
Final work carried out with the aim of obtaining the
degree of Master in Biomedical Engineering by

Florence GILSON (S191385)

Prediction of lower-body joint kinematics
during running and walking using a portable

inertial sensor

Image source: [1]

Supervisor :
Professor Cédric SCHWARTZ

University of Liège
Faculty of Applied Sciences
Academic year 2023 - 2024

Acknowwledgements

Before starting this thesis, I would like to express my gratitude to all those who, directly or indi-
rectly, contributed to the completion of this work.

I sincerely thank my supervisor, Professor Cédric Schwartz, who made this project possible.
Not only did he propose a fascinating and exciting topic, but he also guided me while allowing me
significant freedom, which helped me develop greater autonomy. I am grateful to him for the time
and effort he invested in this project and for granting me access to the Human Movement Analysis
Laboratory. I would also like to thank him for allowing me to use and handle all the equipment
necessary for the completion of this work.

I would like to express my gratitude to Ashraf Hassan, a PhD candidate at the University of
Liège, for his invaluable assistance, insightful advice, and the time he dedicated to answering all
my questions in a field, machine learning, that was almost entirely new to me.

I would also like to extend my gratitude to my friends who generously volunteered to participate
in the essential measurements that formed the basis of this work. Thank you for your enthusiasm,
perseverance, especially when things didn’t go as planned, and for the time you so kindly devoted
to me. Without them, the completion of this work would simply not have been possible.

I wish to give special mention to my boyfriend, who took the time to critically and kindly review
my thesis. His insightful comments greatly improved this work, and I am deeply touched by his
commitment to supporting me throughout this journey.

Finally, I would like to thank in advance the members of the jury who will take the time to read
this thesis, and for their attention and consideration.

i

Abstract

Analysis of joint kinematics plays a crucial role in various applications, ranging from optimizing
sports performance to clinical rehabilitation. However, this analysis is traditionally conducted in
controlled laboratory environments, requiring expensive and sophisticated equipment, which limits
its accessibility to a broader audience. This study aims to overcome these constraints by exploring
the use of more affordable portable sensors to provide accurate kinematic data in more practical
and realistic settings.

The objective of this study is to predict the flexion angles of lower limb joints, both during
running and walking, based on data provided by a single portable inertial sensor (IMU).

To achieve this goal, a significant portion of the work was dedicated to experimentation and
the collection of data necessary for analysis. Twenty healthy volunteers participated in this study,
each performing three running trials and three walking trials at different speeds on a treadmill.
The participants were equipped with an optoelectronic sensor system to measure the angles of the
three main joints of the lower limb, namely the hip, knee, and ankle. Additionally, two IMU sensors
were placed on each participant at different locations to determine which offered the best results.
These IMU sensors collected inertial data, such as linear acceleration and angular velocity.

Twelve feedforward neural networks (FNN) were then created and trained using these inertial
data as model inputs and kinematic data as model outputs.

The results indicate that the middle foot and heel locations for the IMU are comparable in
terms of the accuracy of lower limb kinematic prediction, with a slight preference for the middle
foot location.

Furthermore, this study also demonstrates that lower limb kinematics can be predicted with
satisfactory accuracy using feedforward neural networks, with minimal RMSE errors of 2.616° for
the ankle, 3.142° for the knee, and 3.8292° for the hip during running. For walking, similar minimal
RMSE errors were observed, with values of 2.8807° for the ankle, 4.21° for the knee, and 4.5767°
for the hip.

The Pearson correlation coefficients, ranging from 0.789 to 0.930 (p < 0.001) across all mod-
els, further validate the accuracy of the predictions.

However, a major limitation of this study is the significant variability in results between par-
ticipants, making it difficult to generalize the models to a larger population. Additional research
will be necessary to improve model generalization and reduce the observed errors, thus opening
promising prospects for more accessible clinical and sports applications.

ii

Contents

Introduction 1

1 State of the art 3
1.1 Importance of joint kinematics . 3
1.2 Reference technique for studying joint kinematics 5
1.3 Portable alternatives for measuring joint kinematics 7

1.3.1 Operating principle of Inertial Measurement Units (IMUs) 8
1.3.2 Approaches for analyzing data from IMUs 11
1.3.3 Use of a limited number of IMUs . 12

1.4 Joint angles prediction using Artificial Neural Networks (ANNs) 13

2 Materials and methods 18
2.1 Protocol . 18

2.1.1 Aims of the study . 18
2.1.2 Participants . 19
2.1.3 Instrumentation and marker placement 19
2.1.4 Description of the different test phases 21
2.1.5 Performing the test . 23

2.2 Data processing . 24
2.2.1 Preprocessing with Qualisys Track Manager® 24
2.2.2 Preprocessing with Visual3DTM . 25
2.2.3 Preprocessing in MATLAB® . 28

2.3 Models development and optimization . 30
2.3.1 Designing regression models using fitrnet 30
2.3.2 Hyperparameters optimization . 32
2.3.3 Averaging hyperparameters for final model creation 35

2.4 Evaluation metrics . 36
2.4.1 Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 37
2.4.2 Normalized Root Mean Square Error (nRMSE) 37
2.4.3 Violin plots . 37
2.4.4 Pearson correlation coefficient . 39
2.4.5 Segmentation into gait cycles . 40

3 Results and discussions 42
3.1 Optimized Neural Network hyperparameters . 42
3.2 Comparison of different IMU locations . 43

3.2.1 Model 1: Ankle angle predictions during running 43
3.2.2 Model 2: Knee angle predictions during running 45
3.2.3 Model 3: Hip angle predictions during running 46
3.2.4 Model 4: Ankle angle predictions during walking 47
3.2.5 Model 5: Knee angle predictions during walking 48

iii

3.2.6 Model 6: Hip angle predictions during walking 49
3.3 Analysis of Pearson correlation coefficients . 50

3.3.1 Model 1: Ankle angle predictions during running 50
3.3.2 Model 2: Knee angle predictions during running 51
3.3.3 Model 3: Hip angle predictions during running 51
3.3.4 Model 4: Ankle angle predictions during walking 52
3.3.5 Model 5: Knee angle predictions during walking 52
3.3.6 Model 6: Hip angle predictions during walking 53

3.4 Summary of model performances . 53
3.5 Model predictions based on the gait cycle . 54

3.5.1 Model 1: Ankle angle predictions during running 55
3.5.2 Model 2: Knee angle predictions during running 58
3.5.3 Model 3: Hip angle predictions during running 61
3.5.4 Model 4: Ankle angle predictions during walking 64
3.5.5 Model 5: Knee angle predictions during walking 68
3.5.6 Model 6: Hip angle predictions during walking 73

4 Limitations of this study 77
4.1 Limitations related to the experimental phase . 77
4.2 Limitations related to data preprocessing . 78
4.3 Limitations related to Machine Learning models 78

5 Conclusions and prospects 80

References 1

Appendix: MATLAB® Codes 1
.1 importData.m . 2
.2 main.m . 7
.3 optimizeNeuralNetworksWithSets.m . 10
.4 createSets.m . 13
.5 visualizeModelPerformances.m . 13
.6 cyclesDetection.m . 17

iv

List of Figures

1.1 Examples of multi-segment modeling of the human body for calculating body mo-
tion . 4

1.2 Planes and axes of movement . 5
1.3 Hip . 5
1.4 Knee . 5
1.5 Ankle . 5
1.6 Movements of the three main lower body joints in the sagittal plane 5
1.7 Laboratory optoelectronic motion capture system, illustrating the infrared cameras

and reflective markers used to measure joint kinematics 6
1.8 Illustration of inertial measurement units (IMUs) 7
1.9 Illustration of Newton’s second law with a mass attached to springs in a 2D refer-

ence frame . 8
1.10 Acceleration measurement using a MEMS accelerometer with a single movable

mass . 8
1.11 Illustration of the basic principle of a gyroscope and how the rotations (Roll:φ,Pitchθ,Yaw:ψ)

occur around respective axes . 10
1.12 Inner and substrate representation relative to a moving mass 11
1.13 Illustration of the two IMU locations compared in this work 12
1.14 Example of an ANN: a feed-forward neural network 13
1.15 Example of structure of a Convolutional Neural Networks (CNN) 15
1.16 Example of structure of a Long Short-Term Memory (LSTM) network 16
1.17 Overview of Artificial Neural Network types and Learning Approaches. 17

2.1 Schematic diagram of joint angle prediction protocol using an Artificial Neural
Network (ANN). 19

2.2 Image from Visual3D showing placement of reflective markers (green) and IMU
(orange): front view, back view and right side view respectively. 20

2.3 Representation of anatomical or calibration markers (blue spheres) and technical
markers (green spheres) on a body segment . 20

2.4 Illustration of the forces and moments acting on the knee during a quadriceps
contraction measured by a dynamometer. 22

2.5 Illustration of Qualysis calibration kit . 23
2.6 Schematic representation of the body marker structuring for the first participant

during the static acquisition. 24
2.7 Scaled model for first participant. 25
2.8 Illustration of the frequency response of a Butterworth filter for different orders (n) . 26
2.9 Representation of generalized coordinates used to control the position and orien-

tation of all body segments . 27
2.10 Schema of the "Angles.mat" table. 28
2.11 Schema of the "IMU.mat" table. 28
2.12 Illustration of running data assembly for the first three models. 29

v

2.13 sigmoid . 31
2.14 tanh . 31
2.15 ReLu . 31
2.16 Activation functions used by fitrnet . 31
2.17 Schematic representation of the gradient descent algorithm from 32
2.18 Illustration of the data structure for Bayesian optimization and for the first three

models. 33
2.19 5-fold cross-validation. 34
2.20 Row split for the first iteration of running model (19 participants) cross-validation. 35
2.21 Row split for the first iteration of walking model (20 participants) cross-validation. 35
2.22 80-20 distribution of running data for a participant and a specific task. 36
2.23 Representation of the characteristics of whisker boxes (A) and violin diagrams (B) . 38
2.24 Running data format for Pearson’s coefficient calculation. 39
2.25 Example of a conventional approach for interpreting Pearson’s coefficient 39
2.26 Illustrations of a walking (top) and running (bottom) cycle and the corresponding

phases . 40

3.1 Illustration of the Bayesian optimization process for hyperparameter selection. . . . 42
3.2 RMSE . 43
3.3 nRMSE . 43
3.4 MAE . 43
3.5 Analysis of error distributions: Root Mean Squared Error (RMSE), normalized

Root Mean Squared Error (nRMSE) and Mean Absolute Error (MAE). 43
3.6 RMSE . 45
3.7 nRMSE . 45
3.8 MAE . 45
3.9 Analysis of error distributions: Root Mean Squared Error (RMSE), normalized

Root Mean Squared Error (nRMSE) and Mean Absolute Error (MAE). 45
3.10 RMSE . 46
3.11 nRMSE . 46
3.12 MAE . 46
3.13 Analysis of error distributions: Root Mean Squared Error (RMSE), normalized

Root Mean Squared Error (nRMSE) and Mean Absolute Error (MAE). 46
3.14 RMSE . 47
3.15 nRMSE . 47
3.16 MAE . 47
3.17 Analysis of error distributions: Root Mean Squared Error (RMSE), normalized

Root Mean Squared Error (nRMSE) and Mean Absolute Error (MAE). 47
3.18 RMSE . 48
3.19 nRMSE . 48
3.20 MAE . 48
3.21 Analysis of error distributions: Root Mean Squared Error (RMSE), normalized

Root Mean Squared Error (nRMSE) and Mean Absolute Error (MAE). 48
3.22 RMSE . 49
3.23 nRMSE . 49
3.24 MAE . 49
3.25 Analysis of error distributions: Root Mean Squared Error (RMSE), normalized

Root Mean Squared Error (nRMSE) and Mean Absolute Error (MAE). 49
3.26 Ankle . 54
3.27 Knee . 54
3.28 Hip . 54

vi

3.29 Movements of the three main lower body joints in the sagittal plane 54
3.30 Illustration of expected ankle flexion angles during a running cycle 55
3.31 Predicted and true mean ankle cycles for "Run100". 56
3.32 Predicted and true mean ankle cycles for "Run120" 57
3.33 Illustration of expected knee flexion angles during a running cycle 58
3.34 Predicted and true mean knee cycles for "Run100". 59
3.35 Predicted and true mean knee cycles for "Run120". 60
3.36 Illustration of expected hip flexion angles during a running cycle 61
3.37 Predicted and true mean hip cycles for "Run100" 62
3.38 Visual3D hip angle signals for participant 1 and "Run100" before filtering (left)

and after filtering (right). 63
3.39 Predicted and true mean hip cycles for "Run120" 64
3.40 Illustration of expected ankle flexion angles during a walking cycle 65
3.41 Predicted and true mean ankle cycles for "Walk100" 66
3.42 Predicted and true mean ankle cycles for "Walk120" 67
3.43 Predicted and true mean ankle cycles for "Walk80" 68
3.44 Illustration of expected knee flexion angles during a walking cycle 69
3.45 Predicted and true mean knee cycles for "Walk100". 70
3.46 Predicted and true mean knee cycles for "Walk120". 71
3.47 Predicted and true mean knee cycles for "Walk80". 72
3.48 Illustration of expected hip flexion angles during a walking cycle 73
3.49 Predicted and true mean hip cycles for "Walk100". 74
3.50 Predicted and true mean hip cycles for "Walk120". 75
3.51 Predicted and true mean hip cycles for "Walk80". 76

vii

List of Tables

2.1 Participants data . 24
2.2 Description of the models with their corresponding input, output data, and IMU

locations. 29

3.1 Optimal hyperparameters for each model and IMU localization. 43
3.2 Pearson’s correlations for the Model 1. 50
3.3 Pearson’s correlations for the Model 2 . 51
3.4 Pearson’s correlations for the Model 3 . 51
3.5 Pearson’s correlations for the Model 4 . 52
3.6 Pearson’s correlations for the Model 5 . 52
3.7 Pearson’s correlations for the Model 6 . 53
3.8 Summary of the models’ performances, including the best IMU location, and error

statistics. 54

viii

Introduction

Human movement has always captivated attention, from the dawn of humanity to the present day.
In prehistoric times, this interest was expressed through frescoes carved on rock walls, reflecting
a fascination with the body in motion [2]. Today, thanks to technological advances, kinematic
analysis of human movement allows for precise capture and quantification of every bodily motion,
offering a vision akin to a slow-motion film where each gesture is broken down in time and space,
independent of the muscular forces or underlying mechanisms that produce them.

Joint kinematics, which focuses specifically on the movements of joints, finds applications in
various fields, ranging from medical rehabilitation to the optimization of athletic performance.
Traditionally, these analyses are conducted in specialized laboratories using sophisticated and ex-
pensive equipment. While these methods offer high precision, they limit accessibility to a broader
audience and remain somewhat unrepresentative of real-world conditions. For instance, in clinical
settings, accidental falls may be rare but can have severe consequences. However, even a detailed
laboratory evaluation may not always capture the precise causes of these incidents, as unforeseen
events in daily life do not necessarily occur under observation. Continuous monitoring outside of a
controlled environment would be necessary to obtain a comprehensive risk assessment. Similarly,
for a high-level athlete seeking to optimize performance, even the most advanced treadmill cannot
fully replicate the natural dynamics of outdoor running, where terrain variations, weather, and
other factors may influence movements.

This thesis is framed within the context of expanding access to movement analysis beyond
the confines of specialized laboratories. The proposed approach relies on using a limited number
of portable inertial sensors (IMUs), which are both affordable and easy to use, combined with
machine learning methods capable of handling complex and large datasets. This work focuses on
the most commonly used means of locomotion by the majority of people daily, instinctively since
early childhood, namely walking and its extension, running. These activities occur in the sagittal
plane and primarily involve the hip, knee, and ankle joints. Therefore, the angles of these three
joints will be studied here. The ultimate goal of this thesis is to accurately predict these three
joint angles based on inertial data collected from a single IMU.

To achieve this objective, the work begins by delving into the context, establishing the theo-
retical and technical foundations essential for understanding the challenges related to predicting
joint angles from inertial sensor data. This initial step also includes a critical analysis of previous
research, thereby identifying the gaps that this study aims to address (Chapter 1).
The study then continues with a detailed description of the experimental protocol, carried out in
a laboratory setting to ensure the precise data collection from twenty participants. Section 2.1
explores in detail the various tasks performed by the volunteers, as well as the infrastructure and
instruments used. While the use of the laboratory is crucial at this stage to ensure the quality and
accuracy of the collected data, the ultimate goal of this work is to develop predictive models that
are robust enough to allow movement analysis outside of this controlled environment.
The following Section 2.3 explains in detail the process by which the collected data is transformed

1

INTRODUCTION

into predictive models for estimating lower body joint angles. This process includes a step of hy-
perparameter optimization, ensuring that the models reach their optimal performance.
Chapter 3 then presents an analysis of the results obtained from the developed predictive models.
This analysis is conducted through statistical metrics such as RMSE (Root Mean Square Error),
MAE (Mean Absolute Error), nRMSE (normalized RMSE), and Pearson’s correlation coefficient,
as well as through biomechanical evaluation of the model predictions. The aim of this analysis is
particularly to determine which IMU location provides the best predictions.
The limitations of this study are also highlighted, offering a clear perspective on the challenges
encountered and the opportunities for future research (Chapter 4).
Finally, this thesis concludes by offering perspectives for the future, drawing both from the identified
limitations and the potential future directions of this work (Chapter 5).

2

Chapter 1

State of the art

This first chapter provides an overview of the essential theoretical foundations necessary for un-
derstanding the prediction of joint angles using Artificial Neural Networks (ANN). It begins by
exploring the significance of joint kinematics across various fields such as biomechanics, clinical
diagnostics, and athletic performance. The chapter then delves into the reference technique for
studying joint kinematics, namely optoelectronic systems, while highlighting their limitations, par-
ticularly in uncontrolled environments. This analysis supports the transition to more flexible and
real-world applicable alternatives, such as Inertial Measurement Units (IMU). The operating princi-
ples of IMUs are subsequently explained, followed by a presentation of studies focusing on the use
of a limited number of these sensors. Finally, the chapter introduces the use of ANNs for predicting
joint angles, shedding light on the architectures commonly used in biomechanics. It also justifies
the choice of network type selected for this study, based on comparisons with existing literature.

1.1 Importance of joint kinematics

Kinematics is a branch of mechanics that focuses on the movement of objects without considering
the forces and moments that cause these movements [3]. In biomechanics, this tool allows for the
precise analysis and quantification of human body movements, such as those observed during gait
[4].

To apply the principles of kinematics in biomechanics, the human body is typically modeled as
several distinct segments, as illustrated in Figure 1.1 [4]. Joint kinematics, on the other hand,
specifically focuses on the relative movements between these segments. It is concerned with "how"
different parts of the body move relative to one another, without addressing the causes of these
movements, such as muscle forces or external influences. In other words, it focuses on how the
body’s segments change position and orientation, as well as their speed and acceleration, while
leaving aside the "why" behind these movements [2, 3].

3

CHAPTER 1 1.1. IMPORTANCE OF JOINT KINEMATICS

Figure 1.1: Examples of multi-segment modeling of the human body for calculating body motion
[4].

The study of joint kinematics, thanks to technological advancements, now enables the de-
coding of complex movements, paving the way for numerous applications ranging from medical
rehabilitation to the optimization of athletic performance.

In the field of rehabilitation, precise monitoring of rehabilitation programs is essential to ensure
the correct execution of exercises and to measure patient progress, particularly in terms of range of
motion [5]. Studies have shown that supervised rehabilitation exercises, where feedback is provided
to the patient, are more effective than those performed without feedback [6, 7]. Thus, integrating
an automated biofeedback system, such as an interface displaying the patient’s actual movements
in real-time compared to those prescribed by the clinician, can greatly enhance the effectiveness
of the program. This type of feedback is not only beneficial for exercises performed at home, en-
suring their proper execution, but also under clinical supervision, where visual observations can be
subjective. Clinicians can also use these systems to retrospectively analyze kinematic data, such as
joint trajectories or angles, to detect potential compensatory movements due to the pathology or
to calculate relevant spatio-temporal parameters. Ultimately, this allows the therapeutic program
to be adjusted according to the specific needs of each patient, optimizing the results.

Beyond the evaluation and monitoring of progress, the study of joint kinematics can also be
considered an effective preventive tool. It allows for the diagnosis of abnormal gait or running
patterns and can even serve as a simple, non-invasive, and affordable indicator of a person’s
general health status [8].

This is relevant not only for healthy individuals who wish to prevent the risks associated with
improper gait but also for those facing aging, a natural and inevitable phenomenon that affects a
growing population [8]. Aging indeed increases the risk of falls, a major concern for the elderly.
Through kinematic analysis, it is possible to detect early alterations in movements, thereby en-
abling the implementation of preventive interventions to reduce these risks.

Finally, another key advantage of studying joint kinematics lies in the field of sports. In this
context, even a slight improvement, such as a one-second increase or even a one-millimeter en-
hancement in an athlete’s performance, can have a significant impact on the results. The collection
of kinematic data during training sessions or competitions is essential for athletes and their coaches.
This data allows for the precise identification of strengths and weaknesses in sporting techniques,
thereby offering opportunities for performance optimization [9].

In this study, the objective is to analyze running and walking, with key movements originating
from the lower body. Consequently, only the kinematics of the three main lower body joints,

4

CHAPTER 1 1.2. REFERENCE TECHNIQUE FOR STUDYING JOINT KINEMATICS

namely the hip, knee, and ankle, will be examined. Additionally, these joint angles will be analyzed
exclusively in the sagittal plane. This choice is a natural one, as the sagittal plane is where the
primary flexion and extension movements characteristic of walking and running occur. Furthermore,
it is the most studied plane in the literature for gait analysis, allowing for easier comparison of the
results of this study with previous work. This plane is illustrated in red in Figure 1.2.

Figure 1.2: Planes and axes of movement [10].

In this plane, the movements of the hip, knee, and ankle joints are primarily flexion and extension
(or dorsiflexion and plantarflexion for the ankle), as depicted in Figures 1.3,1.4 and 1.5.

Figure 1.3: Hip Figure 1.4: Knee Figure 1.5: Ankle

Figure 1.6: Movements of the three main lower body joints in the sagittal plane [11].

1.2 Reference technique for studying joint kinematics

To accurately and non-invasively measure joint kinematics, the optoelectronic motion capture
system is widely recognized as the gold standard in laboratory settings for human movement
analysis. As illustrated in Figure 1.7, this system utilizes infrared cameras and reflective markers
placed on specific points of the body to precisely track the trajectories of these markers in three
dimensions [12].

5

CHAPTER 1 1.2. REFERENCE TECHNIQUE FOR STUDYING JOINT KINEMATICS

Figure 1.7: Laboratory optoelectronic motion capture system, illustrating the infrared cameras and
reflective markers used to measure joint kinematics [13].

However, this system presents significant limitations for everyday use in clinical settings, at
home, or outdoors. These constraints primarily stem from the need for strict control over lighting
conditions to ensure that the infrared cameras operate optimally. Additionally, the installation of
such a system requires a considerable amount of space to guarantee accurate motion capture,
making it impractical for smaller or less controlled environments. Furthermore, the high cost of
this equipment poses another significant barrier, restricting its use to specialized laboratories ded-
icated to human motion analysis [14].

It is also important to mention one of the main sources of error in human movement analysis,
which also affects these optoelectronic systems, namely soft tissue artifacts (STA). These arti-
facts are errors caused by the relative movement between the markers placed on the skin and the
underlying bones. Their magnitude can vary depending on several factors, including the task being
performed, particularly the range of motion, the part of the body being studied, the anatomical
characteristics of the subject, and the location of the markers, especially when placed near joints.
Moreover, incorrect marker placement can significantly exacerbate these artifacts, highlighting the
importance of precise positioning, which requires the presence of qualified technical or clinical per-
sonnel [12, 15, 16].

Additionally, to ensure optimal accuracy in measuring joint kinematics, it is often necessary to
position a large number of markers and carry out calibration steps, making the process lengthy and
complex [17].

These limitations underscore the need to develop more accessible alternative systems for mea-
suring joint kinematics, allowing for more flexible use in clinical and everyday contexts [17].

In this study, the optoelectronic system will be used solely to accurately calculate the angles
of the three main lower body joints. These angles will then serve as output data for machine
learning models. The ultimate goal is that once these models are created and trained, the use of
the optoelectronic system will no longer be necessary, as it remains difficult to employ for daily
kinematic assessments due to the limitations mentioned earlier.

6

CHAPTER 1 1.3. PORTABLE ALTERNATIVES FOR MEASURING JOINT KINEMATICS

Regarding soft tissue artifacts (STA), which, as discussed earlier, limit the accuracy of op-
toelectronic systems, marker set techniques commonly used in practice will be implemented to
minimize them as much as possible. These techniques will be further detailed in Section 2.1 of
this work [12, 15].

Additionally, another frequent source of errors in optoelectronic systems involves systematic
and random errors, also known as photogrammetric errors. These errors can be caused by improper
camera calibration, noise in the data, or inappropriate lighting conditions. To mitigate these, digital
filtering will also be applied here, as these errors typically manifest at high frequencies [15].

1.3 Portable alternatives for measuring joint kinematics

Numerous studies have highlighted the growing interest in using inertial measurement units (IMUs)
as a portable alternative to traditional optoelectronic systems for measuring joint kinematics
[8, 9, 14, 17–35].

IMUs offer several notable advantages. They are cost-effective and small and lightweight
enough to be attached directly to various parts of the body without hindering the person’s move-
ments, allowing for continuous monitoring in various environments, whether indoors or outdoors.
Moreover, their ability to transmit data wirelessly makes them particularly well-suited for real-time
monitoring, enabling immediate tracking and analysis of movements. This capacity to provide
instant feedback and operate without requiring complex setup or extended preparation time makes
them a valuable tool for both sports and clinical applications [17].

These small, portable sensors, illustrated in Figure 1.8, have already proven their usefulness
in scientific literature, particularly in the field of sports. For example, a 2018 review, which
compiled 286 studies and 23 reviews, demonstrated that IMUs are a viable solution for extending
and enhancing athletes’ careers by offering better injury prevention and more tailored and specific
training [35]. Furthermore, a more recent review, published in 2021, confirmed that IMUs represent
a promising alternative for real-time kinematic analysis in the field, thereby facilitating a more
accurate and immediate evaluation of athletic performance [9].

Figure 1.8: Illustration of inertial measurement units (IMUs) [36].

In a clinical context, although further research is necessary, IMUs have also shown promising
potential. For example, one study revealed that IMUs can accurately predict knee kinematics in
patients with osteoarthritis, although this study was limited by a sample of participants with low
BMI, reducing the generalizability of the results [37]. Additionally, a review focusing on participants

7

CHAPTER 1 1.3. PORTABLE ALTERNATIVES FOR MEASURING JOINT KINEMATICS

with degenerative knee disorders emphasized the future need to evaluate a wider range of tasks
and to expand the analysis to other joints to obtain more comprehensive results [38]. Moreover,
another study explored the use of IMUs to monitor rehabilitation exercises for the hip and knee
joints, although it was limited to a small sample of healthy participants [5].

1.3.1 Operating principle of Inertial Measurement Units (IMUs)

These portable devices combine information from several electromechanical sensors, such as ac-
celerometers, gyroscopes, and sometimes magnetometers, to accurately estimate the orientation
and dynamics of body segments.

The data from magnetometers, in addition to that from accelerometers and gyroscopes, detect
the Earth’s magnetic field. This allows the IMU to orient itself with respect to a global reference
system. Moreover, the data from magnetometers help correct potential errors and improve the
accuracy of the measurements obtained from the accelerometers and gyroscopes [22, 39].

However, several studies have shown that magnetometers can introduce significant errors be-
cause they are highly sensitive to local magnetic field disturbances, such as the presence of metals
or nearby electronic equipment [40, 41].

To avoid these disturbances, it is often recommended to exclude magnetometer data, which
makes the measurements independent of variations in the environmental magnetic field [25, 26,
42, 43]. Consequently, in this study, only data from accelerometers and gyroscopes will be used.
The remainder of this section will therefore focus exclusively on the functioning of these two types
of sensors.

1.3.1.1 Functioning of the accelerometer

The accelerometer in IMU sensors measures linear acceleration in three orthogonal directions (X,
Y, and Z), which is the change in velocity in these directions. The Z-axis is generally assumed
to be aligned with gravity, and measurements in the X and Y orientations provide information
on the orientations during a given movement [22]. For human motion analysis, MEMS (Micro-
Electro-Mechanical Systems) accelerometers are commonly used, as they are smaller and lighter
compared to other types of accelerometers. The accelerometer used in these systems is typically
of the capacitive type [44], which measures changes in capacitance resulting from the movement
of an internal mass [45].

Figure 1.9: Illustration of Newton’s second
law with a mass attached to springs in a 2D
reference frame [46].

Figure 1.10: Acceleration measurement us-
ing a MEMS accelerometer with a single
movable mass [47].

More specifically, the operating principle of the capacitive accelerometer is based on Newton’s
second law and Hooke’s law (1.1). These laws allow for the calculation of acceleration

−→̈
x by

8

CHAPTER 1 1.3. PORTABLE ALTERNATIVES FOR MEASURING JOINT KINEMATICS

detecting the force
−→
F , exerted by a spring with a stiffness constant k, on a mass m suspended inside

the sensor (Figure 1.9). The deformation of the spring −→x and the displacement of the movable
mass alter the distance between the electrodes d, thereby changing the electrical capacitance C
(1.2). This change in capacitance is then converted into an electrical signal proportional to the
measured acceleration, which is subsequently processed by a microcontroller [44].

Newton’s Second Law:
−→
F = m

−→̈
x

Hooke’s Law:
−→
F = −k−→x

Combining the two laws: m
−→̈
x = −k−→x

⇐⇒ −→x = −
m

k

−→̈
x

(1.1)

Measured capacitance: C =
ϵr ϵ0A

d
où d = d0 +

−→x (1.2)

• ϵ0 : Permittivity of free space

• ϵr : Relative permittivity of the material between the plates

• A : Overlapping area of the electrodes

• d : Current distance between the electrodes

• d0 : Initial distance between the electrodes in the absence of deformation

• −→x : Displacement of the moving mass

Thus, in reality, the accelerometer does not directly measure linear acceleration but does so
indirectly by detecting the displacement of a mass relative to fixed electrodes [47].

Figure 1.10 shows an example in which capacitive accelerometers are arranged in a differential
pair. This configuration relies on a single moving mass, held by a mechanical spring between two
fixed reference electrodes. By calculating the difference between the capacitances C1 and C2,
which respectively depend on the distances d1 and d2 relative to the movement x of the mass and
the fixed electrodes, it is possible to calculate the displacement of the mass and its direction [47].

The double integration of the linear acceleration signals measured by the accelerometer in the
three spatial directions ultimately allows the determination of the spatial position of the moving
body segment to which the IMU sensor is attached [46].

1.3.1.2 Functioning of the gyroscope

The gyroscopic sensor measures angular velocity around three orthogonal axes (yaw, pitch, and
roll, corresponding to the X, Y, and Z axes), meaning the rate of rotation of an object around these
axes. It functions by measuring the rotational movements of the frame on which the gyroscope is
mounted relative to a fixed reference system [45]. Figure 1.11 illustrates the rotations around the
different axes.

9

CHAPTER 1 1.3. PORTABLE ALTERNATIVES FOR MEASURING JOINT KINEMATICS

Figure 1.11: Illustration of the basic principle of a gyroscope and how the rotations
(Roll:φ,Pitchθ,Yaw:ψ) occur around respective axes [46].

The operation of MEMS (Micro-Electro-Mechanical Systems) gyroscopes is based on the Cori-
olis effect (1.3), which describes the Coriolis force

−→
FC generated when a mass oscillating at a certain

frequency along one axis is subjected to a rotation −→ω perpendicular to this oscillation.

Coriolis Effect:
−→
FC = −2m(−→ω ×−→v) (1.3)

This Coriolis force, which occurs perpendicularly to the vectors −→v (vibration velocity) and −→ω (ro-
tation velocity), induces a displacement

−→
d of the oscillating mass in a direction different from its

initial movement. This displacement is used to measure rotation.

Figure 1.12 illustrates the operation of a MEMS gyroscope for a specific detection orientation.
When the resonating mass, located in the inner frame, vibrates at a given frequency along the
vertical axis, also known as the drive axis (yaw axis or Z-axis), and a rotation is applied around the
horizontal Y-axis, which is perpendicular to the oscillation direction (pitch axis), a Coriolis force is
generated in the direction of the X-axis (roll axis), perpendicular to both the vibration (Z) and rota-
tion (Y) axes. This force induces a displacement

−→
d of the inner frame in the direction of the X-axis.

This displacement is measured by detecting the changes in capacitance between the various
electrodes of the outer frame, in a manner similar to an accelerometer (??). Once this displacement
−→
d is measured, and knowing the spring constant k, the Coriolis force

−→
FC can be determined by

the following relation 1.4:
−→
d =

−→
FC
k
=
−2m(−→ω ×−→v)

k
(1.4)

In this equation, the two remaining unknowns are the angular velocity −→ω and the vibration velocity
of the mass −→v . In practice, the vibration velocity is fixed and known, as the mass in these sensors
is designed to vibrate at a specific predetermined frequency. The angular velocity can thus be
determined and, once integrated, will provide the orientation of the body segments to which the
IMU sensors are attached [47].

10

CHAPTER 1 1.3. PORTABLE ALTERNATIVES FOR MEASURING JOINT KINEMATICS

Figure 1.12: Inner and substrate representation relative to a moving mass [47].

1.3.2 Approaches for analyzing data from IMUs

Following the recording of signals from accelerometers and gyroscopes within Inertial Measurement
Units (IMUs), two main methods for data processing are commonly used.

The first and more conventional method involves integrating and fusing data from both sen-
sors (accelerometer and gyroscope). By integrating linear accelerations, one can obtain velocity
(through single integration) and position (through double integration), while integrating angular
velocities allows for determining the orientation of the body segments to which the inertial sen-
sors are attached [44]. The fusion of this data enables even more accurate estimations of the
movements of the segments on which the IMUs are placed.

To combine the data from these different sensors, sensor fusion algorithms are employed,
with Kalman filters and complementary filters being the most popular in motion analysis systems
[25]. The Kalman filter, for instance, uses a probabilistic model to estimate the true state of the
system based on previous measurements and knowledge of the system’s dynamics [48]. On the
other hand, complementary filtering combines the strengths of the sensors to filter signals across
different frequencies [21].

The major advantage of this fusion approach is that it compensates for the limitations that
each sensor might present individually. For example, accelerometers are useful for stable long-
term estimates as they provide a good inclination estimate, but they respond slowly to rapid
movements. In contrast, gyroscopes are accurate in the short term but accumulate drift errors
over longer periods. Thus, by combining the two, one obtains an orientation measurement that is
both accurate and stable over time, while still being responsive to quick movements [45, 46, 49].

Therefore, unlike optoelectronic systems, which directly measure the absolute position of mark-
ers attached to the body, IMUs estimate the position of body segments indirectly by integrating
signals from accelerometers and gyroscopes. However, these integration processes can introduce
errors, such as the accumulation of bias, noise, drift, or other disturbances in the signals, which is
a major drawback of this method [21, 22, 44, 46].

The second method, which is the one adopted in this work, involves directly using the raw
data from accelerometers and gyroscopes to predict joint kinematics. This approach has the ad-
vantage of eliminating errors associated with integration steps. However, it requires the use of

11

CHAPTER 1 1.3. PORTABLE ALTERNATIVES FOR MEASURING JOINT KINEMATICS

a model capable of effectively processing this raw data and accurately inferring joint kinemat-
ics. The relationships between input data (linear accelerations and angular velocities) and output
data (flexion-extension angles of the hip, knee, and ankle) are complex and non-linear, thereby
necessitating the use of a machine learning model.

1.3.3 Use of a limited number of IMUs

Reducing the number of IMU sensors used across the body not only decreases costs and setup
time but also makes the sensors less intrusive and more convenient for daily use.

In a recent review [27], focused on the use of machine learning for lower limb biomechanics
during running, Xiang et al. (2022) demonstrated that one or two IMU sensors were sufficient to
obtain reliable predictors or input variables for machine learning models.

However, in general, studies focusing on the prediction of lower limb joint kinematics using
machine learning and inertial data, those using only a single IMU remain relatively rare.

Most of this research has focused exclusively on walking, whether on a treadmill [23, 28, 50]
or over a short straight distance [30–32]. The IMU was generally placed on the sacrum, near the
center of mass [28], on the lateral shank [30], at the ankle [32, 50], or on the foot [31].

On the other hand, very few studies have focused on running analysis. These studies [33, 34]
have analyzed treadmill running with an IMU placed on the tibia. Meanwhile, another study [32]
focused on running over short distances of a few meters, with an IMU placed at the ankle.

Furthermore, most of these studies involve a limited number of participants, typically fewer
than 11 [28, 32–34, 50], highlighting a gap in the literature on this topic.

In this work, two different IMU locations will be compared, as shown in Figure 1.13. These
locations, namely the ankle and the foot, were selected based on both the most commonly used
positions in previous studies [27] and the insights gained from the Human Movement Analysis
course taken this year [44].

Figure 1.13: Illustration of the two IMU locations compared in this work [44].

It is important to note that the sensor positioned at the front of the foot will be placed near
the shoe laces, rather than at the toe as shown in Figure 1.13. This decision was made to
minimize interference from the flexion-extension movements of the forefoot, which could affect
measurement accuracy.

12

CHAPTER 1 JOINT ANGLES PREDICTION USING ANN

1.4 Joint angles prediction using Artificial Neural Networks (ANNs)

As mentioned earlier, using raw data from accelerometers and gyroscopes has the advantage of
avoiding errors associated with the signal integration steps. However, to extract accurate predic-
tions of joint kinematics, it is essential to use a machine learning model capable of capturing the
complex relationships between the measured signals and the actual joint movements.

Machine learning is a branch of artificial intelligence that aims to enable machines to learn
and improve autonomously from their experiences, without requiring explicit programming for each
task. The primary goal is to reduce human intervention in performing repetitive or secondary tasks
[51]. Artificial intelligence thus endows systems with the ability to solve problems and make
decisions in a manner similar to humans [51].

In the context of human movement analysis, a type of machine learning model often used
for predicting joint kinematics based on IMU data is the Artificial Neural Network (ANN) [23–
31, 33, 34]. ANNs are particularly well-suited to this task due to their ability to model nonlinear
and complex relationships [52].

The term "Neural" in Artificial Neural Networks comes from the fact that these networks are
inspired by the structure of the human brain, which is composed of vast interconnected networks
of neurons working together to process and interpret sensory information [25, 53].

These ANNs are typically represented by a network diagram, as illustrated in Figure 1.14.

Figure 1.14: Example of an ANN: a feed-forward neural network [52].

In this diagram, each circle can be seen as a neuron. The blue circles represent the input
variables (X1, X2, ..., Xp), and together they form the first layer of the network. The red circles
represent combinations of these input variables (Z1, Z2, ..., ZM) and are collectively known as the
hidden layers. Finally, the yellow circles represent the model outputs (Y1, Y2, ..., YK) and together
they constitute the output layer.

In this diagram, all the neurons in each layer are connected to all the neurons in the next layer,
which is why these layers are described as fully connected. Such a network is called a Fully-
connected Neural Network. The connections between neurons, represented by lines, each have
a weight that can be adjusted during the training process, whether supervised or unsupervised,

13

CHAPTER 1 JOINT ANGLES PREDICTION USING ANN

allowing the network to learn complex data representations [52].
Supervised learning involves training a neural network on so-called "labeled" data, where each

input is associated with a target output. The goal is to minimize the error between the model’s
predictions and the actual values by adjusting the weights of the neural connections [52]. Unlike
unsupervised learning, which attempts to identify relationships, patterns, or groups in data without
labeled outputs, supervised learning is ideal for tasks such as joint angle prediction. Here, the
model learns from precise input signals (like those from IMUs) and known outputs (the measured
joint angles) to produce reliable predictions on new data.

Two main techniques are used in learning: classification and regression [51]. Classification aims
to predict a class or category for each input, while regression seeks to predict continuous values
from one or more inputs, such as kinematic data.

Mathematically, neural networks rely on the basic principle of extracting linear combinations
of the input data, known as "derived features," and then modeling the output data as a nonlinear
function of these derived features [52].

If the input data is denoted by:

XT = (X1, X2, ..., Xp),

where X is a vector containing the different input features. Linear combinations of these inputs
could take the form:

Zm = αm1X1 + αm2X2 + ...+ αmpXp,

with αm1, αm2, ..., αmp representing the connection weights, which indicate the relative importance
of each input in the creation of these new derived feature variables. These weights correspond to
the connections, or lines, between the blue circles and the red circles in Figure 1.14. The derived
features Zm are then transformed using a nonlinear activation function σ, typically the sigmoid or
ReLU function, to produce:

Zm = σ(α0m +αTmX), m = 1, ...,M,

where α0m represents the constant bias term, added to give the model flexibility. Once these
derived features are created, they are linearly combined using new weights βk and the bias β0k to
produce the following intermediate values:

Tk = β0k + β
T
k Z, k = 1, . . . , K, with

{
T = (T1, T2, . . . , TK)

Z = (Z1, Z2, . . . , ZM)

These βk weights correspond to the connections, or lines, between the red circles and the yellow
circles in Figure 1.14, determining the relative contribution of each derived feature to the final
output variables. Finally, the final outputs can be produced by applying a nonlinear function gk to
the intermediate values Tk :

Yk = gk(T), k = 1, ..., K.

In the context of this work, Artificial Neural Networks (ANN) are used to learn the relationships
between the input data (data from IMUs) and the output data (kinematic data). To achieve this,
training datasets, composed of these input data and their corresponding targets, are provided to
the model so that it can train and subsequently be able to predict the output data based solely on
IMU data that is different from the training data.

The three main categories of ANN commonly used for joint angles prediction are described
below, along with their respective advantages and disadvantages.

14

CHAPTER 1 JOINT ANGLES PREDICTION USING ANN

1.4.0.0.1 Feedforward Neural Networks (FNN) represent the most classic class of ANN and
are relatively simple to train. They are characterized by the transmission of information in a
single direction, from input to output, as previously illustrated by Figure 1.14 and the associated
mathematical equations, without any feedback loops where the model’s outputs are fed back into
the model itself [54]. In this type of network, each data point passes through the different layers
of the network only once, with no possibility of going back. Each point is processed independently
of the others, without considering the sequential order that may exist in time series data, such
as those obtained from accelerometer and gyroscope sensors. This means that these networks
are not inherently designed to handle the temporal dependency of the data. However, FNNs can
still be used with temporal data by flattening these sequences, i.e., by combining all the data
from each time step into a single vector. For example, if two 10-second running acquisitions are
obtained for two different subjects by an accelerometer measuring acceleration along an X-axis at
a frequency of 100 Hz, 10 x 100 = 1,000 time steps will be obtained for each subject. Flattening
these two sequences involves concatenating them into a single large column vector of size 2 x
1,000 = 2,000. This vector then represents an input feature for a model, where each value in
this vector corresponds to an acceleration measurement at a given moment for one of the two
subjects.

The main drawbacks of FNNs are their high computational cost, as well as the fact that they
require inputs and outputs of the same size, in addition to requiring input normalization. These
latter two drawbacks impose preprocessing steps between signal acquisition and the creation of
FNN models, thus limiting their use in real-time applications [25].

Although several studies have already used these FNN models to predict kinematics from IMU
sensors, they have all focused exclusively on walking [23–25, 28].

1.4.0.0.2 Convolutional Neural Networks (CNN) are traditionally used to process grid-structured
data, typically images, which can be viewed as a 2D grid of pixels. These networks can also be
applied to time series data, which can be considered as a 1D grid of samples taken at regular time
intervals. As their name suggests, these networks use the mathematical operation of convolution
instead of traditional matrix multiplication in at least one of their layers. This approach allows
them to effectively capture spatial or temporal dependencies in the data by exploiting local rela-
tionships between neighboring elements [54]. Thus, unlike Feedforward Neural Networks, which
use fully connected layers (Figure 1.14), CNNs employ convolutional layers where each neuron is
connected only to a small region of the neurons in the previous layer to perform the convolution
[55], as illustrated by Figure 1.15 below. Additionally, each convolutional layer applies a fixed set
of weights, which differs from FNNs where each connection has its own weight [55].

Figure 1.15: Example of structure of a Convolutional Neural Networks (CNN) [55].

One of the main drawbacks of CNNs is that they require a large dataset for effective model
training, which can be challenging in biomechanics, where obtaining a sufficiently large experimental
dataset is often difficult and complex [27].

Nevertheless, CNNs are widely recognized in the scientific literature as being among the most
accurate models for estimating joint kinematics [24, 26, 33, 34].

15

CHAPTER 1 JOINT ANGLES PREDICTION USING ANN

1.4.0.0.3 Recurrent Neural Networks (RNNs) are particularly well-suited for processing se-
quential data with variable time periods. They are equipped with feedback loops that allow them
to consider previous inputs when generating new outputs. This capability functions as an "internal
memory," which stores information from previous time steps and uses it to update the network’s
state at each new step [55]. In the context of human motion analysis, a commonly used type of
RNN is the Long Short-Term Memory (LSTM) network, which is specifically designed to better
manage long-term dependencies in data. The Figure 1.16 below, illustrates the structure of such
a network, including components like the cell state Ct (the LSTM’s memory), the forget gate ft ,
the input gate it , and the output gate ot .

Figure 1.16: Example of structure of a Long Short-Term Memory (LSTM) network [55].

The main drawbacks of these models are their complexity in training and the large datasets
they require [24].

Despite these challenges, LSTMs have been studied extensively in several research papers
[25, 26, 30, 31].

The study by Mundt et al. (2021) [24] compared the performance of the three main classes of
artificial neural networks for predicting kinematic data during walking, using IMU sensors for inputs
and an optoelectronic system for outputs, an approach similar to that adopted in this work. The
results revealed that, although FNNs are slightly less effective than CNNs in terms of performance,
they have the advantage of requiring smaller datasets and simpler preprocessing steps compared to
CNNs. Furthermore, FNNs demonstrated better accuracy than LSTMs in predicting joint angles.

Based on these findings, a Feedforward Neural Network (FNN), specifically a Fully-connected
Neural Network (a type of FNN where all neurons are interconnected, as illustrated in Figure
1.14), will be used here. This choice offers an ideal balance between simplicity, performance, and
efficiency, both in terms of the required data and the complexity of implementation for kinematic
prediction.

The following diagram 1.17 provides an overview of the key concepts discussed earlier, showing
how they relate to each other. Although not exhaustive, this diagram offers a useful visual structure
to help understand the various concepts explored so far.

16

CHAPTER 1 JOINT ANGLES PREDICTION USING ANN

Artificial Intelligence

Machine Learning

Supervised Learning

Artificial Neural Networks

Feedforward Neural Networks

Fully Connected Neural Networks

Regression Classification

Recurrent Neural Networks Convolutional Neural Networks

Unsupervised Learning

Figure 1.17: Overview of Artificial Neural Network types and Learning Approaches.

17

Chapter 2

Materials and methods

This chapter provides an in-depth overview of the essential steps that led to the collection, pro-
cessing, and analysis of the data used in this study. It begins with a detailed description of the
experimental protocol, including the collection of motion capture and inertial data. The character-
istics of the participants, the selection and use of instrumentation, as well as the precise execution
of the different test phases are thoroughly outlined. The chapter then delves into the processing
of motion capture data, emphasizing the crucial preprocessing steps carried out with specialized
software such as Qualisys Track Manager®, Visual3DTM, and MATLAB®. The third section
focuses on the development and optimization of regression models, explaining the application of
the fitrnet function, Bayesian optimization strategies, and cross-validation methods. Finally,
various evaluation metrics are presented to assess the performance of the developed models. This
includes not only traditional calculations like root mean square errors (RMSE) but also advanced
visualizations such as violin plots, which offer a more nuanced understanding of the results. The
analysis of gait cycles helps to contextualize these results in a biomechanical perspective, providing
a richer and more relevant interpretation of the predictions made.

2.1 Protocol

2.1.1 Aims of the study

This study aims, first and foremost, to collect motion capture data using an optoelectronic system,
as well as inertial data through two IMU sensors. Subsequently, kinematic data will be calculated
from the optical data using inverse kinematics techniques via the Visual3D software. Finally, the
obtained kinematic data will be used to train an artificial neural network (ANN) model capable of
predicting these same kinematic data based solely on inertial data from a single IMU sensor.

Figure 2.1 illustrates these different steps.

18

CHAPTER 2 2.1 Protocol

Figure 2.1: Schematic diagram of joint angle prediction protocol using an Artificial Neural Network
(ANN).

2.1.2 Participants

Twenty healthy volunteers, including fourteen women and six men (aged 22.6 ± 1.93 years, with an
average weight of 68.195 ± 12.42 kg and an average height of 1.717 ± 0.059 m), were recruited
to participate in this study. The participants met the following inclusion criteria: aged between 18
and 45 years, no recent pathology (less than 6 months) affecting the ankle, knee, or hip joints, no
history of joint surgery, and no current pain in these areas.

The participants were equipped with fitted sports shoes and clothing to avoid any interference
with the sensors. They attended the Human Movement Analysis Laboratory at Sart Tilman in
Liège, where they provided consent for the collection of their personal data, such as weight,
height, age, and the sport(s) they practice (this information is listed in Table 2.1). They also
consented to the use of the data collected during the experimental sessions in the laboratory.

2.1.3 Instrumentation and marker placement

Three-dimensional motion analysis was conducted using 11 optoelectronic cameras (Qualisys) with
a sampling frequency of 200 Hz, tracking the movements of 22 reflective markers placed on the
upper body and the right leg only, as illustrated by the green spheres in Figure 2.2. For simplicity,
it was assumed that participants exhibited symmetrical gait between both legs. Among these 22
markers, 14 were placed on the following anatomical landmarks: 1st and 5th metatarsal heads,
hallux, Achilles tendon insertion, medial and lateral malleoli, medial and lateral femoral condyles,
right and left anterior superior iliac spines, right and left posterior superior iliac spines, as well as
the C7 and T8 vertebrae. The remaining eight markers were arranged in two sets of four markers
each, with four markers being considered a practical compromise in this study [56]. One group
was placed on the muscle mass of the tibia and the other on that of the femur.

19

CHAPTER 2 2.1 Protocol

Figure 2.2: Image from Visual3D showing placement of reflective markers (green) and IMU (or-
ange): front view, back view and right side view respectively.

Based on the recorded trajectories of these markers, the positions and orientations of the
underlying bones can be reconstructed. More specifically, the 14 anatomical markers (represented
by the blue spheres in Figure 2.3) are used solely for calibrating and defining the anatomical
reference frame (or local reference frame) at the extremities of a segment, as they are placed
where bony landmarks are palpable. However, these landmarks coincide with areas where soft
tissue artifacts (STA) are most prevalent, particularly at the joints, where movement is most
pronounced. To address this issue, the position of this anatomical reference frame relative to
the technical reference frame (depicted in yellow in Figure 2.3), located at the center of the
body segment, is assumed to be invariant over time. This assumption is based on the premise
that the shape and structure of the segment are rigid and constant, regardless of the subject’s
movements. Therefore, this anatomical reference frame is primarily used during static calibration
and is not directly involved in estimating segment movements. Nevertheless, it plays a crucial
role in ensuring the reproducibility of measurements and allows for consistent comparison between
subjects while expressing the results within a clinically understandable framework [12].

Figure 2.3: Representation of anatomical or calibration markers (blue spheres) and technical mark-
ers (green spheres) on a body segment [12].

The two groups of four technical markers (represented by the yellow spheres in Figure 2.3)
are used to track segment movements [12]. While these markers, positioned in the middle of a
segment rather than at the joint intersections, are less prone to soft tissue artifacts (STA) than

20

CHAPTER 2 2.1 Protocol

anatomical markers, they can still shift or deform relative to the underlying bone during movement
due to the presence of passive and active soft tissues between the markers and the bone. Despite
this, technical markers are crucial because they introduce redundancy into the data, enabling the
application of optimization techniques to detect and minimize the impact of deformations and
errors, including those affecting the anatomical markers. This redundancy arises from the fact
that a given segment has six degrees of freedom (three for position and three for orientation),
while each marker provides three degrees of freedom (x, y, z). Therefore, with a group of four
markers on a segment, 12 degrees of freedom are available for the 6 required by the segment. Op-
timization can then compare minor errors or variations among these four markers, detect potential
inconsistencies, and correct them [56].

The anatomical markers positioned on the metatarsal, hallux, and Achilles tendon were placed
over the participants’ shoes.

Simultaneously, inertial data were collected using two Trigno Avanti IMU sensors (Delsys Eu-
rope) [57], attached at two specific locations on the right leg of each participant: at the midfoot
(in the laces of the shoes) and at the Achilles tendon insertion, secured with tape. These locations
are illustrated by the orange rectangles, which have been deliberately enlarged for better visualiza-
tion in Figures 2.16. These sensors have a sampling frequency of 2000 Hz.

Finally, a treadmill was installed at the center of the 11 cameras.

2.1.4 Description of the different test phases

2.1.4.1 Walk analysis phase

Each subject completed three 30-second walking trials on a treadmill at three different speeds,
specifically determined for each participant. The first session started at the participant’s preferred
walking speed, considered as their usual daily walking speed and referred to as "Walk100" in this
study. Based on this speed, a second speed, called "Walk80" or "slow" walking, was calculated to
correspond to 80 % of the preferred speed. Similarly, a third speed, called "Walk120" or "fast"
walking, was set to 120 % of the reference speed "Walk100".

The choice of these three speeds allows the experiment to be tailored to the individual capa-
bilities of the participants, which may vary according to their physical characteristics and athletic
condition. This approach ensures that each participant walks at a comfortable speed ("Walk100"),
while also allowing the observation of biomechanical adaptations when the speed is slightly in-
creased ("Walk120") or decreased ("Walk80"). Moreover, these trials at different speeds increase
the amount of data available for training the ANN model. The specific choice of "80%" and
"120%" values was made to avoid including too fast a walk, which would resemble running, or too
slow a walk, which would not reflect realistic walking conditions.

The specific speeds for each participant are listed in Table 2.1.

This walking phase also served as a warm-up for the next phase, which focused on treadmill
running.

2.1.4.2 Running analysis phase

Similar to the walking phase, each subject completed three 30-second running trials on a treadmill,
at three individual-specific speeds. A comfortable jogging speed for the participant was used to
define the reference speed "Run100", which then served to determine the "slow" running speed

21

CHAPTER 2 2.1 Protocol

("Run80") and "fast" running speed ("Run120").

To ensure participants’ safety during this running phase, a safety harness was attached above
the treadmill, connecting the participant to the treadmill’s infrastructure, helping to prevent the
risk of falling.

2.1.4.3 Knee extension moment analysis

The knee extension moment of the right leg was measured for each participant to assess their
general physical capabilities. This moment is generated by the quadriceps force around the knee
joint and thus represents an indicator of quadriceps strength. The quadriceps muscles, located
at the front of the thigh, are responsible for knee extension and hip flexion, which are essential
movements during walking and running [58].

Although these extension moment values were not directly used for training the machine learn-
ing models, they provide an assessment of the participants’ overall physical condition and help
contextualize the results obtained during the walking and running phases. Additionally, this in-
formation could prove useful in future analyses to study the links between muscle strength and
movement kinematics.

For this test, a handheld dynamometer and a physiotherapy table were used. Participants sat
on the table with the knee flexed at 90°, and the popliteal fossa firmly pressed against the table.
The dynamometer was positioned at the participant’s tibia, and the distance between the exter-
nal condyle and the center of the dynamometer platform was measured to determine the lever arm.

Before the actual measurements, familiarization tests were conducted, consisting of a contrac-
tion at 50 % of maximum strength, followed by a maximum contraction. Then, three maximum
contraction trials were performed, with the contraction held for 5 seconds each time. If a progres-
sive increase in force was observed, a fourth trial was conducted. The highest value among the
three or four trials was recorded as the final measure of quadriceps strength. Figure 2.4 illustrates
the setup of this test as well as the forces and moments involved.

Figure 2.4: Illustration of the forces and moments acting on the knee during a quadriceps con-
traction measured by a dynamometer.

The knee extension moment (represented in blue in Figure 2.4) was calculated by multiplying

22

CHAPTER 2 2.1 Protocol

the force measured by the dynamometer (represented in yellow) by the lever arm (represented in

purple). This moment was then normalized by the BMI
(

Weight[kg]
Height2[m2]

)
of each participant to allow

comparisons between different participants. The values of these moments are summarized in Table
2.1.

2.1.5 Performing the test

First, the calibration of the cameras and optoelectronic markers was carefully conducted to ensure
accurate motion capture on the treadmill. This calibration process for the optoelectronic system
involves informing the computer of the precise locations of the cameras relative to each other and
to the position of the treadmill in space. For this, an L-shaped square equipped with reflective
markers (Figure 2.5) is placed at the center of the treadmill. This square helps define the X, Y,
and Z axes of the calibrated space. Then, a carbon fiber wand with reflective markers at its ends is
waved throughout the space occupied by the treadmill, allowing the system to locate each camera
relative to the square [59].

Figure 2.5: Illustration of Qualysis calibration kit [59].

Once the three-dimensional capture space was properly defined, the two IMU sensors were
synchronized and placed on the participant. Then, the 22 reflective markers were installed.

The recording session began with a static trial aimed at estimating the alignments between
the markers and the corresponding body segments. For this, the subject was asked to stand still
on the treadmill, with arms and legs slightly apart, for a few seconds.

After the static recording was completed, the treadmill speed was gradually increased to reach
the participant’s comfortable walking speed, referred to as "Walk100". From this speed, the
walking speeds at 80% and 120% were calculated and then successively applied to the participant,
with each phase lasting 30 seconds. A few seconds of transition were given to the participant at
each speed change to allow adaptation to the new pace.

Similarly, the three running phases were calculated and performed by the participant, with or
without breaks between the different speed levels, depending on individual preferences.

The data were collected directly via the Qualysis Track Manager 3D analysis software for later
processing.

The total duration for completing all three tests (walking, running, and quadriceps strength
measurement) is approximately 1.5 hours per participant.

Table 2.1 summarizes the characteristics of each participant, as well as their strength test
results and speeds for each task.

23

CHAPTER 2 2.2 Data processing

No. Sex Year of birth Height [m] Weight [kg] Sport(s) Lever arm [m] Strength test [N] Quadriceps strength [Nm/kg/m2] Walking speed [m/s] Running speed [km/h]
100% 80% 120% 100% 80% 120%

1 M 2002 1.80 90 Weightlifting 0.34 743 9.094 3.5 2.8 4.2 10.5 8.4 12.6

2 M 2004 1.75 83
Weightlifting

Wrestling
0.33 766.60 9.193 4.5 4.3 5.4 10.1 8 12.12

3 F 2001 1.65 78
Running
Dance

0.30 238.00 2.492 3.4 2.72 4.08 8.8 7.04 10.56

4 F 2001 1.68 54
Synchronized Swimming

Yoga
Running

0.28 353.70 5.176 3.2 2.56 3.84 6.8 5.44 8.16

5 F 2001 1.68 54
Synchronized Swimming

Walking
Dance

0.28 342.10 5.007 4.0 3.2 4.8 6.6 5.28 7.92

6 F 1999 1.72 68 - 0.30 334.0 4.941 1.8 1.44 2.16 6.5 5.2 7.8

7 M 2001 1.79 67
Cycling
Running

0.36 440.40 7.581 4.3 3.44 5.16 11.8 9.44 14.16

8 F 2004 1.8 64
Tennis

Running
0.33 203.30 3.345 3.5 2.8 4.2 8.9 7.12 10.68

9 F 2004 1.67 60
Gym

Running
0.33 301.20 4.62 4.4 3.52 5.28 8.8 7.04 10.56

10 F 2002 1.73 72 - 0.33 372.30 5.045 4.8 3.84 5.76 8.6 6.88 10.32

11 M 2001 1.72 70 - 0.33 280.3 3.85 3.3 2.64 3.96 7.7 6.16 9.24

12 F 2004 1.66 49 - 0.27 323.00 4.904 4 3.2 4.8 8.8 7.04 10.56

13 F 2001 1.75 65 Weightlifting 0.33 457.30 7.002 3.9 3.12 4.68 8.2 6.56 9.84

14 F 2000 1.75 68
Weightlifting

Dance
0.33 454.20 6.75 3.5 2.8 4.2 7.5 6 9

15 F 2000 1.69 54 Weightlifting 0.32 390.6 6.611 2.7 2.16 3.24 6.1 4.88 7.32

16 M 1997 1.81 72
Swimming
Cycling

0.31 465.20 6.561 2.6 2.08 3.12 6.8 5.44 8.16

17 F 2001 1.63 64 Weightlifting 0.31 295.00 3.796 3.8 3.04 4.56 7.5 6 9

18 F 2002 1.60 75 Running 0.3 395.00 4.449 2.9 2.32 3.48 5.2 4.16 6.24

19 F 1999 1.71 98 Walking 0.32 407.00 3.886 2 1.6 2.4 4.8 3.84 5.76

20 M 2004 1.75 58.9 - 0.32 335.90 5.588 2.7 2.16 3.24 7 5.6 8.4

Average - 22.6 [yrs] 1.717 68.195 - 0.32 394.91 5.495 3.44 2.787 4.128 7.85 6.276 9.42

Std Dev - 1.93 [yrs] 0.059 12.42 - 0.02 142.26 1.81 0.813 0.714 0.975 1.749 1.394 2.099

Table 2.1: Participants data

2.2 Data processing

2.2.1 Preprocessing with Qualisys Track Manager®

Qualisys Track Manager (QTM) is a motion capture software that allows for the immediate identi-
fication of markers placed on the body during acquisitions. Once the data is captured and recorded,
the software also offers features to preprocess this data.

In this study, the markers placed on the participants were named and connected in a way
that approximately represents the body structure. This setup was then used to process the data
captured during the different tasks performed by each participant. An example of this structuring
is presented in Figure 2.6 for the first participant during the static acquisition.

Figure 2.6: Schematic representation of the body marker structuring for the first participant during
the static acquisition.

The trajectories of the markers for all tasks and all participants were visually analyzed. In
case of deviations in the trajectories, these were corrected by interpolation. For deviations of 10

24

CHAPTER 2 2.2 Data processing

frames or less (as the data was sampled at 200 Hz, a 30-second trial contains 6000 frames), a
polynomial interpolation was applied. For larger gaps, a relational interpolation was used. This
latter method is based on selecting three markers considered fixed, relative to which the deviation
of the concerned marker is corrected.

Once the marker trajectories were 100% complete, they were exported in the C3D 3D coordinate
file format to undergo further preprocessing in the Visual3D software.

2.2.2 Preprocessing with Visual3DTM

Visual3D is a biomechanical analysis software dedicated to the processing of 3D motion capture
data. In this study, it was used for several key steps: first, to record the positions of the optical
markers placed on an experimental subject and to match them with the markers of a musculoskeletal
model by scaling the model’s segments to fit the subject’s anatomy. Next, Visual3D was used to
filter the captured data to reduce noise. Finally, an optimization step, called inverse kinematics,
was employed to calculate the kinematics of the body segments based on the trajectories of the
experimental markers during movements.

2.2.2.1 Scaling the anatomical model

A generic Visual3D model (CMO file), provided by my supervisor, Professor Schwartz, and con-
taining all the rigid segments of the right lower limb, such as the pelvis, femur, tibia, and foot, was
scaled to match the anatomical landmarks obtained during the static trial of each participant.

In this model, the segments are explicitly linked by joint constraints, so the movement of one
segment depends on the movement of others, while respecting the natural limits of the joints. For
example, in the creation of this model in Visual3D, the right thigh segment was configured to have
the pelvis as the parent segment. This thigh segment has no degrees of freedom in translation but
can rotate around the three axes of rotation, meaning that the thigh is fixed to the pelvis without
any possibility of translation but can rotate freely relative to it.

An example of this scaled model is shown in Figure 2.7 for the first participant.

Figure 2.7: Scaled model for first participant.

During the static acquisition, which lasts a few seconds, Visual3D calculates an average of
the marker positions over all the frames to compensate for noise in the data. The software then
automatically adjusts each segment of the model based on the measured distances between the

25

CHAPTER 2 2.2 Data processing

anatomical markers. For example, the length of the femur is adjusted to match the distance be-
tween the markers placed on the anterior superior iliac spine (at the upper end) and the lateral or
medial femoral condyle (at the lower end) of this segment.

Once this global scaling is completed, the model is associated with the other dynamic trials
(Walk100, Walk80, Walk100 and Run100, Run80, Run120) by calculating the pose, i.e., the position
and orientation, of each segment and the model’s reference points for the movement trials. The
signals from the different tasks are then ready to be processed.

2.2.2.2 Filtering of motion capture data

The signals corresponding to the different tasks were all filtered using a bidirectional Butterworth
low-pass filter with a cutoff frequency of 10 Hz.

This filtering aims to reduce the noise present in the motion capture data, which typically oc-
curs at higher frequencies than those associated with running or walking movements [12, 56, 60].

The low-pass Butterworth filter used here leaves frequencies below 10 Hz, associated with
running and walking movements, intact while attenuating frequencies above 10 Hz. These higher
frequencies may originate from soft tissue artifacts, poor marker visibility, or the motion capture
system’s sensitivity to electrical interference from other electronic devices [60].

The bidirectionality of the Butterworth filter means that it is applied twice, first in the forward
direction (from the first to the last data point) and then in the reverse direction (from the last to
the first data point). This corrects the time delay naturally present in Butterworth filters, due to
the filtering being based on a weighted average of data points, which slightly delays the filtered
signal relative to the raw signal. Filtering in both directions ensures proper temporal alignment of
the data [60]. In Visual3D, the number of passes performed by the filter also determines the order
of the Butterworth filter, that is, the degree of the differential equation describing it. In this case,
it is of order 4, as is commonly used in biomechanics [12].

A 4th-order Butterworth filter is characterized by a faster and more intense attenuation of high
frequencies compared to a lower-order filter [12], as illustrated in Figure 2.8.

Figure 2.8: Illustration of the frequency response of a Butterworth filter for different orders (n)
[12].

2.2.2.3 Inverse kinematics

Inverse kinematics, in biomechanics, is an optimization process aimed at determining the positions
and orientations of bone segments from the measured coordinates of markers placed on the body.

26

CHAPTER 2 2.2 Data processing

This process then allows for the calculation of joint angles between different segments.

In Visual3D, inverse kinematics is solved using a global optimization method. This method,
proposed by Lu and O’Connor (1999) [61], is recognized for its accuracy and realism compared to
segmental optimization methods and direct methods [12]. Global optimization treats body seg-
ments as rigid and imposes joint constraints on the model [12, 61]. This approach minimizes the
weighted sum of squared distances between the positions measured during various tasks and the
positions of the markers on the model, across all body segments.

Mathematically, the position of a point a on a body segment, expressed in the anatomical or
technical reference frame (represented in blue or yellow in Figure 2.3), can be transformed into
the global reference frame (represented in red in Figure 2.3), noted as p̄, using the rotation matrix
T and the translation vector o between the coordinate systems:

p̄ = Ta+ o. (2.1)

Least squares optimization then minimizes the sum of squared errors between the measured position
pi (motion capture data) and the calculated position p̄i from the model, for each marker i on a
given segment, expressed as:

m∑
i=1

|pi − Tai − o|2 , (2.2)

with m being the number of markers on the segment. This local optimization method is then
extended to the entire body model by introducing the generalized coordinates q. These generalized
coordinates, shown in Figure 2.9, describe the overall configuration of the body, taking into account
joint constraints and relationships between different segments. Thus, the two equations (2.1) and
(2.2) become:

p̄i(q) = T(q)ai + o(q),

mt∑
i=1

|pi − T(q)ai − o(q)|2 ,

where mt is the total number of markers across all segments.

Figure 2.9: Representation of generalized coordinates used to control the position and orientation
of all body segments [3].

All these equations are derived from the Visual3D documentation on inverse kinematics [62].

Once the kinematic data are obtained, they are filtered again using a 10 Hz low-pass filter, and
only the ankle, knee, and hip joint angle data in the sagittal plane are exported in ASCII format
for subsequent analysis in MATLAB.

27

CHAPTER 2 2.2 Data processing

As for the IMU sensor data, all raw data recorded along the three axes were also exported in
ASCII format.

2.2.3 Preprocessing in MATLAB®

The kinematic data in ASCII format for all participants were exported as a MATLAB table. The
"Angles.mat" table contains 30 seconds of acquisition at a sampling frequency of 200 Hz for 20
participants, which amounts to 120,000 rows. This table also includes 18 columns corresponding
to 6 types of tasks ("Run100", "Run80", "Run120", "Walk100", "Walk80", "Walk120") and 3
types of angles (ankle, hip, knee). This table, illustrated in Figure 2.10, will serve as the output
for the various models.

Run100_Ankle Run100_Hip Run100_Knee Run120_Ankle ... Walk80_Knee

18 columns

120,000 rows

Figure 2.10: Schema of the "Angles.mat" table.

The inertial data in ASCII format for all participants were initially sampled at 2000 Hz. To
temporally synchronize this data with the kinematic data, which were sampled at 200 Hz, MAT-
LAB’s resample function was used to downsample the IMU data to 200 Hz. Then, similarly to
the kinematic data, a table titled "IMU.mat" was created from the downsampled ASCII data. This
table also contains 30 seconds of acquisition at a sampling frequency of 200 Hz for 20 participants,
which represents a total of 120,000 rows. It contains 72 columns corresponding to the 6 types
of tasks ("Run100", "Run80", "Run120", "Walk100", "Walk80", "Walk120"), 2 types of sensors
(accelerometer and gyroscope), 3 spatial orientations (X, Y, and Z), and 2 sensor locations (heel
and midfoot). This table, schematized in Figure 2.11, will serve as input to the different models.

Run100_Heel
ACC_X

Run100_Heel
ACC_Y ...

Walk80_MidFoot
GYRO_Y

Walk80_MidFoot
GYRO_Z

72 columns

120,000 rows

Figure 2.11: Schema of the "IMU.mat" table.

2.2.3.1 Preparing and structuring data for learning

For the design of Fully-Connected Neural Network (FCNN) models, MATLAB’s fitrnet function
was used. Since this function only supports a single output variable per model, the data were
structured accordingly.

A total of 12 distinct regression models were created to predict the 3 joint angles (ankle,
knee, and hip) based on the 2 different IMU sensor positions (heel and midfoot) and whether

28

CHAPTER 2 2.2 Data processing

the data pertain to running or walking. To compare the different IMU sensor locations, models
with the same input and output data but different sensor positions were grouped together in the
same MATLAB data structure. This resulted in 6 model groups, each composed of the 2 different
locations. Table 2.2 details the specific inputs and outputs associated with each model.

Model INPUT (IMU) OUTPUT (Angles) IMU Locations

1 Running data Ankle for running
Heel

Mid foot

2 Running data Knee for running
Heel

Mid foot

3 Running data Hip for running
Heel

Mid foot

4 Walking data Ankle for walking
Heel

Mid foot

5 Walking data Knee for walking
Heel

Mid foot

6 Walking data Hip for walking
Heel

Mid foot

Table 2.2: Description of the models with their corresponding input, output data, and IMU loca-
tions.

For the assembly of running data, only the data from the "Run100" and "Run120" tasks were
retained. The data from the "Run80" task, associated with a lower running speed, were excluded
because some participants performed fast walking instead of running as initially intended, which
would have compromised the homogeneity of the running data. Additionally, a signal loss of several
seconds was observed for participant 16 during the "Run100" and "Run120" tasks. Therefore, it
was decided to remove this participant from the running model analyses while keeping them for
the walking models.

Next, the running data were reorganized to meet the requirements of the fitrnet function.
The columns were structured to represent the sensor types (accelerometer or gyroscope) and their
associated directions (X, Y, or Z), while the rows represented the sensor observations for all tasks
combined, whether for "Run100" or "Run120". To achieve this structure, the data from "Run120"
were added directly below those of "Run100", as shown in Figure 2.12 for the first three models.
This organization was identical for the other models.

Run100

Run120

Run80

114,000 = 19 participants x 6,000 rows
228,000 rows

12 columns = 2 IMUs x 3 orientations (X, Y, Z) x 2 sensors (gyroscope, accelerometer)

Figure 2.12: Illustration of running data assembly for the first three models.

For the assembly of walking data, the three tasks "Walk100", "Walk120", and "Walk80", as
well as participant 16, were retained, resulting in input data of size 360,000 x 12 for models 4, 5,
and 6.

29

CHAPTER 2 2.3 Models development and optimization

The output data were assembled following the same logic. These have a single column and
228,000 rows for the first three models and 360,000 rows for the last three models.

2.2.3.2 Normalization

Feedforward fully connected neural networks require normalized input data for effective learning
[25]. The normalization was performed on tables containing the different running or walking speeds
stacked on top of each other (Figure 2.12), where the columns represent only the different sensors.
This ensures that data from the different accelerometer and gyroscope sensors are on the same
magnitude scale and contribute evenly to the model’s learning.

Normalization was done by subtracting the mean of its column from each value in the table
and then dividing the result by the standard deviation of that column. This operation ensures that
each column or feature has a mean of 0 and a standard deviation of 1.

Scaling the input data directly impacts the final solution, as it determines the effective scaling of
the weights in the input layer. Normalizing the data ensures that all features are treated uniformly,
which promotes a more effective regularization process and improves the stability and convergence
of the model training [52].

2.3 Models development and optimization

2.3.1 Designing regression models using fitrnet

For the design of Fully Connected Neural Networks (FCNN), the fitrnet function from MAT-
LAB’s Statistics and Machine Learning Toolbox™ [63] was used. This function allows the
creation of FCNNs specifically for regression problems. It provides the flexibility to customize both
the hyperparameters and the network architecture.

Hyperparameters refer to the parameters that define the structure and behavior of the neural
network, which are not altered during learning [64]. They are divided into two categories: those
related to training and those related to design. The former influence the learning rate and network
performance during training, while the latter directly affect the model’s learning capacity depending
on the complexity of the task to be accomplished [64].

Among the design hyperparameters that can be optimized by the fitrnet function are the
following:

The number of hidden layers, which determines the overall structure of the network and
has a direct impact on performance [64]. In fitrnet, this parameter can vary from 1 to 3 fully
connected layers.

The number of neurons per layer is also very important because an insufficient number of
neurons limits the model’s ability to capture data complexities, while too many neurons can slow
down learning [64]. Generally, it is preferable to have too many rather than too few neurons per
hidden layer to ensure the model is flexible enough to capture the non-linearities in the data [52].
In fitrnet, this number is optimized within a logarithmic interval of 1 to 300.

The regularization hyperparameter (λ) helps prevent overfitting by reducing the model’s
complexity, contrary to the other two hyperparameters discussed earlier, which increase it [64].
In fitrnet, this hyperparameter is optimized over logarithmic values ranging from [0.00001/n,
100000/n], where n is the number of observations.

Activation functions play a crucial role in neural networks by introducing the necessary non-
linearities to capture complex relationships in the data, as mentioned in Section 1.4. The fitrnet
function determines the most suitable activation function for the training data from the following:

30

CHAPTER 2 2.3 Models development and optimization

• The sigmoid function: f (x) = 1
1+e−x , with outputs ranging between 0 and 1. This is often

used for binary classification (Figure 2.13).

• The hyperbolic tangent (tanh) function: f (x) = 1−e−2x
1+e−2x , which is centered on 0 and provides

outputs between -1 and 1 (Figure 2.14).

• The following ReLu function, which produces only positive outputs (Figure 2.15):

f (x) =

{
0 if x ≤ 0,
x if x > 0.

• No activation function is also tested, reducing the neural network to a linear regression model
for simpler modeling cases.

Figure 2.13: sigmoid Figure 2.14: tanh Figure 2.15: ReLu

Figure 2.16: Activation functions used by fitrnet [64].

Regarding the training-related hyperparameters, which regulate the optimization of the model’s
internal parameters, such as the weights of the connections between neurons [64], fitrnet does
not allow for direct customization. Instead, this function uses an internal optimization algorithm
based on a quasi-Newton method called limited-memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS). This optimizer adapts the gradient descent algorithm to apply it to regression problems
[65].

Simply put, gradient descent is an optimization method that aims to minimize a loss function,
in this case, the mean squared error (MSE) between the model’s predictions and the actual angle
values, denoted by L. To minimize this function, the gradient of the loss function with respect
to the model weights W is calculated (∂L∂W). This gradient is a vector indicating the direction of
the greatest increase in the loss function [66], meaning it points to the left in Figure 2.17. Thus,
moving in the opposite direction of this gradient, with a step given by the learning rate α ∈ [0, 1],
allows one to reach the local minimum of the loss function [66]. The weights are updated at
each iteration, or epoch, until the loss function reaches its minimum or the gradient is zero. This
process of updating the weights via gradient descent is represented by the following equation 2.3,
where Wnew represents the new updated weights, and Wold represents the current weights before
the update.

Wnew := Wold − α
∂L

∂W
(2.3)

31

CHAPTER 2 2.3 Models development and optimization

Figure 2.17: Schematic representation of the gradient descent algorithm from [66].

The quasi-Newton LBFGS algorithm used by fitrnet is a more advanced version of the
classic gradient descent. In addition to using gradient information, it incorporates an approximation
of the Hessian matrix, which consists of the second derivatives of the loss function and provides
information about the curvature of this function at a given point. Knowing the curvature allows
for adjusting not only the direction but also the magnitude of the weight updates [65]. However,
directly calculating the Hessian matrix is very costly in terms of computation and memory. This
is why the quasi-Newton algorithm used by LBFGS employs an approximation of this matrix. The
limited-memory variant of this method, employed by fitrnet, reduces the amount of memory
required by using only a small portion of past gradients to adjust the descent direction, making
the algorithm more efficient for large-scale models [65].

2.3.2 Hyperparameters optimization

The fitrnet function in MATLAB offers three main methods for hyperparameters optimization:
grid-search, random-search, and Bayesian optimization.

Grid-search involves performing an exhaustive search over a predefined set of hyperparameters.
The user specifies a range of values for each hyperparameter in advance, and the algorithm system-
atically tests all possible combinations. Although this method is simple to implement, it requires
strong preliminary knowledge of the optimal value ranges for each hyperparameter. Additionally,
due to the high dimensionality of the hyperparameters, this method can quickly become inefficient
and computationally expensive, making it unsuitable for complex cases like the one studied here
[64].

Random-search is an improvement over grid-search, which randomly selects combinations of
hyperparameters to test, based on predefined distributions of possible values. This method gen-
erally offers greater efficiency compared to grid-search, as it explores the hyperparameter space
more broadly but it may still require significant time and computational resources [64].

Finally, Bayesian optimization is a more advanced method that does not require preliminary
knowledge of the hyperparameter values or their distribution. It models the loss function (or
objective function) as a posterior probability model, which is updated at each iteration based on
previous results. This approach allows for faster and more efficient determination of the optimal
hyperparameters. It is particularly valued for its effective balance between exploration (gathering
new information) and exploitation (using current knowledge to make decisions). Given these
advantages, Bayesian optimization will be the method used in this work [64].

32

CHAPTER 2 2.3 Models development and optimization

2.3.2.1 Implementation of Bayesian optimization

To accelerate this Bayesian optimization process and make it less resource-intensive, the initial
tables described in Figure 2.12, containing 30 seconds of acquisition per participant, were decom-
posed into 15 submatrices, each containing 2 seconds of signal acquisition per participant.

For example, for the first three models and for one sensor location (the heel), the initial
input matrix with dimensions 228,000 x 6 was split into 15 submatrices with dimensions 15,200
x 6, as illustrated in Figure 2.18. Each submatrix thus contains 2 seconds of acquisition for
each participant, or 400 rows per participant, given that the data is sampled at 200 Hz. This
segmentation was similarly applied to all other models and their corresponding outputs. The
function "createSets.m", detailed in the appendix, was used to perform these decompositions.

ACC_X ACC_Y ACC_Z GYRO_X GYRO_Y GYRO_Z

ACC_X ACC_Y ACC_Z GYRO_X GYRO_Y GYRO_Z

6 columns

228,000 rows
= 19 participants
x 2 tasks
x 30 sec/participant
x 200 Hz

Separation into 15 matrices of size 15,200 x 6,
each with 2 sec of each participant

(400 rows per participant)

15,200 rows
= 19 participants
x 2 tasks
x 2 sec/participant
x 200 Hz

Figure 2.18: Illustration of the data structure for Bayesian optimization and for the first three
models.

Bayesian optimization was independently performed on the 15 submatrices using MATLAB’s
bayesopt function, which is part of the Statistics and Machine Learning Toolbox™ [63].

In the bayesopt function, the chosen loss function or objective function to minimize, denoted
here as f(x), is the cross-validated loss, specifically the mean squared error (MSE) calculated over
multiple validation folds (kfoldloss), as detailed further in the next section.

The approach used by bayesopt to model this objective function is based on a Gaussian
process (GP). Instead of predicting a single value for the objective function at each point in the
search space, the Gaussian process provides a probabilistic distribution characterized by a mean and
variance. The mean represents the best estimate of the objective function value, while the vari-
ance quantifies the uncertainty associated with this estimate. Using this information, the Bayesian
optimization algorithm can make informed decisions, balancing the exploration of new regions of
the search space (where uncertainty is high) with the exploitation of regions already identified as

33

CHAPTER 2 2.3 Models development and optimization

promising (where the objective function is low for minimization) [67].

The algorithm also employs an acquisition function a(x), which is also based on the Gaussian
process model. This acquisition function is maximized to determine the next point x to evaluate,
guiding the optimization process [67].

Initially, bayesopt evaluates yi = f (xi) for a number of points xi , defined by the ’NumSeedPoints’
parameter set to 4, to establish a foundation for the model. The algorithm then iterates, updating
the Gaussian process model of f(x), which provides a posterior distribution Q(f | xi , yi for i =
1, ..., t). At each iteration, the next point x to evaluate is chosen by maximizing the acquisition
function a(x) [67].

The bayesopt function offers several options for choosing the acquisition function a(x). The
’expected-improvement-plus’ option was selected for its adaptive balance between exploration
and exploitation, enhancing the optimization process. This acquisition function evaluates the ex-
pected improvement in the objective function, focusing on points that could potentially lower it.
Additionally, the ’plus’ option detects when the algorithm is overly exploiting a local minimum
region of the objective function and increases the variance, allowing the algorithm to explore new
areas of the search space, ensuring a good balance between exploration and exploitation [67].

The optimization terminates when one of the stopping criteria is met, in this case, the maximum
number of iterations, which is set by default to 30.

2.3.2.2 Cross-validation setup

To ensure an accurate and balanced estimation of the cross-validation loss used in Bayesian op-
timization, a cvpartition object was created to implement a stratified k-fold cross-validation
(with k=5).

As illustrated in Figure 2.19, 5-fold cross-validation involves splitting the dataset into 5 subsets,
known as "folds." During each iteration, 4 of these folds are used to train the model, while the
remaining fold serves as the test or validation set to evaluate the model’s performance. This
process is repeated 5 times so that each fold is used once as the test set. This ensures that every
data subset is evaluated, while avoiding overlap between the training and test sets, as the training
data remains independent of the test data at each iteration.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Training SetsTest Set

Error1

Error2

Error3

Error4

Error5

Error =
1
5

∑5
i=1 Errori

Figure 2.19: 5-fold cross-validation.

The group option, added to the partition object, ensured that each fold in the cross-validation

34

CHAPTER 2 2.3 Models development and optimization

process contained a fair proportion of data from each participant and each task. To achieve this,
a column vector named "group.mat" was created, with the number of rows corresponding to the
number of rows in the submatrices: 15,200 rows for the running models and 24,000 rows for the
walking models. Each row of this vector was then assigned to a specific group, representing a
participant and a particular task. This resulted in a vector containing values ranging from 1 to 38
for the running models, and from 1 to 60 for the walking models, with each group represented by
400 consecutive rows.

For the running models, composed of 2 tasks, each of the 15 submatrices contains 15,200
rows. Therefore, each fold in the cross-validation process contains 3,040 rows, distributed to in-
clude 80 rows per participant for the "Run100" task and 80 rows per participant for the "Run120"
task, as illustrated in Figure 2.20.

For the walking models, composed of 3 tasks, each of the 15 submatrices contains 24,000
rows. Thus, each fold contains 4,800 rows, distributed to include 80 rows per participant for each
of the "Walk100", "Walk120", and "Walk80" tasks, as illustrated in Figure 2.21.

3,040 rows
→ 80 rows/subject

for "Run100"
&

→ 80 rows/subject
for "Run120"

3,040 rows
→ 80 rows/subject

for "Run100"
&

→ 80 rows/subject
for "Run120"

3,040 rows
→ 80 rows/subject

for "Run100"
&

→ 80 rows/subject
for "Run120"

3,040 rows
→ 80 rows/subject

for "Run100"
&

→ 80 rows/subject
for "Run120"

3,040 rows
→ 80 rows/subject

for "Run100"
&

→ 80 rows/subject
for "Run120"

Training SetsTest Set

Figure 2.20: Row split for the first iteration of running model (19 participants) cross-validation.

4,800 rows
→ 80 rows/subject

for "Walk100"
&

→ 80 rows/subject
for "Walk120"

&
→ 80 rows/subject

for "Walk80"

4,800 rows
→ 80 rows/subject

for "Walk100"
&

→ 80 rows/subject
for "Walk120"

&
→ 80 rows/subject

for "Walk80"

4,800 rows
→ 80 rows/subject

for "Walk100"
&

→ 80 rows/subject
for "Walk120"

&
→ 80 rows/subject

for "Walk80"

4,800 rows
→ 80 rows/subject

for "Walk100"
&

→ 80 rows/subject
for "Walk120"

&
→ 80 rows/subject

for "Walk80"

4,800 rows
→ 80 rows/subject

for "Walk100"
&

→ 80 rows/subject
for "Walk120"

&
→ 80 rows/subject

for "Walk80"

Figure 2.21: Row split for the first iteration of walking model (20 participants) cross-validation.

2.3.3 Averaging hyperparameters for final model creation

Given that Bayesian optimization was independently conducted on the 15 submatrices, the final
hyperparameters for each regression model, built on the entire input matrix (without division into

35

CHAPTER 2 2.4 Evaluation metrics

submatrices), were determined by averaging the 15 sets of optimized hyperparameters from each
submatrix. Numerical hyperparameter values were averaged and then rounded to the nearest in-
teger using the round function. For categorical hyperparameters, the most frequently occurring
values across the 15 optimized sets were selected for the final model creation.

Each final model was then created using the fitrnet function with the complete dataset,
without prior division into submatrices, corresponding to the structure shown in Figure 2.12.

Given that the complete dataset is substantially larger, validation for each final model was
performed using an 80/20 split, where 80% of the observations were used for training and 20% for
testing, across all participants and tasks. Thus, with each participant contributing 6,000 rows per
task, the first 4,800 rows were used for model training, while the remaining 1,200 rows were used
to verify whether the model could accurately predict these data for each participant, as shown in
Figure 2.22.

For the running models, which included 19 participants performing the two tasks "Run100"
and "Run120", a total of 38 predictions were made and are presented in the following results
chapter. Similarly, for the walking models, which involved 20 participants performing the three
tasks "Walk100", "Walk120", and "Walk80", 60 predictions were made and are also presented in
the subsequent chapter.

Training Set (80%) Test Set (20%)

Predictions4 800 rows
1 200
rows

Figure 2.22: 80-20 distribution of running data for a participant and a specific task.

Finally, the remaining 20% of the test data for each participant and each task was used with
MATLAB’s predict function to generate specific predictions for each participant and task. These
predictions then served as the basis for calculating various evaluation metrics to quantify the errors
associated with each regression model.

The functions described and used throughout this section 2.3, including Bayesian optimization,
cross-validation, and the creation of each model based on the averaged set of 15 optimized hyperpa-
rameter sets, are detailed in the appendix, specifically in the "optimizeNeuralNetworkWithSets.m"
and "main.m" functions.

2.4 Evaluation metrics

Several metrics were employed to evaluate the performance of the different models and to compare
them with previous work in the literature.

First, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were calculated
to provide a measure of the overall accuracy of the models [68]. These metrics are commonly
used in the literature, allowing for direct comparison of the results obtained here with those from
previous studies.

Next, normalizing the error based on the data amplitude through the calculation of nRMSE
allowed for comparing errors across different running and walking tasks.

Violin plots were generated to visually represent the distribution of errors.

36

CHAPTER 2 2.4 Evaluation metrics

Additionally, beyond simply evaluating average errors, the Pearson correlation coefficient was
calculated to verify that the model predictions follow the general trend of the actual data.

Finally, the predicted and actual angles were plotted against the percentage of the running or
walking cycle, following common practices in human movement analysis, enabling a biomechanical
analysis.

2.4.1 Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)

For each prediction made for each participant, the Root Mean Square Error (RMSE) is calculated
as the square root of the mean of the squared differences between the model’s predicted values ŷi
and the actual joint angle values yi , according to Equation (2.4) [69]. Here, n represents the total
number of observations in the test set.

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (2.4)

The RMSE takes into account large prediction errors, as these are amplified due to the squaring
of the differences [51].
Similarly, the Mean Absolute Error (MAE) is calculated for each participant by taking the average
of the absolute differences between the actual values yi and the predicted values ŷi , as shown in
Equation (2.5) below [51].

MAE =
1

n

n∑
i=1

|yi − ŷi | (2.5)

The MAE is less sensitive to large prediction errors because it takes the absolute value of the
differences rather than squaring them. These two metrics are widely used standard measures for
evaluating the performance of neural network models [69]. Moreover, they have the advantage of
being expressed in the same units as the model’s output data, in this case degrees, which simplifies
their interpretation.

2.4.2 Normalized Root Mean Square Error (nRMSE)

The nRMSE is a normalized version of the RMSE, calculated by normalizing the RMSE by the
amplitude of the actual values in the entire test sample for a given participant. This involves taking
the difference between the maximum and minimum values of this sample and then multiplying by
100 to express it as a percentage, as shown in Equation (2.6) below.

nRMSE =
RMSE

max(y)−min(y) x 100 (2.6)

Normalizing by the data amplitude for each participant and each task allows for comparison of
results across different participants, even if they did not run or walk at the same speed. It also
enables comparison between different types of tasks, such as walking and running [68].

2.4.3 Violin plots

Violin plots are an effective visual method for representing the results of a machine learning model.
Named for their resemblance to the shape of a violin, these plots combine features of box plots
while providing a more detailed depiction of data distribution along the vertical axis [70].

Box plots, which are statistical visualization tools, summarize key characteristics of a dataset,
including [70]:

37

CHAPTER 2 2.4 Evaluation metrics

The minimum, which is the smallest non-outlier value.
The first quartile (Q1 or 25th percentile), representing the value below which 25% of the ob-
servations fall.
The median (Q2 or 50th percentile), which divides the dataset into two equal parts.
The third quartile (Q3 or 75th percentile), representing the value below which 75% of the
observations fall.
The maximum, which is the largest non-outlier value.

Additionally, box plots allow for the visualization of outliers, the interquartile range (IQR)
between the third and first quartiles, and skewness in the data [70]. Figure 2.23 illustrates these
various features and shows how violin plots enrich this information by adding the data distribution
in the form of smoothed histograms along the vertical axis [70].

Figure 2.23: Representation of the characteristics of whisker boxes (A) and violin diagrams (B)
[70].

Thus, violin plots allow for comparing the performance of different models by visualizing not
only the statistical characteristics of the errors but also their distribution, offering a more compre-
hensive and nuanced view of each model’s performance.

To generate these plots, the "violin.mat" function developed by Hoffman H. [71], available
online, was used. This function generates violin plots using kernel density estimation, performed
by MATLAB’s ksdensity function.

The kernel density estimation of errors represents the probability density function (pdf) of
these errors non-parametrically, meaning no assumptions are made about the distribution of this
data [72]. This estimation smooths each error value xi for i = 1, 2, ..., n (where n is the number
of errors, one per participant) with a kernel smoothing function denoted as K(−), which are all
summed to obtain the estimated density f̂ (x), as shown in the following Equation 2.7 [72]. Unlike
a traditional histogram that bins values into discrete intervals, this method generates a smooth,
continuous probability curve [72].

f̂h(x) =
1

nh

n∑
i=1

K

(
x − xi
h

)
(2.7)

Where h is the bandwidth, which controls the smoothness of the resulting density curve [72].

38

CHAPTER 2 2.4 Evaluation metrics

2.4.4 Pearson correlation coefficient

The Pearson correlation coefficient is a statistical measure that evaluates the strength and direc-
tion of the linear relationship between two continuous variables, which are typically assumed to
follow a bivariate normal distribution [73]. In the context of this study, it is used to analyze the re-
lationship between the actual joint angle values and those predicted by the machine learning models.

This coefficient, denoted as r, ranges from -1 to +1. A value close to +1 indicates a very
strong positive correlation, meaning that the model’s predictions effectively capture the variations
in joint angles over time, with both variables increasing proportionally. A value of 0 suggests no
linear relationship, while a value close to -1 indicates a perfect negative correlation, where one
variable increases as the other decreases proportionally. In the latter case, this could suggest that
the model fails to capture the dynamics of joint movements, resulting in predictions that are in-
versely related to reality [73].

To calculate this coefficient, the JASP software (JASP Team, 2024. JASP [Version 0.19.0],
[Computer software]) [74] was used. The actual and predicted values for each participant were
organized into a table for the two IMU locations. This table, illustrated in Figure 2.24, was then
converted into a CSV file to be imported into JASP. Consequently, a Pearson correlation coefficient
r was calculated for each IMU location (the last two columns of Figure 2.24) by comparing them
to the actual angle values (second column).

Participant True angles Predicted angles
(Heel)

Predicted angles
(Mid foot)

1
1
1

38
38
38

45,600 rows
= 19 participants
x 2 tasks
x 1,200 predictions
rows

Figure 2.24: Running data format for Pearson’s coefficient calculation.

Figure 2.25 below illustrates a commonly used approach for interpreting this correlation coef-
ficient.

Figure 2.25: Example of a conventional approach for interpreting Pearson’s coefficient [73].

Additionally, in JASP, the calculated Pearson coefficient is accompanied by a p-value, which
helps determine whether the observed correlation is likely to be due to chance. Specifically, this
p-value represents the probability of obtaining the observed correlation r, given that the null
hypothesis (H0), which states that there is no relationship between the variables (r = 0), is true.
In other words, the p-value assesses the likelihood that the coefficient r is high purely by chance
[75].

39

CHAPTER 2 2.4 Evaluation metrics

Therefore, if the p-value is low (p < 0.05), it is highly unlikely that the observed correlation is
due to chance, allowing us to reject the null hypothesis and accept the existence of a significant
relationship between the variables. Conversely, if the p-value is high (p > 0.05), even if the
coefficient r is high, it will be considered non-significant and potentially due to chance [75].

2.4.5 Segmentation into gait cycles

To interpret the model predictions in terms of human biomechanics, it is essential to present the
kinematic data in the form of gait cycles.

Figure 2.26 shows a walking and running cycle, along with their associated phases. Both cycles
begin when one foot, in this case, the right foot, makes contact with the ground and end when
the same foot touches the ground again. The main difference between walking and running cycles
lies in the presence of a double support phase during walking, where both feet are in contact with
the ground. This phase is absent in the running cycle, which consists only of the stance phase
(where the right foot is in contact with the ground) and the swing phase (where the foot is not
touching the ground). Thus, at no point during running are both feet simultaneously in contact
with the ground.

Figure 2.26: Illustrations of a walking (top) and running (bottom) cycle and the corresponding
phases [76].

In this work, the beginning and end of gait cycles, corresponding to the moments when the
right foot touches the ground, were identified using the event detection tool in the Visual3D ap-
plication. It was assumed that all participants exhibited heel strikes during running (heel strikes
are assumed to occur during walking by default), to mark each cycle’s start as the moment when
the heel touches the ground. The end of a cycle was then defined as the start of the next cycle.
These moments were imported into MATLAB and stored in a matrix to facilitate the identification
of different cycles present in the actual and predicted angle signals.

Once the cycles were identified for each participant, the mean and standard deviation were
calculated for all observed cycles. These means and standard deviations are then displayed for the
two IMU sensor locations for each participant. The different tasks (e.g., "Run100" and "Run120"
for running models) are presented separately.

40

CHAPTER 2 2.4 Evaluation metrics

To generate these figures, MATLAB’s fill and fliplr functions were used to plot the mean
cycle and the associated standard deviations around this curve. The codes responsible for signal
segmentation into cycles and those used to generate the figures are available in the appendix
("visualizedModelPerformances.m").

Interpreting these graphs provides a qualitative evaluation that complements the quantitative
metrics discussed earlier. These graphs help detect anomalies in predictions, assess temporal
accuracy, and verify that the general movement trends are correctly captured by the model.

It is important to note that the amplitude of movements does not depend on the subject’s
anthropometry. Therefore, it is unnecessary to normalize the angles according to the subject’s
weight and height, unlike what is often required for joint moments [23].

41

Chapter 3

Results and discussions

This third chapter provides a detailed analysis of the results obtained during this study. First, the
results of Bayesian optimization aimed at determining the optimal hyperparameters for each model
are presented. Next, a comparative analysis of the two possible IMU sensor placements is con-
ducted using violin plots. The mean absolute errors are compared with existing scientific studies,
particularly those mentioned in Section 1.3.3 of the first Chapter 1, which also used a single IMU
sensor for predicting lower limb kinematics. In addition to the quantitative error metrics, Pearson
correlation coefficients are calculated to provide a qualitative evaluation of the agreement between
the predictions and the actual values. Finally, the model predictions in the form of gait cycles are
presented for each participant and each task. This presentation helps identify participants who
contributed to the increase in model errors. These cycles are also compared with reference cycles
from the literature and analyzed biomechanically.

3.1 Optimized Neural Network hyperparameters

To illustrate the process and performance of Bayesian optimization, an example analysis on one
of the 15 submatrices of data created for Model 4, which focuses on predicting the ankle angle
during walking, is shown.

Figure 3.1: Illustration of the Bayesian optimization process for hyperparameter selection.

The above Figure 3.1 shows the evolution of the minimum value of the objective function as
a function of the number of function evaluations. This curve represents the convergence of the

42

CHAPTER 3 3.2 Comparison of different IMU locations

Bayesian optimization algorithm, highlighting both the observed minimum value of the objective
function (in blue) and the estimated minimum of the objective function (in green).

The curve shows a gradual decrease in the value of the objective function, indicating that the
algorithm is refining the hyperparameters over the iterations to minimize the loss.

Finally, the difference between the blue and green curves indicates that the estimation of the
objective function by the Bayesian model is not always exact, as this model is based on probabilistic
predictions. However, it generally converges towards the observed minimum value.

In general, the convergence curves observed for the 15 submatrices and across all models
showed similar trends to those illustrated in Figure 3.1. However, the final values of the objective
function varied from one model to another. Although the exact values of the objective function
were not retained, they directly reflect the final errors obtained through the various model evalu-
ation metrics, as these values are proportional to each model’s performance.

The final optimal hyperparameters for each model, obtained by averaging the hyperparameters
from the 15 submatrices, are summarized in the following Table 3.1.

Model IMU locations Number of layers First layer size Second layer size Third layer size Activation function Regularization

1
Heel 3 216 104 53 ReLu 5.5448e-04

Mid foot 3 149 166 112.27 ReLu 0.0022

2
Heel 2 268 167 - Sigmoid 0.0153

Mid foot 2 192 238 - Tanh 0.0025

3
Heel 3 175 225 134 Tanh 0.0042

Mid foot 2 230 163 - Tanh 0.0047

4
Heel 3 217 199 160 Tanh 0.0043951

Mid foot 2 253 273 - Tanh 0.0058

5
Heel 3 284 177 91 Tanh 0.00078

Mid foot 2 200 291 - Tanh 0.0016

6
Heel 2 267 239 - Relu 0.0118

Mid foot 2 216 277 - ReLu 4.8881e-04

Table 3.1: Optimal hyperparameters for each model and IMU localization.

3.2 Comparison of different IMU locations

3.2.1 Model 1: Ankle angle predictions during running

Figure 3.2: RMSE Figure 3.3: nRMSE Figure 3.4: MAE

Figure 3.5: Analysis of error distributions: Root Mean Squared Error (RMSE), normalized Root
Mean Squared Error (nRMSE) and Mean Absolute Error (MAE).

43

CHAPTER 3 3.2 Comparison of different IMU locations

Figures 3.2, 3.3, and 3.4 present the distribution of errors for each IMU location in the form of
violin plots for the first model, which aims to predict ankle angles during running.

Analysis of these figures reveals that both IMU placements produce relatively similar errors,
suggesting that both positions are reliable for predicting ankle angles during running.

Delving deeper into the analysis, Figure 3.2, shows that the RMSE distribution for the IMU
placed in the middle of the foot is more concentrated around the mean and median, indicating
a lower presence of extreme errors. Moreover, the median and mean RMSE for this location are
slightly lower than those for the heel placement (less than 6°), suggesting better accuracy.

The difference between the average RMSEs (Figure 3.2)and the average MAEs (Figure 3.4),
is not significantly large (about 2°), indicating that there are not many outlier errors.

Thus, it can be concluded that the IMU placed in the middle of the foot allows for more
accurate predictions of ankle angles during running. This location will therefore be preferred for
comparing errors with previous studies in the literature, although both positions show relatively
similar performances in terms of errors.

3.2.1.1 Comparison with previous studies

For the midfoot location, the smallest RMSE value obtained is 2.8807° (participant 10 for the
"Run120" task), while the highest reaches 8.8487° (participant 1 for the "Run100" task).

The only comparable study that analyzed the ankle joint in the sagittal plane during running
with a single IMU is that of Long et al. (2024) [32]. This study, using a random forest regression
model, reported an average RMSE of 3.22° ± 0.69 during a jogging task over a few meters. This
performance was calculated on a small sample of only four participants, each performing several
repetitions of the tasks. Thus, the approach adopted by Long et al. (2024) essentially aims to
develop an extremely accurate but individual-specific model, rather than a model generalizable to
a larger population.

In comparison, this work, by including a larger number of participants and analyzing running
tasks over longer periods, strives to develop a more generalizable model, which inevitably leads to
greater error variability. However, achieving a minimum error of 2.8807° (lower than that of Long
et al. at 3.22°) suggests that although there is still room for improvement in reducing errors for
some participants, this model demonstrates solid and promising performance for predicting ankle
angles during running with an IMU placed in the middle of the foot.

44

CHAPTER 3 3.2 Comparison of different IMU locations

3.2.2 Model 2: Knee angle predictions during running

Figure 3.6: RMSE Figure 3.7: nRMSE Figure 3.8: MAE

Figure 3.9: Analysis of error distributions: Root Mean Squared Error (RMSE), normalized Root
Mean Squared Error (nRMSE) and Mean Absolute Error (MAE).

Figures 3.6, 3.7, and 3.8 present the distribution of errors for each IMU location in the second
model, which aims to predict knee angle during running.

The observations made for the first model are even more pronounced in this second model.
The distribution of RMSE (Figure 3.6) as well as MAE (Figure 3.8) show a much more pronounced
concentration around the mean and median for the IMU placed on the midfoot, compared to the
placement on the heel. Additionally, the difference in central values (mean and median) between
the two positions is more significant this time, with the midfoot proving to be the better location,
showing a mean RMSE below 8° and a mean MAE below 6°.

The difference between the mean RMSE (Figure 3.6) and mean MAE (Figure 3.8), is not
significantly large (around 2°), suggesting that there are not many outlier errors.

Thus, as with the first model, it can be concluded that the IMU placed on the midfoot allows
for more accurate knee angle predictions during running. This location will therefore be preferred
for comparing errors with previous studies in the literature, although both positions show relatively
similar performance in terms of errors.

3.2.2.1 Comparison with previous studies

For the midfoot location, the smallest RMSE obtained is 4.21° (participant 10 for the "Run120"
task), while the largest is 15.3895° (participant 1 for the "Run100" task).

These results are generally less accurate than those reported in the literature, both in terms
of the minimum value obtained and the standard deviation.

For example, the study by Long et al. (2024) [32], which aimed to predict kinematics using
an IMU mounted on the ankle for 4 athletes and a random forest regression model, obtained an
RMSE of 2.66° ± 0.27 for a jogging task over a few meters.

The study by Chow et al. (2021) [33] reported average RMSE values of 3.2° ± 1 for intra-
participant predictions on 10 participants. This study trained its CNN model on a portion of a
participant’s data and then predicted other data from the same participant, based solely on gyro-
scope data from a single IMU placed on the tibia while using a treadmill.

45

CHAPTER 3 3.2 Comparison of different IMU locations

Finally, the study by Chow et al. (2022) [34], with a protocol similar to the previous study
[33], obtained average RMSE values of 4.1° ± 1.2.

These findings clearly demonstrate, as mentioned in Section 1.4, that convolutional neural
networks (CNNs) offer better performance compared to a feedforward neural network (FNN).

3.2.3 Model 3: Hip angle predictions during running

Figure 3.10: RMSE Figure 3.11: nRMSE Figure 3.12: MAE

Figure 3.13: Analysis of error distributions: Root Mean Squared Error (RMSE), normalized Root
Mean Squared Error (nRMSE) and Mean Absolute Error (MAE).

For the third model, which is focused on predicting hip angles during running (Figure 3.13), the
violin plots for both IMU locations show relatively similar distributions, making it challenging to
determine a superior IMU placement for hip angle predictions. Therefore, both locations will be
considered for comparison with previous studies.

The violin shapes for this third model indicate that the error distributions are relatively con-
centrated around central values. However, there is a noticeable long upper tail, especially for the
RMSE (Figure 3.10), suggesting that some predictions have extreme errors.

3.2.3.1 Comparison with previous studies

The smallest RMSE value obtained is 3.8292° (participant 5 for the "Run120" task with the IMU
placed on the midfoot), while the highest is 26.4602° (participant 1 for the "Run100" task with
the IMU on the heel).

In comparison, the study by Chow et al. (2021) [33], which used a convolutional neural net-
work (CNN), reported average RMSE values of 5.2° ± 1.7 for intra-participant predictions (10
participants), based solely on gyroscope data.

Additionally, the study by Chow et al. (2022) [34], with a protocol similar to the previous one
[33], achieved average RMSE values of 3.6° ± 1.2.

Thus, the minimum value obtained here (3.8292°) for hip angles during running is relatively
comparable to those achieved in these two studies. However, once again, the main area for
improvement in this work is the reduction of errors for certain participants, as this model still
exhibits significant variability in error values across different participants.

46

CHAPTER 3 3.2 Comparison of different IMU locations

3.2.4 Model 4: Ankle angle predictions during walking

Figure 3.14: RMSE Figure 3.15: nRMSE Figure 3.16: MAE

Figure 3.17: Analysis of error distributions: Root Mean Squared Error (RMSE), normalized Root
Mean Squared Error (nRMSE) and Mean Absolute Error (MAE).

For the fourth model, dedicated to predicting ankle angles during walking (Figure 3.17), the violin
plots for both IMU placements exhibit remarkable similarities, both in terms of the positioning of
the means and medians and in the overall shape of the violins. Therefore, it is difficult to deter-
mine an optimal IMU placement for predicting ankle angles. As a result, both placements will be
retained for comparison with previous studies.

In comparison with the first model dedicated to running (Figure 3.5), the normalized errors
relative to the range of motion for this fourth walking model (Figure 3.15) are slightly higher (±
15%) compared to the equivalent model for running (± 11%). This suggests that the models
developed here more easily capture the dynamics of running compared to walking for ankle angles.

3.2.4.1 Comparison with previous studies

The results obtained for this model show significant variation in errors among participants. The
smallest RMSE observed is 2.616° (participant 11, "Walk100" task with the IMU placed at the
midfoot), while the largest reaches 16.4349° (participant 9, "Run120" task with the IMU also at
the midfoot).

In comparison, the study by Long et al. (2024) [32] reports an average RMSE of 2.19° ± 0.57
for a short walking task, with an IMU placed on the ankle. The results of their study are compara-
ble to those obtained here only in terms of the minimum value. However, it is crucial to note that
Long et al.’s study used a much smaller sample (four athletes), which limits the generalizability of
their results and could explain the lower variability compared to the errors observed in this work.

The study by Alcaraz et al. (2021) [31], using deep neural networks with an IMU on the foot,
achieved RMSE values ranging from 2.57° to 3.54°. The performances of this fourth FNN model
developed here fall within a similar range.

As for nRMSE, the results obtained here range from 7.9851% (participant 19, "Walk100"
task with the IMU at the midfoot) to 37.3315% (participant 9, "Walk80" task with the IMU at
the heel).

In comparison, the study by Lim et al. (2020) [28], with nRMSE values ranging from 4.36% to
5.93% for slow walking speeds and an IMU placed at the sacrum, shows overall lower errors than

47

CHAPTER 3 3.2 Comparison of different IMU locations

those obtained here. Therefore, testing this IMU placement on the sacrum, likely less prone to
artifacts related to movements of distal segments, could be an avenue for improvement in this work.

The study by Mundt et al. (2020) [23], based on an FNN and an IMU, achieved average
nRMSE values of 7.39%, very close to the best performances observed here. However, it is impor-
tant to note that this study used simulated data from an optical motion capture database rather
than real IMU data.

Finally, the study by Sung et al. (2022), which used an LSTM model with 30 participants,
reported an nRMSE of 8.52% and an intra-subject RMSE of 3.96°. Comparatively, the results
obtained here with an FNN model show equivalent performances.

In conclusion, the results of this model show that, although significant errors may occur for
some participants, this fourth model is capable, for some of them, of providing results comparable
to or even better than those reported in the literature for predicting ankle angles during walking.

3.2.5 Model 5: Knee angle predictions during walking

Figure 3.18: RMSE Figure 3.19: nRMSE Figure 3.20: MAE

Figure 3.21: Analysis of error distributions: Root Mean Squared Error (RMSE), normalized Root
Mean Squared Error (nRMSE) and Mean Absolute Error (MAE).

For the fifth model, dedicated to predicting knee angles during walking (Figure 3.21), the violin
plots for both sensor placements show remarkable similarities. However, the minimum (lower end
of the violin) and maximum errors (upper end of the violin) are slightly lower for the sensor placed
on the heel, which justifies the choice of this location for comparison with previous studies.

When compared to the second model dedicated to running (Figure 3.9), the normalized errors
relative to the amplitude of movements in this fifth walking model (Figure 3.19) are higher (±
12%) than those in the equivalent running model (± 8%) (Figure 3.7). This suggests, as with
ankle angles, that the models developed here generally capture the dynamics of running more easily
than those of walking for knee angles.

3.2.5.1 Comparison with previous studies

For knee angle prediction using the IMU placed on the heel, the results show RMSE values ranging
from 3,142° (participant 1 for the "Walk100" task) to 22,7862° (participant 1 for the "Walk120"
task).

48

CHAPTER 3 3.2 Comparison of different IMU locations

In comparison, the study by Long et al. (2024) [32] reports an RMSE of 3,30° ± 0,69° for a
walking task with an IMU placed on the ankle. The results from Model 5 in this work show similar
errors under certain conditions, but also a greater variation in errors.

Using an IMU on the ankle and personalized models for 10 participants, Yeung et al. (2023)
[50] obtained average RMSE values of 2,45° ± 0,65° for personalized models, compared to 6.77°
± 3.38° for generalized models. This highlights the challenges of generalizing predictive models to
a broader population, as observed here.

Using an IMU on the foot and deep neural networks, Alcaraz et al. (2021) [31] obtained
RMSEs ranging from 2.12° to 2.95°, demonstrating the superiority of CNNs.

Regarding nRMSE values for the same location, they range from 5,2071% (participant 10 for
the "Walk80" task) to 58,8381% (participant 9 for the "Walk100" task).

In comparison, the study by Lim et al. (2020) [28] reported nRMSE values between 2.99% ±
0.80 and 6.04% ± 1.55 for three different slow walking speeds (with errors increasing with walking
speed) for 7 participants and an IMU placed on the sacrum, suggesting that this position should
be considered.

The study by Mundt et al. (2020) [23] also obtained, based on an FNN and an IMU, average
nRMSE values of 9.46%. However, it is important to note that this study was based on simulated
data from an optical motion capture database rather than real IMU data.

Using an LSTM model with an IMU placed on the lateral shank, the study by Sung et al.
(2022) [30] obtained an nRMSE of 9.3% and an RMSE of 3.34° for intra-subject predictions. The
results from our study show that the FNN used is capable of achieving similar performance.

In conclusion, the fifth model, dedicated to predicting knee angles during walking, shows perfor-
mance comparable to some previous studies, although significant variations in errors are observed
depending on the participants. The results highlight the complexity of generalizing predictive
models to a broader population.

3.2.6 Model 6: Hip angle predictions during walking

Figure 3.22: RMSE Figure 3.23: nRMSE Figure 3.24: MAE

Figure 3.25: Analysis of error distributions: Root Mean Squared Error (RMSE), normalized Root
Mean Squared Error (nRMSE) and Mean Absolute Error (MAE).

For the sixth model, dedicated to predicting hip angles during walking (Figure 3.25, the violin plots
for both IMU placements once again show significant similarities. However, the average RMSE
(Figure 3.22) and MAE (Figure 3.24) errors are slightly lower for the heel placement, justifying

49

CHAPTER 3 3.3 Analysis of Pearson correlation coefficients

the choice of this position for comparison with previous studies.

The average relative errors observed in this walking model (around ± 20% of the movement
amplitude) are comparable to those observed in the corresponding running model (Figure 3.11),
where the average nRMSE is approximately ± 19% of the movement amplitude.

3.2.6.1 Comparison with previous studies

For the prediction of hip angles using the IMU placed on the heel, the results show RMSE values
ranging from 4,6757° (participant 11 for the "Walk100" task) to 33,5641° (participant 9 for the
"Walk80" task).

In comparison, the study by Alcaraz et al. (2021) [31] used an IMU on the foot and deep
neural networks, obtaining RMSEs ranging from 1.91° to 2.68°. Compared to these results, this
study shows higher errors, demonstrating the superiority of CNNs for predicting hip angles.

The nRMSE values for this location vary between 11,3581% (participant 11 for the "Walk100"
task) and 44,4002% (participant 9 for the "Walk80" task).

In comparison, the study by Lim et al. (2020) [28] reported nRMSE values lower than those
obtained here, ranging from 5.80% ± 0.93 to 8.59% ± 1.11 for different slow walking speeds, with
an IMU placed on the sacrum, suggesting that the sacrum location should be considered.

The study by Mundt et al. (2020) [23], which used an FNN and simulated data from optical
motion capture, obtained an average nRMSE of 10.29%. Comparatively, the results of this sixth
model show higher errors.

Finally, the study by Sung et al. (2022), using an LSTM model and an IMU placed on the
lateral shank, obtained nRMSE values of 9.01% and RMSEs of 5.47° for intra-subject predictions,
confirming that this sixth model had more difficulty capturing the dynamics of hip angles during
walking.

3.3 Analysis of Pearson correlation coefficients

3.3.1 Model 1: Ankle angle predictions during running

Pearson’s r p

True angles - Predicted angles (Heel) 0.915 < .001
- Predicted angles (Mid foot) 0.931 < .001

Predicted angles (Heel) - Predicted angles (Mid foot) 0.909 < .001

Table 3.2: Pearson’s correlations for the Model 1.

For the first model (Table 3.2), the angle predictions associated with both IMU sensor locations
show a "very strong" positive correlation with the actual angle values (r > 0.9), indicating that
both sub-models perform particularly well in their predictions.

The sub-model associated with the IMU placed on the midfoot exhibits a slightly higher corre-
lation with the real angle data compared to the one associated with the IMU placed on the heel,
although the difference between the two is minimal. This is consistent with the fact that this
location showed lower absolute errors compared to the heel location (Figure 3.5).

50

CHAPTER 3 3.3 Analysis of Pearson correlation coefficients

Moreover, the strong correlation between the predictions of the two sub-models (r = 0.909)
suggests that these models likely share similar characteristics in how they predict joint angles.

Finally, the p-values associated with these correlations, all below 0.001, confirm that the ob-
served correlations are statistically highly significant.

3.3.2 Model 2: Knee angle predictions during running

Pearson’s r p

True angles - Predicted angles (Heel) 0.944 < .001
- Predicted angles (Mid foot) 0.958 < .001

Predicted angles (Heel) - Predicted angles (Mid foot) 0.948 < .001

Table 3.3: Pearson’s correlations for the Model 2

For the second model (Table 3.3), the conclusions are similar to those of the first model. The
predictions of the two sub-models, associated with the two IMU locations, show a "very strong"
correlation with the actual angle values (r = 0.944 and 0.958), with a slight advantage for the
IMU placed on the midfoot. This observation corroborates the conclusions drawn from the error
distributions (Figure 3.9).

Moreover, the strong similarity between the predictions of the two sub-models (r = 0.948) is
also confirmed. Finally, all correlations are statistically significant (p < 0.001).

3.3.3 Model 3: Hip angle predictions during running

Pearson’s r p

True angles - Predicted angles (Heel) 0.845 < .001
- Predicted angles (Mid foot) 0.854 < .001

Predicted angles (Heel) - Predicted angles (Mid foot) 0.912 < .001

Table 3.4: Pearson’s correlations for the Model 3

For the third model (Table 3.4), although the correlations between the predictions of the two
sub-models associated with the two IMU placements and the actual angle values are slightly lower
than those observed for the first two models, they are still classified as "strong correlations" (r =
0.845 and 0.854).

The sub-model using the IMU placed on the mid-foot shows a slight superiority, helping to
identify the better IMU placement, an aspect that was not clearly established during the analysis
of absolute error distributions (Figure 3.13).

The strong correlation between the predictions of the two sub-models (r = 0.912) is also
confirmed. As with the other models, all correlations are statistically significant (p < 0.001).

51

CHAPTER 3 3.3 Analysis of Pearson correlation coefficients

3.3.4 Model 4: Ankle angle predictions during walking

Pearson’s r p

True angles - Predicted angles (Heel) 0.797 < .001
- Predicted angles (Mid foot) 0.781 < .001

Predicted angles (Heel) - Predicted angles (Mid foot) 0.793 < .001

Table 3.5: Pearson’s correlations for the Model 4

For the fourth model (Table 3.4), which aims to predict ankle angles during walking, the correlation
coefficients are lower than those observed for running, where the correlations were classified as
"very strong" (Table 3.2). However, these correlations are still considered "strong," indicating a
significant relationship between the predictions and the actual values.

In this model, the IMU placement on the mid-foot shows a slightly higher correlation (r =
0.797) compared to the heel placement (r = 0.781), reinforcing that the mid-foot is the better
location for the IMU. This finding helps clarify an aspect that was not definitively established during
the analysis of absolute error distributions (Figure 3.17).

As with the other models analyzed so far, all observed correlations are statistically significant
(p < 0.001).

3.3.5 Model 5: Knee angle predictions during walking

Pearson’s r p

True angles - Predicted angles (Heel) 0.928 < .001
- Predicted angles (Mid foot) 0.918 < .001

Predicted angles (Heel) - Predicted angles (Mid foot) 0.944 < .001

Table 3.6: Pearson’s correlations for the Model 5

For this fifth model (Table 3.6), dedicated to predicting knee angles during walking, the correlation
coefficients are comparable to those observed for running (r = 0.944 and 0.958, Table 3.3), with
correlations also classified as "very strong".

In this case, the IMU placed at the heel shows a slightly higher correlation (r = 0.928) compared
to the one placed at the midfoot (r = 0.918), which is consistent with the observations made in
the distributions of absolute errors (Figure 3.21).

As with the other models analyzed so far, all observed correlations are statistically significant
(p < 0.001).

52

CHAPTER 3 3.4 Summary of model performances

3.3.6 Model 6: Hip angle predictions during walking

Pearson’s r p

True angles - Predicted angles (Heel) 0.790 < .001
- Predicted angles (Mid foot) 0.775 < .001

Predicted angles (Heel) - Predicted angles (Mid foot) 0.799 < .001

Table 3.7: Pearson’s correlations for the Model 6

In the case of the last model (Table 3.7), qwhich aims to predict hip angles during walking, the
correlation coefficients are slightly lower than those observed for running (r = 0.845 and 0.854,
Table 3.4), but these correlations are still classified as "strong".

For this model, the IMU placed at the heel shows a slightly higher correlation (r = 0.790)
compared to the one placed at the midfoot (r = 0.775), which is consistent with the observations
made in the distributions of absolute errors (Figure 3.25).

As with the other models analyzed so far, all observed correlations are statistically significant
(p < 0.001).

3.4 Summary of model performances

In conclusion, the analysis of absolute (RMSE, MAE) and relative (nRMSE) error distributions
showed that although the mid-foot location generally offers the best results in terms of errors for
most models (with the exception of the last two), this performance difference compared to the
heel location is not significant. This suggests that both IMU positions can be effectively used for
predicting lower limb kinematics. The selection of the mid-foot as the optimal location may be
explained by the fact that, for most participants with heel strikes, this location is the first to touch
the ground, which could introduce more noise into the data.

The comparison between the walking models, which included a greater number of tasks per
participant ("Walk100", "Walk120", "Walk80"), and the running models ("Run100", "Run120"),
reveals some interesting findings. Although the inclusion of more tasks might have been ex-
pected to reduce prediction errors, it instead tends to increase the variability of errors, with higher
maximum values. This highlights the challenge of creating models that can be generalized to a
broader population, as opposed to personalized models that would be more specific to an individual.

Overall, the ankle joint during walking proved to be the easiest to predict, while the hip joint
during walking presented the greatest challenges. This complexity could be linked to the move-
ments of the hip, which involve several degrees of freedom. Additionally, optoelectronic markers
placed at the pelvis are often difficult to position precisely due to the challenge of accurately locat-
ing anatomical landmarks in this region. These markers, often placed over participants’ clothing,
may move independently of the pelvis, introducing noise into the measurements and reducing data
accuracy. Furthermore, the markers located at the pelvis are particularly prone to being obscured
by the arms during walking or running, where the arms naturally swing. These obstructions can
cause intermittent interruptions in the data recorded by the cameras. Although the marker tra-
jectories were interpolated to fill gaps, this method is less reliable than continuous, unobstructed
capture.

53

CHAPTER 3 3.5 Model predictions based on the gait cycle

The following Table 3.8 summarizes the optimal IMU placements obtained for each model, as
well as the associated minimum and maximum error values (RMSE). Pearson correlation coeffi-
cients are also included.

Running models Walking models
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Predicted angle Ankle Knee Hip Ankle Knee Hip
Best IMU location Midfoot Midfoot Midfoot Midfoot Heel Heel
Minimum value 2.8807° 4.21° 3.8292° 2.616° 3.142° 4.6757°
Maximum value 8.8487° 15.3895° 26.4602° 16.4349° 22.7862° 33.5641°
Average value 6.0° 9.8° 14.1° 9.5° 12.4° 19.1°
Pearson’s coefficient 0.931 0.958 0.854 0.781 0.928 0.790
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 3.8: Summary of the models’ performances, including the best IMU location, and error
statistics.

The next section, which will detail the predictions made by each model for each participant,
placement, and task, will be particularly interesting as it will allow us to precisely identify the
participants or tasks that contribute to the large variability observed so far across all models.

3.5 Model predictions based on the gait cycle

In this section, the flexion angles of the ankle, knee, and hip, measured in degrees in the sagittal
plane, will be presented as a function of the percentage of the gait cycle. Figure 3.29 precisely
shows the measurement points for these angles.

Figure 3.26: Ankle Figure 3.27: Knee Figure 3.28: Hip

Figure 3.29: Movements of the three main lower body joints in the sagittal plane [11].

The ankle angle is traditionally measured between the front of the tibia and the back of the
foot in biomechanics. The neutral position of the ankle, where the angle is zero, corresponds to a
position where the foot is perpendicular to the leg. When the foot moves toward the tibia (upward),
the angle becomes positive, a movement known as dorsiflexion. Conversely, when the foot moves
away from the tibia (downward), the angle becomes negative, corresponding to plantarflexion.

The knee angle is generally measured between the tibia and the femur. A full extension of
the leg, where it is completely straight, corresponds to an angle of 0°, while maximum flexion,
corresponding to a positive angle, is reached when the tibia moves closer to the back of the thigh.

54

CHAPTER 3 3.5 Model predictions based on the gait cycle

The hip angle is measured between the femur and the torso. The reference position, at 0°,
corresponds to the neutral anatomical position, where the person is standing upright, with the body
straight, feet aligned under the hips, and legs extended. Hip flexion corresponds to a reduction in
the angle between the thigh and the torso.

3.5.1 Model 1: Ankle angle predictions during running

Figure 3.31 presents the mean ankle cycles during the "Run00" task, expressed as a percentage of
the running cycle. Each graph represents a participant, with the black curves corresponding to the
actual ankle angle values, and the orange and blue curves representing the predictions of the two
models associated with the two IMU placements (heel and midfoot). The shaded areas around
the curves indicate the standard deviation, reflecting the variability of the predictions.
The expected shape of these cycles for this joint is illustrated in Figure 3.30.

Figure 3.30: Illustration of expected ankle flexion angles during a running cycle [11].

As shown in this reference Figure 3.30, since most participants in this study had a heel strike
during running, the ankle cycles begin with an almost neutral position (angle close to 0°) at the
initial ground contact. Next, the first positive peak observed on these curves (maximum dorsi-
flexion) corresponds to the body moving over the supporting foot, preparing for the transition
to the swing phase. Finally, the gradual decrease in the dorsiflexion angle to the minimum peak
(corresponding to maximum plantarflexion) occurs when the heel lifts off the ground, leaving only
the toe in contact with the ground just before entering the swing phase.

In Figure 3.31, it can be noted that participants 1, 2, 9, and 19 likely contributed to the
increased errors of the first model, as they exhibit greater variability (wider shaded areas) in both
predicted and actual angle values.

As expected, the two curves associated with the different IMU placements follow the actual
values quite similarly, reflecting the fact that the difference between the average errors of the two
models is not significant.

Moreover, the average cycles displayed for some participants show a slight shift compared to
the expected reference cycle. This discrepancy is explained by the use of a fixed threshold value
to segment the walking and running cycles for all participants. In the context of this study, this
threshold was applied uniformly to all participants, based on an average of all thresholds specific
to each participant. Ideally, however, a personalized threshold should have been determined for
each participant and each specific task. This remark applies to all the figures presented in the
subsequent sections of this work.

55

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.31: Predicted and true mean ankle cycles for "Run100".

56

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.32: Predicted and true mean ankle cycles for "Run120"

Figure 3.32 is similar to the previous Figure 3.31, but it pertains to the "Run120" running task.
This analysis allows us to examine how the model performs under conditions of faster running.

Overall, the general observations remain consistent with those made for the "Run100" task.
The primary differences noted are a slight increase in the peak values of the ankle angles for the
majority of participants, likely due to the greater range of joint motion induced by the higher
running speed. This is in line with the reference Figure 3.30 which shows more pronounced peaks
for the darker curves associated with higher speeds.

Regarding the variability in angle values, it does not significantly increase compared to the
"Run100" task for each individual participant. This suggests that these variabilities are not specif-
ically attributed to higher running speeds but are rather inherent to each participant.

57

CHAPTER 3 3.5 Model predictions based on the gait cycle

3.5.2 Model 2: Knee angle predictions during running

Figure 3.34 shows the predicted and actual mean cycles of knee flexion angles for the two IMU
sensor locations, as well as for the 19 participants during the "Run100" running task. The associ-
ated standard deviations are also represented.
The expected shape of these cycles for this joint is illustrated in Figure 3.33.

Figure 3.33: Illustration of expected knee flexion angles during a running cycle [11].

On these reference curves (Figure 3.33), the first flexion peak typically occurs shortly after the
foot touches the ground during the stance phase, reflecting the slight knee bend to absorb the
impact. The near-zero angle indicates the moment when the leg reaches almost full extension,
allowing effective propulsion before the foot lifts off the ground to enter the swing phase. The
second, higher flexion peak occurs during the swing phase when the foot is in the air. At this
point, the knee bends more sharply than during the first peak, shortening the leg length to enable
a quick foot swing forward in preparation for the next step.

The predicted mean cycles derived from data captured by the two sensor locations satisfactorily
follow the main dynamics of knee flexion movement. The participants with the greatest variability
in actual and predicted angle values are participants 1, 2, 12, 18, and 19.

58

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.34: Predicted and true mean knee cycles for "Run100".

Figure 3.35 is similar to the previous 3.34, but for the "Run120" running task. Its analysis
allows for examining how the model performs under faster running conditions.

The main observation is a slight increase in peak knee angle values for the majority of partici-
pants, which is attributed to a greater range of joint movements induced by the increased running
speed.

The variability observed in the predicted and actual angle curves within the same participant
also persists for this task, but does not show a significant increase compared to the "Run100"
task. This suggests that these variations are more dependent on the individual characteristics of
the participants rather than the speed at which the task is performed.

59

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.35: Predicted and true mean knee cycles for "Run120".

60

CHAPTER 3 3.5 Model predictions based on the gait cycle

3.5.3 Model 3: Hip angle predictions during running

Figure 3.37 presents the predicted and actual mean hip angle cycles for the two IMU sensor
locations and for the 19 participants during the "Run100" task, along with the associated standard
deviations.
The expected shape of these cycles for this joint is illustrated in Figure 3.36.

Figure 3.36: Illustration of expected hip flexion angles during a running cycle [11].

In these reference curves (Figure 3.36), the first positive peak corresponds to the moment
when the foot touches the ground, with the hip flexed to absorb the impact and stabilize the body.
The dip around 0°, occurring after the first peak, represents the maximum hip extension. This
happens as the body moves over the supporting foot, preparing to leave the ground and enter the
swing phase. Finally, the second peak, usually the highest, corresponds to the swing phase, where
the hip is in maximum flexion to bring the foot forward in preparation for the next ground contact.

61

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.37: Predicted and true mean hip cycles for "Run100"

A notable observation is that participants 1, 2, and 12 exhibit particularly high variability in the
actual angle values (very wide shaded black areas). This variability is responsible for the reduced
performance of this third model, as already noted in the previous section (Table 3.8). Indeed,
with such variability in the actual angle values, the model will struggle during training to capture a
stable and coherent relationship between the input data features (IMU sensors) and the predicted
outputs (joint angles).

Moreover, for the first participant, the hip angle signal is completely absent. The following
Figure 3.38 shows that, after the filtering step in Visual3D, the last 5 seconds of the signal were
lost. This phenomenon is known as "edge artifacts" and is frequently encountered when applying
digital filters [77]. These artifacts occur because a low-pass filter, to smooth a given point in a
signal, uses the values on either side of that point to calculate an average. However, at the signal’s
edges, the filter lacks future values needed to perform this calculation accurately. In this specific

62

CHAPTER 3 3.5 Model predictions based on the gait cycle

case, Visual3D may have been unable to generate a reliable value for these last seconds, perhaps
due to excessive noise or other anomalies in the data, leading to the deletion of these segments.

Figure 3.38: Visual3D hip angle signals for participant 1 and "Run100" before filtering (left) and
after filtering (right).

However, despite this loss of signal, the model, having been trained on the initial full signal,
managed to capture and predict what the signal should have been, as evidenced by the orange and
blue curves corresponding to the predictions.

These observations explain why this third model exhibits higher errors and distributions with
heavy tails (Figure 3.13) compared to the first two models. Despite these findings, the predicted
curves for most other participants show a good match with the actual hip angle values. This
suggests that if the real data had been of better quality, the model’s performance would have been
significantly improved. Figure 3.39 is similar to the previous Figure 3.37, but for the "Run120"
running task.

Once again, some participants exhibit significant variability in the actual hip angle values. How-
ever, it is noteworthy that these are not exactly the same participants as before, confirming that
this variability is more attributable to the individual characteristics of the participants rather than
the speed of the task.

A slight increase in the peak hip angle values can also be observed for the majority of partici-
pants.

63

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.39: Predicted and true mean hip cycles for "Run120"

3.5.4 Model 4: Ankle angle predictions during walking

Figure 3.41 shows the average ankle cycles during the "Walk100" task, expressed as a percentage
of the gait cycle. The expected shape of these cycles for this joint is illustrated in Figure 3.40.

64

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.40: Illustration of expected ankle flexion angles during a walking cycle [11].

While some participants exhibit curves that closely match this reference (Figure 3.40), a sig-
nificant number of curves deviate from the expected pattern. The main issue here lies not so much
in the model predictions, but rather in the actual angle measurements (black curves), particularly
in their segmentation into cycles, which do not consistently align with the expected curve shape.
Additionally, these real signals show considerable variability, as indicated by the wide shaded areas,
which in turn affects the accuracy of the model predictions and contributes to the large absolute
errors noted in the previous section (Table 3.8).

Regarding the gait cycle, the ankle initially remains in a neutral position as the foot makes
contact with the ground (angle close to 0°), then transitions into dorsiflexion (positive angle) as
the tibia advances over the supporting foot. The ankle subsequently shifts to a negative angle as
the toe lifts off the ground, resulting in a negative peak, albeit with a smaller amplitude compared
to what is observed during running.

65

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.41: Predicted and true mean ankle cycles for "Walk100"

Figure 3.42 is similar to the previous Figure 3.41, but for the "Walk120" task.

As previously observed for "Walk100", a high degree of variability is also notably present in the
real cycles.

66

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.42: Predicted and true mean ankle cycles for "Walk120"

Figure 3.43 is similar to the previous Figures 3.41 and 3.42, but this time focuses on the
"Walk80" task.

The observations remain consistent with those made for the "Walk100" and "Walk120" tasks.
There is significant variability in the real cycles, which suggests that this variability is not specifically
related to the walking speed, as it is present in both "Walk120" and "Walk80", but is rather linked
to the individual participants.

67

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.43: Predicted and true mean ankle cycles for "Walk80"

3.5.5 Model 5: Knee angle predictions during walking

Figure 3.45 presents the average knee cycles during the "Walk100" walking task, expressed as a
percentage of the gait cycle. The expected shape of these cycles for this joint is illustrated in
Figure 3.44.

68

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.44: Illustration of expected knee flexion angles during a walking cycle [11].

These reference curves (Figure 3.33) illustrating the knee flexion angle during walking are quite
similar to those observed during running (Figure 3.33), although the angle amplitudes are signifi-
cantly lower here. The first flexion peak generally occurs shortly after the foot makes contact with
the ground. The near-zero angle marks the moment when the leg reaches almost full extension,
just before the foot lifts off the ground, coinciding with the phase where both feet are in contact
with the ground (a phase that is not present during running). The second, more pronounced flexion
peak occurs during the swing phase when the foot is in the air. At this point, the knee bends more
than during the first peak, shortening the leg length and facilitating the forward movement of the
foot in preparation for the next step.

Compared to the curves obtained for the same joint during running (Figure 3.34), these show
greater variability in the measured (real) angles between participants.

Additionally, for participant 9, the real angle signal was also lost due to edge artifacts, a problem
similar to what was previously mentioned for model 3 (Figure 3.37). This underscores the need to
improve the digital filtering techniques used in this study to minimize these artifacts and preserve
the integrity of the data.

69

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.45: Predicted and true mean knee cycles for "Walk100".

Figure 3.46 is similar to the previous Figure 3.45, but for the "Walk120" task.

As previously observed for "Walk100", a high degree of variability is also notably present in the
real cycles.

70

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.46: Predicted and true mean knee cycles for "Walk120".

Figure 3.47 is similar to the previous Figures 3.45 and 3.46, but this time focuses on the
"Walk80" task.

This Figure 3.47 shows the most variability, even though it was performed at speeds lower than
the "Walk100" and "Walk120" tasks, which suggests that this variability is not specifically linked
to walking speed.

Added to this variability is the fact that the cycles have not been segmented in the right place.

71

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.47: Predicted and true mean knee cycles for "Walk80".

72

CHAPTER 3 3.5 Model predictions based on the gait cycle

3.5.6 Model 6: Hip angle predictions during walking

The Figure 3.49 shows the mean hip cycles during the "Walk100" task, expressed as a percentage
of the walking cycle. The expected form of these cycles for this joint is illustrated in Figure 3.48.

Figure 3.48: Illustration of expected hip flexion angles during a walking cycle [11].

When analyzing the walking cycle, the hip is initially in a flexed position when the foot makes
contact with the ground (corresponding to the maximum peak), with the foot slightly ahead of
the trunk. Then, during the stance phase, the flexion angle decreases as the foot passes under
the body, reaching a peak of extension (minimum peak) when both feet are in contact with the
ground (a phase not present during running), just before entering the swing phase. During this
swing phase, as the foot moves forward again, the hip flexion increases accordingly.

73

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.49: Predicted and true mean hip cycles for "Walk100".

Figure 3.50 is similar to the previous Figure 3.49, but for the "Walk120" task.

As previously observed for "Walk100", a high degree of variability is also notably present in the
real cycles.

74

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.50: Predicted and true mean hip cycles for "Walk120".

Figure 3.51 is similar to the previous Figures 3.49 and 3.50, but this time focuses on the
"Walk80" task.

The observations remain consistent with those made for the "Walk100" and "Walk120" tasks.
There is significant variability in the real cycles, which suggests that this variability is not specifically
related to the walking speed, as it is present in both "Walk120" and "Walk80", but is rather linked
to the individual participants.

75

CHAPTER 3 3.5 Model predictions based on the gait cycle

Figure 3.51: Predicted and true mean hip cycles for "Walk80".

76

Chapter 4

Limitations of this study

This fourth chapter provides an in-depth analysis of the limitations encountered during this work,
while also viewing them as opportunities for improvement in future research. It is divided into
three main sections. The first section is devoted to experimental limitations. The second section
addresses the limitations related to data preprocessing, particularly concerning the choices of digital
filtering. Finally, the last section discusses the inherent limitations of the machine learning models
used.

4.1 Limitations related to the experimental phase

The main limitation of the experimental phase, and likely the most significant limitation of this
study, lies in the substantial variability observed among individual participants, which inevitably leads
to significant differences between them. This variability was particularly evident during the evalu-
ation of absolute (RMSE, MAE) and relative (nRMSE) errors. It was noted that two participants
within the same model and for the same task could exhibit very different error values. Addition-
ally, these errors tended to increase in proportion to the number of tasks included in the models.
For instance, the walking models, which incorporated a greater number of tasks ("Walk100",
"Walk120", "Walk80"), showed significant discrepancies between minimum and maximum errors
compared to the running models, which included fewer tasks ("Run100", "Run120").

This observation was further confirmed during the analysis of the average cycles for each
participant and each type of task. The notable variations in the average measured angles, and
consequently in the model predictions, strongly suggest that these differences stem from the ex-
perimental phase itself, particularly the capture of optical movements.

Several hypotheses can be proposed to explain this variability.

Firstly, variability in the placement of markers between participants, despite being conducted
with great care, remains a potential source of error. Additionally, certain marker locations, such
as T8, the iliac spines, etc., were often positioned over the participants’ clothing, which can lead
to marker displacements independent of adjacent segments, even when the clothing is well-fitted
to the skin.

Secondly, as previously mentioned, optoelectronic systems are subject to noise. Although this
noise was minimized through the application of digital filters, residual errors in the measurement of
joint angles may persist, which could subsequently influence the accuracy of the predictive models.

Finally, the fact that some participants were not particularly athletic, and even less accus-

77

CHAPTER 4 4.2 Limitations related to data preprocessing

tomed to using a treadmill, could explain part of the observed variability. Their walking or running
technique, potentially irregular due to this lack of familiarity with the measurement devices, likely
contributed to this variability.

To reduce variability within the same participant in future studies, and thereby develop more
generalizable predictive models, capable of adapting to a wide range of behaviors and physical
characteristics, several improvements can be considered in the experimental protocol. For example,
rather than using all the tasks performed by the participants, as was done here, it would be
preferable to include only those that demonstrate sufficient regularity. This would help minimize
the impact of abnormal fluctuations on the overall performance of the models. Additionally, it
would be beneficial to increase the familiarization time for participants with the treadmill before
data collection. The time allocated in this study, ranging from 30 seconds to 1 minute, could
be extended to allow participants to fully adapt to the walking or running pace, thereby reducing
variations due to initial awkwardness.

4.2 Limitations related to data preprocessing

The choice of the cutoff frequency for the Butterworth low-pass filter can have a significant impact
on the filtered kinematic data and, consequently, on the final results of the models [60]. Generally,
this cutoff frequency is selected to preserve the majority of the signal’s power, typically between
95% and 99% [60]. Since the power of a signal is proportional to the square of its amplitude,
the higher the task speed, the greater the amplitude of movement, and therefore, the higher this
frequency should be. However, in this study, a fixed value was used for all tasks, both walking and
running, which is not optimal and may introduce more noise and/or fail to capture the full essence
of the signal.

Moreover, as discussed during the analysis of hip angle predictions during running (Section
3.5.3), digital filtering can introduce "edge artifacts," making the ends of the angle signals poten-
tially less reliable. To improve this work, it would be beneficial to adopt approaches to minimize
these artifacts. A simple solution would be to artificially extend the initial signal before filtering
by adding extrapolated signal segments. Although these segments do not provide new informa-
tion, they allow the filter to have the necessary data to function correctly. After filtering, these
additional segments can be cut off to retain only the reliable part of the signal [77]. Alternatively,
another option would be to extend the acquisition phases during the experimental phase to obtain
a longer signal, from which only a portion free of artifacts would be selected for analysis.

Another limitation of this study relates to the segmentation of the walking and running cycles.
A fixed threshold value was used uniformly across all participants to segment these cycles. While
this approach simplified the process, it introduced slight discrepancies in the alignment of the cycles
when compared to the expected reference cycle. Ideally, a personalized threshold should have been
determined for each participant and for each specific task to ensure more accurate segmentation.
This limitation is particularly important and should be considered when interpreting the figures and
results presented throughout this work.

4.3 Limitations related to Machine Learning models

Although the training and test data were correctly separated to avoid any bias in the predictions,
the hyperparameter optimization via Bayesian optimization was performed on the entire dataset
before this separation. This means that the model’s structure was influenced by the overall charac-
teristics of the input and output data, which could introduce a bias in the hyperparameter selection,

78

CHAPTER 4 4.3 Limitations related to Machine Learning models

as they are adjusted based on both the training and test data, potentially leading to an overesti-
mation of the performance of the various models evaluated.

Furthermore, the choice of the regression model used in this study could be improved. As men-
tioned in Section 1.4, exploring more sophisticated models, such as convolutional neural networks
(CNN), would be relevant. When comparing the absolute and relative errors of the models devel-
oped here, CNNs have shown superior accuracy. Additionally, recurrent neural networks (RNN),
which have shown performance comparable to the models developed here, could be considered for
real-time applications, as they offer the ability to capture the temporal dependencies of the data.

Moreover, one of the limitations of the FNN models, as observed here, is that they require fully
processed data (with normalized inputs and input and output sequences of the same length), which
requires that the data be fully recorded. This constraint makes FNNs unsuitable for real-time ap-
plications, a field toward which this work could evolve to make kinematic analysis more accessible
to the general public. In contrast, CNNs and RNNs, although more complex to implement, are
better suited for these real-time applications.

However, one of the reasons why researchers may hesitate to adopt deep networks such as
CNNs and LSTMs is their need for large training datasets, a requirement that is difficult to meet
in the field of biomechanics. To overcome this challenge, an emerging approach in the literature
involves artificially augmenting datasets based on existing data [25, 26].

79

Chapter 5

Conclusions and prospects

The analysis of joint kinematics during running and walking has numerous applications, ranging
from rehabilitation to enhancing sports performance. Traditionally conducted in laboratories, this
analysis is not accessible to the general public and may not accurately reflect real-world con-
ditions. Therefore, this final study aimed to make joint kinematics analysis more accessible by
utilizing portable inertial sensors (IMUs). These sensors, being cost-effective and compact, allow
for use outside of motion analysis laboratories. The ultimate goal of this work was to predict lower
limb kinematics during walking and running using a single IMU.

Given the complexity of data from inertial sensors and the nonlinear relationships with joint
kinematics, several feedforward neural network models were developed to accurately predict these
joint angles.

To train and validate these neural networks, an experimental protocol was established, involv-
ing the collection of data from twenty healthy participants. These participants completed six
30-second trials at different speeds, including three walking trials and three running trials, on a
treadmill at the Sart Tilman Movement Analysis Laboratory. An optoelectronic system, consid-
ered the gold standard in movement analysis, was used to obtain lower body joint angles, which
served as a reference for training the models. Simultaneously, two IMU sensors were placed on the
participants to determine the optimal location for predicting joint angles.

The raw accelerometer and gyroscope data from the inertial sensors were used as inputs for
the machine learning models. The 3D data from the optoelectronic system were preprocessed
through interpolation, scaling, digital filtering, and optimization (inverse kinematics) processes to
obtain the joint angles.

The neural network models were designed using MATLAB’s fitrnet function, with hyperpa-
rameter optimization performed through Bayesian optimization, minimizing the stratified k-fold
cross-validation loss (k=5).

For each participant, several performance indicators were calculated, such as the Root Mean
Square Error (RMSE), the Mean Absolute Error (MAE), the normalized Root Mean Square Er-
ror (nRMSE), and the Pearson correlation coefficient. These metrics were then synthesized into
violin plots for each model, allowing for clear and intuitive visualization of the error distribution.
The results revealed that the two sensor positions tested were generally similar for predicting lower
body kinematics, with a slight preference for the mid-foot location. The ankle flexion angles during
running showed the highest accuracy, with a minimum RMSE of 2.616° for running and 2.8807°
for walking. Predictions for knee and hip angles also showed respectable minimum RMSEs, with
3.142° and 4.21° for the knee in walking and running, respectively, as well as RMSE errors of

80

CHAPTER 5

3.8292° and 4.5767° for the hip in running and walking, respectively. Additionally, the Pearson
correlation coefficients indicated a correlation ranging from ’strong’ to ’very strong’ between the
predictions and the actual values, with p-values below 0.001 for all developed models.

On the other hand, the analysis of these errors also highlighted a major limitation of this
work, namely the difficulty in generalizing the models to a wide range of participants. Indeed, the
discrepancies between two participants performing the same task for the same model resulted in
RMSE error variation ranges from 6° to 28.8884°. This underscores the complexity of uniformly
modeling joint kinematics across a diverse population.

Furthermore, the models’ predictions in terms of the percentage of the gait cycle not only
allowed for an in-depth biomechanical analysis but also clearly identified the participants and tasks
that contribute the most to the increase in average RMSE values per model. These variations
are primarily due to the experimental phase and data processing, thereby suggesting areas for im-
provement in future studies.

In conclusion, this work represents a further step towards the use of a single IMU sensor
for analyzing joint kinematics during running and walking, highlighting the importance of the
experimental phase and data processing. However, further research will be necessary to improve
the generalization of the models and reduce the observed errors, thereby opening up promising
prospects for more accessible clinical and sports applications.

81

Bibliography

[1] Siddharth Hans. A protocol for two-dimensional running gait analysis. https://
simplifaster.com/articles/gait-analysis/, 2024. Accessed: August 18, 2024.

[2] Kai-Nan An. Kinematic analysis of human movement. Annals of biomedical engineering,
12:585–597, 1984.

[3] Olivier Brüls. Musculoskeletal modelling, part 1, 2024. Lecture presented as part of
BIOM0631 - Human Movement Analysis, University of Liège, Belgium.

[4] Kristen Nicholson. Kinematics and kinetics: Technique and mechanical models. In Cerebral
Palsy, pages 1339–1353. Springer, 2020.

[5] Vincent Bonnet, Vladimir Joukov, Dana Kulić, Philippe Fraisse, Nacim Ramdani, and Gentiane
Venture. Monitoring of hip and knee joint angles using a single inertial measurement unit
during lower limb rehabilitation. IEEE Sensors journal, 16(6):1557–1564, 2015.

[6] Martin Friedrich, Thomas Cermak, and Petra Maderbacher. The Effect of Brochure Use
Versus Therapist Teaching on Patients Performing Therapeutic Exercise and on Changes in
Impairment Status. Physical Therapy, 76(10):1082–1088, 10 1996.

[7] Agnes WK Lam, Ahmed HajYasien, and Dana Kulic. Improving rehabilitation exercise perfor-
mance through visual guidance. In 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 1735–1738. IEEE, 2014.

[8] Sumit Majumder, Tapas Mondal, and M. Jamal Deen. A simple, low-cost and efficient gait
analyzer for wearable healthcare applications. IEEE Sensors Journal, 19(6):2320–2329, 2019.

[9] Manju Rana and Vikas Mittal. Wearable sensors for real-time kinematics analysis in sports:
A review. IEEE Sensors Journal, 21(2):1187–1207, 2021.

[10] BBC Bitesize. Movement analysis in sport - eduqas: Planes and axes of movement, 2024.
Accessed: 2024-08-12.

[11] Thomas K. Uchida, Scott Delp, and David B. Delp. Biomechanics of movement : the science
of sports, robotics, and rehabilitation. The MIT Press, Cambridge, Massachusetts, 2020.

[12] Schwartz Cedric. Biom0631-1 human movement analysis, part 2: Kinematics. Lecture
presented at the University of Liège, 2024.

[13] Valentina Camomilla, Aurelio Cappozzo, and Giuseppe Vannozzi. Three-dimensional recon-
struction of the human skeleton in motion. Handbook of human motion, pages 1–29, 2017.

[14] Rafael Caldas, Marion Mundt, Wolfgang Potthast, Fernando Buarque de Lima Neto, and
Bernd Markert. A systematic review of gait analysis methods based on inertial sensors and
adaptive algorithms. Gait & Posture, 57:204–210, 2017.

82

https://simplifaster.com/articles/gait-analysis/
https://simplifaster.com/articles/gait-analysis/

CHAPTER 5 BIBLIOGRAPHY

[15] Daniel L Benoit, Michael Damsgaard, and Michael Skipper Andersen. Surface marker cluster
translation, rotation, scaling and deformation: Their contribution to soft tissue artefact and
impact on knee joint kinematics. Journal of biomechanics, 48(10):2124–2129, 2015.

[16] Rita Stagni, Silvia Fantozzi, Angelo Cappello, and Alberto Leardini. Quantification of soft
tissue artefact in motion analysis by combining 3d fluoroscopy and stereophotogrammetry: a
study on two subjects. Clinical Biomechanics, 20(3):320–329, 2005.

[17] Elodie Piche, Marine Guilbot, Frédéric Chorin, Olivier Guerin, Raphaël Zory, and Pauline
Gerus. Validity and repeatability of a new inertial measurement unit system for gait anal-
ysis on kinematic parameters: Comparison with an optoelectronic system. Measurement,
198:111442, 2022.

[18] Alessandro Filippeschi, Norbert Schmitz, Markus Miezal, Gabriele Bleser, Emanuele Ruffaldi,
and Didier Stricker. Survey of motion tracking methods based on inertial sensors: A focus
on upper limb human motion. Sensors, 17(6):1257, 2017.

[19] Irvin Hussein Lopez-Nava and Angelica Munoz-Melendez. Wearable inertial sensors for human
motion analysis: A review. IEEE Sensors Journal, 16(22):7821–7834, 2016.

[20] Daniel Tik-Pui Fong and Yue-Yan Chan. The use of wearable inertial motion sensors in human
lower limb biomechanics studies: A systematic review. Sensors, 10(12):11556–11565, 2010.

[21] Ive Weygers, Manon Kok, Marco Konings, Hans Hallez, Henri De Vroey, and Kurt Claeys. In-
ertial sensor-based lower limb joint kinematics: A methodological systematic review. Sensors,
20(3), 2020.

[22] Isabelle Poitras, Frédérique Dupuis, Mathieu Bielmann, Alexandre Campeau-Lecours, Cather-
ine Mercier, Laurent J Bouyer, and Jean-Sébastien Roy. Validity and reliability of wearable
sensors for joint angle estimation: A systematic review. Sensors, 19(7):1555, 2019.

[23] Marion Mundt, Wolf Thomsen, Tom Witter, Arnd Koeppe, Sina David, Franz Bamer, Wolf-
gang Potthast, and Bernd Markert. Prediction of lower limb joint angles and moments during
gait using artificial neural networks. Medical & biological engineering & computing, 58:211–
225, 2020.

[24] Marion Mundt, William R Johnson, Wolfgang Potthast, Bernd Markert, Ajmal Mian, and
Jacqueline Alderson. A comparison of three neural network approaches for estimating joint
angles and moments from inertial measurement units. Sensors, 21(13):4535, 2021.

[25] Marion Mundt, Arnd Koeppe, Sina David, Tom Witter, Franz Bamer, Wolfgang Potthast,
and Bernd Markert. Estimation of gait mechanics based on simulated and measured imu data
using an artificial neural network. Frontiers in Bioengineering and Biotechnology, 8, 2020.

[26] Eric Rapp, Soyong Shin, Wolf Thomsen, Reed Ferber, and Eni Halilaj. Estimation of kine-
matics from inertial measurement units using a combined deep learning and optimization
framework. Journal of Biomechanics, 116:110229, 2021.

[27] Liangliang Xiang, Alan Wang, Yaodong Gu, Liang Zhao, Vickie Shim, and Justin Fernan-
dez. Recent machine learning progress in lower limb running biomechanics with wearable
technology: A systematic review. Frontiers in Neurorobotics, 16, 2022.

[28] Hyerim Lim, Bumjoon Kim, and Sukyung Park. Prediction of lower limb kinetics and kine-
matics during walking by a single imu on the lower back using machine learning. Sensors,
20(1), 2020.

83

CHAPTER 5 BIBLIOGRAPHY

[29] Myunghyun Lee and Sukyung Park. Estimation of three-dimensional lower limb kinetics data
during walking using machine learning from a single imu attached to the sacrum. Sensors,
20(21), 2020.

[30] Joohwan Sung, Sungmin Han, Heesu Park, Hyun-Myung Cho, Soree Hwang, Jong Woong
Park, and Inchan Youn. Prediction of lower extremity multi-joint angles during overground
walking by using a single imu with a low frequency based on an lstm recurrent neural network.
Sensors, 22(1), 2022.

[31] Javier Conte Alcaraz, Sanam Moghaddamnia, and Jürgen Peissig. Efficiency of deep neural
networks for joint angle modeling in digital gait assessment. EURASIP Journal on Advances
in Signal Processing, 2021(1):10, 2021.

[32] Ting Long, Jereme Outerleys, Ted Yeung, Justin Fernandez, Mary L Bouxsein, Irene S Davis,
Miriam A Bredella, and Thor F Besier. Predicting ankle and knee sagittal kinematics and
kinetics using an ankle-mounted inertial sensor. Computer Methods in Biomechanics and
Biomedical Engineering, 27(9):1057–1070, 2024.

[33] Daniel Hung Kay Chow, Luc Tremblay, Chor Yin Lam, Adrian Wai Yin Yeung, Wilson Ho Wu
Cheng, and Peter Tin Wah Tse. Comparison between accelerometer and gyroscope in predict-
ing level-ground running kinematics by treadmill running kinematics using a single wearable
sensor. Sensors, 21(14), 2021.

[34] Daniel Hung-Kay Chow, Zaheen Ahmed Iqbal, Luc Tremblay, Chor-Yin Lam, and Rui-Bin
Zhao. Cross-leg prediction of running kinematics across various running conditions and draw-
ing from a minimal data set using a single wearable sensor. Symmetry, 14(6), 2022.

[35] Valentina Camomilla, Elena Bergamini, Silvia Fantozzi, and Giuseppe Vannozzi. Trends sup-
porting the in-field use of wearable inertial sensors for sport performance evaluation: A sys-
tematic review. Sensors, 18(3), 2018.

[36] Amin Ahmadi, Francois Destelle, David Monaghan, Kieran Moran, Noel E O’Connor, Luis
Unzueta, and Maria Teresa Linaza. Human gait monitoring using body-worn inertial sensors
and kinematic modelling. In 2015 IEEE SENSORS, pages 1–4. IEEE, 11 2015.

[37] Jay-Shian Tan, Sawitchaya Tippaya, Tara Binnie, Paul Davey, Kathryn Napier, JP Caneiro,
Peter Kent, Anne Smith, Peter O’Sullivan, and Amity Campbell. Predicting knee joint kine-
matics from wearable sensor data in people with knee osteoarthritis and clinical considerations
for future machine learning models. Sensors, 22(2):446, 2022.

[38] Rob van der Straaten, Liesbet De Baets, Ilse Jonkers, and Annick Timmermans. Mobile
assessment of the lower limb kinematics in healthy persons and in persons with degenerative
knee disorders: A systematic review. Gait & posture, 59:229–241, 2018.

[39] Angelo M Sabatini. Quaternion-based extended kalman filter for determining orientation by
inertial and magnetic sensing. IEEE transactions on Biomedical Engineering, 53(7):1346–
1356, 2006.

[40] WHK De Vries, HEJ Veeger, CTM Baten, and FCT Van Der Helm. Magnetic distortion in
motion labs, implications for validating inertial magnetic sensors. Gait & posture, 29(4):535–
541, 2009.

[41] Wolfgang Teufl, Markus Miezal, Bertram Taetz, Michael Fröhlich, and Gabriele Bleser. Valid-
ity of inertial sensor based 3d joint kinematics of static and dynamic sport and physiotherapy
specific movements. PloS one, 14(2):e0213064, 2019.

84

CHAPTER 5 BIBLIOGRAPHY

[42] Pengfei Gui, Liqiong Tang, and Subhas Mukhopadhyay. Mems based imu for tilting mea-
surement: Comparison of complementary and kalman filter based data fusion. In 2015 IEEE
10th conference on Industrial Electronics and Applications (ICIEA), pages 2004–2009. IEEE,
2015.

[43] Wolfgang Teufl, Markus Miezal, Bertram Taetz, Michael Fröhlich, and Gabriele Bleser. Va-
lidity, test-retest reliability and long-term stability of magnetometer free inertial sensor based
3d joint kinematics. Sensors, 18(7):1980, 2018.

[44] Mohamed Boutaayamou. Ambulatory systems for quantitative gait analysis. Lecture, Human
Movement Analysis (BIOM0631-1), University of Liège, Belgium., November 2024. Lecture
given at the University of Liège, LAM - Motion Lab, Department of Electricity, Electronics,
and Computer Science.

[45] I Arun Faisal, T Waluyo Purboyo, and A Siswo Raharjo Ansori. A review of accelerometer
sensor and gyroscope sensor in imu sensors on motion capture. J. Eng. Appl. Sci, 15(3):826–
829, 2019.

[46] Erik Grahn. Evaluation of mems accelerometer and gyroscope for orientation tracking nu-
trunner functionality, 2017.

[47] Majid Dadafshar. Accelerometer and gyroscopes sensors: operation, sensing, and applications.
Maxim Integrated [online], 2014.

[48] Kristel Çoçoli and Leonardo Badia. A comparative analysis of sensor fusion algorithms for
miniature imu measurements. In 2023 International Seminar on Intelligent Technology and
Its Applications (ISITIA), pages 239–244, 2023.

[49] Hendrik J Luinge. Inertial sensing of human movement. 2002.

[50] Ted Yeung, Astrid Cantamessa, Andreas W Kempa-Liehr, Thor Besier, and Julie Choisne.
Personalized machine learning approach to estimating knee kinematics using only shank-
mounted imu. IEEE Sensors Journal, 23(11):12380–12387, 2023.

[51] Abhishek V Tatachar. Comparative assessment of regression models based on model eval-
uation metrics. International Journal of Innovative Technology and Exploring Engineering,
8(9):853–860, 2021.

[52] Trevor Hastie, Robert Tibshirani, and Jerome H Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, volume 2. Springer New
York, NY, 2009.

[53] Saeed Mouloodi, Hadi Rahmanpanah, Colin Burvill, Soheil Gohari, and Helen M. S. Davies.
Experimental, regression learner, numerical, and artificial neural network analyses on a com-
plex composite structure subjected to compression loading. Mechanics of Advanced Materials
and Structures, 29(17):2437–2453, 2022.

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[55] Amal Mahmoud and Ammar Mohammed. A survey on deep learning for time-series forecast-
ing. Machine learning and big data analytics paradigms: analysis, applications and challenges,
pages 365–392, 01 2021.

[56] Aurelio Cappozzo, Angelo Cappello, U Della Croce, and Francesco Pensalfini. Surface-marker
cluster design criteria for 3-d bone movement reconstruction. IEEE Transactions on Biomed-
ical Engineering, 44(12):1165–1174, 1997.

85

http://www.deeplearningbook.org

CHAPTER 5 BIBLIOGRAPHY

[57] Delsys Europe. Trigno avanti sensor. https://delsyseurope.com/trigno-avanti/. Ac-
cessed on July 1, 2024.

[58] Cédric Schwartz. Human movement analysis, part 5: Muscle biomechanics. https://www.
uliege.be, 2023. Course material, University of Liège, Belgium.

[59] Qualisys. Calibration kit assembly, 2024. Accessed: 2024-08-10.

[60] Jonathan Sinclair, Paul John Taylor, and Sarah Jane Hobbs. Digital filtering of three-
dimensional lower extremity kinematics: An assessment. Journal of human kinetics, 39(1):25–
36, 2013.

[61] T.-W. Lu and J.J. O’Connor. Bone position estimation from skin marker co-ordinates using
global optimisation with joint constraints. Journal of Biomechanics, 32(2):129–134, 1999.

[62] HAS Motion. Inverse kinematics, 2024. Accessed: August 8, 2024.

[63] The MathWorks Inc. Statistics and machine learning toolbox, 2024.

[64] Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applica-
tions. arXiv preprint arXiv:2003.05689, 2020.

[65] Stephen J Wright. Numerical optimization, 2006.

[66] Kamyab Keshtkar. Convolutional neural networks in computer-aided diagnosis of colorectal
polyps and cancer: A review. 10 2021.

[67] MathWorks. Bayesian optimization algorithm. Accessed: 2024-07-02.

[68] Aryan Jadon, Avinash Patil, and Shruti Jadon. A comprehensive survey of regression-based
loss functions for time series forecasting. In International Conference on Data Management,
Analytics & Innovation, pages 117–147. Springer, 2024.

[69] Timothy O Hodson. Root mean square error (rmse) or mean absolute error (mae): When to
use them or not. Geoscientific Model Development Discussions, 2022:1–10, 2022.

[70] Kejin Hu. Become competent within one day in generating boxplots and violin plots for a
novice without prior r experience. Methods and Protocols, 3(4), 2020.

[71] H Hoffmann et al. violin. m-simple violin plot using matlab default kernel density estimation.
INRES (University of Bonn), Katzenburgweg, 5:53115 (Germany), 2015.

[72] MathWorks. Kernel Distribution Documentation, 2024. Accessed: 2024-08-15.

[73] Patrick Schober, Christa Boer, and Lothar A Schwarte. Correlation coefficients: appropriate
use and interpretation. Anesthesia & analgesia, 126(5):1763–1768, 2018.

[74] JASP Team. JASP (Version 0.19.0.0)[Computer software], 2024.

[75] Mark A Goss-Sampson. Statistical Analysis in JASP: A Guide for Students. JASP Team,
Version JASP v0.9.1, October 2018, 2nd edition edition, 2018.

[76] Tetsuro Miyazaki, Toshihiro Kawase, Takahiro Kanno, Maina Sogabe, Yoshikazu Nakajima,
and Kenji Kawashima. Running motion assistance using a soft gait-assistive suit and its
experimental validation. IEEE Access, PP:1–1, 06 2021.

[77] Roemer van der Meij and Jan-Mathijs Schoffelen. Digital Filtering, pages 1222–1228. Springer
New York, New York, NY, 2022.

1

https://delsyseurope.com/trigno-avanti/
https://www.uliege.be
https://www.uliege.be

Appendix: MATLAB® Codes

.1 importData.m

function [angles, IMU, outputRun_Ankle, outputRun_Knee, outputRun_Hip, ...
outputWalk_Ankle, outputWalk_Knee, outputWalk_Hip, ...
inputRun_table, inputRun_matrix, inputWalk_table, inputWalk_matrix, ...
inputRun80_matrix, output_Run80] = ImportData()

% This function imports angles and IMU data from text files for different
% models (run and walk).

%% Import angles data (OUTPUTS)
path = 'C:\\Users\\flore\\OneDrive\\Documents\\Master 2\\TFE\\QTM_Projet\\Data';
opts = delimitedTextImportOptions("NumVariables", 19);
opts.DataLines = [6, Inf];
opts.Delimiter = "\t";
opts.VariableNames = ["ITEM", "Run100_Ankle", "Run100_Hip", "Run100_Knee", ...

"Run120_Ankle", "Run120_Hip", "Run120_Knee", ...
"Run80_Ankle", "Run80_Hip", "Run80_Knee", ...
"Walk100_Ankle", "Walk100_Hip", "Walk100_Knee", ...
"Walk120_Ankle", "Walk120_Hip", "Walk120_Knee", ...
"Walk80_Ankle", "Walk80_Hip", "Walk80_Knee"];

opts.VariableTypes = repmat("double", 1, 19);
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

angles = zeros(120000, 19);
angles = array2table(angles, "VariableNames", opts.VariableNames);
rowIdx = 1;

for participant = 1:20
participantPath = sprintf('%s\\participant%d\\', path, participant);
participant_angles = readtable(...

sprintf('%sparticipant%d_angles.txt', participantPath, participant), ...
opts);

save(...
sprintf('%sparticipant%d_angles.mat', participantPath, participant), ...
'participant_angles');

angles(rowIdx:rowIdx+6000-1, :) = participant_angles;
rowIdx = rowIdx + 6000;

end

angles = removevars(angles, 'ITEM');

% Output for the MODEL1 : Running ankle angles
angles_Run_Ankle = angles{:, {'Run100_Ankle', 'Run120_Ankle'}};
outputRun_Ankle = reshape(angles_Run_Ankle, [], 1);

2

APPENDIX .1 importData.m

% Remove participant16 rows
outputRun_Ankle(210001:216000, :) = []; % For Run120
outputRun_Ankle(90001:96000, :) = []; % For Run100

% Output for the MODEL2 : Running knee angles
angles_Run_Knee = angles{:, {'Run100_Knee', 'Run120_Knee'}};
outputRun_Knee = reshape(angles_Run_Knee, [], 1);
% Remove participant16 rows
outputRun_Knee(210001:216000, :) = []; % For Run120
outputRun_Knee(90001:96000, :) = []; % For Run100

% Output for the MODEL3 : Running hip angles
angles_Run_Hip = angles{:, {'Run100_Hip', 'Run120_Hip'}};
outputRun_Hip = reshape(angles_Run_Hip, [], 1);
% Remove participant16 rows
outputRun_Hip(210001:216000, :) = []; % For Run120
outputRun_Hip(90001:96000, :) = []; % For Run100

% Output for the MODEL4 : Walking ankle angles
angles_Walk_Ankle = angles{:, {'Walk100_Ankle', 'Walk120_Ankle','Walk80_Ankle'}};
outputWalk_Ankle = reshape(angles_Walk_Ankle, [], 1);

% Output for the MODEL5 : Walking knee angles
angles_Walk_Knee = angles{:, {'Walk100_Knee', 'Walk120_Knee','Walk80_Knee'}};
outputWalk_Knee = reshape(angles_Walk_Knee, [], 1);

% Output for the MODEL6 : Walking hip angles
angles_Walk_Hip = angles{:, {'Walk100_Hip', 'Walk120_Hip','Walk80_Hip'}};
outputWalk_Hip = reshape(angles_Walk_Hip, [], 1);

% Output to test the model (Run_80)
output_Run80 = angles{:, {'Run80_Ankle', 'Run80_Knee', 'Run80_Hip'}};
%output_Run80 = reshape(output_Run80, [], 1);

clear opts
%% Import IMU data (INPUTS)

IMU = zeros(120000, 73);
IMU = array2table(IMU, "VariableNames", cellstr({ ...

"ITEM", "Run100_Heel_ACC_X", "Run100_Heel_ACC_Y", ...
"Run100_Heel_ACC_Z", "Run100_Heel_GYRO_X", "Run100_Heel_GYRO_Y", ...
"Run100_Heel_GYRO_Z", "Run100_MidFoot_ACC_X", "Run100_MidFoot_ACC_Y", ...
"Run100_MidFoot_ACC_Z", "Run100_MidFoot_GYRO_X", "Run100_MidFoot_GYRO_Y", ...
"Run100_MidFoot_GYRO_Z", "Run120_Heel_ACC_X", "Run120_Heel_ACC_Y", ...
"Run120_Heel_ACC_Z", "Run120_Heel_GYRO_X", "Run120_Heel_GYRO_Y", ...
"Run120_Heel_GYRO_Z", "Run120_MidFoot_ACC_X", "Run120_MidFoot_ACC_Y", ...
"Run120_MidFoot_ACC_Z", "Run120_MidFoot_GYRO_X", "Run120_MidFoot_GYRO_Y", ...
"Run120_MidFoot_GYRO_Z", "Run80_Heel_ACC_X", "Run80_Heel_ACC_Y", ...
"Run80_Heel_ACC_Z", "Run80_Heel_GYRO_X", "Run80_Heel_GYRO_Y", ...
"Run80_Heel_GYRO_Z", "Run80_MidFoot_ACC_X", "Run80_MidFoot_ACC_Y", ...
"Run80_MidFoot_ACC_Z", "Run80_MidFoot_GYRO_X", "Run80_MidFoot_GYRO_Y", ...
"Run80_MidFoot_GYRO_Z", "Walk100_Heel_ACC_X", "Walk100_Heel_ACC_Y", ...
"Walk100_Heel_ACC_Z", "Walk100_Heel_GYRO_X", "Walk100_Heel_GYRO_Y", ...
"Walk100_Heel_GYRO_Z", "Walk100_MidFoot_ACC_X", "Walk100_MidFoot_ACC_Y", ...
"Walk100_MidFoot_ACC_Z", "Walk100_MidFoot_GYRO_X", "Walk100_MidFoot_GYRO_Y",...
"Walk100_MidFoot_GYRO_Z", "Walk120_Heel_ACC_X", "Walk120_Heel_ACC_Y", ...
"Walk120_Heel_ACC_Z", "Walk120_Heel_GYRO_X", "Walk120_Heel_GYRO_Y", ...
"Walk120_Heel_GYRO_Z", "Walk120_MidFoot_ACC_X", "Walk120_MidFoot_ACC_Y", ...
"Walk120_MidFoot_ACC_Z", "Walk120_MidFoot_GYRO_X", "Walk120_MidFoot_GYRO_Y",...

3

APPENDIX .1 importData.m

"Walk120_MidFoot_GYRO_Z", "Walk80_Heel_ACC_X", "Walk80_Heel_ACC_Y", ...
"Walk80_Heel_ACC_Z", "Walk80_Heel_GYRO_X", "Walk80_Heel_GYRO_Y", ...
"Walk80_Heel_GYRO_Z", "Walk80_MidFoot_ACC_X", "Walk80_MidFoot_ACC_Y", ...
"Walk80_MidFoot_ACC_Z", "Walk80_MidFoot_GYRO_X", "Walk80_MidFoot_GYRO_Y", ...
"Walk80_MidFoot_GYRO_Z"}));

for participant = 1:2
opts = delimitedTextImportOptions("NumVariables", 109);
opts.DataLines = [6, Inf];
opts.Delimiter = "\t";
opts.VariableNames = ["ITEM", ...

"Run100_DistalTibia_ACC_X", "Run100_DistalTibia_ACC_Y", ...
"Run100_DistalTibia_ACC_Z", "Run100_DistalTibia_GYRO_X", ...
"Run100_DistalTibia_GYRO_Y", "Run100_DistalTibia_GYRO_Z", ...
"Run100_Heel_ACC_X", "Run100_Heel_ACC_Y", "Run100_Heel_ACC_Z", ...
"Run100_Heel_GYRO_X", "Run100_Heel_GYRO_Y", "Run100_Heel_GYRO_Z", ...
"Run100_MidFoot_ACC_X", "Run100_MidFoot_ACC_Y", "Run100_MidFoot_ACC_Z", ...
"Run100_MidFoot_GYRO_X", "Run100_MidFoot_GYRO_Y", ...
"Run100_MidFoot_GYRO_Z", "Run120_DistalTibia_ACC_X", ...
"Run120_DistalTibia_ACC_Y", "Run120_DistalTibia_ACC_Z", ...
"Run120_DistalTibia_GYRO_X", "Run120_DistalTibia_GYRO_Y", ...
"Run120_DistalTibia_GYRO_Z", ...
"Run120_Heel_ACC_X", "Run120_Heel_ACC_Y", "Run120_Heel_ACC_Z", ...
"Run120_Heel_GYRO_X", "Run120_Heel_GYRO_Y", "Run120_Heel_GYRO_Z", ...
"Run120_MidFoot_ACC_X", "Run120_MidFoot_ACC_Y", "Run120_MidFoot_ACC_Z", ...
"Run120_MidFoot_GYRO_X", "Run120_MidFoot_GYRO_Y", ...
"Run120_MidFoot_GYRO_Z", "Run80_DistalTibia_ACC_X", ...
"Run80_DistalTibia_ACC_Y", "Run80_DistalTibia_ACC_Z", ...
"Run80_DistalTibia_GYRO_X", "Run80_DistalTibia_GYRO_Y", ...
"Run80_DistalTibia_GYRO_Z", ...
"Run80_Heel_ACC_X", "Run80_Heel_ACC_Y", "Run80_Heel_ACC_Z", ...
"Run80_Heel_GYRO_X", "Run80_Heel_GYRO_Y", "Run80_Heel_GYRO_Z", ...
"Run80_MidFoot_ACC_X", "Run80_MidFoot_ACC_Y", "Run80_MidFoot_ACC_Z", ...
"Run80_MidFoot_GYRO_X", "Run80_MidFoot_GYRO_Y", "Run80_MidFoot_GYRO_Z", ...
"Walk100_DistalTibia_ACC_X", "Walk100_DistalTibia_ACC_Y", ...
"Walk100_DistalTibia_ACC_Z", "Walk100_DistalTibia_GYRO_X", ...
"Walk100_DistalTibia_GYRO_Y", "Walk100_DistalTibia_GYRO_Z", ...
"Walk100_Heel_ACC_X", "Walk100_Heel_ACC_Y", "Walk100_Heel_ACC_Z", ...
"Walk100_Heel_GYRO_X", "Walk100_Heel_GYRO_Y", "Walk100_Heel_GYRO_Z", ...
"Walk100_MidFoot_ACC_X", "Walk100_MidFoot_ACC_Y", ...
"Walk100_MidFoot_ACC_Z", "Walk100_MidFoot_GYRO_X", ...
"Walk100_MidFoot_GYRO_Y", "Walk100_MidFoot_GYRO_Z", ...
"Walk120_DistalTibia_ACC_X", "Walk120_DistalTibia_ACC_Y", ...
"Walk120_DistalTibia_ACC_Z", "Walk120_DistalTibia_GYRO_X", ...
"Walk120_DistalTibia_GYRO_Y", "Walk120_DistalTibia_GYRO_Z", ...
"Walk120_Heel_ACC_X", "Walk120_Heel_ACC_Y", "Walk120_Heel_ACC_Z", ...
"Walk120_Heel_GYRO_X", "Walk120_Heel_GYRO_Y", "Walk120_Heel_GYRO_Z", ...
"Walk120_MidFoot_ACC_X", "Walk120_MidFoot_ACC_Y", ...
"Walk120_MidFoot_ACC_Z", "Walk120_MidFoot_GYRO_X", ...
"Walk120_MidFoot_GYRO_Y", "Walk120_MidFoot_GYRO_Z", ...
"Walk80_DistalTibia_ACC_X", "Walk80_DistalTibia_ACC_Y", ...
"Walk80_DistalTibia_ACC_Z", "Walk80_DistalTibia_GYRO_X", ...
"Walk80_DistalTibia_GYRO_Y", "Walk80_DistalTibia_GYRO_Z", ...
"Walk80_Heel_ACC_X", "Walk80_Heel_ACC_Y", "Walk80_Heel_ACC_Z", ...
"Walk80_Heel_GYRO_X", "Walk80_Heel_GYRO_Y", "Walk80_Heel_GYRO_Z", ...
"Walk80_MidFoot_ACC_X", "Walk80_MidFoot_ACC_Y", "Walk80_MidFoot_ACC_Z", ...
"Walk80_MidFoot_GYRO_X", "Walk80_MidFoot_GYRO_Y", "Walk80_MidFoot_GYRO_Z"];

opts.VariableTypes = repmat("double", 1, 109);
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

4

APPENDIX .1 importData.m

participantPath = sprintf('%s\\participant%d\\', path, participant);
participant_IMU = readtable(...

sprintf('%sparticipant%d_IMU.txt', participantPath, participant), opts);
participant_IMU = removevars(participant_IMU, ...

cellstr({...
"Run100_DistalTibia_ACC_X", "Run100_DistalTibia_ACC_Y", ...
"Run100_DistalTibia_ACC_Z", "Run100_DistalTibia_GYRO_X", ...
"Run100_DistalTibia_GYRO_Y", "Run100_DistalTibia_GYRO_Z", ...
"Run120_DistalTibia_ACC_X", "Run120_DistalTibia_ACC_Y", ...
"Run120_DistalTibia_ACC_Z", "Run120_DistalTibia_GYRO_X", ...
"Run120_DistalTibia_GYRO_Y", "Run120_DistalTibia_GYRO_Z", ...
"Run80_DistalTibia_ACC_X", "Run80_DistalTibia_ACC_Y", ...
"Run80_DistalTibia_ACC_Z", "Run80_DistalTibia_GYRO_X", ...
"Run80_DistalTibia_GYRO_Y", "Run80_DistalTibia_GYRO_Z", ...
"Walk100_DistalTibia_ACC_X", "Walk100_DistalTibia_ACC_Y", ...
"Walk100_DistalTibia_ACC_Z", "Walk100_DistalTibia_GYRO_X", ...
"Walk100_DistalTibia_GYRO_Y", "Walk100_DistalTibia_GYRO_Z", ...
"Walk120_DistalTibia_ACC_X", "Walk120_DistalTibia_ACC_Y", ...
"Walk120_DistalTibia_ACC_Z", "Walk120_DistalTibia_GYRO_X", ...
"Walk120_DistalTibia_GYRO_Y", "Walk120_DistalTibia_GYRO_Z", ...
"Walk80_DistalTibia_ACC_X", "Walk80_DistalTibia_ACC_Y", ...
"Walk80_DistalTibia_ACC_Z", "Walk80_DistalTibia_GYRO_X", ...
"Walk80_DistalTibia_GYRO_Y", "Walk80_DistalTibia_GYRO_Z"}));

participant_IMU = resample(table2array(participant_IMU), 6000, 60000);
save(sprintf('participant%d_IMU.mat', participantPath, participant), 'participant_IMU')

IMU((participant-1)*6000+1:participant*6000,:) = array2table(participant_IMU);
end

for participant = 3:20
if participant == 16 % having only Run120, Walk100, Walk120 et Walk80

opts = delimitedTextImportOptions("NumVariables", 49);
opts.DataLines = [6, Inf];
opts.Delimiter = "\t";
opts.VariableNames = ["ITEM", ...

"Run120_Heel_ACC_X", "Run120_Heel_ACC_Y", "Run120_Heel_ACC_Z", ...
"Run120_Heel_GYRO_X", "Run120_Heel_GYRO_Y", "Run120_Heel_GYRO_Z", ...
"Run120_MidFoot_ACC_X", "Run120_MidFoot_ACC_Y", ...
"Run120_MidFoot_ACC_Z", "Run120_MidFoot_GYRO_X", ...
"Run120_MidFoot_GYRO_Y", "Run120_MidFoot_GYRO_Z", ...
"Walk100_Heel_ACC_X", "Walk100_Heel_ACC_Y", "Walk100_Heel_ACC_Z", ...
"Walk100_Heel_GYRO_X", "Walk100_Heel_GYRO_Y",
"Walk100_Heel_GYRO_Z", "Walk100_MidFoot_ACC_X", ...
"Walk100_MidFoot_ACC_Y", "Walk100_MidFoot_ACC_Z", ...
"Walk100_MidFoot_GYRO_X", "Walk100_MidFoot_GYRO_Y", ...
"Walk100_MidFoot_GYRO_Z", "Walk120_Heel_ACC_X", ...
"Walk120_Heel_ACC_Y", "Walk120_Heel_ACC_Z", ...
"Walk120_Heel_GYRO_X", "Walk120_Heel_GYRO_Y",
"Walk120_Heel_GYRO_Z", "Walk120_MidFoot_ACC_X", ...
"Walk120_MidFoot_ACC_Y", "Walk120_MidFoot_ACC_Z", ...
"Walk120_MidFoot_GYRO_X", "Walk120_MidFoot_GYRO_Y", ...
"Walk120_MidFoot_GYRO_Z", "Walk80_Heel_ACC_X", ...
"Walk80_Heel_ACC_Y", "Walk80_Heel_ACC_Z", ...
"Walk80_Heel_GYRO_X", "Walk80_Heel_GYRO_Y", ...
"Walk80_Heel_GYRO_Z", "Walk80_MidFoot_ACC_X", ...
"Walk80_MidFoot_ACC_Y", "Walk80_MidFoot_ACC_Z", ...
"Walk80_MidFoot_GYRO_X", "Walk80_MidFoot_GYRO_Y", ...
"Walk80_MidFoot_GYRO_Z"];

opts.VariableTypes = repmat("double", 1, 49);
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

5

APPENDIX .1 importData.m

participantPath = sprintf('%s\\participant%d\\', path, participant);
participant_IMU = readtable(...
sprintf("%sparticipant%d_IMU.txt", participantPath, participant), opts);
participant_IMU = removevars(participant_IMU, cellstr({"ITEM", ...

"Run120_Heel_ACC_X", "Run120_Heel_ACC_Y", "Run120_Heel_ACC_Z", ...
"Run120_Heel_GYRO_X", "Run120_Heel_GYRO_Y", ...
"Run120_Heel_GYRO_Z", "Run120_MidFoot_ACC_X", ...
"Run120_MidFoot_ACC_Y", "Run120_MidFoot_ACC_Z", ...
"Run120_MidFoot_GYRO_X", "Run120_MidFoot_GYRO_Y", ...
"Run120_MidFoot_GYRO_Z"}));

participant_IMU = resample(table2array(participant_IMU), 6000, 60000);
save(...

sprintf('%sparticipant%d_IMU.mat', participantPath, participant), ...
'participant_IMU')

IMU((participant-1)*6000+1:participant*6000,38:73) = ...
array2table(participant_IMU);

continue;
end

opts = delimitedTextImportOptions("NumVariables", 73);
opts.DataLines = [6, Inf];
opts.Delimiter = "\t";
opts.VariableNames = ["ITEM", "Run100_Heel_ACC_X", "Run100_Heel_ACC_Y", ...

"Run100_Heel_ACC_Z", "Run100_Heel_GYRO_X", "Run100_Heel_GYRO_Y", ...
"Run100_Heel_GYRO_Z", "Run100_MidFoot_ACC_X", "Run100_MidFoot_ACC_Y", ...
"Run100_MidFoot_ACC_Z", "Run100_MidFoot_GYRO_X", "Run100_MidFoot_GYRO_Y",...
"Run100_MidFoot_GYRO_Z", "Run120_Heel_ACC_X", "Run120_Heel_ACC_Y", ...
"Run120_Heel_ACC_Z", "Run120_Heel_GYRO_X", "Run120_Heel_GYRO_Y", ...
"Run120_Heel_GYRO_Z", "Run120_MidFoot_ACC_X", "Run120_MidFoot_ACC_Y", ...
"Run120_MidFoot_ACC_Z", "Run120_MidFoot_GYRO_X", "Run120_MidFoot_GYRO_Y", ...
"Run120_MidFoot_GYRO_Z", "Run80_Heel_ACC_X", "Run80_Heel_ACC_Y", ...
"Run80_Heel_ACC_Z", "Run80_Heel_GYRO_X", "Run80_Heel_GYRO_Y", ...
"Run80_Heel_GYRO_Z", "Run80_MidFoot_ACC_X", "Run80_MidFoot_ACC_Y", ...
"Run80_MidFoot_ACC_Z", "Run80_MidFoot_GYRO_X", "Run80_MidFoot_GYRO_Y", ...
"Run80_MidFoot_GYRO_Z", "Walk100_Heel_ACC_X", "Walk100_Heel_ACC_Y", ...
"Walk100_Heel_ACC_Z", "Walk100_Heel_GYRO_X", "Walk100_Heel_GYRO_Y", ...
"Walk100_Heel_GYRO_Z","Walk100_MidFoot_ACC_X","Walk100_MidFoot_ACC_Y",...
"Walk100_MidFoot_ACC_Z","Walk100_MidFoot_GYRO_X","Walk100_MidFoot_GYRO_Y",...
"Walk100_MidFoot_GYRO_Z", "Walk120_Heel_ACC_X", "Walk120_Heel_ACC_Y", ...
"Walk120_Heel_ACC_Z", "Walk120_Heel_GYRO_X", "Walk120_Heel_GYRO_Y", ...
"Walk120_Heel_GYRO_Z","Walk120_MidFoot_ACC_X","Walk120_MidFoot_ACC_Y",...
"Walk120_MidFoot_ACC_Z","Walk120_MidFoot_GYRO_X","Walk120_MidFoot_GYRO_Y",...
"Walk120_MidFoot_GYRO_Z", "Walk80_Heel_ACC_X", "Walk80_Heel_ACC_Y", ...
"Walk80_Heel_ACC_Z", "Walk80_Heel_GYRO_X", "Walk80_Heel_GYRO_Y", ...
"Walk80_Heel_GYRO_Z", "Walk80_MidFoot_ACC_X", "Walk80_MidFoot_ACC_Y", ...
"Walk80_MidFoot_ACC_Z", "Walk80_MidFoot_GYRO_X", ...
"Walk80_MidFoot_GYRO_Y", "Walk80_MidFoot_GYRO_Z"];

opts.VariableTypes = repmat("double", 1, 73);
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

participantPath = sprintf('%s\\participant%d\\', path, participant);
participant_IMU = readtable(...

sprintf("%sparticipant%d_IMU.txt", participantPath, participant), opts);
participant_IMU = resample(table2array(participant_IMU), 6000, 60000);
save(sprintf('%sparticipant%d_IMU.mat', participantPath, participant),...

'participant_IMU')

IMU((participant-1)*6000+1:participant*6000,:)=array2table(participant_IMU);

end

6

APPENDIX .2 main.m

IMU = removevars(IMU, 'ITEM');

%% Process IMU running data

% Input for the MODEL 1,2,3 (Running)
inputRun = array2table(zeros(360000, 12), 'VariableNames', ...

{'Run_Heel_ACC_X', 'Run_Heel_ACC_Y', 'Run_Heel_ACC_Z', ...
'Run_Heel_GYRO_X', 'Run_Heel_GYRO_Y', 'Run_Heel_GYRO_Z', ...
'Run_MidFoot_ACC_X', 'Run_MidFoot_ACC_Y', 'Run_MidFoot_ACC_Z', ...
'Run_MidFoot_GYRO_X', 'Run_MidFoot_GYRO_Y', 'Run_MidFoot_GYRO_Z'});

rowIdx = 1;
for i = 1:3

IMU_Run = IMU{:, (i-1)*12+1:i*12};
IMU_Run = reshape(IMU_Run, [], 12);
inputRun(rowIdx:rowIdx+119999, :) = array2table(IMU_Run);
rowIdx = rowIdx + 120000;

end

% Remove participant16 rows
inputRun(330001:336000, :) = []; % For Run80
inputRun(210001:216000, :) = []; % For Run120
inputRun(90001:96000, :) = []; % For Run100

inputRun80_table = inputRun(228001:342000,:);
inputRun80_matrix = inputRun80_table{:,:};
inputRun_table = inputRun(1:228000,:);
inputRun_matrix = inputRun_table{:,:};

% Input for the MODEL 4,5,6 (Walking)
inputWalk_table = array2table(zeros(360000, 12), 'VariableNames', ...

{'Walk_Heel_ACC_X', 'Walk_Heel_ACC_Y', 'Walk_Heel_ACC_Z', ...
'Walk_Heel_GYRO_X', 'Walk_Heel_GYRO_Y', 'Walk_Heel_GYRO_Z', ...
'Walk_MidFoot_ACC_X', 'Walk_MidFoot_ACC_Y', 'Walk_MidFoot_ACC_Z', ...
'Walk_MidFoot_GYRO_X', 'Walk_MidFoot_GYRO_Y', 'Walk_MidFoot_GYRO_Z'});

rowIdx = 1;
for i = 4:6

IMU_Walk = IMU{:, (i-1)*12+1:i*12};
IMU_Walk = reshape(IMU_Walk, [], 12);
inputWalk_table(rowIdx:rowIdx+119999, :) = array2table(IMU_Walk);
rowIdx = rowIdx + 120000;

end

inputWalk_matrix = inputWalk_table{:,:};

end

.2 main.m

function [angles, IMU, inputRun_table, inputWalk_table, ...
resultsModel1, resultsModel2, resultsModel3, ...
resultsModel4, resultsModel5, resultsModel6] = main()

% Main function to create the neural networks models

7

APPENDIX .2 main.m

%% Data importation

[angles, IMU, ...
outputRun_Ankle, outputRun_Knee, outputRun_Hip, ...
outputWalk_Ankle, outputWalk_Knee, outputWalk_Hip, ...
inputRun_table, inputRun_matrix, ...
inputWalk_table, inputWalk_matrix, ...
inputRun80_matrix, output_Run80, ...
] = ImportData();

%% Normalization of inputs

normalizedInputRun_matrix = (inputRun_matrix - mean(inputRun_matrix)) ...
./ std(inputRun_matrix);

normalizedInputWalk_matrix = (inputWalk_matrix - mean(inputWalk_matrix)) ...
./ std(inputWalk_matrix);

%normalizedInputRun80_matrix = (inputRun80_matrix - mean(inputRun80_matrix)) ...
% ./ std(inputRun80_matrix);

%% Creation and bayesian optimization of Neural Networks

numSets = 15;
secPerParticipant = 2;
%numParticipants = 38; % Total number of participants for running tasks
numParticipants = 60; % Total number of participants for walking tasks

% MODEL1: Run -> Ankle
resultsModel1 = cell(1, 2);
[resultsRunAnkleHeel] = OptimizedNeuralNetworkWithSets(...

normalizedInputRun_matrix(:, 1:6), ...
outputRun_Ankle, ...
numSets, secPerParticipant, numParticipants);

resultsModel1{1,1} = resultsRunAnkleHeel;
save("resultsModel1.mat","resultsModel1");

[resultsRunAnkleMidFoot] = OptimizedNeuralNetworkWithSets(...
normalizedInputRun_matrix(:, 7:12), ...
outputRun_Ankle, ...
numSets, secPerParticipant, numParticipants);

resultsModel1{1,2} = resultsRunAnkleMidFoot;
save("resultsModel1.mat","resultsModel1");

% MODEL2: Run -> Knee
resultsModel2 = cell(1, 2);
[resultsRunKneeHeel] = OptimizedNeuralNetworkWithSets(...

normalizedInputRun_matrix(:, 1:6), ...
outputRun_Knee, ...
numSets, secPerParticipant, numParticipants);

resultsModel2{1,1} = resultsRunKneeHeel;
save("resultsModel2.mat","resultsModel2");

[resultsRunKneeMidFoot] = OptimizedNeuralNetworkWithSets(...
normalizedInputRun_matrix(:, 7:12), ...
outputRun_Knee, ...
numSets, secPerParticipant, numParticipants);

resultsModel2{1,2} = resultsRunKneeMidFoot;
save("resultsModel2.mat","resultsModel2");

% MODEL3: Run -> Hip (Heel)

8

APPENDIX .2 main.m

resultsModel3 = cell(1, 2);
[resultsRunHipHeel] = OptimizedNeuralNetworkWithSets(...

normalizedInputRun_matrix(:, 1:6), ...
outputRun_Hip, ...
numSets, secPerParticipant, numParticipants);

resultsModel3{1,1} = resultsRunHipHeel;
save("resultsModel3.mat","resultsModel3");

[resultsRunHipMidFoot] = OptimizedNeuralNetworkWithSets(...
normalizedInputRun_matrix(:, 7:12), ...
outputRun_Hip, ...
numSets, secPerParticipant, numParticipants);

resultsModel3{1,2} = resultsRunHipMidFoot;
save("resultsModel3.mat","resultsModel3");

% MODEL4: Walk -> Ankle
resultsModel4 = cell(1, 2);
[resultsWalkAnkleHeel] = OptimizedNeuralNetworkWithSets(...

normalizedInputWalk_matrix(:, 1:6), ...
outputWalk_Ankle, ...
numSets, secPerParticipant, numParticipants);

resultsModel4{1,1} = resultsWalkAnkleHeel;
save("resultsModel4.mat","resultsModel4");

[resultsWalkAnkleMidFoot] = OptimizedNeuralNetworkWithSets(...
normalizedInputWalk_matrix(:, 7:12), ...
outputWalk_Ankle, ...
numSets, secPerParticipant, numParticipants);

resultsModel4{1,2} = resultsWalkAnkleMidFoot;
save("resultsModel4.mat","resultsModel4");

% MODEL5: Walk -> Knee
resultsModel5 = cell(1, 2);
[resultsWalkKneeHeel] = OptimizedNeuralNetworkWithSets(...

normalizedInputWalk_matrix(:, 1:6), ...
outputWalk_Knee, ...
numSets, secPerParticipant, numParticipants);

resultsModel5{1,1} = resultsWalkKneeHeel;
save("resultsModel5.mat","resultsModel5");

[resultsWalkKneeMidFoot] = OptimizedNeuralNetworkWithSets(...
normalizedInputWalk_matrix(:, 7:12), ...
outputWalk_Knee, ...
numSets, secPerParticipant, numParticipants);

resultsModel5{1,2} = resultsWalkKneeMidFoot;
save("resultsModel5.mat","resultsModel5");

% MODEL6: Walk -> Hip
resultsModel6 = cell(1, 2);
[resultsWalkHipHeel] = OptimizedNeuralNetworkWithSets(...

normalizedInputWalk_matrix(:, 1:6), ...
outputWalk_Hip, ...
numSets, secPerParticipant, numParticipants);

resultsModel6{1,1} = resultsWalkHipHeel;
save("resultsModel6.mat","resultsModel6");

[resultsWalkHipMidFoot] = OptimizedNeuralNetworkWithSets(...
normalizedInputWalk_matrix(:, 7:12), ...
outputWalk_Hip, ...

9

APPENDIX .3 optimizeNeuralNetworksWithSets.m

numSets, secPerParticipant, numParticipants);
resultsModel6{1,2} = resultsWalkHipMidFoot;
save("resultsModel6.mat","resultsModel6");

end

.3 optimizeNeuralNetworksWithSets.m

function [results] = OptimizedNeuralNetworkWithSets(X, Y, numSets, ...
secPerParticipant, numParticipants)
% This function performs Bayesian optimization to minimize the cross-validation
% loss of the fitrnet function by optimizing its hyperparameters.

%% Divide data into 'numSets' to speed up the process

[Xsets, Ysets] = createSets(X, Y, numSets, secPerParticipant, numParticipants);
numObservations = size(Xsets{1,1}, 1);

%% Define the hyperparameters to optimize
% (similar to: https://nl.mathworks.com/help/stats/hyperparameter-
% optimization-in-regression-learner-app.html)

rng default

numLayers = optimizableVariable('NumLayers', [1, 3], 'Type', 'integer');
firstLayerSize = optimizableVariable('Layer_1_Size', [1, 300], 'Type', ...

'integer', 'Transform', 'log');
secondLayerSize = optimizableVariable('Layer_2_Size', [1, 300], 'Type', ...

'integer', 'Transform', 'log');
thirdLayerSize = optimizableVariable('Layer_3_Size', [1, 300], 'Type', ...

'integer', 'Transform', 'log');
activation = optimizableVariable('Activations', {'reLU', 'tanh', ...

'none', 'sigmoid'}, 'Type', 'categorical');
regularization = optimizableVariable('Regularization', ...

[0.00001/numObservations, 100000/numObservations],'Transform','log');

vars = [numLayers, firstLayerSize, secondLayerSize, ...
thirdLayerSize, activation, regularization];

%% Optimize hyperparameters on each set

results = cell(numSets, 1);

for i = 1:numSets
X_set = Xsets{i, 1};
Y_set = Ysets{i, 1};

numObservations = size(X_set, 1);
groups = zeros(numObservations, 1);
rowsPerParticipant = 200 * secPerParticipant;
for j = 1:numParticipants

startIdx = (j-1) * rowsPerParticipant + 1;
endIdx = min(j * rowsPerParticipant, numObservations);
if startIdx <= numObservations

groups(startIdx:endIdx) = j;
end

end

10

APPENDIX .3 optimizeNeuralNetworksWithSets.m

c = cvpartition(groups, "KFold", 5);

fun = @(x)kfoldLoss(fitrnet(X_set, Y_set, ...
'CVPartition', c, ...
'LayerSizes', getCorrectLayerSizes(x.NumLayers, x.Layer_1_Size, ...

x.Layer_2_Size, x.Layer_3_Size), ...
'Activations', char(x.Activations), ...
'Lambda', x.Regularization, ...
'IterationLimit', 1000));

results{i} = bayesopt(fun, vars,
'Verbose', 0, ...
'AcquisitionFunctionName', 'expected-improvement-plus', ...
'UseParallel', false);

end

%% Visualization and averaging of the 15 sets of obtained hyperparameters

numSets = length(results);
hyperparamTable = table('Size', [numSets, 6], ...

'VariableTypes', {'double', 'double', 'double', 'double', ...
'categorical', 'double'}, ...

'VariableNames', {'NumLayers', 'Layer_1_Size', 'Layer_2_Size', ...
'Layer_3_Size', 'Activations', 'Regularization'});

for i = 1:9
bestParams = results{i}.XAtMinObjective;
hyperparamTable.NumLayers(i) = bestParams.NumLayers;
hyperparamTable.Layer_1_Size(i) = bestParams.Layer_1_Size;
hyperparamTable.Layer_2_Size(i) = bestParams.Layer_2_Size;
hyperparamTable.Layer_3_Size(i) = bestParams.Layer_3_Size;
hyperparamTable.Activations(i) = bestParams.Activations;
hyperparamTable.Regularization(i) = bestParams.Regularization;

end

disp('Hyperparameters for each set:');
disp(hyperparamTable);

meanHyperparams = varfun(@mean, hyperparamTable, 'InputVariables', ...
{'NumLayers', 'Layer_1_Size', 'Layer_2_Size', ...
'Layer_3_Size', 'Regularization'});

meanActivation = mode(hyperparamTable.Activations);

disp('Mean Hyperparameters:');
disp(meanHyperparams);
disp(['Mean Activation Function: ', char(meanActivation)]);

%% Create and train the model with the best hyperparameters found

rng("default")

secPerParticipant = 30;
rowsPerParticipant = 200 * secPerParticipant;
indices = reshape(1:(rowsPerParticipant * numParticipants), ...

rowsPerParticipant, numParticipants);

XTrain = [];
YTrain = [];
XTest = [];
YTest = [];

for j = 1:numParticipants

11

APPENDIX .3 optimizeNeuralNetworksWithSets.m

participantIndices = indices(:, j);

trainIndices=participantIndices(1:round(0.8*length(participantIndices)));
testIndices=participantIndices(round(0.8*length(participantIndices))+1:end);

XTrain = [XTrain; X(trainIndices, :)];
YTrain = [YTrain; Y(trainIndices, :)];
XTest = [XTest; X(testIndices, :)];
YTest = [YTest; Y(testIndices, :)];

end

model = fitrnet(XTrain, YTrain, ...
'LayerSizes', [round(meanHyperparams.mean_Layer_1_Size), ...

round(meanHyperparams.mean_Layer_2_Size)] , ...
'Activations', char(meanActivation), ...
'Lambda', meanHyperparams.mean_Regularization, ...
'IterationLimit', 1000);

predictions = struct('Participant', {}, 'Y_Test', {}, 'Y_Pred', {},...
'RMSE', {}, 'MAE' ,{});

for i = 1:numParticipants
participant = i;
participantTestIdx = indices(round(0.8 * length(indices(:, i))) + 1:end, i);

X_test_participant = X(participantTestIdx, :);
Y_test_participant = Y(participantTestIdx, :);

Y_pred_participant = predict(model, X_test_participant);

RMSE = sqrt(mean((Y_pred_participant - Y_test_participant).^2));
MAE = mean(abs(Y_pred_participant - Y_test_participant));

predictions(i).Participant = participant;
predictions(i).Y_Test = Y_test_participant;
predictions(i).Y_Pred = Y_pred_participant;
predictions(i).RMSE = RMSE;
predictions(i).MAE = MAE;

end

results = struct('Model', model,'PredictionsForAllParticipants', predictions);

end

function layerSizes = getCorrectLayerSizes(numLayers, layer1, layer2, layer3)
% Function to handle the size of layers based on the optimal number of layers
% returned by 'numLayers'

switch numLayers
case 1

layerSizes = [layer1];
case 2

layerSizes = [layer1 layer2];
case 3

layerSizes = [layer1 layer2 layer3];
end

end

12

APPENDIX .4 createSets.m

.4 createSets.m

function [XsegmentedMatrices, YsegmentedMatrices] = createSets(X, Y, ...
numSets, secPerParticipant, numParticipants)
% This function divides the input matrices (X and Y) into 'numSets'
% matrices, each containing 'secPerParticipant' seconds of data from each
% participant.

numRowsPerParticipant = 200 * secPerParticipant;
setRows = numParticipants * numRowsPerParticipant;

%% Segmentation of X into 'numSets' matrices
XsegmentedMatrices = cell(numSets, 1);

for i = 1:numSets
matrix = zeros(setRows, size(X, 2));
setStartIdx = (i-1) * numRowsPerParticipant + 1;
setEndIdx = i * numRowsPerParticipant;

for j = 1:numParticipants
participantStartIdx = (j-1) * 6000 + setStartIdx;
participantEndIdx = (j-1) * 6000 + setEndIdx;

matrix((j-1)*numRowsPerParticipant+1 : j*numRowsPerParticipant, :) ...
= X(participantStartIdx:participantEndIdx, :);

end
XsegmentedMatrices{i} = matrix;

end

%% Segmentation of Y into 'numSets' matrices
YsegmentedMatrices = cell(numSets, 1);

for i = 1:numSets

matrix = zeros(setRows, size(Y, 2));
setStartIdx = (i-1) * numRowsPerParticipant + 1;
setEndIdx = i * numRowsPerParticipant;

for j = 1:numParticipants
participantStartIdx = (j-1) * 6000 + setStartIdx;
participantEndIdx = (j-1) * 6000 + setEndIdx;

matrix((j-1)*numRowsPerParticipant+1 : j*numRowsPerParticipant, :) ...
= Y(participantStartIdx:participantEndIdx, :);

end
YsegmentedMatrices{i} = matrix;

end
end

.5 visualizeModelPerformances.m

%% FIGURE: Violin plot for RMSE, MAE, and nRMSE

% Parameters to adapt
modelNb = 3;
model = resultsModel3;

13

APPENDIX .5 visualizeModelPerformances.m

numParticipants = 38; % Models for running tasks
%numParticipants = 60; % Models for walking tasks

IMULocations = {'Heel', 'Mid foot'};

% Extract RMSE and MAE for all participants by model
RMSE_values = zeros(numParticipants, 2);
MAE_values = zeros(numParticipants, 2);
for j = 1:numParticipants

RMSE_values(j, 1) = model{1,1}.PredictionsForAllParticipants(j).RMSE;
RMSE_values(j, 2) = model{1,2}.PredictionsForAllParticipants(j).RMSE;

MAE_values(j, 1) = model{1,1}.PredictionsForAllParticipants(j).MAE;
MAE_values(j, 2) = model{1,2}.PredictionsForAllParticipants(j).MAE;

end

% Extract nRMSE for all participants by model
nRMSE_values = zeros(numParticipants, 2);
for j = 1:numParticipants

Y_Test_Heel = model{1,1}.PredictionsForAllParticipants(j).Y_Test;
Y_Test_MidFoot = model{1,2}.PredictionsForAllParticipants(j).Y_Test;

amplitude_Heel = max(Y_Test_Heel) - min(Y_Test_Heel);
amplitude_MidFoot = max(Y_Test_MidFoot) - min(Y_Test_MidFoot);

nRMSE_values(j, 1) = (RMSE_values(j, 1) / amplitude_Heel) * 100;
nRMSE_values(j, 2) = (RMSE_values(j, 2) / amplitude_MidFoot) * 100;

end

% Plot RMSE
figure;
violin(RMSE_values, 'facecolor',[1 1 0;0 1 0;.3 .3 .3;0 0.3 0.1]);
title(sprintf('RMSE for different IMU locations for Model %d', modelNb));
ylabel('RMSE [Degrees]');
xticks(1:length(IMULocations));
xticklabels(IMULocations);

% Plot nRMSE
figure;
violin(nRMSE_values,'facecolor',[1 1 0;0 1 0;.3 .3 .3;0 0.3 0.1]);
title(sprintf('nRMSE for different IMU locations for Model %d', modelNb));
ylabel('nRMSE [%]');
xticks(1:length(IMULocations));
xticklabels(IMULocations);

% Plot MAE
figure;
violin(MAE_values,'facecolor',[1 1 0;0 1 0;.3 .3 .3;0 0.3 0.1]);
title(sprintf('MAE for different IMU locations for Model %d', modelNb));
ylabel('MAE [Degrees]');
xticks(1:length(IMULocations));
xticklabels(IMULocations);

%% FIGURE: Predicted and true angle cycles over time for each model

% Parameters to adapt
numModel = 3; % Model number (1, 2, 3, 4, 5, or 6)
model = resultsModel3; % Model
numParticipants = 38; % 38 for running, 60 for walking
realColor = [0.0, 0.0, 0.0]; % Black color
predColors = {[0.8500, 0.3250, 0.0980], [0.3010, 0.7450, 0.9330], ...

[0.4940, 0.1840, 0.5560]};

14

APPENDIX .5 visualizeModelPerformances.m

samplingRate = 200;
IMULocations = {'Heel', 'Mid foot'};
numNetworks = 2; % Number of sub-models

for k = 1:numParticipants
figure;
hold on
for i = 1:numNetworks

predictions = model{1,i}.PredictionsForAllParticipants;

YTest = predictions(k).Y_Test;
YPred = predictions(k).Y_Pred;

participantIdx = mod(k-1, 19) + 1;

if (numModel == 1 || numModel == 2 || numModel == 3)
if k <= 15

cyclesTimesPerParticipant=cycleTimes{participantIdx,1}.Run100;
task = "Run100";

elseif k <= 19
cyclesTimesPerParticipant=cycleTimes{participantIdx+1,1}.Run100;
task = "Run100";

elseif k > 19
if participantIdx <= 15

cyclesTimesPerParticipant = cycleTimes{participantIdx,...
1}.Run120;

task = "Run120";
else

cyclesTimesPerParticipant = cycleTimes{participantIdx+1,...
1}.Run120;
task = "Run120";

end
end

elseif (numModel == 4 || numModel == 5 || numModel == 6)
if k <= 20

cyclesTimesPerParticipant=cycleTimes{participantIdx, 1}.Walk100;
task = "Walk100";

elseif k <= 40
cyclesTimesPerParticipant=cycleTimes{participantIdx, 1}.Walk120;
task = "Walk120";

else
cyclesTimesPerParticipant=cycleTimes{participantIdx, 1}.Walk80;
task = "Walk80";

end
end

% Convert times to indices
cyclesIndices = round(cyclesTimesPerParticipant * samplingRate);
cyclesIndices=cyclesIndices(~isnan(cyclesIndices) & cyclesIndices>0);
adjustedIndices = cyclesIndices(cyclesIndices >= 4800 & ...

cyclesIndices <= 6000) - 4800 + 1;

[trueCycleCells, predictedCycleCells, ...
meanTrueCycle, stdTrueCycle, ...
meanPredictedCycle, stdPredictedCycle] = cyclesDetection(...

adjustedIndices, YTest, YPred);

timeVector = linspace(0, 100, length(meanTrueCycle));

% Real cycle

15

APPENDIX .5 visualizeModelPerformances.m

if i == 1
plot(timeVector, meanTrueCycle, 'LineWidth', 2, ...

'Color', realColor,...
'DisplayName', 'True mean cycle');

fill([timeVector, fliplr(timeVector)], ...
[meanTrueCycle + stdTrueCycle, ...

fliplr(meanTrueCycle - stdTrueCycle)], ...
realColor, 'FaceAlpha', 0.3, 'EdgeColor', ...
'none', 'HandleVisibility', 'off');

end

% Predicted cycle
plot(timeVector, meanPredictedCycle, 'LineWidth', 2, ...

'Color', predColors{i},...
'DisplayName', sprintf('Predicted (%s)', IMULocations{i}));

fill([timeVector, fliplr(timeVector)], ...
[meanPredictedCycle + stdPredictedCycle, ...

fliplr(meanPredictedCycle - stdPredictedCycle)], ...
predColors{i}, 'FaceAlpha', 0.3, 'EdgeColor', ...
'none', 'HandleVisibility', 'off');

end

xlabel('Cycle (%)');
ylabel('Hip flexion angle (degrees)'); % To adapt
title(sprintf(...

'Predicted and true mean cycles with standard ...
deviation\nshadings for participant %d (%s)', ...
participantIdx, task));

legend();
hold off;

end

%% Conversion in CSV format for JASP

% Parameters to adapt
numParticipants = 38;
numNetworks = 2;
IMULocations = {'Heel', 'Mid foot'};

participantList = [];
YTestList = [];
YPredModel1List = [];
YPredModel2List = [];

for k = 1:numParticipants
tempYPredModel1 = [];
tempYPredModel2 = [];

for i = 1:numNetworks
predictions = resultsModel{1,i}.PredictionsForAllParticipants;

YTest = predictions(k).Y_Test;
YPred = predictions(k).Y_Pred;

if i == 1
tempYPredModel1 = YPred;

end

if i == 2
tempYPredModel2 = YPred;

end

16

APPENDIX .6 cyclesDetection.m

end

nDataPoints = length(YTest);
participantList = [participantList; repmat(k,nDataPoints,1)];
YTestList = [YTestList;YTest];
YPredModel1List = [YPredModel1List; tempYPredModel1];
YPredModel2List = [YPredModel2List; tempYPredModel2];

end

dataTable_Model = table(participantList, YTestList, ...
YPredModel1List, YPredModel2List, ...
'VariableNames', {'Participant', 'YTest', 'YPred_ModelHeel',...

'YPred_ModelMidFoot'});

writetable(dataTable_Model, 'model_predictions_full.csv');

.6 cyclesDetection.m

function [trueCycles, predictedCycles, meanTrueCycle, ...
stdTrueCycle, meanPredictedCycle, stdPredictedCycle] = cyclesDetection(...

Idx, YTest, YPred)

numCycles = length(Idx) - 1;
trueCycles = cell(numCycles, 1);
predictedCycles = cell(numCycles, 1);

for i = 1:numCycles
if i < length(Idx)

startIdx = max(1, round(Idx(i)));
endIdx = round(Idx(i+1)) - 1;

trueCycles{i} = YTest(startIdx:endIdx);
predictedCycles{i} = YPred(startIdx:endIdx);

end

end

% Criteria for excluding cycles if too small
minCycleLengthThreshold = 0.5;

cyclesToRemove = true;
while ~isempty(cyclesToRemove) && numCycles > 2

cycleLengths = cellfun(@length, trueCycles);
meanCycleLength = mean(cycleLengths);

cyclesToRemove = find(cycleLengths < ...
minCycleLengthThreshold * meanCycleLength);

if ~isempty(cyclesToRemove)
trueCycles(cyclesToRemove) = [];
predictedCycles(cyclesToRemove) = [];
numCycles = numCycles - length(cyclesToRemove);

end
end

%Conversion into a matrix to compute the average
minTrueCycleLength = min(cellfun(@length, trueCycles));
trueCycleMatrix = cell2mat(cellfun(@(x) x(1:minTrueCycleLength), ...

17

APPENDIX .6 cyclesDetection.m

trueCycles, 'UniformOutput', false)');

minPredictedCycleLength = min(cellfun(@length, predictedCycles));
predictedCycleMatrix = cell2mat(cellfun(@(x) x(1:minPredictedCycleLength),...

predictedCycles, 'UniformOutput', false)');

meanTrueCycle = mean(trueCycleMatrix, 2);
meanPredictedCycle = mean(predictedCycleMatrix, 2);

stdTrueCycle = std(trueCycleMatrix, 0, 2);
stdPredictedCycle = std(predictedCycleMatrix, 0, 2);

meanTrueCycle = meanTrueCycle';
meanPredictedCycle = meanPredictedCycle';

stdTrueCycle = stdTrueCycle';
stdPredictedCycle = stdPredictedCycle';

end

18

	Introduction
	State of the art
	Importance of joint kinematics
	Reference technique for studying joint kinematics
	Portable alternatives for measuring joint kinematics
	Operating principle of Inertial Measurement Units (IMUs)
	Approaches for analyzing data from IMUs
	Use of a limited number of IMUs

	Joint angles prediction using Artificial Neural Networks (ANNs)

	Materials and methods
	Protocol
	Aims of the study
	Participants
	Instrumentation and marker placement
	Description of the different test phases
	Performing the test

	Data processing
	Preprocessing with Qualisys Track Manager®
	Preprocessing with Visual3DTM
	Preprocessing in MATLAB®

	Models development and optimization
	Designing regression models using fitrnet
	Hyperparameters optimization
	Averaging hyperparameters for final model creation

	Evaluation metrics
	Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
	Normalized Root Mean Square Error (nRMSE)
	Violin plots
	Pearson correlation coefficient
	Segmentation into gait cycles

	Results and discussions
	Optimized Neural Network hyperparameters
	Comparison of different IMU locations
	Model 1: Ankle angle predictions during running
	Model 2: Knee angle predictions during running
	Model 3: Hip angle predictions during running
	Model 4: Ankle angle predictions during walking
	Model 5: Knee angle predictions during walking
	Model 6: Hip angle predictions during walking

	Analysis of Pearson correlation coefficients
	Model 1: Ankle angle predictions during running
	Model 2: Knee angle predictions during running
	Model 3: Hip angle predictions during running
	Model 4: Ankle angle predictions during walking
	Model 5: Knee angle predictions during walking
	Model 6: Hip angle predictions during walking

	Summary of model performances
	Model predictions based on the gait cycle
	Model 1: Ankle angle predictions during running
	Model 2: Knee angle predictions during running
	Model 3: Hip angle predictions during running
	Model 4: Ankle angle predictions during walking
	Model 5: Knee angle predictions during walking
	Model 6: Hip angle predictions during walking

	Limitations of this study
	Limitations related to the experimental phase
	Limitations related to data preprocessing
	Limitations related to Machine Learning models

	Conclusions and prospects
	References
	Appendix: MATLAB® Codes
	importData.m
	main.m
	optimizeNeuralNetworksWithSets.m
	createSets.m
	visualizeModelPerformances.m
	cyclesDetection.m

