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Abstract

This work focuses on the extension of an already existing particle finite element
method (PFEM) solver : PFEM3D. The goal is to extend its reach of applicability in

order to model liquid-substrate phenomena, such as the capillary effect, the formation of
a contact angle at the contact line, and dissipation due to friction at the liquid-substrate
contact, which are predominant effects at small-scale fluid dynamics problems. For this
purpose, the PFEM implementation of PFEM3D is compared with a state of the art model
: the lacking contributions are identified and added to the computer model. A set of
verification tests is then performed to verify if the obtained results are comparable to
those provided by the reference source. After extensive validation of the numerical model,
a simple implementation for contact angle hysteresis is suggested.
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Notations
• [s] : refers to the units of a physical quantity (in this case, seconds, which is the

measure of time) ;

• ∼ : expresses that some quantity is of the same order of magnitude as another
quantity ;

• ∇ × v : denotes the rotational of a vector field (in this case, the rotational of the
velocity profile) ;

• v : denotes a vector quantity (in this case, the velocity profile) ;

• ∇ ·σ : denotes the divergence of a second-order tensor (in this case, the divergence
of the Cauchy stress tensor σ) ;

• σ : denotes a second-order tensor (in this case, the Cauchy stress tensor) ;

• ∇v : denotes the gradient of a vector field (in this case, the gradient of the velocity
profile) ;

• (∇v)T : denotes the transpose of a vector field (in this case, the transpose of the
gradient of the velocity profile) ;

• ≃ : denotes that a quantity can be approximated as another quantity ;

• ε̇n : denotes the time-derivative of a quantity (here, the time-derivative of the
droplet free surface oscillations) ;

• ||φ|| : denotes the norm of a physical quantity (in this case, the norm of the velocity
potential) ;

• ∇φ · n : denotes the dot product between two vectors or between a vector field and
a vector (in this case, the dot product of the gradient of the velocity potential and
the outward normal vector to the droplet free surface) ;

• ∇2φ : denotes the Laplacian of a quantity (here, the Laplacian of the velocity
potential) ;

• ε̈n : the second-order time-derivative of a quantity (in this case, the second-order
time-derivative of the droplet free surface oscillations) ;

• D : D : denotes the double contraction product between two second-order tensor
(in this case, between the strain-rate tensor and itself).
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Part I

Introduction

Abranch of the medical domain that has been submitted to drastic developments
in recent years is the integration of so-called lab-on-chips. Lab-on-chips are diag-

nostic devices that allow for e.g. quick identification of the onset of diseases at early
stages [1]. These devices incorporate so-called microchannels, through which fluids are
allowed to flow, and the basic functioning principle is comparable to that of microproces-
sors (using the flow of charge carriers) [2]. A major advantage of these devices is their
point-of-need diagnostics feature, which allows for testing (blood samples for example) out
of reference labs. In other words, they provide a personal and rapid mean of delivering
crucial information on the health of a patient.

Figure I.1: Lab-on-a-chip (image source : https://www.azolifesciences.com/
article/What-is-Lab-on-a-Chip.aspx).

A prominent example for the application of such devices is related to the dosage of a
drug for a patient [2]. Indeed, conventional medication that can be purchased in pharma-
cies have pre-determined dosages of a drug for the treatment of a given medical condition.
However, optimal dosages might vary from patient to patient, depending on their weight,
their age, and other parameters that are submitted to constant variations such as oxygen
saturation in the blood, red blood cell concentration, et cætera. In contrast, the capa-
bility of lab-on-chips to measure such influencing parameters regularly over time provide
means for personalized dosage concentrations, improving the overall effectiveness of the
prescribed drug.

For this reason, the global lab-on-chip market is evaluated to an over-7 billion United
States Dollars (USD) value, and is expected to hit the 14 billion USD mark by the year
2032 [3].

Master Thesis - University of Liège - Academic year 2023-2024
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The fabrication of these devices is, at the moment, mostly lab-focused, in the sense
that each prototype is fabricated from scratch and tested for a specific purpose. This
process consists in a series of complex steps that sometimes take quite some time to be
completed [2]. In Fig. I.2 [2], these steps are summarized.

Figure I.2: Summary of the fabrication process of a lab-on-chip device (this figure is
directly taken from [2]).

In the seek of the optimal microchannel configuration for a given application, signifi-
cant amounts of lab-on-chips are produced and tested, which is time consuming and costly.
For this reason, it might be interesting to involve numerical models in their development.
Indeed, instead of fabricating a new chip for each slight modification that has to be applied
to an initial lab-on-chip prototype, e.g. a change in the geometry of the microchannels,
changing the geometry of the lab-on-chip configuration that is inputted in an ad hoc nu-
merical model would lead to immediate results that cost no money in terms of fabrication.

A promising numerical model that is ideal for such applications, notably fluid flow
and fluid free-surface tracking over time, is the particle finite element method (PFEM).
This specific finite element method (FEM) is based on the Lagrangian description of the
fluid particles and thus free surface tracking over time is inherent to the nature of the
method. A PFEM computer code, called PFEM3D [4], is currently in development at the
University of Liège in the research unit of Pr. J.-P. Ponthot, LTAS-A&M. However, this
computer code does not account for important liquid-substrate contact phenomena which
are predominant at millimeter and sub-millimeter-scales, such as the modelling of contact
angles, the surface tension force at the contact line, and so forth. For this reason, the focus

Master Thesis - University of Liège - Academic year 2023-2024
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of this work is to provide an extension for PFEM3D, taking account of these phenomena.
The general framework of the work is centered around the study of droplet spreading in
2D, because the literature provides extensive research on this topic, as well as an ideal
starting point for the more general problem discussed hereabove.

1 Structure of the work
In a first instance, an overview of the particle finite element method is given. The main
concepts are presented and will allow for a sufficient understanding of the method in order
to follow the work.

Then, the PFEM3D solver will be applied to a theoretical case study regarding the 2D
oscillations in zero-gravity of a water droplet (Part II). For this study, the work of Aalilija
et al. [6] on the 2D Rayleigh model is considered. First, the theoretical model is presented.
Then, a case study is suggested for the validation of the numerical model, without the
implementation of any additional forces (these will be implemented in later stages of this
work, cf. Part III). The physical model is then simulated using PFEM3D and compared
to the theoretical predictions from [6]. This study constitutes a first application of the
PFEM3D computer code to millimeter-scale fluid dynamics.

In Part III, the lacking forces are implemented in the PFEM3D computer model, namely
the surface tension force at the contact line, the dissipation at the liquid-substrate con-
tact, the force resulting from the capillary effect as well as from the normal stress jump,
both at the contact line. In a first instance, an overview of the implementation of this
model is provided in order to efficiently identify the lacking forces taking account of
liquid-substrate interaction phenomena, e.g. friction at the liquid-substrate contact. The
method for identifying these contributions is by using the works of Jarauta et al. [10] and
Mahrous et al. [9]. After identification of these lacking force terms, they are implemented
in the PFEM3D solver and their effect is studied on the droplet spreading behaviour. The
data obtained from PFEM3D is then compared to the work of Mahrous et al. [9] and the
validity of the model is assessed.

In the final part of this work (Part IV), a simple model for contact angle hysteresis
(yet another important phenomenon at the liquid-substrate contact for millimeter-scale
fluid dynamics applications) is suggested. This model is based on theoretical observations
that will be described Part IV as well as on the work of Jarauta et al. [10]. Some case
studies are suggested and the behaviour modelled by PFEM3D is discussed qualitatively.

In Part V, the conclusions of this work are presented and prospect for future advance-
ments on the topic are suggested.

2 An overview of the PFEM
For the purpose of this work, the particle finite element method (PFEM) is used. The
reason for this choice is that the evolution of the fluid free surface is automatically tracked

Master Thesis - University of Liège - Academic year 2023-2024
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over time due to the inherent Lagrangian nature of the model. The specific PFEM code
that is considered is PFEM3D [4], initially developed by S. Février.

The key concept of the PFEM is to describe the motion of a physical volume Ω in a
Lagrangian manner. For this purpose, the first step for the PFEM is to fill Ω with a set of
so-called particles, which act as the nodes for the finite element mesh. This is represented
in Fig. I.3.

droplet : ρ, µ, γ

substrate

air

particle cloud

Figure I.3: First step of the PFEM : the physical domain is filled with a set of particles.
The figure represents a water droplet that is initially square-shaped deposited on a sub-
strate. The physical properties of this droplet are denotes ρ [kg/m3] (density), µ [Pa · s]
(viscosity) and γ [N/m] (surface tension).

A finite element mesh is then generated using a Delaunay triangulation [5], which ensures
node connectivity. This is represented in Fig. I.4. As can be observed in this figure, there
is no clear separation between the actual physical volume Ω and the generated finite
element mesh at this stage. Indeed, nodes from the fluid volume are connected to nodes
from the substrate that should in no way be associated to one another. From a physical
point of view, this generates an excess mass as well as a misrepresentation of the physical
volume Ω. To remedy this problem, the idea is to define a geometrical criterion that uses
the fact that these non physical elements are usually the largest and the most distorted
ones (these elements are represented by red triangles in Fig. I.4). A characteristic element
size hmean is defined as well as an index of elemental distortion αe such that [5] :

αe = Re

hmean
, (I.1)

where Re is the element circumcircle. Then the elements for which the following condition
is satisfied :

αe ≤ ᾱ, (I.2)
where ᾱ is the threshold value of the distortion of the mesh, are kept, while the others are
removed from the mesh. This is referred to as the α-shape method and is represented in
Fig. I.5. The literature suggests that ᾱ = 1.2 [-] is the optimal value.

Master Thesis - University of Liège - Academic year 2023-2024
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Figure I.4: Second step of the PFEM : guarantee node connectivity by performing a De-
launay triangulation (this generated elements). The blue elements represent the correctly
defined elements, while the red lines represent the incorrectly defined elements.

Figure I.5: Third step of the PFEM : remove the nodes from the mesh which do not
satisfy the condition Eq. I.2.

The remaining parasite elements have the same characteristic element size as the ones
from the real physical volume, and are thus kept in the finite element mesh. This still
results in an error on the measurement of the physical volume mass over time, but can
be minimized when hmean is decreased. Once the physical volume and boundaries are re-
covered, the Lagrangian form of the governing equations (in the framework of this work,
these are the Navier-Stokes equations) is solved using a standard finite element approach,
for which a reminder is given in Part III. The position of the nodes are then updated in
accordance with the obtained solution and then it’s start from square one again. More
specifically, if there is a need for re-meshing of the physical volume, e.g. if the elements
are too distorted, the first step is performed again (filling the physical volume with a set
of nodes, Delaunay triangulation...). If there is no need for re-meshing, the Lagrangian
form of the governing equations is solved back again.

A key difference between the PFEM and other classical FEMs is that the physical
unknowns of the problem (in the context of this work, velocity and pressure) are stored
at the nodes rather than at the Gauss points. This constitutes the core of the Lagrangian
nature of the method, because once the Lagrangian form of the governing equations are
solved, the position of the nodes, also called particles in the PFEM, are directly updated.
This interesting approach allows for the free surface of the fluid to be tracked naturally
over time.

Master Thesis - University of Liège - Academic year 2023-2024
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To conclude this introductory part of the work, the steps of the PFEM are summarized
below :

• The computational domain is filled with a set of particles ;

• The finite element mesh is generated by a Delaunay triangulation, which assures
mesh connectivity :

• The physical volume and boundaries are recovered by the α-shape method ;

• The Lagrangian form of the governing equations is solved using a classical FEM
approach :

• The position of the nodes is updated ;

• If necessary, re-meshing is performed. If not, the Lagrangian form of the governing
equations is solved for the next time-step.

Master Thesis - University of Liège - Academic year 2023-2024
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Part II

2D oscillating water droplet in
zero-gravity

In this part of the work, a study is performed on the capabilities of the PFEM3D
computer code. The additional terms necessary for the modelling of the final problem

described previously (cf. Part I) are not yet considered. The chosen problem for this
study is the 2D oscillating water droplet in zero-gravity and refers to the 2D Rayleigh
theory [6]. This theory provides a full set of equations allowing for precise tracking of the
free surface of the oscillating water droplet in zero-gravity over time and is hence ideal
for comparing numerical data to.

In a first instance, a description of the problem is performed and will allow for a
basic understanding of the involved physics, namely the Laplace law. Afterwards, the
full set of governing equations is presented and applied to the problem under study ;
that is the evolution of the free surface (of the oscillating water droplet) over time will
be derived from the Navier-Stokes equations. Then, the choice of the geometry of the
water droplet is presented and its implementation in the computer code is fully described
by a set of geometrical parameters. Next, the full set of numerical parameters is given
(namely the characteristic mesh size, the time-step, the simulation time, and so forth) and
the simulation results are displayed, compared with theoretical predictions and discussed.
Other geometries are then implemented in order to study up to which point the 2D
Rayleigh theory is valid and up to which point the simulation results are in agreement
with the former. Finally, the main conclusions are presented.

1 Introduction : problem description
A representation of the studied problem is provided in Fig. II.1. Initially, at time t = 0
[s], the water droplet is described by its free surface ∂Ω0 ≡ ∂Ω(t = 0) and is such that it is
deviated from its equilibrium configuration ∂Ωeq. In 2D, the equilibrium configuration of
a water droplet that is not subjected to any body forces (in particular : gravity) and that
is not deposited on some surface is a circle. This is due to the tendency of surface tension
to minimize surface energy, and more precisely the Gibbs free energy of the system. This
is expressed by the Laplace law, which is expressed as follows1 in 2D :

∆p ∼ γ

R
, (II.1)

where ∆p [Pa] is the pressure differential at the liquid/air interface, γ [N/m] is the surface
tension coefficient and R [m] is the radius of curvature at the liquid/air interface. The
aforementioned oscillations are the result of this initial deviation from its equilibrium

1Note that another valid expression would be, given the problem representation in Fig. II.1 : ∆p(θ) ∼
γ/R(θ), which is such that it states explicitly that the pressure differential is calculated at each point of
the free surface as a function of the arbitrary angle θ [rad].

Master Thesis - University of Liège - Academic year 2023-2024
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R0

R(θ, t)

∂Ωeq

∂Ω(t)

air

θ

Figure II.1: Schematic of a water droplet in zero-gravity. The perturbed configuration,
denoted ∂Ω(t), refers to the description of the free surface of the water droplet that
oscillates over time, while the equilibrium configuration, denoted ∂Ωeq, describes the free
surface of the water droplet once its free surface no longer oscillates.

configuration ; the motor of these oscillations is surface tension2.
Initially, an irrotational flow was assumed by Rayleigh (∇ × v = 0, where v [m/s] is

the velocity profile at any point of the fluid body) to derive the frequency spectrum of
small amplitude axi-symmetrical oscillations of non-viscous drops in a vacuum with zero-
gravity. Afterwards, it was shown by Lamb [7] that for weakly viscous liquids immersed
in an inviscid medium, the frequency spectrum is identical to that found by Rayleigh
and the assumption of the irrotational flow can be used to determine the damping rate.
Prosperetti [8] then later showed that the general solution for the limiting case of low
velocities behaves as a damped harmonic oscillator.

In the next sections, the methodology for obtaining the evolution of the free surface
oscillations ∂Ω(t) follows the work of Aalilija et al. [6]. In a first instance, the governing
equations are presented, namely the Navier-Stokes equations. From there, a geometrical
description of the free surface over time is established. Then, inner flow modelling and
energy balance will yield ordinary differential equations (ODEs) , describing the evolution
of the free surface over time.

2Indeed, surface tension can either be interpreted as a force per unit length, or as an energy per unit
surface.
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2 Governing equations and analytical solutions in the
framework of linear theory

2.1 Governing equations
The governing equations of free-oscillating viscous droplets are established as follows. The
motion of a Newtonian incompressible liquid of constant density ρ [kg/m3] and viscosity µ
[Pa · s] is considered. The time-dependent boundary of the oscillating droplet is denoted
∂Ω(t). An isothermal regime with no phase transformation is also assumed. Neglecting
all body forces (and in particular gravity g [m/s2]), the governing Navier-Stokes equations
are, considering a Lagrangian framework3 :

ρ
dv
dt

− ∇ · σ = 0 ;

∇ · v = 0,

(II.2)

where v is the liquid velocity vector and σ [Pa] is the liquid stress tensor given by the
incompressible Newtonian constitutive law :

σ = 2µD − pI, (II.3)
D [s−1] being the strain-rate tensor expressed as D = (1/2)(∇v + (∇v)T), p [Pa] the
pressure field in the liquid and I [-] the identity tensor. At t = 0 [s], the initial shape of
the liquid is assumed to be known, as well as its velocity field, such that :

∂Ω(t = 0) = ∂Ω0 ;

v(x, t = 0) = v0(x) ;

∇ · v = 0,

(II.4)

where v0(x) [m/s] is an initial velocity field and x [m] denotes the spatial coordinates.
Given no mass exchange occurs through ∂Ω(t), the local mass flux leaving the liquid
domain ρ(v · n − v∂Ω(t)) is zero, where n [-] is the unit outward normal to ∂Ω(t) and
v∂Ω(t) [m/s] is its normal velocity (of the liquid free surface). These considerations lead
to writing the so-called kinematic interface condition as :

v · n = v∂Ω(t). (II.5)
The second interface condition, referred to as the dynamic condition, arises from the
normal component of the force balance at the interface ∂Ω(t) :

σ · n = −γκn − pextn, (II.6)
where κ [m−1] is the curvature at ∂Ω(t) and pext is the pressure of the surrounding gas
phase. For the tangential component, given no surface tension gradients are considered
and in the context of inviscid fluids, the condition is automatically satisfied.

3The Navier-Stokes equations are written in a Lagrangian framework because of the inherent La-
grangian nature of the PFEM.
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2.2 Analytical solutions in the framework of linear theory 17

2.2 Analytical solutions in the framework of linear theory
2.2.1 Drop shape description

As mentioned beforehand, in order to obtain an analytical solution for the problem, a
correct description of the droplet free surface ∂Ω(t) over time is required. The usage of
the cylindrical coordinate system is considered. The radius of ∂Ω(t) at each section of an
initially-shaped ellipse4, not too far from its equilibrium configuration, can be expressed
as the sum of a constant part (the equilibrium radius R0 [m]) and a spatial-temporal
variable part f(θ, t) [m] as follows :

R(θ, t) = R0 + f(θ, t). (II.7)
In the current framework, small amplitude variations are considered. It is assumed that
f(θ, t) can be written as a linear combination of decoupled modes denoted by the integer
n as follows (because the domain of θ is finite) :

f(θ, t) =
∑
n≥0

αn(t) cos(nθ), (II.8)

where αn(t)/R0 ≪ 1 given small amplitude variations are studied. Mode n = 0 is related
to the volume oscillation. Mode n = 1 describes the translational oscillations of the center
of mass (which is considered to be fixed such that α1(t) = 0). Modes n ≥ 2 describe the
shape oscillations around equilibrium. Following these considerations, the geometrical
description of the radius of the free surface at any point θ and any time t now reads :

R(θ, t) = R0 + α0(t)︸ ︷︷ ︸
≡b0(t)

+
∑
n≥2

αn(t) cos(nθ) ≡ b0(t) +
∑
n≥2

αn(t) cos(nθ). (II.9)

Given incompressible flow is considered, the volume of the oscillating droplet is equal to
that at equilibrium and it can be shown that :

b0 = R0

√√√√1 − 1
2
∑
n≥2

(
αn

R0

)2
≃ R0

1 − 1
4
∑
n≥2

(
αn

R0

)2
 , (II.10)

such that :

R(θ, t) ≃ R0

1 − 1
4
∑
n≥2

ε2
n +

∑
n≥2

εn cos(nθ)
 , (II.11)

where εn is defined as εn = αn/R0 and defines the quantity describing the droplet free
surface oscillations (the amplitude of the oscillations of the free surface of the water
droplet with respect to its equilibrium configuration). From there, the purpose is to find
the governing equation for the evolution of εn.

4The initial shape of the droplet free surface is not required to be an ellipse per default. Any initial
shape, as long as it is not too far from equilibrium, would work just fine. The fact that an ellipse-shaped
droplet is considered is a choice from the author that relies on the ease of its implementation for later
stages of this work.
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2.2.2 Inner flow modelling and energy balance

As aforementioned, the goal is to obtain an expression for εn over time in order to describe
the amplitude variations of the free surface ∂Ω(t) of the water droplet. It is considered
that the fluid motion can be approximated by an irrotational flow5, such that the velocity
field derives from a scalar potential v = ∇φ. The velocity potential φ of the n-th mode
can be formulated as :

φ(r, θ, t) = βn(t)rn cos(nθ), (II.12)
where βn is obtained from the kinematic boundary condition Eq. II.5 at the free surface :

vr(r = R) = ∂φ

∂r

∣∣∣∣∣
r=R

= ∂R

∂t
, (II.13)

which leads to the approximation nβnRn−2
0 ≃ ε̇n (Appendix 1). Hence, the velocity

potential flow can be expressed as, for any mode n :

φ(r, θ, t) = 1
n

R2
0

(
r

R0

)n

cos(nθ)ε̇n(t). (II.14)

The kinetic energy of the droplet is computed as :

Ekin =
∫

Ω(t)

1
2ρ||∇φ||2 dΩ(t) =

∫
∂Ω(t)

1
2ρφ∇φ · n d∂Ω(t) −

∫
Ω(t)

1
2ρφ∇2φ dΩ(t), (II.15)

where the second integral on the right-hand side (RHS) is equal to zero due to incom-
pressibility (Appendix 2) such that the previous equality becomes :

Ekin = 1
2ρ δz

∫ 2π

0
φ

∂φ

∂r
R dθ ≃ 1

2n
πρR4

0ε̇2
n δz, (II.16)

and following the work of Rayleigh, the potential energy is expressed as :

Epot = γ(S(t) − S0), (II.17)
i.e., the potential energy is surface energy that results from the difference in area of the
free surface S(t) out of equilibrium and the equilibrium surface S0. Using some geometry,
it can be shown that Epot is expressed equivalently as :

Epot ≃ 1
2π(n2 − 1)γR0ε

2
n δz, (II.18)

such that the rate of total energy Etot = Ekin + Epot can be written as :

dEtot

dt
= π

1
n

ρR4
0ε̇n

[
ε̈n + n(n2 − 1) γ

ρR3
0
εn

]
δz. (II.19)

From there, considering an inviscid fluid (µ = 0 [Pa · s]), the conservation of the total
energy dtEtot = 0 (Not2.15) leads to the solution of a perpetual oscillator of the form
εn(t) = A cos(ωn,0t + B) where the angular frequency is :

5This result comes from the incompressibility condition.
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ωn,0 =
√

n(n − 1)(n + 1) γ

ρR3
0
. (II.20)

2.2.3 Extension to energy dissipation due to viscous forces in the liquid bulk

The rate of viscous energy dissipation is calculated along :

Ẇvis =
∫

Ω(t)
2µ(D : D) dΩ(t) (Not2.16), (II.21)

which, by following the work of Lamb [7] and using a Taylor expansion, can be approxi-
mated as :

Ẇvis ≃ 4πµR2
0(n − 1)ε̇2

n δz, (II.22)
such that the energy balance leads to the following linear second-order ODE :

ε̈n + 2λnε̇n + ω2
n,0εn = 0 ; λn = 2n(n − 1) µ

ρR2
0
. (II.23)

If the reduced discriminant is denoted ∆′
n = λ2

n − ω2
n,0, then the solution of the ODE

depends on the sign ∆′
n :

• Overdamped regime ∆′
n > 0 :

εn(t) = e−λnt

εn(0) cosh(
√

∆′
nt) + ε̇n(0) + λnεn(0)√

∆′
n

sinh(
√

∆′
nt)
 ; (II.24)

• Critically damped regime ∆′
n = 0 :

εn(t) = e−λnt [(ε̇n(0) + λnεn(0))t + εn(0)] ; (II.25)

• Underdamped regime ∆′
n < 0 :

εn(t) = e−λntεmax
n cos(ωnt+ζn);



ωn =
√

ω2
n,0 − λ2

n ;

(εmax
n )2 = ε2

n(0) +
 ε̇n(0) + λnεn(0)√

−∆′
n

2

;

tan ζn = − ε̇n(0) + λnεn(0)
εn(0)

√
−∆′

n

; cos(ζn)εn(0) > 0.

(II.26)
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The set of equations Eqs. II.20, II.23, II.24, II.25 and II.26 allows for a complete
modelling of the evolution of the droplet free surface oscillations ∂Ω(t) in zero-gravity
according to the 2D Rayleigh theory. In the following section, an initial deviation ∂Ω0
from equilibrium ∂Ωeq will be suggested and implemented in PFEM3D. It is important to
be underline that in a first instance, ∂Ω0 is assumed to be small enough, such that the 2D
Rayleigh theory is assumed to hold. The numerical solution that will arise from this im-
plementation will then be compared to the theoretical model described hereabove. On the
hand of the obtained results, validity of the numerical model will be assessed. Depending
on the answer to this question, further case studies will be presented to determine up to
which point the numerical solution is correct with respect to the theoretical predictions.

3 Initial deviation « not too far off » the equilibrium
configuration : ∂Ω0 ≃ ∂Ωeq

The first case study will consist of an initial droplet deformation that is « not too far » from
the equilibrium configuration, by which is meant that the hypotheses for the 2D Rayleigh
theory should apply. The goal is to show that in such a case, the PFEM3D computer code is
able to model the droplet free surface oscillations accurately. In the following, the initial
geometry of the droplet is described. Then, the choice of the physical parameters (e.g. the
characteristic mesh size h [m], time-step ∆t [s], and so forth) is presented. Afterwards, a
comparison is be performed between theoretical and numerical results and it is determined
if numerical convergence is reached by refining/coarsening the characteristic element size
and the time-step. Finally, on the hand of these results, a study on the accuracy of the
(now converged) numerical model with respect to the theoretical predictions is performed.

3.1 Implementation of the initial geometry
A schematic representation of the chosen initial geometry for the water droplet configura-
tion is provided in Fig. II.2 in light blue, while the equilibrium configuration is represented
in dark blue. The geometry parameters related to ∂Ω0 are the major ellipse axis a and
the minor ellipse axis b, while only the equilibrium radius R0 suffices to describe ∂Ωeq. In
the following table, these parameters are provided.

Geometry parameters.

• Initial geometry/configuration : major axis a = 1.9 [mm], minor axis b = 1.5
[mm] ;

• Equilibrium geometry/configuration : equilibrium radius R0 = 1.688 [mm] ;

• For both initial/equilibrium configurations : surface area A = 8.9535 [mm2].

Note that only a and b are imposed (implemented a priori), while the others (R0 and A)
are a result from the former. For the sake of completeness, the following information is
also provided in terms of deviation from equilibrium :
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R0b

a

∂Ωeq

∂Ωinit

air

Figure II.2: Representation of the initial and equilibrium configurations of an oscillating
water droplet in zero-gravity as well as the respective geometry parameters.

• The initial deviation from equilibrium along the a-axis (resp. the b-axis) is denoted
∆a [%] (resp. ∆b [%]) and defined as :

∆a = |a − R0|
R0

× 100
(

resp. ∆b = |b − R0|
R0

× 100
)

; (II.27)

and have values ∆a ≃ 12.5 [%] and ∆b ≃ 11.1 [%] ;

• From there, the maximal deviation from equilibrium, εmax, is such that εmax = ∆a,
and has thus a value of ≃ 12.5 [%].

3.2 Choice of the simulation parameters
In a first instance, the choice of the simulation parameters is done « arbitrarily », in the
sense that it is not yet known if e.g. the characteristic mesh size will be small enough to
capture all of the physics correctly. In later stages of this work, further investigation on
this matter will be performed : it is indeed essential to verify that numerical convergence
is guaranteed before stating anything on the validity of the numerical model.

3.2.1 Characteristic mesh size h

Any finite element simulation requires the sectioning of the physical domain into elements
formed by the finite element mesh. Hence, choosing an adequate value for the character-
istic element size is capital to capturing the entirety of the physics of the problem under
attack. As aforementioned, this choice will be initially rather arbitrary and based upon
« intuition ». Given the characteristic length of the oscillating droplet is of the order of
10−3 [m], it is assumed that a characteristic element size of h ∼ 10−5 [m] is sufficiently
small.
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Another assumption that will be considered for the choice of the mesh is that most
part of the physics (and more specifically, the oscillations of the droplet) happen at the
free surface ∂Ω(t). In other words, it is assumed that the physics that appear in the bulk
of the liquid have no need being captured as much as the physics that happen at ∂Ω(t)
(Appendix 3). Subsequently, the characteristic element size in the bulk of the liquid may
be set to a greater value than the characteristic element size near ∂Ω(t). For this reason,
the following expression for the characteristic element h size as a function of the distance
d [m] from the free surface is chosen :

h(d) = 10−5 + 0.2 × d [m]. (II.28)
A visualization of this mesh for the initial configuration of the droplet is provided in Fig.
II.3. For this mesh, the number of nodes is equal to 6,892 and the number of elements is
equal to 13,783.

Figure II.3: Finite element mesh for the initial configuration of the water droplet (6,892
nodes, 13,783 elements).

3.2.2 Other simulation parameters

In addition to the characteristic element size, values must be assigned as well to the
time-step ∆t [s] and the simulation time T [s]. For the latter, a value of T = 0.1 [s] is
chosen. For ∆t, let it be assumed that ∆t = 10−4 [s] is small enough. Similarly to the
characteristic element size, these values are initial « guesses ». As mentioned previously,
comparison between the theoretical and numerical models will reveal if this initial « guess
» is sufficient.

Some remaining numerical parameters that need to be discussed are the α-parameter
and the re-meshing algorithm. For the former, it has been described in Part I that the
optimal value prescribed by the literature is α = 1.2 [-]. In terms of the re-meshing
algorithm, CGALConstrainedChew is chosen, given better element quality is guaranteed
over the simulation. A discussion on performance in terms of mass conservation/element
quality between CGAL re-meshing and CGALConstrainedChew re-meshing is provided in
Appendix 4. For the remainder of this work, GCALConstrainedChew is used.
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For the sake of clarity, the full set of numerical parameters is given in the table below.

Numerical parameters.
• Simulation time T = 0.1 [s] ;

• Characteristic mesh size h(d) = 10−5 + 0.2 × d [m] ;

• Time-step ∆t = 10−4 [s] ;

• α-parameter α = 1.2 [-].

3.3 Results and comparison with theoretical predictions
3.3.1 Theory applied to the framework of the current study

To obtain the theoretical model for the evolution of the free surface of the (water) droplet
over time, it is required to determine to which damping regime the oscillations obey. To
do so, the value of the reduced discriminant ∆′

n [rad/s]2 needs to be computed using
∆′

n = λ2
n − ω2

n,0, where λn [rad/s] is the damping rate and ωn,0 [rad/s] is the angular
frequency of the oscillations happening at the (droplet) free surface ∂Ω(t). Using resp.
Eq. II.23 and Eq. II.20 to get the value for resp. λn and ωn,0 at eigenmode n = 2 (the
reason as to why this mode is chosen is given hereafter) :

λ2 = 2n(n − 1) µ

ρR2
0

= 1.403 [rad/s] ; ω2,0 =
√

n(n − 1)(n + 1) γ

ρR3
0

= 301.37 [rad/s],

(II.29)
it can be determined that :

∆′
2 = λ2

2 − ω2
2,0 = −90, 821.9 [rad/s]2, (II.30)

which means that the regime in which the droplet oscillates is underdamped. Note that
to obtain the results above, the following values were used for the physical quantities that
appear in these equations :

• Viscosity µ = 10−3 [Pa · s] ;

• Density ρ = 103 [kg/m3] ;

• Surface tension coefficient γ = 72.8 × 10−3 [N/m],

and correspond to those for water under normal conditions of temperature and pressure.
Note also that the eigenmode n = 2 was chosen because it models the shape oscillations
of the droplet around its equilibrium configuration. Subsequently, the governing equation
of the oscillation of the free surface ∂Ω(t) of the water droplet follows Eq. II.26. From
this set of equations, the following quantities are obtained :

ω2 = 301.35 [rad/s] ; εmax
2 = ±1.88 × 10−4 [m] ; ζ2 = ±4.655 × 10−3 [rad]. (II.31)
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For the two latter quantities, i.e. the maximal deviation from equilibrium and the phase
shift, both positive and negative signs are kept for the time being. The reason for this is
that their sign depends on how ∂Ω0 is implemented in the computer code. More on this
will be explained in the following section.

3.3.2 Comparison with the numerical results

To determine which sign to use for εmax
2 and ζ2 in Eq. II.31, some time must be spent

on correctly describing the implementation of the problem in the computer model. As
represented in Fig. II.2 and described in Section 3.1, ∂Ω0 consists of an ellipse with
dimensions such that its characteristic size is of the order of the capillary length for water.
If the x̂-axis horizontal, pointing from left to right, and the ŷ-axis is vertical, pointing from
below to above, then the droplet as drawn in Fig. II.2 is initially in compression along the
ŷ-axis and in tension along the x̂-axis. The PFEM3D computer code has a function which
allows to track the position of one or more nodes at the free surface given a reference
point (x, y). For the purpose of this study, the reference point is placed at the center of
the droplet (at its center of gravity) such that the two nodes whose positions are tracked
over time are placed as represented in Fig. II.4. Hence, at t = 0 [s], the droplet is in
compression along the axis tracking the position of the nodes and thus the sign of the
maximal deviation from equilibrium, εmax

2 , is negative, and the sign of the phase shift is
positive, which means :

εmax
2 = −1.88 × 10−4 [m] ; ζ2 = 4.655 × 10−3 [rad]. (II.32)

(x, y) = (0, 0)

∂Ωeq

∂Ωinit

air

droplet
height

Figure II.4: Schematic of how the oscillations of the free surface are tracked over time.

Therefore, the final expression for the theoretical model of the droplet oscillations is :

ε2(t) = −1.88 × 10−4e−1.403t cos(301.35t + 4.655 × 10−3). (II.33)
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In the Fig. II.5, a comparison between the theoretical and numerical models is pro-
vided. The curve for the theoretical model appears in blue, the one for the numerical
model in red.
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2(
t) 

[m
]

theorectical model
numerical model

Figure II.5: Comparison between theoretical Eq. II.33 and numerical models for the
droplet free surface oscillations. The used numerical parameters are h(d) = 10−5 +0.2×d
[m], T = 0.1 [s], ∆t = 10−4 [s] and α = 1.2 [-].

In terms of the angular frequency, the behavior of the oscillating droplet seems to be
represented correctly in the sense that ωnumerical

2,0 ≃ ωtheoretical
2,0 . In terms of the damping

rate, on the other hand, the numerical model shows a higher one than is theoretically
predicted. To quantify the error on both the angular frequency and the damping rate,
respectively δω [%] and δλ [%], the following definitions are suggested :

δω = |ω2 − ω̃2|
ω2

× 100 ; δλ = |λ2 − λ̃2|
λ2

× 100, (II.34)

where ω2 [rad/s] denotes the theoretical angular frequency and ω̃2 [rad/s] denotes the
numerical angular frequency ; the same notations are used for the damping rate. From
the simulation data, it can be retrieved that ω̃2 = 296.37 [rad/s] such that the associated
error δω evaluates to δω = 1.65 [%] ; the numerical model is in excellent agreement with the
predicted theoretical model in terms of the angular frequency. To retrieve the damping
rate from the numerical data, use the logarithmic increment χ as well as the decay ratio
ξ for two adjacent peaks :

χ = ln
(

x1

x2

)
; ξ = χ√

χ2 + (2π)2
; λ̃2 =

√√√√ ξ2ω̃2
2

1 − ξ2 , (II.35)

where x1 and x2 are the amplitudes of any two successive peaks. This leads to λ̃2 = 4.449
[rad/s], which is substantially different from λ2 = 1.403 [rad/s]. Indeed, the related error
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evaluates to δλ = 217.1 [%].

The nature of this significant error on the damping most probably originates from the
choice of the values of the characteristic element size as well as that of the time-step.
In the following sections, these options will be considered and studied in a case-per-case
approach.

3.4 Influence of the numerical parameters on the quality of the
simulation results

3.4.1 Characteristic element size

In the previous section, the characteristic element size had been set to a value of h(d) =
10−5 + 0.2 × d [m] as a function of the distance d from the (droplet) free surface ∂Ω(t).
Here, to study how h(d) influences the result quality, this previously set value will be
increased and decreased, and the consensus should be that the result quality improves
when h(d) decreases and that it degrades when h(d) increases.To perform this study, the
following values for h(d) are chosen in a first instance :

• h(d) = 10−4 + 0.2 × d [m] (482 nodes, 963 elements) ;

• h(d) = 5 × 10−5 + 0.2 × d [m] (1,145 nodes, 2,289 elements) ;

• h(d) = 10−5 + 0.2 × d [m] (initial) ;

• h(d) = 5 × 10−6 + 0.2 × d [m] (14,025 nodes, 28,049 elements).

Apart from h(d), no other numerical parameters are changed with respect to the previous
section, which means that the full set of numerical parameters is :

• Simulation time T = 0.1 [s] ;

• Characteristic mesh size variable (see hereabove) ;

• Time-step ∆t = 10−4 [s] ;

• α-parameter α = 1.2 [-].

A comparison between the theoretical predictions and the simulation data for varying
characteristic element sizes is provided in Figs II.6a, II.6b.

Apparently, the behavior of the numerical response doesn’t change in the slightest for
decreasing element sizes. This means that convergence of the numerical response in terms
of h(d) is attained before descending up to 10−4 [m]-element scales. This information
is important in the sense that the CPU-time can be minimized quite drastically while
maintaining result quality, as larger elements means less elements in the mesh, meaning
there are less computations to be performed by the computer code. To give some orders
of magnitude, the table below displays the CPU-times for the simulation using various
characteristic element sizes.
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(a) Comparison between the theoretical model Eq. II.33 and the numerical solution
for varying values of h(d).

0.075 0.080 0.085 0.090 0.095 0.100
time [s]

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

2(
t) 

[m
]

theorectical model
h = 10 4 + 0.2 × d [m]
h = 5 × 10 5 + 0.2 × d [m]
h = 10 5 + 0.2 × d [m]
h = 5 × 10 6 + 0.2 × d [m]

(b) Zoom on Fig. II.6a.

Figure II.6: Study of the numerical convergence as a function of h(d).

CPU-time as a function of h(d) (4 threads, using OpenMP parallel computing).

• h = 10−4 + 0.2 × d [m] : CPU-time = 138 [s] ;

• h = 5 × 10−5 + 0.2 × d [m] : CPU-time = 218 [s] ;

• h = 10−5 + 0.2 × d [m] : CPU-time = 918 [s] ;

• h = 5 × 10−6 + 0.2 × d [m] : CPU-time = 1,876 [s].
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For future simulations (in this part of the work), the value of the characteristic element
size can thus be set to the lowest value appearing in the table hereabove, given result
quality is maintained and CPU-time is minimized. Until mention of the contrary : h(d) =
10−4 + 0.2 × d [m].

3.4.2 Time-step

While numerical convergence of the solution for relatively coarse meshes is positive in
terms of the CPU-time as well as for reducing the complexity of the mesh, it doesn’t
advance the search for the question as to why it is incapable of following correctly the
theoretical predictions in terms of the damping rate. Another simulation parameter that
is generally known to impact significantly the quality of the (numerical) results is the
time-step ∆t. In order to study the effect of this parameter on the simulation results,
different values for ∆t are set and compared to one another, exactly as has been done in
the previous section when the influence of h(d) was investigated. To perform this study,
the following values for ∆t were chosen6 :

• ∆t = 10−3 [s] ;

• ∆t = 10−4 [s] ;

• ∆t = 10−5 [s] ;

• ∆t = 10−6 [s],

such that from one refinement to another, the time-step is divided by one order of mag-
nitude. Once more, the varying numerical parameter is the only one that changes from
one simulation from another, which means that the other simulation parameters are set
to the following values :

• Simulation time T = 0.1 [s] ;

• Characteristic mesh size h(d) = 10−4 + 0.2 × d [m] (previously determined to be «
optimal ») ;

• Time-step variable (see hereabove) ;

• α-parameter α = 1.2 [-].

A comparison between the numerical results for varying values for ∆t and the theoretical
predictions is provided in the set of figures Figs. II.7a, II.7b.

In contrast with varying the value of the characteristic element size h(d), changing the
value of the time-step from one simulation to another influences drastically the quality
of the simulation results. It can indeed be observed that it improves as ∆t decreases.
The reason for this observation is that the integration scheme that is implemented in
PFEM3D is a backward-Euler one, well-known for its prominent numerical damping. As
displayed in the set of figures Figs. II.7a, II.7b, minimizing this phenomenon means that
the value of ∆t must be set as low as possible. However, as was the case for decreasing

6Remind that previously (cf. Section 3.2.2), the value of the time-step had been set to ∆t = 10−4 [s].
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(a) Comparison between the theoretical model Eq. II.33 and the numerical solution
for varying ∆t.
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(b) Zoom on Fig. II.7a.

Figure II.7: Study of the numerical convergence as a function of ∆t.

the characteristic element size, decreasing ∆t means increasing the CPU-time. To give
some orders of magnitude, the table below displays the CPU-times for the different values
of the time-step, chosen previously.
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CPU-time as a function of ∆t (4 threads, OpenMP parallel programming.

• ∆t = 10−3 [s] : CPU-time = 13.7 [s] ;

• ∆t = 10−4 [s] : CPU-time = 138 [s] ;

• ∆t = 10−5 [s] : CPU-time = 590 [s] ;

• ∆t = 10−6 [s] : CPU-time = 3,767 [s].

While the CPU-time for values of ∆t set between 10−3 [s] and 10−5 [s] is reasonable, this
is not the case when ∆t = 10−6 [s]. To explain the usage of the word « reasonable » here,
recall that the value for the characteristic element size h(d) here is set to 10−4+0.2×d [m],
which is only one order of magnitude lower than the droplet characteristic size. Hence,
if a situation would present itself in which h(d) needs to be two or even three orders of
magnitude lower than the characteristic droplet size, the CPU-time using ∆t = 10−6 [s]
would sky-rocket. Until mention of the contrary, the value of the time-step ∆t is hence
set to ∆t = 10−5 [s], given it yields optimal simulation result quality for lower CPU-times.

3.4.3 What if h(d) is reduced further ?

As discussed in the two previous sections, numerical parameters such as the characteristic
element size and the time-step ∆t influence significantly the CPU-time in the sense that
the smaller their value is set, the higher the CPU-time gets. Tt has been pointed out that
the minimal time-step should be set at a value of 10−5 [s] in order to minimize the effect
of numerical diffusion due to the implementation of the backward-Euler time-integration
scheme. In contrast, no such value for the characteristic element size has been found yet.
Therefore, in the current section, even larger values for h(d) will be set to uncover up to
which characteristic element size the quality of the numerical solution is preserved, and
if this allows for an even further decrease of the CPU-time to complete the computation.

To perform this analysis, the following values for the characteristic element size h(d)
are set (note that the values for other numerical parameters, such as the time-step ∆t,
remain as prescribed previously, namely ∆t = 10−5 [s], T = 0.1 [s] and α = 1.2) :

• h(d) = 10−4 + 0.2 × d [m] (initial) ;

• h(d) = 5 × 10−4 + 0.2 × d [m] (53 nodes, 105 elements) ;

• h(d) = 10−3 + 0.2 × d [m] (18 nodes, 35 elements),

where the last choice is such that the (characteristic) element size is of the order of that
of the droplet itself. These meshes are displayed in Figs II.8a, II.8b and II.8c. For these
values, the comparison between the theoretical and simulation results are displayed in
Fig. II.9.

It can be observed that for values of the characteristic element size that get closer to
the droplet size, the representation of the oscillation behaviour gets worse. Indeed, the
larger h(d) gets, the more the oscillations shift downwards in the sense the the average
value of ε2(t) is no longer zero, but negative. A computation of this average value is given
below as a function of the value of h(d) :
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(a) h = 10−4 + 0.2 × d [m]. (b) h = 5 × 10−4 + 0.2 × d [m].

(c) h = 10−3 + 0.2 × d [m].

Figure II.8: Representation of the FE meshes mentioned above.
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Figure II.9: Comparison of the evolution of ε2(t) for different characteristic mesh sizes
h(d).
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• h(d) = 10−4 + 0.2 × d [m] : ε̄2(t) ≃ 8 × 10−6 [m] ;

• h(d) = 5 × 10−4 + 0.2 × d [m] : ε̄2(t) ≃ −10−5 [m] ;

• h(d) = 10−3 + 0.2 × d [m] : ε̄2(t) ≃ −5 × 10−5 [m],

where ε̄2(t) denotes the average value of ε2(t). Another observation that directly arises
from Fig. II.9 is that the angular frequency increases with h(d) as well, such that for
h(d) = 10−3 + 0.2 × d [m], the value of ω̃2 is higher than the theoretically predicted one.
In terms of the CPU-time, its value for h(d) = 10−4 + 0.2 × d [m] is 519 [s] while it is 120
[s] for h(d) = 10−3 + 0.2 × d [m], which is significantly less (there is indeed a factor ∼ 4
between these values), but comes with important result degradation.

3.5 Results and comparison with theoretical predictions for «
optimal » simulation parameters

To finish this section regarding the problem ∂Ω0 ≃ ∂Ωeq, a comparison between the
theoretical model and the obtained numerical results using the « optimal » parameters
determined previously will be performed, given numerical convergence is reached for this
set of values :

• h(d) = 10−4 + 0.2 × d [m] ;

• ∆t = 10−5 [s] ;

• T = 0.1 [s] ;

• α = 1.2 [-].

The graph displaying this comparison is represented Fig. II.10.
Using the data provided by this graph, the following values for the angular frequency ω̃2
and damping rate λ̃2 can be determined :

ω̃2 = 293.6 [rad/s] ; λ̃2 = 1.518 [rad/s], (II.36)
Which leads to the following associated errors :

δω = 2.57 [%] ; δλ = 12.68 [%]. (II.37)
While the error on the angular frequency is slightly increased with respect to the numerical
model used in Section 3.3, it has drastically decreased on the damping rate.

3.6 Conclusion on the case study ∂Ω0 ≃ ∂Ωeq

In this section, it has been shown that the PFEM3D computer code is able to model « quite
correctly » the behaviour of an oscillating water droplet in zero-gravity. The term « quite
correctly » is used here because the « total » error on the simulation results (with respect
to the theoretical model) remains of the order of 10 [%], which is not low enough yet.
Given the computer code does not lack any physical phenomenology with respect to the
2D Rayleigh model, the only possible reason as to why there is still some lack in accuracy is

Master Thesis - University of Liège - Academic year 2023-2024



33

0.00 0.02 0.04 0.06 0.08 0.10
time [s]

0.00020

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

0.00020
2(

t) 
[m

]

theorectical model
h = 10 4 + 0.2 × d [m], t = 10 5 [s]

Figure II.10: Comparison of the evolution of ε2(t) using « optimal » simulation parame-
ters.

that the initial deformation of the droplet is not small « enough ». To examine this claim,
a smaller initial deviation from equilibrium is suggested and the subsequent numerical
results are investigated in the following section. Let it be underlined, however, that so
far, the results are encouraging : indeed, once an optimal set of simulation parameters is
obtained, the representation of the angular frequency is extremely close to the predicted
value (with only an error of ∼ 3 [%]), and that of the damping rate gets closer to its
expected result.

4 ∂Ω0 ≃ ∂Ωeq with an even smaller initial deformation
To see up to which point the numerical model is able to correctly represent the 2D
Rayleigh theory, a case must be presented in which the initial deviation from equilibrium
of the droplet should be as small as possible from its equilibrium configuration. For this
study, the initial droplet shape of an ellipse is used yet again (cf. Fig. II.2), but with
major/minor axes that have almost identical values.

Geometry parameters.

• Initial geometry/configuration : major axis a = 1.75 [mm], minor axis b = 1.629
[mm] ;

• Equilibrium geometry/configuration : equilibrium radius R0 = 1.688 [mm] ;

• For both initial/equilibrium configurations : surface area A = 8.9535 [mm]2.

Note that the values for the couple {a, b} are chosen such that the surface area A of the
droplet is the same as in the case studied in Section 3. In terms of the deviation from
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equilibrium, the following results are easily computed :

∆a = 3.67 [%] ; ∆b = 3.49 [%]. (II.38)
Hence, the error for this study is ∼ 4 times lower than the one in Section 3. On the choice
of the numerical parameters, the set of « optimal » numerical parameters determined in
Section 3.4 will also be used for this case study ; these are reminded below :

• h(d) = 10−4 + 0.2 × d [m] ;

• ∆t = 10−5 [s],

as well as T = 0.1 [s] and α = 1.2 [-].

4.1 Results and comparison with theoretical predictions
To obtain the theoretical model describing the oscillations ε2(t) of the droplet free surface
∂Ω(t) over time, the values of ω2,0 and λ2 must be determined in a first instance. From
Eqs. II.20 and II.23, neither the angular frequency nor the damping rate depend on the
initial droplet configuration ∂Ω0. Their value doesn’t change with respect to the previous
case study, hence :

ω2,0 = 301.37 [rad/s] ; λ2 = 1.403 [rad/s], (II.39)
and also, using Eq. II.26 :

ω2 = 301.35 [rad/s]. (II.40)
On the contrary, the values of εmax

2 as well as that of ζ2 depend on ∂Ω0 (cf. Eq. II.26) ;
their values become :

εmax
2 = 6.2 × 10−5 [m] ; ζ2 = 4.655 × 10−3 [rad], (II.41)

where ζ2 remains practically unchanged with respect to the previous case study. Therefore,
the expression of ε2(t) takes the following form :

ε2(t) = −6.2 × 10−5e−1.403t cos(301.35t + 4.655 × 10−3), (II.42)
where the sign before εmax

2 is negative once again due to the implementation of the initial
geometry.

Using the parameters described previously (cf. introduction Section 4), the following
graph is obtained for the comparison between the theoretical model Eq. II.42 and the
numerical results (Fig. II.11).

From sight alone, the theoretical and numerical models seem to be almost identical,
except for a damping rate that looks slightly overestimated by the latter. To evaluate
this error quantitatively, get the values for ω̃2 and λ̃2 from Fig. II.11 :

ω̃2 = 300.99 [rad/s] ; λ̃2 = 1.432 [rad/s], (II.43)
and then use Eq. II.34 to retrieve :
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Figure II.11: Comparison between the theoretical model Eq. II.42 and the simulation
results using the parameters described hereabove : the used characteristic element size is
h(d) = 10−4 + 0.2 × d [m] and the value for the time-step ∆t = 10−5 [s]. The maximal
deviation from equilibrium is ∆a = 3.67 [%].

δω = 0.119 [%] ; δλ = 2.087 [%]. (II.44)
It is clear that the numerical results are in almost perfect agreement with the theoretical
predictions.

To recapitulate the difference between this study and the one in the previous section
(Section 3), the current one uses an initial deviation that is four times lower than the
previous one, hence satisfying the small oscillation approximation better. Subsequently,
it has been found that the accuracy of the numerical result with respect to the theoretical
model has improved by ∼ 10 [%] (from 12.93 [%] to 2.09 [%]). Not only does this show
that the PFEM3D computer code is able to model correctly the 2D Rayleigh model if its
underlying assumptions are satisfied, but also that the quality of the provided results is
such that there is virtually almost no difference between the two models. It is therefore
correct to conclude that if the hypotheses for the 2D Rayleigh model are satisfied, i.e. if
the model can be applied to a case study, the numerical model is in excellent agreement
with the former and models correctly the oscillations of the droplet free surface.

A final case that will be considered in the framework of the current study is that in
which the initial deviation from equilibrium is large, such that ∂Ω0 is « far away » from
∂Ωeq (Section 5). The reason for this case to be presented in this work is simply to show
that, as predicted by the 2D Rayleigh model for droplet oscillations in zero-gravity, the
free surface oscillations can no longer be described by a linear combination of uncoupled
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oscillation modes7.

5 Testing of the theoretical model on a large initial
deviation from equilibrium

In the two previous sections, it has been demonstrated that the PFEM3D computer code is
able to represent correctly the 2D Rayleigh model for oscillating droplets in zero-gravity
when the initial deviation from equilibrium is « small enough ». More specifically, it
has been proven that the smaller this initial deviation from equilibrium is (recall that
the maximal deviation from equilibrium was set to a value of 3.67 [%]), the greater the
correspondence between the theoretical predictions and the simulation data becomes.
Even when ∂Ω0 is « not so close to » ∂Ωeq (cf. Section 3, in which the maximal deviation
from equilibrium was set to 12.5 [%]), PFEM3D is able to track the droplet free surface
oscillations with acceptable accuracy. As a final case study, the opposite is considered :
an example in which the initial deviation from equilibrium is way too large for the 2D
Rayleigh model to be applied.

5.1 Implementation of the initial geometry and numerical pa-
rameters

air
∂Ωeq

∂Ωinit

R0

c/2

√
2c/2

Figure II.12: Representation of the initial and equilibrium configurations of an oscillating
water droplet in zero-gravity as well as the respective geometry parameters.

To perform this study, consider the geometry suggested in cf. Fig. II.12, which sets ∂Ω0
to be a square-shaped droplet. The geometry parameters that are represented in this
figure are given below.

7Indeed, for initial configurations that are significantly different from the equilibrium configuration,
the resulting free surface oscillations are prescribed by a linear combination of coupled oscillation modes.
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Geometry parameters.

• Initial geometry/configuration : side length c = 2.992 [mm] ;

• Equilibrium geometry/configuration : equilibrium radius R0 = 1.688 [mm] ;

• For both initial/equilibrium configuration : surface area A = 8.9535 [mm]2.

Once more, the choice of these parameters is such that the surface area is preserved with
respect to the two previous cases (Sections 3 and 4). In terms of the numerical parameters,
these remain :

• Characteristic element size h(d) = 10−4 + 0.2 × d [m] ;

• Time-step ∆t = 10−5 [s] ;

• Simulation time T = 0.1 [s] ;

• Alpha-parameter α = 1.2 [-].

5.2 Results and comparison with theoretical predictions
The theoretical model for the droplet free surface oscillations considering ∂Ω0 as modeled
in Fig. II.12 is deduced from Eq. II.26, where ω2,0, λ2 and hence ω2 are unchanged
with respect to the previous cases given these quantities do not depend on the initial
configuration. The values that do require re-evaluation are εmax

2 and ζ2 and are also
computed along Eq. II.26, which yields :

εmax
2 = 1.92 × 10−4 [m] ; ζ2 = 4.655 × 10−3 [rad], (II.45)

meaning that the governing equation for the droplet free surface oscillations reads :

ε2(t) = −1.92 × 10−4e−1.403t cos(301.35t + 4.655 × 10−3). (II.46)
The comparison between the theoretical model and the obtained numerical results is

given in Fig. II.13. As expected, the correspondence between the two curves is nonexis-
tent, because the required hypotheses for the 2D Rayleigh model on droplet oscillations
in zero-gravity are not satisfied, namely the initial deviation from equilibrium is not small
enough in order to fall under the umbrella of « small oscillations ». Indeed, from Fig.
II.12, it can be deduced that the maximal deviation from equilibrium is of the order of 25
[%]. Furthermore, given the shape of the initial configuration, there is a pressure singu-
larity that is generated at each corner of the square-shaped droplet according to Laplace’s
law (expressed in two dimensions given the framework of the current study) :

∆p ∼ γ

R
, (II.47)

where R [m] is the radius of curvature and tends to zero at the corners of the square-shaped
droplet. This « infinite » pressure differential generates a shock wave that emphasizes the
amplitude of the droplet oscillations, which is why the red curve near t = 0 [s] exceeds
the blue one in terms of amplitude.
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Figure II.13: Comparison between the theoretical model Eq. II.46 and the simulation
results using the parameters described hereabove : the characteristic element size is h(d) =
10−4 + 0.2 × d [m] and the value for the time-step ∆t = 10−5 [s]. The maximal deviation
from equilibrium is of the order of 25 [%].

In Section 2.2, it has been explained that one of the hypotheses for the 2D Rayleigh
model to work is that the droplet free surface oscillations should be small. Indeed, when
this hypothesis is satisfied, the free surface oscillations can mathematically be described
as the linear combination of elementary oscillation modes that are independent, or rather
uncoupled, from one another. While for large oscillations the fact that any oscillation
pattern can be described as a linear combination of elementary oscillation modes remains
true, the statement that they are uncoupled is totally false, which is what will be demon-
strated in the following section.

5.2.1 Correction of the theoretical model to higher-order oscillation modes

From Eq. II.11, the radius R of the droplet at any point θ of time t can be expressed as :

R(θ, t) = R0 + f(θ, t) ≃ R0

1 − 1
4
∑
n≥2

ε2
n +

∑
n≥2

εn cos(nθ)
 , (II.48)

where the second equality relies on the fact that the elementary oscillation modes are
uncoupled. Setting θ to an arbitrarily fixed value, consider θ = 0 [rad] for the sake of
simplicity such that cos(nθ) = 1 ∀n ∈ N, n ≥ 2, the expression above can be re-written
as follows, ∀n ∈ N, n ≥ 2 :

R(θ = 0, t) ≃ R0

1 − 1
4
∑
n≥2

ε2
n +

∑
n≥2

εn

 . (II.49)
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To work further on this expression Eq. II.49, suggest calculating the order of magnitude
of the dominant oscillation mode, which is n = 4 in this case, according to Eq. II.26 :

εmax
4 =

√√√√√ε2
4(0) +

 ε̇4(0) + λ4ε4(0)√
−∆′

4

2

. (II.50)

The values for ε4(0), ε̇4(0), λ4 and ∆′
4 are, respectively8 :

ε4(0) = 7.33×10−4 [m]; ε̇4(0) = 0 [m/s]; λ4 = 8.422 [rad/s]; ∆′
4 = −908, 095 [rad/s],

(II.51)
such that :

εmax
4 = 7.33 × 10−4 [m]. (II.52)

Note that εmax
4 > εmax

2 , which underlines that the elementary oscillation mode n = 4 is
dominant over n = 2. Hence, the order of magnitude of ε4(t) is 10−4 [m], implying ε2

4 ≪ ε4
such that Eq. II.49 can be re-written as follows :

R(θ = 0, t) ≃ R0

1 − 1
4
∑
n≥2

ε2
n +

∑
n≥2

εn

 ≃ R0

1 +
∑
n≥2

εn

 . (II.53)

Therefore, the corrected expression of the theoretical model includes the elementary os-
cillation mode n = 4, leading ultimately to (denote ε(t) the amplitude of the free surface
oscillations taking into account the elementary modes n = 2 and n = 4 to alleviate
notations) :

ε(t) =
mode n = 2︷ ︸︸ ︷

−1.92 × 10−4e−1.403t cos(301.35t + 4.655 × 10−3)

−7.33 × 10−4e−8.422t cos(952.94t + 5.313 × 10−4)︸ ︷︷ ︸
mode n = 4

, (II.54)

which is the corrected expression of the theoretical model, taking into consideration that
n = 4 is the dominant mode rather than n = 2 given the small oscillation approximation
no longer holds, as well as considering that these oscillation modes operate independently
from one another. The graph for this comparison is provided in Fig. II.14.

Without any surprise, the theoretical and numerical curves do, once more, not match
at all. As expressed numerous times already, this is due to the fact that the hypotheses for
the 2D Rayleigh model are not satisfied, namely the initial deviation from equilibrium is
too significant. This means that the assumption that the droplet free surface oscillations
can be described as a linear combination of uncoupled elementary oscillation modes no
longer holds.

In Appendix 5, some simulation snapshots are provided, as well as some supplementary
remarks regarding the resulting oscillation pattern. For previous studies, such figures

8The value of ε4(0) is retrieved after performing a Fourier decomposition on the initial geometry ∂Ω0
from Fig. II.12.
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Figure II.14: Comparison between the now corrected theoretical model Eq. II.54 and the
simulation results using the parameters described hereabove.

have not been displayed, simply because nothing interesting was to be observed. More
specifically, the droplet oscillation pattern for small initial deviations from equilibrium
are such that the ellipse shifts its maxima/minima from the x̂-axis onto the ŷ-axis, and
so forth. Furthermore, given it has only been proven at the end of Section 4 that the
numerical model is correct (once more, at the moment, this has just been proven for small
enough deviations from equilibrium, given this is the limit for the 2D Rayleigh theory), it
wouldn’t have made any sense to present such snapshots, given they could very well have
been completely false.

6 Conclusion
In this part of the work, the main focus was to show that PFEM3D is able to model simple
fluid dynamics problems at millimetre-scales, and more specifically the effects of surface
tension, for reasons that have been explained in Part I. To perform this study, the 2D
Rayleigh model has been chosen because it is related to the nature of the problem studied
in the following part of this work. Three case studies were presented, on a scale from «
ideal conditions of applicability » to « worst conditions of applicability ». For the former,
Sections 3 and 4 have proven that the better the hypotheses for the 2D Rayleigh theory
were satisfied (i.e. the closer the initial deformation of the droplet free surface is to its
equilibrium configuration), the greater the accuracy of the numerical results turned out
to be. Indeed, even for an initial deviation from equilibrium that didn’t turn out to be so
small after all (Section 3), PFEM3D provided a numerical solution with reasonable error (of
the order of 10 [%]). This error then reduced to ≃ 2 [%] when an even smaller deviation
from equilibrium was considered.
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Part III

Extension of PFEM3D : modelling of
droplet oscillations on a substrate

The previous part of this work consisted of a verification of the PFEM3D
computer model applicability for basic fluid dynamics problems at millimeter scales.

The current part of this work will focus on the extension of the PFEM3D computer code
to take into account contact phenomena such as contact angle hysteresis (cf. Part IV).
Previously, the context of the study was that of an oscillating droplet in zero-gravity where
no contact with any substrate was considered. As described in Part I, the modelling of
contact phenomena (e.g. contact angle hysteresis) requires the implementation of a set of
additional contributions, such as the surface tension force and liquid/substrate dissipation.

In Part II, it has been demonstrated that PFEM3D is able to model droplet oscillations
in zero-gravity with remarkable precision using [6] when the small oscillation hypothesis
was satisfied (note that this hypothesis was necessary for the 2D Rayleigh model and
is in no means a limitation of PFEM3D). Indeed, it has been proven that both the angu-
lar frequency and the damping ratio retrieved from the numerical data were in excellent
agreement with their values predicted by [6], hence providing a good representation of the
droplet oscillation behaviour, dictated by both the effects of viscosity and surface tension.
Given the nature of the problem studied in this part of the work, i.e., droplet oscillations
on a substrate, these previous results yield encouraging prospects for the model that re-
mains to be completed.

The following structure for this part is suggested. In a first instance, the problem
under attack is described and the involved forces are presented. Then, the set of govern-
ing equations is reminded (namely, the Navier-Stokes equations) and an overview of the
finite element (FE) implementation is provided. From there, the lacking terms in the FE
formulation PFEM3D are identified. Afterwards, a section is dedicated to the description
as well as the implementation of each one of these terms. From there, a verification of
the completed numerical model using the work of Mahrous [9] is performed and the com-
parison between both models is discussed. Finally, on the hand of the obtained results, a
conclusion is presented.

1 Introduction : problem description
Consider the following problem : a water droplet (ρ = 103 [kg/m3], µ = 10−3 [Pa · s],
γ = 72.8 × 10−3 [N/m]) of characteristic length ℓ [m], surrounded by a gas phase (air in
this case) and described by the volume Ω is deposited on a substrate of arbitrary nature
and submitted to gravity (g ≡ ||g|| = −9.81 [m/s2]). Initially, its shape, described by its
boundary ∂Ω0, differs from its equilibrium shape, described by ∂Ωeq. To evolve from ∂Ω0
to ∂Ωeq, the droplet oscillates on the substrate due to the effects of gravity and surface
tension. A visual representation of this problem is provided in Fig. III.1.
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droplet : ρ, µ, γ

substrate

air

time

substrate

air

g
droplet : ρ, µ, γ

Figure III.1: A water droplet, deviated arbitrarily from its equilibrium configuration
(left), deposited on a substrate will oscillate towards its equilibrium configuration over
time (right).

The motors of these oscillations are both surface tension and gravity, and more pre-
cisely the competition between their associated forces. Indeed, while the effect of surface
tension on the droplet is to minimize its free (surface) energy as reported in Part II, the
effect of gravity is to pull the droplet mass downwards (i.e., to flatten the droplet shape).
This pulling down results, due to volume conservation, in an increased droplet free sur-
face, which is counteracted by the effects of surface tension. In this sense, the droplet
equilibrium configuration is dictated by an equilibrium between the forces resulting from
surface tension and from gravitational pull.

2 Governing equations and an overview of the FE
implementation of PFEM3D

2.1 Governing equations
The equations governing fluid dynamics behaviour are the Navier-Stokes equations. Con-
sider a fluid volume Ω (a water droplet in the context of the current framework) that is
Newtonian and incompressible. Consider also an isothermal regime with no phase trans-
formation. In the Lagrangian formulation, these equations are written as Eq. II.2, where
the RHS is no longer equal to zero, but rather to a net body force denoted b [N/kg] :

ρ
dv
dt

− ∇ · σ = ρb ;

∇ · v = 0,

(III.1)

given the framework of the current problem. The expression of the Cauchy stress tensor
σ is written as :

σ = 2µD − pI, (III.2)
and the strain rate tensor D as :
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D = 1
2
(
∇v + (∇v)T

)
. (III.3)

The well-posedness of the Navier-Stokes equations is guaranteed if an ad hoc initial con-
dition (IC) is considered. In this case :

v(X, t = 0) = v0. (III.4)
The following set of boundary conditions (BCs) is also considered (these boundaries are
represented in Fig. III.2) :

σ · n = h(x, t) on ΓL ;

v · n = 0 on ΓFS′ ;
∂Ω = ΓL ∪ Γ′

FS. (III.5)

substrate

air

ΓL

Γ′
FS

droplet

Figure III.2: Representation of the droplet boundaries. The droplet free surface is denoted
ΓL and the liquid-substrate interface is denoted Γ′

FS.

In Eqs. III.4 and III.5, the following quantities are defined :

• X [m] denotes the position-vector of any point in Ω(t = 0) ≡ Ω0 : X is the position-
vector in the reference configuration Ω0 ;

• v0 [m/s] denotes the initial velocity vector assigned to any point X in Ω0, this value
is imposed ;

• n [-] denotes the outward normal vector relative to the droplet boundary ∂Ω at any
instant t in time ;

• h(x, t) [Pa] denotes the set of surface forces to which any point of the droplet free
surface ΓL are subjected at any time t ;

• x [m] denotes the position-vector of any point in Ω : x is the position-vector in the
current configuration ;

• ΓL denotes the boundary defined by the droplet free surface ;

• Γ′
FS denotes the boundary defined by the liquid-substrate interface.
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2.2 An overview of the FE implementation of PFEM3D

Consider the set of equations Eqs. III.1 → III.5 described in the previous section. To
obtain a FE formulation for this model, a standard Galerkin approach is used : let w
be an arbitrary kinematically admissible (KA) test function, meaning w is continuous
and satisfies the BCs Eq. III.5. Then, satisfying the differential governing equation is
equivalent to satisfying the following integral equation9 :

∫
Ω

(
ρ

dv
dt

− ∇ · σ − ρb
)

· w dΩ +
∫

∂Ω
(σ · n − h) · w d∂Ω = 0, (III.6)

which is obtained by multiplying both the momentum equation and the boundary condi-
tions by w and integrating over the fluid volume Ω for the momentum equation, and over
the fluid surface ∂Ω for the BCs. To develop this equation Eq. III.6 further, only the
term which integrates −(∇ ·σ) · w over the fluid volume is considered in a first instance :

−
∫

Ω
(∇ · σ) · w dΩ. (III.7)

The Cauchy stress tensor σ is substituted by its expression Eq. III.2 and the divergence
theorem is used to obtain :

−
∫

Ω
(∇ · σ) · w dΩ =

∫
Ω

p∇ · w dΩ

−
∫

Ω
2µ∇w : D dΩ −

∫
∂Ω

(σ · n) · w d∂Ω. (III.8)

This expression is then substituted back into Eq. III.6 and the third term in the RHS of
Eq. III.8 cancels with the second term in the left-hand side (LHS) of Eq. III.6 :

∫
Ω(t)

ρ
∂v
∂t

· w dΩ(t) +
∫

Ω(t)
p∇ · w dΩ(t) −

∫
Ω(t)

2µ∇w : D dΩ(t)

−
∫

Ω(t)
ρb · w dΩ(t) −

∫
∂Ω(t)

h · w d∂Ω(t) = 0. (III.9)

The Galerkin formulation being completed, from there, a FE formulation is obtained
by introducing a space discretization. The PFEM3D computer code uses, as most PFEM
computer codes, linear isoparametric elements, which means that the velocity and pressure
unknowns, resp. v and p, are re-written in their discretized form as follows :

v = NT
v v̄ ;

p = NT
p p̄,

(III.10)

where Nv denotes the matrix of shape functions for the velocity v, v̄ denotes the nodal
values of the velocity unknown10, Np denotes the matrix of shape functions for the pressure

9This result is supported by the fundamental lemma of the calculus of variations.
10Recall that in the PFEM, the unknowns are stored at the mesh nodes, in contrast with e.g. a classical

FEM code, in which case the unknowns are stored at the Gauss points.
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p and p̄ denotes the nodal values for the pressure unknown. The arbitrary test function
is also discretized in this manner, i.e., w = NT

v w̄. After substitution of these expressions
in Eq. III.9, the following semi-discrete (because no time discretization is introduced yet)
FE matrix formulation is obtained [11] :

M
dv̄
dt

= −Kv̄ + GTp̄ + Fext, (III.11)

where M is the mass matrix, K is the viscous matrix, G is the discrete gradient operator
and Fext is the vector of applied forces, expressed as :

Fext =
∫

Ω
ρNT

v b dΩ +
∫

∂Ω
NT

v h d∂Ω. (III.12)

In Eq. III.12, the first term in the RHS represents the set of applied body forces and
the second term in the RHS represents the surface forces. When linear isoparametric ele-
ments are introduced in Eq. III.9, w decomposes in w = NT

v w̄ such that w̄ can exit the
integral, given it is an arbitrary function per definition. Since w appears in each integral,
w̄ can exit each integral and be cancelled out because the RSH of the integral equation
Eq. III.9 is equal to zero, which is why it does not appear in Eq. III.12.

The extension of the PFEM3D computer code (to be able to model liquid/substrate
interaction phenomena such as described hereabove) relies on adding a set of terms to
the surface forces integral. In the following section, this term will be developed further
and will reveal which force contributions are already taken into account by PFEM3D per
default. Then, the methodology from [9] will be presented and applied for the extension
of PFEM3D. More precisely, the set of lacking contributions is obtained.

3 The surface forces term
The term of interest in Eq. III.12 is :∫

∂Ω
NT

v h d∂Ω ≡ F∂Ω
ext, (III.13)

where the superscript ∂Ω is used to clarify that the set of external forces that act on the
fluid boundary are considered. The explicit expression of h(x, t) is :

h(x, t) = −γκn at ΓL, (III.14)
in accordance with the BC Eq. III.4, where κ [m−1] is the droplet curvature at any point
of ΓL. Therefore, an equivalent way of writing Eq. III.13 is (the linear isoparametric
space discretization Eq. III.10 is dropped) :∫

∂Ω
h · w d∂Ω = −

∫
ΓL

γκn · w dΓL. (III.15)

To further develop this expression, the approach from Jarauta [10] is considered. The
identity map P (x) = x, ∀x ∈ ΓL on an arbitrary surface ΓL (the droplet free surface in
this case) is defined and has the following properties :
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∇sP = I − n ⊗ n ;

∆sP = ∇s · (∇sP ) = −∇s · (n ⊗ n) = κn,

(III.16)

∇s being the surface gradient operator and ∆s being the Laplace-Beltrami operator. The
last property from Eq. III.16 is then substituted into Eq. III.15 and the following expres-
sion is obtained :

−
∫

ΓL
γκn · w dΓL = −

∫
ΓL

γ(∆sP ) · w dΓL. (III.17)

After integration by parts as well as applying the surface divergence theorem, the following
result can be retrieved :

−
∫

ΓL
γ(∆sP ) · w dΓL =

∫
ΓL

γ(∇sP ) · ∇w dΓL −
∫

∂ΓL≡∂Γ
γm · w d∂Γ. (III.18)

In the second term of the RHS, the vector m is defined as follows :

m = n × ds, (III.19)
where ds is the vector tangent to ∂ΓL ≡ ∂Γ as presented in Fig. III.3, and ∂Γ is the
contact line, defined as ∂Γ = Γ′

FS ∩ ΓL (red dots in Fig. III.3).

substrate

droplet

air

substrate

droplet

air

n

m

ds⃗

Figure III.3: Representation of the boundary ∂ΓL ≡ ∂Γ (red dots) and its tangent vector
ds (noted ds⃗ in the figure) as well as the vector m. The figure on the right is a zoom on
the right side of the droplet.

Following Eq. III.19, the vector m is defined as the vector tangent to the droplet free
surface ΓL at ∂Γ, as visualized in Fig. III.3.

In the PFEM3D computer code, the second term of the RHS in Eq. III.18 is previously
neglected, which means that :

F∂Ω
ext =

∫
∂Ω

h · w d∂Ω =
∫

ΓL
γ(∇sP ) · ∇w dΓL. (III.20)

For the applications in this work that are considered down the road, this term cannot be
neglected, given the vector m in particular holds crucial information on the value of the
contact angle θ [deg]. This value is measured as shown in Fig. III.4.
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substrate

droplet

air

contact angle

Figure III.4: Representation of how the contact angle is measured at the liquid/substrate
interface.

3.1 Which contributions are lacking to the surface forces term
F∂Ω

ext ?
It is revealed in the previous section that the second term in the RHS of Eq. III.18
is lacking in the FE formulation of PFEM3D. In further stages of this work, this term
will be called the surface tension force. In addition to this surface tension force, as
suggested by Mahrous [9], another set of forces needs to be considered as well in the FE
formulation because they take account of important liquid-substrate contact phenomena
such as friction as well as the capillary effect. Concretely, the following approach is used
to complete the PFEM3D computer code, which uses both the work of Jarauta [10] and the
work of Mahrous [9] :

1. In a first instance, an additional BC is implemented in PFEM3D, which suggests
free-slip at the liquid-substrate contact Γ′

FS ;

2. Then, the surface tension force is added to the computer code. This effect takes
account of the force that is generated by the contact angle at the contact line ∂Γ.
For the implementation of this contribution in the FE model, the implicit approach
suggested by the work of Jarauta [10] will be followed ;

3. Next, due to the non-physical nature of the free-slip boundary condition at Γ′
FS, the

work of Mahrous [9] will be followed to implement the force that takes into account
the friction that occurs in this region ;

4. Finally, it is also suggested by Mahrous [9] to add forces to the FE model that result
from the capillary effect at the contact line as well as from the normal stress jump
at the contact line.

Once the implementation of the full set of these additional forces is finished, the results
provided in the work of Mahrous [9] will be used to compare the numerical data obtained
by PFEM3D from. The PFEM3D computer model is then said to be complete if the obtained
results are in agreement with the ones obtained in [9].
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4 Adding the lacking forces to the FE formulation

4.1 Horizontal free slip BC at Γ′
FS and the surface tension force

at ∂Γ
The surface tension force at the contact line ∂Γ appears in Eq. III.18 as the second term
of the RHS and is written :

−
∫

∂ΓL≡∂Γ
γm · w d∂Γ. (III.21)

Before developing this term to determine what expression needs to be implemented exactly
in the FE formulation, it is suggested to define an additional boundary condition. The
nature of this BC being horizontal free slip, it is considered that the velocity of the fluid
particles at Γ′

FS is imposed to be equal to zero along the vertical coordinate, but to
evolve freely (i.e., without any restrictions a priori) along the horizontal coordinate. This
condition can be expressed as follows :

v · n = 0 on Γ′
FS, (III.22)

and states that no fluid can flow through the boundary Γ′
FS. The implementation of this

BC constitutes the first contribution to the extension of PFEM3D.
With the HFS BC being added to the set of already pre-existing ones, the spotlight

can be turned again onto the development of the surface tension force displayed in Eq.
III.21. Before moving on, it is reminded in a first instance that the context of this work is
two-dimensional, as mentioned numerous times beforehand. It is implied by this context
that (a) the droplet volume is in fact a surface ; (b) the droplet surface is in fact a curve.
Subsequently, the integral figuring in Eq. III.21 is zero-dimensional, meaning its value is
equal to that of the integrand :

−
∫

∂Γ
γm · w d∂Γ = −γm · w. (III.23)

More specifically, this means that this equation needs to be evaluated at 2 points of the
droplet surface ∂Ω, « ∂Γleft » and « ∂Γright », represented in Fig. III.5.

substrate

droplet

air

ΓFS

∂Γ ∂Γ

ΓL

Figure III.5: Representation of the two points ∂Γ at which the surface tension force needs
to be evaluated. What has been denoted ∂Γleft hereabove is simply the node ∂Γ on the left
side of the droplet (equivalently, ∂Γright is the node ∂Γ on the right side of the droplet).
In this figure, ΓFS is defined as ΓFS = Γ′

FS\∂Γ.
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This expression can further be simplified by introducing a linear isoparametric space
discretization (Eq. III.10) such that Eq. III.23 can be re-written as :

−γm · w = −γm · (NT
v w̄), (III.24)

where NT
v is the shape function matrix for the velocity unknown. The value of NT

v being
equal to 1 at ∂Γ given the nature of the problem, Eq. III.24 can be re-written as :

−γm · (NT
v w̄) = −γm · w̄. (III.25)

Remembering that the test function w appears in front of each term of the integral
equation Eq. III.9 and that the RHS equals to zero, w̄ can be simplified with the ones
from the other terms in the formulation such that :

−γm · w̄ = −γm. (III.26)
It is underlined that the simplicity of the solution is due to the two-dimensional nature of
the problem. If the problem was three-dimensional instead, reducing the solution of the
integral to the value of the integrand would not be possible.

4.2 Dissipation due to friction at Γ′
FS

The current state of the FE formulation in PFEM3D is given by Eq. III.11 :

M
dv̄
dt

= −Kv̄ + GTp̄ + Fext, (III.27)

where Fext is the vector of external forces, previously defined as :

Fext =
∫

Ω
ρb · w dΩ +

∫
∂Ω

h · w d∂Ω, (III.28)

and the second integral in the RHS of Eq. III.28 now includes the surface tension force
at ∂Γ, such that it can be re-written as :∫

∂Ω
h · w d∂Ω =

∫
ΓL

γ(∇sP ) · ∇w dΓL −
∫

∂Γ
γm · w d∂Γ. (III.29)

substrate

droplet

air

ΓFS

∂Γ ∂Γ

ΓL

Figure III.6: Visualisation of the different droplet boundaries. The additional force that
is tackled in this section, the dissipative force at the liquid-substrate contact, is added at
ΓFS and ∂Γ.
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From there, the following step to complete the FE formulation is to include the dissipative
force at the liquid-substrate interface ΓFS as well as at ∂Γ (cf. Fig. III.16), meaning that
Eq. III.29 needs to be re-written as :

∫
∂Ω

h · w d∂Ω =
∫

ΓL
γ(∇sP ) · ∇w dΓL −

∫
∂Γ

γm · w d∂Γ +
∫

Γ′
FS

(dissip. force) · w dΓ′
FS.

(III.30)
Following the work of Mahrous [9], the expression of this dissipative force is given by :

−βsv, (III.31)
such that Eq. III.30 reads :

∫
∂Ω

h · w d∂Ω =
∫

ΓL
γ(∇sP ) · ∇w dΓL −

∫
∂Γ

γm · w d∂Γ −
∫

Γ′
FS

βsv · w dΓ′
FS. (III.32)

Figure III.7: Interpretation of the slip length hslip. This figure is directly taken from the
work of Meduri [11].

In Eqs. III.31 and III.32, βs is expressed in [Pa · s/m] and referred to as the Navier
slip coefficient. An interpretation of this coefficient is given in the work of Meduri [11]
: let hslip [m] be the slip length, defined as the distance from Γ′

FS to the point with zero
tangential velocity, obtained with a linear extrapolation of the tangential velocity profile
as shown in Fig. III.17. Then the Navier slip coefficient βs is defined as :

βs = µ

hslip
. (III.33)

When hslip → ∞, βs = 0 and the previously implemented HFS BC is recovered. In
contrast, when hslip = 0, βs → ∞ and a no-slip BC is recovered.

In theory, the value of the slip length hslip is of the order of 10 atomic lengths, i.e.,
hslip ∼ 10−9 [m]. In practice, however, setting hslip to this theoretical value would mean
that the scale of the characteristic element size near Γ′

FS should be set to this same value
in order to capture the physics correctly. As previously discussed in this work, decreasing
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the value of h(d) is very expensive in terms of the CPU-time, such that setting h(d) ∼ 10−9

[m] is not a reasonable option.
A multitude of models exist in the literature on the computation of the slip length

hslip for numerical purposes. For instance, Cremonesi [12] suggests that the value of hslip
should depend on the characteristic mesh size h(d), while Venkatesan [13] proposes a
model for hslip that depends on both the Reynolds number and the Weber number. In
this work, the approach of Cremonesi [12] is followed.

Introducing linear isoparametric elements and using the expression of the velocity and
pressure unknowns Eq. III.10, the of the dissipative force to be added in PFEM3D can be
re-written as :

−
∫

Γ′
FS

βsv · w dΓ′
FS = −

∫
Γ′

FS

βsN
T
v Nvv̄ dΓ′

FS, (III.34)

where w̄ cancels out.

4.3 More forces at the contact line ∂Γ
In addition to the surface tension force at ∂Γ as well as the dissipative force at Γ′

FS,
Mahrous [9] suggests in his work to finally add two other forces at ∂Γ : (a) a force related
to the capillary effect and (b) a force related to the normal stress jump at ∂Γ (this effect
becomes larger when the velocity at the contact line increases) :

additional forces at contact line ∂Γ = −ζv − βnv, (III.35)
where ζ [Pa · s/m] is the coefficient related to the capillary effect and βn [Pa · s/m] is the
coefficient related to the normal stress jump. The expression of ζ is given as follows :

ζ = γ

u
R(Ca), (III.36)

and that of βn as :

βn = 1
u

µ∇(v · t) · t. (III.37)

In both equations, u [m/s] denotes the horizontal velocity component at ∂Γ, i.e., u = v ·t,
where t [-] denotes the vector that is tangent to ΓFS at ∂Γ. The notation R(Ca) in Eq.
III.37 suggests that the coefficient related to the capillary force can be expressed as a
function of the capillary number Ca [-], defined as :

Ca = uµ

γ
, (III.38)

In the work of Mahrous [9], the model that is suggested for the expression of R(Ca) is
Jiang’s expression [14], which considers that the velocity at the contact line for capillary-
driven droplet spreading is of the order of the impact velocity for a droplet :

R(Ca) = (cos θs + 1) tanh
(
4.96Ca0.702

)
, (III.39)

such that Eq. III.37 is re-written as :
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ζ = γ

u
(cos θs + 1) tanh

(
4.96Ca0.702

)
. (III.40)

In Eqs. III.39 and III.40, θs [deg] denotes the static contact angle, i.e. the contact angle
at ∂Γ once the droplet has attained its equilibrium configuration ∂Ωeq. The expression of
the surface force Eq. III.30 now reads, with the addition of these forces :

∫
∂Ω

h · w d∂Ω =
∫

ΓL
γ(∇sP ) · ∇w dΓL −

∫
∂Γ

γm · w d∂Γ −
∫

Γ′
FS

βsv · w dΓ′
FS

−
∫

∂Γ
ζv · w d∂Γ −

∫
∂Γ

βnv · w d∂Γ. (III.41)

Introducing linear isoparametric elements, noting that the integral on ∂Γ is zero-dimensional
and that the test function w simplifies with the other ones, the expression of the terms
to add to the FE formulation is given by :

−ζv̄ − βnv̄. (III.42)

4.4 Summary
Below, a summary of the steps suggested by [9] and [10] is given.

Summary on the completion of the FE formulation.
1. An additional BC needs to be implemented : the horizontal free slip (HFS) BC.

Then, the contribution of the surface tension force at ∂Γ to the Galerkin formu-
lation Eq. III.20 reads [10] :

∫
∂Ω

h · w d∂Ω =
∫

ΓL
γ(∇sP ) · ∇w dΓL−

∫
∂Γ

γm · w d∂Γ ; (III.43)

2. The second contribution is related to the viscous dissipation at the liquid-substrate
interface ΓFS as well as at the contact line ∂Γ. The expression of Eq. III.20 then
becomes [9] (denote Γ′

FS ≡ ΓFS ∪ ∂Γ to alleviate notations) :

∫
∂Ω

h · w d∂Ω =
∫

ΓL
γ(∇sP ) · ∇w dΓL −

∫
∂Γ

γm · w d∂Γ−
∫

Γ′
FS

βsv · w dΓ′
FS ;

(III.44)

3. Finally, a force related to the capillary effect at ∂Γ as well as another force, related
to the normal stress jump at ∂Γ, also need to be added to Eq. III.20 :

∫
∂Ω

h · w d∂Ω =
∫

ΓL
γ(∇sP ) · ∇w dΓL −

∫
∂Γ

γm · w d∂Γ −
∫

Γ′
FS

βsv · w dΓ′
FS

−
∫

∂Γ
ζv · w d∂Γ −

∫
∂Γ

βnv · w d∂Γ. (III.45)
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ΓL

ΓFS

∂Γ ∂Γ

substrate

droplet

air

g

at ∂Γ : f∂Γ = −
∫

∂Γ

γm ·w d∂Γ−
∫

∂Γ

βsv ·w d∂Γ−
∫

∂Γ

ζv ·w d∂Γ

−
∫

∂Γ

βnv ·w d∂Γ

at ΓL : fΓL
=

∫

ΓL

γ(∇sP ) · ∇w dΓL

at ΓFS : fΓFS
= −

∫

ΓFS

βsv ·w dΓFS ; v · n = 0

Figure III.8: Representation of where the supplementary forces described above act on
the droplet boundaries.

5 Validation of the numerical model

5.1 Implementation of the initial geometry
For the validation of the numerical model, the simulation results obtained by PFEM3D will
be compared to the ones presented in [9]. The following problem is considered : a water
droplet (ρ = 103 [kg/m3], µ = 8.9 × 10−4 [Pa · s], γ = 72 × 10−3 [N/m]) is initially
semi-circle-shaped, deposited on a substrate of arbitrary nature and submitted to gravity
(Fig. III.9). The radius is denoted R and is set to a value of 1.25 × 10−4 [m].

substrate

droplet
(ρ, µ, γ)

air

R

g

Figure III.9: Initial configuration of the water droplet on a substrate. In [9], the value of
the radius is set to 1.25 × 10−4 [m].

Initially, the contact angle θ is 90 [deg] and its equilibrium value θs is set to 45 [deg].
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5.2 Numerical parameters
The list of numerical parameters suggested by Mahrous [9] is given below :

• characteristic element size (uniform mesh, Fig. III.10) :

– h = 1.25 × 10−5 [m] (340 elements in [9], 446 elements using Gmsh) ;
– h = 9.6 × 10−6 [m] (598 elements in [9], 736 elements using Gmsh) ;
– h = 6.8 × 10−6 [m] (1,205 elements in [9], 1,368 elements using Gmsh) ;
– h = 5 × 10−6 [m] (2,206 elements in [9], 2,472 elements using Gmsh) ;

• Time-step ∆t = 2 × 10−7 [s] ;

• Simulation time T = 4 × 10−3 [s] ;

• Equilibrium contact angle : θs = 45 [deg].

Only the value for the characteristic element size h varies for the study of the numerical
convergence, while ∆t is set to be constant for the entirety of the simulation cases that
will follow.

(a) h = 1.25 × 10−5 [m]. (b) h = 9.6 × 10−6 [m].

(c) h = 6.8 × 10−6 [m]. (d) h = 5 × 10−6 [m].

Figure III.10: Representation of the different meshes.
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5.3 Validation of the numerical model
To validate the numerical model, the following structure for this section is suggested
(following the structure of [9]) :

1. The convergence of the numerical solution as a function of the characteristic element
size d (among the values given hereabove) is studied, without implementing any
additional force described except for the surface tension force Eq. III.21 ;

2. The behaviour of the numerical solution by including progressively the entire set of
additional forces (Eqs. III.26, III.29 and III.41) is examined ;

3. The change in behaviour of the numerical solution between the finest and the coars-
est meshes (resp. h = 5 × 10−6 [m] and h = 1.25 × 10−5 [m]), with and without
taking into account the entire set of additional forces, is finally studied.

The quantity that is used to study the behaviour of the numerical solution is the spreading
displacement, noted r in [9] and defined as shown in Fig. III.11.

substrate

droplet

air

r r

Figure III.11: Representation of how the spreading displacement is measured. The dotted
configuration represents the shape of the droplet at the instant t = 0 [s], while the
configuration drawn with a whole line represents its equilibrium shape.

Before moving on to the validation step : an important remark on the contact
angle. For the purpose of this work, the implementation of the surface tension force at
the contact line follows the work of Jarauta [10]. He suggests an implicit treatment of this
force, which does not necessitate the value of the curvature of ΓL at ∂Γ. Indeed, PFEM3D
is unable to compute curvatures, which means that the « traditional » expression of this
force, i.e., −γκn, where the curvature appears as κ, is not an option for implementation.
Furthermore, PFEM3D does not use an energy minimization principle, which means that
the well-known Young equation γlv cos θs = γsv − γsl (γlv denotes the liquid-gas interface
energy, γsv the solid-gas interface energy and γsl the liquid-substrate interface energy) can
also not be implemented. Therefore, the expression for implicitly handling the surface
tension force at ∂Γ suggested by Jarauta [10] is ideal, in the sense that it only needs the
vector ds tangent to the contact line as well as the normal n to ΓL at ∂Γ as described by
Eq. III.21 :

−
∫

∂Γ
γm · w d∂Γ, (III.46)
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where m = n × ds. However, in combination with the HFS BC, the equilibrium value
of the contact angle is limited to 90 [deg] only (at least, without any additional forces).
In other words, independently of the initial configuration of the droplet, its equilibrium
shape will always have a contact angle of 90 [deg].

There is, however, a way of setting the contact angle to a value that differs from
90 [deg]. Indeed, if the value of θ must be set to e.g. 45 [deg], as described by the
experimental setup detailed in [9], then by setting m to :

m ≡

m1

m2

 =
cos(45)

sin(45)

 , (III.47)

as shown in Fig. III.12, the value of the contact angle is set to θ = 45 [deg] for the entirety
of the simulation, and the contribution of the surface tension force is constant over time.

45°

m m

45°

air

substrate

droplet

m2

m1

m2

m1

Figure III.12: Imposition of the value of the contact angle through the components of the
vector m.

While this is still not exactly the same study as described in [9], the results obtained
by the two approaches should be very similar for as long as the contact angle modeled
by [9] remains close to 45 [deg] over the simulation.

5.3.1 Mesh study

The first study that is performed is on the influence of the characteristic element size
h on the numerical solution. No additional forces, except the surface tension force at
the contact line in PFEM3D, are considered. Concretely, this means that neither friction
at Γ′

FS, not the force resulting from the capillary effect at the contact line, nor the one
resulting from the normal stress jump (also at the contact line) are taken into account.
The different values for h to perform this study are recalled below :

• h = 1.25 × 10−5 [m] (223 nodes, 446 elements) ;

• h = 9.6 × 10−6 [m] (368 nodes, 736 elements) ;

• h = 6.8 × 10−6 [m] (684 nodes, 1,368 elements) ;

• h = 5 × 10−6 [m] (1,236 nodes, 2,472 elements).
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It is also reminded that the value of the time-step ∆t is set to 2 × 10−7 [s], that of the
simulation time T to T = 4×10−3 [s] and that of the equilibrium contact angle to θs = 45
[deg]. In Fig. III.13, the simulation results using PFEM3D are presented. This graph is
compared with the one from [9], displayed in Fig. III.14.
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Figure III.13: Mesh dependence study of the numerical solution modeled by PFEM3D.

Figure III.14: Mesh dependence study of the numerical model [9].

In means to facilitate the comparison between the two models, the same colour code
is used in their respective graphs. In contrast to [9] (Fig. III.14), the PFEM solution
provided by PFEM3D (Fig. III.13) is almost mesh-independent, which means that numeri-
cal convergence of the solution is reached even for the coarse mesh h = 1.25 × 10−5 [m].
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It is however noted that for the solution provided by [9], the behaviour of the spreading
displacement stabilizes a lot faster for finer meshes, which is not observed in Fig. III.13.
Furthermore, the damping rate modelled by [9] is very different from that modelled by
PFEM3D. The reason for these differences could be that [9] does not use the implicit treat-
ment for the surface tension force at the contact line ∂Γ, or even that the contact angle
is allowed to take only this precise 45 [deg]-value for the entire simulation in this work.

Except for the increasing damping rate with mesh refinement reported in the results
of [9], the overall shapes of the curves modelled by PFEM3D look very similar to the former.
To support this statement, the measurements of the following quantities for the PFEM3D
curve h = 1.25 × 10−5 [m] are considered :

• Oscillation frequency f = 1, 373 [Hz] ;

• Overshoot O = 1.8 × 10−4 [m] ;

• Spreading displacement at equilibrium (the simulation time T is increased to 20 ×
10−3 [s] such that spreading displacement equilibrium is almost reached, then the
average of the spreading displacement is calculated) = 8.23 × 10−5 [m],

and compared to the ones estimated from the graphical data h = 1.25×10−5 [m] provided
in [9] (estimated, because no exact numerical values for these quantities are given in the
work of Mahrous [9]) :

• Oscillation frequency f ≃ 1, 470 [Hz] ;

• Overshoot O ≃ 1.5 × 10−4 [m] ;

• Spreading displacement at equilibrium = 8.16 × 10−5 [m].

From there, the differences between the PFEM3D model and the model implemented in [9]
in terms f , O and the spreading displacement at equilibrium are :

• ∆f ≃ 6.59 [%] ;

• ∆O ≃ 20 [%] ;

• ∆spreading displacement at equilibrium ≃ 0.85 [%].

While the results of the dynamic behaviour are quite different, the result on the behaviour
at equilibrium is in excellent agreement with [9]. It is once more noted that the values
of the spreading displacement provided by [9] are estimated from the graphical data Fig.
III.14 (using the online software PlotDigitizer [15]), meaning this probably adds to the
overall error that is observed. The obtained difference on the dynamic behaviour is majorly
caused by the incorrectly modelled damping rate by PFEM3D.

Some simulation snapshots are presented in Fig. III.15 for the coarse mesh h =
1.25 × 10−5 [m]. On the CPU-times for the different mesh sizes, this varies from 12
minutes to almost 1.5 hours. The exact CPU-time values as a function of h are given in
the table below.
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(a) t = 0 [s]. (b) t = 10−5 [s].

(c) t = 1.7 × 10−4 [s]. (d) t = 3.5 × 10−4 [s].

Figure III.15: Snapshots of the droplet spreading problem without considering any addi-
tional forces at the contact line, nor at the liquid-substrate interface. The value of h is
set to h = 1.25 × 10−5 [m] and that of the time-step to ∆t = 2 × 10−7 [s]. The colour
profile represents the magnitude of the velocity ||v|| and is measured in [m/s].

CPU-time as a function of h (4 threads, using OpenMP parallel computing).

• h = 1.25 × 10−5 [m] (223 nodes, 446 elements) : CPU-time ≃ 780 [s] ;

• h = 9.6 × 10−6 [m] (368 nodes, 736 elements) : CPU-time ≃ 1, 200 [s] ;

• h = 6.8 × 10−6 [m] (684 nodes, 1,368 elements) : CPU-time ≃ 2, 350 [s] ;

• h = 5 × 10−6 [m] (1,236 nodes, 2,472 elements) : CPU-time ≃ 4, 350 [s].

5.3.2 Influence of the dissipative contribution at Γ′
FS ≡ ΓFS ∪ ∂Γ

The next case study suggested by [9] is that of the impact of the dissipation at the liquid-
substrate interface as well as at the contact line ∂Γ for various values of the Navier-slip
coefficient βs. Only the coarse mesh (h = 1.25×10−5 [m]) and the fine mesh (h = 5×10−6

[m]) are considered for this study. It is reminded that in this work, the Navier-slip
coefficient is computed as a function of the slip-length hslip :

βs = µ

hslip
, (III.48)
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where hslip is computed itself as a function of the characteristic element size h, in ac-
cordance with the approach followed by Cremonesi [12]. Furthermore, in the PFEM
formulation PFEM3D, the dissipation force is implemented at both the liquid-substrate in-
terface and the contact line (this « combined » boundary has previously been denoted
as Γ′

FS ≡ ΓFS ∪ ∂Γ) simultaneously, instead of [9] in which it is implemented at ΓFS and
at ∂Γ separately. The reason for implementing the dissipative contribution this way is
simply because it reduces the number of computations to be performed by the computer
code, and hence decreases the CPU-time. Instead of Eq. III.47, Mahrous [9] uses another
model for the Navier-slip coefficient :

βs = 1
u

µ∇(v · t) · n. (III.49)

This more advanced (but complex) model takes account of the velocity gradients which
tend to influence the value of the Navier-slip coefficient and is independent of the char-
acteristic element size. A summary of the key differences between the approach used in
this work and the one described in [9] is given below :

• Expression of the Navier-slip coefficient :

– In this work : βs = µ/hslip ;
– In [9] : βs = (1/u)µ∇(v · t) · n ;

• Mesh-dependency :

– In this work : yes ;
– In [9] : no ;

• Computed at :

– In this work : ΓFS and ∂Γ simultaneously ;
– In [9] : ΓFS and ∂Γ separately.

While there are some differences between the approach described in this work and the
one used in [9], the physical meaning of the additional term does not change and hence
the same observations should appear when βs is changed in a given manner. For the
study of the influence of this parameter, the core is to increase the value of the Navier-
slip coefficient to show that the droplet oscillations are more damped due to the effects
of dissipation at Γ′

FS ≡ ΓFS ∪ ∂Γ. In accordance with the work of Cremonesi [12], the
following values of βs are suggested for the coarse mesh simulations (characteristic element
size h = 1.25 × 10−5 [m]) :

• βs = 14.25 [Pa · s/m], i.e., the slip length is the characteristic element size multiplied
by a factor 5 ;

• βs = 71.2 [Pa · s/m], i.e., the slip length is equal to the characteristic element size ;

• βs = 356 [Pa · s/m], i.e., the slip length is equal to the characteristic element size
divided by a factor 5,
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and the following for the fine mesh simulations (h = 5 × 10−6 [m]) :

• βs = 35.6 [Pa · s/m], i.e., the slip length is the characteristic element size multiplied
by a factor 5 ;

• βs = 178 [Pa · s/m], i.e., the slip length is equal to the characteristic element size ;

• βs = 890 [Pa · s/m], i.e., the slip length is equal to the characteristic element size
divided by a factor 5.

The results for these simulations are displayed in Fig. III.16. For both the coarse and
the fine meshes, an increase of the value of the Navier slip coefficient βs comes with
an increase of the damping rate, because the effects of the viscous dissipation at Γ′

FS ≡
ΓFS∪∂Γ increase. Furthermore, still for both the coarse and the fine meshes, the spreading
displacement at equilibrium tends towards the same value, independently on the value of
βs and independently on the value of h. For the other values mentioned in the previous
study (that of the dependency of the solution on the characteristic element size), namely
the droplet oscillation frequency and the overshoot, the following values are obtained :

• Coarse mesh (h = 1.25 × 10−5 [m]) :

– βs = 0 [Pa · s/m] : f = 1, 373 [Hz], O = 1.80 × 10−4 [m] ;
– βs = 14.25 [Pa · s/m] : f = 1, 412 [Hz], O = 1.75 × 10−4 [m] ;
– βs = 71.2 [Pa · s/m] : f = 1, 461 [Hz], O = 1.60 × 10−4 [m] ;
– βs = 356 [Pa · s/m] : f = 1, 453 [Hz], O = 1.41 × 10−4 [m] ;

• Fine mesh (h = 5 × 10−6 [m]) :

– βs = 0 [Pa · s/m] : f = 1, 366 [Hz], O = 1.81 × 10−4 [m] ;
– βs = 35.6 [Pa · s/m] : f = 1, 436 [Hz], O = 1.69 × 10−4 [m] ;
– βs = 178 [Pa · s/m] : f = 1, 457 [Hz], O = 1.53 × 10−4 [m] ;
– βs = 890 [Pa · s/m] : f = 1, 436 [Hz], O = 1.39 × 10−4 [m].

As the slip length hslip decreases and the value of the Navier-slip coefficient βs subse-
quently increases, the droplet spreading displacement frequency tends to increase and the
overshoot, in the contrary, tends to decrease. This is observed both for the coarse mesh
and the fine mesh. For the frequency, this behaviour is observed until the value of βs

corresponds to the case in which the slip length hslip is set equal to the characteristic
element size h, leading to f ≃ 1, 460 [Hz]. If the value of βs is increased further, or equiv-
alently, if the value of hslip is further decreased, f tends to decrease slightly. This shift in
behaviour when the « limit case » hslip = h is reached is most probably explained by the
fact that when hslip < h, the FE mesh might be too coarse in order to precisely model the
physical behaviour at Γ′

FS ≡ ΓFS ∪ ∂Γ. Whether this leads to nonphysical behaviour or
not is discussed hereafter, for which Figs. III.17 and III.18 are introduced. These figures
present simulation snapshots for different values of βs at the same value of the simulation
time in order to compare the extension of the boundary layer near Γ′

FS ≡ ΓFS ∪ ∂Γ. This
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(a) h = 1.25 × 10−5 [m].
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(b) h = 5 × 10−6 [m].

Figure III.16: Droplet spreading displacement as a function of the value of the Navier slip
coefficient βs. For both figures, the time-step ∆t is set to ∆t = 2 × 10−7 [s].

boundary layer appears when dissipation due to liquid-substrate friction, as well as at the
contact line, is taken into account.

Both for the coarse mesh and the fine mesh simulations, increasing the value of the
Navier-slip coefficient βs results in an extension of the boundary layer near Γ′

FS ≡ ΓFS∪∂Γ.
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(a) βs = 71.2 [Pa · s/m], t = 2 × 10−4 [s].

(b) βs = 356 [Pa · s/m], t = 2 × 10−4 [s].

Figure III.17: Extension of the boundary layer for different values of the Navier-slip
coefficient βs. Here, a coarse mesh is used (h = 1.25 × 10−5 [m]) and the value of ∆t
remains ∆t = 2 × 10−7 [s].

For the fine mesh (h = 5×10−6 [m]), this extension when hslip = h (Fig. III.17a) is initially
more significant in comparison with the coarse mesh case which equally imposes hslip = h
(Fig. III.18a). This indicates that when the dissipative force at Γ′

FS ≡ ΓFS ∪ ∂Γ is
considered, the numerical solution becomes mesh-dependent, in contrast with what has
been observed in the previous section. This can easily be explained by reminding that
the value of the Navier-slip coefficient is automatically computed as a function of hslip,
and thus of h, such that its value is greater for finer meshes in comparison with coarse
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(a) βs = 178 [Pa · s/m], t = 2 × 10−4 [s].

(b) βs = 890 [Pa · s/m], t = 2 × 10−4 [s].

Figure III.18: Extension of the boundary layer for different values of the Navier-slip
coefficient βs. Here, a fine mesh is used (h = 5 × 10−6 [m]) and the value of ∆t remains
∆t = 2 × 10−7 [s].

meshes. Despite this mesh dependency of the numerical result in terms of the graphical
data (Fig III.16) as well as the visual data (Figs. III.17, III.18), the graphical data hints
towards mesh independence for increasing values of βs (subsequently, for decreasing values
of hslip). To verify this claim, the fine mesh and coarse mesh results, resp. Figs. III.16a
and III.16b, are put together in Fig. III.19. It can clearly be observed that as the value of
the Navier-slip coefficient increases, the numerical solution becomes less dependent on the
characteristic element size. This can be interpreted as some sort of asymptotic behaviour
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(a) View over the entirety of the simulation.
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(b) Zoom on Fig. III.19a.

Figure III.19: Droplet spreading displacement for both the coarse mesh (h = 1.25 × 10−5

[m]) and the fine mesh (h = 5 × 10−6 [m]) as a function of the value of the Navier-slip
coefficient. In all cases, the time-step ∆t is set to ∆t = 2 × 10−7 [s].

of βs, and hence of hslip, which is reported in the work of Cremonesi [12] as well.
The result obtained hereabove on mesh independence of the numerical solution for
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droplet spreading displacement as a function of the Navier-slip coefficient can be sum-
marized as follows : if the value of the slip length hslip is chosen as hslip = h/5, then by
choosing the value of the Navier-slip coefficient at Γ′

FS ≡ ΓFS ∪ ∂Γ according to :

βs = µ

hslip
, (III.50)

the numerical solution is, in good approximation, independent of the choice of h. It is
important to underline that this result holds in the context of this work, but is by no means
a general result that should work for any simulation case, as mentioned by Cremonesi [12].
On the hand of this observation, the difference between the results provided between the
coarse and fine meshes are quantified below :

• ∆f = 1.13 [%] ;

• ∆O = 1.56 [%],

which only enforces the statement on mesh independence of the numerical solution for
droplet spreading displacement (when the correct value for βs is chosen, of course).

Now that mesh independence as well as physical relevance of the numerical results
obtained with PFEM3D are assessed, these results can be compared with the ones provided
by Mahrous [9]. In [9], only one case study in which the same value of the Navier-
slip coefficient is imposed at the liquid-substrate interface ΓFS and the contact line ∂Γ is
presented. For this case, βs = 10−3 [Pa · s] (the units seem to be faulty, so the relevance of
this value is questionable). The reason for this particular choice is not explicitly mentioned
in the work. The main takeaway of this study is that an increase of the value of the Navier-
slip coefficient results in a more rapid stabilisation of the contact line due to increased
damping of the droplet displacement spreading oscillations, which is also observed in the
results computed by PFEM3D (Figs. III.16, III.19). As observed in the previous section
(no consideration for the dissipation due to friction at the liquid-substrate interface as
well as at the contact line), the numerical response is, in contrast with this work, very
mesh dependent. Indeed, for the coarse mesh (Fig. III.20a, cf. « case 3 »), the droplet
oscillates ∼ 3 times before reaching its equilibrium value, while for the fine mesh (Fig.
III.20b, cf. « case 3 »), the spreading displacement tends to its equilibrium position
without oscillating. These results are presented in Fig. III.20. In terms of the behaviour
of the droplet spreading displacement using the coarse mesh, the result obtained from
PFEM3D using βs = 356 [Pa · s/m] is very similar to the graph Fig. III.20a « case 3 »
obtained in [9]. Indeed, PFEM3D also models that the droplet oscillates ∼ 3 times before
reaching its equilibrium configuration. In terms of the value of the droplet spreading
displacement at equilibrium, both models are once more in excellent agreement. For the
fine mesh simulations, Fig. III.20b « case 3 » models a critical damping/overdamping
regime for the droplet spreading displacement, while the result obtained in Fig. III.16b
obeys a regime of underdamping for βs = 890 [Pa · s/m].

Once more, the results obtained by PFEM3D and by [9] are different, especially for the
case in which a fine mesh (h = 5 × 10−6 [m]) is used. Indeed, for the fine mesh, there is
still no agreement on the damping regime between Figs. III.16b and III.20b. In contrast,
for the coarse mesh simulations (h = 1.25×10−5 [m]), the predictions from PFEM3D and [9]
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(a) Coarse mesh (h = 1.25 × 10−5 [m], 340 elements).

(b) Fine mesh (h = 5 × 10−6 [m], 2,206 elements).

Figure III.20: Droplet spreading displacement over time modelled by [9]. The curves of
interest in the context of this work are called « case 0 » (no consideration of the dissipation
due to friction at the liquid-substrate interface and at the contact line) and « case 3 »
(same values for the Navier-slip coefficient are imposed at the liquid-substrate interface
and the contact line). For both graphs, the time-step ∆t is set to ∆t = 2 × 10−7 [s].

are starting to look more alike, in terms of the overall shape of the curves (Figs. III.16a,
III.20a) as well as the obtained values for the frequency, the overshoot and the spreading
displacement at equilibrium. For the fine mesh simulations, this difference in behaviour
between the two models most certainly comes from the initial difference described in the
previous section, in which no additional forces were considered. It remains to be seen if
this difference disappears (or not) when taking into account the lacking contributions at
the contact line ∂Γ.
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5.3.3 Influence of the capillary effect and the normal stress component at ∂Γ

For the final part of the validation of the numerical model, the impact of the forces
related to the capillary effect and the normal stress jump, both acting at the contact line,
is studied. Mahrous [9] suggests studying the impact of the capillary force term and the
force term related to the normal stress jump separately, but in the context of this work,
the impact of these terms will be studied simultaneously. It is reminded that these forces
are expressed as Eq. III.30 :

additional forces at contact line ∂Γ = −ζv − βnv, (III.51)
where ζ is the coefficient related to the capillary force :

ζ = γ

u
(cos θs + 1) tanh

(
4.96Ca0.702

)
, (III.52)

with Ca = uµ/γ the capillary number, and βn is the coefficient related to the normal
stress jump :

βn = 1
u

µ∇(v · t) · t. (III.53)

In contrast with the Navier-slip coefficient (related to the dissipation at the liquid-
substrate interface as well as at the contact line), for which an alternative expression
was used, Eqs. III.51, III.52 and III.53 are implemented the same way in PFEM3D as in [9].
At this stage of the work, both the surface tension force at the contact line as well as the
dissipation at Γ′

FS are taken into account. For the latter, it has been determined previ-
ously that when the value of the slip length hslip is equal to the characteristic element size
h divided by 5, hslip = h/5, and when βs is computed as βs = µ/hslip, then the numerical
solution does not depend on the characteristic element size.

As suggested in [9], only the coarse mesh (h = 1.25 × 10−5 [m]) and the fine mesh
(h = 5 × 10−6 [m]) are considered for this study. The simulation results using PFEM3D are
presented in Fig. III.21. It is noted that the simulation time T is divided by a factor 2
with respect to the previous case studies (T = 2 × 10−3 [s] instead of T = 4 × 10−3 [s]) in
this work for the two following reasons :

• According to the work of Mahrous [9], the spreading displacement stabilizes around
t ≃ 10−3 [s], both for the coarse and the fine meshes ;

• With PFEM3D, the computations do not converge for ∆t = 2 × 10−7 [s], such that
smaller time-steps need to be used. This ultimately leads to a drastic increase of the
CPU-time. Indeed, while the average CPU-time for simulations without Eq. III.51
implemented in PFEM3D is ≃ 780 [s] (using the fine mesh h = 1.25 × 10−5 [m]), this
value increases to over 5 hours when Eq. III.51 is taken into account.

Fig. III.21 shows that for both the coarse and the fine meshes, the behaviour of the
spreading displacement is such that it peaks around t = 3×10−4 [s] and then decreases to
its equilibrium value 8.25 × 10−5 [m], which is attained at t ≃ 10−3 [s]. This is the exact
behaviour that is also modelled in [9], for which the coarse mesh and fine mesh graphs
are given in Fig. III.22.
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Figure III.21: Droplet spreading displacement using the coarse mesh (h = 1.25 × 10−5

[m]) and the fine mesh (h = 5×10−6 [m]), both with and without the full set of additional
forces.

Qualitatively speaking, the behaviour modelled by PFEM3D and [9] is exactly the same,
which is underlined by Figs. III.21 and III.22. To quantitatively study the difference
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Figure III.22: Droplet spreading displacement over time modelled by [9]. A comparison
between the coarse mesh and fine mesh studies, with and without the full set of forces
(resp. « case 6 », « case 0 ») is performed. The time-step ∆t is set to ∆t = 2 × 10−7 [s].

between the two models, the following analyses are considered :

• Values for the overshoot :

– PFEM3D : t-coordinate t = 3.7 × 10−4 [s], spreading displacement coordinate
= 9.36 × 10−5 [m] ;

– [9] : t-coordinate t ≃ 3.3 × 10−4 [s], spreading displacement coordinate ≃
9.52 × 10−5 [m] ;

– Difference on the t-coordinate ∆t ≃ 12.12 [%], difference on the spreading
displacement coordinate ∆spreading displacement ≃ 1.68 [%] ;

• Values for the spreading displacement at equilibrium :

– PFEM3D : spreading displacement at equilibrium = 8.25 × 10−5 [m] ;
– [9] : spreading displacement at equilibrium ≃ 8.13 × 10−5 [m] ;
– Difference on the spreading displacement at equilibrium ∆spr. displ. at eq. ≃ 1.47

[%] ;

• Values for the maximal contact line velocity :

– PFEM3D : maximal contact line velocity umax = 6.46 × 10−1 [m/s] ;
– [9] : maximal contact line velocity umax ≃ 6.03 × 10−1 [m/s] ;
– Difference on the maximal contact line velocity ∆umax ≃ 7.13 [%].
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6 Conclusion
This part of the work has been dedicated to the extension of the PFEM3D solver in order
to correctly represent droplet spreading behaviour on a substrate.

In a first instance, it has been pointed out that the surface tension contribution Eq.
III.21 was missing in the FE formulation of PFEM3D, whose role is to take account for the
force arising from the dynamic contact angle at the droplet contact line. To implement
this force, the approach suggested by Jarauta [10] has been followed and allowed for an
implicit formulation of this lacking term. This approach turned out to be helpful, in the
sense that curvature is a quantity that cannot be computed by PFEM3D. In addition, a
HFS BC has been implemented.

After the addition of this force to the FE implementation of PFEM3D, the other lacking
contributions allowing for a correct modelling of droplet spreading behaviour have been
identified using [9] as a reference source. In his work, Mahrous [9] suggested the addition
of (a) a dissipative term taking account of friction at the liquid-substrate interface as well
as at the contact line, (b) a term taking account of the capillary effect at the contact line
and (c) a term taking account of the normal stress jump at the contact line.

While this exact strategy has been followed for the completion of the PFEM3D computer
code, some of the expressions suggested by Mahrous [9] have not been used, but rather
formulated alternatively. For instance, while the setup suggested by Mahrous consisted
of a droplet with an initial contact angle of 90 [deg] which evolved naturally to a value
of 45 [deg] to attain equilibrium, this work considered also an initial contact angle of 90
[deg], but was instantaneously set, at the following time-step, to 45 [deg], imposing this
equilibrium value rather than letting it evolve naturally. Furthermore, for the expression
of the Navier-slip coefficient (related to the dissipative friction at the contact line as well
as at the liquid-substrate interface), [9] suggested Eq. III.49 while in this work, Eq. III.28
has been used (based on the work of Meduri [11]) in combination with the mesh-dependent
nature of the slip length (described by Cremonesi [12]).

Despite the use of these different formulations, it has been proven extensively that the
results obtained by PFEM3D are in excellent agreement with the observations described
by Mahrous [9] once the entire set of forces is implemented. Indeed, while initially the
error on the dynamic values (e.g. oscillation frequency and overshoot) was far from being
negligible, once the entire set of forces prescribed by [9] was implemented, these differ-
ences virtually vanished. In addition, while the implementation of [9] exhibited mesh-
dependent behaviour of the numerical solution, PFEM3D did not show such behaviour. It
is however underlined once more that in the case of the dissipation force at Γ′

FS, the value
of the Navier-slip coefficient must be chosen is accordance with the prescriptions of Cre-
monesi [12] for this statement to be true.

At this stage of the work, it is safe to say that PFEM3D is able to model droplet
spreading behaviour with great accuracy now that the full set of forces are implemented
in its FE formulation. For this reason, PFEM3D is deemed acceptable for further extension
to model even more complex phenomena. In the following and last part of this work, a
simple model for contact angle hysteresis introduced and added to the computer model.
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Part IV

Further extension of PFEM3D :
modelling contact angle hysteresis

In the previous part of this work, it has been demonstrated extensively that with
the implementation of the additional forces in the PFEM3D computer code, the obtained

results are in excellent agreement with the work of Mahrous [9], meaning that droplet
spreading behaviour is now correctly modelled. The work of Mahrous [9], however, does
not take account of a common phenomenon that also impacts largely droplet spreading
dynamics : this phenomenon is contact angle hysteresis, which mostly depends on surface
roughness.

While the nomenclature might sound fancy at first impression, contact angle hysteresis
is a phenomenon that can easily be observed. For instance, when driving a car on a rainy
day, rain drops hit the windshield constantly. When paying attention to these drops, it
is observed that sometimes they move from bottom to top due to the effects of friction of
the incoming wind on their free surface, sometimes they do not ; this is solely the effect
of contact angle hysteresis. Another example is when after pouring a glass of water from
a bottle, some water drops are suspended near the neck. If their mass is small enough,
they will not bet dragged down under the effect of gravity : this is also an effect from
contact angle hysteresis (this is represented in Fig. IV.1).

Figure IV.1: Near the neck of a water bottle, some droplets remain at their position
without moving, despite gravity trying to drag them down. This is an effect of contact
angle hysteresis.
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For this final part of the work, the following structure is suggested. First, the physics
of contact angle hysteresis will be explained in order to get a general understanding of the
topic. Then, the work of Jarauta [10] is re-considered for the numerical implementation
of a basic model taking account of this phenomenon in PFEM3D. Next, some first results
with contact angle hysteresis are presented and discussed. Finally, general conclusions
are drawn and discussed as well.

1 The physics of contact angle hysteresis
To understand the physics behind contact angle hysteresis, it might be interesting to take
a step back on the notion of contact angle. This quantity has been introduced in the
previous part of this work in the context of the surface tension force acting at the contact
line of the droplet. The contact line has been defined as the point at which the liquid
(water in the context of this work), the substrate and the surrounding gas phase (air in
the context of this work) meet.

From a thermodynamics standpoint, the contact angle is the slope at the liquid-
surrounding gas interface in the near surroundings of the contact line [16]. The value
of this slope is such that it minimizes the free energy of a liquid in contact with a flat,
inert, homogeneous and smooth solid interface in accordance with the well-known Young
equation [16] :

γL cos θs = γS − γSL, (IV.1)
where γL [J/m2] is the liquid-gas interface free energy, θs [deg] is the static contact angle,
γS [J/m2] is the solid-gas interface free energy and γSL [J/m2] is the solid-liquid inter-
face free energy. In the previous part of this work, the satisfaction of Young’s equation is
obeyed by imposing equilibrium between the horizontal components of the interface forces.

In theory, the value of the static contact angle θs is said to depend on the values of these
different interfacial energies in accordance with Young’s equation. In practice, however,
the reality is quite different. Indeed, not only does the value of the static contact angle
depend on these surface energies, but also on the surface structure, the pretreatment of
these surfaces as well as their contamination level. Even worse, the notion itself of static
contact angle seems to be insufficient in terms of describing a specific surface.

This is where the notion of contact angle hysteresis comes into play. Indeed, in any real-
life context, Young’s equation Eq. IV.1 is a condition that cannot be realised practically
[16]. Hence, instead of describing a surface with the value of a static contact angle θs, the
notions of receding contact angle θr [deg] and advancing contact angle θa are introduced.
The contact angle hysteresis ∆θ [deg] is then defined by the difference of these angles as
follows :

∆θ = θa − θr. (IV.2)
Typically, the values of both the advancing contact angle and the receding contact an-
gle depend on their respective contact line velocity, denoted u [m/s] in order to remain
consistent with the notations introduced in the previous part of this work.
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In practice, it is observed that the value of the static contact angle θs is included in the
interval [θ0

r , θ0
a], where θ0

r [deg] is the static receding contact angle and θ0
a [deg] is the static

advancing contact angle. To understand the physical meaning of these contact angles,
consider the case in which a droplet deposited on a substrate is increased in mass, for
example by injecting mass through its base (by which is meant the solid-liquid interface,
previously denoted ΓFS). When mass is injected in the droplet, the dynamic contact angle
will increase because of gravity as well as the contact line being pinned, i.e., unable to
move. The value for the contact angle at which the contact line is allowed to advance
is then referred to as the static advancing contact angle. Equivalently, consider the case
in which the mass of a droplet deposited on a substrate is decreased. Then the value
of the contact angle at which the contact line is allowed to recede is referred to as the
static receding contact angle. This explanation is represented in Fig. IV.2 for the static
advancing contact angle.

air

substrate

mass flow

θ1 < θ0a

t1

u1 = 0 [m/s]

mass flow

θ2 = θ0a > θ1

u2 > 0 [m/s]

t2 > t1

u3 = 0 [m/s]

θ3 < θ0a

t3 > t2 > t1

mass flow

droplet droplet droplet

Figure IV.2: Schematic for the definition of the static advancing contact angle. At time t1,
the dynamic contact angle θ1 is smaller than the static advancing contact angle (dashed
purple line) such that the contact line is pinned. At t2 > t1, the value of the dynamic
contact angle θ2 > θ1 is equal to θ0

a and thus the contact line is allowed to move (this is
represented by the lighter blue surface). Finally, at t3 > t2 > t1, θ3 < θ0

a again such that
the contact line is pinned once more. In this figure, the dotted blue line represents each
time the previous state of the droplet free surface.

For water, which is the nature of the liquid considered in this work, the value for static
contact hysteresis ∆θ0 [deg], defined as :

∆θ0 = θ0
a − θ0

r , (IV.3)
is typically of the order of 10 [deg].

While what is explained hereabove is just the tip of the iceberg on the discussion of
contact angle hysteresis, going any further from this stage would surpass the scope of this
work. Indeed, the main concepts has been presented and can be summarized as follows :

• The static contact angle θs is included in the interval [θ0
r , θ0

a], where θ0
r is the static

receding contact angle and θ0
a is the static advancing contact angle. These values are

what describe the nature of a substrate ;
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• When the dynamic contact angle θ is in the interval [θ0
r , θ0

a], the contact line is said
to be pinned, i.e., the contact line is not allowed to move ;

• When the dynamic contact angle θ is greater than the static advancing contact angle
θ0

a, the contact line is allowed to move. When the contact line moves, the dynamic
contact angle becomes once more smaller than the static advancing contact angle,
at which point the contact line is pinned again ;

• When the dynamic contact angle θ is smaller than the static receding contact angle
θ0

r , the contact line is allowed to move. When the contact line moves, the dynamic
contact angle becomes once more greater than the static receding contact angle, at
which point the contact line is pinned again.

2 Implementation of contact angle hysteresis in the
numerical model

With a general understanding of contact angle hysteresis in mind, a way of implementing
this phenomenon in PFEM3D can be discussed. For this implementation, the approach
suggested by Jarauta [10] is followed.

Before explaining the approach suggested by Jarauta [10], a step must be taken back
on the implementation of the contact angle in PFEM3D. In the previous part of this work
(Part III), the contact angle was introduced during the discussion of the implementation
of the surface tension force at the contact line ∂Γ. As a reminder, the expression for the
surface tension force in the Galerkin formulation is described by Eq. III.21, namely :

surface tension force at ∂Γ = −
∫

∂Γ
γm · w d∂Γ, (IV.4)

where γ is the liquid surface tension (water in the context of this work), m is the vector
that is tangent to the droplet free surface ΓL at ∂Γ and w is an arbitrary KA test function.
Considering the 2D framework and introducing linear isoparametric elements (Eq. III.10),
it has been demonstrated that Eq. IV.4 can be reduced to :

−γm. (IV.5)
A visual interpretation of the vector m is reminded in Fig. IV.3. During the discussion
of the verification of the numerical model PFEM3D without considering the effect any addi-
tional forces on droplet spreading displacement behaviour except for the surface tension
force (which was initially lacking in the FE formulation of PFEM3D), it has been pointed
out that the value of the contact angle can be imposed through the components (m1, m2)
of m. While Fig. III.12 was used in the context of imposing the value of the contact
angle, it can also be used to explain how to measure. This representation is reminded in
Fig. IV.4.

While Jarauta [10] does not mention that it is not possible to model contact angle
hysteresis for equilibrium angles that differ from 90 [deg] using the implicit treatment
for the surface tension term, the way PFEM3D is implemented, as well as the method
for imposing equilibrium contact angles, does prevent this at the moment. Indeed, [10]
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Figure IV.3: Visual interpretation of the vector m, which is tangent to the droplet free
surface ΓL at the contact line ∂Γ. The vector m denotes the outward normal vector to
the droplet free surface and the vector ds, written ds⃗ in this figure, gives the direction of
the contact line.
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Figure IV.4: Measuring of the value of the contact angle through the components of the
vector m.

imposes, near the contact line, the value of the curvature such that the contact angle
evolves around this imposed value. In PFEM3D, it is not possible to calculate curvatures,
such that this approach cannot be used. This is the reason why, for the validation step of
the numerical model discussed in the previous part of this work, the equilibrium contact
angle has been « hard-coded » by setting the value of the components (m1, m2) of the
tangent vector m. However, for an equilibrium value of 90 [deg], the implicit treatment
of the surface tension force at the contact line does allow « natural » variation of the
contact angle, such that the phenomenon of contact angle hysteresis can be modelled for
this particular value.

In other words, the contact angle at the contact line can evolve as a dynamic variable
if the value of θs is set to 90 [deg]. For this reason, for the remainder of this work, it is
considered, per default, that θs = 90 [deg].

With this important remark in mind, the strategy for implementing contact angle
hysteresis suggested by Jarauta [10] can be explained. In accordance with the theory
related to contact angle hysteresis, the values of the static advancing contact angle θ0

a as
well as that of the static receding contact angle θ0

r are imposed in PFEM3D. Given it has
been pointed out hereabove that the value for the static contact angle hysteresis ∆θ0 for
water is typically of the order of 10 [deg], a reasonable choice for the interval [θ0

r , θ0
a] is :

[θ0
r , θ0

a] = [85, 95] [deg, deg], (IV.6)
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where θ denotes the value of the dynamic contact angle. The following condition for the
pinning of the contact line is then implemented :


if θ is such that : θ0

r < θ < θ0
a, then the contact line is pinned ;

else, the contact line is allowed to move and its velocity is calculated
in accordance with Eq. III.45.

(IV.7)

3 Initial test

3.1 Problem suggestion
In order to check if the phenomenon of contact angle hysteresis is implemented correctly
in the PFEM3D computer code, consider the following simple case study. Initially, a water
droplet (ρ = 103 [kg/m3], µ = 10−3 [Pa · s], γ = 72.8 × 10−3 [N/m]) of radius R is
deposited on a substrate characterised by a static contact angle θs = 90 [deg], a static
advancing contact angle θ0

a = 95 [deg] and a static receding contact angle θ0
r = 85 [deg].

By suggesting these values, the static contact angle hysteresis is ∆θ0 = θ0
a − θ0

r = 10 [deg]
and is in agreement with the theoretical discussion hereabove. Furthermore, the condition
θ0

r < θs < θ0
a is also satisfied. The only body force to which the droplet is subjected is

considered to be gravity. If the value of the dynamic contact angle is initially considered
such that θ0

r < θ < θ0
a, and if the droplet mass is great enough, the effect of gravity is to

flatten its shape, subsequently increasing the dynamic contact angle in order to satisfy
volume conservation. This is schematically represented in Fig. IV.5.

substrate

air

substrate

droplet

pinned ∂Γ pinned ∂Γ

R

g

Figure IV.5: Under the effects of gravity, if the droplet mass is great enough, the droplet
(initially shaped as a semi-circle, represented in the blue dotted lines) will flatten into
an ellipse-like shape (whole blue line) as mass is displaced from top to bottom (purple
vectors), which leads to an increase of the contact angle. If this contact angle θ is < θ0

a,
the contact line ∂Γ is pinned.

When this value of the dynamic contact angle reaches that of the static advancing
contact angle, the contact line is allowed to move and the droplet will spread on the
substrate.
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3.2 Choice of the initial geometry
A relevant dimensionless number which characterises the competition between the gravi-
tational pull and the capillary force is the Bond number (also called the Eötvös number),
denoted Bo [-] and defined as :

Bo = ρgL2

γ
, (IV.8)

where L is the characteristic length of the water droplet. It is said that the gravitational
pull dominates over the capillary force if Bo > 1, in which case the droplet mass should
be great enough to flatten the droplet. The « critical » value for L is then obtained as :

Bo > 1 =⇒ L >

√
γ

ρg
= 2.7 [mm]. (IV.9)

In other words, if the characteristic length of the water droplet is greater than this value,
its mass should be great enough for the gravitational force to dominate over the capillary
force and the contact line should be able to move. Indeed, the deformation of the water
droplet should lead to the dynamic contact angle being able to take values greater than the
static advancing contact angle, i.e., θ > θ0

a. Hence, a relevant choice for the droplet initial
radius is R = 1.5 [mm], such that the initial base length (the length of the liquid-substrate
interface) is equal to 3 [mm]. The value of the Bond number is then Bo = 1.21 > 1 [-].

3.3 Choice of the numerical parameters
In the previous part of this work, it has been demonstrated that the numerical solution
is independent of the characteristic element size if the complete set of surface forces is
implemented in the FE formulation. This statement has been validated for a coarse mesh
with characteristic element size h equal to a tenth of the characteristic drop length. Thus,
given R = 1.5 [mm] in the framework of the current study, h = 0.15 [mm] seems a relevant
choice for a coarse mesh (223 nodes, 446 elements). A fine mesh characteristic element
size is chosen as 0.05 [mm], in which case 1,770 nodes and 3,540 elements constitute the
FE mesh. A representation of these meshes is provided in Fig. IV.6.

The value of the time-step ∆t is set as ∆t = 10−5 [s] for this first case study. Other
simulation parameters are the simulation time T = 0.1 [s] and the alpha-parameter α =
1.2.

In the previous part of this work, it has been pointed out that the numerical results
do not depend on the characteristic element size h if the prescribed condition on the value
of the Navier-slip coefficient βs is satisfied. It is reminded that this condition is :

hslip = h

5 ; βs = µ

hslip
, (IV.10)

Hence, the values βcoarse
s and βfine

s are obtained as :

βcoarse
s = 33.3 [Pa · s/m] ; βfine

s = 100 [Pa · s/m]. (IV.11)
It remains to be studied if this mesh independence on the numerical results is also ob-
served.
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(a) Coarse mesh, h = 0.15 [mm] (223 nodes,
446 elements).

(b) Fine mesh, h = 0.05 [mm] (1,770 nodes,
3,540 elements).

Figure IV.6: Representation of the coarse and fine meshes used for the case study under
investigation.

3.4 Initial results
The graphs obtained for this case study are represented in Fig. IV.7. Both the spreading
displacement, used in the previous part of this work (cf. Fig. III.11), as well as the
dynamic contact angle are measured over time.

It is revealed, in the graph measuring the evolution of the spreading displacement
over time (Fig. IV.7a), that in contrast with the result obtained in the previous part of
this work, the numerical solution is not independent of the FE mesh. Indeed, while the
contact line remains pinned during the entire simulation using the coarse mesh, this is not
the case for the fine mesh simulation. It is shown in the latter solution that the evolution
of the spreading displacement is rather erratic.

This behaviour is understood better when the graphs for the evolution of the contact
angle (Figs. IV.7b, IV.7c) are taken into consideration. Indeed, these graphs show that
while the dynamic contact angle for the coarse mesh simulation oscillates smoothly in
between the range [θ0

r , θ0
a] = [85, 95] [deg, deg], the value of the dynamic contact angle

for the fine mesh simulation oscillates extremely rapidly between the upper and lower
values of these bounds. This unstable and rapid evolution of the contact angle over time
leads to droplet oscillations that increase over time. This result is non-physical, because
it suggests that the energy of the system increases, which is in violation with the second
law of thermodynamics.

Disregarding this nonphysical result, the implementation on the contact angle hys-
teresis itself seems to perform as expected. Indeed, when the value of the dynamic angle
reaches either the upper or the lower bound, its value is drawn back into the contact angle
hysteresis interval due to the contact line being set in motion.

3.5 Discussion
While the evolution of the value of the dynamic contact angle over time is smooth for
coarse mesh simulations, this is not observed when a fine mesh is used. Indeed, in the
latter case, the oscillations of the dynamic contact angle are highly unstable and result
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Figure IV.7: Representation of the spreading displacement and the dynamic contact angle
over time for coarse (h = 0.15 [mm]) and fine (h = 0..5 [mm]) meshes.

in nonphysical behaviour of the spreading displacement, namely its oscillation amplitude
increases over time. It might at this stage be interesting to check if this behaviour is
observed only for fine mesh simulations, or if this is inherent to the simplicity of the
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model that is chosen to implement contact angle hysteresis. To perform this study, the
problem suggested in the following section studies the motion of a droplet on an incline
of which the angle of inclination is increased incrementally. It should be observed that if
the angle of the incline is below a certain threshold value, the droplet is not allowed to
slide. When this threshold value is surpassed, however, the contact line should be allowed
to slide down the incline.

4 Droplet on an inclined plane
For further study of the implementation of contact angle hysteresis, the following prob-
lem is considered. A droplet is deposited on a plane which can be inclined in various
manners, characterised by the angle of inclination ξ [deg]. The droplet is submitted to
the gravitational pull g. This case study is represented in Fig. IV.8.

substrate

g ξ

droplet

air

Figure IV.8: Representation of the droplet deposited on an inclined plane.

Depending on the value of the inclination angle ξ, the droplet should be allowed to
slip down the incline or not. This is another way of qualitatively verifying if the baseline
of the phenomenon of contact angle hysteresis is correctly represented by the numerical
model. The following suggestions for ξ are suggested :

• ξ = 0 [deg] ;

• ξ = 5 [deg] ;

• ξ = 10 [deg] ;

• ξ = 15 [deg].

For this case study, the same geometry for the water droplet is chosen, being that its
initial radius is 1.5 [mm]. Furthermore, the values for the static advancing and static
receding contact angles are also maintained, i.e., θ0

a = 95 [deg] and θ0
r = 85 [deg]. The
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characteristic element size h is once more set to h = 0.15 [mm] and the value of the time-
step ∆t is maintained at ∆t = 10−5 [s] as well. For this simulation setup, the obtained
graphs are presented in Figs. IV.9, IV.10.
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(a) Position of the left contact line.
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(b) Dynamic contact angle at the left contact line.

Figure IV.9: Evolution of the position and the dynamic contact angle at the left contact
line.
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(b) Dynamic contact angle at the right contact line.

Figure IV.10: Evolution of the position and the dynamic contact angle at the right contact
line.

The quantities that are measured over time if Figs. IV.9 and IV.10 are the values of
the contact line position (resp. on the left side of the droplet and on the right side of the
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droplet) and the value of the dynamic contact angle (resp. on the left side of the droplet
and on the right side of the droplet). In terms of the evolution of the dynamic contact
angle, once the value of either the static advancing angle of that of the receding angle is
attained, it starts to oscillate erratically, just as studied for the fine mesh simulations (cf.
Fig. IV.7). Hence, the unstable behaviour of the contact angle is a problem that is most
certainly related to the simplicity of the implemented numerical model.

To obtain somewhat of a physical interpretation of these results, the coordinate of the
contact line, both on the left side and on the right side of the droplet, is tracked over
time. This position over time is measured as represented in Fig. IV.11.

substrate

x = 0 [m] x̂

g ξ

droplet

air

Figure IV.11: Representation of how the position of the contact lines are measured.

As should be expected, the evolution of the contact line coordinate follows a quadratic
law because the droplet accelerates from the left side of Fig. IV.11 to the right side under
the influence of gravity. While this result does not add much value to the discussion, it
is interesting to notice that the unstable behaviour of the dynamic contact angle does
not seem to have that much of an impact on the behaviour of the droplet displacement
over time. Furthermore, another observation that adds to the qualitative validation of
the implemented model for contact angle hysteresis is that when the inclination angle ξ
is increased, the contact line starts to move sooner. This is observed when comparing the
blue and red curves if Figs. IV.9a and IV.10a, respectively for ξ = 10 [deg] and ξ = 15
[deg]. These figures also allow to conclude that the threshold value for the droplet to start
sliding under the effect of gravity is anywhere in between ξ = 5 [deg] and ξ = 10 [deg].
In Fig. IV.12, some simulation snapshots of the sliding droplet are presented (ξ = 15
[deg]). Note that the inclination does not appear here, because the effect of gravity is
taken account of by setting the body force b to b = 9.81(sin ξ, − cos ξ).

5 Conclusion
In this part of the work, following the theoretical discussion on the phenomenon, a simple
model for contact angle hysteresis was suggested. A first case study was suggested and
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(a) Initial shape of the droplet.

(b) Shape of the droplet the instant before its right contact line is allowed to mode.

(c) Motion of the droplet on the incline.

Figure IV.12: Some simulation snapshots of the droplet on an incline problem.
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pointed out the mesh-dependent nature of the numerical solution. Indeed, the evolution
of the dynamic contact angle was pointed out to be very erratic and unstable. However,
during the qualitative study that followed, it was pointed out that despite this unstable
evolution of the contact angle, this did not seem to impact the physical relevancy of the
solution in terms of the motion of the contact line. This has been pointed during the
examination of the droplet on a slide case study.

As is pointed out in the theoretical discussion of this part of the work, contact angle
hysteresis is a very complex phenomenon, which shows in the obtained numerical results.
More search on this topic for further progress of the PFEM3D computer code is required.
However, a baseline for verification has been qualitatively established here and seems to
indicate that, ignoring the questionable behaviour of the dynamic contact angle over time,
contact angle hysteresis is accounted for in the computer model.
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Part V

Conclusion and prospects for future
work

In this work, the PFEM3D computer code has been extended in order to model liquid-
substrate contact phenomena at millimeter scales using the particle finite element

method. This particular finite element method was deemed particularly useful for prob-
lems of such nature, because its inherent Lagrangian nature allows for free surface tracking
over time. Concretely, this extension consisted in adding a set of additional forces at the
liquid-substrate contact region.

In a first instance, a case study for the PFEM3D computer code without any additional
forces has been considered. In this case, the 2D Rayleigh model [6] was used as a ref-
erence. The nature of this theory was to model droplet oscillations in zero-gravity, i.e.,
without the application of body forces, neither considering contact with a substrate. The
results obtained by PFEM3D were proven to be in excellent agreement with the theoretical
predictions, most notably for the case in which small oscillations of the droplet free surface
were considered. The small oscillations hypothesis was imposed by the theoretical model,
and not by a limitation of PFEM3D. This case study was introduced as a first application of
the PFEM3D computer code to millimeter-scale fluid dynamics, and more specifically to the
modelling of the competition between surface tension and viscosity, crucial for small-scale
problems.

Then, the work of Mahrous [9] was considered for the implementation of the set of
lacking forces. The forces to add to the FE model suggested by [9] were (a) a force result-
ing from friction at the liquid-substrate contact, (b) a force resulting from the capillary
effect at the contact line and (c) a force resulting from the normal stress component at
the contact line. Before the implementation of these forces, it was pointed out that the
force resulting from surface tension at the contact line was lacking, as well as a horizontal
free slip boundary condition. For the implementation of the surface tension force at the
contact line, the approach from Jarauta [10] was followed, who suggested in his work an
implicit expression for this term. The set of lacking forces were then added to the PFEM3D
computer code. For the force related to friction at the liquid-substrate contact, the work
of Cremonesi [12] was considered for an alternative implementation for the value of the
Navier-slip coefficient, while the remaining forces were implemented as prescribed by [9].
Once more, the results from PFEM3D were proven to be in excellent agreement with respect
to the work of Mahrous [9], despite the use of different approaches sometimes (namely for
the implementation of the contact angle as well as for the determination of the Navier-slip
coefficient).

In the final part of this work, with a completed PFEM3D computer code, the problem
regarding contact angle hysteresis was tackled. Indeed, it has been pointed out that con-
tact angle hysteresis is a phenomenon that is particularly important for the modelling of
small-scale fluid dynamics. The implementation of this phenomenon followed the work
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of Jarauta [10], which suggested pinning of the contact line when the dynamic contact
angle was within a given interval. Preliminary results computed by the PFEM3D computer
model were proven to be encouraging, in the sense that they coincide with the prescribed
theoretical phenomenology. It is underlined once more however that the evolution of the
dynamic contact angle over time seems faulty, but does not lead to nonphysical behaviour
of e.g. the droplet on a slide problem.

The combination of these results lead to the conclusion that PFEM3D is now a computer
model, based on the particle finite element method, that could potentially prove useful
for the modelling of more complex millimeter-scale fluid dynamics problems, such as lab-
on-chips, spoken about in the introduction of this work. However, tackling this range of
problems would, in a first instance, require further work on the value of the static contact
angle. Indeed, it has been pointed out in this work that for the time being, the value of
the equilibrium contact angle could either be imposed to an exact value (in which case
no contact angle variations are possible) or to 90 [deg] only (in which case contact angle
variation is possible). In addition, further verification of the computer model validity in
terms of the representation of contact angle hysteresis should be performed.
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Appendices
Appendix 1. (Proof of approximation nβnRn−2

0 ≃ ε̇n.) Start from the velocity potential
of the n-th mode (Eq. II.12) :

φ(r, θ, t) = βn(t)rn cos(nθ), (A.1)
as well as the kinematic boundary condition (Eq. II.13) :

vr(r = R) = ∂φ

∂r

∣∣∣∣∣
r=R

= ∂R

∂t
. (A.2)

Per substitution of Eq. A.1 in Eq. A.2, the following arises :

vr(r = R) = ∂φ

∂r

∣∣∣∣∣
r=R

= ∂

∂r
[βn(t)rn cos(nθ)]r=R

= βn(t)nrn−1 cos(nθ)
∣∣∣
r=R

= ∂R

∂t
. (A.3)

In Eq. A.3, R can be substituted by its expression Eq. II.11 to get, for any n ≥ 2 :

∂R

∂t
= ∂

∂t

[
R0

(
1 − 1

4ε2
n + εn cos(nθ)

)]

= R0

(
−1

4 ε̇2
n + ε̇n cos(nθ)

)
≃ R0ε̇n cos(nθ), (A.4)

where the passage from the second to the third line is backed by the fact that εn =
αn/R0 ≪, such that ε̇2

n ≪ ε̇n. Hence, by substitution of Eq. A.4 in Eq. A.3 (note
βn(t) ≡ βn to alleviate notations) :

βnnrn−1 cos(nθ)
∣∣∣
r=R

≃ R0ε̇n cos(nθ) ⇐⇒ βnnRn−1 cos(nθ) ≃ R0ε̇n cos(nθ)

⇐⇒ βnnRn−1 ≃ R0ε̇n. (A.5)

However, given εn ≪ such that R ≃ R0, Eq. A.5 can finally be approximated as :

ε̇n ≃ nβnRn−2
0 , (A.6)

which concludes the proof.
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Appendix 2. (Proof that the second integral of the RHS is Eq. II.15 is equal to zero due to
incompressibility.) Recall that the incompressibility condition translates mathematically
to :

∇ · v = 0, (A.7)
which can be re-written as follows in terms of the velocity potential φ :

∇ · (∇φ) = ∇2φ = 0. (A.8)
Hence, by substitution of Eq. A.8 in Eq. II.15, the proof is immediate :

−
∫

Ω(t)

1
2ρφ ∇2φ︸ ︷︷ ︸

=0

dΩ(t) = 0. (A.9)
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Appendix 3. (Is simulation quality degraded by setting larger characteristic element
sizes in the liquid bulk ?) To prove the point that the characteristic element size h(d) can
be set to larger values in the liquid bulk, it suffices to compare the simulation results with
and without local mesh refinement11 allowed. Hence, for the case in which local mesh
refinement is allowed, the characteristic element size is a function of the distance d from
the droplet free surface ∂Ω(t) and is set to the following value :

h(d) = 10−4 + 0.2 × d [m], (A.10)
which is determined to be the « optimal »12 value in Section 3.4.1. For the case in which
no local mesh refinement is allowed, the value of the characteristic element size is uniform
over the entirety of the mesh and set to a value of 10−4 [m]. For these cases, the graph
displaying the comparison between the resulting curves and the theoretical predictions is
given in Fig. A.1.
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Figure A.1: Comparison between the theoretical model Eq. II.33 and the numerical solu-
tion considering the possibility for mesh refinement and no possibility for mesh refinement.

This figure showcases that the numerical results considering local mesh refinement and
no local mesh refinement are virtually indistinguishable, meaning they lead to virtually
identical results. The reason for preferring the implementation with local mesh refinement
is that the latter accomplishes the simulation in considerably less CPU-time. Indeed, the
simulation using no local mesh refinement exhibits a CPU-time of ∼ 3, 200 [s], while the
one with local mesh refinement only needs ∼ 500 [s] to finish the computations.

11When speaking about « local mesh refinement » here, it is meant that the mesh is finer along the
droplet free surface, while it is coarser in the bulk of the droplet.

12The usage of the term « optimal » here means that this value of h(d) maximizes result quality while
minimizing CPU-time.
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Appendix 4. (A discussion on performance in terms of mass conservation/element
quality.) As explained in Part I, the main difference between CGAL re-meshing and
CGALConstrainedChew re-meshing is that the former allows for both element addition
and suppression, while the latter only allows for element addition. In terms of mass con-
servation, this might mean that CGAL re-meshing performs better in conserving mass over
the time of the simulation13, so why is CGALConstrainedChew preferred over it ? The
reason for this preference is simply that CGALConstrainedChew performs better gener-
ally speaking, for example : element suppression at the free surface (of the droplet, in
terms of the current framework) is a quite prominent problem with CGAL re-meshing, but
is minimized with CGALConstrainedChew re-meshing. More important even is that the
overall mesh quality is optimized, which ultimately allows for better result interpolation
and hence better overall result quality. Consider for example the set of figures below,
Fig. A.2, which are snapshots from a simulation in which large droplet deformations are
modelled14.

(a) Snapshot one. (b) Snapshot two.

Figure A.2: Snapshots from a simulation rendered in the Gmsh API using CGAL re-meshing.

The nodes in which numerous elements from the free surface converge are called thorns,
and lead to poor interpolation quality of the simulation results. Indeed, for numerical
solutions in which e.g. large velocity gradients appear, the interpolation of the results for
each element at one same node might be difficult and lead to poor solution representation.
Of course, this problem can be countered by refining the characteristic element size at
points where these velocity gradients are large, but this would increase the CPU-time,
which is something that the user would rather avoid.

The question on how mass is conserved over time by both re-meshing algorithms
still remains, and is a primordial one to be considered, given if droplet mass is not con-
served over time, the simulation results, even if mesh quality is optimal, are inherently
false. In Fig. A.3, a comparison on mass conservation is performed using both CGAL and

13As elements that are added/removed can be removed/added by the algorithm to compensate element
excess/loss.

14More information on the nature of the problem that is modelled, such as geometrical, numerical and
physical parameters is omitted here, because it adds nothing interesting to the current topic of discussion.
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CGALConstrainedChew re-meshing. The full set of parameters is (cf. Section 4)15 :

• Geometry parameters (initial droplet configuration : ellipse) :

– Major axis a = 1.75 [mm], minor axis b = 1.629 [mm] ;
– Equilibrium geometry/configuration : equilibrium radius R0 = 1.688 [mm] ;

• Numerical parameters :

– Characteristic element size h(d) = 10−4 + 0.2 × d [m] ;
– Time-step ∆t = 10−5 [s] ;
– Simulation time T = 0.1 [s] ;
– Alpha-parameter α = 1.2 [-] ;
– CGAL/CGALConstrainedChew re-meshing.
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Figure A.3: Comparison of the error on mass using both CGAL and CGALConstrainedChew
re-meshing for the case study presented in Section 4.

The error on mass appearing in this figure is defined along :

error on mass ≡ ∆m = mtheoretical − mnumerical

mtheoretical × 100, (A.11)

and expressed in [%]. From the figure above, it turns out the error on mass committed
by the CGAL re-meshing algorithm and the CGALConstrainedChew re-meshing algorithm
is the same over time, leading to the conclusion that the latter is a preferable choice.
Furthermore, this error is of the order of 10−2 [%], meaning that mass is almost perfectly
conserved during the simulation.

15This set of parameters is used because later in this work it will be proven that these lead to numerical
convergence for the case study presented in Section 4.
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Appendix 5. (Some simulation snapshots and supplementary remarks.) For the case
study in which the initial deviation from equilibrium is large, it is interesting to display
some simulation snapshots on the oscillation pattern of the droplet free surface ∂Ω(t).
These snapshots are presented in Fig. A.4 for different values of the simulation time and
obtained using the set of parameters described in Section 5.

(a) t = 0 [s]. (b) t = 1.4 × 10−3 [s].

(c) t = 2.7 × 10−3 [s]. (d) t = 3.9 × 10−3 [s].

Figure A.4: Snapshots from the simulation case described in Section 5 rendered in the
Gmsh API at different times t. The color profile represents the droplet kinetic energy ke.

These figures show the apparition of so-called standing capillary waves, which manifest
because of the large initial deviation from equilibrium. Indeed, these result from the large
pressure gradient that is initially imposed by the definition of the reference configuration
geometry. Mathematically speaking, standing capillary waves represent the oscillation
mode n = 4 described in Section 5. The graph for the numerical solution Fig. II.13
also shows these standing capillary waves ; this is presented in Fig. A.5. The way
these standing capillary waves appear in the graph for ε2(t) over time is by the addition
of an oscillation mode, and more precisely by the increasing/damping of the elementary
oscillation mode n = 2 (clearly visible near the maxima/minima of the curve in Fig. A.5).
Over time, these standing capillary waves fade out and the oscillation pattern reaches that
of a case in which a small initial deviation from equilibrium is imposed (due to viscous
energy dissipation).
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Figure A.5: Evolution of the droplet free surface over time for a large initial deviation
from equilibrium (cf. Section 5).
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