
https://lib.uliege.be https://matheo.uliege.be

GPU Acceleration of a Domain Decomposition Solver

Auteur : Geleleens, Emil

Promoteur(s) : Geuzaine, Christophe

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "computer systems security"

Année académique : 2023-2024

URI/URL : https://gitlab.uliege.be/Emil.Geleleens/master-thesis; http://hdl.handle.net/2268.2/20960

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

GPU Acceleration of a Domain
Decomposition Solver

A Thesis Submitted for the Degree of
Master of Science in Computer Science and Engineering

in the Faculty of Applied Sciences
at the University of Liège

Author:
Emil Geleleens

Supervisor:
Christophe Geuzaine

Academic Year 2023-2024

Contents

List of Figures iii

List of Tables vi

List of Algorithms vii

Listings viii

1 Introduction 1
1.1 General Context and Objectives . 1
1.2 Overview of Linear Solvers . 2

1.2.1 LU Decomposition . 3
1.2.2 Krylov Subspace Solvers . 4
1.2.3 Domain Decomposition Methods 8

2 GPU-Accelerated Sparse Triangular Solver 11
2.1 Preprocessing Step . 12

2.1.1 Level-Set . 13
2.1.2 Compressed Level-Set . 16
2.1.3 Balanced Level-Set . 18

2.2 Solution Step . 19
2.2.1 CUDA Kernels . 20
2.2.2 Optimized Reduction . 21
2.2.3 Matrix Storage Format . 24
2.2.4 Task Distribution . 24
2.2.5 Smart Parameters . 26
2.2.6 Sequential Methods . 26
2.2.7 Scheduled Methods . 31

2.3 Solution Step with Multiple Right-Hand Sides 37
2.3.1 Naive Method . 37
2.3.2 Block Methods . 38
2.3.3 Flipped Methods . 45

3 Numerical Experiments 49

i

CONTENTS ii

3.1 Hardware Setup . 49
3.2 Direct Method . 50

3.2.1 Toy Problem . 50
3.2.2 Comparison of Preprocessing Strategies 51
3.2.3 Comparison of Solution Strategies 55
3.2.4 Comparison of Multi-RHS Solution Strategies 61

3.3 ORAS . 66

4 Conclusion 70

Bibliography 71

List of Figures

1.1 Scattering of waves in an aircraft engine 2
1.2 Example of a mesh generated by Gmsh [13] and partitioned into non-

overlapping subdomains using METIS [19]. 9

2.1 DAG representing the dependencies of the unknowns of the system defined
by the matrix L in Equation 2.10. 15

2.2 Scheduler associated with the matrix L defined in Equation 2.10 built with
the level-set method. 15

2.3 Scheduler associated with the matrix L defined in Equation 2.10. 15
2.4 Scheduler associated with the matrix L defined in Equation 2.10 built with

the compressed-level-set method. An arrow between two unknowns
means that these two unknowns share the same node. 18

3.1 Preprocessing time for the L and U matrices for each strategy as a function
of the number of DOFs in the system to solve. 51

3.2 Solve time as a function of the number of DOFs for each scheduling strategy.
The solution step is performed using the default method. The scheduler-
free method uses the sequential-singleblock method for solving the
problem. 52

3.3 Forward substitution and backward substitution time as a function of the
number of DOFs for each scheduling strategy. The solution step is per-
formed using the default method. The scheduler-free method uses the
sequential-singleblock method for solving the problem. 53

3.4 Bar plot representing the number of rows having a given number of nonzero
elements for the L and U matrices corresponding to the problem with the
most coarse mesh (-clscale = 1, i.e., the smallest system 1156× 1156). . 54

3.5 GPU solve performance as a function of the number of DOFs with sev-
eral strategies, using the balanced-level-set method for constructing the
scheduler when one is needed. The cuSPARSE strategy uses the cusparseSpSV_solve
routine of the cuSPARSE library to perform the forward and backward sub-
stitution. 55

3.6 GPU solve time as a function of the number of DOFs with several strategies,
using the balanced-level-set method for constructing the scheduler when
one is needed. 56

iii

LIST OF FIGURES iv

3.7 GPU forward substitution time as a function of the number of DOFs with
several strategies, using the balanced-level-set method for constructing
the scheduler when one is needed. 56

3.8 GPU backward substitution time as a function of the number of DOFs with
several strategies, using the balanced-level-set method for constructing
the scheduler when one is needed. 57

3.9 CPU solve performance as a function of the number of DOFs. We com-
pare several computation methods. The plots labeled “1 CPU” and “MKL
SPARSE” correspond to single-core methods. The “1 CPU” method em-
ploys a simple implementation of the forward and backward substitution
algorithm, while the “MKL SPARSE” method solves the system using the
mkl_sparse_z_trsv routine from the Intel oneAPI Math Kernel Library
[17]. For the multi-core methods, computations are parallelized using OpenMP
similarly to the default method on GPU, utilizing a scheduler built with
the balanced-level-set strategy. 58

3.10 CPU solve time as a function of the number of DOFs. We compare several
computation methods. The plots labeled “1 CPU” and “MKL SPARSE”
correspond to single-core methods. The “1 CPU” method employs a simple
implementation of the forward and backward substitution algorithm, while
the “MKL SPARSE” method solves the system using the mkl_sparse_z_trsv
routine from the Intel oneAPI Math Kernel Library [17]. For the multi-
core methods, computations are parallelized using OpenMP similarly to the
default method on GPU, utilizing a scheduler built with the balanced-level-set
strategy. 59

3.11 Speedup of the GPU solve using the adaptative strategy compared to the
fastest CPU solve. 59

3.12 . 60
3.13 Solve performance as a function of the number of right-hand sides stored in

column-major order for different system sizes and solution strategies. The
cuSPARSE strategy uses the cusparseSpSM_solve routine to solve the two
triangular systems with multiple right-hand sides. 62

3.14 Solve performance as a function of the number of right-hand sides stored
in row-major order for different system sizes and solution strategies. The
cuSPARSE strategy uses the cusparseSpSM_solve routine to solve the two
triangular systems with multiple right-hand sides. 63

3.15 Colormap illustrating the optimal solution strategy for several system sizes
and number of right-hand sides. Note that when there is only one right-
hand side, this figure only shows the best multi-right-hand side strategy.
However, in this case the best strategy would be the adaptative strategy. 64

3.16 Heatmap illustrating the performance of the GPU solve when the best multi-
right-hand-side strategy is used. 64

3.17 Heatmap representing the speedup of the best GPU multi-RHS solution
strategy compared to the best CPU multi-RHS solution strategy. 65

LIST OF FIGURES v

3.18 ORAS tests with varying characteristic length (CL) of the mesh elements. 67
3.19 ORAS tests with varying finite element order. 67

List of Tables

2.1 List of intrinsic functions and variables used in the CUDA kernels. 21
2.2 Example of task distribution using the distribution function defined in Equa-

tion 2.14 when the number of tasks is N = 23 and the number of threads is
T = 7. 25

2.3 Example of task distribution using the distribution function defined in Equa-
tion 2.17 when the number of tasks is N = 23 and the number of threads is
T = 7. 26

3.1 Node details of the GPU partition of the Lucia cluster. [16] 49
3.2 Node details of the CPU (batch) partition of the Lucia cluster. [16] 50
3.3 ORAS test configuration . 66
3.4 Results of the ORAS experiment on GPU. The first column contains the

order of the finite elements. The second is the characteristic length of one
mesh element. The last column contains the average time of each GM-
RES iteration. The third column contains the average number of DOFs per
subdomain. If one multiplies this number by the number of subdomains
(16), then the result is larger than the total number of DOFs in the system,
because the subdomains are overlapping. 68

3.5 Results of the ORAS experiment on CPU. The first column contains the
order of the finite elements. The second is the characteristic length of one
mesh element. The last column contains the average time of each GM-
RES iteration. The third column contains the average number of DOFs per
subdomain. If one multiplies this number by the number of subdomains
(16), then the result is larger than the total number of DOFs in the system,
because the subdomains are overlapping. 69

vi

List of Algorithms

1 Basic LU Decomposition Algorithm . 4
2 GCR Method . 7

3 Preprocessing Step: level-set . 14
4 Preprocessing Step: compressed-level-set 17
5 Preprocessing Step: balanced-level-set 19
6 Solution Step: sequential-singleblock 29
7 Solution Step: sequential-multiblock 31
8 Solution Step: default . 33
9 Solution Step CPU: adaptative . 35
10 Solution Step Kernel: adaptative . 36
11 Solution Step: naive . 38
12 Solution Step: block-outer . 41
13 Solution Step: block-middle . 42
14 Solution Step CPU: block-inner . 43
15 Solution Step Kernel: block-inner . 44
16 Solution Step: flipped . 46
17 Solution Step CPU: flipped-enhanced 47
18 Solution Step Kernel: flipped-enhanced 48

vii

Listings

2.1 Optimized reduction . 21
3.1 Gmsh script for generating a mesh of a unit cubic domain with specified

mesh size and physical entities. 50

viii

Acknowledgments

I want to sincerely thank Professor Geuzaine and Boris Martin for their guidance and
support throughout this year. I am very grateful to have had the opportunity to work
on such an engaging topic.

The present research benefited from computational resources made available on
Lucia, the Tier-1 supercomputer of the Walloon Region, infrastructure funded by the
Walloon Region under the grant agreement n°1910247.

ix

Chapter 1

Introduction

1.1 General Context and Objectives
Time-harmonic wave problems arise in many fields of physics and engineering such
as acoustics, electromagnetics or mechanics. Whether it is predicting the noise of an
aircraft engine (see Figure 1.1), the propagation of seismic waves, or the electromag-
netic/optical behavior of future space telescopes, these problems are ubiquitous. Sadly,
these problems are known to be computationally demanding to solve, especially in the
high-frequency regime [27]. One approach that can be used consists in translating the
problem into a linear system using the Finite Element Method (FEM) with absorbing
boundary conditions and then solving the system using a linear solver. This method
usually leads to large complex-valued linear systems which can be indefinite [21]. Direct
solvers do not scale well for such systems, and Krylov subspace iterative solvers (such as
GMRES [24]) converge too slowly or not at all. Fortunately, the preconditioners come
to our rescue. Preconditioners allow to accelerate the convergence of Krylov solvers by
modifying the system into a form that is more favorable. A preconditioner is a matrix
M−1 which is applied to both sides of the system such that the newly generated system
has the same solution as the original one:

M−1Ax = M−1b. (1.1)

Constructing an effective preconditioner is a challenging task. However, domain decom-
position methods (DDM) enable the efficient construction of robust preconditioners for
problems of interest in massively parallel environments.

The aim of this thesis is to accelerate the solution of time-harmonic wave problems
using Krylov iterative solvers with domain decomposition preconditioners on GPUs.
Specifically, we are interested in accelerating the Generalized Minimal Residual (GM-
RES) Krylov method, which is preconditioned with the Optimized Restricted Additive
Schwarz (ORAS) preconditioner. To achieve this, we will use the GmshFEM library
[23], which is a FEM library capable of solving systems directly or iteratively. In
any case, the computations are currently performed by the CPU. GmshFEM relies on

1

1.2. OVERVIEW OF LINEAR SOLVERS 2

Figure 1.1: Scattering of waves in an aircraft engine

PETSc [5, 4, 6] for solving the assembled systems with Krylov subspace solvers. Luck-
ily, some of PETSc’s code has been ported to the GPU [20]. For example, iterative
solvers are available on the GPU. However, there are still missing features. For in-
stance, each iteration of the GMRES algorithm requires applying the preconditioner
M−1, which, as we will discuss, in the case of Schwarz preconditioners necessitates solv-
ing multiple smaller systems. These smaller systems are well-suited for direct solvers
such as MUMPS [2] or UMFPACK [9], which are entirely CPU-based. Therefore, there
is potential for improvement by porting this part of the computation to the GPU as
well.

1.2 Overview of Linear Solvers
In this section, we review multiple methods of interest for solving linear systems.

1.2. OVERVIEW OF LINEAR SOLVERS 3

1.2.1 LU Decomposition
The idea behind LU decomposition is to factorize the matrix A into two triangular
matrices L and U . L is lower triangular and U is upper triangular. One can then easily
compute x by solving two triangular systems:{

Ly = b,

Ux = y.
(1.2)

The first system can be solved with the forward substitution algorithm:

yi =
bi −

∑i−1
j=1 Lijyj

Lii

, (1.3)

and the second one with the backward substitution algorithm:

xi =
yi −

∑n
j=i+1 Uijxj

Uii

. (1.4)

Having an LU decomposition of a matrix A is advantageous when solving systems
multiple times with various right-hand sides, as the L and U factors can be reused.
An alternative approach is to first compute and store A−1. One would then have to
compute the matrix-vector multiplication x = A−1b. This requires n2−n additions and
n2 multiplications. In contrast, forward and backward substitution combined require
n2 − 3n additions, 2n subtractions, n2 − n multiplications and 2n divisions. Although
matrix-vector multiplication might initially seem more efficient, this comparison does
not consider that A is sparse. In general, the inverse of a sparse matrix is not sparse, but
it is often possible to obtain sparse L and U factors. With sparse factors, the number
of floating-point operations decreases, as multiplications involving zero elements can
be ignored. Additionally, computing the inverse is generally more computationally
expensive and less numerically stable. Therefore, it is generally preferable to solve a
system using LU decomposition rather than using the inverse A−1.

The LU decomposition itself can be performed using Gaussian elimination. Algo-
rithm 1 shows how the L and U factors can be computed. The problem with this
algorithm is that it would perform a division by zero if some diagonal elements of A
are zero. This does however not mean that matrices with zero diagonal elements are
singular. The way to resolve this issue is to permute certain rows such that all the
diagonal elements are nonzero, and then factorize this new matrix:

PA = LU, (1.5)

where P is a permutation matrix. If this is not possible, it indicates that a column
contains only zeros, which implies that the matrix is singular. If the matrix is invert-
ible, there are usually multiple permutation matrices that could work. It is therefore
important to choose the best one. While there are many ways to reorder the rows in

1.2. OVERVIEW OF LINEAR SOLVERS 4

Algorithm 1: Basic LU Decomposition Algorithm
Input : A ∈ Cn×n

Output: L ∈ Cn×n

U ∈ Cn×n

1 L← In
2 U ← A
3 for k ← 1 to n− 1 do
4 for i← k + 1 to n do
5 Lik ← Uik

Ukk

6 for j ← k to n do
7 Uij ← Uij − LikUkj

8 end
9 end

10 end

A, the objective is usually to reduce fill-in, that is, minimize the number of nonzero
elements in the factors. For example, METIS [19] can be used to produce fill reducing
orderings for sparse matrices.

Linear direct sparse solvers, such as MUMPS [2], use more advanced multifrontal
methods to perform the factorization. In the multifrontal method, all elimination op-
erations take place within dense submatrices, called frontal matrices [1]. The concept
of a frontal matrix was first introduced by [18]. The multifrontal method allows for
more than one front to occur at the same time [11], enabling the parallelization of the
factorization process.

Currently, all major sparse LU factorization libraries are CPU-based, and porting
them to the GPU would be a challenging task that is beyond the scope of this thesis.

Unfortunately, direct solvers do not scale well for large-scale systems, which is why
alternative methods are preferred for solving such problems. Although direct solvers
may not be suitable for solving large-scale problems, they are often used as subsolvers
within a larger iterative method.

1.2.2 Krylov Subspace Solvers
In this section, we review the concepts underlying Krylov subspace methods.

Consider the well-posed linear system Ax = b. For simplicity, assume that the
system is real-valued; however, the methods can be extended to the complex case. A
Krylov iterative solver starts from an initial guess x0 and improves the guess at each
iteration until the approximation xk is close enough to the actual solution. To determine
whether, at iteration k, the estimate xk is good enough, one computes the norm of the
residual rk = b− Axk and if this norm is small enough, the algorithm stops.

Let M be an easily invertible matrix of the same size as A. By easily invertible, we

1.2. OVERVIEW OF LINEAR SOLVERS 5

mean that computing M−1r, with r = b − Ax, is cheap [10]. The fixed point method
for solving this system is defined as follows:

xk+1 = xk +M−1rk, (1.6)

where xk is the approximation of the solution at iteration k and rk = b − Axk is the
residual. When this algorithm converges, xk converges to the solution of the system

M−1Ax = M−1b. (1.7)

Note that the solution of this system is the same as the solution of the original system.
In this case, M−1 is called the preconditioner. For more details on the convergence of
the fixed point method see [14], but in general it is hard to find a preconditioner which
makes the method convergent. This drawback motivates the use of Krylov methods
which are much more robust.

For a given matrix B and vector y, the Krylov subspace of dimension k associated
with B and y is defined as

Kk(B, y) := span{y,By,B2y, . . . , Bk−1y}. (1.8)

It can be shown that the solution of a fixed point method belongs to a Krylov subspace
[10]. Therefore, a way to iteratively compute a solution would be to look for an optimal
element in the above mentioned space. This is the idea of Krylov subspace solvers.

Krylov subspace solvers approximate the solution of a linear system Ax = b by
iteratively refining an initial guess x0. At iteration k, the approximated solution xk is
such that xk ∈ x0 + Kk(A, r0), where r0 = b − Ax0 is the initial residual. At iteration
k, the approximation is

xk = x0 +
k∑

i=1

αip
i, (1.9)

where p1, p2, . . . , pk is a basis of the Krylov subspace Kk(A, r0).

Generalized Conjugate Residual Method

For example, in the Generalized Conjugate Residual (GCR) method [12], the basis is
chosen such that its vectors are ATA-orthogonal [25], i.e., such that

(Api)TApj = 0, for i ̸= j. (1.10)

The best approximate solution xk ∈ x0 +Kk(A, r0) is then given by

xk = x0 +
k∑

i=1

αip
i, (1.11)

where αi is a coefficient computed so that the 2-norm of the residual is minimized. We
can also define xk with the following recurrence relation:

xk = xk−1 + αkp
k. (1.12)

1.2. OVERVIEW OF LINEAR SOLVERS 6

The residual can be expressed as follows:

rk = b− A

(
x0 +

k∑
i=1

αip
i

)

= r0 −
k∑

i=1

αiAp
i.

(1.13)

We can minimize the 2-norm of the residual by solving the following least square prob-
lem:

min
αj

∥∥∥∥∥r0 −
k∑

i=1

αiAp
i

∥∥∥∥∥
2

2

. (1.14)

This yields the following equations for j = 1, . . . , k:

∂

∂αj

∥∥∥∥∥r0 −
k∑

i=1

αiAp
i

∥∥∥∥∥
2

2

= −2(r0)TApj + 2
∑
i ̸=j

αi(Ap
j)TApi︸ ︷︷ ︸

=0 because of 1.10

+2αj∥Apj∥22 = 0. (1.15)

By solving these equations, we get

αj =
(r0)TApj

(Apj)TApj
. (1.16)

From 1.13 and 1.10, we find the following:

(rj−1)TApj = (r0)TApj −
j−1∑
i=1

αi(Ap
i)TApj = (r0)TApj. (1.17)

Equation 1.16 can now be rewritten as follows:

αj =
(rj−1)TApj

(Apj)TApj
. (1.18)

This modified expression for αj is usually preferred because it only requires the pre-
vious residual rj−1, while in 1.16, one needs to store the initial residual r0 as well,
which increases memory usage. Additionally, this second representation of αj is more
numerically stable.

It is now necessary to determine how to choose the basis of the Krylov subspace.
The simplest option computes the next basis vector pk+1 ∈ Kk+1(A, r0) as a linear
combination of the current residual rk and all previous basis vectors. Note that this
can work because rk ∈ Kk+1(A, r0). We obtain an expression of the form

pk+1 = rk +
k∑

i=1

βikp
i, (1.19)

1.2. OVERVIEW OF LINEAR SOLVERS 7

where βik are coefficients that need to be determined. Since the basis vectors need to
be ATA-orthogonal, we have, for j ≤ k,

(Apj)TApk+1 = 0,

⇐⇒ (Apj)T

(
Ark +

k∑
i=1

βikAp
i

)
= 0,

⇐⇒ βjk = −
(Apj)TArk

(Apj)TApj
.

(1.20)

Algorithm 2 illustrates how to implement the GCR algorithm. One drawback of
this method is that, at iteration k, all the pi vectors with i ≤ k need to be stored,
resulting in increased memory usage at each iteration. One way to circumvent this
issue is to implement a restarted version of the algorithm. Instead of orthogonalizing
against all previous basis vectors, this version orthogonalizes only against the last m
vectors, where m is a fixed parameter. This approach reduces both the cost of each
iteration and memory usage, but it can slow down the convergence of the algorithm.
There is a trade-off between using a small value for m, which leads to faster iterations
but slower convergence, and a large m, which results in slower iterations but improved
convergence. In libraries such as PETSc [5, 4, 6], the default value is m = 30, though
it can be adjusted as needed.

Algorithm 2: GCR Method
Input : A ∈ Rn×n

b ∈ Rn

x0 ∈ Rn

1 r0 ← b− Ax0

2 p1 ← r0

3 for k ← 1, 2, 3, . . . , until convergence do
4 αk ← (rk−1)TApk

(Apk)TApk

5 xk = xk−1 + αkp
k

6 rk ← rk−1 − αkAp
k

7 for i← 1 to k do
8 βik ← − (Api)TArk

(Api)TApi

9 end
10 pk+1 ← rk +

∑k
i=1 βikp

i

11 end

Generalized Minimal Residual Method

The Generalized Minimal Residual (GMRES) method is another Krylov subspace it-
erative method for solving linear systems which was first introduced by [24]. In this

1.2. OVERVIEW OF LINEAR SOLVERS 8

method, instead of building a basis p1, . . . , pk of the Krylov subspace Kk(A, r0) which
is ATA-orthogonal, we build a basis which is orthonormal [10]. This is done by using a
Gram-Schmidt algorithm. That is,

p1 =
r0

∥r0∥2
and pk+1 =

Apk −
∑k

i=1((Ap
k)Tpi)pi∥∥∥Apk −∑k

i=1((Ap
k)Tpi)pi

∥∥∥
2

. (1.21)

The GMRES algorithm also suffers from increasing memory usage as the number of
iterations grows. To manage this issue, as for the GCR method, it can be implemented
with a restart strategy, where the algorithm is restarted after m iterations. Compared
to GCR, GMRES requires less memory and fewer arithmetic operations, making it the
better choice in most cases.

There exists many variants of the GMRES algorithm, one of which being Block-
GMRES which is particularly useful when solving a system AX = B, where X and
B are matrices. This kind of system arises when one wants to solve a problem with
multiple sources.

1.2.3 Domain Decomposition Methods
In this section, we describe the Restricted Additive Schwarz method (RAS) which is a
fixed point iteration for solving linear systems.

We consider a domain Ω which is partitioned into overlapping subdomains Ωi, with
i = 1, 2, . . . , nd [10]. Let N be the set of indices of degrees of freedom and n = |N |.
We consider the decomposition of N in nd overlapping subsets Ni, with i = 1, 2, . . . , nd

(N =
⋃nd

i Ni) such that Ni contains the indices of the degrees of freedom in the
subdomain Ωi. This set of indices can be partitioned using a graph partitioner such
as METIS [19] (see Figure 1.2) or SCOTCH [7]. In practice, the domain is often
represented by a mesh, in which case the mesh itself is partitioned rather than the set
of indices.

Let Ri be the restriction of a vector x ∈ Cn to a subdomain Ωi, with i = 1, 2, . . . , nd.
This operator is represented by a rectangular |Ni| × n boolean matrix such that{

(Ri)kj = 1, if j ∈ Ni ∧ (Ri)pj = 0 ∀p ∈ {1, . . . , |Ni|} with p ̸= k,

(Ri)kj = 0, otherwise.
(1.22)

The extension operator, which projects a local vector into the full space, is the transpose
matrix RT

i . Let Di be the partition of unity operator represented by a square diagonal
matrix of degree |Ni|. This operator is constructed to ensure that

In =

nd∑
i=1

RT
i DiRi, (1.23)

where In ∈ {0, 1}n×n is the identity matrix. Note that there exists another Schwarz
method called additive Schwarz method (ASM) which is the same except that it does not
use the partition of unity operator, which is equivalent to considering that Di = I|Ni|.

1.2. OVERVIEW OF LINEAR SOLVERS 9

Figure 1.2: Example of a mesh generated by Gmsh [13] and partitioned into non-
overlapping subdomains using METIS [19].

Suppose we want to solve Ax = b. We define the local matrices Aloc,i = RiAR
T
i ,

with i = 1, 2, . . . , nd. These local matrices are |Ni| × |Ni| matrices which contain the
elements Akj where k ∈ Ni and j ∈ Ni. Each local Ai matrix is owned by one process.
We define the preconditioner matrix

M−1
RAS =

nd∑
i=1

RT
i DiA

−1
loc,iRi, (1.24)

which is used as an approximation of A−1 which has the advantage of being computed
in parallel by as many processes as there are subdomains. The Schwarz algorithm is
the preconditioned fixed point iteration defined by

xk+1 = xk +M−1
RASr

k, (1.25)

where xk is the vector approximating x at iteration k and rk = b−Axk is the residual.
This method does however not converge with Helmholtz problems. These fixed

point iterations are not often used in practice. Instead, the RAS preconditioner is used
as a preconditioner for a Krylov subspace method such as GMRES.

1.2. OVERVIEW OF LINEAR SOLVERS 10

To further improve the convergence of GMRES, one can use the Optimized Re-
stricted Additive Schwarz (ORAS) preconditioner M−1

ORAS instead. The only difference
with the RAS method consists in replacing the local Dirichlet matrices Aloc,i = RiAR

T
i

by matrices ARobin,i which correspond to local Robin subproblems [10]. At iteration k
of GMRES, the preconditioner is applied to the current residual:

M−1
ORASr

k =

nd∑
i=1

RT
i DiA

−1
Robin,ir

k,i, (1.26)

where rk,i is the restriction of the residual to subdomain i. This means that each process
i must solve the system

ARobin,ix = rk,i. (1.27)
As this local system is quite small compared to the global one, a direct solver can be
used to factorize the matrix ARobin,i before starting the GMRES iteration. Then, at each
GMRES iteration, one can solve the system by performing one forward and backward
substitution. Our goal now is to perform this forward and backward substitution on
the GPU by developing a GPU-accelerated sparse triangular solver.

Chapter 2

GPU-Accelerated Sparse Triangular
Solver

In this chapter, we will see how we can solve a complex sparse triangular system on
the GPU efficiently. We will only consider lower triangular systems, but what we will
see is also applicable to upper triangular systems where the order of computations is
reversed. We consider the lower triangular matrix L ∈ Cn×n such that

L =

L11 0 0 . . .

L21 L22 0 . . .

L31 L32 L33 . . .
...

 . (2.1)

We want to solve the system
Lx = b, (2.2)

where x ∈ Cn and b ∈ Cn.
The computation that has to be performed to solve the present problem is the

following:

xi =
bi −

∑i−1
j=1 Lijxj

Lii

, (2.3)

where i = 1, 2, . . . , n. We notice that computing each unknown xi must be done in
a sequence starting from i = 1 to n. We can however parallelize the computation of
each xi. We can do this by assigning to each available thread a portion of the sum
si =

∑i−1
j=1−Lijxj that we will call a segment and then, with a reduction operation, one

can compute the total sum and the solution is then given by xi =
bi+si
Lii

. This method
allows to have some level of parallelism, but it is quite limited as the system we want
to solve is sparse, meaning that the number of elements to sum might be quite low
and performing a reduction is not free either as it requires O(logN) steps, where N is
the number of threads. This strategy is what we will later refer to as the sequential
strategy as the xi are computed sequentially.

11

2.1. PREPROCESSING STEP 12

We slightly modify the problem to reduce it to a unit diagonal triangular system.
First, let us define the variables yi ∈ Cn so that

yi = xiLii = bi −
∑
j∈Di

Lijxj = bi −
∑
j∈Di

Lij

Ljj

yj. (2.4)

This means that the solution of the system L′y = b, where L′ =
(

Lij

Ljj

)
i=1,...,n j=1,...,n

can
be used to solve Lx = b since xi = yi/Lii. Calculating the xi given the yi can be done
very efficiently on the GPU as it is a massively parallelizable operation and if we store
1/Lii instead of Lii in memory we can compute the xi using a complex multiplication
instead of a complex division which is much faster. Note that computing the inverse of
each Lii and computing the Lij/Ljj has only to be done once and this computation’s
cost is amortized by the fact that the triangular solve is only a small part of a larger
iterative method where each triangular system is solved several times with different
right-hand sides. Moreover, reducing the problem to a unit diagonal system also allows
to get rid of the division by Lii which requires to synchronize all the threads which are
involved in the computation of a certain xi. For all these reasons, from now on, we will
consider that the problem we want to solve is simply a unit-diagonal triangular system.

2.1 Preprocessing Step
We want to solve Lx = b, where L is a complex sparse unit-diagonal lower triangular
matrix. The system can thus be solved as follows:

xi = bi −
i−1∑
j=1

Lijxi, (2.5)

where i = 1, 2, . . . , n. We observe that to compute xi, we need to have computed all the
xj such that j < i. This means that we cannot compute in parallel several xi. However,
if L is sparse which is the case here, we can reduce the amount of computations in
Equation 2.3, since if Lij = 0, then Lijxj = 0 as well. This means that

xi = bi −
∑
j∈Di

Lijxj, (2.6)

with Di = {j | Lij ̸= 0 ∧ i ̸= j}. Since L is sparse, we know that |Di| << i− 1 for most
i. Consequently, the computation of xi does not depend on all the xj with j < i. We
can exploit this fact to compute several unknowns in parallel.

The goal of the preprocessing step is to analyze the sparsity pattern of L to build a
structure called a scheduler which will tell the GPU how to parallelize the computation
of the solution in the solution step. It is important to note that the preprocessing step
is entirely done by the CPU and the scheduler is then copied to the GPU. Only the
solution step will be carried out by the GPU.

2.1. PREPROCESSING STEP 13

The idea of the scheduler denoted as S is to divide the solution step into a sequence
of stages (S1, S2, . . .), where each stage Si consists of a set of what we call nodes. A
node N is an ordered list of increasing row indices N = (i1, i2, . . .) (in the case of an
upper triangular system, the list must be decreasing). The row indices maintained by
each node, must be independent of the row indices maintained by the other nodes in
the same stage. When a node N is computed, it means that we sequentially compute
the unknowns xi1 , xi2 , While each node computes unknowns sequentially, different
nodes in the same stage are executed in parallel. Once all nodes in the current stage
have been computed, we proceed to the next stage, and continue until we reach the
final stage.

For this computation to be correct, we must impose several constraints. First, we
want each xi to be computed only once, which means that row i can only appear in one
node once. Furthermore, since nodes within the same stage are computed in parallel,
they must be independent. This means that no two nodes should contain rows that
depend on rows in the other node. We say that two rows i and j are independent if
and only if Lij = Lji = 0. This allows us to formally define the necessary and sufficient
condition for two nodes to be independent. Let N1 = (i1, i2, . . .) and N2 = (j1, j2, . . .)
be two nodes. Then, N1 and N2 are independent if and only if

(ip ̸= jq) ∧ (Lipjq = Ljqip = 0), ∀p = 1, 2, . . . , ∀q = 1, 2, (2.7)

Next, we must make sure that any row i in a given stage only depends on rows from
earlier stages or on rows which are computed earlier within the same node since com-
putations inside a node are sequential. Let us define some useful functions:

• s(i) maps a row index to its stage index.

• nl(i) maps a row index to its local node index inside s(i).

The constraint can be expressed as follows:

∀i, j s.t. Lij ̸= 0 : s(j) < s(i) ∨ (s(j) = s(i) ∧ nl(i) = nl(j)). (2.8)

In practice, the scheduler is stored in memory using three vectors: S = (S,N,R).
S is a vector where each pair of consecutive elements defines a range of indices in N .
The global indices of the nodes in stage i are given by Si, Si + 1, . . . , Si+1 − 1. The N
vector is such that each pair of consecutive elements defines a range of indices in R. In
node j (where j is the global index of the node), the row indices can be accessed in R
at the following indices: Nj, Nj + 1, . . . , Nj+1 − 1. For example, to access the k-th row
of the j-th node of the i-th stage, one accesses RNSi+j+k.

2.1.1 Level-Set
A simple way to build a scheduler S would be to assign to each node one single row.
This would mean that each stage computes as many unknowns as there are nodes. One

2.1. PREPROCESSING STEP 14

way of assigning unknowns to stages is to loop from i = 1 to n. At each iteration, if
Di is empty, we set s(i) to zero. If Di is not empty, we know that s(j) is already set
for each j ∈ Di since the system is lower triangular. We can thus simply update s(i)
as follows:

s(i)← max
j∈Di

{s(j)}+ 1. (2.9)

This method is well-known and often called level-set [3] [26]. Algorithm 3 shows
how the level-set method can be implemented. Note that for each unknown which is
dependency-free, its stage will be zero at the end of the algorithm. These unknowns do
not have to be added to the scheduler, as no computations are required to find them
(xi = bi, ∀i such that Di = ∅).

Algorithm 3: Preprocessing Step: level-set
1 Function PreprocessLS():
2 p(j) := 0 ∀j ∈ N
3 for i← 1 to n do
4 s(i)← 0
5 nl(i)← 0
6 foreach j ∈ Di do
7 UpdateLS(i,j)
8 end
9 if nl(i) > p(s(i)) then

10 p(s(i))← nl(i)
11 end
12 end
13 end
14 Function UpdateLS(i, j):
15 if s(i) ≤ s(j) then
16 s(i)← s(j) + 1
17 nl(i)← p(s(i)) + 1

18 end
19 end

Let us see how it would work on a simple example. We assume we want to solve
the system Lx = b, where L is defined as follows:

L =

1 0 0 0 0

0 1 0 0 0

1 1 1 0 0

0 1 0 1 0

1 1 0 1 1

 . (2.10)

2.1. PREPROCESSING STEP 15

Figure 2.1 shows the directed acyclic graph (DAG) representing the dependencies be-
tween the unknowns of the system. If we build the scheduler using the level-set
method, we would get the scheduler depicted in Figure 2.2.

x2x1

x4x3

x5

Figure 2.1: DAG representing the dependencies of the unknowns of the system defined
by the matrix L in Equation 2.10.

x5

x3 x4

x1 x2

Stage 3

Stage 2

Stage 1

Figure 2.2: Scheduler associated with the matrix L defined in Equation 2.10 built with
the level-set method.

Note that the scheduler obtained is not the only possible single unknown per node
scheduler we can build. Another possibility is shown in Figure 2.3.

x5x3

x4

x1 x2

Stage 3

Stage 2

Stage 1

Figure 2.3: Scheduler associated with the matrix L defined in Equation 2.10.

In order to be able to create better scheduler building algorithms, it would be useful
to have a way of evaluating a given scheduler. We could do this experimentally by
measuring the time necessary to solve the system with it. Another approach is to

2.1. PREPROCESSING STEP 16

define a computable cost measure which represents how time-consuming it is to solve
the system with the given scheduler. We can do this by computing the critical path
length or time span of the computation, which represents the minimum time that the
computation would take in an idealized setting where we have an infinite number of
parallel threads. We know from Equation 2.6 that computing xi has a time complexity
O(|Di|) if we compute the sum sequentially. Since the unknowns in a node are computed
sequentially, we can conclude that the time span of a node N is O

(∑
i∈N |Di|

)
. The

span of a stage S is O
(
maxN∈S

{∑
i∈N |Di|

})
since all the nodes are executed in parallel.

This means that the total time span for solving a system given a scheduler S is O(C(S))
where

C(S) =
∑
S∈S

max
N∈S

{∑
i∈N

|Di|

}
. (2.11)

This measure C(S) can be used to determine the quality of a scheduler S.
The cost measure for the scheduler S1 shown in Figure 2.2 is C(S1) = 5. For the

scheduler S2 shown in Figure 2.3 on the other hand we find C(S2) = 4 which indicates
that this scheduler is better than S1. S2 is better because it delays the computation of
x3 by moving it from stage 2 to stage 3, and by doing so, it decreases the cost of stage
2 without increasing the cost of stage 3.

2.1.2 Compressed Level-Set
Until now, we did not take advantage of the fact that a scheduler can have several
unknown computations per node. In the level-set method, we used the formula

s(i)← max
j∈Di

{s(j)}+ 1 (2.12)

to assign a stage to each unknown. This makes sure that each unknown is always
one stage after its latest dependency. This is not always necessary to guarantee that
the scheduler is correct. If all the dependencies which are in stage maxj∈Di

{s(j)} are
in the same node, we can put the i-th unknown in this same node as well. Doing
this can greatly reduce the number of stages, which is why this method was named
compressed-level-set. Reducing the number of stages is generally a good thing
because, as we will see later, each stage will correspond to a CUDA kernel launch
which is not free. Algorithm 4 shows how it can be implemented. Notice that, as for
the level-set algorithm, the unknown indices i such that s(i) = 0 are the dependency-
free unknowns and these are excluded from the scheduler.

We can once again build a scheduler using this new algorithm based on the system
defined in Equation 2.10. The resulting scheduler S3 is shown in Figure 2.4. We
observe that C(S3) = 4, which is better than what we had with the simple level-set
algorithm and it uses less stages which is also better. This does not mean that the
compressed-level-set algorithm is better than level-set in all cases. Let us consider
a case in which there is only one single dependency-free unknown (it would necessarily

2.1. PREPROCESSING STEP 17

Algorithm 4: Preprocessing Step: compressed-level-set
1 Function PreprocessCLS():
2 p(j) := 0 ∀j ∈ N // keeps track of the number of nodes in each

stage
3 f(i) := ⊥ ∀i ∈ {1, . . . , n} // stores whether the i-th unknown

depends on some other unknown which is in the same node
4 for i← 1 to n do
5 s(i)← 0
6 nl(i)← 0
7 foreach j ∈ Di do
8 UpdateCLS(i,j)
9 end

10 if nl(i) > p(s(i)) then
11 p(s(i))← nl(i)
12 end
13 end
14 end
15 Function UpdateCLS(i, j):
16 if s(i) < s(j) ∨ (¬f(i) ∧ s(i) = s(j) ∧ s(i) > 0) then
17 s(i)← s(j)
18 f(i)← ⊤
19 nl(i)← nl(j)

20 else if s(i) = s(j) ∧ (nl(i) ̸= nl(j) ∨ s(i) = 0) then
21 s(i)← s(j) + 1
22 f(i)← ⊥
23 nl(i)← p(s(i)) + 1

24 end
25 end

be x1). In this scenario, the algorithm will build a scheduler with only one stage and one
node which will contain all the unknowns xi with i > 1. There would be no parallelism
at all.

2.1. PREPROCESSING STEP 18

x5x3

x4x1 x2

Stage 2

Stage 1

Figure 2.4: Scheduler associated with the matrix L defined in Equation 2.10 built with
the compressed-level-set method. An arrow between two unknowns means that
these two unknowns share the same node.

2.1.3 Balanced Level-Set
Until now, we have seen two algorithms to build a scheduler. We can combine these two
algorithms into one by using a heuristic which will select which of the two previously
seen strategies is best to schedule each individual unknown. Algorithm 5 shows how it
can be implemented. The only difference with Algorithm 4 is that, if some criterion is
not met, we revert to the level-set strategy. By choosing a good criterion, we can
improve significantly the obtained scheduler. One heuristic that worked well was to
combine two criteria by setting a maximum node cost Cmax and a maximum number of
unknowns per node Umax. We say that the heuristic meets the criterion when for a given
unknown xi, adding xi to the current stage s(i) and node nl(i) does not make the total
node cost exceed Cmax and the total number of rows exceed Umax. The disadvantage of
this heuristic is that it requires to adjust Cmax and Umax which can be challenging.

2.2. SOLUTION STEP 19

Algorithm 5: Preprocessing Step: balanced-level-set
1 Function PreprocessBLS():
2 p(j) := 0 ∀j ∈ N // keeps track of the number of nodes in each

stage
3 f(i) := ⊥ ∀i ∈ {1, . . . , n} // stores whether the i-th unknown

depends on some other unknown which is in the same node
4 for i← 1 to n do
5 s(i)← 0
6 nl(i)← 0
7 foreach j ∈ Di do
8 UpdateCLS(i,j)
9 end

10 if nl(i) > p(s(i)) then
11 p(s(i))← nl(i)
12 end
13 end
14 end
15 Function UpdateBLS(i, j):
16 if s(i) < s(j) ∨ (¬f(i) ∧ s(i) = s(j) ∧ s(i) > 0) then
17 s(i)← s(j)
18 f(i)← ⊤
19 nl(i)← nl(j)
20 if ¬ MeetsHeuristicCriterion(i) then
21 s(i)← s(j) + 1
22 f(i)← ⊥
23 nl(i)← p(s(i)) + 1

24 end
25 else if s(i) = s(j) ∧ (nl(i) ̸= nl(j) ∨ s(i) = 0) then
26 s(i)← s(j) + 1
27 f(i)← ⊥
28 nl(i)← p(s(i)) + 1

29 end
30 end

2.2 Solution Step
We can now look into how the solution is actually computed. We will implement
several kernels ranging from simplest to most sophisticated and their performances will
be compared in the next chapter.

2.2. SOLUTION STEP 20

2.2.1 CUDA Kernels
To understand the various algorithms we will discuss, it is necessary to review how to
run code on the GPU. The approach taken involves combining the CUDA runtime API
with CUDA kernels. The runtime API provides C and C++ functions that execute on
the host to allocate and deallocate device memory, transfer data between host memory
and device memory, manage systems with multiple devices, etc [8]. CUDA kernels are
functions which are executed on the GPU. These are written in an extension of C++
which provides several intrinsics and variables. When a kernel is launched, the function
is then executed on several GPU threads concurrently.

Launching a kernel is similar to calling a function, but it requires additional con-
figuration parameters. Threads are organized into thread blocks which can contain at
most 1024 threads. The size of a thread block is specified by a three-dimensional num-
ber. Inside the kernel we can access the current thread index within the current block
with the variable threadIdx which is a three-dimensional number and the dimensions
of the current block using blockDim. Thread blocks are themselves organized into a
three-dimensional grid of blocks. The maximum number of blocks per kernel launch
is 231 − 1. The current thread block index can be accessed with the variable blockIdx
and the kernel grid dimensions with gridDim. The dimensions of the grid as well as
the dimensions of the thread blocks is specified when the kernel is launched. The fact
that threads and thread blocks are organized into a 3-dimensional grid, is mainly for
the convenience of the developer, as it simplifies the code writing process for many
algorithms. Finally, thread blocks are also divided into warps. A warp is a group of 32
consecutive threads which execute in lockstep, meaning that these threads are always
synchronized.

Another important element to understand is memory. A GPU has several memory
regions. Each thread has its own local memory and registers. Each thread block has
some amount of shared memory which is shared between all threads within the same
thread block. Shared memory can either be statically allocated or dynamically allocated
at kernel launch. It can be seen as a self managed cache. Finally, there is global memory
which is shared accross all GPU kernels on the same device. This is where most of the
data structures will be stored.

The three configuration parameters necessary to launch a kernel are: the grid
dimensions, the block dimensions and the amount of shared memory required per
thread block. In the algorithms that we will see, we will use the notation: Kernel <
gridDim, blockDim, sharedMem > to specify those parameters. The sharedMem variable
will have a value in bytes.

Finally, Table 2.1 lists the different variables and intrinsics that we will use which
are accessible within a CUDA kernel.

2.2. SOLUTION STEP 21

Variable Description
threadIdx 3D index of the current thread
blockDim 3D dimensions of the current thread block
blockIdx 3D index of the current block
gridDim 3D dimensions of the thread block grid

Intrinsic Function Description
__syncthreads Synchronizes all threads in a thread block

__shfl_down_sync Exchanges a variable between threads within a warp

Table 2.1: List of intrinsic functions and variables used in the CUDA kernels.

2.2.2 Optimized Reduction
The kernels we will implement will often need to perform reductions to sum elements
owned by several threads in a thread block. For this, we implement a block-level reduc-
tion function which is as optimized as possible. The implementation of this function is
heavily based on [15]. We implement a Reduce function which takes three arguments:
the array to reduce, the current block-wide thread index and the number of threads
participating in the reduction.

Instead of writing the algorithm in pseudo-code, we decided to directly present the
actual C++ code (see Listing 2.1), as the presence of templates and constant expressions
makes it challenging to translate into pseudo-code.

Note that, the .x and .y accessors represent, respectively, the real and the imaginary
parts of the scalar value being accessed. The main difference with [15] is that we use
a warp-level primitve __shfl_down_sync which allows for fast reduction operations
within a warp. This primitive is used to efficiently get the value of a variable stored
in another thread part of the same warp. One can notice that the reduction function
can only accept block sizes which are a power of two. This will be important to keep
in mind when launching kernels.

1 template <unsigned int block_size >
2 __device__ static void warp_reduce(volatile cuDoubleComplex values[],

int64_t thread) {
3 if constexpr (block_size >= 64) {
4 values[thread].x += values[thread + 32].x;
5 values[thread].y += values[thread + 32].y;
6 }
7
8 volatile cuDoubleComplex value;
9 std::memcpy((void *)&value, (const void *)&values[thread], sizeof(

cuDoubleComplex));
10
11 if constexpr (block_size >= 32) {

2.2. SOLUTION STEP 22

12 value.x += __shfl_down_sync(0xffffffff , value.x, 16);
13 value.y += __shfl_down_sync(0xffffffff , value.y, 16);
14 }
15 if constexpr (block_size >= 16) {
16 value.x += __shfl_down_sync(0xffffffff , value.x, 8);
17 value.y += __shfl_down_sync(0xffffffff , value.y, 8);
18 }
19 if constexpr (block_size >= 8) {
20 value.x += __shfl_down_sync(0xffffffff , value.x, 4);
21 value.y += __shfl_down_sync(0xffffffff , value.y, 4);
22 }
23 if constexpr (block_size >= 4) {
24 value.x += __shfl_down_sync(0xffffffff , value.x, 2);
25 value.y += __shfl_down_sync(0xffffffff , value.y, 2);
26 }
27 if constexpr (block_size >= 2) {
28 value.x += __shfl_down_sync(0xffffffff , value.x, 1);
29 value.y += __shfl_down_sync(0xffffffff , value.y, 1);
30 }
31
32 std::memcpy((void *)&values[thread], (const void *)&value, sizeof(

cuDoubleComplex));
33 }
34
35 template <unsigned int block_size >
36 __device__ static void block_reduce(cuDoubleComplex values[], int64_t

thread) {
37 if constexpr (block_size >= 1024) {
38 if (thread < 512) {
39 values[thread] = scalar_add(values[thread], values[thread +

512]);
40 }
41 __syncthreads();
42 }
43 if constexpr (block_size >= 512) {
44 if (thread < 256) {
45 values[thread] = scalar_add(values[thread], values[thread +

256]);
46 }
47 __syncthreads();
48 }
49 if constexpr (block_size >= 256) {
50 if (thread < 128) {
51 values[thread] = scalar_add(values[thread], values[thread +

128]);
52 }
53 __syncthreads();
54 }
55 if constexpr (block_size >= 128) {
56 if (thread < 64) {
57 values[thread] = scalar_add(values[thread], values[thread +

64]);

2.2. SOLUTION STEP 23

58 }
59 __syncthreads();
60 }
61 if (thread < 32) {
62 warp_reduce <block_size >(values, thread);
63 }
64 }
65
66 __device__ __forceinline__ static void reduce(cuDoubleComplex *values,

int64_t thread, int64_t n_threads) {
67 switch(n_threads) {
68 case 1024:
69 block_reduce <1024>(values, thread);
70 break;
71 case 512:
72 block_reduce <512>(values, thread);
73 break;
74 case 256:
75 block_reduce <256>(values, thread);
76 break;
77 case 128:
78 block_reduce <128>(values, thread);
79 break;
80 case 64:
81 block_reduce <64>(values, thread);
82 break;
83 case 32:
84 block_reduce <32>(values, thread);
85 break;
86 case 16:
87 block_reduce <16>(values, thread);
88 break;
89 case 8:
90 block_reduce <8>(values, thread);
91 break;
92 case 4:
93 block_reduce <4>(values, thread);
94 break;
95 case 2:
96 block_reduce <2>(values, thread);
97 break;
98 case 1:
99 block_reduce <1>(values, thread);

100 break;
101 }
102 }

Listing 2.1: Optimized reduction

2.2. SOLUTION STEP 24

2.2.3 Matrix Storage Format
Our goal is to solve the lower triangular sparse system Lx = b, where L ∈ Cn×n. It is
important to discuss how the matrix L should be stored in the memory of the program.
During the solution step, no transformations will be performed on L which means that
the only crucial aspects to consider are the access times and the space complexity.

The two simplest storage formats, setting aside the use of a two-dimensional array,
use an array with n× n entries. There is the row-major format in which each element
Lij is stored at the index (i − 1)n + j − 1, where the array is indexed with zero-
based numbering while the matrix element Lij uses as usual one-based numbering. The
column-major format on the other hand stores the element Lij at the index (j − 1)n+
i − 1. These two formats have a space complexity O(n2). The choice between the
two should primarily be based on the memory access patterns of the program. The
access times are constant. These two formats will be used when discussing the multiple
right-hand side case.

The matrix L is sparse, which means that most of its entries are zero. This fact
suggests that it should be possible to store L more efficiently by avoiding to store zeros.
The COOrdinate format (COO) is a list of triples (i, j, z), where z = Lij. If there is
no triple corresponding to some row i and column j in the list, it means that Lij = 0.
This format has a space complexity O(nnz(L)), where nnz(L) is the number of nonzero
elements in L. The main drawback of this format is that it has linear random, row and
column access times (O(nnz(L))).

The format that we will use is the Compressed Sparse Row (CSR) format. It
represents L using three vectors: L(row) ∈ Nn+1, L(col) ∈ Nnnz(L) and L(val) ∈ Cnnz(L).
L(val) contains all the nonzero values in the L matrix and L(col) stores the corresponding
columns. L(row) contains the start and end indices of each row in L(val) and L(col). We
assume that each row in L(val) and L(col) is stored in increasing column index order (the
CSR format does not necessarily impose this). We can see that

Di =
{
L
(col)
k | k ∈

{
L
(row)
i , L

(row)
i + 1, . . . , L

(row)
i+1 − 2

}}
. (2.13)

This makes it simple to iterate over the set Di when the matrix L is in CSR format.

2.2.4 Task Distribution
Let us introduce a function d : N3 → N2. This function is used to assign a certain
amount of tasks to a certain amount of slots. Each slot identified by its slot index
will be given a range of tasks which are identified by a task index. For the task and
slot indices, exclusively zero-based indexing will be used. The function d takes three
arguments: the slot index t, the number of tasks N and the total number of slots T .
We will later see that by slot we will usually mean a thread block. The idea is that each
slot should get a range of tasks that doesn’t overlap with any other slot and the union
of all the ranges should contain all tasks from 0 to T −1. Moreover, the convention that
we use is that if the function returns (a, b), then the range of tasks is a, a+1, . . . , b− 1.

2.2. SOLUTION STEP 25

When a = b, we have a zero-size range which means that this particular slot does not
receive any task.

One natural definition could be the following:

d(t, N, T) =

(⌊
tN

T

⌋
,

⌊
(t+ 1)N

T

⌋)
. (2.14)

This approach works both when the number of tasks is greater than the number of slots
and when the number of slots is greater, in which case some slots will receive zero-size
ranges. If we look at the range sizes of adjacent slots, we notice that they can differ
on several occasions (e.g., see Table 2.2). This is not optimal because we want nearby
slots to have equal task range sizes. If the slots correspond to threads, assuming that
each thread loops over its task range, it is better to make sure that consecutive threads
have the same task range size. This is the case because threads which are part of the
same warp execute in lockstep, which means that if the task range sizes differ between
those threads, the ones that terminate earlier will have to wait for the others.

Thread 0 1 2 3 4 5 6

d(t, N, T) (0, 3) (3, 6) (6, 9) (9, 13) (13, 16) (16, 19) (19, 23)

Range Size 3 3 3 4 3 3 4

Table 2.2: Example of task distribution using the distribution function defined in Equa-
tion 2.14 when the number of tasks is N = 23 and the number of threads is T = 7.

It can be shown that it is always possible to distribute N > 0 ∈ N tasks among
T > 0 ∈ N threads such that each thread receives either r or r+1 tasks for some r ∈ N.
Let us assume that there are M threads with r+1 tasks (and thus T −M with r tasks),
we need to prove that we can find M ∈ {0, 1, . . . , T} and r ∈ N such that

M(r + 1) + (T −M)r = N. (2.15)

Let
M = N − T

⌊
N

T

⌋
= N mod T and r =

⌊
N

T

⌋
. (2.16)

This satisfies Equation 2.15, both values are obviously integers and M ∈ {0, 1, . . . , T −
1}. This suggests that we can always define an assignment with at most one pair of
adjacent threads which have a different number of tasks (r and r+1) by simply assigning
r + 1 tasks to the M first threads and then r tasks to the T −M last ones (or vice
versa). We can achieve this with the following function:

d(t, N, T) =

(
t
⌊
N
T

⌋
+min(t, N mod T)

(t+ 1)
⌊
N
T

⌋
+min(t, N mod T) + 1−H(t−N mod T)

)
, (2.17)

where H is the unit step function. Table 2.3 shows how this new function would
distribute tasks with an example.

2.2. SOLUTION STEP 26

Thread 0 1 2 3 4 5 6

d(t, N, T) (0, 4) (4, 8) (8, 11) (11, 14) (14, 17) (17, 20) (20, 23)

Range Size 4 4 3 3 3 3 3

Table 2.3: Example of task distribution using the distribution function defined in Equa-
tion 2.17 when the number of tasks is N = 23 and the number of threads is T = 7.

2.2.5 Smart Parameters
It is often challenging to select the optimal dimensions for the thread blocks and the grid
of a given kernel to achieve the best performance. CUDA provides the cudaOccupancy
API to address this issue, which contains routines to heuristically determine the best
launch configuration for a given kernel to maximize occupancy. In the different kernels
we will discuss, we will sometimes use, in the pseudo-code, the function GetIdealKer-
nelConfig, which will return an estimation of the ideal grid and block size. In practice,
this is implemented with the cudaOccupancy API.

Unfortunately, configurations are chosen heuristically, which may not correspond
to the actual optimal configuration. Luckily, since our triangular solver is meant to
be used within an iterative method, we can hope to execute the same kernel multiple
times for the same system. We could thus at each new kernel launch change slightly
the configuration and assess whether it improves the overall performance of the kernel.
This is the idea underlying smart parameters. Some kernels will have as input a params
variable which will be a vector of values used to control the configuration of the kernel.
After each iteration, the params vector is updated. The approach chosen is similar
to a simplified simulated annealing algorithm, where the value we want to minimize
is the execution time of the kernel. When the execution time of the kernel is worse
than the previous kernel execution time, the params vector is reset to its previous value
and one of its elements is chosen at random and randomly modified (either increased or
decreased). On the other hand, if the execution time is better than in the previous kernel
execution, then we update the same element as the one updated at the previous iteration
and adjust it in the same direction as earlier. The key is that with each new iteration,
the magnitude of change in the chosen element is scaled down. This approach allows a
broad exploration of the search space initially, followed by a convergence towards either
a local minimum or, ideally, a global one.

2.2.6 Sequential Methods
We implement the sequential strategy discussed earlier. This strategy does not require
any scheduler and comes in two flavours: sequential-singleblock which only uses
one CUDA kernel launch and one single thread block and sequential-multiblock
which uses several blocks and n kernel launches, where n is the size of the system we
want to solve. Contrary to what the name suggests, theses strategies are not entirely
sequential, but the unknowns are computed in sequence (xi is computed before xi+1

2.2. SOLUTION STEP 27

if the system is lower triangular). We introduce parallelism in the computation of
each individual unknown by distributing partial sums that we will call segments to the
available threads. As a reminder, each unknown xi is computed using Equation 2.6.

Let us define the set of thread indices T = {0, 1, . . . , T − 1} as well as the set
of unknown indices U = {1, 2, . . . , n}. In the sequential-singleblock method, at
iteration i, each thread t will compute a value

yit = −
∑
j∈Dit

Lijxj, (2.18)

where ∀i ∈ U , it is necessary that
⋃

t∈T Dit = Di and Dit1∩Dit2 = ∅ ∀t1 ̸= t2 such that (t1, t2) ∈
T 2. It is clear that these two conditions do not uniquely determine Dit. The chosen
definition was the following:

Dit =
{
L(col)
p | p = t+ L

(row)
i + kT, where k ∈ N and p ≤ L

(row)
i+1 − 2

}
. (2.19)

This definition was chosen to maximize bandwidth. To understand why, it is necessary
to review the memory layout of a GPU. The GPU has two main memory regions: global
memory and shared memory. The matrix L and the unknowns xi are stored in global
memory, while the segments yit are stored in shared memory.

Global memory is generally much slower than shared memory, but its access can
be made relatively efficient through coalesced memory accesses. Memory coalescing
involves arranging memory accesses so that successive threads in a warp (a group of 32
consecutive threads that execute in SIMD fashion) access consecutive memory locations.
Doing this allows the GPU to combine several memory accesses into a single memory
transaction, which significantly improves performance.

In our case, when some thread t computes yit, at iteration k, it accesses L
(row)
i ,

L
(col)
p , L(val)

p and x
L
(col)
p

, with p = t + L
(row)
i + kT in global memory. The next thread

t + 1 will request L
(row)
i , L(col)

p+1 and L
(val)
p+1 . As a result, memory accesses to L(col) and

L(val) are coalesced as these vectors are stored contiguously in global memory. Since
all the threads request L(row)

i , this memory access will only require a single transaction,
broadcasting the value to the requesting threads. On the other hand, successive threads
will not necessarily access consecutive memory locations in the vector x. The accesses
to x will only be coalesced to some degree if successive nonzero columns in L have
consecutive indices.

Note that we could have defined Dit using the task distribution function d:

Dit =
{
L(col)
p | p = L

(row)
i + k, where

k ∈ {s, s+ 1, . . . , e− 1},
(s, e) = d(t, N, T) and

N = L
(row)
i+1 − L

(row)
i − 1

}
.

(2.20)

2.2. SOLUTION STEP 28

This works, however we do not have coalesced memory accesses anymore. This is so,
because successive p values will be assigned to the same thread.

Next, the shared memory region is shared among threads within a thread block and
is structured with several banks arranged so that successive 32-bit words are stored in
consecutive banks and each bank has a memory bandwidth of 32 bits per clock cycle.
This arrangement is crucial because if two threads within the same warp attempt to
access different addresses in the same bank, the accesses will be serialized, resulting
in a bank conflict. The simplest way to avoid bank conflicts is to have consecutive
threads in a thread block access successive words in shared memory, ensuring that
threads in the same warp access different banks simultaneously. It is important to note
that if multiple threads access the same address in the same bank, there is no bank
conflict either as the accessed value will be multicast to the requesting threads. In our
scenario, the segments yit are double precision complex values stored contiguously in
shared memory, occupying 128 bits or equivalently 16 bytes. If yit is stored at address
A, then yi,t+1 is stored at address A+ 16 bytes. Each yit is spread across 4 consecutive
banks. When each successive thread in a warp attempts to access a successive 16-byte
value, the total warp-wide memory request size is 32 × 16 = 512 bytes. However,
each memory request is limited to 128 bytes (one word per bank). Consequently, the
hardware will divide the memory request into 4 conflict-free requests (for instance, the
first request loads values requested by the first 8 threads, the second request loads the
values requested by the next 8 threads, and so on). Even though the memory request
had to be split into 4 requests, maximum throughput is still achieved (128 bytes per
clock cycle) so there are no bank conflicts.

Recall that Table 2.1 lists the variables and intrinsic functions that will be used
in the kernels that will be seen. These variables and intrinsics are accessible only
within a CUDA kernel. Algorithm 6 illustrates how the sequential-singleblock
method can be implemented. The KernelSeqSingleblock function is the function
which is actually executed by the GPU, while the remaining code runs on the CPU.
The kernel is launched with one single thread block with 16 × blockDim.x bytes of
shared memory which is needed to allow each thread t to store a segment yit. The cache
variable is an array of scalars representing the shared memory. To index the shared
memory array, the notation cache[cacheIdx], where cacheIdx = t was used instead of a
subscript (cachecacheIdx), as used for other vectors in the algorithm. This distinction was
done to differentiate zero-based indexed arrays from one-based indexed arrays like x or
L(row). The algorithm launches a single GPU kernel which will do all the computations
by iterating over the rows of L (from i = 1 to n, as the system of interest is lower
triangular). At iteration i, the value computed and stored in cache[cacheIdx] is yit.
A reduction operation sums all the values in cache and stores the result in cache[0].
Finally, cache[0] is added to xi, which was initially set to bi. The __syncthreads
intrinsic synchronizes all threads within a thread block. It is called before the reduction
to ensure that the computation of yit is complete for each thread t. It is also called
after updating xi to prevent any thread t from computing yjt for some j > i for which
yjt depends on xi.

2.2. SOLUTION STEP 29

Algorithm 6: Solution Step: sequential-singleblock
Input: L :=

(
L(row), L(col), L(val)) ∈ Nn+1 × Nnnz(L) × Cnnz(L)

b ∈ Cn

Output: x ∈ Cn

1 x← b
2 gridDim← {x = 1, y = 1, z = 1}
3 blockDim← {x = 1024, y = 1, z = 1}
4 KernelSeqSingleblock <gridDim, blockDim, 16× blockDim.x>(L, x)
5 Function KernelSeqSingleblock(L, x):
6 t← threadIdx.x
7 T ← blockDim.x
8 cacheIdx← threadIdx.x
9 cacheSize← blockDim.x

10 for i← 1 to n do
11 cache[cacheIdx]← 0

12 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

13 j ← L
(col)
p

14 cache[cacheIdx]← cache[cacheIdx]− L
(val)
p × xj

15 end
16 __syncthreads()
17 Reduce(cache, cacheIdx, cacheSize)
18 if cacheIdx = 0 then
19 xi ← xi + cache[0]
20 end
21 __syncthreads()
22 end
23 end

One of the limitations of the sequential-singleblock method is that we can only
launch a kernel with a single thread block, which means that the maximum number of
parallel threads is 1024. If one could launch a kernel with several blocks it could drasti-
cally increase the maximum parallelism. This is the goal of the sequential-multiblock
method. The problem when several blocks are created at launch is that there is no
global synchronization primitive that allows synchronization between threads of differ-
ent blocks. Global synchronization is achieved by terminating the current kernel and
then starting a new one. Note that the CPU initiates kernel launches asynchronously,
which means that when it initiates a kernel launch, it does not wait for the kernel to
complete before continuing its execution. If one wants two kernels to be executed seri-
ally, one has to make sure that they are part of the same CUDA stream. If no stream
is specified at launch, a default one is chosen. We will only ever use this default stream,
as we will not need to execute several CUDA kernels concurrently.

2.2. SOLUTION STEP 30

Algorithm 7 shows how the sequential-multiblock method can be implemented.
In this algorithm, the outermost loop, iterating over the rows in L, is not part of the
kernel, and a new kernel is launched for each row i. The specified amount of shared
memory per thread block is 16×blockDim.x bytes, which means that each single thread
in the kernel can have its own 16 byte value. This will be the case for all the kernels that
will be seen. Each thread owns the value stored at the index cacheIdx = threadIdx.x
in the shared memory array cache specific to its thread block. The segment index
t = threadIdx.x + blockIdx.x × blockDim.x is equal to the global thread index of the
current thread. By global, we mean kernel-wide. T is the total number of segments to
be computed and it is equivalent to the total number of threads in the kernel. Since
there are several thread blocks, after the block-level reduction, it is necessary to add to
xi the value stored at cache[0] in each thread block. One approach to achieve this, is to
store, for each thread block, cache[0] into a global memory temporary array of length
gridDim.x at index blockIdx.x and then terminate the kernel. A new kernel would
then be launched to sum the values stored in this temporary array using a reduction.
This kernel launch is necessary to make sure that each block in the previous kernel
has computed the temporary value required before reducing the array. Assuming there
would never be more than 1024 thread blocks, the reduction could be carried out with a
single additional kernel launch consisting of one block and as many threads as there were
blocks in the previous kernel. The block-level reduction function Reduce could then be
invoked after copying the temporary array to shared memory. However, an alternative
approach was selected to avoid the necessity of launching an additional kernel. CUDA
offers atomic operation functions as AtomicAdd which can be invoked to add cache[0]
to xi. In fact, it was possible to completely bypass the use of a reduction operation
by instead directly updating the vector xi with AtomicAdd(xi,−L(val)

p × xj) at each
iteration in the innermost loop. This approach is however not great. Concurrent atomic
operations on the same data would be serialized, resulting in a linear time complexity
relative to the number of threads, which is less efficient than the logarithmic complexity
achieved with a reduction. Therefore, atomic operations should only be used sparingly.
However, using the AtomicAdd function solely for summing the partial sums computed
by each thread block leads to better performance compared to a reduction with an
additional kernel launch.

2.2. SOLUTION STEP 31

Algorithm 7: Solution Step: sequential-multiblock
Input: L :=

(
L(row), L(col), L(val))

b ∈ Cn

Output: x ∈ Cn

1 x← b
2 (idealGridSize, idealBlockSize)← GetIdealKernelConfig(KernelSeqMultiblock)
3 gridDim← {x = idealGridSize, y = 1, z = 1}
4 blockDim← {x = 2⌊log2 idealBlockSize⌋, y = 1, z = 1}
5 for i← 1 to n do
6 KernelSeqMultiblock <gridDim, blockDim, 16× blockDim.x>(L, x, i)
7 end
8 Function KernelSeqMultiblock(L, x, i):
9 cacheIdx← threadIdx.x

10 cacheSize← blockDim.x
11 t← threadIdx.x+ blockIdx.x× blockDim.x
12 T ← blockDim.x× gridDim.x
13 cache[cacheIdx]← 0

14 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

15 j ← L
(col)
p

16 cache[cacheIdx]← cache[cacheIdx]− L
(val)
p × xj

17 end
18 __syncthreads()
19 Reduce(cache, cacheIdx, cacheSize)
20 if cacheIdx = 0 then
21 AtomicAdd(xi, cache[0])
22 end
23 end

2.2.7 Scheduled Methods
Default Method

In this section, we first describe the default method, which corresponds to the most
natural way of solving the system using a scheduler as the ones seen in Section 2.1.
Algorithm 8 demonstrates how to implement this method.

One can notice that each stage corresponds to one kernel launch. Distributing the
computation across several kernel launches allows to synchronize between stages. The
number of blocks in the grid is precisely chosen so that there are as many blocks as
there are nodes in the scheduler. Once again, there is no need for a multidimensional
grid or multidimensional blocks, so the y and z coordinates are set to one.

To understand how the number of threads per thread block is chosen, it is necessary
to remember that the computation of a single unknown xi requires as many multipli-

2.2. SOLUTION STEP 32

cations and additions as there are nonzero elements in the i-th row of L. With the
sequential methods, we saw that we could distribute these additions and multiplica-
tions among the threads, with each thread computing what we called a segment (i.e., a
partial sum). Ideally, there would be as many segments as there are nonzero elements in
row i of L. In such a scenario, every thread would simply perform one addition and one
multiplication before calling the Reduce function. Since every kernel computes several
unknowns, we decided to choose, when possible, a block size that is greater than or equal
to the maximum number of nonzero elements in a row i of L for which xi is computed
in the kernel which is about to be launched. These values are computed during the
scheduler’s construction and stored in a vector M ∈ Ns, where s is the number of stages
in the scheduler (i.e., s = dim(S)− 1). One can see that this vector is then used in the
computation of the chosen block size, given by max

(
1,min

(
1024, 2⌈log2 Mstage⌉−⌊params1⌋

))
,

which gives a power of two between 1 and 1024. Initially, params1 is set to 0 and is
used to reduce the chosen block size in subsequent iterations if it is found to be too
large. The chosen block size aims to maximize the number of segments yit (as defined
in Equation 2.18, with Dit defined as in Equation 2.19) computed in parallel while
minimizing their sizes. Note that as long as the thread block size is a power of two
between 1 and 1024, the algorithm remains correct. A power of two is necessary for the
Reduce function to work as expected (see Section 2.2.2).

Each thread block is associated with a node in the current stage. This means that
each thread block will compute in sequence the unknowns in its associated node. Each
thread t, in a thread block will as for the sequential-singleblock method compute
the segment yit, with t = threadIdx.x being the local thread index within the current
thread block. This method is similar to the sequential-singleblock method, the
only major difference being that, thanks to the scheduler, we can launch multiple thread
blocks computing different independent unknowns in parallel and we use multiple kernel
launches to synchronize between stages.

Adaptative Method

The default method works well, but it does not fully exploit the parallel processing
capabilities of the GPU, as the number of threads allocated to the computation of one
unknown xi is limited to 1024. If the number of nonzero elements in row i of L is
greater than some threshold greater than 1024, then it might be better to spread the
computation of a single unknown across multiple thread blocks. This idea led to the
creation of an adaptative method which would, at each stage, choose between the
default single block per node kernel and a new kernel which would assign multiple
blocks to each node. The first difficulty arises from the fact that if a single node is
computed across several blocks, it will not be possible to synchronize the blocks once
an unknown has been computed. This is problematic because unknowns inside a node
must be computed in sequence, as they might depend on each other. There are two
ways to address this issue: either restrict the scheduler to unit-size nodes (e.g., by
using the level-set strategy) or launch multiple kernels to synchronize between the

2.2. SOLUTION STEP 33

Algorithm 8: Solution Step: default
Input: S := (S,N,R,M)

L :=
(
L(row), L(col), L(val))

b ∈ Cn

params ∈ R1

Output: x ∈ Cn

1 x← b
2 for stage← 1 to dim (S)− 1 do
3 gridDim← {x = Sstage+1 − Sstage, y = 1, z = 1}
4 blockSize← max

(
1,min

(
1024, 2⌈log2 Mstage⌉−⌊params1⌋

))
5 blockDim← {x = blockSize, y = 1, z = 1}
6 KernelDefault <gridDim, blockDim, 16× blockDim.x>(L, x, S, stage)
7 end
8 Function KernelDefault(L, x, S, stage):
9 t← threadIdx.x

10 T ← blockDim.x
11 node← Sstage + blockIdx.x
12 for row← Nnode to Nnode+1 − 1 do
13 cache[t]← 0
14 i← Rrow

15 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

16 j ← L
(col)
p

17 cache[t]← cache[t]− L
(val)
p × xj

18 end
19 __syncthreads()
20 Reduce(cache, t, T)
21 if t = 0 then
22 xi ← xi + cache[0]
23 end
24 __syncthreads()
25 end
26 end

computation of different unknowns. The latter option was chosen because it offers
more flexibility for the scheduler. Algorithms 9 and 10 illustrate how the method was
implemented.

At each stage, there are two possibilities, either the default strategy is used or the
KernelMultiblockNode kernel is launched a certain amount of times. This new kernel
is launched with a two-dimensional grid where the x-dimension represents the node,
and multiple blocks assigned to the same node are distributed along the y-dimension.
For the multiblock-per-node strategy to be chosen, two conditions have to be satis-

2.2. SOLUTION STEP 34

fied. First, we check that Mstage is greater than some threshold 1024× params2, where
params2 is a smart parameter greater than or equal to one. Second, the chosen num-
ber of blocks per node needs to be strictly greater than one, otherwise the default
method would be better suited. The chosen number of blocks per node is stored in the
numNodeBlocks variable. It is defined as the minimum of the largest value for which
the total number of thread blocks is less than or equal to maxGridSize and the smallest
value for which the total number of threads assigned to a node is more than Mstage.
The idealGridSize obtained with the function GetIdealKernelConfig is the minimum grid
size which achieves maximum occupancy, as discussed in Section 2.2.1. In practice,
it has proven beneficial to launch kernels with larger grid sizes. Therefore, a variable
maxGridSize = idealGridSize × params1 was defined. The params1 parameter is a smart
parameter greater than or equal to one.

If the multiblock-per-node strategy is chosen, the kernel needs to be launched a
certain number of times, given by Pstage. The vector P ∈ Ns, where s is the number
of stages, is a new addition to the scheduler. It contains the maximum number of un-
knowns among the nodes in each stage. Each kernel launch will compute one unknown
in each node, and to inform the kernel which unknown it needs to compute, a step
variable is passed as an argument to indicate the index of the unknown to compute in
the current node. Since the number of unknowns per node is not constant, some nodes
will terminate before others. It is thus necessary to check in the kernel whether the
current node has not already completed its computations. This is what line 9 does.
The rest of the kernel is similar to the one described in the sequential-multiblock
method.

Cooperative Groups

In CUDA 9, new synchronization mechanisms were introduced with the Cooperative
Groups API. This API allows to synchronize multiple thread blocks without having to
start a new kernel. However, this results in more limited kernel configurations. Either
way, an equivalent of the default method was implemented using only one kernel launch
with cooperative groups. This method will be referred to as cooperative-groups.

2.2. SOLUTION STEP 35

Algorithm 9: Solution Step CPU: adaptative
Input: S := (S,N,R,M,P)

L :=
(
L(row), L(col), L(val))

b ∈ Cn

params ∈ R3

Output: x ∈ Cn

1 x← b
2 (idealGridSize, idealBlockSize)← GetIdealKernelConfig(KernelMultiblockNode)
3 maxGridSize← idealGridSize× params1
4 for stage ← 1 to dim (S)− 1 do
5 numNodes← Sstage+1 − Sstage
6 numNodeBlocks← min (⌊maxGridSize/numNodes⌋, ⌈Mstage/idealBlockSize⌉)
7 if Mstage > 1024× params2 and numNodeBlocks ≥ 2 then
8 gridDim← {x = numNodes, y = numNodeBlocks, z = 1}
9 blockDim← {x = idealBlockSize, y = 1, z = 1}

10 for step← 0 to Pstage − 1 do
11 KernelMultiblockNode <gridDim, blockDim, 16× blockDim.x>(L,

x, S, stage, step)
12 end
13 else
14 blockSize← max

(
1,min

(
1024, 2⌈log2 Mstage⌉−⌊params3⌋

))
15 blockDim← {x = blockSize, y = 1, z = 1}
16 gridDim← {x = numNodes, y = 1, z = 1}
17 KernelDefault <gridDim, blockDim, 16× blockDim.x>(L, x, S, stage)
18 end
19 end

2.2. SOLUTION STEP 36

Algorithm 10: Solution Step Kernel: adaptative
1 Function KernelMultiblockNode(stage, step):
2 cacheIdx← threadIdx.x
3 cacheSize← blockDim.x
4 t← threadIdx.x+ blockDim.x× blockIdx.y
5 T ← blockDim.x× gridDim.y
6 cache[cacheSize]← 0
7 node← Sstage + blockIdx.x
8 row← Nnode + step
9 if row ≥ Nnode+1 then

10 return
11 end
12 i← Rrow

13 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

14 j ← L
(col)
p

15 cache[cacheIdx]← cache[cacheIdx]− L
(val)
p × xj

16 end
17 __syncthreads()
18 Reduce(cache, cacheIdx, cacheSize)
19 if cacheIdx = 0 then
20 AtomicAdd(xi, cache[0])
21 end
22 end

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 37

2.3 Solution Step with Multiple Right-Hand Sides
In this section, we will review multiple strategies to solve the system: LX = B, where
L ∈ Cn×n is still a triangular matrix, X ∈ Cn×m and B ∈ Cn×m. The X and B matrices
are stored in a dense matrix format as one-dimensional array. Each method will come
in two variants: one where the two dense matrices are stored in column-major order,
and one where they are stored in row-major order (see Section 2.2.3). Column-major
order is the most natural order because each right-hand side is stored in one contiguous
block as for the single right-hand side case.

2.3.1 Naive Method
We can easily extend the default method to multiple right-hand sides by launching a
kernel with a two-dimensional grid instead of a one-dimensional one. The number of
blocks in the y-dimension would be the number of right-hand sides m. Algorithm 11
shows how the algorithm could be implemented. This approach is called the naive
method.

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 38

Algorithm 11: Solution Step: naive
Input: S := (S,N,R,M)

L :=
(
L(row), L(col), L(val))

B ∈ Cn×m

params ∈ R1

Output: X ∈ Cn×m

1 X ← B
2 for stage ← 1 to dim (S)− 1 do
3 gridDim← {x = Sstage+1 − Sstage, y = m, z = 1}
4 blockSize← max

(
1,min

(
1024, 2⌈log2 Mstage⌉−⌊params1⌋

))
5 blockDim← {x = blockSize, y = 1, z = 1}
6 KernelMultiRHSNaive <gridDim, blockDim, 16× blockDim.x>(L, X, S,

stage)
7 end
8 Function KernelMultiRHSNaive(L, X, S, stage):
9 t← threadIdx.x

10 T ← blockDim.x
11 r ← blockIdx.y + 1
12 node← Sstage + blockIdx.x
13 for row← Nnode to Nnode+1 − 1 do
14 cache[t]← 0
15 i← Rrow

16 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

17 j ← L
(col)
p

18 cache[t]← cache[t]− L
(val)
p ×Xjr

19 end
20 __syncthreads()
21 Reduce(cache, t, T)
22 if t = 0 then
23 Xir ← Xir + cache[0]
24 end
25 __syncthreads()
26 end
27 end

2.3.2 Block Methods
When the number of right-hand sides (RHS) m is large, the number of threads launched
in the naive method can exceed the parallel processing capabilities of the GPU. To
avoid this, new methods have been developed, where the number of blocks along the
y-dimension of the grid can be smaller than m. These methods are called block methods

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 39

because instead of assigning one right-hand side to each thread block, we assign one
block of right-hand sides (RHS block) to each thread block. By ”block of right-hand
sides”, we mean a group of one or more right-hand sides; this should not be confused
with a thread block. The number of RHS blocks at each stage is the minimum of m
and the largest value for which the total number of blocks in the grid is less than or
equal to maxGridSize. The maxGridSize variable is defined in the same way as for the
adaptative method.

One advantage of grouping right-hand sides together is that we can choose to group
those who are close in memory. This allows to increase the efficiency of the cache. To
do so, the RHS blocks are defined as ranges of right-hand sides which are determined
with the task distribution function d seen in Section 2.2.4.

Three block methods are proposed: block-outer, which can be seen in Algo-
rithm 12; block-middle, which can be seen in Algorithm 13; and block-inner, which
is shown in Algorithm 14 and Algorithm 15. The main difference between these meth-
ods is the location of the loop iterating over the right-hand sides. In the naive method,
the kernel has two nested loops: the outer one iterating over the unknowns that need
to be computed, and the inner one iterating over a portion of the nonzero elements of L
in the row corresponding to the unknown being computed. In all of the block methods,
there are three nested loops because there is an additional one to iterate over the right-
hand sides in the RHS block. This loop can be either the outer loop (block-outer),
the middle one (block-middle), or the inner one (block-inner).

The block-inner method is slightly more complex compared to the other two. In
the other kernels, the shared memory was allocated such that each individual thread
could own one 16-byte value representing a complex double precision number. Here,
each thread needs as many 16-byte values as there are right-hand sides in its assigned
RHS block. This is so because, contrary to the two previous kernels where we compute
one segment at a time, here we compute concurrently multiple segments, one for each
right-hand side in the RHS block. The outer loop iterates over the unknowns to be
computed in the current node. At each iteration, one must first set to 0 the temporary
values stored in the shared memory array cache. Each thread t, is responsible for
initializing the values it owns, i.e., the cache array values at indices t + kT , with k ∈
{0, 1, . . . , rhsBlockSize− 1}. The loop performing this initialization starts at line 11.
Once this is done, one can load Rrow which contains the index of the unknown which
needs to be computed. This value only needs to be loaded once for all the right-hand
sides in the RHS block. In the two previous methods, this value had to be reloaded
multiple times from global memory. Next, the middle loop starts at line 16, and at
each iteration it load the column index L

(col)
p from global memory. Once again, this

can be loaded once in a register and be used for all the right-hand sides in the RHS
block. The inner loop then starts and iterates over the right-hand sides in the RHS
block. Once the computations in the inner loop are completed, the Reduce function is
called once for each right-hand side in the RHS block. Note that, the cacheIdx variable
was always chosen such that the T segments that need to be summed together for the
computation of each unknown are stored contiguously in shared memory. Finally, the

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 40

last step consists in updating the X matrix with the newly computed unknowns. In the
previous methods, it was thread 0 which was responsible for copying cache[0] to Xir.
This time, since there are multiple values to update in X (one for each right-hand side
in the RHS block), each thread t in the thread block will be responsible for copying the
elements cache[kT] to Xir for each k ∈ {t+ lT | l ∈ N and t+ lT < rhsBlockSize}, with
r = k + rhsStart. As multiple threads use the results of the reductions, it is necessary
to synchronize all threads after them.

Overall, the block-inner method should be the most efficient among the block
methods. The only disadvantage of this method is that it requires more shared memory
per thread which can reduce the maximum potential thread block size.

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 41

Algorithm 12: Solution Step: block-outer
Input: S := (S,N,R,M)

L :=
(
L(row), L(col), L(val))

B ∈ Cn×m

params ∈ R1

Output: X ∈ Cn×m

1 X ← B
2 (idealGridSize, idealBlockSize)←

GetIdealKernelConfig(KernelMultiRHSBlockOuter)
3 maxGridSize← idealGridSize× params1
4 for stage ← 1 to dim (S)− 1 do
5 numNodes← Sstage+1 − Sstage
6 numRHSBlocks← max (1,min (m, ⌊maxGridSize/numNodes⌋))
7 blockSize← min

(
idealBlockSize, 2⌈log2 Mstage⌉

)
8 gridDim← {x = numNodes, y = numRHSBlocks, z = 1}
9 blockDim← {x = blockSize, y = 1, z = 1}

10 KernelMultiRHSBlockOuter <gridDim, blockDim, 16× blockDim.x>(L, X,
S, stage)

11 end
12 Function KernelMultiRHSBlockOuter(L, X, S, stage):
13 t← threadIdx.x
14 T ← blockDim.x
15 rhsBlock← blockIdx.y
16 numRHSBlocks← gridDim.y
17 (rhsStart, rhsStop)← d(rhsBlock,m, numRHSBlocks) + (1, 1)
18 node← Sstage + blockIdx.x
19 for r ← rhsStart to rhsStop− 1 do
20 for row← Nnode to Nnode+1 − 1 do
21 cache[t]← 0
22 i← Rrow

23 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

24 j ← L
(col)
p

25 cache[t]← cache[t]− L
(val)
p ×Xjr

26 end
27 __syncthreads()
28 Reduce(cache, t, T)
29 if t = 0 then
30 Xir ← Xir + cache[0]
31 end
32 __syncthreads()
33 end
34 end
35 end

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 42

Algorithm 13: Solution Step: block-middle
Input: S := (S,N,R,M)

L :=
(
L(row), L(col), L(val))

B ∈ Cn×m

params ∈ R1

Output: X ∈ Cn×m

1 X ← B
2 (idealGridSize, idealBlockSize)←

GetIdealKernelConfig(KernelMultiRHSBlockMiddle)
3 maxGridSize← idealGridSize× params1
4 for stage ← 1 to dim (S)− 1 do
5 numNodes← Sstage+1 − Sstage
6 numRHSBlocks← max (1,min (m, ⌊maxGridSize/numNodes⌋))
7 blockSize← min

(
idealBlockSize, 2⌈log2 Mstage⌉

)
8 gridDim← {x = numNodes, y = numRHSBlocks, z = 1}
9 blockDim← {x = blockSize, y = 1, z = 1}

10 KernelMultiRHSBlockMiddle <gridDim, blockDim, 16× blockDim.x>(L,
X, S, stage)

11 end
12 Function KernelMultiRHSBlockMiddle(L, X, S, stage):
13 t← threadIdx.x
14 T ← blockDim.x
15 rhsBlock← blockIdx.y
16 numRHSBlocks← gridDim.y
17 (rhsStart, rhsStop)← d(rhsBlock,m, numRHSBlocks) + (1, 1)
18 node← Sstage + blockIdx.x
19 for row← Nnode to Nnode+1 − 1 do
20 i← Rrow
21 for r ← rhsStart to rhsStop− 1 do
22 cache[t]← 0

23 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

24 j ← L
(col)
p

25 cache[t]← cache[t]− L
(val)
p ×Xjr

26 end
27 __syncthreads()
28 Reduce(cache, t, T)
29 if t = 0 then
30 Xir ← Xir + cache[0]
31 end
32 __syncthreads()
33 end
34 end
35 end

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 43

Algorithm 14: Solution Step CPU: block-inner
Input: S := (S,N,R,M)

L :=
(
L(row), L(col), L(val))

B ∈ Cn×m

params ∈ R1

Output: X ∈ Cn×m

1 X ← B
2 (idealGridSize, idealBlockSize)←

GetIdealKernelConfig(KernelMultiRHSBlockInner)
3 maxGridSize← idealGridSize× params1
4 for stage ← 1 to dim (S)− 1 do
5 numNodes← Sstage+1 − Sstage
6 numRHSBlocks← max (1,min (m, ⌊maxGridSize/numNodes⌋))
7 blockSize← min

(
idealBlockSize, 2⌈log2 Mstage⌉

)
8 blockDim← {x = blockSize, y = 1, z = 1}
9 maxRHSBlockSize← ⌈m/numRHSBlocks⌉

10 sharedMem← 16× blockDim.x×maxRHSBlockSize
11 maxSharedMem← get maximum amount of shared memory per thread

block
12 if sharedMem > maxSharedMem then
13 maxRHSBlockSize← max(1, ⌊maxSharedMem/(16× blockDim.x))
14 numRHSBlocks← ⌈m/maxRHSBlockSize⌉
15 sharedMem← 16× blockDim.x×maxRHSBlockSize
16 end
17 gridDim← {x = numNodes, y = numRHSBlocks, z = 1}
18 KernelMultiRHSBlockInner <gridDim, blockDim, sharedMem >(L, X, S,

stage)
19 end

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 44

Algorithm 15: Solution Step Kernel: block-inner
1 Function KernelMultiRHSBlockInner(L, X, S, stage):
2 t← threadIdx.x
3 T ← blockDim.x
4 rhsBlock← blockIdx.y
5 numRHSBlocks← gridDim.y
6 (rhsStart, rhsStop)← d(rhsBlock,m, numRHSBlocks) + (1, 1)
7 rhsBlockSize← rhsStop− rhsStart
8 cacheSize← rhsBlockSize× T
9 node← Sstage + blockIdx.x

10 for row← Nnode to Nnode+1 − 1 do
11 for k ← 0 to rhsBlockSize− 1 do
12 cacheIdx← t+ kT
13 cache[cacheIdx]← 0

14 end
15 i← Rrow

16 for p← t+ L
(row)
i to L

(row)
i+1 − 2 step T do

17 j ← L
(col)
p

18 for k ← 0 to rhsBlockSize− 1 do
19 cacheIdx← t+ kT
20 r ← k + rhsStart
21 cache[cacheIdx]← cache[cacheIdx]− L

(val)
p ×Xjr

22 end
23 end
24 __syncthreads()
25 for k ← 0 to rhsBlockSize− 1 do
26 Reduce(&cache[kT], t, T)
27 end
28 __syncthreads()
29 for k ← t to rhsBlockSize− 1 step T do
30 cacheIdx← kT
31 r ← k + rhsStart
32 Xir ← Xir + cache[cacheIdx]
33 end
34 __syncthreads()
35 end
36 end

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 45

2.3.3 Flipped Methods
The last methods that will be discussed can only be used with schedulers that have unit-
size nodes, such as those built using the level-set strategy. The idea is to shift from
a block-based right-hand side distribution to a thread-based one and from a thread-
based segment distribution to a block-based one. We essentially flip the parallelization
layout of the right-hand sides and the segments. By doing so, consecutive threads will
be responsible for consecutive right-hand sides. If the matrix X is stored in row-major
order, it means that consecutive threads will load consecutive memory locations which
will make the global memory accesses coalesced. This fact is the main motivation for
these methods.

The first method is simply called flipped and it can be seen in Algorithm 16. Since
each corresponding to a certain unknown Xir is computed in a different thread block,
we cannot use the block-level Reduce function to sum all the segments. We thus have
to resort back to the AtomicAdd function.

If the number of right-hand sides is smaller than the ideal block size, it would be
better to compute several segments within the same thread block.

The disadvantage of this method is that when m is smaller than the ideal block
size, the occupancy of the kernel is not maxed out. We could increase the size of each
thread block by assigning more than one segment per thread block such that the total
block size is as close as possible to the ideal one. An other improvement would be
to avoid having the total grid size exceed maxGridSize by grouping nodes in the same
thread block when the total number of nodes exceeds maxGridSize. This is the idea of
the flipped-enhanced method which is shown in Algorithms 17 and 18.

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 46

Algorithm 16: Solution Step: flipped
Input: S := (S,N,R,M)

L :=
(
L(row), L(col), L(val))

B ∈ Cn×m

params ∈ R1

Output: X ∈ Cn×m

1 X ← B
2 (idealGridSize, idealBlockSize)← GetIdealKernelConfig(KernelMultiRHSFlipped)
3 maxGridSize← idealGridSize× params1
4 for stage ← 1 to dim (S)− 1 do
5 numNodes← Sstage+1 − Sstage
6 numSegments← max(1,min(⌊maxGridSize/numNodes⌋,Mstage))
7 blockSize← min(m, idealBlockSize)
8 gridDim← {x = numSegments, y = numNodes, z = ⌈m/blockSize⌉}
9 blockDim← {x = blockSize, y = 1, z = 1}

10 KernelMultiRHSFlipped <gridDim, blockDim, 16×m>(L, X, S, stage,m)
11 end
12 Function KernelMultiRHSFlipped(L, X, S, stage, m):
13 r ← threadIdx.x+ blockDim.x× blockIdx.z
14 if r ≥ m then
15 return
16 end
17 t← blockIdx.x
18 T ← gridDim.x
19 cacheIdx← threadIdx.x
20 node← Sstage + blockIdx.y
21 row← Nnode
22 i← Rrow
23 cache[cacheIdx]← 0

24 for p← L
(row)
i + t to L

(row)
i+1 − 2 step T do

25 j ← L
(col)
p

26 cache[cacheIdx]← cache[cacheIdx]− L
(val)
p ×Xjr

27 end
28 AtomicAdd(Xir, cache[cacheIdx])
29 end

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 47

Algorithm 17: Solution Step CPU: flipped-enhanced
Input: S := (S,N,R,M)

L :=
(
L(row), L(col), L(val))

B ∈ Cn×m

params ∈ R1

Output: X ∈ Cn×m

1 X ← B
2 (idealGridSize, idealBlockSize)←

GetIdealKernelConfig(KernelMultiRHSFlippedEnhanced)
3 maxGridSize← idealGridSize× params1
4 numRHSThreads← min(m, idealBlockSize)
5 numRHSBlocks← ⌈m/numRHSThreads⌉
6 for stage ← 1 to dim (S)− 1 do
7 numNodes← Sstage+1 − Sstage
8 numNodeBlocks← min(numNodes, ⌊maxGridSize/numRHSBlocks⌋)
9 numSegmentThreads← min(⌊idealBlockSize/numRHSThreads⌋,Mstage)

10 numSegmentThreads← 2⌊log2 numSegmentThreads⌋

11 numSegmentBlocks←
max(1,min(⌊Mstage/numSegmentThreads⌋, ⌊maxGridSize/(numNodeBlocks×
numRHSBlocks)⌋))

12 gridDim← {x = numNodeBlocks, y = numSegmentBlocks, z =
numRHSBlocks}

13 blockDim← {x = numRHSThreads, y = numSegmentThreads, z = 1}
14 KernelMultiRHSFlippedEnhanced <gridDim, blockDim,

16× numRHSThreads× numSegmentThreads>(L, X, S, stage, numNodes,
m)

15 end

2.3. SOLUTION STEP WITH MULTIPLE RIGHT-HAND SIDES 48

Algorithm 18: Solution Step Kernel: flipped-enhanced
1 Function KernelMultiRHSFlippedEnhanced(L, X, S, stage, numNodes, m):
2 r ← threadIdx.x+ blockDim.x× blockIdx.z
3 if r ≥ m then
4 return
5 end
6 thread← threadIdx.x+ threadIdx.y × blockDim.x
7 cacheIdx← threadIdx.y + threadIdx.x× blockDim.y
8 segment← threadIdx.y + blockIdx.y × blockDim.y
9 numSegments← gridDim.y × blockDim.y

10 nodeBlock← blockIdx.x
11 numNodeBlocks← gridDim.x
12 (nodeStart, nodeStop)←

d(nodeBlock, numNodes, numNodeBlocks) + (Sstage, Sstage)
13 for node← nodeStart to nodeStop− 1 do
14 row← Nnode
15 i← Rrow
16 cache[cacheIdx]← 0

17 segmentSize← L
(row)
i+1 − L

(row)
i − 1

18 (segmentStart, segmentStop)←
d(segment, segmentSize, numSegments) +

(
L
(row)
i , L

(row)
i

)
19 for p← segmentStart to segmentStop− 1 do
20 j ← L

(col)
p

21 cache[cacheIdx]← cache[cacheIdx]− L
(val)
p ×Xjr

22 end
23 __syncthreads()
24 Reduce(cache + ⌊thread/blockDim.y⌋ × blockDim.y, thread

mod blockDim.y, blockDim.y)
25 __syncthreads()
26 if threadIdx.y = 0 then
27 AtomicAdd(Xir, cache[cacheIdx])
28 end
29 end
30 end

Chapter 3

Numerical Experiments

3.1 Hardware Setup
All the numerical experiments were executed on the Lucia HPC facility operated by
Cenaero. For the simple tests, only the GPU partition, which contains 50 nodes, was
used. Table 3.1 shows the details of this partition. Each node contains 4 NVIDIA A100
40GB GPUs and one AMD EPYC 7513 32-core CPU with 240GB of user available
memory. For the advanced tests with preconditioned iterative methods, we compared
the results obtained on the GPU partition with those on the CPU (batch) partition,
the details of which are listed in Table 3.2.

Node Details GPU Node
Num. of nodes 50

Node model HPE XL645d
Processors 1× AMD EPYC 7513 32-core
Processors freq. 2.6GHz, boost up to 3.65GHz

Processor L3 cache 128MB

Cores per node 32

Hyperthreading Disabled
Memory 256GB DDR4-3200
User available mem. 240GB

Accelerators 4× NVIDIA A100 40GB

Ethernet 2× 10Gbps

Fast interconnect 2× Infiniband HDR-200
Local disk SATA SSD 480GB

Table 3.1: Node details of the GPU partition of the Lucia cluster. [16]

49

3.2. DIRECT METHOD 50

Node Details CPU Node
Num. of nodes 270

Node model HPE XL225n
Processors 2× AMD EPYC 7763 64-core
Processors freq. 2.45GHz, boost up to 3.5GHz

Processor L3 cache 256MB

Cores per node 128

Hyperthreading Disabled
Memory 256GB DDR4-3200
User available mem. 240GB

Ethernet 2× 10Gbps

Fast interconnect 2× Infiniband HDR-100
Local disk SATA SSD 480GB

Table 3.2: Node details of the CPU (batch) partition of the Lucia cluster. [16]

3.2 Direct Method
3.2.1 Toy Problem
Before testing the algorithms on iterative methods, we first solve a toy problem with
a direct method. The problem is an inhomogenous Helmholtz equation defined over a
cubic domain Ω with Robin boundary conditions:{

∇2u+ k2u = −f, in Ω,

αu+ β ∂u
∂n

= g, on ∂Ω,
(3.1)

where k = π, g(x) = 0, α = ik, β = 1 and f(x) = 1. The problem is solved using the
finite element method. For generating the mesh, the open source-software Gmsh [13]
was used. The script used to generate this mesh is shown in Listing 3.1. The Gmsh-Fem
library [23] was used to assemble the matrix A and the right-hand side b.

1 SetFactory("OpenCASCADE");
2 LC = 0.1;
3 Box(1) = {0,0,0, 1,1,1};
4 Point(10) = {0.5, 0.5, 0.5, LC};
5 Point{10} In Volume{1};
6 MeshSize{:} = LC;
7 Physical Volume(1) = {1};
8 Physical Surface(1) = {1:6};
9 Physical Point(1) = 10;

Listing 3.1: Gmsh script for generating a mesh of a unit cubic domain with specified
mesh size and physical entities.

3.2. DIRECT METHOD 51

An LU decomposition of A is performed by the CPU using UMFPACK [9], which
produces two triangular matrices: L and U such that A = LU . L is lower triangular and
U is upper triangular. The system Ax = b can then be solved by first solving Ly = b
and then Ux = y. The triangular solver will thus be used twice to solve the problem.
It is important to note that UMFPACK is a sequential direct solver, which is not
as advanced as solvers like MUMPS [2]. UMFPACK was chosen specifically because it
allows the retrieval of the L and U factors after the factorization step, whereas MUMPS
does not provide any routine for this.

In what follows, we will focus solely on the time required for the forward and back-
ward substitution steps (including the preprocessing step). The time for mesh genera-
tion, system assembly and factorization are not considered, as these processes were not
ported to the GPU.

3.2.2 Comparison of Preprocessing Strategies
The preprocessing step required to build the scheduler is not free. We first compare the
time it takes to build the scheduler across different strategies. Tests were conducted
with multiple system sizes. To achieve this, the mesh size factor was adjusted through
the -clscale runtime argument when running the Gmsh script.

Figure 3.1 shows the time needed to build the scheduler for each strategy and for
multiple system sizes. One can conclude that each method has a similar execution time.

0.5 1.0 1.5 2.0
Number of DOFs ×104

2.5

2.6

2.7

2.8

2.9

P
re

p
ro

ce
ss

in
g

T
im

e
(m

s)

×102

level-set

compressed-level-set

balanced-level-set

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

0.5

1.0

1.5

2.0

P
re

p
ro

ce
ss

in
g

T
im

e
(m

s)

×103

level-set

compressed-level-set

balanced-level-set

(b) Number of DOFs ≥ 30000

Figure 3.1: Preprocessing time for the L and U matrices for each strategy as a function
of the number of DOFs in the system to solve.

It is necessary to assess the quality of the schedulers resulting from each scheduling
strategy. Figure 3.2 shows the time it takes to solve the problem for each scheduler strat-
egy. First, it is clear that using a scheduler is better than not. The compressed-level-set
method is always significantly worse than the two other methods. The balanced-level-set

3.2. DIRECT METHOD 52

is always the best one with an average speedup of 1.87 over the level-set method.
The balanced-level-set method should thus always be preferred over the others.

0.5 1.0 1.5 2.0
Number of DOFs ×104

0.0

0.2

0.4

0.6

0.8

1.0

S
ol

ve
T

im
e

(m
s)

×102

level-set

compressed-level-set

balanced-level-set

No Scheduler

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

0

1

2

3

4

5

6

7

S
ol

ve
T

im
e

(m
s)

×103

level-set

compressed-level-set

balanced-level-set

No Scheduler

(b) Number of DOFs ≥ 30000

Figure 3.2: Solve time as a function of the number of DOFs for each scheduling strategy.
The solution step is performed using the default method. The scheduler-free method
uses the sequential-singleblock method for solving the problem.

One might wonder why the compressed-level-set method performs so much
worse. Figure 3.3 shows how each part of the solve phase performs and one can notice
that the compressed-level-set method is only consistenly worse for the backward
substitution. Figure 3.4 allows to understand why. The U matrix always contains a
single row with a single nonzero element. This phenomenon occurs regardless of the
system’s size. This means that there is only one dependency-free row. As observed
earlier, in this case the scheduler built by the compressed-level-set algorithm only
contains one stage with a single node. This results in a serialized computation of
unknowns. On the other hand, the balanced-level-set method works well for the
forward substitution.

3.2. DIRECT METHOD 53

0.5 1.0 1.5 2.0
Number of DOFs ×104

0.2

0.4

0.6

0.8

1.0

F
or

w
ar

d
S

u
b

st
it

u
ti

on
T

im
e

(m
s)

×101

level-set

compressed-level-set

balanced-level-set

(a) Forward substitution with number of
DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
or

w
ar

d
S

u
b

st
it

u
ti

on
T

im
e

(m
s)

×102

level-set

compressed-level-set

balanced-level-set

(b) Forward substitution with number of
DOFs ≥ 30000

0.5 1.0 1.5 2.0
Number of DOFs ×104

0

1

2

3

4

B
ac

k
w

ar
d

S
u

b
st

it
u

ti
on

T
im

e
(m

s)

×101

level-set

compressed-level-set

balanced-level-set

(c) Backward substitution with number of
DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

0

1

2

3

4

B
ac

k
w

ar
d

S
u

b
st

it
u

ti
on

T
im

e
(m

s)

×103

level-set

compressed-level-set

balanced-level-set

(d) Backward substitution with number of
DOFs ≥ 30000

Figure 3.3: Forward substitution and backward substitution time as a function of the
number of DOFs for each scheduling strategy. The solution step is performed using
the default method. The scheduler-free method uses the sequential-singleblock
method for solving the problem.

3.2. DIRECT METHOD 54

1 41 81 121 161 201 241 281 321 361
Number of Nonzero Elements

0

25

50

75

100

125

150

N
u

m
b

er
of

R
ow

s

(a) L matrix

1 21 41 61 81 101 121 141
Number of Nonzero Elements

0

10

20

30

40

50

N
u

m
b

er
of

R
ow

s

(b) U matrix

Figure 3.4: Bar plot representing the number of rows having a given number of nonzero
elements for the L and U matrices corresponding to the problem with the most coarse
mesh (-clscale = 1, i.e., the smallest system 1156× 1156).

3.2. DIRECT METHOD 55

3.2.3 Comparison of Solution Strategies
This section compares the different solution strategies seen in the previous chapter.
These strategies are also compared to the cuSPARSE [22] sparse triangular solve rou-
tine. Figures 3.5 and 3.6 show how these strategies compare in terms of performance
and solve time across multiple system sizes. It is clear that the adaptative strategy
works the best and it scales better with the number of DOFs than the others. The two
scheduler-free methods are by far the worst.

Note that the solve performance, measured in GFLOPS, is computed by dividing
the fixed number of floating-point operations associated with solving the system using
Equation 2.6 by the time it takes to solve the system. Although the actual number of
FLOPs can vary depending on the solution strategy employed, it was decided to use a
fixed number of FLOPs for the GFLOPS computation to ensure that the performance
measurement is inversely proportional to the solve time. Plotting the GFLOPS instead
of the solve time has the advantage of making the graphs more readable. The GFLOPS
computation to solve the system is done as follows:

GFLOPS = (µ+ α)(nnz(L) + nnz(U)− 2n), (3.2)

where L ∈ Cn×n, U ∈ Cn×n, α = 2 is the number of FLOPs to perform a complex
addition or subtraction, and µ = 6 is the number of FLOPs to perform a complex
multiplication.

0.5 1.0 1.5 2.0
Number of DOFs ×104

0

1

2

3

4

5

6

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

0

1

2

3

4

5

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×101

sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(b) Number of DOFs ≥ 30000

Figure 3.5: GPU solve performance as a function of the number of DOFs with several
strategies, using the balanced-level-set method for constructing the scheduler when
one is needed. The cuSPARSE strategy uses the cusparseSpSV_solve routine of the
cuSPARSE library to perform the forward and backward substitution.

The adaptative method works best to solve the total problem which involves two
triangular solves. However, as we have seen earlier, the structure of the two triangular

3.2. DIRECT METHOD 56

0.5 1.0 1.5 2.0
Number of DOFs ×104

100

101

102

S
ol

ve
T

im
e

(m
s)

sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

102

103

104

S
ol

ve
T

im
e

(m
s)

sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(b) Number of DOFs ≥ 30000

Figure 3.6: GPU solve time as a function of the number of DOFs with several strategies,
using the balanced-level-set method for constructing the scheduler when one is
needed.

matrices (L and U) differ a lot. It is thus advisable to check if the adaptative method
is the best for both the forward and the backward substitution. This is confirmed by
Figure 3.7 and Figure 3.8 which show that the adaptative method is the best in both
cases especially for large systems.

0.5 1.0 1.5 2.0
Number of DOFs ×104

100

101

102

F
or

w
ar

d
S

u
b

st
it

u
ti

on
T

im
e

(m
s)

sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

102

103

F
or

w
ar

d
S

u
b

st
it

u
ti

on
T

im
e

(m
s)

sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(b) Number of DOFs ≥ 30000

Figure 3.7: GPU forward substitution time as a function of the number of DOFs with
several strategies, using the balanced-level-set method for constructing the sched-
uler when one is needed.

Figures 3.9 and 3.10 show the performance we can achieve on a CPU for solving
the same problem. We first notice that parallelizing the computation on the CPU
does not necessarily improve the performance especially for small systems where the

3.2. DIRECT METHOD 57

0.5 1.0 1.5 2.0
Number of DOFs ×104

100

101

102
B

ac
k
w

ar
d

S
u

b
st

it
u

ti
on

T
im

e
(m

s) sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

101

102

103

B
ac

k
w

ar
d

S
u

b
st

it
u

ti
on

T
im

e
(m

s) sequential-singleblock

sequential-multiblock

default

cooperative-groups

adaptative

cuSPARSE

(b) Number of DOFs ≥ 30000

Figure 3.8: GPU backward substitution time as a function of the number of DOFs
with several strategies, using the balanced-level-set method for constructing the
scheduler when one is needed.

32-core method is slower than the single-core one. In Figure 3.11, we can see the
speedup when using the GPU compared to the CPU. For small systems with less than
30000 unknowns, the GPU version is worse than the CPU one. However, when there
are more than 30000 unknowns, the GPU version performs better, and the speedup
increases with the size of the system. For the largest tested system (1291066 rows), the
maximum speedup of 3.6 is reached.

We have only compared the performance of the solution step, but when we use a
scheduler, we also need to take into account the cost of the preprocessing step. Assuming
an iterative method is used to solve the system, the solution step is repeated multiple
times with different right-hand sides. Therefore, the cost of the preprocessing step is
amortized over the iterations. Figure 3.12 shows the number of iterations required to
achieve a speedup greater than one, as well as the speedup achieved after 100 iterations
compared to the single-core method which does not require any preprocessing step.

3.2. DIRECT METHOD 58

0.5 1.0 1.5 2.0
Number of DOFs ×104

0

2

4

6

8

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

1 CPU

2 CPUs

4 CPUs

8 CPUs

16 CPUs

32 CPUs

MKL SPARSE

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

0.4

0.6

0.8

1.0

1.2

1.4

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×101

1 CPU

2 CPUs

4 CPUs

8 CPUs

16 CPUs

32 CPUs

MKL SPARSE

(b) Number of DOFs ≥ 30000

Figure 3.9: CPU solve performance as a function of the number of DOFs. We com-
pare several computation methods. The plots labeled “1 CPU” and “MKL SPARSE”
correspond to single-core methods. The “1 CPU” method employs a simple implemen-
tation of the forward and backward substitution algorithm, while the “MKL SPARSE”
method solves the system using the mkl_sparse_z_trsv routine from the Intel oneAPI
Math Kernel Library [17]. For the multi-core methods, computations are parallelized
using OpenMP similarly to the default method on GPU, utilizing a scheduler built
with the balanced-level-set strategy.

3.2. DIRECT METHOD 59

0.5 1.0 1.5 2.0
Number of DOFs ×104

0.0

0.5

1.0

1.5

2.0

2.5

S
ol

ve
T

im
e

(m
s)

×101

1 CPU

2 CPUs

4 CPUs

8 CPUs

16 CPUs

32 CPUs

MKL SPARSE

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

0.0

0.5

1.0

1.5

2.0

S
ol

ve
T

im
e

(m
s)

×103

1 CPU

2 CPUs

4 CPUs

8 CPUs

16 CPUs

32 CPUs

MKL SPARSE

(b) Number of DOFs ≥ 30000

Figure 3.10: CPU solve time as a function of the number of DOFs. We compare several
computation methods. The plots labeled “1 CPU” and “MKL SPARSE” correspond
to single-core methods. The “1 CPU” method employs a simple implementation of
the forward and backward substitution algorithm, while the “MKL SPARSE” method
solves the system using the mkl_sparse_z_trsv routine from the Intel oneAPI Math
Kernel Library [17]. For the multi-core methods, computations are parallelized using
OpenMP similarly to the default method on GPU, utilizing a scheduler built with the
balanced-level-set strategy.

0.5 1.0 1.5 2.0
Number of DOFs ×104

3

4

5

6

S
p

ee
d

u
p

×10−1

(a) Number of DOFs < 30000

0.2 0.4 0.6 0.8 1.0 1.2
Number of DOFs ×106

1.0

1.5

2.0

2.5

3.0

3.5

S
p

ee
d

u
p

(b) Number of DOFs ≥ 30000

Figure 3.11: Speedup of the GPU solve using the adaptative strategy compared to
the fastest CPU solve.

3.2. DIRECT METHOD 60

21539 69401 123884 265155 346339 442671 859558 1291066

Number of DOFs

0.0

0.2

0.4

0.6

0.8

1.0

N
u

m
b

er
of

It
er

at
io

n
s

×102

103

13

6
3 3 2 2 2

(a) Number of iterations required for the
speedup of the GPU solve using the
adaptative method to achieve a speedup
greater than 1 compared to the single-core
CPU solve, taking into account the prepro-
cessing time.

21539 69401 123884 265155 346339 442671 859558 1291066

Number of DOFs

0

2

4

6

8

S
p

ee
d

u
p

(b) Speedup of the GPU solve using the
adaptative method compared to the single-
core CPU solve after 100 iterations, taking
into account the preprocessing time.

Figure 3.12

3.2. DIRECT METHOD 61

3.2.4 Comparison of Multi-RHS Solution Strategies
In this section, we compare the different solution strategies when the system to solve
has several right-hand sides.

First, the right-hand sides are stored in column-major order. Figure 3.13 shows how
the number of right-hand sides affects performance for different system sizes across the
various strategies. The performance of the cuSPARSE library is the worst in all cases.
This comes from the fact that cuSPARSE is very slow for the backward substitution.
When they are many right-hand sides, the flipped-enhanced method is the best for
smalle systems, while the block-inner is faster for large systems. When the number
of right-hand sides is low, all the block methods perform about the same. The naive
method performs quite well when the number of right-hand sides is low in which case
it manages to outperform the other methods by a small margin.

Figure 3.14 shows the same as Figure 3.13, but in this case the right-hand sides
are stored in row-major order. Remember that this ordering allows to have coalesced
memory accesses in the flipped methods. This is why the flipped-enhanced method
is always the best when there are more than 128 right-hand sides and it peaks at more
than 600GFLOPS for large systems which is well above what was obtained when using
column-major ordering. The block-inner method performs worse with this ordering.

Figure 3.15 summarizes the result by associating each pair of number of rows and
number of RHS with the best strategy to solve the problem. Figure 3.16 shows the
maximum GFLOPS obtained for each number of rows and RHS.

To compare these results with what can be obtained with CPUs, we implemented
multiple methods on the CPU, namely naive, block-outer, block-middle and block-inner.
We conducted the same tests as for the GPU with 1, 2, 4, 8, 16 and 32 CPU cores.
Figure 3.17 shows the speedup of the best GPU method compared to the best CPU
method.

3.2. DIRECT METHOD 62

100 101 102 103

Number of RHS

0.0

0.5

1.0

1.5

2.0

2.5

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(a) 4133DOFs

100 101 102 103

Number of RHS

0.0

0.5

1.0

1.5

2.0

2.5

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(b) 21 539DOFs

100 101 102 103

Number of RHS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(c) 123 884DOFs

100 101 102 103

Number of RHS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(d) 346 339DOFs

Figure 3.13: Solve performance as a function of the number of right-hand sides stored in
column-major order for different system sizes and solution strategies. The cuSPARSE
strategy uses the cusparseSpSM_solve routine to solve the two triangular systems with
multiple right-hand sides.

3.2. DIRECT METHOD 63

100 101 102 103

Number of RHS

0

1

2

3

4

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(a) 4133DOFs

100 101 102 103

Number of RHS

0

1

2

3

4

5

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(b) 21 539DOFs

100 101 102 103

Number of RHS

0

1

2

3

4

5

6

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(c) 123 884DOFs

100 101 102 103

Number of RHS

0

1

2

3

4

5

6

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

naive

block-outer

block-middle

block-inner

flippped

flipped-enhanced

cuSPARSE

(d) 346 339DOFs

Figure 3.14: Solve performance as a function of the number of right-hand sides stored
in row-major order for different system sizes and solution strategies. The cuSPARSE
strategy uses the cusparseSpSM_solve routine to solve the two triangular systems with
multiple right-hand sides.

3.2. DIRECT METHOD 64

11
56

21
95

30
69

41
33

59
96

10
29

1
21

53
9

69
40

1
90

99
5

12
38

84
17

77
51

26
51

55
34

63
39

44
26

71
60

16
87

85
95

58
12

91
06

6

Number of DOFs

1

2

4

8

16

32

64

128

256

512

1024

2048

N
u

m
b

er
of

R
H

S
naive col-major

flippped row-major

flipped-enhanced row-major

block-outer col-major

flipped-enhanced col-major

block-inner col-major

naive row-major

Not enough memory

Figure 3.15: Colormap illustrating the optimal solution strategy for several system sizes
and number of right-hand sides. Note that when there is only one right-hand side, this
figure only shows the best multi-right-hand side strategy. However, in this case the best
strategy would be the adaptative strategy.

11
56

21
95

30
69

41
33

59
96

10
29

1
21

53
9

69
40

1
90

99
5

12
38

84
17

77
51

26
51

55
34

63
39

44
26

71
60

16
87

85
95

58
12

91
06

6

Number of DOFs

1

2

4

8

16

32

64

128

256

512

1024

2048

N
u

m
b

er
of

R
H

S

0

1

2

3

4

5

6

S
ol

ve
P

er
fo

rm
an

ce
(G

F
L

O
P

S
)

×102

Figure 3.16: Heatmap illustrating the performance of the GPU solve when the best
multi-right-hand-side strategy is used.

3.2. DIRECT METHOD 65

21
95

30
69

41
33

59
96

10
29

1

21
53

9

69
40

1

90
99

5

12
38

84

26
51

55

34
63

39

Number of DOFs

1

2

4

8

16

32

64

128

256

512

1024

2048

N
u

m
b

er
of

R
H

S

1

2

3

4

5

6

S
p

ee
d

u
p

Figure 3.17: Heatmap representing the speedup of the best GPU multi-RHS solution
strategy compared to the best CPU multi-RHS solution strategy.

3.3. ORAS 66

3.3 ORAS
In this section, we test our triangular solver for use in applying the ORAS preconditioner
at each iteration of the GMRES Krylov method running on the GPU (thanks to PETSc
[20]). Recall that the ORAS preconditioner M−1

ORAS is given by

M−1
ORAS =

nd∑
i=1

RT
i DiA

−1
Robin,iRi. (3.3)

The triangular solves are required when applying the preconditioner to the residual rk,
where each process i needs to compute

A−1
ORAS,iRir

k = A−1
ORAS,ir

k,i, (3.4)

where rk,i is the restriction of the residual to subdomain i. The forward and back-
ward substitutions are performed using the LU decomposition of AORAS,i. For this
decomposition, we use UMFPACK [9] for the same reasons as earlier.

We once again solve a Helmholtz problem, but this time using 4 GPU nodes, which
provides us with 16 GPUs (see Table 3.1). Consequently, the domain is decomposed
into 16 overlapping subdomains, each assigned to its own MPI process and GPU. Each
GPU node is equipped with one 32-core CPU, which allows each of the 4 MPI processes
(per node) to utilize 8 CPU cores. We compare the results obtained with our GPU-
based triangular solver with those obtained using MUMPS [2] and the CPU version
of GMRES from PETSc [4] on the same number of CPU nodes (i.e., 4 nodes) (see
Table 3.2) in the Lucia cluster. The test configuration is such that each node is fully
utilized. A summary of the configuration of each test is shown in Table 3.3.

Test Configuration CPU Test GPU Test
Num. of nodes 4 4

Num. of subdomains 16 16

Num. of processes 16 16

Num. of CPU cores per process 32 8

Num. of GPUs per process 0 1

Table 3.3: ORAS test configuration

Figure 3.18 and Figure 3.19 show how the GPU version compares against the CPU
one with varying mesh sizes and finite element orders. The results are also summarized
in Table 3.4 and Table 3.5. The results clearly show that the GPU version is better.
However, for large systems, the speedup of the GPU version compared to the CPU one
decreases.

3.3. ORAS 67

0 1 2 3
Number of DOFs ×106

0.0

0.2

0.4

0.6

0.8

1.0

S
ol

ve
T

im
e

(m
s)

×105

GPU

CPU

(a) Solve times of the GPU and CPU versions
of the ORAS test with varying mesh element
size.

0 1 2 3
Number of DOFs ×106

0.25

0.50

0.75

1.00

1.25

1.50

S
p

ee
d

u
p

×101

(b) Speedup of the GPU version compared to
the CPU version of the ORAS test with vary-
ing mesh element size.

Figure 3.18: ORAS tests with varying characteristic length (CL) of the mesh elements.

0 1 2 3 4 5 6
Number of DOFs ×106

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

S
ol

ve
T

im
e

(m
s)

×105

GPU

CPU

(a) Solve times of the GPU and CPU versions
of the ORAS test with varying mesh element
order.

0 1 2 3 4 5 6
Number of DOFs ×106

3

4

5

6

7

8

9

S
p

ee
d

u
p

(b) Speedup of the GPU version compared to
the CPU version of the ORAS test with vary-
ing mesh element order.

Figure 3.19: ORAS tests with varying finite element order.

3.3. ORAS 68

Order CL # DOFs # Subdomain DOFs # Iterations Solve Iteration
1 0.04 27 323 3272 19 663ms 35ms

1 0.03 51 220 5547 20 724ms 36ms

1 0.02 131 556 12 546 21 820ms 39ms

1 0.018 176 804 16 196 22 935ms 43ms

1 0.016 250 792 22 132 22 921ms 42ms

1 0.014 344 324 29 468 22 972ms 44ms

1 0.012 525 957 43 161 23 1307ms 57ms

1 0.01 859 989 68 056 23 2083ms 91ms

1 0.008 1 637 760 123 788 24 2833ms 118ms

1 0.006 3 726 197 269 303 24 12 836ms 535ms

1 0.03 51 220 5547 20 1145ms 57ms

2 0.03 392 478 40 119 21 1316ms 63ms

3 0.03 1 303 536 130 630 19 5151ms 271ms

4 0.03 3 064 155 303 996 18 11 967ms 665ms

5 0.03 5 954 096 587 129 18 43 016ms 2390ms

Table 3.4: Results of the ORAS experiment on GPU. The first column contains the
order of the finite elements. The second is the characteristic length of one mesh element.
The last column contains the average time of each GMRES iteration. The third column
contains the average number of DOFs per subdomain. If one multiplies this number
by the number of subdomains (16), then the result is larger than the total number of
DOFs in the system, because the subdomains are overlapping.

3.3. ORAS 69

Order CL # DOFs # Subdomain DOFs # Iterations Solve Iteration
1 0.04 27 323 3272 19 1138ms 60ms

1 0.03 51 220 5547 20 2480ms 124ms

1 0.02 131 556 12 546 21 5962ms 284ms

1 0.018 176 804 16 196 22 6362ms 289ms

1 0.016 250 792 22 132 22 11 544ms 525ms

1 0.014 344 324 29 468 22 11 433ms 520ms

1 0.012 525 957 43 161 23 20 689ms 900ms

1 0.01 859 989 68 056 23 28 144ms 1224ms

1 0.008 1 637 760 123 788 24 47 227ms 1968ms

1 0.006 3 726 197 269 303 24 97 947ms 4081ms

1 0.03 51 220 5547 20 2725ms 136ms

2 0.03 392 478 40 119 21 11 872ms 565ms

3 0.03 1 303 536 130 630 19 43 200ms 2274ms

4 0.03 3 064 155 303 996 18 99 265ms 5515ms

5 0.03 5 954 096 587 129 18 172 336ms 9574ms

Table 3.5: Results of the ORAS experiment on CPU. The first column contains the order
of the finite elements. The second is the characteristic length of one mesh element. The
last column contains the average time of each GMRES iteration. The third column
contains the average number of DOFs per subdomain. If one multiplies this number
by the number of subdomains (16), then the result is larger than the total number of
DOFs in the system, because the subdomains are overlapping.

Chapter 4

Conclusion

The objective of this thesis was to accelerate the computation of large-scale time-
harmonic problems using GPUs. We were particularly interested in solving these prob-
lems with iterative solvers, such as GMRES, preconditioned with the ORAS precondi-
tioner. To achieve our objective, we used PETSc’s GPU implementation of GMRES
[5, 20] and developed a GPU-accelerated sparse triangular solver used when applying
the preconditioner at each GMRES iteration.

We evaluated multiple methods for efficiently solving triangular systems on the
GPU, testing them on a simple Helmholtz problem. The most effective approach proved
to be the adaptative method which achieved a speedup of up to 3.6× compared to the
best CPU implementation. We also implemented several methods for solving systems
with multiple right-hand sides, leading to more than 6× speedup compared to the best
CPU implementation for the same Helmholtz problem. In the multi-right-hand side
case, several methods were good depending on the size of the system and the number
of right-hand-sides (see Figure 3.15). In general, the GPU version outperformed the
CPU one for large systems, but performed worse for small ones.

Moreover, we tested the full iterative method with one right-hand side, using PETSc’s
GPU-accelerated GMRES and the ORAS preconditioner. The GPU version performed
quite well, achieving more than 10× speedup in certain cases.

However, we were not able to test the full method with multiple right-hand sides due
to the absence of a GPU-accelerated iterative solver in PETSc that correctly parallelizes
multiple right-hand sides.

Lastly, our study focused on the ORAS preconditioner, but other domain decompo-
sition techniques exist. For example, GmshDDM [27] is a framework which solves the
same types of problems, but using a matrix-free substructured non-overlapping domain
decomposition method. It could also benefit from our triangular solver.

70

Bibliography

[1] Patrick R Amestoy, Alfredo Buttari, Jean-Yves L’excellent, and Theo Mary. Per-
formance and scalability of the block low-rank multifrontal factorization on multi-
core architectures. ACM Transactions on Mathematical Software (TOMS), 45(1):1–
26, 2019.

[2] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A
fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM
Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[3] Edward Anderson and Youcef Saad. Solving sparse triangular linear systems on
parallel computers. International Journal of High Speed Computing, 1(01):73–95,
1989.

[4] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,
Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro Dalcin, Alp Dener,
Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin
Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley,
Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran
Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick
Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang,
and Junchao Zhang. PETSc/TAO users manual. Technical Report ANL-21/39 -
Revision 3.21, Argonne National Laboratory, 2024.

[5] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown,
Peter Brune, Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp
Dener, Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla,
Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knep-
ley, Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran
Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick
Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang,
and Junchao Zhang. PETSc Web page. https://petsc.org/, 2024.

[6] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.
Efficient management of parallelism in object oriented numerical software libraries.
In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

71

https://petsc.org/

BIBLIOGRAPHY 72

[7] Cédric Chevalier and François Pellegrini. Pt-scotch: A tool for efficient parallel
graph ordering. Parallel computing, 34(6-8):318–331, 2008.

[8] NVIDIA Corporation. CUDA C++ Programming Guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html.

[9] Timothy A Davis. Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multi-
frontal method. ACM Transactions on Mathematical Software (TOMS), 30(2):196–
199, 2004.

[10] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An introduction to domain
decomposition methods: algorithms, theory and parallel implementation. Master’s
thesis, France, 2015. cel-01100932v4.

[11] Iain S Duff and John K Reid. The multifrontal solution of indefinite sparse symmet-
ric linear. ACM Transactions on Mathematical Software (TOMS), 9(3):302–325,
1983.

[12] Howard C Elman. Iterative methods for large, sparse, nonsymmetric systems of
linear equations. Yale University, 1982.

[13] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh
generator with built-in pre-and post-processing facilities. International journal for
numerical methods in engineering, 79(11):1309–1331, 2009.

[14] Anne Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

[15] Mark Harris. Optimizing parallel reduction in cuda. https://developer.
download.nvidia.com/assets/cuda/files/reduction.pdf. NVIDIA Developer
Technology.

[16] Cenaero HPC. Lucia system overview. https://doc.lucia.cenaero.be/
overview/.

[17] Intel Corporation. Intel oneapi math kernel library (onemkl). https://
www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/
2024-2/overview.html, 2024. Version 2024.2.

[18] Bruce M Irons. A frontal solution program for finite element analysis. International
Journal for Numerical Methods in Engineering, 2(1):5–32, 1970.

[19] George Karypis and Vipin Kumar. Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices. 1997.

[20] Richard Tran Mills, Mark F. Adams, Satish Balay, Jed Brown, and Alp Dener.
Toward performance-portable PETSc for GPU-based exascale systems. Parallel
Computing, 108:102831, 2021.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://doc.lucia.cenaero.be/overview/
https://doc.lucia.cenaero.be/overview/
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/overview.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/overview.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-2/overview.html

BIBLIOGRAPHY 73

[21] Andrea Moiola and Euan A Spence. Is the helmholtz equation really sign-
indefinite? Siam Review, 56(2):274–312, 2014.

[22] NVIDIA Corporation. Nvidia cusparse library user guide. https://docs.nvidia.
com/cuda/cusparse/index.html, 2024. Version 12.6.

[23] Anthony Royer, Eric Béchet, and Christophe Geuzaine. Gmsh-fem: an efficient
finite element library based on gmsh. In 14th World Congress on Computational
Mechanics (WCCM), ECCOMAS Congress 2020. Scipedia, 2021.

[24] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on scientific and
statistical computing, 7(3):856–869, 1986.

[25] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[26] Joel H Saltz. Aggregation methods for solving sparse triangular systems on mul-
tiprocessors. SIAM journal on scientific and statistical computing, 11(1):123–144,
1990.

[27] Bertrand Thierry, Alexandre Vion, Simon Tournier, Mohamed El Bouajaji, David
Colignon, Nicolas Marsic, Xavier Antoine, and Christophe Geuzaine. Getddm: An
open framework for testing optimized schwarz methods for time-harmonic wave
problems. Computer Physics Communications, 203:309–330, 2016.

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html

