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availability and the crucial help he provided during the development of this thesis.

His encouragement and expertise played a significant role in shaping this project.

A special thank you goes to Loris Mendolia, to whom I owe immense gratitude. His

generous assistance, willingness to answer my countless questions, and the invaluable

tips he provided were indispensable. His high availability and meticulous review of

this document significantly improved the quality of this work.

I would like to extend my sincere thanks to Marie Garcia-Bardon, Bowen Wang, and

Fernando Garcia-Redondo for the warm welcome they gave me during my internship

at imec. Their guidance and support made it the best possible internship I could

have wished for. I am particularly grateful for the opportunity they provided me to

write my first scientific paper and to present it at a conference, an experience that

has been invaluable to my growth as a researcher.

I would also like to thank my friends, who shared this journey with me. The joy

they brought into my life and the countless memories we created together during

these years will always be cherished.

Finally, I want to express my deepest appreciation to my family—my parents, my

sister and her husband, and my grandparents. Their infinite support, wisdom, and

encouragement helped me persevere through the challenging times. They have con-

tinuously inspired me to become a better version of myself, and for that, I am forever

grateful.

I



Abstract

Neuromorphic engineering seeks to replicate the brain’s computational power and

energy efficiency in hardware. Current neuromorphic designs, however, face chal-

lenges in achieving ultra-slow timescales critical for replicating biological neural be-

haviors such as realistic bursting patterns. This thesis focuses on addressing these

limitations through the design and simulation of neuromorphic circuits capable of

ultra-slow dynamics while optimizing area efficiency. Using the Cadence Virtuoso

software and a general purpose development kit (GPDK), the work reproduces a

reference circuit which mimics biological homeostasis, and incorporates this system

to an existing neuron circuit, leading to a new modulable neuron design. Key ad-

vancements include the combined use of a differential pair integrator (DPI) and an

automatic gain control (AGC) loop to achieve ultra-slow temporal filtering and new

neuromodulation capabilities while avoiding the need for excessively large capaci-

tors. Simulation results demonstrate significant improvements in achieving the de-

sired dynamics with enhanced area efficiency. This work represents a step towards

more practical large-scale neuromorphic hardware capable of mimicking complex

neural behaviors.

II



Table of Contents

1 Introduction 1

1.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A Modulable Neuromorphic Neuron 5

2.1 The basic building blocks . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Differential Pair Integrator . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Current-mode sigmoid . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Feedback structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Neuromorphic modulation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Limitations of the current design . . . . . . . . . . . . . . . . . . . . 13

3 The Automatic Gain Control Loop 15

3.1 Homeostasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 System Overview and Functionality . . . . . . . . . . . . . . . . . . . 16

3.3 The Low-Leakage Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 The Low-Leakage PMOS . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 Operational Transconductance Amplifiers . . . . . . . . . . . . 20

3.4 Comparator circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Ideal comparator . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 1-PMOS 1-NMOS inverter . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Improved comparator . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.4 Area efficiency comparison . . . . . . . . . . . . . . . . . . . . 29

3.4.5 The low-leakage cell with ideal switch . . . . . . . . . . . . . . 30

3.5 Characterization of the AGC loop . . . . . . . . . . . . . . . . . . . . 32

3.5.1 The AGC Loop with an ideal comparator . . . . . . . . . . . . 33

3.5.2 The AGC Loop with the simple inverter comparator . . . . . 35

III



3.5.3 The AGC Loop with the improved comparator . . . . . . . . . 37

4 A New Modulable Neuron with Slower Dynamics 39

4.1 High-level description . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Behavior and comparison with the previous design . . . . . . . . . . . 40

4.3 AGC enabled neuromodulation . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusions and future works 51

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 53

IV



1 Introduction

1.1 Background Information

Neuromorphic engineering is a field at the intersection of neuroscience and elec-

tronics that aims to reproduce the efficiency and computational power of biological

systems, especially the brain, in silicon. Conventional digital circuits, while power-

ful, cannot replicate the parallel and distributed processing of neurons because of

their fundamentally different architecture. Neuromorphic circuits attempt to bridge

this gap by emulating neural structures and functions in hardware, resulting in much

more energy-efficient and faster processing systems. These circuits are particularly

valuable for tasks that require real-time processing and adaptation, such as the

interpretation of sensory data, where biological systems excel [1].

Figure 1.1: Membrane potential of a thalamic neuron showing its different firing
modes (upper panel is tonic spiking; lower panel is bursting). Figure
taken from [2], adapted from [3].

In real neural systems, computation and communication are achieved through elec-

trical impulses known as action potentials, or spikes, which are generated by the

flow of a large number of ionic currents across the neuron’s membrane through spe-
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cialized protein pores called ion channels. These spikes are the fundamental units

of information in the nervous system, and their timing and frequency encode and

transmit information. In particular, two patterns of neuronal activity are observed:

tonic spiking and bursting (shown in Figure 1.1). Each of them plays a different role

in the processing of information. This work focuses on the reproduction of bursting

in neuromorphic circuits.

Hodgkin and Huxley have been pioneers in laying down the foundations of mod-

ern neuronal models. They proposed a widely-recognized model for describing the

neurons electrical properties, taking into account multiple ionic currents and show-

ing that these currents operate on different timescales due to the time-dependent

evolution of their respective channel conductances [4]. More recently, research has

highlighted the importance of both positive and negative feedback in various neu-

ronal models to produce biologically plausible activity [5, 6, 7].

1.2 Problem Statement

Despite advances in neuromorphic hardware, current designs of neuromorphic neu-

rons face limitations in achieving longer timescales, which is critical to accurately

replicate biological neuronal behavior. This limitation is particularly evident in

processes that require slow dynamics, such as neural bursting for motor control,

requiring timescales in the order of the second [8]. In addition, these designs suffer

from area efficiency and integration density issues, which are critical to capture the

complexity of large-scale neural networks. Extending the timescales of these cir-

cuits while increasing area efficiency and integration density is critical to advances

in neuromorphic computing area [9].

1.3 Motivation

State-of-the-art neuromorphic circuits utilize complementary metal-oxide semicon-

ductor (CMOS) technologies built with very-large-scale integration (VLSI) pro-

cesses, where transistors can operate in two regimes: subthreshold and above-

threshold. While conventional circuits typically operate transistors in the above-

threshold regime, neuromorphic circuits exploit the subthreshold regime due to its

lower power consumption, enabled by the reduced current flowing through the tran-
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sistors.
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Figure 1.2: I-V characteristic curve of an NMOS.

Figure 1.2 shows the typical relationship between the gate-to-source voltage and

the drain current of an NMOS transistor, highlighting the two modes of operation.

It should be noticed the difference in the drain current increase for similar gate-to-

source voltage increase demonstrating the higher gain of transistors in subthreshold.

In this regime, the relationship between the drain current and the voltages applied

to the NMOS transistor is given by:

IDS = I0e
κVG
UT (e

− VS
UT − e

−VD
UT ), (1.1)

where I0 is the leak current parameter, κ the subthreshold slope factor, UT the

thermal voltage (≈ 26mV at T = 300K), VG the gate voltage, VD the drain voltage

and VS the source voltage.

The subthreshold regime’s logarithmic-exponential properties are particularly ad-

vantageous for replicating neuronal behaviors [10]. In this context, current-mode

design is emphasized, where circuit state variables and signals are represented as

currents [11]. The use of subthreshold CMOS devices ensures that the circuit op-

erates effectively over a wide range of currents due to the low voltage swing, which

keeps circuit voltages away from the supply rails. This is particularly important

as CMOS technology scale down in size and in supply voltage VDD. Addition-
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ally, current-mode design simplifies the integration of different circuit elements by

leveraging Kirchhoff’s current law, allowing for seamless combination of circuits.

Together, these features make current-mode design with subthreshold transistors a

powerful approach for neuromorphic circuit design.

By leveraging these techniques, it may be possible to design neuromorphic circuits

that not only match the temporal characteristics of biological neurons but also allow

for higher integration densities, making neuromorphic hardware more practical for

large-scale applications.

1.4 Methodology

This work focuses on the design and simulation of neuromorphic circuits using the

Cadence Virtuoso platform, a widely-used tool in the semiconductor industry for

analog and mixed-signal design. The circuits are implemented using the General-

Purpose Development Kit 180 (GPDK180) technology, which allows the use models

of transistor whose length can be scaled down to 180nm, and the analogLib li-

brary which provides the necessary components for the simulation of subthreshold

and current-mode circuits. The thesis is divided into two main parts: first, the

reproduction of a reference circuit using the GPDK180 on Cadence, and second, an

exploration of the filtering properties of these circuits, combined with the design of

a new modulable neuron circuit. The ultimate goal is to achieve a neuromorphic

neuron circuit capable of ultra-slow dynamics suitable for replicating complex neural

behaviors such as bursting while seeking for a high area efficiency.
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2 A Modulable Neuromorphic

Neuron

This chapter introduces the neuron circuit developed by L. Mendolia in the context

of its PhD at the University of Liège [12]. This circuit has been the starting point of

the work carried out during this thesis and it is crucial to understand its behavior

as well as its limitations.

2.1 The basic building blocks

2.1.1 Differential Pair Integrator

VDD

Iin

Vc

Ic

Iout

VDD

Ig

Iτ
Vτ

Vg

Figure 2.1: DPI schematic.

The Differential Pair Integrator (DPI) is a fundamental building block for creating

neuromorphic circuits, often used to mimic synaptic communication [13]. The DPI

circuit acts as a log-domain linear temporal filter, meaning that: first, the input
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current undergoes a logarithmic transformation achieved through the exponential I-

V characteristics of CMOS devices operated in the subthreshold regime, as shown in

section 1.3. This logarithmic conversion leverages a wide dynamic range of operation

while ensuring low power consumption. Then, the logarithmic voltage is linearly

integrated, effectively realizing a temporal filtering of the input. Finally, this filtered

signal is converted back to a current, representing the filtered synaptic current.

Figure 2.1 shows a CMOS implementation of the DPI, utilizing 3 NMOS transistors,

3 PMOS transistors and a capacitor. It should be noted that the other part of the

current-mirror that sets Vτ and thus Iτ is not shown in the figure for the sake of

clarity but is built the same was as the one setting Vg. This approach ensure to

avoid undesirable behaviors when the capacitor is fully discharged.

In the initial configuration, where the current source is directly connected to the

DPI branch, if Vc approaches 0V , the ideal current source will cause the capacitor

to continue discharging and then start charging in the opposite direction, which

is undesirable when using a polarized capacitor. The current mirror configuration

mitigates this issue by shutting down the NMOS transistor replacing the current

source when Vc approaches 0V , as its VDS will also approach 0V .

Under the right assumptions, i.e, for similar sub-threshold slope factors between

NMOS and PMOS: κn = κp = κ, and for Iin >> Iτ , the operation of the DPI can

be modeled by the following equation [13]:

τ
d

dt
Iout = −Iout +GIin, (2.1)

with time constant τ =
CUT

κIτ
– where UT represents the thermal voltage – and

gain G =
Ig

Iτ
. Hence, it can be seen that the filtering properties of the DPI can

be independently and linearly tuned by the circuit parameters. From there, the

transfer function of the circuit is derived:

τsY = −Y +GX ↪→ H(s) =
Y

X
=

G

1 + τs
, (2.2)

which has the canonical form of a first-order RC low-pass filter with tunable gain

G.
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The results of the AC and transient simulations are presented hereunder, showing

how the different parameter values affect the filtering characteristics of the circuit.
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Figure 2.2: DPI Bode diagram (full lines represent magnitude; dashed lines the
phase) computed through Cadence Virtuoso AC simulation with a fixed
C=10pF.

Figure 2.2 illustrates the magnitude and phase response to small input variations

(1nA around IDC = 100nA) over a wide range of frequencies for different values

of gain and time constants. The traces of the magnitude – expressed in dB – are

represented by full lines, while those of the phase are represented by dashed lines.

Although the Bode plot of the DPI is visually analogous to that of a first-order

low-pass filter, the results of these simulations demonstrate significant discrepancies

with the theoretical expressions developed above. In particular, it can be observed

that the two parameters of interest, namely G and τ , are not independent because

the value of Iτ has a discernible impact on the gain, even when Ig is set to GIτ .

Furthermore, the differences between the DPI model (2.1) and the simulations can

be observed numerically. The DC gain – i.e. the magnitude response at f = 0Hz

– of the circuit with parameter values corresponding to the pink, gold, blue and

green curves are 6, 2.73, −1.61 and −3.47 dB, respectively. Similarly, the cutoff
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frequency which is given theoretically by: fc = 1
2πτ

, is observed to be ≈ 6Hz for

τ = 0.087 and ≈ 30Hz for τ = 0.0087 in the simulations instead of 1.83Hz and

18.3Hz, respectively.

These inconsistencies can be attributed to the fact that Equation 2.1 is based on

two fundamental assumptions (κn = κp = κ and Iin >> Iτ ) that are not exactly

satisfied in the actual circuit.
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Figure 2.3: DPI transient simulation

Figure 2.3 presents the DPI response to input current pulses, demonstrating the

temporal filtering of these pulses. It can clearly be seen how the gain G and the

time constant τ affect the dynamics of the circuit. The same observations concerning

the fidelity of the simulation to the model made in Figure 2.2 also apply here.
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2.1.2 Current-mode sigmoid

VDD

Vin

V0

Vlin Vgain

Iout

M1

M2

M3

M4

M5

M6

M7

Iin

Vc

Figure 2.4: Schematic of the Sigmoid circuit designed by Chenxi Wen from the NCS
group at the Institute of Neuroinformatics, University of Zurich and ETH
Zurich.

The circuit shown in Figure 2.4 is a current-mode circuit that exhibits a sigmoidal

input-output relationship. The behavior of the circuit is determined by three key

parameters: I0, Ilin and Igain which control the transition between the low, linear,

and high output regimes of the sigmoid. It should be noted that here, I0 is an inde-

pendent parameter, different from the leakage current introduced in Equation 1.1.

Vin, V0, Vlin and Vgain are logarithmic images of the corresponding currents. These

voltages are set through current mirrors, which are not shown on this schematic for

the sake of clarity.

In order to understand the origin of this sigmoid relationship, the circuit can be

decomposed into three distinct branches. The initial branch, comprises the PMOS

M1 with its source connected to Vdd and the NMOS M2 with its source connected

to the ground. The drains of the two devices are then connected together. This

configuration leads to a comparator. Indeed, a comparison is performed between
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the gate voltages of the PMOS and the NMOS, which are proportional to their

associated currents Iin and I0. If Iin < I0, the output voltage Vc will be at a low

state, close to ground. On the contrary, If Iin > I0, the output voltage Vc will be

at a high state, close to VDD. However, this comparison is almost digital. Hence, a

second branch is added, comprising M3, M4 and M5. The purpose of this branch is

to draw a controllable current Ilin from the first branch, effectively “slowing down”

the comparison. This means that once the input crosses the threshold I0, Vc will not

be directly pulled up to VDD. Instead, Vc will linearly increase (in the log-domain)

with Iin before saturating to VDD when Iin becomes larger than I0 + Ilin. Finally, a

third branch is added, where transistor M6 converts the voltage back to a current,

which is capped to a maximum value determined by the current Igain.
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Sigmoid DC Analysis
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I0 = 350n, Igain = 700n, Ilin = 200n

Figure 2.5: Sigmoid DC analysis

The results of the DC sweep of the input current are presented in Figure 2.5, which

illustrates the influence of the key parameters on the output current.
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2.2 Feedback structure

Spiking behavior in neural systems is a complex process that relies on the interplay

of both positive and negative feedback mechanisms. Positive feedback plays a crucial

role in rapidly driving the system to a high state once the input exceeds a certain

threshold, effectively triggering a neuronal action potential, or “spike”. However, if

only positive feedback were present, the system would remain locked in this high

state after crossing the threshold instead of the generation of temporally localized,

discrete, spikes. To ensure the system returns to its resting equilibrium almost

immediately after reaching the high state, negative feedback is introduced. This

negative feedback allows the system to quickly reset, thereby enabling the creation

of spikes.

In the context of creating artificial neurons on chips, the neuron circuit presented

in this section implements similar feedback loops – although simplified – acting on

three different timescales by interconnecting multiple DPI and sigmoid circuits with

varying parameter values. A block diagram providing a high-level description of the

functioning of the circuit is shown in Figure 2.6.

1

1+ τf s 

1

1+ τs s 

1

1+ τus s 

    

    

Ius

Is

If
Ineuron-input

Figure 2.6: High-level description of the neuron circuit [12],[14].
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The neuron circuit designed in Cadence Virtuoso implements this block diagram,

using three DPI circuits as the first-order low-pass filters and two current-mode sig-

moid circuits to control the positive feedback. The DPIs are individually configured,

with each one filtering its input on a distinct timescale: fast, slow, or ultra-slow.

These timescales correspond to three key tunable parameters of the system: τf , τs

and τus. Together with the parameters of the sigmoid circuits, they provide a versa-

tile framework for the neuron circuit. The following section shows how tuning their

values influences the dynamics of the neuron’s response.

2.3 Neuromorphic modulation

Translating from neuronal models to neuromorphic circuits, it has been demon-

strated that it is possible to use similar methods with a mixed-feedback neuron

circuit in order to modulate its dynamics [15].

In particular, the modulable neuromorphic neuron designed with the topology pre-

sented in the previous section can exhibit a wide range of complex behaviors, such

as tonic spiking, tonic bursting, and other dynamic firing patterns observed in bi-

ological neurons. This is achieved by appropriately tuning the main parameters

of the system: the fast, slow and ultra-slow times constants of the DPIs and the

sigmoid thresholds, linear region and gain. As a result, the neuron circuit is highly

adaptable for different computational tasks.

Figure 2.7: Neuron output dependency on input intensity and slow negative feedback
gain. Figure taken from the work of L. Mendolia [16].
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As an example, Figure 2.7 illustrates how changing the gain of the slow negative

feedback, hence the gain of the sigmoid connected to the DPI with time constant τs,

allows the neuron to switch from type-I excitability (green) to tonic bursting (orange)

and type-II excitability (blue) for a given input intensity. Additionally, it is possible

to modify the characteristics of a certain behavior, e.g., the spikes amplitude, the

spiking frequency in tonic spiking, the intra/inter- burst spiking frequency.

2.4 Limitations of the current design

Despite showcasing high adaptability and already being able to perform several tasks

[16], this neuromorphic neuron architecture could be further improved. The main

drawbacks of the proposed design lies in the size of the circuit and in the maximum

timescales achievable.

As in many areas of electronics, minimizing circuit size is crucial, particularly for

enabling very large-scale integration (VLSI) on chips. Smaller circuits not only

reduce costs but also allow these chips to be more easily embedded into systems,

making them more portable and less invasive which can be especially important in

applications such as biomedical devices.

A key objective of this master thesis is to achieve longer timescales in the neuron

circuit to enhance its fidelity to biological neuronal signaling. Current transient

simulations in a bursting configuration result in bursting frequencies which are higher

than what is typically observed in biological systems for given inputs [8]. For the

ultra-slow current, realistic timescales should range from hundreds of milliseconds

to minutes. Achieving these extended timescales is crucial for accurately replicating

the dynamics of real neurons.

However, extending the timescales poses a challenge related to the circuit’s physical

layout. In the initial design by L. Mendolia, which occupies a total area of 180 ×
20µm, more than half of the area is taken up by the capacitors used in the DPI

circuits. As discussed in subsection 2.1.1, the time constant τ is proportional to

the capacitance C and inversely proportional to the current Iτ . Since Iτ cannot be

scaled down beyond a certain point (on the order of picoamperes) due to transistor

leakage currents, increasing C is the only way to achieve longer timescales, which

inevitably leads to larger capacitors and a larger overall circuit area.

13



Thus, this thesis aims to explore efficient methods for achieving the necessary longer

timescales while simultaneously striving to reduce the total area occupied by the

circuit.
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3 The Automatic Gain Control

Loop

This chapter focuses on reproducing results from [17] using the GPDK180. In this

work, the authors developed a circuit that reproduces a mechanism observed in real

neural systems, called homeostasis, in order to achieve longer biological timescales.

As new results, we also characterize the filtering properties of this system and com-

pare it with the ultra-slow DPI of the neuromorphic neuron circuit detailed in the

previous chapter.

3.1 Homeostasis

In 1929, Walter B. Cannon was the first to define homeostasis, building upon the

concept of ’milieu intérieur’ introduced by the French physiologist Claude Bernard in

1878. He described it as the physiological mechanisms through which living systems

are able to maintain a sort of equilibrium or steady state, even when faced with

external disturbances [18].

In their work, N. Qiao and colleagues demonstrate that it is feasible to reproduce the

homeostatic plasticity of neural systems on a microchip, thereby ensuring that the

computational abilities of neural systems are robust to long-lasting changes in their

environment. The chip area occupancy is in the order of tens of mircometres, with

a power consumption in the order of tens of nanowatts, using a standard 0.18µm

CMOS process.
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3.2 System Overview and Functionality

A circuit capable of achieving homeostasis on long timescales is achieved by adopting

an automatic gain control (AGC) scheme of a DPI neuron. In [17], the authors

showed that this technique allows the synaptic current flowing into the neuron to

be maintained around a fixed value and that the AGC loop is capable of eventually

restoring this equilibrium after that a perturbation has been introduced to the DPI

input. Doing so ensure that the neuron response is robust to long-lasting changes

in their environment. An overview of the system is shown in Figure 3.1.

DPI synapse

IAGC-input

Comparator

Ultra Low
Leakage Cell

(LLC)

VSW
VThr

Isyn

Iref

Neuron

Figure 3.1: Block diagram of the AGC Loop.

The AGC is composed of two blocks that together add feedback to the DPI.

The first block is a comparator circuit that compares the synaptic current – which

is the DPI output current – to a reference current. If Isyn < Iref , the comparator

output is set to low, i.e., VSW = 0V . Otherwise, VSW is set to VDD.

The second block is the (ultra) low leakage cell (LLC). The DPI connected to the

AGC is a p-type DPI, meaning that the PMOS and NMOS are swapped compared

to Figure 2.1. As a result, the current Igain can be expressed as:

Igain = I0e

κ(VDD − VTHR)

UT , (3.1)
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where it can be seen the effect of VTHR on Igain.

The LLC slowly adjusts VTHR based on the ’digital’ comparison signal VSW . When

VSW is low, the LLC slowly decreases VTHR, leading to an increase in Igain and,

consequently, bringing Isyn closer to Iref . Conversely, when VSW is high, the LLC

slowly increases VTHR, decreasing Igain and lowering Isyn closer to Iref .

3.3 The Low-Leakage Cell

The variation of the output voltage VTHR is achieved by driving a current to charge

or discharge a capacitor. The relationship between the current and the voltage across

a capacitor yields that
dV

dt
=

I

C
. Hence, two options are possible to achieve small

voltage variations leading to longer timescales: having a large capacitor or driving

an extremely small current. However, as previously explained, large capacitors are

undesirable because they inevitably lead to a large area occupancy. The Low-leakage

cell thus utilizes multiple mechanisms to control the amplitude and direction of the

current flowing through the capacitor.

Figure 3.2: Circuit implementation of the low-leakage cell. Figure taken from [17].

The circuit implementation of the LLC is shown on Figure 3.2. The central part of

this circuit is the low-leakage PMOS of the middle and the capacitor connected to

its drain.
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3.3.1 The Low-Leakage PMOS

In the proposed circuit, the low-leakage PMOS is used as a controllable current

source. The current IDS flowing through it can be controlled both in direction and

amplitude. In order to make the current flow into the direction that charges the

capacitor and thus increases VTHR, the VDS of the PMOS is set to a positive value.

On the other hand, if the goal is to decrease VTHR, VDS is set to a negative value.

Both the source and the drain voltages are set using operational transconductance

amplifiers (OTA) as depicted in Figure 3.2

The amplitude of IDS is modulated by 2 factors: the drain-to-source voltage VDS and

the gate voltage VG. Since, the aim of the LLC is to achieve ultra long timescales

up to several minutes, the targeted orders of value for IDS are from several tens of

attoamperes to femtoamperes, i.e., approximately 10−17 − 10−15A.

Consistently driving such extremely small values from/into the drain of the transistor

requires to minimize its leakage currents. The techniques used to reduce leakages

are:

1. Finding the appropriate size, and in particular width-length ratio W/L, of the

low-leakage PMOS to minimize the drain-to-gate current. Study [17] found

that the optimal ratio is W/L = 0.5µm/1µm.

2. Minimizing the leakage from the drain of the low-leakage PMOS to the con-

nected gate of the input transistor of OTA2. This is accomplished by setting

the W/L ratio of this transistor to 8µm/1µm, as found by [17].

3. Using an isolated well, i.e, ensuring that the bulk voltage VB is the same as

the drain voltage VD to minimize the drain-to-bulk current.

It should be noted that the technology node used in [17] may be slightly different

from the one used in this work, meaning that the physical models of the transistors

may not match exactly. However, the simulations carried out in this work showed

that the application of the methods described above does indeed result in negligi-

ble leakage currents. Therefore, the effects of varying the sizes of the transistors

mentioned have not been further investigated.
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Figure 3.3: Drain current of the low leakage PMOS for a DC sweep on Vs.
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Figure 3.4: Drain current of the low leakage PMOS for different VDS pulses.

Figure 3.3 and Figure 3.4 demonstrate how a drain current with controllable di-

rection and amplitude in the range of attoamperes can be achieved. As it can be

seen, reaching these extremely small current levels require setting the VDS of the

low-leakage PMOS to values below 1mV . However, it is important to note that,

unlike in these simulations where ideal voltage sources are used, the LLC sets these

voltages through OTAs, which have limited accuracy.

The impact of the gate voltage VG on the drain current ID is also shown. In par-
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ticular, it can be seen that setting a negative source-to-gate voltage, i.e. VG > VS,

significantly increases the device resistance compared to a positive VSG.

3.3.2 Operational Transconductance Amplifiers

The operational transconductance amplifiers OTA1 and OTA2 function as unity

gain buffers. By incorporating a feedback loop between the output and the inverting

input of the OTA, the output voltage is effectively clamped to the value applied at

the non-inverting input. This configuration ensures that the output faithfully tracks

the input voltage. This feedback mechanism is crucial for achieving precise control

over the VDS of the low-leakage PMOS, as discussed earlier, allowing the circuit to

maintain extremely small current levels in the attoampere range.

Figure 3.5: Circuit implementation of the OTAs. Adapted from [17]

The accuracy of this mechanism is greatly influenced by the open-loop gain of the

amplifiers. Indeed, starting from the basic equation of the operational amplifiers :

Vout = AOL(Vin(+) − Vin(−)), (3.2)

with AOL the open-loop gain, Vin(+) the non-inverting input and Vin(−) the inverting

input.

Then, replacing Vin(+) by Vin and Vin(−) by Vout (since they are connected together),
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we obtain the formula for the closed-loop gain:

Av =
Vout

Vin

=
AOL

1 + AOL

, (3.3)

which tends to 1 as AOL −→ ∞.

In practice, however, the open-loop gain of any amplifier is always finite. Therefore,

OTA1 and OTA2 have been designed to achieve the highest possible gain while keep-

ing a reasonable circuit size. Their implementation, depicted in Figure 3.5 employs

a pseudo-cascode scheme in order to enhance the open-loop gain, as suggested by

[19].

Furthermore, in the case of OTA2, the input voltage remains fixed at VrefM during

all the operation time of the LLC. However, concerning OTA1, its input varies

depending on the output of the comparator circuit and the switch between the two

possible values VrefL and VrefH can happen several times per second. It is thus

important to examine the bandwidth of the OTAs.
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Figure 3.6: Open-loop gain of OTA1 and OTA2.
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−

+ Vin

L = 1GH

Figure 3.7: Open-loop configuration of the OTAs

Figure 3.6 shows the open-loop gain of the OTAs described above. For this ex-

periment, in order to perform simulations that illustrate the open-loop gain, the

feedback loop is broken by introducing a large inductor (1GH). Indeed, adding

such a large inductor in the feedback path allows to remove the AC component of

the signal while ensuring that a DC operating point can be found.

The DC gain found in this configuration is AOL = 75 dB which should result in a

closed-loop gain very close to 1 as desired. The cutoff frequency is around 30Hz

but at is it shown when analyzing the closed-loop gain, this is not representative of

the behavior in a closed-loop configuration.

Re-establishing the feedback loop by removing the inductor and connecting the

output back to the inverting input, a simulation showing the closed-loop gained is

then performed.

Figure 3.8 shows the closed-loop gain of the OTAs which is indeed very close to

1 (0 dB) for a wide range of frequencies, as it is desired, meaning that the output

follows very closely the input.

3.4 Comparator circuit

As mentioned earlier, the role of the comparator circuit is to output a digital signal,

low or high, depending on the value of Isyn compared to Iref . Since the authors

of [17] do not show the implementation of their comparator circuit, several designs
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Figure 3.8: Closed-loop gain of OTA1 and OTA2.

have been tested in this work.

3.4.1 Ideal comparator

First, we observed the ideal behavior the circuit should have by simply using an

ideal element: the voltage-controlled voltage source (VCVS). This dependent source

outputs a voltage which is proportional to its input voltage with a tunable gain Gv,

i.e.:

Vout = GvVin. (3.4)

The VCVS compares voltages while the aim of the comparator is to compare cur-

rents and in particular, Isyn to Iref . However, as it is the case with current-mirrors,

diode-connected transistors provide voltages Vsyn and Vref that are images of the

corresponding currents. Therefore, connecting Vsyn to one of the input pins of the

VCVS and Vref to the other results in a faithful comparison between the two cur-

rents.
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Figure 3.9: DC simulation of the ideal comparator using a VCVS.

Figure 3.9 shows a DC simulation of the VCVS where the gain has been fixed at a

very large value (106) to ensure a digital behavior. The values of the input current Iin

corresponding to Isyn are swept from 250nA to 300nA while keeping Iref constant

(250nA). It can be noted that the linear region, which transitions from 0V to VDD

is remarkably narrow (≈ 2nA) thanks to the very high gain of the VCVS.

3.4.2 1-PMOS 1-NMOS inverter

VDD

Vin

Vref

M1

M2

Vout

Figure 3.10: Circuit implementation of the inverter.
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The first tested implementation of a real comparator circuit that does not use any

ideal element consist in a two-transistors inverter circuit as shown in Figure 3.10.

The structure is the same as for the first branch of the sigmoid circuit presented in

subsection 2.1.2. On the contrary to the case of the sigmoid circuit, it is desired

for the comparator circuit the smallest possible linear region in order to produce an

outputs which is as close as possible to a digital signal.

Figure 3.11 shows a DC simulation similar as the one performed with the VCVS.

However, it has to be noted that tuning the sizes of the two transistors plays a

crucial role in shaping the transition from one state to the other. In particular,

small transistors lead in a very large linear region with a weak slope while larger

transistor lead to a more digital behavior. In this case, large transistors refers to

transistors that are both long and have a large width, as tuning the W/L ratio did

not help to achieve a sharper transition.

Hence it can be seen that this design suffers from two major drawbacks. The first one

is the requirement to have large transistors to achieve an input-output relationship

resembling the one of a digital comparator, thus leading to a larger area occupancy.

The second drawback is that even when using large transistors the linear region is

ten times longer than in the case of the VCVS and is thus no longer negligible. It is

shown in the later subsection 3.5.2 that this has a visible impact on the functioning

of the circuit. It can also be noted than this design does not achieve a rail-to-rail

output in the saturation regions but this has less impact on the functioning of the

LLC.
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Figure 3.11: DC simulation of the inverter including size effects.

3.4.3 Improved comparator

Figure 3.12: Full circuit implementation of the improved comparator. Adapted from
[20].

The second design that have been considered, depicted in Figure 3.12, is a three-

stages comparator circuit described in a book from R. Jacob Baker [20].
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Figure 3.13: Pre-amplification stage of the comparator circuit. Adapted from [20].

The first stage, shown in Figure 3.13 is an input pre-amplifier circuit. Its role is, to

amplify the differential input signal, which, in the case of the LLC consist in Vsyn and

Vref , in order to improve the sensitivity of the comparison and reduce the impact of

noise. The pre-amplification circuit is composed of a differential-pair amplifier that

drives its two output currents iop and iom into active loads, i.e., the output currents

flow trough transistors Mx and My in the output branches. If the two input voltages

are similar, iop = iom. However, the bigger the difference in input voltages the larger

the corresponding current will be and conversely, the lower the current flowing into

the other branch will be. Hence, if Vp > Vm, then iop > iom while Vp < Vm results in

iop < iom.

It has to be noted that in the full circuit, the pre-amplifying stage is composed of

both an n-type (as shown in Figure 3.13) and a p-type differential-pair amplifier

whose outputs are summed together to feed the decision circuit.
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Figure 3.14: Decision stage of the comparator circuit. Adapted from [20].

.

The second stage of the comparator, depicted in Figure 3.14 is the decision circuit.

This circuit takes advantage of the cross-gate coupling between the transistors M6

and M7 to provide positive feedback in order to determine which input is the largest.

When iom >> iop, meaning that vm >> vp at the pre-amplifier stage, then vom is

large enough to turn ON, through the gate connection, the transistors M6 and M7.

On the contrary, vop turns OFF M5 and M7. Therefore, in the left branch, the

current iop is almost entirely drawn by M6. Since, there is almost no current flowing

through M5 and that M5 is in a diode-connected configuration, vop is pushed to 0V .

Using a similar development for the right branch, almost all of the current iom flows

through M8 and since it is diode-connected, vom is pushed to a high value.

Then, if the difference between vm and vp decreases at the pre-amplifier stage, iop

and iom get closer. Consequently, vop increases, vom decreases, thus, M7 starts to

draw more current away from M8. If all the NMOS transconductance are similar,

the switching point is reached when iop = iom. Further increasing iop and decreasing

iom effectively pushes vom to 0V and vop to a high state.

In the full circuit, it can be seen that an additional diode-connected NMOS is con-

nected to the sources of these transistors to ensure that the outputs of the decision

circuit is a compatible input to the final stage of the full comparator circuit.

Finally, the third and last stage of this comparator circuit is the output buffer. Its

role is to amplify the output signal of the decision circuit to provide a rail-to-rail

digital output signal. It is composed of a p-type differential-pair amplifier followed

by an inverter to further increase the gain.
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Figure 3.15: Improved comparator DC simulation.

Figure 3.15 shows DC simulations of this improved comparator circuit. The blue

curve refers to a circuit setup where all the W/L ratios are as indicated in [20]. As

it can be seen, the input value for which the output is switched is shifted to the left

by 10nA compared to the expected value. By reducing the W/L ratio, which also

allows to reduce the overall size of the circuit, the switching is re-centered and the

transition becomes sharper as it is shown by the red curve. In this configuration,

the size of the linear region is only 2nA wide and the output is either at 0V or VDD

outside of this region. This behavior is similar to the one observed with the ideal

voltage-controlled voltage source shown in Figure 3.9 which shows that this improved

comparator circuit is a good option for implementing the digital comparator of the

automatic gain control loop.

3.4.4 Area efficiency comparison

Although the behavior of the comparator circuit described in subsection 3.4.3 is

much better than the one of the simple inverter, it is interesting to compare the

area occupancy of these circuits.

The inverter circuit is composed of only two transistors. However, as it has been

discussed in subsection 3.4.2 the size of these transistor must be large enough to
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provide a sufficiently digital input-output relationship. For this calculation and for

the experiments of the full AGC loop using the inverter as the comparator, a width

and a length of 6µm is fixed, occupying an area of 12 × 12µm. However, in order

for the comparison to be correct, the transistors of the current-mirrors copying the

currents Iref and Isyn must also have the same size. Hence the total area considered

increases to 24× 24µm.

As for the improved comparator circuit it has a combined width as high as 39µm

and a combined length of 21µm. In comparison, the total area occupied by the

ultra-slow DPI of the previous neuron design is approximately 2000µm2

Concerning the AGC, a clear trade-off appears between the quality of the circuit

behavior and the total area it occupies. Some improvements could be made in

this regard concerning the improved comparator. In particular, it could be further

explored the effect of reducing the overall size of the transistors and it could be

discussed the utility of having both an n-type and p-type differential-pair amplifier

at the input stage of the comparator.

It is shown in the following sections that the AGC circuit allow to reach much

larger timescales compared to the current design presented in chapter 2. In order to

achieve these timescales with this design, it would be necessary to increase the circuit

capacitance further, which would result in the use of capacitors of a considerable

size. Therefore, in such cases, it may still be preferable to utilize the AGC loop from

the perspective of the total circuit area.

3.4.5 The low-leakage cell with ideal switch

This section presents a first overview of the behavior of the LLC and shows that it is

indeed possible to achieve ultra-long timescales by appropriately tuning the voltages

applied to the low-leakage PMOS.

In the transient simulation shown in Figure 3.16, the input signal VSW is set through

an ideal voltage source to VDD value for this first half of the simulation before

dropping to 0V for the second half. The gate voltage is set to VG = 1.5V and it can

be observed the effect of different VDS on the dynamics of the LLC. The capacitor

has a fixed value of 100fF . The capacitor negative pin is connected to the drain

of the LL-PMOS such that the drain current is always the equal to the capacitor

current, i.e., IDS = Icap.
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Figure 3.16: Temporal evolution of the LLC for different VDS of the LL-PMOS.

When VSW is high, the input transistor of OTA1 ML is ON while MH is OFF. VS

is then set at VrefL . Since VrefL < VrefM < VrefH , VDS = VrefM − VrefL is positive,

hence IDS > 0 and Icap < 0. This current charges the capacitor Cf which leads

to an increase in the output voltage VThr. On the contrary, when VSW is low,

VDS = VrefM − VrefH is negative, hence IDS < 0 and Icap > 0 which leads to a

decrease in VThr.

The effect of the amplitude of VDS on the speed at which the system evolves can be

observed in Figure 3.16.

With a VDS amplitude of 2mV , the current drawn by the low-leakage PMOS is

approximately 2.3 fA and therefore Icap ≈ 2.3 fA (which cannot be observed in this

31



figure). This current charges the capacitor, resulting in an increase in VThr with a

slope of approximately 23mV/s. However, at this rate, VThr rapidly reach VDD and

the system stops with Icap = 0A and VThr that saturates at VDD. In practice, such

a case has to be avoided as it would result in the AGC being unable to reach the

reference current. Once, the input signal switched, the direction of Icap changes and

the capacitor starts to discharge, decreasing VThr with a similar slope.

Reducing VDS reduces the amplitude of IDS. As can be seen, a VDS of 0.1− 0.2mV

leads to a current in the order of hundreds of attoamperes. Lowering the cur-

rent amplitude allows to slow down the output evolution. However, it should also

be noted that the lower the VDS the bigger the asymmetry in current amplitude

between one switch state and the other and thus the bigger the difference be-

tween the increasing and decreasing slopes of VThr. Indeed, when VDS = ±0.2mV ,

Icap is around 320/ − 160 aA and the increasing/decreasing slopes of VThr are ≈
+3.33/− 1.54mV/s while VDS = ±0.1mV leads to Icap ≈ +200/− 30 aA and VThr

slopes ≈ +2.24/− 0.3mV/s.

Although it is also possible to increase the value of the gate voltage VG to reduce the

current drawn by the low-leakage PMOS, doing so further increases the amplitude

difference between the positive and negative current IDS.

In conclusion, it can be seen that the evolution of VThr reaches very large timescales.

While it is not direct to deduce the timescale of a DPI whose gain would be con-

trolled by this voltage, it is reasonable to assume that it would be in the order of

several seconds. As a comparison, the timescale of the ultra-slow DPI of the neuron

presented in chapter 2 is approximately 0.173 s. Also, It should to be noted that the

capacitor value of 100fF is much smaller than the capacitor that would be needed

to achieve similar timescales using only the ultra-slow DPI of the previous neuron

design.

3.5 Characterization of the AGC loop

With the individual components and main blocks of the circuit now thoroughly

detailed, the characterization of the complete system is conducted. Transient simu-

lations are first presented to observe the temporal evolution of the circuit’s behavior,

providing insight into how the different components interact dynamically. Following

this, AC simulations are performed to characterize the circuit’s frequency response,
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examining its behavior as a filter.

All the simulations presented hereunder have been performed with similar circuit

parameters and inputs. In particular, the input current is composed of a DC current

of 60nA and a large pulse of 100nA is introduced from t = 20 s to t = 40 s. The

reference current of the comparator is maintained at Iref = 250nA. As for the

main parameters of the low-leakage cell, VrefL = 1.3800V , VrefM = 1.3802V and

VrefL = 1.3804V , ensuring that the VDS of the low-leakage PMOS is always at

±0.2mV , VG = 1.5V and the value of the capacitor of the LLC is fixed at 100 fF .

3.5.1 The AGC Loop with an ideal comparator
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Figure 3.17: AGC Loop with ideal comparator transient analysis.
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First, the behavior of the AGC loop using the ideal voltage-controlled voltage source

as the comparator circuit is shown in Figure 3.17.

At first, the synaptic current Isyn is lower than the reference current Iref . Therefore,

the comparator outputs a low digital signal. This low signal is transmitted to the

LLC and OTA1 sets Vs to VrefH which results in a negative VDS of the low-leakage

PMOS. The low-leakage transistor thus pulls a current that discharges the capacitor

which decreases the output voltage VThr. Finally, this voltage controls the gain of

the DPI, causing an increase in the synaptic current. Hence, a full loop of the circuit

has been performed. This behavior continues until Isyn becomes larger than Iref .

Once the synaptic current reaches the level of the reference current, the comparator

starts switching. In this ’locked region’ (as described by [17]), VS alternates between

VrefH and VrefL . Although the capacitor current exhibits large spikes (several fA)

which might be caused by the abrupt voltage changes, these transients are instan-

taneous and the average current flowing through the low-leakage PMOS becomes

zero. Since the capacitor neither charges or discharges, VThr is maintained and the

synaptic current stays constant around the reference current.

At t = 20 s a perturbation is introduced by adding a step current to the input. Since

the time constant τ of the DPI is very low, the synaptic current is nearly immediately

pushed up. The comparator output now stays in a high state since Isyn > Iref , the

current flowing through the LL-PMOS starts charging the capacitor, leading to an

increase in VThr and thus a decrease in Isyn.

The system enters once again the locked region around t = 34 s before going back

to the tracking mode when the input pulse is removed at t = 40 s.
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3.5.2 The AGC Loop with the simple inverter comparator
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Figure 3.18: AGC Loop with simple inverter transient analysis.

Figure 3.18 introduces the behavior of the AGC loop where the ideal comparator

has been replaced by the simple inverter described in subsection 3.4.2.

In the tracking regions, the overall behavior of the AGC loop is very similar to the

previous case. The main visible difference is found when Isyn approaches Iref . Since

the synaptic current approaches the reference very slowly, the inverter output enters

its linear region and instead of reaching VDD, it settles at an intermediate value.

This is caused by the pair of transistors used for the input of OTA1. Indeed, these

transistors are connected in a similar configuration that the inverter and outputs
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either VrefL or VrefH depending on the digital signal it receives. However, in this

case, the gate voltage of these transistors is an intermediate value. Consequently

the value set at VS by OTA1 is between VrefL and VrefH and eventually settles at

VrefM . Therefore, VDS is approximately zero, no current charges or discharges the

capacitor and both VThr and Isyn become constants.

Even though this design exhibits a very similar behavior, regarding the evolution of

VThr and Isyn, it should be noted that the value of Isyn for which the AGC stabilizes

is slightly above the reference current (≈ 10nA in this case). This indicates that

this design is less precise that the one using the ideal comparator.
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Figure 3.19: Frequency response of the synaptic current to small variations of the
reference current (with the simple inverter).

Looking at Figure 3.19, the filtering properties of this version of the AGC circuit

are compared to the ones of the DPI responsible for the ultra-slow feedback in the

neuron presented in chapter 2.

The plain lines are direct AC simulations from Cadence Virtuoso while the crosses

are the measured synaptic current variations when introducing small sinusoidal vari-

ations of the reference current at different frequencies (every decades in this case).

This ’handcrafted’ AC analysis may be less precise but is still representative of the

overall behavior for most frequencies and shows its usefulness in cases where Cadence

AC analysis is irrelevant (which is shown later in subsection 3.5.3).

It can be seen that both the DC gain and the cutoff frequency are similar. After
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the cutoff frequency, the slope of the AGC response is around −20 dB per decade.

However, the AGC exhibits a rebound in its frequency response in the range of kHz

to MHz before dropping again.

In the frequencies of interest of a neuron circuit, i.e., from DC to hundreds of hertz,

the behavior of the AGC is very similar to the ultra-slow DPI which indicates the

possibility of replacing it by the AGC circuit.

3.5.3 The AGC Loop with the improved comparator
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Figure 3.20: AGC Loop with improved comparator transient analysis.
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Replacing the simple inverter by the improved comparator of subsection 3.4.3, the

switching behavior of the comparator output and of the current Icap is restored as

depicted in Figure 3.20. Furthermore, the accuracy of the tracking of the reference

current is similar to the configuration that uses the ideal comparator.
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Figure 3.21: Frequency response of the synaptic current to small variations of the
reference current (with the improved comparator).

Figure 3.21 illustrates the frequency response of the AGC circuit using the improved

comparator. In this case, it is evident that the direct AC analysis provided by the

simulation tool misses the real behavior of the circuit. This completely different

behavior may be explained by the fact that the fast switching nature of the com-

parator circuit induces instability and that the Cadence AC analysis may not be

able to find the time at which the variations of synaptic current stabilizes. However,

the ’handcrafted’ AC analysis made by measuring the synaptic current variations

after sufficient time, directly from a transient analysis allows to recover the low-pass

filter behavior that is expected.

Although, the cutoff frequency is lower compared to the one of the ultra-slow DPI in

this case due to the larger time scale of the AGC, the overall response is still faithful

to the desired behavior with a similar slope in the frequencies of interest. Hence,

this indicates that this version of the AGC design might also be a good replacement

for the neuron ultra-slow DPI circuit. Further more, it should be noted that this

difference in the cutoff frequency may appear because of the lower accuracy of the

’handcrafted’ method.
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4 A New Modulable Neuron with

Slower Dynamics

The preceding chapter presented the automatic gain control (AGC) scheme and

demonstrated that the output current of the DPI associated with the AGC circuit

is a low-pass filtered version of the reference current. In particular, it has been

demonstrated that the filtering properties of the DPI responsible for providing the

ultra-slow negative feedback in the neuron circuit of chapter 2 are similar to those

of the AGC loop.

Consequently, this chapter investigates the potential for replacing the ultra-slow

DPI, which necessitates the utilization of a substantial capacitor, with the AGC

circuit, which occupies a total area of approximately 960µm2 compared to the

2000µm2 of the ultra-slow DPI capacitors of previous design. However it should

be noted that this size is only an estimation calculated with the transistors and

capacitors sizes of the circuit and does not take into account the constraints set by

a real physical layout. Hence, it is more likely that the total area occupied by the

AGC is between 1500 and 2500µm2. The new design provides a reduced overall ca-

pacitance and innovative tunable parameters that facilitate novel neuromodulation

capabilities.
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4.1 High-level description
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Figure 4.1: Block diagram of the new neuron design.

An overview of the new neuron design is depicted in Figure 4.1. As can be observed,

the ultra-slow negative feedback is now provided by the AGC circuit. The copy of the

neuron output is now directed to the comparator reference current pin and the low-

leakage cell continuously adapts the gain of the AGC DPI so that its output current

is a low-pass filtered version of the reference current. This effectively recreates the

ultra-slow negative feedback current necessary for spiking and bursting.

4.2 Behavior and comparison with the previous

design

Simulations of the new neuron design incorporating the AGC circuit have been

conducted using both the simple inverter and the improved comparator circuits.

The results indicate that both comparator configurations yield similar results in

terms of the neuron’s overall behavior. All subsequent simulations and analyses
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presented in this section and in the following section have been carried out using

the improved comparator but similar results are obtained with the simple inverter.
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Figure 4.2: Neuron and AGC behavior with initial parameter set.

To evaluate the performance of the new neuron design with the AGC circuit, a first

simulation is conducted where the parameters for the fast and slow feedback currents

were kept identical to those used in the previous neuron design, which exhibited

bursting behavior. Additionally, the AGC parameters are set to the same values as

described in section 3.5. The results, depicted in Figure 4.2, show that under these

conditions, the neuron produces a single spike followed by a prolonged period of

approximately 28 seconds, during which the output current slowly decreases before

eventually resetting. This behavior suggests that the timescale provided by the AGC
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for the ultra-slow negative feedback is too large, resulting in the inability to produces

realistic spiking. To achieve more plausible bursting patterns, the timescale of the

AGC feedback must be reduced.

Following the observation that the initial AGC timescale was excessively long, the

AGC parameters were carefully tuned to reduce this timescale to a more appropriate

range. Figure 4.3 illustrates the results of this adjustment, demonstrating that

with properly tuned AGC parameters, the new neuron design successfully exhibits

bursting behavior. The figure highlights the combined dynamics of the circuit by

displaying both the neuron output and the key signals from the AGC circuit.
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Figure 4.3: Bursting neuron using the AGC Loop to provide ultra-slow negative
feedback. VG = 1.4V , VrefL = 1.345V , VrefM = 1.365V , VrefL = 1.389V ,

AGCin = 75nA.
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With the new neuron design now tuned to exhibit bursting behavior, a comparison

with the previous design [12] is conducted using the same input and identical fast and

slow feedback parameter values. Figure 4.4 presents this comparison, highlighting

the differences in behavior between the two designs.
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Figure 4.4: Comparison of the output and feedback currents of the two designs [16].

The figure reveals that the ultra-slow negative feedback current in the new design

has overall slower dynamics compared to the old design. This slower dynamic has

two significant consequences. First, the more gradual increase in the ultra-slow neg-

ative feedback current means that it takes longer to reach the reset threshold, which

is the point at which the burst ends. As a result, the new design, using these param-

eter values, produces larger bursts, containing more spikes per burst. The second
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consequence is that the slower decreasing slope of the ultra-slow feedback current

extends the time between bursts, thereby reducing the overall bursting frequency.

4.3 AGC enabled neuromodulation

As demonstrated in the previous section, the behavior of the new neuron design can

be completely altered by controlling the ultra-slow feedback current. This control

is achieved simply by tuning the parameters of the Automatic Gain Control (AGC)

circuit. By adjusting these parameters, it is possible to fine-tune the dynamics of

the ultra-slow feedback current, allowing for a wide range of bursting patterns to be

generated, enabling the neuron circuit to mimic various neural behaviors through

parameter adjustments of the AGC alone.

As shown in Figure 4.4, there is an extended period where the neuron remains

inactive due to the initial value of the ultra-slow feedback current being too high for

the neuron to spike. To address this inhibition at the start, several approaches can

be explored. One method is to increase the voltages VrefL , VrefM and VrefH equally,

which decreases the initial value of Igain. from the AGC DPI, thereby lowering the

initial ultra-slow negative feedback. Alternatively, a simpler approach is to reduce

the constant input current of the AGC DPI, which also acts as a multiplying factor

affecting the DPI output. Figures 4.5, 4.6 and 4.7 illustrate the effect of decreasing

the AGC input on the initial value of the ultra-slow negative feedback current,

demonstrating that this adjustment can significantly reduce the initial period during

which the neuron is inhibited by the ultra-slow current.

It has to be noted that the initial oscillations that can be observed in these sim-

ulations are numerical instabilities which disappears once the low-leakage PMOS

voltages VD and VS are correctly set by the OTAs.
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Figure 4.5: Bursting neuron with AGCin = 100 pA

When the AGC input is set at 75nA, the initial value of the ultra-slow current is

around 300nA which completely inhibits the neuron response. The gain adaptation

of the AGC DPI takes around 0.5 s to increase VThr and thus Vsyn to a value for

which the output PMOS transistor of the AGC DPI operate in the subthreshold

region. Afterwards, it takes an additional 0.1 s to lower the ultra-slow current to a

level where the neuron can produce spikes.
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Figure 4.6: Bursting neuron with AGCin = 100 pA

Reducing the AGC input current to 100 pA, it is shown in Figure 4.6 that the the

reduced input pushes Vsyn up closer to VThr. Consequently, the output transistor of

the AGC DPI enters the subthreshold regime way faster, which enables the neuron

to burst already from t ≈ 0.2 s.
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Figure 4.7: Bursting neuron with AGCin = 25 pA

A further reduction of the AGC input to 25 pA brings the initial value of the ultra-

slow current down to approximately 100nA. At this current level, the neuron is not

inhibited and immediately spikes. Subsequently, the AGC gradually reduces VThr,

which in turn increases the ultra-slow current and allows for the rapid recovery of

the stable bursting pattern.

It should be noted that modifying the input current of the AGC DPI has little

influence on the neuron output behavior once it enters bursting as the difference in

the AGC DPI integration is compensated by the VThr evolution.
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Figure 4.8: Increased burst length by increasing VG to 1.4005V .

The simulation depicted in Figure 4.8 demonstrates the possibility to obtain a novel

form of neural behavior. For this simulation, the gate voltage of the low-leakage

PMOS has been slightly increased by 0.5mV which has the effect of reducing both

the ascending and descending slopes of VThr. As a result, the duration of the bursts

is extended and the number of spikes per burst is doubled (from six to twelve).
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Figure 4.9: Increased inter-burst period with two spikes per burst. VG = 1.4V ,
VrefL = 1.361V , VrefM = 1.365V , VrefH = 1.389V

The final part of this section explores how to extend the inter-burst period, resulting

in more realistic neural signaling, by independently adjusting the increasing and

decreasing slopes of VThr through the tuning of VrefL and VrefH , respectively.

In Figure 4.9, it is shown that by bringing VrefL closer to VrefM , the decreasing slope

of VThr is reduced. This change leads to the ultra-slow current reaching the burst

reset threshold more quickly, thereby decreasing the number of spikes per burst.

Additionally, the reduced slope extends the time before a new burst is triggered

after the reset threshold is reached, lengthening the period between bursts, thus

lowering the inter-burst frequency. In comparison, the burst frequency of the old

neuron design is approximately nine bursts per second (cfr. Figure 4.4), whereas in

this simulation, it is around 2 to 3 bursts per second for a similar input.
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Figure 4.10: Increased inter-burst period with three spikes per burst. VG = 1.4V ,
VrefL = 1.361V , VrefM = 1.365V , VrefH = 1.387V

Finally, Figure 4.10 illustrates that adjusting VrefH closer to VrefM reduces the in-

creasing slope of VThr, which slows the rise of the ultra-slow current between spikes.

As a result, the system takes longer to reach the burst reset threshold, effectively

increasing the number of spikes per burst.
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5 Conclusions and future works

5.1 Conclusions

This master’s thesis has introduced and developed a new neuromorphic neuron cir-

cuit capable of exhibiting long-timescale bursting behavior, bringing its dynamics

closer to those observed in real neural systems compared to existing designs. The

innovative approach of this new design allows for higher integration levels by elim-

inating the need for excessively large capacitors to achieve extended time scales,

thereby enhancing its suitability for large-scale neuromorphic implementations.

The work began by presenting the neuromorphic continuous feedback neuron design

developed by L. Mendolia, which served as the foundation and reference throughout

this research. The key components of this design and its feedback structure were

examined. The crucial role of fast, slow, and ultra-slow feedback loops in ensuring

robust spiking behavior was highlighted, alongside the neuron’s capacity for neuro-

modulation through appropriate tuning of its parameters. This initial analysis also

identified significant limitations, notably the extensive area required by the capaci-

tor associated with the ultra-slow feedback loop. The need for larger capacitors to

mimic more realistic neural signaling, which necessitates longer time scales, further

emphasized this limitation and motivated the search for alternative approaches to

achieve ultra-slow feedback.

Subsequently, the thesis introduced the automatic gain control (AGC) scheme, draw-

ing parallels to biological homeostasis mechanisms. The individual components of

the AGC loop were presented, and the design of some of them was discussed. The

interactions among these components were then observed, showing how they work

together to achieve very long timescales while keeping the total capacitance low.

The filtering characteristics of the AGC loop were studied, and the results demon-

strated its low-pass filtering properties, making it a viable candidate to replace the

ultra-slow DPI in the original neuron design.
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The integration of the AGC circuit into the neuron design led to the creation of the

new neuron model. It was shown that the area occupancy of the new design was

reduced compare to the previous, especially when aiming at longer timescales. A

comprehensive comparison between the behaviors of the new and previous designs

under similar input conditions was conducted, showcasing the improvements and

new capabilities introduced by the AGC. The new design not only matched the

original in terms of spiking behavior but also expanded the range of achievable

bursting patterns. By fine-tuning the AGC parameters, the neuron circuit exhibited

a variety of longer timescales bursting behaviors, reinforcing the effectiveness of the

AGC in replicating the ultra-slow feedback necessary for realistic neural dynamics,

all while minimizing the circuit’s overall capacitance.

In summary, this thesis has successfully developed a novel neuromorphic neuron cir-

cuit that addresses the limitations of previous designs, particularly in terms of area

efficiency and the ability to generate long-timescale neural behavior. The new design

represents a significant step forward in creating more realistic and scalable neuro-

morphic systems, with potential applications in various fields requiring advanced

neural modeling.

5.2 Future works

Future works could involve a deeper exploration of the circuit’s full parameter space,

including the parameters associated with the fast, slow, and ultra-slow (AGC) feed-

back mechanisms. This exploration could lead to a deeper understanding of the

neuron circuit’s behavior across different regimes and potentially uncover new oper-

ational modes. Additionally, optimizations at the transistor level should be pursued

to enhance the circuit’s efficiency and integration. This includes refining transistor

sizing to balance power consumption, area and targeted behavior, thereby improving

the overall performance and scalability of the circuit for large-scale neuromorphic

systems.
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