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Abstract

As implied by its title, the goal of this Master’s thesis is to specify and
verify safety properties of a few classical algorithms taken from the Parallel
Programming lectures taught by Prof. Pascal Fontaine by using the TLA+

tool suite. The original motivation was to constitute a formal proof com-
panion for the course which would allow to spot remaining mistakes in the
lecture material while providing an alternative unambiguous description of
the algorithms and their properties for the students.

The first chapter of this work lays out the minimal concepts of concurrent
programming required to motivate the distinctive significance of software
verification in the world of parallel and distributed algorithms. The sec-
ond one presents all the tools of the TLA+ environment used in the fol-
lowing chapters, from the underlying TLA mathematical model up to the
proof manager that automatically verifies properties of an algorithm. A
rough methodology is established to turn the pseudo-code descriptions of
algorithms presented in the lecture material into clear TLA+ specifications
and to consequently identify and express safety properties of interest before
checking and proving them.

The next chapters consist in applying the previously described tools and
methods to algorithms taken from the Parallel Programming course, namely
Barz’s algorithm and the Readers-writers. The resulting TLA+ specifica-
tions, adjoining definitions and properties as well as TLAPS proofs consti-
tute the original contribution of this Master’s thesis.

Finally, the conclusion chapter briefly sums up the results obtained in those
chapters.
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Chapter 1

Parallel Programming

1.1 Concurrent Programming

Running an algorithm in a parallel setting has a potential to increase the
performance that can be expected compared to its sequential version. On the
other hand, parallelism introduces new inherent issues that have the poten-
tial to jeopardize the correctness of the algorithm. As portrayed by the first
chapter of [2], concurrent programming is an abstract setting that allows to
write and reason on programs that may at least partially be run in paral-
lel. It is thus to be differentiated from any concrete parallel or distributed
programming environments like software threads, multi-core processors or
computer clusters.

It is to be considered that the concurrent sections of a program allow a finite
number of abstract processes to execute the given sequence of instructions
“at the same time”. As a result of the previous comment, this notion of
time should not be related to any practical implementation of parallelism.
Therefore, it is not even necessary to assume the processes really work in
parallel. Rather, simply supposing they work at arbitrary individual rates,
within a common timeframe is sufficient. This vague model encompasses
both fully parallel schemes and executions in which the processes simply
take turns doing their job, as well as any behavior in between.

1.2 Interleaving Semantics

The only decisive feature of the concurrent programming model described in
the previous section is the associated interleaving semantics. As presented in
[2], from an external spectator’s point of view, an execution of the abstract
concurrent programming model consists in a sequence of steps, each taken
by an arbitrary process, with nothing happening in between. These actions

1



CHAPTER 1. PARALLEL PROGRAMMING 2

are individually considered as an instantaneous modification of the state of
the algorithm and can thus never be interrupted by another step taken by a
different process. Such steps are referred to as atomic since they define the
minimal level of granularity for expressing any change in the current model.

In order to correctly reason about concurrent programs, one must consider
that the next atomic step of a concurrent execution might be taken by any
of the processes unless there is a reason explicitly preventing them to do so.
Hence, compared to its sequential equivalent, the abstract concurrent pro-
gramming model of a deterministic algorithm allows for multiple sequences
of steps to be generated. In other words, although the processes may follow
the same relative execution paths, the order in which the atomic steps of
the different processes are interleaved on the abstract timeline can vary from
run to run. Therefore, when reasoning about the execution of a concurrent
program, all possible interleavings of atomic steps must be considered.

Beyond the practical aspect that the number of possible executions to be
considered may easily become prohibitive, there is a way more vicious con-
cern regarding the interleaving semantics defined hereabove. The current
model indeed does not incorporate shared memory yet although its use is
pervasive in order to allow processes to collaborate. However, as soon as
one considers that part of the state of the system is accessible to multiple
processes, the independence between them is waived which means the choice
of interleaving might have an impact on the behavior of the algorithm.

For example, the outcome of a toy concurrent program simply returning
the value of a variable shared by two processes depends on which process
performs the last assignment operation in the interleaving. Given that the
two processes P1 and P2 set the variable to values 1 and 2 respectively, the
program outputs 1 if P2 takes its atomic step first. The initial value 2 set
by P2 is indeed subsequently overwritten by P1. Conversely, it is equally
possible under the interleaving model for the program to output 2 due to
P1 being picked to take a step first.

The above example clearly illustrates the idea that the interleaving semantics
may introduce an additional source of nondeterminism that does not arise
in the sequential programming setting. Such a dependence of the behavior
of an algorithm on the particular execution run is referred to as a race
condition when it hinders the correctness of the algorithm with respect to an
established specification. In real parallel algorithm implementations, race
conditions are known to be the cause of so-called Heisenbugs. Such bugs
compromise the overall correctness of a program while being extremely hard
to detect using traditional debugging approaches. They are indeed tied to
specific interleavings that may hardly ever occur when running the program.
Avoiding this category of bugs is the principal motivation behind trying to
apply formal verification methods to concurrent algorithms.



Chapter 2

The TLA+ Language and
Tools

2.1 Overview

The name TLA stands for “Temporal Logic of Actions” (or alternatively
“Three-Letter Acronym”) and initially refers to the formal system of logic
introduced by Leslie Lamport in [9], in 1994. Prior to this, as stated by
Lamport himself in [8], he was trying to specify and prove properties of
concurrent programs using the previously developed linear temporal logic.
However, after becoming “disillusioned with temporal logic when he saw
how Schwartz, Melliar-Smith, and Fritz Vogt were spending days trying to
specify a simple FIFO queue”, he left them and went on to develop TLA.

For its part, TLA+ (note the + symbol) designates the high-level formal
modeling language consequently created by Lamport in order to provide a
practical and elegant way to specify and check concurrent systems based
on TLA. Moreover, TLA+ may also refer to the companion IDE and its
toolbox which offer the full set of capabilities gravitating around the original
language. The goal of this section is to roughly present the different modules
and how they interact, before diving in a detailed description of each of them
in the rest of this chapter.

The easiest way to start with TLA+ is to download and install the IDE1.
Altough this IDE is officially reffered to as “The TLA+ Toolbox”, the pro-
vided tools could, strictly speaking, be used outside this particular editor
environment. They are notably available with various degrees of integration
as extensions geared towards more mainstream IDEs.

Beyond the obvious text editing, file management or syntax highlighting

1Access the TLA+ Home Page at https://lamport.azurewebsites.net/tla/toolbox.html

3
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CHAPTER 2. THE TLA+ LANGUAGE AND TOOLS 4

capabilities offered by the TLA+ Toolbox for both TLA+ and its companion
language PlusCal, its defining features encompass the following:

� The “SANY’ Syntactic Analyzer parses both languages for errors in
specifications.

� The PlusCal Translator transpiles more intuitive PlusCal specifica-
tions to their TLA+ equivalent which can be processed by the following
tools.

� The “TLC” Model Checker allows to derive concrete models from ab-
stract specifications and to check safety properties by exhaustive enu-
meration of the reachable states.

� The “TLAPS” Proof System is an add-on developed by the Microsoft
Research-INRIA Joint Centre. It is thus not distributed along the
current version of the TLA+ Toolbox IDE and must be downloaded
and plugged in manually2. The provided TLA Proof Manager is able
to automatically check formal proofs of TLA+ assertions written in a
dedicated proof sub-language by converting them to obligations that
are in turn fed to multiple backend provers.

� The “TLATeX” Pretty-Printer allows to typeset the ASCII-formatted
specifications for display in PDF documents by using the LaTeX en-
gine.

2.2 Temporal Logic of Actions

The goal of this section is not to exhaustively and formally describe the
logic of TLA as in the original paper [9] by Lamport. Many details are
indeed not required to understand the content of this Master’s thesis and
are introduced to solve issues that do not even arise in the following. As
a result, although heavily based of this paper, the following section will be
more of an introduction to the main concepts behind TLA and should be
sufficient to grasp all the consequent developments.

As an introduction, it could be said that Lamport’s driving motivation lies
at the beginning of [9], under the sentence “Logic is the formalization of ev-
eryday mathematics, and everyday mathematics is simpler than programs”.
Hence, a defining characteristic of TLA is that everything will be repre-
sented using a unified mathematical framework, from a program itself, to
the properties one wants said program to satisfy and even the formal proofs
that these properties are verified. Thus, although the syntax of TLA+ and
especially PlusCal may end up looking like the one of a programming lan-
guage, the semantics behind it are always those of TLA which are essen-

2See instructions: https://proofs.tlapl.us/doc/web/content/Download/Binaries.html

https://proofs.tlapl.us/doc/web/content/Download/Binaries.html
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tially mathematics. As such confusion could obviously happen throughout
this Master’s thesis, the end goal being to specify computer programs, the
previous statement will be repeated and detailed any time the reader may
be misled.

On the other hand, a shortcoming of TLA+ and comparable formal specifi-
cation tools used for software verification can be inferred from the previous
citation. Indeed, although such systems are able to provide strict theoretical
guarantees regarding the abstract mathematical model, it is the user’s job
to construct the specification according to the original program’s behavior.
Otherwise, any derived guarantee is de facto invalidated. Therefore, and
because real-world physical computer systems suffer from way more causes
of error than logical faults in software, one would be dishonest as to claim
any form of absolute guarantee of proper functioning based on the output
of a tool like TLA+. Despite the previous argument, verifying an algorithm
with TLA+ does by no way constitute a useless process completely discon-
nected from the real implementation. In many cases, it indeed allows to
uncover critical mistakes that would be almost impossible to identify using
other methods, like the Heisenbugs introduced in Section 1.2.

First of all, the starting idea of TLA (and standard temporal logic before it)
is to mathematically represent the behavior of computer systems by discrete-
time dynamic systems. This implies reducing any form of memory of the
physical devices to the abstract notion of state. The execution of a program
is thus seen as a sequence of discrete steps which describe how to transition
from the current state to a new one. This view will of course eventually
overlap with the notion of atomic steps associated to the interleaving se-
mantics.

Using the formalism of Lamport’s paper [9], Var designates the infinite set of
possible variable names and Val a collection of any value that might be useful.
In this setting, a state s is no more than a mapping fromVar to Val assigning
the value sJxK to a variable name x . The set of all possible such states is
then referred to as St. One can notice the previous definitions are rather
loose but this results from the choice of Lamport to take advantage of the
full expressiveness of mathematics in order not to introduce any constraint
at this stage.

A notable consequence of this approach is the fact that TLA+ variables are
not typed at all, being no more than textual labels that can be attached
to anything, just like mathematical definitions. As a result and similarly
to dynamically typed programming languages, a same TLA variable can be
associated to a set by one state, a natural number by another or even a whole
specification by a third. This has the benefit of being extremely flexible but
comes to the price of TLA+ being unable to ascertain a variable respects a
given type over the course of the execution of the system without a formal
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proof.

Building on top of the previous notion of state, Lamport introduces state
functions and predicates as expressions of variables and constant symbols
like x 2+y−3 and x 2 = y−3 respectively. They both express a mapping from
states in St to “values” but predicates only map them to the booleans true
and false (which are thereby not strictly considered values) while functions
work on all the values of Val. The derivation of a value from the expression
of the function or predicate is formally stated by the following definition:

sJf K ≜ f (∀‘v ’ : sJvK/v)

Practically, the value or boolean associated by the function or predicate f to
the state s is obtained by replacing all textual occurrences v of variables by
the value sJvK associated to them by said state s. In the other way around,
the underlying philosophy might be understood more easily by considering
variables will take values that change from state to state and that the value
of a function is computed for a given state based on the value of some of the
variables in this state.

Up to this point, individual states have been defined along formulas that
can be evaluated over them. The original motivation was nevertheless to
represent the execution of a program by a sequence of states linked by tran-
sitions. This is where the need for the concept of temporal logic arises. The
object of study of temporal logic is indeed to reason about a whole sequence
of states, generally referred to as a behavior. On the other hand, atempo-
ral formulas like the ones presented up to now involve a single state and
can be dealt with using conventional first-order logic. The basic element of
reasoning is thus now a sequence σ belonging to the set St∞ of all infinite
sequences built by picking states from St.

Many temporal operators can be defined to express various properties of a
behavior σ but the only one that is required to go further in understanding
TLA is the “always” operator □. When applied to a so-called elementary
formula, this unary operator makes it a predicate on the whole sequence σ
rather than on a single state s. Simply put, the resulting temporal formula
evaluates to the boolean true if and only if the inner formula is verified for
every state s appearing in the sequence σ. Lamport gives the following
formal defintion:

⟨s0, s1, s2, . . . ⟩ J□F K ≜ ∀n ∈ N : ⟨sn , sn+1, sn+2, . . . ⟩ JF K

In other words, the temporal formula □F associates the same boolean to the
infinite sequence σ composed of states s0, s1, s2, . . . as F when universally
quantified on the states of σ. The missing implicit assumption for this
interpretation to be correct is that, as an elementary predicate F can only
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be evaluated on one state at a time, doing so on a sequence of states is an
alias for evaluating it on the first state of this sequence only. The right-hand
side of the above definition is thus indeed equivalent to saying F must be
true for any state sn appearing in σ in order for σJ□F K to be true.

The tools developed up to now allow to mathematically characterize the
behavior of a computer system as expected. However, referring to the be-
ginning of Section 2.1, classical linear temporal logic was already available to
Lamport and his colleagues while they were trying to specify a FIFO queue.
It was nevertheless not sufficient to prevent him from leaving the project out
of frustration. The shortcoming of this logic, which Lamport subsequently
addressed by introducing TLA is that, it does not say anything about the
links between consecutive states of a behavior. On the other hand, the tradi-
tional imperative programming approach typically consists in a sequence of
instructions, each describing how to mutate the current state into the next
one. This notion of transition may implicitly result in restrictions applied
by the program to the states that can be reached during its own execution.
It can however not be expressed using linear temporal logic only. Properties
associated to those restrictions are thus impossible to state or prove. As a
result, a considerable pat of the information embedded in the program is de
facto left aside by the current model.

The above argument calls for the introduction of a new object in the logic,
coined “action” by Lamport and giving its name to the resulting Temporal
Logic of Actions. Intuitively, actions are similar to the state predicates
defined earlier but are boolean expressions on a pair of states rather than on
a single one. The expression of an action may thus contain a new primitive
under the form of primed variables. Primed variables allow to differentiate
the values taken by variables in either of the two states forming the pair
and to thereby express relations between them as in x ′ = y +1. The formal
definition of actions is given by Lamport as follows:

sJAKt ≜ A
(
∀‘v ’ : sJvK/v , tJvK/v ′

)
Similarly to the previous definition of state predicates, the boolean at-
tributed by the action A to the ordered pair of states (s, t) is derived by
replacing all occurrences of unprimed variables v by the value sJvK given to
them by state s and primed variables v ′ by the value tJvK from state t . In
that sense, boolean predicates are the subset of actions that do not make
use of primed variables in their expression. Thereby, their “value” does not
depend at all on the second state t of the pair (s, t) they are evaluated over.

Now interpreting actions in the context of temporal logic, the semantics of
“current” and “next” state can be associated to the states s and t respec-
tively. As a result, two states s and t following each other in a temporal
sequence can now be related using an action A whose expression is designed
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to map true to the pair (s, t) and false to any other value of St2. This is
also described as (s, t) being an A step. Now, evaluating an action A over a
behavior σ = ⟨s0, s1, . . . ⟩ can be defined as simply verifying if its first pair of
states (s0, s1) is an A step or not. Thanks to this alias, the previous defintion
of the □ operator at the base of temporal logic is extended to elementary
formulas containing actions without modification. The following equation
can be written to describe this formally:

⟨s0, s1, s2, . . . ⟩ J□AK ≡ ∀n ∈ N : ⟨sn , sn+1, sn+2, . . . ⟩ JAK
≡ ∀n ∈ N : snJAKsn+1

In other words, an action A is always true, in the sense of the □ operator,
over a behavior σ = ⟨s0, s1, s2, . . . ⟩ if and only if it is true for every pair of
consecutive states (sn , sn+1) appearing in the sequence.

The previous developments roughly correspond to the so-called “Raw Tem-
poral Logic of Actions” (RTLA) introduced by Lamport. Many subsequent
steps would be required to add liveness, fairness along other properties and
take the current logic from RTLA to Simple TLA and then finally the full-
fledged TLA. Among those, only stuttering steps will be introduced in the
following section as they are necessary for the refinement of Barz’s algorithm
presented in Section 3.8. The rest of the conception of TLA as well as more
formal descriptions of the preceding can be found in the original paper [9]
but are beyond the scope of this Master’s thesis.

2.3 Expressing Programs with the TLA Logic

Going back to the original objective of the previous section to abstract
computer programs as sequences of states, RTLA allows to express rules on
the transitions followed by the system each time a state change happens in
its behavior. All the prerequisites to translating an algorithm to its TLA
specification have thus been developed.

It is however crucial to first state that a TLA specification is a temporal
logic formula and nothing else. This may seem trivial at this point since
nothing else has been developed, but it is easy to lose track of it. Indeed, as
stated in the introduction to this chapter, while the line between a computer
program and its formal specification is clear at this stage, it may fade away
in the following, as the practical tools reconcile both worlds in a sometimes
misleading way.

Therefore and to state it clearly, a real-world program is a sequence of
instructions telling the computer what initial state to start from and what
operations to execute one after another to modify said state. A program thus
produces a single execution trace each time it is run, which corresponds
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to a single behavior σ in the abstract formalism. Due to different causes
of nondeterminism like dependence on values provided by a human user,
deliberate (pseudo-)randomness or the interleaving semantics presented in
Section 1.2, the behavior σ resulting from the execution of the program may
nonetheless arbitrarily change from run to run.

On the other hand, a TLA specification is no more than a logic formula
expressing a predicate on said behaviors. The specification must thus be seen
as a boolean function taking as input any behavior σ out of the theoretical
set St∞ of all possible behaviors over the state of the program. The goal is
therefore to write the expression of the specification formula so as to map
exactly all the achievable behaviors of the original program to the boolean
true. Hence, any other undesired behavior of St∞ is associated to false.

In order to build such an expression for the specification formula, a natural
structure fortunately stems from the model that has been chosen to represent
programs. First, programs typically express constraints on their initial state.
For example, variables may be assigned an explicit initial value along their
declaration. Similarly, a program might expect arguments of a predefined
type. This typically translates to a stricter set of possible values than the
loose Val default collection of TLA. Moreover, most programs only have a
single identified entry point for the control flow to begin at.

The previous remark highlights the fact that high-level constructs of usual
programming languages may hide part of the complete state of the computer
system by abstracting it away. In this case, the control flow from one in-
struction to the next seems so natural that it is easy to overlook the low-level
program counter required to implement it. As a result, the control flow of a
program must be explicitly accounted for in specifications by introducing a
variable simulating the program counter. However, automatic management
of this auxiliary program counter variable comes out of the box when using
PlusCal as described in Section 2.4. It will thus not be detailed further here.

To sum up, all the above constraints can be expressed by a first-order state
predicate generally called Init and constructed as a conjunction of assertions
about the value of the different variables present in the algorithm. As a
result, evaluating Init alone over the behaviors of St∞ already allows to
rule out any of them whose first state thus not match the initial constraints
of the target program.

Then, the main endeavor of the specification process is to translate each
instruction, or more precisely atomic operation, of the program to a TLA
action. This step is rather trivial as it suffices to look at all the variables
of the program individually and determine which are affected by the opera-
tion. An action expression must consequently be written for each of them,
laying out how to derive their new value using the primed variable notation.
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Putting syntax differences aside, this relation is generally what the original
instruction was intended to express in the first place.

There is however a subtle nuance in that an action should also be provided
for all the unchanged variables. In order to understand such a requirement,
one should refer to imperative programming languages, which implicitly
consider the value of a variable to be unaltered unless affected by an assign-
ment. On the other hand, if the expression of a TLA action were to say
nothing about the new value of a variable, nothing could be concluded at
all. As a result, the action would undiscriminatingly accept both the steps
that modify the variable and those that leave it untouched. Because such
ambiguity is typically not desired, TLA provides syntactic sugar of the form
Unchanged f for the action defined by expression f ′ = f .

At this stage, one TLA action has been written for each atomic operation of
the program. Note that those actions should incorporate the whole control
flow of the program. All possible modifications of the program counter are
indeed explicitly described like for any other variable. It is thus possible
to create a new formula by considering the disjunction of all the previously
defined actions. The resulting composite action is referred to as Next (or
M in [9]) and is only true for the pairs of states that respect one of the
legal transition in the original system. In this sense, when provided with
the current state, this action can be seen as a predicate that discriminates
the possible next states of the system from the rest of St.

Combining the previously developed Init and Next , one can simply build
the temporal formula Init ∧□Next . Given any behavior σ = ⟨s0, s1, s2, . . . ⟩
belonging to St∞, the resulting predicate first checks that the initial state
s0 verifies Init . Due to the always □ operator, all transitions between con-
secutive states sn and sn+1 should then respect one of the actions that make
up Next . Thanks to this formulation, the goal expressed at the beginning
of Section 2.2 to represent a computer system as a discrete-time dynamic
system is finally fulfilled.

The formula structure developed hereabove could be sufficient as a canon-
ical form for TLA specification. But, as explained at the very end of the
previous section, stuttering steps have been left out up to now, although
they constitute a crucial aspect of TLA. As their name indicates, stutter-
ing steps are actions that cause the system to “repeat itself” instead of
changing state. An attentive reader may realize that no additional primi-
tive is required to express such a formula. It is indeed sufficient to write
var ′1 = var1 ∧ var ′2 = var2 ∧ . . . for all the variables of a specification to
produce an action that repeats the current state. The philosophy behind
stuttering step is thus not to consider them as transitions of the system and
to explicitly incorporate them into Next , but rather to always keep them
as an alternative beside the actions of Next . Once again, TLA provides



CHAPTER 2. THE TLA+ LANGUAGE AND TOOLS 11

a shorthand notation of the form [A]f to indicate that the stuttering step
f ′ = f over variable f can be taken as an alternative to action A. In other
words, such a formula simply constitutes syntactic sugar for A ∨ (f ′ = f ).

The motivation for the addition of stuttering steps to a TLA specification
will be perfectly illustrated in Section 3.8 with the refinement of Barz’s
algorithm. In order to understand it at this stage, the example given by
Lamport in [9] will be used. Simply put, he considers two clocks, one includes
a hand for seconds while the other one does not. He then supposes that any
behavior of the former should also be accepted by the latter. In order to
relate the behaviors of both systems, it suffices not to look at the second
hand of the first clock. Physically, the two systems would then be equivalent,
the hour and minute hands of the both of them being in perfect sync.

However, when constructing TLA specifications without stuttering steps,
the two systems seem to accept radically different behaviors. Indeed, the
second clock accepts behaviors that increment the minute variable at each
step until loopback. On the other hand, the first one requires 60 steps to
increment the same variable by 1, as it must deal with its additional second
variable beforehand. Hence, when trying to relate both specifications by
ignoring the second variable just like for the physical systems, the first clock
systematically stutters 59 times before taking a step, creating a mismatch
with the behavior of the second one. This argument is sufficient to determine
that the second specification does not accept all the behaviors of the first
one like expected.

Intuitively, this issue is due to the distorted notion of temporality of the
TLA logic. Indeed, the unit of time on its abstract timeline is one action,
regardless of it being a stuttering step or not. Thus, as corresponding steps
are not taken at the same point in the sequence of states of both clocks, TLA
considers they do not happen “at the same time”. The solution is thereby
simply to leave the possibility for the second clock to stutter unconditionally,
like described previously. As a result, the specification accepts infinitely
many more behaviors because an arbitrary number of stuttering steps can
be inserted at any point of a previously accepted sequence of states. With the
addition of stuttering steps, it becomes clear that the second specification
accepts all behaviors of the first one as initially intended.

In order to preventively inhibit similar problems, the canonical form of a
TLA specification with the addition of stuttering steps is given below, using
the previously defined notation:

Spec ≜ Init ∧ □ [Next ]⟨var1,var2,... ⟩

≡ Init ∧ □
(
Next ∨

(
var ′1 = var1 ∧ var ′2 = var2 ∧ . . .

))
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2.4 PlusCal

In a similar way to the original TLA paper published in 1994, PlusCal was
formally presented to the public in the 2009 paper [7] by Leslie Lamport.
PlusCal can be categorized as a Domain Specific Language which is intended
to be transpiled to a TLA+ specification. The abstract of Lamport’s paper
clearly states the reasons that incited him to add PlusCal to the capabilities
of the TLA+ suite:

Algorithms are different from programs and should not be de-
scribed with programming languages. The only simple alterna-
tive to programming languages has been pseudo-code. PlusCal
is an algorithm language that can be used right now to replace
pseudo-code, for both sequential and concurrent algorithms . . .

In other words, PlusCal is meant to bridge the gap between pseudo-code,
which is the preferred way to express an abstract algorithm in a language-
independent manner, and TLA+ specifications that results from a radically
different approach. This is of course a crucial step because, as pointed
out previously, incoherence between the source algorithm and the TLA+

specification would render any subsequent work useless.

The goal of this section is not to exhaustively lay out the syntax of the Plus-
Cal language, as it does its job of looking like plain pseudo-code very well,
but rather to present the general structure to adopt when specifying con-
current algorithms. First, the PlusCal “code” must be enclosed in a TLA+

comment block using the (* *) delimiters. Indeed, once the specification
has been transpiled from PlusCal to TLA+, the translation is appended at
the end of the same file by the Toolbox. The original PlusCal formulation
does thereby not play any role in the following steps and is “hidden” as a
comment. Upon parsing the specification after a file modification, SANY
however checks if both version are still coherent by using a checksum associ-
ated to the TLA+ translation. In order to set a PlusCal section apart from
a regular comment, the --algorithm token must be used at the beginning
and followed by an arbitrary name for the algorithm. Its content must then
be delimited like any construct that has a “body” section like while loops,
if − then − else conditional jumps or macro definitions, by either using the
C-style curly braces or an equivalent begin − end formulation.

Note, however, that some necessary TLA specification elements must be
added before the PlusCal section. First, the ---- Module name ---- line
signals the beginning of the specification and matches the closing ====.
Secondly, any required external library must be included with the EXTENDS

statement. Finally, the specification can be parameterized by declaring con-
stants without assigning them a precise value yet using the CONSTANS TLA
statement. Similarly, other preliminary TLA definitions can be given in
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order to make the corresponding symbols available to the PlusCal specifica-
tion.

Now diving in the body of a PlusCal algorithm, the usual structure for a
simple sequential program is to first declare the variables along their initial
value, under a variables section, and then the algorithm itself. However,
as the subject of this Master’s thesis is concurrent programs, the PlusCal
process construct will be required. When coming across this statement,
PlusCal conceptually spawns processes that will perform the job described
within the process body concurrently. One should keep in mind that this
should be understood abstractly, from the point of view of the interleaving
semantics model.

The process construct takes an expression of the form name \in set as
an argument, where name can be chosen arbitrarily but will appear in the
TLA+ translation while set can be any finite mathematical set. Basically,
this statement expresses that a process should be created for each value in
set and that they should each have a local variable named name holding
said value. Equivalently, this value can be referred to using the reserved
keyword self which has the benefit of being recognized in the body of
macros although they are defined outside the process environment. Finally,
a second variables statement can be used at the beginning of the process
body to declare variables that should be private to each process. The ones
previously defined outside process are thus shared by all processes.

With the previous remarks in mind, one is pretty much able to translate
word for word every pseudo-code algorithms present in this Master’s thesis
to PlusCal. However, the retrospectively trickiest aspect of PlusCal has
not be touched on yet, namely labeling the statements. Although labels
usually provide no more than a handy reference by numbering the lines of a
pseudo-code algorithm, they sometimes convey the semantics of atomicity,
as in PlusCal. Simply put, all statements encountered while following the
control flow of the algorithm fall under the current label until a new label is
stumbled on. All instructions under a same label are then considered as a
single transition and should thus correspond to an atomic step in the original
algorithm. In other words, when writing a PlusCal specification, labels must
be manually positioned in order to delimit the desired starting and ending
points of actions. In terms of interleaving semantics, labels are the points
were a process can be suspended in its job to interleave an arbitrary number
of atomic steps from other processes before resuming.

As can probably already be foreseen, an atomic PlusCal step will be trans-
lated to a unique TLA action, meaning labels directly control the grain of
atomicity of the final specification. Beside making sure the specification
matches the behavior of the original algorithm, there are thus a few con-
straints to respect when placing labels. First of all, there must be a label at
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the beginning of the algorithm to satisfy a first great principle which is that
statements should always belong to one and only one label. In line with this
principle, PulsCal’s label rules mostly affect constructs that mess up with
the control flow as they are responsible for label obfuscation in some cases.
For example, the goto statement unconditionally jumps to a new label, ef-
fectively “killing” the current one. As a result, the statement that would
normally follow goto if the jump was not applied does not naturally fall
under any label because it is simply not reachable in this setting. PlusCal
thereby requires any statement that immediately follows goto to be labeled.

In a similar fashion, although the content of the branches of if-then-
(elsif)-else statements can be labeled freely, a problem may arise if the
statement immediately following the whole block is not labeled. Indeed, the
branches may set up different labels on the multiple paths leading to said
statement, resulting in an ambiguous label assignment. As for goto, any
statement immediately following an if block must thus be labeled explic-
itly, as soon as any of the branches contains at least one label.

Finally, the second great principle states that a same variable should be
submitted to at most a single assignment within any given label. Considering
atomic steps are the smallest unit of time when reasoning about concurrent
systems, it would not make sense to allow a variable to hold different values
over the span of it. Moreover, multiple assignments to a same variable could
not be translated to a valid TLA action anyway, as the corresponding primed
variable can obviously not be mathematically equal to different values.

2.5 From PlusCal to TLA+ Specifications

Once an appropriate PlusCal version of the algorithm has been written,
the first step is to translate it to its TLA+ equivalent. As stated in the
previous section, the latter will completely replace the former in subsequent
steps. From a practical point of view, the Toolbox allows to transpile a
PlusCal algorithm to TLA+ under the File tab. Being one of the most basic
operations within the TLA+ environment, this translation feature is also
distributed by most third-party plug-ins.

Given the canonical specification formula construction process described in
Section 2.2 and the description of PlusCal specification given in the previ-
ous section, the translation is rather straightforward. Essentially, the only
element missing in PlusCal specifications is the auxiliary program counter
variable. Fortunately, beyond the management of atomicity, the goal of the
instruction labeling system of PlusCal is to unambiguously account for the
control flow of the algorithm without having to introduce said variable.

The first step of a TLA+ translation is thus to declare all the variables that
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were present in its PlusCal counterpart with the addition of pc, the abstract
program counter. Because the TLA mathematical model does not draw any
distinction between subcategories of variables, concurrent specifications that
rely on process-local variables make no exception. Such variables are thus
turned into a mathematical function that associates the elements of a finite
domain to a value. In this case, the domain is the finite set given as part
of the process statement which is referred to as ProcSet by default. This
trick allows to define a single TLA+ variable which retains the name given in
the PlusCal specification while holding the values of the different instances,
each corresponding to a process. Coincidentally, even if no process-private
variable is used, this is exactly how the program counter variable pc is dealt
with for multiple processes.

Then, the initial value assignment of all variables is converted to the Init
TLA predicate with the structure Init ≜ var1 = x∧var2 = y∧. . . . Note that
variables may instead belong to a set rather than hold a precise value or have
an initial value dependent on constants parameterizing the specification.
Those constructs typically allow the Init predicate to accept multiple initial
states for the behaviors of the specification.

From there, a TLA action is defined for each PlusCal label, keeping the same
name. All mutations of variable values are described using primed variables
expressions and an additional Unchanged clause is added to explicitly in-
dicate that remaining variables are unmodified. Among these variables, pc
reflects the control flow of the original algorithm and takes values in the set
of labels that appear in the PlusCal specification. It is thus used within an
action as a postcondition indicating the destination label(s) the process may
reach as a result of said action.

On the other hand, actions also allow to express conditions on the current
value of variables, resulting in restrictions on which states the correspond-
ing steps can be taken in. Typically, the pc variable is thereby also used
to ensure actions are only available at the right time with regard to the
control flow of the PlusCal specification. For example, one can consider an
instruction labeled a unconditionally followed by an another one labeled b
in PlusCal. The corresponding TLA+ action is also called a and requires
the current value of pc to be “a” and the next value pc’ to be “b”. This
effectively guarantees that action a can not be taken unless the program is
currently at label a and that the program will not reach another point than
label b. As will be illustrated in Section 3.4, preconditions on other vari-
ables can be expressed as well in order to introduce additional restrictions
on transitions.

As a result, most TLA actions corresponding to a PlusCal label will be
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similar to the following structure:

actionsource ≜ ∧ pc = labelsource ∧ varfoo = x ∧ . . .︸ ︷︷ ︸
additional precondtions

∧ pc′ = labeldestination ∧ var ′bar = y ∧ . . .︸ ︷︷ ︸
additional postcondtions

∧ Unchanged ⟨⟨ variables unused in postcondtitions ⟩⟩

Note that the destination label is not necessarily unique and may be a more
complex formula describing how to choose between multiple label values.
This is typically the case for branching instructions like if constructs. When
dealing with concurrent specifications, the action is additionally parameter-
ized by an element of ProcSet in order to distinguish the process that is
taking the action. This argument is in turn used to index the right instance
of local variables and particularly pc. The other local instances of those
variables are specified as unmodified, which in the case of pc guarantees
only one process can take an action at a time. The resulting modification
of the previous formula is given below, using a special notation for pc′ to
maintain the same value except for p:

actionsource(p) ≜ ∧ pc[p] = labelsource ∧ . . .

∧ pc′ = [pc EXCEPT ![p] = labeldestination ] ∧ . . .

∧ Unchanged ⟨⟨ variables unused in postcondtitions ⟩⟩

With a TLA+ action for each PusCal label, the Next formula can be built
by expressing the disjunction of all of them, as defined in Section 2.3. In the
case of concurrent programming, the PlusCal translator calls the resulting
expression by the name given as part of the process statement. This formula
could indeed not be used as Next under the current form, the reason being
that it contains the free variable previously referred to as p, standing for
the process taking the action. In order to solve this, Next is in this case the
existential quantification of the disjunction of all actions over the ProcSet.
As a result, the Next formula states there exists (at least) one process among
the ones of the specification for which at least one of the actions is verified.
Given that each individual action has a different corresponding source label
and that they all modify the value of pc for a single process only, Next in
fact expresses exactly one process takes exactly one of the actions.

Finally, the top-level Spec formula can be written by the PlusCal translator
exactly like the one at the end of Section 2.3, including stuttering steps.
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2.6 The TLC Model Checker

With the current tooling, one is able to practically express a specification
for a system of interest under the form of a TLA temporal formula of actions
by either writing it directly in TLA+ or as a PlusCal intermediate repre-
sentation. Now, other TLA+ formulas can be appended at the end of the
specification to express expected properties of the system. The idea is to
somehow verify if any behavior σ allowed by the specification formula Spec
indeed respects a property represented by another formula F . A first intu-
itive approach to doing so is to infer behaviors for which the Spec formula is
true and to evaluate the F formula over them. If F is not true for one of the
behaviors, it is clear that the specification as a whole does not respect the
corresponding property and the failing behavior constitutes a perfect coun-
terexample to prove it. This process is analogous to a programmer trying
to imagine execution traces in order to uncover faulty edge cases in his or
her program.

The above approach is the one behind explicit state model checking, which
in the TLA+ ecosystem is available through the TLC tool. As described
in [11], TLC first looks at the Init formula and deduces the set of possible
starting states for the behaviors. Those states are then explicitly added
to a conceptual (multiple implementation are presented) FIFO queue sq of
states left to explore and a fingerprint of them is added to a seen set. Then,
TLC can iterate by picking the first state from sq and checking if it satisfies
safety properties. The Next formula is subsequently examined to determine
all the states that can be reached from the current one, by taking one of the
available actions. If the fingerprint of one of these sates does not appear in
the seen set, it must consequently be explored and is added to the sq queue.
This process is in fact no more than a breadth-first search of the state space
for states that would violate safety properties. The seen set allows to prune
repeated exploration of a same state and thereby makes it possible to check
infinite behaviors as long as they contain a finite number of states.

It is important to note that the previous description corresponds to the orig-
inal version of TLC which can only check safety properties of specifications.
The current version partially supports checking liveness properties which
requires a radically different approach. It is indeed not sufficient to check
every state once in order to determine if a statement will eventually be true
at some point of the behavior. However, such properties will not appear in
the following of this Master’s thesis and the mechanisms required to check
them are thus not developed.

As its name indicates, the TLC model checker does not work on complete
TLA+ specifications but on models derived from them. As described in
[11], traditional model checking approaches rely on the assumption that the
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number of reachable states of their model is finite which makes it possible
to explicitly enumerate and check them. On the other hand, the full ex-
pressiveness of the TLA logic implemented in TLA+ does not provide any
such guarantee. It is thus necessary to derive a finite model from the full
specifications before being able to check it with TLC.

First, an explicit value must be assigned to any unspecified constant intro-
duced to parameterize the specification. This is necessary for TLC to be
able to instantiate the specification by giving an initial value to all symbols.
Unspecified constants are therefore reported as errors, before even trying
to start a TLC check. It is also possible to provide a finite set of possible
values for a constant, instead of a single one, which will result in a series of
consequent model checks, one for each given value.

All the possible values for a given constant are generally not equivalent when
it comes to this assignment. Although they may be conceptually considered
as acceptable values for the specified system to work properly, they might
indeed result in drastically different state space sizes. For example, this is
particularly true regarding the number of processes in a concurrent system
specification. Due to the number of possible interleavings of the actions of
said processes, the size of the state space often explodes very quickly when
the number of processes increases. Hence, it is often possible for TLC to
fully check a model within reasonable time for a few values of the constants
of the specifications while other ones make the process impractical or even
impossible because of memory exhaustion.

Now that a value has been assigned to all constants, it is of course still
possible for a specification to result in an infinite number reachable states.
This problem will notably arise in Section 3.4, when trying to check the
specification of Barz’s algorithm. Simply put, the specification described
up to that point allows one of its variables to eventually reach any natural
value. Hence, as each individual sate holds the value of said variable among
others, there is necessarily an infinite number of them. Even if TLC could
foresee such problems like for an explicit nondeterministic assignment “The
next value of x can be any element of Z”, it could still do nothing about
it without arbitrarily denaturing the specification. It is thus the specifier’s
responsibility to identify similar situations, to make sure they are not due
to a mistake in the specification and possibly to introduce auxiliary state
constraints to allow checking by TLC. The latter is often done by creating
an alternative specification adding new statements on top of the original
one like “The value of x can now never be greater than threshold”. Refer
to Section 3.8 for an explanation on relating two specification files with
the INSTANCE keyword. Instead of doing so for Barz’s algorithm, the
specification will simply be directly patched to limit behaviors resulting in
an infinite state space.
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Given the two previous points, it seems obvious that TLC generally does
not check the full span of the original specification for the simple reason it
is not able to do so. The first constant parameterization requirement al-
ready reduces the complete abstract specification to a model that is only
valid for a given set of constant values. Moreover, in the second case, the
newly introduced constraints artificially cut off a possibly infinite part of
the reachable state space of said model. Hence, passing a TLC model check
does, in most cases, not translate to any form of guarantee on the original
specification. However, the insight provided by such checks can contribute
to building confidence in that there is no easily detectable fault in the spec-
ification with respect to expected properties. Successful TLC model checks
thus constitute a good indication that it is worth going further and investing
time in trying to formally prove the specification respects said properties.
On the other hand, when a model check fails, TLC provides a behavior that
leads to the violation of the problematic property. This constitutes an in-
valuable counterexample that precisely shows how the specification does not
respect the expected property. The error trace is thus the perfect starting
point for correcting either the specification or the property.

From a practical standpoint, when using the TLA+ IDE, the values of con-
stants must simply be inputted in the relative boxes after creating a new
model for the specification. Any atemporal formula can be checked as a
safety property under the invariants section. The definition of these formu-
las can either be given on the spot or in the specification file in which case
they can handily be referred to by their name. When working in a different
setting that uses TLC, the underlying configuration file automatically pro-
duced by the TLA+ IDE for TLC must usually be provided manually. Note
that in both environments, deadlocks are checked for by default.

2.7 TLAPS

After having successfully checked safety properties for some models, one
can be hopeful that the specification always respects those properties but
still has no formal proof that the assertion is true. It is thus necessary to
introduce a new part of the TLA+ language to allow to write proofs and to
subsequently mechanically check them. This is the role of the TLA Proof
System - TLAPS and its TLA Proof Manager - TLAPM. As described in
[3], the benefit of this proof system is that the expression of the proof does
not rely on the underlying verification tool. The user is thus able to write
the proof by only knowing TLA+ as developed in the previous sections as
well as a few basic primitives of TLAPS. It is TLAPM’s job to translate this
form of proof to obligations geared towards a particular back-end solver.

First of all, TLAPS proofs follow a hierarchical structure. This implies that
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the original statement to prove sits at the top level. If it can not be proven
as it is, simpler scaffolding statements must be provided in order to help
TLAPM. The problem is that these new statements must be proven as well
for the overall scheme to hold. As a result, the complete proof can be seen as
a tree of statements. The leaves are “simple” enough to be proven without
additional support and serve as the basis for the proofs of the statements
on top of them.

For any of the statements of the tree, the objective of the user is to bring the
rights known facts to the table in order for TLAPM to be able to prove it.
The goal statement and the associated context of known facts are referred
to as an obligation. The obligation is said to be verified if the facts invoked
in the context are sufficient to logically imply the goal assertion.

In practice, the statements are hierarchically organized with a numbering
system. The ones right below the top-level assertion are given labels of
the form ⟨1⟩ 1, ⟨1⟩ 2 and so on. The first number indicates the level of the
statement in the tree and the second one allows to refer to the particular
statement. Statements added below a level ⟨1⟩ step to justify it will thus
be considered at level ⟨2⟩. The last statement at a given level should be the
reserved QED keyword. It is used to prove that the statements developed
on this level are sufficient to prove the parent assertion.

Now that the structure of a proof can be laid out, it is necessary to justify
all the leaf obligations. The main way to do so is to add a BY clause
right after the line containing the statement. The facts that are cited after
the BY keyword must of course be verified themselves and are added to
the context. There are nonetheless a few more rules to determine the facts
that are available in the context at a given point of the proof. First, lower-
level obligations inherit the context of their parent. Then, unnumbered
statements are implicitly added to the context of following obligations on
the same level, whereas numbered one must be explicitly invoked. Finally,
a USE statement can be introduced to bring facts in to context in a similar
way to BY . This statement does of course not need to be verified and
makes the facts available to the following statements if it is unnumbered.
In a similar way, HIDE statements allow to remove facts from the current
context, which is sometimes useful to avoid burdening TLAPM with useless
facts.

Another important aspect of TLAPS is the availability of definitions. TLAPM
is indeed not allowed to expand the definition of tokens appearing in facts
unless explicitly asked to. This default behavior allows to limit the size of
obligations by not automatically unrolling all nested definitions. The set
of available definitions is thus part of the context of obligations, just like
known facts. Therefore, the three BY , USE and HIDE constructs are al-
lowed to be followed by an optional DEF field to respectively add or remove
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definitions from the current context.

2.8 TLATeX

As the creator of both TLA+ and LaTeX, Leslie Lamport included a pretty-
printer for TLA+ based on LaTeX. It is available through the Toolbox to
output a PDF document based on a whole specification module. In order to
produce the figures of this Master’s thesis, TLATeX however had to be fed
with precise sections of Pluscal or TLA+ directly, without going through the
Toolbox. Basically, a standalone LaTeX document must be created and the
desired “code” must be included within the pcal or tla environment respec-
tively. The tla2tex.TeX program shipped as part of the tla2tools.jar

archive of the Toolbox must then be called with the .tex file containing the
document as an argument. As a result, the file should be replaced by a new
version in which tla2tex appended a tlatex environment containing the La-
TeX typesetting directives. In order to be able to compile this document to
a PDF output, the tlatex.sty3 LaTeX package must be included. When
producing the output, the original pcal or tla environments is ignored. If
the obtained document is to be subsequently included as part of a larger one
like for this Master’s thesis, one should not forget to remove the surrounding
document environment manually.

2.9 General Methodology

This section is mostly derived from advice given by Stephan Merz, Senior
Researcher at the INRIA Nancy research center. The goal is to present a
step-by-step general methodology that has been proven useful for all the
problems that will be discussed in the following chapters. It is important
to note this is not the universal way the TLA+ toolset should be used but
rather a kind of roadmap laying out the important milestones to go through
when specifying parallel programming algorithms. Hence, additional steps
or tuning will be required depending on the specificities of the different
algorithms that must be tackled.

First, once a satisfying PlusCal specification is written and translated to
TLA+, the first step is to check a few models while varying some parameters.
At this stage, TLC already allows to rule out many potential problems
that would be way more costly to discover further on. Typically, TLC
offers to check for deadlock by default and supposed invariants or temporal
properties of the algorithm can be submitted manually through the IDE or
a configuration file before running a model check. Such a process may allow
to find out that the specification written up to this point does not meet the

3Package available from: https://lamport.azurewebsites.net/tla/tlatex.sty

https://lamport.azurewebsites.net/tla/tlatex.sty
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expected behavior of the modeled algorithm. It is also worth inspecting the
TLA+ translation of the PlusCal specification to be sure there is no clear
inconsistencies. Moreover, as this translation is the basis all subsequent
developments will be built upon, it is important to understand its intricacies
before going further.

Then, with a convincing specification that passed the preliminary checks,
one may start writing TLA+ statements about the algorithm and theorems
to state that respecting the specification guarantees they are true. The
final step will be to write proofs for those theorems (or lemmas) to guide
TLAPS (or rather let TLAPS guide us) in verifying them formally. The
most pervasive form of statement that can be made about algorithms like
the ones that will be presented is the invariant. Such a statement only
concern individual states reached by the system and declares verifiable facts
about the value of the variables that make up these states. In other words,
the invariant expresses a propositional formula that must evaluate to ⊤ in
each and every state that may be reached by following the specification from
its initial state(s). The standard way to formally prove that the invariant is
indeed verified by the specification is to show that the invariant is inductive.
Practically speaking, proving an invariant as inductive simply consists in two
steps, the first and usually easiest of which being to verify all initial states of
the system respect the invariant. Then, for every possible transition of the
system, one must prove the invariant still holds in the new state reached after
the transition, assuming it held before said transition transition. Intuitively,
these two steps are sufficient for the induction to unfold as expected because
the invariant is known to hold for any initial state so it must also hold for any
state reached from the initial state and for any stat reached from this new
state and so on. Hence, the truth of the invariant being verified in the initial
state is able to “propagate” along all the transitions of the system n such
a way that one can be sure he invariant inductively holds for any reachable
state of the system. Not only do invariants translate expected facts about
the studied algorithms, they also comprehensibly express constraints on the
reachable state space of the system. This accounts for one of the most
important lesson learned while producing this work: even though it may
seem unrelated at first, having a solid invariant is usually the key to prove
other properties of the algorithm as it essentially encapsulates the logic
behind it.

Going back to TLA+, most of the proofs presented in this Master’s the-
sis will involve inductive invariants. Having multiple invariants rather than
a single bigger one often proves helpful as it allows to express increasingly
complex facts about the system while using the previously proven easier ones
as “stepping stone” assumptions while trying to write a proof for the harder
ones. Additionally, this approach saves time when running the TLA+ proof
manager as it has to work with smaller statements and does not need to ver-
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ify the previously proven theorems again when they are used as assumptions
in subsequent proofs.

With this strategy in mind, the first step should de facto be a form of typing
invariant as TLA+ is not a typed language. Such an invariant thus reduces
the space of possible values for the variables that appear in the specification
from pretty much anything to a determined set of values. Note that the set
might be infinite such as the set of all natural numbers which would then
indeed appear as a type like one would expect from programming language.
At this stage, the invariant should be as restraining as possible but it idea
is to keep the proof process simple. It should contain one clause for each
variable that appears in the algorithm and if, it can not be proven by itself,
it is better to weaken the constraint for now rater than introducing new
clauses to try to prove it. For example, many algorithms rely on a counter
variable that should be a natural number at any point. However, when
looking at individual steps, TLAPS is only able to ascertain that such a
variable is sometimes incremented and sometimes decremented. Therefore,
it is simpler to indicate in the type invariant that the counter takes its value
in the whole set of integers rather than limiting it to the set of natural
numbers. Indeed, in order to be proven, this stricter claim would generally
require to dive in the logic of the algorithm which is the heavy-duty work
one would like to avoid at this point.

Once the type invariant has been determined and ts adjoining proof has
been verified, the next step is to check for parts or mechanism the algorithm
relies on but which are relatively independent of the rest of the algorithm.
The best example is the lock synchronization primitive that will appear in
all the presented algorithms. Indeed, locks are used to protect a critical
section only one process should be able to access at anytime and usually
do so regardless of the logic of the algorithm. In such cases, the mutual
exclusion property provided by the lock can be proven prematurely without
further understanding of the whole algorithm. Moreover, said proof will have
the additional benefit to be very similar from one algorithm to the other.
However, it is important to note that the previous explanation does not state
in anyway that it is valid for any algorithm were locks appear. Practically,
it suffices to enter or exit the critical section of the lock conditionally for the
mutual exclusion and the rest of the logic of the algorithm to intertwine.

Finally, once as much preliminary work as possible has been tackled, it
is time to proceed with the main inductive invariant which is usually the
hardest to find and to prove. Compared to the previous ones, this invariant
requires some ingenuity as well as a deep understanding of the algorithm as
a whole. The starting point is typically a set of properties that are obviously
inferred from the expected behavior of the algorithm. As a rule of thumb, it
is also a good idea to reintroduce stricter bounds on the value of variables
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that have been loosened up when trying to prove the type invariant, if
applicable. Supposing a first candidate invariant has been settled on, it is
overwhelmingly important to check it on a model. TLC is by definition
unable to provide a formal guarantee that the invariant will be true or
sufficient. However, if TLC finds a counterexample, under the form of an
error trace leading to a state where the candidate invariant is violated, one
can be sure the invariant is somehow incorrect. Moreover, the error trace
typically provides the insight needed to improve the candidate invariant.
Therefore, it is crucial to run TLC again every time the invariant is modified,
as it allows to detect a faulty invariant as soon as it is proposed, thus saving
a lot of time in the long run. Indeed, proceeding to trying to prove such a
faulty invariant as inductive will result in the back-end SMT solvers failing
without further indication.

Now, the schematic of a general inductive proof for the resulting invariant
should be laid out. From this point on, unless said proof can be verified
trivially, one should proceed with the following iterative invariant completion
process. The main idea is to “unroll” the second inductive part of the proof
(as the first one relative to the initial states most probably does not cause
any problem) by first decomposing it in all the cases corresponding to the
labels of the initial specification. Hopefully, this step can be performed semi-
automatically by making use of the “Decompose Proof” feature of TLAPS
(ctrl-G ctrl-D default shortcut). Now, rerunning TLAPM on the expanded
proof allows to identify for which parts of the algorithm the conservation
of the invariant can not be proven. Furthermore, the invariant itself can
be decomposed in its different clauses for those failing cases. The objective
of this whole process is to pinpoint which part of the invariant can not be
proven after taking some action if it was assumed to be true before said
action. The difficult part is now to look at all the assumptions available to
TLAPM for proving a failing obligation and try to infer what information
is missing in this situation that would allow the solver to succeed. A trivial
cause for such shortcoming is simply to forget to expand the definition of
a formula that is available. Although this kind of mistake can be very
frustrating to spot, it is usually eliminated without further effort. On the
other hand, the second category of failure has to do with the invariant
itself. Indeed, the information encapsulated in the invariant, which is made
available as an assumption when trying to prove its own invariance to the
transitions of the system, may not be sufficient to “hold itself” at some point
of the algorithm. In this case, some clauses must be modified or added to
the invariant to fill the identified gaps.

Then, before starting a new round of the iterative process, one should be
careful to run TLC again to check the new invariant and to rollback any
previous expansion of the definition of the invariant as they have de facto
become inconsistent with the updated one. Repeating, the previously de-
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scribed process, the solver might fail to prove some obligations which will
in turn raise previously unforeseen shortfalls of the invariant preventing it
from being fully inductive. It is worth noting that although it may seem
counterintuitive at first, some failing obligations may have been successfully
proven in the previous round since the invariant was different. Hopefully,
this process will eventually lead to finding a complete enough invariant to
be inductive.



Chapter 3

Barz’s Algorithm

3.1 Semaphores

Building upon the simple locking mechanism, it seems natural to extend the
principle of exclusion to more than a single process. Typically, the resource
to be shared might be simultaneously accessible by multiple processes with-
out causing a problem up to a certain defined limit. Using a lock in such a
situation obviously enforces the exclusion principle but appears like a waste
of resources since any potential for parallelism is unexploitable due to the
systematic sequentialization.

The usual solution to this issue is to introduce a semaphore mechanism
made of a variable used as a counter and an interface made of two methods
generally named Wait() and Signal(). The counter is initially set to the
maximum number of processes that may safely access the shared resource
simultaneously (also referred to as the capacity of the semaphore) and is
decremented each time one of them calls the Wait() method. Once the
counter variable reaches 0, the Wait() method becomes blocking, forcing
the processes that try to use it to wait until “a slot” is available, meaning
the counter is greater than 0. On the other hand, processes can call the
Signal() method to increment the counter by 1, thus signaling to another
process that the slot is available and that it does not need to wait anymore.

It is important to recall that those operations on the semaphore variable
must be safe themselves. Therefore, practical implementations typically rely
on a lock to protect the variable, ensuring a single process can access it at any
time. Those implementations often include other methods in the interface
such as Get() to read the value of the counter variable without tampering
with it, Signal(n) to increment to counter by an arbitrary amount n or
Signal all() to free all processes that are currently waiting.

26
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Another property that is often wished for in semaphores is the transfer of
permissions. This means that, in contrast to locks, semaphores should allow
any process to increment the counter, not necessarily the one that performed
the “corresponding” decrement. The Signal() name for the method results
from this property because it allows any process to signal a waiting process
that it is free to go whereas locks only allow a single process to lock, perform
its critical task and unlock them while the others are forced to wait.

3.2 Historical Context

Dijkstra, who introduced the concept of semaphore for the first time in [4]
around 1962, later devoted a full section to the [Superfluity of the General
Semaphore 5, p.35] in the relative chapter in which he states:

In this section we shall show the superfluity of the general semaphore
and we shall do so by rewriting the last program of the previ-
ous section, using binary semaphores only. (Intentionally I have
written “we shall show” and not “we shall prove the superfluity”.
We do not have at our disposal the mathematical apparatus that
would be needed to give such a proof and do not feel inclined to
develop such mathematical apparatus now. Nevertheless I hope
that my show will be convincing!)

In other words, he considered the need for standalone general semaphores
(i.e. semaphores whose capacity may take any natural value) beside simpler
binary semaphores (whose capacity is 1) as irrelevant because he was able
to “show” that the former can be simulated using the latter only. As a little
sneak peek, note that TLA+ will provide the “mathematical apparatus”
required to produce a formal proof Dijkstra “did not feel inclined to develop”
at the time.

In 1983, Barz looked back at candidate solutions that had been published
since Dijkstra’s statement to simulate the general semaphore using binary
ones only. In [1], he shows that one is straightup faulty, providing an er-
ror trace. Others, although proven valid as substitutions for the general
semaphore, are deemed suboptimal compared to the final original solution
he provides. This substitution that is nowadays referred to as “Barz’s Al-
gorithm”, only requires two binary semaphores (or equivalently a binary
semaphore and a lock).

3.3 The Algorithm

Figure 3.1 lays out both procedures that make up Barz’s algorithm as
presented in [2], the graphics being taken from the Parallel Programming
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procedure delay.Wait()
1 delay.Wait();
2 lock.Lock();
3 counter← counter − 1;
4 if counter > 0 then
5 delay.Signal()

6 lock.Unlock();

procedure delay.Signal()
1 lock.Lock();
2 counter← counter + 1;
3 if counter = 1 then
4 delay.Signal()

5 lock.Unlock();

Figure 3.1: Barz’s algorithm, taken from [2]

course’s slides [6]. As already hinted above, one can notice the algorithm
relies on three variables called delay, lock and counter. The two first ones
are the two binary semaphores required by Barz’s solution who presented
it as “optimal with respect to the number of additional semaphores and
variables” [1]. It can however be noticed that the lock variable is used with
the methods suiting a lock rather than a semaphore like delay. This can be
explained by the fact that the transfer of permissions which is the character-
istic feature that sets binary semaphores apart from locks is in fact needed
for only one of the semaphores. Barz’s algorithm can thereby indeed be
expressed equivalently using a lock and a single binary semaphore since the
purpose of the second semaphore is to simulate a lock anyway.

When it comes to the role of the lock variable, it is to guarantee that the
increment or decrement operations on the counter and the following com-
parison are atomic in both methods. Intuitively, the intent is to initially set
counter as the desired capacity N greater than 0 for the general semaphore
and to increment and decrement it through Signal() and Wait() calls re-
spectively in such a way that it remains in the [0,N ] interval. However,
although counter always being greater than 0 might appear as a trivial, this
property will still need to be proven formally with the help of TLAPS. On
the other hand, one can already point out at this stage that there is no guar-
antee at all when it comes to counter not exceeding the initial capacity N .
Indeed, no assumptions have been made yet on how processes will behave
outside of the body of the Wait() and Signal() methods. There is thus no
mechanism preventing a process from calling Signal() when the value of
counter is already N , getting it past the initial capacity.

Finally, the “trick” behind Barz’s algorithm is to harness the transfer of
permissions provided by the delay binary semaphore while coupling it to
the counter variable to compensate for its limited capacity. This idea very
roughly boils down to “if counter is greater than 0 the value of delay should
be 1 so that waiting processes are not blocked on the first delay.Wait()
instruction” and, conversely, “if counter reaches 0, the value of delay should
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be 0 in order to block waiting processes”. Hence, a process is responsible for
calling delay.Signal() to set delay back to 1 after incrementing counter from
1 to 0 in Signal() or after entering Wait() without decrementing counter
down to 0.

3.4 TLA+ Specification

As can be seen in Figure 3.2, the PlusCal specification is very close to the
original formulation of Barz’s algorithm 3.1. The two procedures Wait()

and Signal() are clearly identifiable in the two branches of the either-or
statement. The label names have been chosen to reflect this, with w and
s prefixes for Wait() and Signal() respectively and the numbers roughly
matching those of the pseudo-code lines while respecting the constraints of
PlusCal. The whole body of the process is shrouded in a while statement
which represents the processes potentially indefinitely looping performing
an arbitrary job (skip) until they need synchronization through either of
the methods of the semaphore. It is crucial to restate that, as TLA+ is a
specification language rather than a programming one, the choice introduced
by the either-or statement is not solved by an arbitrary coin flip each time it
arises. Instead, the b1 label gets two non-deterministic outgoing transitions
towards the w2 and s2 labels, meaning that the two scenarios are always
possible (as long as corresponding transitions are not disabled, see later)
and must be considered.

While the preceding explanation lays out the general idea behind either-or
statements, it must be taken with a grain of salt in this case. As already ex-
plained when presenting the algorithm, there is nothing preventing a process
from calling Signal() repetitively. Keeping counter in the [0,N ] interval
thus never exceeding the initial capacity of the general semaphore might be
a desired property. However, the elephant in the room is the resulting state
space which is necessarily infinite thus preventing exhaustive state space
exploration by the TLC model checker. Indeed, any reachable configuration
of the system may also be reached with any positive value for counter as an
arbitrary number of calls to Signal() can be inserted in the execution trace
unconditionally. Therefore, the decision was made to prevent the processes
from calling Signal() if counter already holds the value N equal to the
initial capacity.

In TLA+, such a restriction is specified through the with or await keywords
which are roughly equivalent for this use case. As with is a more powerful
keyword with multiple meanings, await has been used event though it might
be misleading coming from a programming background. Indeed, whereas
await usually means “wait until the given condition becomes true”, TLA+

considers it as a condition under which a possible transition is enabled.
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constants
P , number of processes

N initial capacity of general semaphore

--algorithm Barz{
variables

delay = 1,
lock = 1,
counter = N ;

Request a binary semaphore.

macro wait(s){
await s = 1 ;
s := 0 ;

}

Release a binary semaphore.

macro signal(s){
s := 1 ;

}

process (proc ∈ 1 . . P){
b0: while (true){

skip ; do whatever

b1: either {
wait(delay) ;

w2: wait(lock) ;
w3: counter := counter − 1 ;
w4: if (counter > 0){
w5: signal(delay)

} ;
w6: signal(lock) ;

} or {
await counter < N ;
wait(lock) ;

s2: counter := counter + 1 ;
s3: if (counter = 1){
s4: signal(delay)

} ;
s5: signal(lock) ;

}
}
}

}

Figure 3.2: PlusCal Specification for Barz’s Algorithm
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In other words, await effectively has the power to block a transition if its
condition is not met. Hence, if a process is chosen to take an action while all
its outgoing transitions are deactivated, it has no other choice than taking a
stuttering step until other processes hopefully change the system to a state
where the condition of one of the blocking await is met. Such a behavior
is akin to what one might expect from regular programming languages.
However, even if an outgoing transition is deactivated, a state may have one
or multiple other ones that are still active. In this case, the process is free
to take one of these transitions (or it can always choose to stutter) thus
removing the notion of “waiting” completely.

Going back to the specification of Barz’s algorithm, there are two uses of
await. The first one is hidden in the body of the wait(s) macro that specifies
the corresponding method on binary semaphores, namely delay and lock. It
expresses the fact that a process should not be able to acquire the binary
semaphore s if it is not available in the first place. In terms of value of
s, 1 means the semaphore is free to acquire and the process who does so
accordingly sets s to 0 with wait(s). PlusCal macros can not define new
labels which means that their content always specifies an atomic operation
that falls under the current label, at the line when they are called. Such a
behavior is of course desired in this case because processes should not be able
to check the value of s and then stop at an intermediary label before setting
it to 0 as this pattern obviously suffers from a potential race condition.

The second await statement can be found at the very beginning of the
second branch of the either-or block. It is not present in the original
pseudo-code formulation of the algorithm and has deliberately been added
to solve the issue with Signal() described at the beginning of this section.
Indeed, there is no label between b1 and s2, meaning that a process nonde-
terministically branching at the either statement of b1 can only jump to s2
if the counter < N condition of await is met. Such a behavior effectively
corresponds to the original intent of preventing processes to call Signal()
on the simulated general semaphore if counter’s value has already reached
N .

Finally, another slight difference that might be noted between the original
algorithm and this specification is the that lock is considered as a binary
semaphore rather than a proper lock. This reflects the comment made pre-
viously on the equivalence of lock being a binary semaphore or a lock while
having the benefit of defining a single pair of macros common to delay and
lock rather than two separate ones. Furthermore, the definitions of those
macros would be the exact same for a lock anyway and the proper mutual
exclusion property of lock will be proven in the next section.
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3.5 Inductive Invariants

The invariants that have been found and proven inductive for Barz’s al-
gorithm are presented in Figure 3.3. In order to obtain those results, the
approach proposed in Section 2.9 has been applied in an almost unaltered
way.

First of all, the typing invariant is rather straightforward beside the fact
that it states counter belongs to the set of all integers Z. Intuitively, counter
should indeed remain in the more restrictive set of naturals N, and even
more precisely in the [0,N ] interval. As already hinted previously, this is
due to the impossibility of proving such a statement at this stage, without
diving headfirst in the complexity of the algorithm. Indeed, when trying
to verify those stricter invariants as valid, the TLAPM solvers fail to prove
the inductive step. Therefore and to keep the typing invariant simple, one
should fall back to the looser domain Z. On the other hand, it is trivial for
TLAPM to prove that counter and delay are indeed binary as they are never
assigned a value different from 0 or 1.

Then, the second invariant expressing the exclusion property implemented
by the use of lock is a very slight adaptation of the one obtained at the end
of the example in Section ??, the only notable change being the definition
of the critical section lockCS .

Finally, the main invariant of Barz’s algorithm was fully uncovered after
multiple rounds and backtrackings of the iterative procedure explained in
Section 2.9. The initial intent was to express the mutual exclusion property
due to delay in the same way as the one due to lock, which explains the
similarity of the first two clauses to the locking invariant.

As can be noticed in the PlusCal specification 3.2, any process choosing to
Wait() (i.e. transitioning to label w2 rather than s2) at the either branch-
ing corresponding to label b1 must atomically acquire the delay semaphore.
Intuitively, this semaphore may only be freed by signal(delay) at label w5,
thus making the w2 to w5 delayCS section “critical” as only one process
can proceed at a time. The other signal(delay) statement at s4 should
nonetheless not be disregarded, as it may seem to be able to break the de-
scribed mutual exclusion through transfer of permissions. However, one can
be convinced this is in fact impossible because lock prevents a process from
reaching s4 while another one is in delayCS unless said second process is
exactly at w2. In that case, delay must have been free for this process to
acquire in order to reach w2 from b1, indicating counter should have been
greater than 0. Therefore and because no other process than the first one
can alter counter , its value is necessarily incremented past 1 at label s2
which prevents reaching s4. This argument will appear again later, when
discussing the last clause of the invariant.
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TypeInv
∆
=

∧ delay ∈ {0, 1}
∧ lock ∈ {0, 1}
∧ counter ∈ Int
∧ pc ∈ [ProcSet → {“b0”, “b1”, “w2”, “w3”,

“w4”, “w5”, “w6”, “s1”, “s2”, “s3”, “s4”, “s5”}]

lockCS (p)
∆
=

pc[p] ∈ {“w3”, “w4”, “w5”, “w6”, “s2”, “s3”, “s4”, “s5”}

LockInv
∆
=

∧ ∀ i , j ∈ ProcSet : (i ̸= j )⇒ ¬(lockCS (i) ∧ lockCS (j ))
∧ (∃ p ∈ ProcSet : lockCS (p))⇒ lock = 0

delayCS (p)
∆
=

pc[p] ∈ {“w2”, “w3”, “w4”, “w5”}

Inv
∆
=

∧ ∀ i , j ∈ ProcSet : (i ̸= j )⇒ ¬(delayCS (i) ∧ delayCS (j ))
∧ (∃ p ∈ ProcSet : delayCS (p))⇒ delay = 0
∧ counter ∈ 0 . . N
∧ ∨ counter = 0
∨ ∧ counter = 1
∧ ∃ p ∈ ProcSet : pc[p] ∈ {“s3”, “s4”}

⇒ delay = 0
∧ (∃ p ∈ ProcSet : pc[p] ∈ {“w2”, “w3”, “w5”, “s3”, “s4”, “s5”})
⇒ counter > 0
∧ (∃ p ∈ ProcSet : pc[p] ∈ {“w4”, “w5”, “w6”, “s2”})
⇒ counter < N
∧ (∃ p ∈ ProcSet : pc[p] = “s4”)
⇒ counter = 1
∧ (∃ p, q ∈ ProcSet : pc[p] ∈ {“s3”, “s4”} ∧ pc[q ] = “w2”)
⇒ counter > 1

Figure 3.3: TLA+ Invariants and Adjoining Definitions for Barz’s Algorithm
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Practically speaking, when decomposing the proof, TLAPM is able to verify
the invariance for all steps expect s4 because the solver sees delay being set
to 1 with no way to be sure there is no process in delayCS , thus possibly
violating the second clause of the invariant. Retrospectively, the preced-
ing argument constitutes a crystal-clear indication that the invariant is not
strong enough as it is and must incorporate reasoning linking the values of
counter , delay and the program counters together.

Consequently, the third and fourth clauses were added to the invariant. The
third one is obviously derived from the failed typing invariant attempt and
expresses the strictest possible bounds on the value of counter . When it
comes to the fourth one, its purpose is to express the relationship between
the values of counter and delay also roughly described as the “trick” of
Barz’s algorithm at the end of Section 3.3. The main intent behind this can
be summarized by saying delay is responsible for blocking processes that
try to call Wait() when counter ’s value is 0 and its value must thus reflect
this. Basically, counter = 0 ⇒ delay = 0 should always hold because delay
is always set to 0 in between b1 and w2 before counter could even have a
chance to be decremented to 0 at w3. In that case, delay is not reset thanks
to the condition at w4. Additionally, there exists a transition phase during
which counter ’s value is 1 but delay is still unset with value 0. Such a phase
occurs when a process has just incremented counter from 0 to 1 at s2 but
not yet reached s4 to reset delay . Both cases are covered by the fourth
clause of the invariant.

Since this invariant is still not strong enough to be inductive, three addi-
tional clauses were introduced. A simple reason to this is that although the
third clause could previously not be proven within the typing invariant, the
current material does not really provide any more useful assertions on the
value of counter . The issue is that, when looking individually at steps w3
and s2, this clause can not hold. Assuming the invariant is true for the
current state, one indeed knows counter ∈ [0,N ] but sees the value uncon-
ditionally decremented or incremented respectively and can thereby not be
sure the assertion will continue to hold in this new state.

The new clauses thus express additional constraints on the value of counter
resulting from the conditions of the await statements combined with mutual
exclusion. For example when a process goes down the Wait() branch, it
acquires delay , preventing other processes to do the same. Doing so implies
that the value of delay was 1. Yet, by the contrapositive of the fourth clause
of the invariant, one can sate delay ̸= 0 ⇒ counter ̸= 0. To sum things
up, once any process reaches w2, it is the only one to be able to decrement
counter whose value can not be null, which combined with the third clause
corresponds to counter ∈ ]0,N ].

The above assertion still holds when the process transitions to w3 at which
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point it is the only one to be able to modify counter at all, through full mu-
tual exclusion due to lock . When consequently going on to w4, the process
decrements counter by 1, trivially turning the constraint into counter ∈ [0,N [.
To reach w5 the counter > 0 condition guarding the if statement must ob-
viously be met as well, resulting in counter ∈ ]0,N [. On the other hand, it
can not be assumed for w6 as both execution paths are possible, leaving the
constraint from w4 untouched.

Now applying the same form of reasoning to the Signal() branch, lock is
already acquired and await enforces counter < N when any process reaches
s2. Incrementing counter by 1 results in the counter ∈ ]0,N ] assertion
when the s3 label is reached. This statement can be propagated to s5
without modification but s4 benefits from the stricter counter = 1 guarantee
provided by the if guard.

All the previous constraints have been directly expressed as the fifth, sixth
and seventh clauses of the invariant. Note however that similar arguments
can not be formulated for the b0 and b1 labels because they are obviously not
covered by mutual exclusion. Knowing a process is at one of those labels
does thus not provide any more information than the general statement
counter ∈ [0,N ].

Once more, as can be inferred from the eight clause that has not been dis-
cussed yet, the current invariant is still not sufficient. By decomposing the
proof, TLAPS indicates only the second clause of the invariant can not be
proven inductive when taking the s4 step. There is indeed a very precise
state accepted by the current invariant that prevents it from holding over
transition s4 although the states is in fact not reachable through the spec-
ification. Quite ironically, when roughly describing how Barz’s algorithm
could effectively block processes with Wait() like a general semaphore at
the beginning of this section, this exact problem with s4 had been foreseen.
Looking back at it, it is obvious that the argument formulated at that stage
to show s4 was not violating the exclusion over the delayCS should have
been incorporated in the invariant at some point. Fortunately, as all clauses
are required anyway, the order is which they were added does not matter
beyond this slight inconvenience. This issue nevertheless highlights the im-
portance of decomposing obligations or use the TLC model checker to find
error traces that violate presupposed properties in order to try to pin down
remaining edge cases preventing TLAPS from proving the overall property.

The starting point of the problematic scenario lies in a deceiving loophole
with the previous reasoning about the value of counter . Although a process,
when at label w2, was said to be the only one able to decrement counter ,
it is not the only one to be able to modify counter . It is indeed possible for
a process to reach w2, acquiring delay but not lock yet while another one
is in the Signal() branch. Note that the order in which those events occur
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does not matter but the important point is that it is possible to encounter
a state in which the values of pc for two of the P processes are w2 and
s2 respectively. At this point, because there exists a process at label w2,
counter is known to be strictly greater than 0 thanks to the fifth clause of
the invariant.

Now, if the second process takes the s2 step to reach label s3, counter will be
incremented and thus strictly greater than 1. In this situation, the current
invariant would however only indicate that counter is greater than 0. The
facts that there exist both a process in w2 and a process in s3 can indeed
not been combined to “cumulatively” deduct counter > 1 from the fifth
clause. The invariant being too loose on this point allows the state in which
counter = 1 while two processes are in w2 and s3 to slip trough the cracks
and be included among the set of satisfying states.

Taking the next step s3, the process branches to s4 if counter = 1. This
condition can not be met by following the specification as explained with the
previous argument but verifies the current invariant regardless. From the
point of view of TLAPS trying to prove the obligation, the only thing that
matters is proving that the invariant is inductive over any action permitted
by the specification. Hence, when dealing with step s4, TLAPS does the
same as for any other action, by assuming the invariant is true in the current
state and verifying if it holds up when taking the step. When doing so, the
second clause of the invariant states delay = 0 in the current state because
the process at w2 is within the delayCS critical section. As this process is
obviously not the one taking the action in this case, delay ′ must still be equal
to 0 in the next state for the invariant to hold. However, step s4 explicitly
sets delay ′ to 1, de facto invalidating the invariant in the next state.

As a result, the eighth and final clause has been appended to the invariant
to make it inductive. It simply strengthens the constraints on the value of
counter by fixing the loophole described hereabove. In order to understand
how this allows TLAPS to prove the remaining obligation, it is important to
state that the wording “assuming the invariant is true in the current state”
is extremely misleading. As anything else in TLA+, this process to prove
induction is nothing more than a formula, namely Inv ∧ · · · ⇒ Inv ′. This
formula relies on the logical implication connector ⇒ which does in fact not
require the left-hand side to be true for the overall formula to be evaluated
as true. As often colloquially put, falsehood indeed implies anything.

In the case where two processes are at the w2 and s4 labels respectively,
the invariant says counter = 1 because there is a process at s4 but the new
clause also states counter > 1 which is an obvious contradiction. The overall
invariant is consequently evaluated to ⊥ for the current state, right before
taking the previously problematic s4 step. In other words, the problem has
been eliminated because the invariant must only hold in the next state for
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the cases in which it holds in the current state in order to be globally proven
as inductive.

Considering the case in which the two processes are at w2 and s4 is nonethe-
less not sufficient. Only introducing the corresponding clause effectively
transfers the burden of proof onto s3 as TLAPS now fails over this step
although it did not cause problem beforehand. The s3 action is indeed the
only one that leads to the s4 label and is thus now responsible for ensuring
counter > 1 in the case there is another process at w2. However, the incre-
ment of counter that guarantees this statement has already happened at the
preceding step s2. It is thus necessary to extend the clause to counter > 1 if
there is a process at w2 and another one at either s3 or s4. This statement
can be proven inductive over s2 because counter > 0 is already ensured by
the fact there is a process at w2 and TLAPS can observe counter getting
incremented by 1 while the pc value of the process is modified from s2 to s3.
The previous problem over the s3 step is trivially solved because counter > 1
can be assumed in the current state thanks to the modified invariant and
counter being unchanged by the action.

As a conclusion to this section, an inductive invariant has been found and
verified for the specification of Barz’s algorithm. Note that the complete
invariant is in fact the conjunction of the typing, mutual exclusion and
“final” invariants because all the clauses from these formulas were needed
for the last proof to hold. It is also important to keep in mind that the
process required to produce this inductive invariant has been very far from
being as smooth as it may seem from the above description. Such exercise
indeed requires going back and forth many times between the definition of
the invariant, the model checker and the proof in order to find and fix logical
fallacies that may be due to a very precise and unforeseen behavior of the
algorithm.

3.6 Introduction to Refinement

The inductive invariant resulting from the previous section is a wonderful
tool that characterizes each and every state reachable by respecting the
specification and thus conveys the inner workings of Barz’s algorithm. Nev-
ertheless, if one goes back to the introduction of this part, in Section 3.2,
the defining claim originally introduced by Dijkstra in [5], that in turn mo-
tivated Barz, was the superfluity of the general semaphore. In other words,
the main goal of the specification was to prove that Barz’s algorithm is
indeed a valid substitution to simulate the general semaphore, only using
binary ones. While the inductive invariant will come in handy to do so,
it does not express anything about the relationship of Barz’s algorithm to
the expected behavior of the general semaphore, the reason being that said
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behavior has not even been defined yet.

In order to achieve the aforementioned objective, a particular type of specifi-
cation and proof referred to as refinement will be used. As described in [10],
the first step will be to write a second abstract specification that expresses
the intended behavior of the general semaphore regardless of any implemen-
tation. Then, a refinement mapping will be defined to map the state space
resulting from the Barz specification onto the one of this new abstract spec-
ification. The mapping will thus take the form of a function expressing how
to derive the values of the variables of the abstract specifications from the
values of the variables appearing in Barz’s algorithm.

With such tooling available, for each action described by the Barz specifica-
tion, it will be possible to translate the origin and destinations states of the
transition to their equivalent in the abstract state space and to subsequently
check if the resulting transition is permitted by the abstract specification.
Provided that the initial states of Barz are all mapped to initial states of the
abstract specification, it becomes clear that any possible execution trace of
Barz’s algorithm would correspond to a valid abstract alter ego.

Put differently, this means that one would be guaranteed to emulate the
abstract behavior of the general semaphore faithfully by running Barz’s
algorithm and converting the sequence of states thanks to the refinement
mapping. As can be noticed, the previous sentence exactly describes the
objective defined earlier. Formally, such a scheme is described as the Barz
specification implementing the abstract one under the refinement mapping.

3.7 Abstract Specification for the General Semaphore

As laid out in Figure 3.4, the proposed abstract specification for the general
semaphore is extremely similar to the one of Barz’s algorithm in Figure 3.2.
Essentially, the only difference from the latter one is the absence of the delay
and lock variables which consequently cuts out most of the lines of Barz’s
algorithm as they rely on said missing variables. The only instructions left
thereby constitute the outer logic of the algorithm (while loop and either−or
branching) or have to do with counter variable, which at this stage is totally
independent of the one of Barz’s algorithm despite having the same name.

It goes without saying that counter can not be removed in the same way
as delay and lock when abstracting the specification. Indeed, the latter two
variables result from a choice of implementation taken by Barz whereas the
former is inherent to the concept of a general semaphore as a count of the
number of available resources must necessarily be maintained at all time.

It is also important to note the absence of intermediary labels which results
from the idea that the operations on the abstract general semaphore should
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constants
P , number of processes

N initial capacity of general semaphore

--algorithm semaphore {
variable counter = N ;

process (proc ∈ 1 . . P){
s0: while (true){

skip ; do whatever

s1: either { wait on semaphore

await counter > 0 ;
counter := counter − 1 ;

} or { signal on semaphore

await counter < N ;
counter := counter + 1 ;

}
}
}

}

Figure 3.4: PlusCal Abstract Specification for the General Semaphore

appear as atomic. There are thus only two possible steps for a process to
take in this specification, either it transitions from label s0 to s1, performing
an arbitrary job that does not rely on the general semaphore or from s1 to
s0 executing one of the two methods on said semaphore atomically.

The above scheme might appear as any given process having to respect
strict alternation between the two labels when taking a step. However, it
is crucial to recall the TLA logic always allows a process to take a stut-
tering step, leaving every single variable untouched, including the program
counter. Therefore, it will be possible to take the Next action of the abstract
specification without having to flip the label of the active process from s0 to
s1 or conversely. The previous reasoning may seem irrelevant for the time
being but will come in handy down the line, when trying to relate the two
specifications.

There is however an additional step compared to the Barz specification, in
the form of await counter > 0 at the beginning of the Wait() branch.
Obviously, this statement is required to prevent a process from proceeding
with the Wait()method while there is no resource available. It is nonetheless
interesting to note such restriction was not explicitly needed in the Barz
specification thanks to the coupling of delay and counter . Indeed, as stated
by the fourth clause of the main inductive invariant in Figure 3.3, delay is
necessarily set to 0 if the value of counter reaches 0, thus forbidding the
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entry to the Wait() branch thanks to the await statement hidden in the
wait(s) macro.

3.8 Refinement Mapping

Up to this point and although sharing rather obvious conceptual similarities,
the two specification are totally independent from TLA+’s point of view for
the simple reason they constitute two modules that are not related in any
way. A new operator of TLA+ must thus be introduced, namely INSTANCE
optionally followed by a WITH clause to express partial parametrization.
In order for the following to work, the files containing the two specification
modules must be under a common directory (or globally available through
the defined TLA+ library path).

Contrary to the EXTENDS operator used at the beginning of specifications
to include standard libraries, INSTANCE makes the content of the imported
module available under a separate namespace. Referencing a statement de-
fined in the included module thereby requires a namespace lookup, expressed
under the form SpecName!ObjectName, using the ! operator.

Then, if the imported module contains constant definitions, the value to at-
tribute to said constant must be specified after the WITH parameterization
keyword. Fortunately, this is not needed for the general semaphore specifi-
cation as TLA+ implicitly ports the value of constants over as long as they
are given the same name in both modules.

In the same fashion, the variables that appear in the imported module can
be parameterized. Rather than a one-time assignation like constants, the
“value” that is given to a variable is a textual substitution that essentially
works like a TLA+ assignment whose definition can be extended to compute
the value of said variable at any time. This is the key feature that allows to
achieve the refinement mapping as described in Section 3.6.

The goal is thus now to find a relationship expressing how to compute the
values of the variables of the abstract specification from the ones of Barz’s
algorithm. As one may remember, there is only one variable explicitly de-
fined in the PlusCal abstract specification that appears in Figure 3.2, namely
counter . Without originality, this variable will simply be set to mimic the
value of the counter of Barz’s algorithm at all times. Both variables indeed
play the same role in their respective specification and are used in the same
way, being incremented and decremented under the same conditions.

There is nonetheless a second variable pc representing the program counters
of all the processes that should not be forgotten as it is implicitly added
when translating the PlusCal algorithm to TLA+. This pc “translation”
constitutes the tricky part of this process because one has to map all the
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labels of the Barz specification onto the only s0 and s1 of the abstract one
in a way that works out. To understand the choice of mapping, it may be
useful to have a look at the TLA+ translation of the abstract specification.
Simply put, taking the s0 action only alters the program counter of the
corresponding process whereas taking s1 modifies both counter and pc.

The main constraint to notice at this stage are the two actions w3 and s2
that modify the value of counter in the Barz specification. Indeed, the label
mapping must be chosen to always match those actions to s1 in the abstract
realm. Otherwise, a valid behavior of the Barz specification could take an
action modifying its counter variable which would not satisfy the s1 action
as the label transition from s1 to s0 for the active process would not be
respected. Any other available action, namely s0 or a stuttering step, do not
allow to modify counter , which is the same as the one from Barz’s algorithm,
and would thus be eliminated. As a result, all the possible actions would
be depleted, meaning the Next disjunction of said actions would be false
as well, leading to the abstract Spec being violated. The conclusion to this
argument is that the labels corresponding to w3 and w4 in the refinement
mapping must be s1 and s0 respectively, in order to ensure the s1 action is
verified in the abstract realm when taking the w3 action in Barz’s algorithm.
Same goes for the s2 and s3 labels relative to the s2 action.

Regarding the rest of the refinement mapping, it results from the previous
reasoning that no other transition from abstract labels s1 to s0 can occur
while following the control flow of Barz’s algorithm. Beside this, there is no
particular constraint because all the remaining actions appearing in Barz’s
algorithm only modify the value of delay and lock . Incidentally, such vari-
ables, that have no impact on the abstract behavior of the specification, are
referred to as internal variables by Lamport and Merz in [10].

Consequently, once either of the w3 or s2 actions has set the abstract pro-
gram counter of a process to s0, the label mapping must ensure this program
counter is flipped back once and only once to s1 before the process reaches
one of the those actions again. Intuitively, this makes sense as going through
one iteration of the while loop in the Barz algorithm specification should re-
sult in exactly one iteration of the abstract loop. The switching point from
label s0 to s1 has thus been chosen as the b0 action of the Barz specification.

Finally, the remaining label mappings will simply be assigned in such a
way as to maintain a constant pc value in between the predefined flipping
actions. As already anticipated in Section 3.7, it may appear as these actions
taken in Barz’s algorithm are somehow “lost” as they do not result in any
change from the abstract point of view. However, they do not cause any
problem to TLA+ as the abstract specification provides for such stuttering
steps. On the intuition side, one should simply think about it as setup
operations on the internal variables. In the end, it is not that surprising
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apc(p)
∆
=

if p ∈ {“b1”, “w2”, “w3”, “s2”}
then “c1”
else “c0”

Sema
∆
=

instance Semaphore
with counter ← counter ,

pc ← [p ∈ ProcSet 7→ apc(pc[p])]

ASpec
∆
= Sema !Spec

theorem Spec ⇒ ASpec

Figure 3.5: TLA+ Refinement Mapping and Definitions for Barz’s Algorithm

that an implementation requires more steps than the abstract description of
the behavior it is trying to implement. Fixing mismatches in the behaviors
of abstract specification and their implementation by the way constitutes
the original reason presented by Lamport in [9, p. 10] in order to motivate
the addition of stuttering steps in his logic.

Practically speaking, the TLA+ expression of the preceding refinement map-
ping as well as adjoining definitions are given in Figure 3.5. First, the apc(p)
operator, whose name stands for “abstract program counter” defines the label
mapping as expressed above, b1, w3 and s2 being the destination or origin
labels of the flipping actions b0(p), w3(p) and s2(p) respectively. The re-
maining w2 simply is an intermediary state between b1 and w3. Then, the
Sema instance of the abstract specification is defined and parameterized so
that the abstract counter is the one from Barz’s algorithm and the abstract
program counter array pc is obtained by applying the apc(p) operator to
the program counter label of every process.

3.9 Refinement Proof

Regarding the TLAPS proof, as can be seen in Figure 3.6, the top level
obligation Spec ⇒ ASpec formally states every sequence of states respecting
the temporal formula of action of the Barz specification should make the
formula corresponding to the parametrized instance of the abstract speci-
fication ASpec true as well. Decomposing the obligation to the next level
first expresses that the initial states of the behaviors allowed by the Barz
specification make the Init formula true. Sema!Init should thus hold for the
equivalent abstract states. Then, the main obligation states that any action
(stuttering step included) that can be taken under the Next formula of Barz
should make its corresponding abstract action true. The typing and main
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theorem Spec ⇒ ASpec
⟨1⟩ use def ASpec, apc, ProcSet , Sema !ProcSet
⟨1⟩1 Init ⇒ Sema !Init
by def Init , Sema !Init
⟨1⟩2 [Next ]vars ∧ Inv ∧ TypeInv ⇒ [Sema !Next ]Sema !vars
⟨2⟩1 Next ∧ Inv ∧ TypeInv ⇒ [Sema !Next ]Sema !vars
⟨3⟩ use def Sema !proc, apc
⟨3⟩ suffices assume Inv , TypeInv , Next , new p ∈ ProcSet , proc(p)
prove [Sema !Next ]Sema !vars
by def Next
⟨3⟩1.case b0(p)

by ⟨3⟩1 def b0, Sema !Next , Sema !c0, TypeInv
⟨3⟩2.case b1(p)

by ⟨3⟩2 def b1, Sema !vars, TypeInv
⟨3⟩3.case w2(p)

by ⟨3⟩3 def w2, Sema !vars
⟨3⟩4.case w3(p)

by ⟨3⟩4 def w3, Sema !Next , Sema !c1, Inv , TypeInv
⟨3⟩5.case w4(p)

by ⟨3⟩5 def w4, Sema !vars, TypeInv
⟨3⟩6.case w5(p)

by ⟨3⟩6 def w5, Sema !vars
⟨3⟩7.case w6(p)

by ⟨3⟩7 def w6, Sema !vars
⟨3⟩8.case s2(p)

by ⟨3⟩8 def s2, Sema !Next , Sema !c1, Inv , TypeInv
⟨3⟩9.case s3(p)

by ⟨3⟩9 def s3, Sema !vars, TypeInv
⟨3⟩10.case s4(p)

by ⟨3⟩10 def s4, Sema !vars
⟨3⟩11.case s5(p)

by ⟨3⟩11 def s5, Sema !vars
⟨3⟩13. qed

by ⟨3⟩1, ⟨3⟩2, ⟨3⟩3, ⟨3⟩4, ⟨3⟩5, ⟨3⟩6, ⟨3⟩7, ⟨3⟩8, ⟨3⟩9, ⟨3⟩10, ⟨3⟩11 def Next , proc
⟨2⟩2 unchanged vars ⇒ unchanged Sema !vars

by def vars, Sema !vars
⟨2⟩ qed
by ⟨2⟩1, ⟨2⟩2
⟨1⟩ qed
by ⟨1⟩1, ⟨1⟩2, InductiveInvariant , Typing , PTL def Spec, Sema !Spec

Figure 3.6: TLAPS Refinement Proof for Barz’s Algorithm
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invariants are added as assumptions and justified by the previous theorems
as they are required to provide guidance to TLAPS when proving some of
the subsequent obligations.

Note that although the overall structure of the inductive proof is very similar
to the previous ones used for the invariant, there is a fundamental difference
in that the main statement now evaluates actions against actions whereas
they were only present on the left-hand side of ⇒ connector. As explained
in Section 2.2, the TLA logic does not care about this distinction thanks to
simple state predicates being considered a subcategory of actions but there
is nevertheless a conceptual difference to keep in mind.

The first obligation on initial states can be proven by TLAPS without further
effort but the main one requires decomposition over the possible actions that
are part of the Next disjunction. In order to do so, stuttering steps of the
Barz specification must be treated separately. They are trivially proven to
always correspond to a stuttering step in the abstract specification. Then,
as expected from the label refinement mapping elaborated in the previous
Section 3.8, the subobligations in which the active process takes the step b0,
s3 or s4 are the only ones whose proof requires the definition of Sema!Next .
This means that all the other steps correspond to a stuttering step in the
abstract specification as planned. Moreover, the mapping precisely matched
the b0 action to s0 as well w3 and s2 to s1 which turned out successful in
the current proof.

Finally, one can observe the main invariant is required for the w3 and s2
steps, the reason being that the unique s1 abstract action they correspond to
comprises both of their behaviors (incrementing or decrementing counter by
1) with appropriate conditions to “pick the right one”. However, in Barz’s
algorithm, these conditions are not directly expressed under the w3 or s2
actions. For example, the awaitcounter < N check before incrementing
counter is done by the b1 action but the overall logic of Barz’s algorithm
guarantees this condition is still true when the process eventually takes the
s2 step. Unfortunately, when looking at the s2 action and the abstract
s1 one it is supposed to emulate, one notices that the former performs
the increment operation unconditionally while the latter only allows it if
counter < N . Introducing the previously proven invariant conveniently
allows TLAPS to deduce counter < N from the fact that there exists a
process at label s2 thanks to its sixth clause. Any pair of states satisfying the
s2 action can thereby be proven to abstractly satisfy s1. Indeed, although
the counter < N statement is not explicitly checked by s2 on the first state
of the pair, it is nevertheless ensured by the assumption that the invariant
holds for any state appearing in a behavior satisfying the Barz specification.



Chapter 4

Readers-Writers

4.1 Problem Setting

The readers-writers exclusion scheme is a classical synchronization prob-
lem that has many applications in computer systems and beyond. It builds
upon the simple locking scheme by softening the mutual exclusion constraint
which can be summed up as “only one user can access the protected resource
at any given time”. Indeed, the readers-writers setting differentiates a sub-
category of users called the readers that may share concurrent access to the
protected resource. The remaining users, de facto called the writers, behave
like previously by considering that only one user may access the protected
resource at a time, regardless of its subcategory. Such a mutual exclusion
scheme calls for an asymmetrical corresponding access policy. The writers
must indeed be forbidden from accessing the protected resource if any user
is currently holding it whereas readers are prevented access if and only if
a writer is holding it. The main goal of the readers-writers problem is to
provide a data structure and associated methods that would allow users to
be guaranteed to follow the above mutual exclusion rules at all times.

Beyond these primary exclusion constraints, Professor Fontaine’s lecture [6]
requires two additional properties for proposing a solution. First, a candi-
date solution should be generalized to an arbitrary number of readers and
writers. Rigorously speaking, both the total number of users and the allot-
ment of those user to the two subcategories are unspecified. Secondly, the
candidate solution should be starvation free for the user regardless of the
category it belongs to.

The following solutions considers all involved users have access to the shared
resource to be protected in the first place. Therefore, the readers-writers ex-
clusion property can only be guaranteed if all users respect the algorithm
”honestly”. No strict “computer security” guarantee could thus be stated

45
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when it comes to denying access to the resource to a malevolent user. Be-
cause access to the resource is a prerequisite to this setting, such a user
could simply decide not to follow any algorithm and head straight to the
resource in the absence of any other constraining mechanism.

Similarly, no guarantee to respect any form of semantics associated to the
status of reader or writer could be given. The proposed methods allow any
user to request access as a reader or a writer and to synchronize with the
other user accordingly. However, once the user enters the critical section
and gets access to the resource, the following template algorithms do not
state anything about the behavior the user should adopt depending on its
status. Therefore, it might be useful to consider other mechanisms on top
of this one to guarantee users respect what it means to be a reader or writer
in a particular use case.

4.2 Proposed Solutions

Professor Fontaine’s lecture [6] first presents a bit of a context on how the
candidate solutions will be used which allows to infer a general structure.
Three solution are subsequently proposed by increasing degree of complexity.

To begin with, one can consider an interface for the readers-writers imple-
mentation similar to the one of a regular lock. This schematically boils down
to processes asynchronously performing an arbitrary job up to the point they
require access to the shared resource to be able to continue. At this point,
they execute one method to wait until they are granted access to the shared
resource which is often described as entering the critical section. This step
corresponds to the lock() method of a basic locking mechanism or, in the
readers-writers case, a pair of read enter(), write enter() methods to
enter the critical as a reader or writer respectively. Once in its critical sec-
tion, the process executes the part of its job for which access to shared
resource was required and then exits the critical section with a dedicated
method such as unlock(), read exit() or write exit() respectively. Fi-
nally, one can express a general process by assuming this sequence will be
repeated continuously.

It is already worth noting a slight difference between [6] and the specification
that will follow. Indeed, the first considers two separate process types for
readers and writers, meaning reader processes only ever require reader access
to the resource and likewise for writer processes. On the other hand, the next
specification uses a single process type that may arbitrarily choose between
reading and writing every time it requires access to the shared resource.
The latter approach has the benefit of making less working assumptions and
obviously covers the former as a particular instance of process behavior.
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The first naive solution is to use the readers-writers interface as a wrapper
around a traditional lock. This scheme trivially holds as a solution to the
readers-writers problem by piggybacking on all the properties already proven
for the lock. However, the purpose of differentiating the readers-writers
problem from the strict mutual exclusion one in the first place is wholly
defeated. Indeed, such an approach implements full sequentialization which
results in readers never being able to share the resource and thus not taking
advantage of potential parallelization.

The second solution relies on a binary semaphore, a lock and a counter that
form a data structure. To understand this solution, one can refer to Figure
4.1, putting aside the fair lock variable. Basically, the algorithm revolves
around the binary semaphore write lock. On the writer side, it is used
exactly like a lock, which results in strict mutual exclusion between writers.
On the other hand, multiple readers may collectively hold write lock. The
first reader to access the critical section is responsible for acquiring the
write lock in order to check there is no writer already accessing the resource.
However, thanks to read count having been incremented, following readers
know they do not need to acquire write lock as there is already another
reader in the critical section. Conversely, writers must systematically acquire
write lock to enter the critical section. They must thus wait for the readers
to free the binary semaphore. When a reader exits the critical section, it
decrements read count to indicate it to the other ones. If it realizes that
it was the last reader, it releases the binary semaphore since there is no
process accessing the shared resource left. As a side note, this means that
a reader that acquired write lock may transfer the burden of freeing it to
the other ones. This corresponds to the notion of transfer of permissions of
the binary semaphore developed for Barz’s algorithm. Finally, read lock is
simply required to ensure local mutual exclusion between the readers when
handling the read count variable.

The third and final solution is the one presented in Figure 4.1, is the same
as the second one with the addition of the fair lock variable. The role of this
lock is to prevent the possible starvation of writers by readers taking turns
without freeing write lock. If this semaphore is assumed to be fair regarding
the processes that try to acquire it, then the readers-writers should be fair as
a whole. This would require a formal proof based on fairness properties that
is beyond the scope of this Master’s thesis. This solution has nevertheless
be used in the following to allow the possible addition of these properties
and associated proofs in the future.
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procedure read enter

1 fair lock.Lock();
2 read lock.Lock();
3 read count← read count+ 1;
4 if read count = 1 then
5 write lock.Wait()

6 read lock.Unlock();
7 fair lock.Unlock();

procedure write enter

1 fair lock.Lock();
2 write lock.Wait();
3 fair lock.Unlock();

procedure read exit

1 read lock.Lock();
2 read count← read count− 1;
3 if read count = 0 then
4 write lock.Signal()

5 read lock.Unlock()

procedure write exit

1 write lock.Signal()

Figure 4.1: The Readers-Writers Algorithm adapted from [2]

4.3 PlusCal Specification

The PlusCal specification given for the readers-writers in Figure 4.2 shares
the same outer structure as the one for Barz’s algorithm given in Figure
3.2. The body of the algorithm is indeed made of a process statement to
indicate concurrency then an infinite while loop to allow processes to repeat
the behavior multiple times. Each iteration contains an either-or branching
to nondeterministically choose to behave like a reader or a writer. Just like
for Barz’s algorithm, processes are thus free to change the branch to follow at
each iteration. There is however no restriction similar to awaitcounter > 0
that could block one branch under certain circumstances. Two macros are
also defined for the instructions on locks. They are exactly the same as the
wait and signal macros from the Barz specification but are given the name
lock and unlock since, strictly speaking, the variables are used as locks and
not binary semaphore in this case.

The read and write branches contain the respective enter and exit proce-
dures with a skip in between. This statement represents the arbitrary job
performed by the process for which the respective access mode was required
in the first place. Note that there is an unwritten assumption in that the
process does not modify the variables present in the specification as part of
this job. A second implicit condition allowed by the structure of this specifi-
cation is that the processes use the readers-writers interface as intended, by
calling the enter and exit procedures corresponding to the access mode they
require. Putting corresponding enter and exit methods in the same branch
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--algorithm Readers Writers {
variables
fair lock = 1,
read lock = 1,
read count = 0,
write lock = 1 ;

macro lock( l ) {
await l = 1 ;
l := 0 ;
}

macro unlock( l ) {
l := 1 ;
}

process ( proc ∈ 1 . . P ) {
rw0: while ( true ) {

either {
re1: lock(fair lock) ;
re2: lock(read lock) ;
re3: read count := read count + 1 ;
re4: if ( read count = 1 ) {
re5: lock(write lock)

} ;
re6: unlock(read lock) ;
re7: unlock(fair lock) ;

skip ;

rx1: lock(read lock) ;
rx2: read count := read count − 1 ;
rx3: if ( read count = 0 ) {
rx4: unlock(write lock) ;

} ;
rx5: unlock(read lock) ;

} or {
we1: lock(fair lock) ;
we2: lock(write lock) ;
we3: unlock(fair lock) ;

skip ;

wx1: unlock(write lock) ;
}

}
}

}

Figure 4.2: PlusCal Specification for the Readers-Writers
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prevents behaviors in which a process tries to mix and match incompatible
methods or to acquire the resource again without having released it.

When it comes to the labeling choice, nothing particular is to be said. Be-
side the body of the macros, there is no tricky grouping of instructions to
form a single atomic operation like for Barz algorithm. The lines are thus
simply labeled with the same numbers as in the pseudo-code of Figure 4.1,
with additional prefixes re, rx , we, wx for read enter, read exit and so
on. Finally, when it comes to the instructions contained in both branches,
they are straightforward adaptation from the pseudo-code ones presented in
Figure 4.1.

4.4 Simple Inductive Invariants

Similarly to the process presented in Section 3.5 for Barz’s algorithm, three
preliminary simpler invariants have been formulated and proven inductive
with the help of TLAPS before proceeding with the main one. All the
invariants are given in Figure 4.3 along accompanying definitions. The first
of them is a loose typing invariant stating the tree lock variables fair lock ,
read lock and write lock can obviously only take the values 0 or 1. On the
other hand, read count is said to be able to take any integer value for the
exact same reason counter could not initially be strictly bounded to [0,N ]
in the Barz specification.

The two other preparatory invariants have to do with the basic mutual ex-
clusion provided by the two fair lock and read lock variables. They are
perfectly analogous to the lock encountered in Barz’s algorithm and the
invariant are thus exactly the same putting the definition of their respec-
tive critical section aside. The first of these critical sections is defined
as fairLockCS and covers the whole body of the read enter and write

enter sections past their first line. The second one is similarly defined as
readLockCS . It expresses strict mutual exclusion from re3 to right after re6
in read enter and from rx2 to the end of read exit.

4.5 Main Inductive Invariant

The starting idea for the main invariant presented as Inv in Figure 4.3 is
simply to state the readers-writers exclusion scheme as a safety property. In
order to do so, two additional critical sections of the algorithms have been
identified. The first one is called readerInCS and ranges from re6 to rx4 and
thus covers parts of both read enter and read exit as well as the skip
statement in between. As its name indicates, a process p of ProcSet verify-
ing the readerInCS (p) predicate is to be interpreted as a reader which has
been granted access to the shared resource. The exact same thing could be
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fairLockCS (p)
∆
=

pc[p] ∈ {“re2”, “re3”, “re4”, “re5”, “re6”, “re7”, “we2”, “we3”}
readLockCS (p)

∆
=

pc[p] ∈ {“re3”, “re4”, “re5”, “re6”, “rx2”, “rx3”, “rx4”, “rx5”}
readerInCS (p)

∆
=

pc[p] ∈ {“re6”, “re7”, “rx1”, “rx2”, “rx3”, “rx4”}
writerInCS (p)

∆
=

pc[p] ∈ {“we3”, “wx1”}
readCountCS (p)

∆
=

pc[p] ∈ {“re4”, “re5”, “re6”, “re7”, “rx1”, “rx2”}

ProcsInReadCountCS
∆
=

{p ∈ ProcSet : readCountCS (p)}

TypeInv
∆
=

∧ fair lock ∈ {0, 1}
∧ read lock ∈ {0, 1}
∧ write lock ∈ {0, 1}
∧ read count ∈ Int
∧ pc ∈ [ProcSet →
{“rw0”, “re1”, “re2”, “re3”, “re4”, “re5”, “re6”, “re7”,
“rx1”, “rx2”, “rx3”, “rx4”, “rx5”, “we1”, “we2”, “we3”, “wx1”}]

FairLockInv
∆
=

∧ ∀ i , j ∈ ProcSet : (i ̸= j )⇒ ¬(fairLockCS (i) ∧ fairLockCS (j ))
∧ (∃ p ∈ ProcSet : fairLockCS (p))⇒ fair lock = 0

ReadLockInv
∆
=

∧ ∀ i , j ∈ ProcSet : (i ̸= j )⇒ ¬(readLockCS (i) ∧ readLockCS (j ))
∧ (∃ p ∈ ProcSet : readLockCS (p))⇒ read lock = 0

Inv
∆
=

∧ ∀ i , j ∈ ProcSet :
(i ̸= j )⇒ ¬(writerInCS (i) ∧ (writerInCS (j ) ∨ readerInCS (j )))

∧ (∃ p ∈ ProcSet : writerInCS (p) ∨ readerInCS (p))⇒ write lock = 0
∧ IsFiniteSet(ProcsInReadCountCS )
∧ read count = Cardinality(ProcsInReadCountCS )
∧ read count > 1⇒ ∃ p ∈ ProcSet : pc[p] ∈ {“re7”, “rx1”}
∧ (∃ p ∈ ProcSet : pc[p] = “rx4”)⇒ read count = 0

Figure 4.3: TLA+ Invariants and Other Definitions for the Readers-Writers
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said about writerInCS (p) for writers, corresponding to the critical section
composed of labels we3 and wx1. The choice of starting and ending points
for both sections is determined by the locking and unlocking operations on
write lock respectively. This lock indeed acts as the underlying synchro-
nization primitive allowing the two categories of users to agree on which of
them has access to the shared resource.

Using the two critical sections defined hereabove, the first clause of the
invariant can be written. It states that, for any given two process, if one of
them is a writer currently in its critical section then the other one should not
be in a critical section, regardless of it being a reader or a writer. This clause
effectively expresses the readers-writers exclusion pattern as intended. It
indeed implements mutual exclusion around writers while allowing multiple
readers to access their critical section concurrently. In the same way as all
the locks previously presented, the resulting mutual exclusion property is not
sufficient as an inductive invariant. The second clause was therefore added
in an effort to relate the variable used to implement the locking mechanism
to the property. In the current case, write lock should hold the value 0 as
soon as there is a reader or a writer in the corresponding critical section.

As could be expected, the two previous clauses do not constitute an inductive
invariant. They are quite similar to the first clauses of the main invariant
developed for Barz’s algorithm in Section 3.5 in that they express more
complex patterns in the same way as basic locks. In order to hold over the
whole algorithm, such invariants however need to encompass the overall logic
behind it. All attempts to reinforce the invariant with clauses relating the
values of the different variables like for Barz’s algorithm nonetheless failed
to produce an inductive invariant. Such clauses were not violated by the
specification when checking models with the help of TLC, but they were
however not sufficient to hold. This is due to a fundamental difference in
the use of the respective counter variable between both algorithms.

In Barz’s algorithm, counter acts a history variable, keeping track of the
difference in the number of calls to Signal() and Wait() since the begin-
ning. The value of counter can thus not be precisely inferred from the ones
of the other variables of the algorithm in a given state. On the other hand,
the read count variable of the readers-writers exactly counts the number
of readers currently accessing the shared resource. As a result, the value
of read count should be equal to the number of processes whose program
counter falls in the corresponding critical section. Due to the manipula-
tion of write lock and read count not being part of the same atomic step,
this critical section does not perfectly overlap with the previously defined
readerInCS . A new predicate called readCountCS is introduced to delimit
the section in between the increment and decrement of read count , thus
ranging from label re4 to rx2. Then, the set of processes of ProcSet verify-
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ing this predicate is given the alias ProcsInReadCountCS .

In order to reason on the number of processes in the ProcsInReadCountCS
set, the notion of cardinality must be introduced. This well-known property
of sets is not available by default in a TLA+ module. To introduce its defini-
tion, the module must extend the FiniteSets standard library. As its name
indicates, this standard library limits the notion of cardinality to finite sets,
which is sufficient since the total number P of processes in ProcSet is as-
sumed to be a natural number. A predicate called IsFiniteSet(S ) is handily
provided as well, in order to state that a given set S is finite. The third clause
of the invariant relies on this predicate to express that ProcsInReadCountCS
is a finite set. The Cardinality(S ) operator consequently allows to consider
the cardinality of said set in the fourth clause which states that it is equal
to read count at all times.

When trying to prove that the current invariant is inductive, one faces a new
kind of issue. Simply put, every statement relying on seemingly trivial prop-
erties of the notion of cardinality can not be proven by using the provided
definition of Cardinality . For example, TLAPS is not even able to verify that
the cardinality of ProcsInReadCountCS is initially null although it should be
obvious that there is no process in readCountCS . This phenomenon is due
to the fact that the definition of Cardinality is impractical to use as part of
proofs. A recursive reasoning is indeed used to define the cardinality of S as
1 plus the cardinality of a subset of S obtained by removing an arbitrary el-
ement. As a result, a number of nested susbets equal to the final cardinality
must be developed before reaching the empty set and stopping the process.
This form of definition is difficult to infer useful properties from and TLAPS
struggles as soon as it is introduced. Fortunately, the TLAPS standard li-
brary contains a set of well-known already proven theorems regarding the
notion of cardinality within the FiniteSetTheorems file.

Among all the provided theorems, 4 are necessary to the proof of the in-
variant and are detailed in the following. First, FS EmptySet expresses
that a finite set which has a null cardinality is and can only be the empty
set. Then, FS CardinalityType is used, among other things, to type the
cardinality of a finite set as a natural number. Finally, the two symmetric
theorems FS AddElement and FS RemoveElement allow to reason on finite
sets when adding or removing an element respectively. In both cases, the
new set is guaranteed to remain finite and its cardinality is related to the
one of the original set. If a new element that did not belong to the set
beforehand is added, then the cardinality is incremented by 1. Conversely,
if an element that was indeed part of the set is removed, its cardinality is
decremented by 1. On top of these 4 provided theorems, a new one was
defined under the name FS NonEmptySet . This theorem states that, for
a finite set, the cardinality being greater than 0 means that (at least) one
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element can be found in this set and conversely.

Using the previous theorems, one can try to write the proof for the in-
variant. First, the definitions of Inv , ProcsInReadCountCS , readCountCS ,
writerInCS and readerInCS as well as the assumption that constant P is a
natural number are made available to the solvers for the whole proof. Then,
following the natural decomposition of the top level statement Spec ⇒ □Inv ,
the first step is to prove that Init respects the invariant. As already indicated
previously, TLAPS is able to prove that ProcsInReadCountCS is the empty
set but not that its cardinality is null and matches the value of read count .
Instead of trying to justify this by the definition of Cardinality , one can now
use the theorem FS EmptySet to verify the fourth clause of the invariant.

Once Init ⇒ Inv is verified, it is time to proceed with the main endeavor
of proving the invariance of Inv with respect to all the possible actions of
the specification. As for every inductive proof encountered until now, the
automatic decomposition feature of TLAPS is used. The invariance must
thus be proven for each action making up Next , while assuming a given
process self is taking said action. The possibility of a stuttering step must
also be covered by the proof. Most of the steps can be trivially proven by
TLAPS by only relying on the definition of the corresponding action and
the soft typing invariant TypeInv . Regarding the failing steps, some simply
require the help of the theorems on finite sets or of the mutual exclusion
invariants. However, the information conveyed by the invariant is still not
sufficient for the proof to hold completely.

Similarly to the Barz invariant, one should add clauses to account for the
guardian conditions of the if blocks. For example, when looking at step re5
only, TLAPS is not able to determine that the process is within the body
of the if block. Combined with the mutual exclusion of read lock , the fact
there is a process at the corresponding label is however sufficient to infer
read count = 1. In order to spare TLAPS this more complex proof, the fifth
and sixth clause of the invariant have been added.

The sixth clause corresponds directly to the if conditional in read exit.
It constitutes the missing piece to prove that it is safe for a process in
rx4 to unlock write lock without risking to violate the second clause of the
invariant. Simply put, one knows read count is null in this situation which
means there is no reader left in readCountCS thanks to the fourth clause.
Moreover, no other process than the considered one can be at labels rx3
or rx4 thanks to the mutual exclusion on read lock . Therefore, there is no
other process verifying readerInCS left and the second clause is verified.

The fifth clause of the invariant is a consequence of the second one as well
as the mutual exclusion on read lock . Basically, when there is more than
a single reader in readCountCS , one can be sure there will be at least one
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process at label re7 or rx1. This is due to the fact that those are the
only two labels part of readCountCS which are not affected by the mutual
exclusion on read lock . By explicitly stating this point, this clause is useful
at re4 to justify it is safe to jump directly to re6 if read count ̸= 1. One
should indeed be sure the readers have already acquired the write lock before
entering readerInCS , otherwise violating the second clause of the invariant.
Due to the considered process being at re4, it is obvious that read count > 0
thanks to the fourth clause. Therefore, the precondition read count > 1 is
guaranteed to be true if the process skips the body of the if block. In that
case, the newly introduced clause states there is at least one other process in
readerInCS , at label re7 or rx1. Thanks to the second clause, TLAPS can
be sure the readers are collectively already holding write lock in order for
this process to have reached that point. As a side note, one may notice the
fifth and sixth clauses have symmetrical roles in that the former guarantees
there is already an active reader while the latter states there is no reader
left.

The current invariant can finally be proven inductive for all steps of the
specification. The following describes the information to add for TLAPS to
be able to verify the non-trivial steps.

The first problematic action is re3 because it increments the read counter
variable. The FS AddElement theorem must thus be used to ensure the
cardinality of ProcsInReadCountCS stays equal to this updated value in the
new state. Practically speaking, manual statements had to be added beside
the ones of the automatic proof decomposition. TLAPS indeed struggles
to use the finite set theorems if their assumptions are not explicitly given
under the exact expected form. Those additional proof steps have been
numbered with letters to differentiate them. Additionally, FS NonEmpySet
as well as mutual exclusion must be invoked to prove the fourth clause of
the invariant. Simply put, as read count is incremented and may get past
the value 1, TLAPS must check there is indeed a process at labels re7 or rx1
in this case. FS NonEmpySet effectively states there is at least one process
in readCountCS and the mutual exclusion restricts the section to these two
labels.

Secondly, the two first clauses of the argument do not hold for action re4. In
the case where the process jumps directly to re6 and enters the critical sec-
tion as a reader, TLAPS can indeed not guarantee there is not already an ac-
tive writer. This case nevertheless implies read count > 1 as explained when
introducing the fifth clause. It is thus sufficient to invoke FS NonEmptySet
for TLAPS to understand that the cardinality of ProcsInReadCountCS be-
ing greater than 1 means there is already a reader in the critical section.
Because the two first clauses of the invariant are assumed to be verified in
the current state, it is obvious that there is no writer in the critical section
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and that the readers already collectively hold write lock .

Then, the fifth clause does not hold for action rx1. This is due to the
fact that the active process exits the section composed of labels re7 and
rx1. TLAPS must thus ascertain there is another process in said section
in the case where read count > 1. This argument is stated as step ⟨3⟩ d
and requires to reason on the set ProcsInReadCountCS when removing
the active process from it. Because the cardinality of the original set is
supposed to be strictly greater than 1, FS RemoveElement states the up-
dated cardinality after removing the process is still strictly greater than 0.
FS CardinalityType is required for TLAPS to transfer this basic reasoning
on integer values to cardinalities. Lastly, FS NonEmptySet is used to state
there is still at least one element in the resulting set. Thanks to this chain
of basic elements of reasoning, the original argument is verified and the
invariance holds for rx1.

The rx2 action is symmetrical to re3, decrementing read count instead of in-
crementing it. Hence, although not trivially solved, its proof is analogous to
the one for re3 but relies on FS RemoveElement instead of FS AddElement .

Finally, the proof for action rx4 requires to declare that ProcsInReadCountCS
is empty before using the sixth clause of the invariant along mutual exclu-
sion. As one can remember, this was the motivation behind the introduction
of said clause.



Chapter 5

Conclusion

The goal of this Master’s thesis was to specify and verify safety properties of
parallel programming algorithms taken from Prof. Pascal Fontaine’s lecture,
using the TLA+ Toolbox.

Regarding Barz’s algorithm, a formal PlusCal specification has first been
written. Three inductive TLA+ invariants have then been developed, checked
with the TLC model checker and complete TLAPS proofs were produced
and verified. The safety properties associated to those invariants respec-
tively express type restrictions on the variables, mutual exclusion due to a
lock and the overall logic of the algorithm. A second abstract specification
was then written to lay out the expected behavior of a general semaphore
regardless of its implementation. Finally, a refinement mapping was found
to relate both specifications and a proof of refinement has been formulated.
This proof relies on the previous invariants and formally shows that Barz’s
algorithm is a valid implementation of the general semaphore. As a result,
any additional property that could be proven for Barz’s algorithm would also
hold for the general semaphore specification, under the defined refinement
mapping.

A similar process has been carried out for the readers-writers algorithm. A
formal PlusCal specification compliant with the original pseudo-code for-
mulation was produced. Three prerequisite typing and mutual exclusion
inductive invariant were checked and proven. Finally, the main inductive
invariant describing the expected behavior of the algorithm required a way
more complex proof. This proof writing process provided an opportunity
to experiment with the theory of finite sets of the TLAPS standard library.
Compared to the other proofs of this work, the main inductive invariant of
the readers-writers required extensive manual fine-tuning to be verified.
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Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 142–148. isbn: 978-3-642-14203-1.

[Dij63] Edsger W. Dijkstra.
“Over de sequentialiteit van procesbeschrijvingen [On the
sequentiality of process descriptions]”.
circulated privately, translation available in Texas Archive.
undated, 1962 or 1963. url:
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD35.PDF.

[Dij68] Edsger W. Dijkstra.
“Co-operating sequential processes”. English.
In: Programming languages : NATO Advanced Study Institute :
lectures given at a three weeks Summer School held in
Villard-le-Lans, 1966 / ed. by F. Genuys.
United States: Academic Press Inc., 1968, pp. 43–112.
isbn: 0-12-279750-7.

[Fon24] Pascal Fontaine.
INFO9012-1 Parallel Programming Lecture Slides.
University of Liège. 2024.
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