will be applied to this wing and a large number of CFD simulations
need to be performed. If one only wants to simulate the baseline case, without being compu-
tationally limited, then the setup must be modified to reach a better overall accuracy. Some
ideas to improve the setup can be found at the end of this thesis in chapter 6.

TABLE 2.6: Summary of mesh properties.

Property Value

Grid non-uniform structured O-type grid

Averaged y+ ≈ 0.67

Number of layers 160

Mesh height ≈ 122 MAC

Expansion ratio 1.1

Number of cells 3,968,640

Number of nodes 4,015,520
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2.8 Convergence criteria

Convergence in a CFD simulation is of paramount importance. If the output of the simulation
does not converge it is useless as the results cannot be trusted. It is therefore required to specify
convergence criteria to ensure the CFD solver does not stop until satisfied. In OpenFOAM this
is achieved through the residuals that are a measure of the error. The solver will stop if the
residuals drop below a given tolerance. These tolerances are summarized in Table 2.7.

TABLE 2.7: Summary of the convergence criteria.

Field Value

Pressure (p) 5 · 10−7

Velocity (U) 5 · 10−7

Energy (e) 5 · 10−6

Turbulent viscosity (ν̃) 5 · 10−7

The convergence of the four fields are represented in Figure 2.11.
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FIGURE 2.11: Convergence of the residuals.

However very low tolerances might not always lead to converged simulations. Therefore
analysing quantities of interest help asses the good convergence of the solver. The lift and drag
coefficient evolution are shown in Figure 2.12.
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FIGURE 2.12: Convergence of quantities of interest.

The previous figures indicate that the case converged in about 1300 iterations.

2.9 Validation and verification

To validate the whole setup, the relevant data are compared to the experimental, from AGARD
[19], and numerical data from NASA Turbulence Modeling Resource [12]. The data are avail-
able for 7 span stations: η = y/b. Before diving into the results, the reader must keep in mind
that the experimental data cannot be numerically obtained without performing very complex
and intensive computation. In fact CFD is only an approximation of the solution. Moreover,
the numerical data provided by the NASA won’t be matched in this simulation. They per-
formed more advanced simulations, with finer meshes and other solvers and software. The
main goal of this whole study being an optimization process, reaching this kind of accuracy is
not required and would be too computationally demanding.

First of all, the pressure coefficient Cp can be compared. The main target is to be able to
capture the shocks on the extrados. Recall that a positive Cp corresponds to the pressure side,
while a negative value is obtained on the suction side. Then the stream-wise skin-friction co-
efficient can be analysed. Both coefficients are compared to the numerical data. As a reminder,
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these coefficients are computed based on the free-stream conditions such as:

Cp =
p− p∞

0.5ρ∞U2
∞

, (2.10)

C f =
τw

0.5ρ∞U2
∞

. (2.11)

With τw the wall shear stress, ρ∞ the free-stream density and U∞ the free-stream velocity. The
comparisons can be found in the graphs in Figure 2.13.
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(B) C f ,x at span station η = 0.2.

0.0 0.2 0.4 0.6 0.8 1.0
x/c [-]

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

[-
]

(C) Cp at span station η = 0.44.
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(D) C f ,x at span station η = 0.44.
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(E) Cp at span station η = 0.65.
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(F) C f ,x at span station η = 0.65.

FIGURE 2.13: Comparisons of Cp and C f ,x with reference data (Part 1).
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(G) Cp at span station η = 0.8.
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(H) C f ,x at span station η = 0.8.
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(I) Cp at span station η = 0.9.
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(J) C f ,x at span station η = 0.9.
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(K) Cp at span station η = 0.96.
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(L) C f ,x at span station η = 0.96.
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(M) Cp at span station η = 0.99.
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FIGURE 2.13: Comparisons of Cp and C f ,x with reference data (Part 2).
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These results are encouraging, as the CFD setup provides results that are reliable. The next
aspect that must be verified is the presence of shocks. For this a dorsal view representing the
pressure can be found in Figure 2.14a. As expected, a lambda shape can be observed on the
extrados which is typical with shocks. Another way that might help visualize the shocks is by
representing the Mach number at different span stations in Figure 2.14.

(A) Dorsal view. (B) Span station η = 0.2.

(C) Span station η = 0.65. (D) Span station η = 0.96.

FIGURE 2.14: Illustration of the shocks obtained with ParaView [20].

From all these comparisons, the CFD setup can be considered reliable, and will be used for
the rest of this thesis. However this setup can still be improved as discussed in chapter 6.
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Chapter 3

Free-Form Deformation

3.1 Introduction

Free-Form Deformation (FFD) is a modeling technique that was introduced by Sedeberg and
Parry in 1986 [21]. The main goal is to allow solid modeling to deform a given volume. The first
step is to define FFD points that will form the FFD volume. The object/volume that the users
want to transform should be embedded in the FFD volume. To have a better understanding,
one simple tutorial from PYGEO [22] is presented in the followings lines. Figure 3.1 show an
example of a cylinder inside a FFD box.

FIGURE 3.1: Cylinder embedded in a FFD box [22].

Now that this cylinder is embedded in a surrounding volume, every perturbation applied
to the FFD points (red dots on the Figure 3.1) will be spread to the whole volume, as if it was
a block of jelly. FFD focuses on the delta of deformation, in other words, to better understand
the method, “FFD volumes parameterize the geometry change rather than the geometry itself”
as stipulated by Kenway et al. [1]. At this point it is clear that the more FFD points there are,
the more the shape modifications become precise and detailed. However it must be noted that
even with a small number of FFD points, the cylinder will still be smoothly deformed.

The next step is to define a parametrization that defines how the FFD points will be dis-
turbed. They can move independently of each other or together. This is illustrated in the fol-
lowing example. The cylinder is squeezed with a wave-like shape applied to the FFD points.
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This can be seen in Figure 3.2 where the deformed and the original cylinder are represented.

(A) 3D deformed volume. (B) 2D perturbed geometry.

FIGURE 3.2: Application of a more complex deformation on the cylinder. Blue
being the original cylinder and FFD points, while red are the deformed ones.

3.2 Applying FFD to the Onera M6 wing

3.2.1 Defining the FFD box

As previously said, the FFD points must enclose the whole wing surface. The number of
points for this framework is set to be 120, which is divided in six airfoils containing ten points
stream-wise on the extrados and ten other on the intrados. In the purpose of deforming the
wing to increase its performances, it is preferable to have more points aligned with the flow
direction. This will allow to model the airfoil shapes more rigorously. Figure 3.3 illustrates the
FFD points (green dots) that are all around the Onera M6 wing.

(A) Wing.

(B) Airfoil.

FIGURE 3.3: Baseline wing embedded in its FFD box.
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3.2.2 Parametrization

The parametrization can be defined as the set of all geometric variables and their effects on the
baseline geometry. In the context of wing geometry, many parameters are known to impact
the performances. Amongst them the most known are camber, twist, sweep, thickness, taper,
dihedral, chord, span. Those parameters are known by the aerodynamic experts, however
choosing only these parameters could influence the optimization. To be able to keep the ob-
jectivity, the philosophy here is to let the optimizer find the best design, and eventually put in
evidence some of the main aerodynamic wing parameters. Hence the parametrization in this
work will remain brute. The choice of the parametrization is therefore quite straightforward:
each FFD point can move along the z-axis, which is normal to the chord-span plane. The sur-
face of the wing shouldn’t be perturbed above a given limit. Indeed, by imposing a limit on
the amplitude of the deformation, the wing surface can remain smooth enough to avoid an
abrupt drag increase. This limit on the amplitude is taken to be 10 %. For illustration, one
random parametrization is shown on Figure 3.4 (with an increased limit up to 30% for better
comprehension).

(A) Perturbed wing.

(B) Baseline (blue) and perturbed (red) airfoils.

FIGURE 3.4: Application of the 120 design variables with arrows in the deforma-
tion direction.

In order to help the optimizer find a better design, five more design variables are added, as
performed by DAFoam, leading to a total of 125 parameters. These additional design variables
are the independent twisting of the FFD airfoils. They are all modified except the root airfoil
that remains untwisted. The twist is applied along the quarter chord line. This is illustrated on
Figure 3.5 where only the five twist design variables are applied. Again a constraint is set to
limit the twist amplitude to 2◦. Once more, the figures have larger amplitudes for illustration
purpose.
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(A) Perturbed wing.

(B) Baseline (blue) and perturbed (red) airfoils.

FIGURE 3.5: Application of the 5 twist design variables.

Bringing it all together, Figure 3.6 show one random perturbed wing using the whole set
of parameters.

(A) Perturbed wing.

(B) Baseline (blue) and perturbed (red) airfoils.

FIGURE 3.6: Application of the 125 design variables.

Keep in mind that the order in which these design variables are applied is critical: first,
the deformation along the z-axis, followed by the twist. Reversing this sequence (twisting first
and then deforming) will modify the chord length. To maintain consistency in this study, it is
important to preserve certain features, such as the chord, span, and sweep.

In fact, since the flow condition is transonic, sweep significantly influences the velocity the
wing experiences and, as a result, affects drag. Although a more detailed optimization could
focus on this parameter, it is crucial to maintain the sweep constant. Its impact on the shocks
would complicate the high-level parametrization desired here, which focuses on the overall
design rather than intricate details.



3.3. Differences with DAFoam 33

3.3 Differences with DAFoam

The application of Free-Form Deformation closely resembles the deformations implemented in
DAFoam. Both frameworks use 120 variables in the direction normal to the chord-span plane.
Additionally, both frameworks incorporate five twisted sections. However, DAFoam also in-
cludes a modification for the angle of attack, which significantly impacts performances and
optimization. Since this impact is more pronounced on the lift-to-drag ratio compared to the
other 125 design variables, it was decided to exclude it from the current study. Furthermore,
modifying the angle of attack complicates the design validation process, as it also significantly
affects the shocks position and magnitude.
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Chapter 4

Dimensionality reduction

Dimensionality reduction is a technique that aims at reducing the number of variables in a
dataset while retaining as much relevant information as possible. It is used in various sci-
entific and engineering applications to simplify problems that have many parameters (high-
dimensional). This method can improve performances and helps mitigate the curse of dimen-
sionality. Indeed, it can be very costly for some regression models to build a metamodel with
more than about twenty parameters. Kriging-based metamodels, for example, are known to
be exponentially resource-consuming as the dimensionality increases, as described by Ula-
ganathan et al. [23].

4.1 Main families of dimensionality reduction methods

There are many methods to effectively reduce the dimensionality of a given problem. These
methods can be arranged into three main families as presented in Figure 4.1. A brief overview
of these families and methods is made to help the reader understand the wide range of appli-
cations of such methods as a detailed explanation goes beyond the scope of this study.

FIGURE 4.1: Taxonomy of dimensionality reduction techniques [24].

4.1.1 Feature extraction

The feature extraction methods apply the dimensionality reduction by creating combinations
of the original features. These new features, also called components, lie into a lower-dimensional
space.
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One famous method is the Principal Component Analysis (PCA) [4], that is widely used.
It is a linear technique that projects the data onto a new set of axes (principal components),
where each axis represents a direction of maximum variance in the data. It allows to reduce
the dimensionality of the problem by retaining the most important variance in the data.

Another technique that is more advanced is the Autoencoders [25]. These are a neural
network-based methods that compress data into a lower-dimensional space and then recon-
struct the original data from this compressed representation. This complexity allows to model
non-linear relationships, but is computationally intensive.

4.1.2 Variable clustering

Variable clustering methods implement the dimensionality reduction through elimination of
correlated or similar variables. They try to identify groups of similar features in the dataset.
This is not an easy task because the clusters are not known in advance, as explained by R.
Marion [26]. Once the clusters are defined, it is possible to select representative features from
each cluster to compose the new dataset.

4.1.3 Feature selection

The feature selection philosophy is to reduce the dimensionality by choosing a subset from
the original data. Therefore the conserved data are not transformed which preserves the most
informative features. The irrelevant, or less influential data are discarded.

The Filter method uses statistical techniques to evaluate the importance, or relevance, of
each feature independently of the model. This is a method that selects the most influential
variables and discard the ones that are considered to have less impact on the response. This
means that the features that aren’t retained cause a loss of information.

This last method is used in this thesis because it is easy to implement and not computa-
tionally resources demanding. Even if this method is not the more complex one, it serves as
a pre-processing step, that is, according to Frénay [27], required to create the desired frame-
work. Once this framework is developed, the dimensionality reduction step can be modified
to implement more robust, complex and advanced methods that will allow to improve the
optimization. This first approach should really be considered as a draft mode, that gives an
overview of this tool.

4.2 Applying dimensionality reduction

Before reducing the dimension of the problem, two steps are required: generating a Design
of Experiment (DoE) and train a regression model. Once this regression model is ready, the
selection process can take place. First, the impact of each Design Variable on the lift-to-drag
ratio must be computed. Then the most influential parameters are selected.

Before going into the details, it must be said that the dimensionality reduction process can
also be made using a classification instead of a regression model. However this depends on
the problem studied. Here the output being continuous, a regression model must be used. If
the output was discontinuous, for example True or False, then a classification algorithm should
have been employed.
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4.2.1 Generating a DoE

A Design of Experiment (DoE) is a step applied in a wide range of research fields. The main
goal of DoE is to generate samples that cover the entire space of parameter values. The DoE
can be seen as a relationship or function f between the input variables X and the output y as
in Equation 4.1.

f (X) = y (4.1)

The input is the parametrization that allows to deform and perturb the wing surface. The
output is the lift-to-drag ratio that is used to characterise the wing performances which is
obtained with the CFD simulation.

To comprehensively cover the entire parameter space, a Latin Hypercube Sampling (LHS)
method [28] is employed. LHS is a type of stratified sampling that divides each of the di-
mensions of the design space into non-overlapping subsets, used to obtain random samples
covering these subsets more uniformly.

The next question that must be answered is What should be the size of the DoE?. This is a
complex question that again introduces a trade-off. Indeed, the more samples in the DoE, the
more trained the regression model will be. However an infinite number of samples is obvi-
ously not achievable due to computational resources. Therefore the objective is to determine
a required number of samples that allows building an accurate model that can approximate
as the solution within the simulation budget. This depends on the case that is studied as the
number of samples is related to the number of parameters. At low dimension one could aim
for a DoE that is composed of five to ten times the number of parameters. In this case, the
dimension is so high that the DoE must remain close to the lower bound. That is the reason
why it is decided to build a DoE of about 800 samples. However this choice is validated later
on at the end of section subsection 4.2.2. This DoE is represented in Figure 4.2 where each
point represents a deformed wing. The dashed line allows to observe the wings that perform
better or worse than the baseline.
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FIGURE 4.2: Illustration of the DoE compared to the baseline case.
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The DoE already identifies a wing parametrization that improves the performances up to
8%. The goal of chapter 5 is to push the performances further.

4.2.2 Training a regression model

The regression model has an important impact on the results. Indeed, its goal is to build an
inexpensive model to provide an estimate of the output with respect to any input values. In
other words, it tries to create a metamodel that will be able to predict the more accurately
possible the lift-to-drag ratio based on a given parametrization.

There are many regression algorithms, some linear but others non-linear are more complex.
In order to find a good regression algorithm, the models must be compared to each other. This
performance aspect is a key parameter of the whole dimensionality reduction process. Indeed,
the model must perform well to be able to accurately predict the response. There are various
ways to evaluate the performances. One way is to analyse the R2 value. The R2 is a measure of
the error, 1 being a perfect fit while below the accuracy decreases (note that R2 can be negative).

To have the more adapted model, the latter should avoid both overfitting and underfitting.
Each model relies on different options and parameters that can be tuned in order to avoid both
cases. The best parameters can be obtained via a grid search that will highlight the best setup
for the model. In this study, the parameters are modified and tested using a cross-validation
method. The cross-validation is a well-known method that splits the dataset into multiple
training and testing sets. In this analysis, 20 different splits are used. When the model is
trained, its predictions are evaluated against the observed (testing) dataset. By applying this
with different splits (changing the training and testing sets) the robustness and fidelity of the
model can be improved.

Once all the parameters and options of the models are well defined, a final comparison can
be done to illustrate the algorithms performances. This comparison involves several regression
models and is summarized in Table 4.1 via their R2 score. These values are obtained by training
the models using first 80% of the data set, while the 20% remaining are used for the testing
phase. A second comparison is made using 90% of the samples for training and 10% for the
testing. This shows how they perform on predicting the tested values.

TABLE 4.1: Comparison of the R2 for various regression algorithms.

Regression algorithm R2 (80-20) R2 (90-10)

RIDGECV [29] 0.020 0.022

LASSOCV [30] 0.545 0.553

RANDOMFORESTREGRESSOR [31] 0.246 0.252

GRADIENTBOOSTINGREGRESSOR [32] 0.527 0.543

XGBREGRESSOR [33] [34] 0.538 0.571

SVR [35] 0.547 0.556

The different models can be briefly described:
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• RIDGECV and LASSOCV are both linear models based on classical RIDGE and LASSO,
with integrated cross-validation (that allow automatic tuning of the regularization pa-
rameter).

• RANDOMFORESTREGRESSOR is a more advanced model that combines decision trees and
average their predictions to improve the accuracy.

• The GRADIENTBOOSTINGREGRESSOR is also composed of multiple trees, but each tree
tries to correct the errors made by the previous ones.

• The XGBREGRESSOR is an improved version (eXtreme-Gradient Boosting), using ma-
chine learning methods with regularization techniques, of the GRADIENTBOOSTINGRE-
GRESSOR. This method was first introduced by Chen and Guestrin [34].

• Finally, Support Vector Regression (SVR) is a more sophisticated model that seeks to
identify a hyperplane that best fits the data within a defined margin of tolerance, prior-
itizing a balance between accuracy and simplicity, rather than just minimizing the pre-
diction error directly.

These models are well documented online if the reader is interested in further algorithms
descriptions.

It can be observed from Table 4.1 that there are three models that stand out from the others
and a more in depth comparison must be made to select the best one. However, it must be
noted that they are just above R2 = 0.5 which is not a very satisfying reliability. This will
impact the results in the dimensionality reduction and in the optimization processes. Indeed,
even if they are better than the other models, they still perform quite poorly, as the residual
errors are non-negligible. These low R2 values can be explained by the complexity of the
problem. On one hand, the physical behavior is very sensitive, as a small wing perturbation
can destroy the performances. On the other hand, the number of design variables (125) is
really high, and it is hard-work to define a metamodel that is accurate.

Another way to show the models performances is to analyse the error graphically. This
is shown in Figure 4.3 and Figure 4.4 for the three remaining models, where the green line
represent a perfect fit (i.e., where ypredicted = yobserved).
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FIGURE 4.3: Graphical illustration of R2 for the three remaining models (80-20).



40 Chapter 4. Dimensionality reduction

12 14 16
Observed CL/CD [-]

12

14

16
P

re
di

ct
ed

C
L/

C
D

[-
]

(A) XGBREGRESSOR.

12 14 16
Observed CL/CD [-]

12

14

16

(B) LASSOCV.

12 14 16
Observed CL/CD [-]

12

14

16

(C) SVR.

FIGURE 4.4: Graphical illustration of R2 for the three remaining models (90-10).

From these graphs, there is no clear model that appears to perform better than the others.
To be able to select a model, the cross-validation can be modified to get other scoring tech-
niques. This second comparison focuses on both the Root Mean Squared Error (RMSE) and
the Mean Absolute Error (MAE).

RMSE =

√√√√ 1
Q

Q

∑
i

(
yobserved,i − ypredicted,i

)2 (4.2)

MAE =
1
Q

Q

∑
i

∣∣yobserved,i − ypredicted,i
∣∣ (4.3)

where Q is the number of samples. RMSE measures the average magnitude of the prediction
errors, penalizing larger error more heavily. The MAE measure the average magnitude of all
prediction errors, providing a balanced view of overall accuracy.

Table 4.2 summarizes the values obtained with the second cross-validation, where again
80% of the samples are used for training first and then in a second step with 90%, for a total of
20 different splits.

TABLE 4.2: Advanced cross-validation for the three remaining models.

RMSE [%] MAE [%]

Regression algorithm 80-20 90-10 80-20 90-10

LASSOCV 52.84 52.48 40.90 40.98

XGBREGRESSOR 52.73 50.17 41.29 39.58

SVR 52.45 51.61 40.23 39.61

From these results, it seems that they all have a similar RMSE and MAE. There is again
no clear reason to select one model over the others even if a greater improvement with the
XGBREGRESSOR can be observed. Therefore it is required to perform a third comparison:
bootstrapping analysis. This method helps assessing the stability and reliability of model pre-
dictions by repeatedly resampling the dataset with replacement. The process involves creating
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multiple bootstrap samples by randomly sampling with replacement from the original data,
where each sample may include duplicates and miss some original data points. The model is
then trained and tested on each bootstrap sample, and this is repeated many times to obtain a
range of performance metrics. The results are presented in terms of mean RMSE and standard
deviation RMSE, and can be found in Table 4.3.

TABLE 4.3: Bootstrapping results for the three remaining models.

Regression algorithm mean RMSE [%] std RMSE [%]

LASSOCV 40.99 1.49

XGBREGRESSOR 4.94 0.16

SVR 27.38 1.49

Unlike the two previous comparisons, the bootstrapping method clearly shows that the
XGBREGRESSOR performs better than the other model. This bootstrapping analysis indiquates
that the regression model is more adequate at predicting new, unseen data. Therefore it is the
XGBREGRESSOR algorithm that is selected for the rest of this work.

Obviously, when the good performances of the regressor are confirmed, all the samples
from the dataset are used to train the final model for an increased reliability. Indeed, as can
be seen in Figure 4.5, the more samples in the DoE there are, the more accurate the model is.
For the sake of simplicity, this graph is made with the same model parameters, to illustrate the
influence of the number of samples on the predictions accuracy. From this graph it is expected
that having a larger DoE, with more than 800 samples, will improve the models, and tend
towards a R2 score of 1. Recall that n is the number of DVs (125 here).
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FIGURE 4.5: Influence of DoE size on the predictions accuracy.
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4.2.3 Selecting the most important features

Using the trained regressor, a ranking can be made. Indeed it is possible to order the design
variable by their importance, which is a measure of their influence on the output. This means
that the DV with the highest importance, has the most influence on the lift-to-drag ratio, in
this case. On the contrary, the one with the lowest importance, has nearly no impact on the
performances of the wing. The reader must keep in mind that this is highly dependent on both
the regression algorithm and on the DoE, as increasing the number of samples will improve
the accuracy. This ranking is shown on Figure 4.6, where design variables are selected (green
point) thanks to their importance. The blue dots are the DV that are considered less influential
by the regression model. This graph is only for illustration purposes as the number of selected
points is here totally arbitrary. Moreover, it might be good to recall that the DV numbered
from 0 to 119 are related to the z perturbation, while the last 5 DV are related to the twist.
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FIGURE 4.6: Graphical view of the feature selection.

One key observation is that a significant portion of the DV has an importance value below
1%. As a result, even though a ranking exists, the differences between the DVs are so minimal
that this selection process may not be the most suitable for this case. This suggests that using
feature selection alone might not be the most effective method for dimensionality reduction,
especially given the large number of features with nearly identical importance values.

In this study however, this ranking will still be used to select the most influential DVs and
modify the dataset. The reduced dataset can be obtained by simply deleting or omitting the
unselected parameters for each sample. This process can be schematically represented with n
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being the number of DVs (125 in this case):

∀x ∈ X : x =



x0

x1

x2

...

xn−2

xn−1



Dimensionality Reduction−−−−−−−−−−−−−→ xreduced =



x0

x1

x2

...

xn−2

xn−1


The reduced dataset Xreduced can be used to train again the regression model creating the low
dimension LD problem. For improved reliability and accuracy the model should again be
determined with its parameters. However, for the sake of simplicity, the same regression algo-
rithm XGBREGRESSOR is used. This LD setup must be compared to the HD setup in order to
assess the reliability of the reduced problem. This comparison can be found in the following
section.

4.2.4 Results

The performances of the high and low dimensional problems will be compared more clearly
in the optimization part (chapter 5). However the two methods presented above can still be
applied to obtain the R2 score and the different measures of the error. The main goal is to
assess that even if the LD problem has a reduced number of DV, it does not lead to a high loss
of information. In this section the reduced number of DV is set to 100, to keep the most of the
parametrization variables. The R2 scores can be found in Table 4.4. Again the training set is
composed first of 80% of the samples and then 90%.

TABLE 4.4: Comparison of the R2 for the HD and LD models.

Regression algorithm R2 (80-20) R2 (90-10)

HD 0.538 0.571

LD 0.561 0.591

The same more in depth cross-validation can be made. Its output in summarized in Ta-
ble 4.5.
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TABLE 4.5: Advanced cross-validation for the HD and LD models.

RMSE [%] MAE [%]

Regression algorithm 80-20 90-10 80-20 90-10

HD 52.73 50.17 41.29 39.58

LD 51.46 49.80 40.13 39.41

Finally, the Bootstrapping technique demonstrates that the LD problem yields results sim-
ilar to those of the HD (Table 4.6), which is promising for the remainder of the work.

TABLE 4.6: Bootstrapping results for the HD and LD models.

Regression algorithm mean RMSE [%] std RMSE [%]

HD 4.94 0.16

LD 5.31 0.17

When observing the bootstrapping results it appears that the HD model has a lower error.
However, the reader might be surprised to see that the LD seems to perform better than the
HD in terms of R2 score. These good performances from the LD setup are not fully understood,
although it can be partially explained by the well-known difficulty of non-linear metamodels
to reach good performances when the dimensionality increases. Further investigations of po-
tential factors might help to explain this observation. Indeed, if the total number of samples
is increased, it is acceptable to think that the HD will perform better. The other aspect that
could explain this behavior is the complexity of the problem, as it should be "harder" for the
regression model to build a good metamodel. Therefore reducing the dimensionality might
help the algorithm.
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Chapter 5

Optimization

The optimization of the wing performances is made through the maximization of the lift-to-
drag ratio. As a reminder, the objective is to optimize at a single operating point. This means
that even if the results of the optimization lead to an improvement of the wing lift-to-drag
ratio, it might degrade the overall performances of the whole range of the polar. An interesting
research would be to analyse the optimized wing at other operating points. Moreover, the
lift-to-drag ratio is a good index to predict the performances of the wing but there are other
parameters that play an important role. Even if those parameters are not taken into account,
the reader must keep in mind that it would be better (and required) to integrate them in the
optimization.

In this chapter, the high dimensional optimization is compared to the reduced one. The
objective is to approximate the HD solution with the LD case. The error that is related to the
dimensionality reduction must be analysed to conclude the effectiveness of this method. For
this whole chapter, the term predicted represent the output of the optimizer while the term
observed is reserved to a value that is validated through a CFD analysis.

5.1 Optimization algorithm

In the world of optimization, there are plenty different algorithms. Each one has its pros
and cons. The first element that helps restricting the options is the use, or not, of gradients.
Gradient-based optimizer should perform better with a high number of parameters, which is
the case in this study. However, their objective is to find the maxima based on the gradient and
require to have a continuous and smooth function. Here the function is not continuous as there
is a limited number of samples. Moreover the complexity of the problem causes the function
to be unstable. In fact, a small change in the magnitude of a parameter can directly influence
the performances. This consideration tends to make use of a non gradient-based optimizer.

For this study two optimizers are compared to each other. The first one is COBYLA [36],
proposed by Powell [37], one of the most easy to use, often used as a reference algorithm in nu-
merical optimization. The second algorithm, a more advanced optimizer, is the DIFFERENTIAL

EVOLUTION (DE), conceptualized by Storn and Price [38].

The optimization process is driven by the objective function, the lift-to-drag ratio predicted
by the trained regressor. There are only bound constraints on each design variable. As pre-
viously explained, if the magnitude of the deformation goes beyond a certain threshold the
actual wing performances would be severely degraded. Therefore, each DV must remain in a
given range of value. Both optimizers can take an initial set of values, x0 which is the starting
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point of the optimization. This starting point must be wisely chosen as its value can impact
the solution.

5.1.1 COBYLA

The COBYLA (Constrained Optimization BY Linear Approximation) optimizer is designed for
solving non-linear problems without requiring the derivatives of the objective function. It is
a popular choice for many industrial applications as it can deal with constraints. It works by
iteratively approximating the objective function using linear models. It starts from the initial
set of values and changes each variable until it converges to the solution. It is suited for the
case studied here knowing the complexity of the problem. However it remains a relatively
simple algorithm that does not guarantee to converge to the global maximum. In fact it can
be stuck in a local maxima and never be able to find the best solution. This optimizer can be
described as a local search algorithm, as it will improve its solution based on local information
rather than exploring the whole space.

Despite its simplicity and ease of implementation, COBYLA might not always be the most
efficient, particularly when dealing with a large number of variables as stated by Powell [37].

5.1.2 Differential Evolution

Differential Evolution (DE) is an advanced and robust optimization algorithm designed to
tackle complex problems. Unlike COBYLA, which is better suited for simpler problems, DE
can handle high-dimensional cases, although this comes at the cost of increased computational
time. DE is a population-based method, meaning it evolves a population of candidate solu-
tions across generations. DE is considered an NP-problem, as each additional variable requires
an increase in the population size, leading to a significant increase in the number of candidates
that must be evaluated. According to Eltaeib and Mahmood [39], DE relies on three main
processes: mutation, crossover, and selection.

Mutation: This process involves creating a new vector by combining or recombining exist-
ing vectors from the population. There are various techniques for selecting these vectors, but
a random strategy performs better for the presented case. Three random vectors are typically
chosen to form a new vector called the "trial vector".

Crossover: The mutation process is further refined by a crossover technique, which mixes
elements from the trial vector and a mutant vector. The crossover process determines which
elements are taken from the trial vector and which from the mutant vector. This allows the al-
gorithm to generate new vectors that combine information from previous candidates, enabling
a more effective exploration of the search space where potential improved solutions may exist.

Selection: After mutation and crossover, the resulting vector is compared to the current
candidate solution (often the best vector found so far). This step ensures that the population
either remains the same or improves with each iteration.

Unlike COBYLA, DE explores the entire search space and has a greater likelihood of con-
verging to a global maximum. However, DE also has its challenges, particularly its sensitivity
to control parameters and the risk of stagnation, where the population fails to improve after
several iterations. Variants of the classic DE algorithm exist that can address these issues and
improve performances, but a detailed discussion of these variants is beyond the scope of this
thesis.
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In conclusion, while DE may offer superior performances compared to COBYLA for com-
plex and high-dimensional problems, it requires higher computational costs.

5.1.3 Determining the starting point

Both optimizers introduced above can utilize an initial vector as a starting point. This vector,
denoted as x0, has a significant impact on the optimization path and, consequently, on the final
solution. Practically, x0 can be any arbitrary set of values. However, certain strategic points
should be tested to understand their influence on the optimization outcome.

In this problem, two different initial vectors x0 are compared. The first is the baseline
case that needs to be optimized. The second choice is to start the optimization with the best
parametrization obtained from the Design of Experiments (DoE). This second approach, while
potentially advantageous, can sometimes lead the optimization process in a inadequate direc-
tion. Inadequate in the sense that it may conduct the solution toward a local maximum rather
than the global maximum.

The goal of this section is to identify the optimal starting point for both optimizers. To
achieve this, two optimizations are conducted: the first uses the baseline case as the initial
vector x0, while the second uses the best case derived from the DoE. The results for both
scenarios are summarized in Table 5.1, where the improvements achieved with the baseline
performances are presented for both optimizers. (For simplicity, these results are obtained
using the HD setup.)

TABLE 5.1: Impact comparison of the two optimization initial points.

Improvement [%]

Predicted Observed

x0 COBYLA DE COBYLA DE

Baseline 2.519 18.988 5.032 8.066

Best case from DoE 7.949 19.068 9.930 12.228

From these results, it appears that the best case is the more suitable option for the starting
point of the optimization. Additionally, both initial vectors x0 predict positive improvements,
indicating that, regardless of the choice, the optimized wing will perform better than the orig-
inal. Another noteworthy observation is that COBYLA tends to underestimate its predictions,
while DE tends to overestimate them. This suggests that COBYLA may be more stable and
accurate than DE, even though its observed solutions result in lower lift-to-drag ratios.

It is important to note that the discrepancies between predicted and observed outcomes
are likely due to the limitations of the DoE size, as the regression algorithm lacked sufficient
information to fully cover the parameter space. The larger errors observed with DE could be
attributed to its tendency to explore the entire search space more extensively, which might
backfire in the form of increased prediction errors.
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5.2 Optimization with the LD setup

5.2.1 Determining the number of selected DVs

Once the starting point is determined, the actual optimization can proceed. At this stage,
both HD and LD optimizations can be performed. However, the number of selected design
variables for the LD setup is not predetermined. This number can be set arbitrarily, but it
is important to remember that excluding too many DVs results in the loss of valuable infor-
mation. To better understand the influence of the number of design variables, a small analysis
can be conducted. Specifically, it may be beneficial to perform multiple optimizations, progres-
sively increasing the number of selected DVs. This approach serves as an illustrative example,
demonstrating how the choice of DVs affects the optimization outcome.

This analysis is performed with both optimizers to help identify an optimal choice of de-
sign variables. However, this dimensionality reduction significantly impacts the optimization
outputs. Regardless of the optimizer used, the results tend to be very noisy, making it difficult
to discern a clear pattern. To aid in visualizing the comparison results, a spline (represented by
a solid blue line) can be drawn to provide an approximate indication of performances trend.
However, this visualization should be interpreted cautiously, as each design variable, even the
less influential ones, contributes to the final solution.

Figure 5.1 illustrates the evolution of performance improvements with respect to the num-
ber of parameters. Each data point represents the result of a single optimization. Each opti-
mization relies on its own metamodel constructed by a regression algorithm, that was trained
on the corresponding number of design variables, to predict the output. Since the best case
from the DoE is used as the starting point for the optimization (indicated by the green dashed
line), it serves as a threshold. The goal of the optimization is to achieve better performances
than this initial x0.
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FIGURE 5.1: Improvement predicted by the optimization as a function of the
number of design variables.

The results are widely scattered across the graphs, but the spline in Figure 5.1a once again
highlights the stability of COBYLA. There is a smooth and expected relationship between ac-
curacy (measured as the error compared to the HD case) and the number of design variables.
However, this relationship is much less clear with DE (Figure 5.1b), where even at very low
dimensions (e.g., 10 DVs), the results are unexpectedly aligned with the HD case.

It is important for the reader to remember that the prediction model is not 100% accurate,
which can occasionally lead to seemingly "lucky" outcomes, i.e., having a high observed value
that wasn’t expected.

Unfortunately, there is no definitive number of DVs that clearly stands out. Therefore, the
choice to use 94 DVs is somewhat arbitrary. However, the splines in both graphs suggest that
when the number of DVs is around 94, the solution closely aligns with the HD setup. Reducing
the number of DVs to 94 in the LD setup corresponds to a 25% reduction in dimensionality.

A potential question that the reader might ask is: How are unselected variables treated in the
CFD simulation? The first option is to set zero deformation for the unselected DVs. However,
this approach is not well-suited to the complexity of the case, as it may lead to abrupt modifica-
tions of the wing surface which must be avoided to maintain a smooth wing profile. Therefore,
an alternative approach is adopted.

This approach involves applying a gradual reduction towards zero using a smoothing fac-
tor of 20%. To illustrate this technique, a small example can be more effective than a lengthy
explanation.

In a problem involving five parameters that is reduced to two variables, if the two re-
maining variables are x1 and x2, the application of the smoothing reconstruction might look
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something like this:
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5.2.2 Comparison of HD and LD setup

The LD setup is now fully determined and can be compared to the HD optimization. The ob-
jective of this analysis is to investigate whether dimensionality reduction methods can simplify
complexity without introducing significant errors. The best way to compare the two setups is
by quantifying the final error in the observed lift-to-drag ratios.

First, the convergence of both optimizers is illustrated in Figure 5.2. The solid lines rep-
resent the predicted improvement relative to the baseline lift-to-drag ratio, while the bullet
points denote the observed values. In both graphs, the starting point x0 is shown in orange,
indicating that both optimizers are capable of producing outcomes better than this initial point.
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FIGURE 5.2: Performance improvements predicted by the optimization for both
HD and LD setup.

COBYLA once again demonstrates its stability throughout the incremental process. Fig-
ure 5.2a shows that both the HD and LD setups converge rapidly to their respective solutions.
The LD setup clearly exhibits information loss by predicting a lower lift-to-drag ratio com-
pared to the HD prediction. This loss is less apparent with DE, as the converged LD setup
appears above the HD prediction in Figure 5.2b. DE is designed to explore the entire param-
eter space, which explains the oscillations in the graph, where predictions fluctuate between
-20% and +5%. However, once DE identifies the direction of the global maximum, there is a
rapid increase in prediction improvement.

The range of values tested by DE does not allow for a clear comparison of the observed
values. Therefore, these results are summarized in Table 5.2.
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TABLE 5.2: Comparisons of the observed optimization output.

Observed improvement [%]

LD HD

COBYLA 8.800 9.930

DE 10.962 12.228

Table 5.2 shows that the DE optimizer performs better and produces a wing with improved
performances. Regarding dimensionality reduction, both cases are close to the unreduced
output, indicating that the LD setup reliably provides results comparable to the HD case.

5.3 Visualizing the optimized wing

This section presents the wing obtained using the DE optimizer, illustrating both the wing
deformation and the pressure fields with the shocks. The figures in this section depict the
results of the reduced case.

Figure 5.3 shows the deformations applied to the wing. However, the magnitudes are so
small that they may be difficult to visualize.

(A) View from the tip.

(B) View from the leading edge.

FIGURE 5.3: Representation of the optimized wing deformations.

Concerning the shocks, they can be observed in Figure 5.4.
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(A) Dorsal view. (B) Span station η = 0.2.

(C) Span station η = 0.65. (D) Span station η = 0.96.

FIGURE 5.4: Illustration of the shocks obtained with ParaView [20].

One can observe that the shocks are more prominent across the entire extrados, particularly
at the span station η = 0.65 (Figure 5.4c), where the shocks are more pronounced at mid-chord.
This indicates that the wing deformation affects the shock patterns. It would be valuable to
investigate this behavior experimentally.

Finally, the Cp curves are shown in Figure 5.5, comparing the optimized wing to the base-
line wing.
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(A) Cp at span station η = 0.2.
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(B) Cp at span station η = 0.44.



54 Chapter 5. Optimization

0.0 0.2 0.4 0.6 0.8 1.0
x/c [-]

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

[-
]

(C) Cp at span station η = 0.65.
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(D) Cp at span station η = 0.8.
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(E) Cp at span station η = 0.9.
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(F) Cp at span station η = 0.96.
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(G) Cp at span station η = 0.99.

FIGURE 5.5: Cp comparisons between optimized and baseline wings.

As expected, the pressure coefficient curves reveal that the optimized wing affects the
shocks. Specifically, the shocks are more abrupt and unstable. These pronounced changes
in the shocks are likely to have a significant impact on performances, beyond what is observed
in the CFD simulation. Therefore, it would be highly valuable to validate this wing design
experimentally.
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Chapter 6

Future directions and enhancements

The framework presented in this master’s thesis proposes integrating dimensionality reduc-
tion into the optimization process. However, several aspects require additional research to
enhance the framework reliability and accuracy. This chapter outlines various ideas and key
considerations for further improvement. Each section is examined and analyzed to offer tar-
geted recommendations that address the specific issues discussed.

6.1 Computational Fluid Dynamics

The CFD component represents a significant source of potential errors, as the analysis pre-
sented relies heavily on the results from CFD simulations. The adage in engineering, "garbage
in, garbage out," underscores the importance of accurate inputs. To clarify and simplify the
discussion, it is divided into two topics: the mesh and the OpenFOAM software.

6.1.1 The mesh

Mesh generation is the starting point of any simulation and must be clean, reliable, and effi-
cient. To improve results, the mesh should be adapted for the case studied, featuring very thin
cells in the boundary layer and larger cells further from the wall. Adding more cells in regions
where shocks occur, such as the extrados and leading edge, is crucial. Overall mesh refinement
generally yields more accurate results, though this is practical only if the simulation budget
allows. Alternative grid types, such as H-type or C-type grids, or even a combination of differ-
ent types, may be more appropriate. There are numerous ways to enhance the solution simply
by modifying the grid construction.

To simplify the automation process, a thick trailing edge was used. Investigating the effects
of a sharp trailing edge might be beneficial.

Additionally, with the current setup, the first layer thickness is significantly smaller com-
pared to other cell dimensions, leading to a warning about high-aspect ratio cells, with a factor
of 1000 between two cell dimensions. While this is a concern for transient problems, there is
no clear indication that it affects this steady-state analysis. However, it would be prudent to
assess this issue further, as it could impact convergence rates and computational time.

6.1.2 OpenFOAM

OpenFOAM is a versatile, open-source tool that facilitates automation. However, it is not in-
herently designed for compressible solvers. While correction functions are implemented to
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address compressibility effects, the accuracy of the results may be compromised. It is recom-
mended to consider alternative software, such as SU2 [40], which may be better suited for
analyzing the Onera M6 wing.

If continuing with OpenFOAM, numerous parameters, built-in functions, and options can
be tuned to enhance the setup. A thorough analysis of these parameters can improve conver-
gence rates and accuracy, though this requires in-depth knowledge of the software.

Another critical aspect is the choice of numerical schemes used in OpenFOAM. Various
schemes are available, and each field may require a specific divergence scheme. Careful selec-
tion of these schemes is essential, as they can significantly influence simulation behavior. For
instance, an in-depth analysis of limiters and the order of accuracy of the schemes is necessary
to ensure a high-quality setup. Similarly, the turbulence model should be optimized; different
versions of the Spalart-Allmaras model exist, and the standard version might not be the most
suitable.

Additionally, there are no widely available, reliable test cases for the Onera M6 wing in
OpenFOAM, either in the literature or online. Developing a robust and accurate CFD setup
for this wing would be a valuable contribution.

6.2 Free-Form Deformation

For the execution of this master’s thesis, 120 FFD points were utilized. It would be beneficial
to explore the response using a greater number of FFD points, as well as fewer. This could
potentially allow for more precise and nuanced tuning of the wing shape.

Regarding parameterization, there are numerous alternative approaches and choices that
could be tested. Allowing for modifications with a greater magnitude might lead to a higher
lift-to-drag ratio if executed carefully. The current approach employed a broad and generalized
parameterization. However, if the focus is specifically on enhancing the wing performances,
applying aerodynamic knowledge to guide the optimization could be advantageous. For ex-
ample, adjusting the sweep angle is known to significantly impact drag generation at high
velocities.

6.3 Dimensionality reduction

The primary objective of this thesis was to introduce dimensionality reduction and integrate it
into the optimization process. However, as discussed, numerous techniques exist, each vary-
ing in complexity. This represents the main area for potential improvement. The complexity
of the problem cannot be reduced merely by eliminating less influential variables. Moreover,
alternative methods might be better suited for this purpose. A preliminary study could in-
volve examining the Principal Component Analysis (PCA) [4] method and its impact on the
optimization process and results. However, since PCA has already been used in the literature
[3], it may be more insightful to explore the application of other methods and techniques.

Variable clustering offers significant advantages for this case. Grouping parameters through
clustering can help reduce noise, providing a more effective approach than removing vari-
ables with the feature selection method. Variable clustering also allows for the grouping of
parameters without requiring specific aerodynamic insight, thereby minimizing subjectivity
and facilitating automation by analyzing DoE samples.
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The choice of regression algorithm is also crucial, as its predictions drive the optimization
process. Increasing the size of the DoE can enhance the model and its predictions, though
practical constraints often limit this. Various regression algorithms are available, and more
advanced models may improve results. For instance, developing a neural network could be
costly but might offer improved accuracy. Such machine learning approaches require fine-
tuning and a good understanding of algorithms, but they have the potential to significantly
enhance overall accuracy.

Finally, in industrial applications, the simulation budget is a critical constraint. Addressing
this limitation is essential. Dimensionality reduction methods offer a viable option to reduce
process costs. A promising approach could be to use a global iterative process, as illustrated
in Figure 6.1.

DoE construction/expansion

Defining a parametrization

Performing LD optimization

Determining the LD setup

FIGURE 6.1: Potential industrial iterative process.

The methodology is straightforward. Each iteration begins with the LD setup to restrict the
design space. This approach helps converge towards a promising region where the optimal
wing design is likely to be found. Once convergence is achieved with the LD setup, or when
the simulation budget is nearing its limit, a final iteration can be performed using the HD
setup. This final iteration utilizes the entire parameterization space to enhance accuracy and
capture detailed characteristics of the design.

6.4 Optimization

In the optimization chapter, two different algorithms are introduced. Both are derivative-free,
and other optimizers might offer better performances. For instance, DAFoam provides three
gradient-based algorithms, e.g. SLSQP (Sequential Least Squares Quadratic Programming)
[41] , SNOPT (Sparse Nonlinear OPTimizer) [42], and IPOPT (Interior Point OPTimizer) [43],
which are well-regarded in the literature. Each of these algorithms has its own advantages and
limitations, which should be considered to match the complexity of this optimization problem.
Additionally, the choice of the optimizer influences the available settings, such as tolerance
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levels and maximum number of iterations, which require careful analysis to fine-tune these
settings for more accurate and efficient solutions.

The optimization process was conducted offline. An improvement could be to implement
an online mode, known as Surrogate-Based Optimization (SBO) [2], which allows the opti-
mizer to run CFD simulations at specific points during the iteration process. This approach
could enhance convergence and improve the optimized wing, but it may be costly, as each
CFD simulation is not instantaneous.

The current optimization focuses on a single operating point, which, while useful, is not
fully realistic. Ideally, the optimization should encompass the entire range of the polar curve.
For example, while optimization might target the cruise operating point, it should not lead to
performances degradation at other operating points.

In a broader application context, additional constraints are necessary to ensure the wing
reliability beyond achieving a high lift-to-drag ratio. While this ratio is a valuable aerodynamic
metric, it cannot fully characterize a wing. A more comprehensive optimization process should
consider parameters such as maneuverability, total mass, structural integrity (including load
resistance), shock position and strength, control effectiveness, and stability. A coupled fluid-
structure approach is essential to ensure the wing viability.

Finally, to validate the optimization results, experimental testing of the optimized wing is
necessary. This will provide an assessment of the performances and verify the effectiveness of
the optimization process.
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Chapter 7

Conclusion

This master’s thesis aimed to develop a framework to enhance the performances of a given
wing. The wing selected for this study was the renowned Onera M6 wing, which operates un-
der transonic conditions where shockwaves occur. The performances of this wing were eval-
uated using Computational Fluid Dynamics (CFD) simulations conducted with OpenFOAM
software.

A key objective of this thesis was to incorporate dimensionality reduction techniques into
the optimization process. The wing shape was deformed using a chosen parameterization in-
volving 125 design variables, with deformation applied through the Free-Form Deformation
(FFD) method, which allows for smooth modifications. The high dimensionality of this prob-
lem impacts the optimization process, and reducing dimensionality simplifies the problem,
approximating results with reduced complexity. The dimensionality reduction technique em-
ployed in this study was feature selection, specifically the filter method, which ranks design
variables based on their influence on the response.

The optimization process was carried out using two derivative-free optimizers: COBYLA
and Differential Evolution (DE). COBYLA was found to be more stable but yielded less optimal
results. In contrast, DE, though more unstable, explored a broader search space and achieved
better performances. DE demonstrated a 12% improvement with the high-dimensional setup
and nearly 11% improvement with a reduced setup containing 94 design variables. This in-
dicates that even with dimensionality reduction, the approximation maintains a low error,
proving that dimensionality reduction methods can be valuable in industrial contexts where
simulation budgets are a major constraint. These methods offer significant cost reductions
without substantial loss of accuracy.

Although this study introduces promising techniques for dimensionality reduction, further
research is needed. The preliminary framework developed here can be enhanced in several
manners. The ideas and specific points of attention outlined in this thesis are intended to
guide future research and improvements in this area.
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Appendix A

Drawing of the Onera M6 wing

Figure A.1 shows the schematic of the Onera M6 wing, as it can be found on the Onera website
[8]. The main characteristics of the wing are represented here, with all the relevant dimensions.
All this information are not required for this work but can help to create a mesh.

FIGURE A.1: Onera M6 wing and its ’D’ section (from Onera[8]).
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