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Abstract

In the realm of software development, the frequent release of new Application Program-
ming Interface (API) versions presents a significant challenge for engineers and devel-
opers. Traditionally, adapting to these changes requires a comprehensive update of the
entire application, resulting in considerable time and resource investments. This situation
highlights the need to support developers in managing the numerous tedious tasks they
encounter daily.

This thesis addresses these challenges by leveraging Large Language Models (LLMs) for
code-related tasks and introduces a framework for deploying advanced general coding
assistants that achieve state-of-the-art performance.

The approach involves selecting and deploying a model based on several meaningful cri-
teria, choosing appropriate benchmarks and datasets for fine-tuning, and developing a
framework capable of fine-tuning on a single GPU. We also deploy our own benchmark,
building upon the dataset released in previous related works.

We address the limitations associated with fine-tuning under constrained computational
resources. Our fine-tuned models demonstrate a systematic improvement in performance
for the specific downstream tasks they are adapted to. Improving their precision up to
206.25%.

We also provide critical insights into both the evaluation metrics for LLMs and the limi-
tations of current benchmarks.
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Chapter 1

Introduction

1.1 Context

Figure 1.1: Haulogy

This research was conducted at Haulogy.

Haulogy is a company that provides modular and scalable management software and con-
sulting services to businesses in the energy and utilities sector. They offer solutions and
services for various markets such as distribution, supply, e-mobility, flexibility, and energy
sharing, targeting different players like DSO’s, retailers, B2B consumers, BRP’s, aggrega-
tors, and e-mobility service providers. Haulogy has a presence in three European countries
and focuses on building long-term relationships with their clients. Their expertise includes
artificial intelligence applications in the energy sector, particularly in new models of en-
ergy provision, highlighting the growing importance of AI in the industry.

As an intern, I worked in the R&D team to explore how modern AI models could provide
solutions for the most important challenges the firm is currently facing.

1.2 Identifying Challenges
During my internship at Haulogy, I spent my time spotting and discussing the different
challenges currently faced by the firm. From the beginning, the objective was to explore
the possibility to engineer and deploy modern AI tools, particularly smart chatbot as-
sistant like GPT, to streamline or even automate some of the most tedious tasks and
overcome the most important challenges. Among those challenges, one was offering an
interesting playground to explore the strengths and limitations of the deployment of AI
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tools in the industry. But before diving into the description of this challenge, we need to
define properly one of Haulogy main application: HAUERP.

1.2.1 HAUERP in details

HAU-ERP is a generic Enterprise Resource Planning (ERP) application developed and
sold by Haulogy to its clients. The ERP is exclusively coded in python.

The development framework of HAU-ERP is Odoo, an open-source ERP that exists in
two possible versions: a free community version and a paid enterprise version. A new
version of Odoo is released every year. In order to keep HAU-ERP stable and relevant for
its clients, Haulogy needs to update it to the new version. This task is substantial and
poses important challenges.

This thesis aims to explore how machine learning techniques and AI tools can help devel-
opers efficiently perform the update process.

The development framework of HAU-ERP is Odoo. Odoo core serves as the core foun-
dation, enabling the creation of modules for a diverse range of functionalities. This
framework encompasses a robust API that is consistently provided both with the core
and the modules. In the app store, various modules are available, which can be developed
by different partners, Odoo or even Haulogy.

Haulogy development process for HAU-ERP leverages the Odoo core, enabling them to
craft their own modules while also modifying or merging existing ones to create novel
features to cover their own or their clients’ needs. For example, Haulogy could personalize
the already provided accounting module to better suit the firm or create a module to
manage electric meter for one of their client.

Python serves as the primary development language throughout this entire ecosystem.
The API, an integral component of this system, eases seamless interaction between the
core, HAU-ERP, and the various modules. Odoo framework promote collaboration, adapt-
ability, and continuous development for the HAU-ERP application.

Figure 1.2 shows the conceptual model of HAU-ERP, the different classes of modules and
the purpose they serve. Figure 1.3 highlight the dependencies of the different modules.
Every arrow denote a dependency. Partner modules, including modules created and shared
by Haulogy itself, depend on Odoo core by may also depend on other partner modules.
HAU-ERP modules depend on Odoo core or partner modules.

1.2.2 The Migration Process

The development of HAU-ERP is done under a certain version of Odoo, let us call it
version vn. In practice, this version is supported for 3 years after its release. Because
Haulogy works with projects that may last longer than those 3 years, updates to new
versions have to be performed in order to get advantage of the support.

Whenever a new version of Odoo is released, the updated versions of Odoo and partners
modules are provided. Consequently, for Haulogy, shifting from version vn to vn+1 requires
a proper migration of

1. The python scripts of any created/modified modules
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Figure 1.2: Conceptual HAU-ERP diagram.

Figure 1.3: HAU-ERP dependencies diagram.
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2. The data encapsulated in those modules

The Challenge

Adapting the python scripts of HAU-ERP, the modules in the green part of figure 1.2, for
the new version vn+1 is an extremely challenging task. As the documentation provided
does not list explicitly all the modifications made. Moreover, estimating the impact of a
given modification on the whole code is though. Currently, developers have to manually
investigate the changes and their impact through trial and error. The python scripts are
imported into the new version, bugs are investigated and finally they are corrected. The
whole code is frozen during this process, hindering the development of new features.

Data is encapsulated in a SQL database managed by Odoo directly. Thus, the migration
of the data to the new version is done by Odoo directly. However, the migration of any
added data, such as the data for HAU-ERP modules, have to be handled by Haulogy.
This data migration issue, albeit similar to the one exposed just before, will not be the
case of interest here.

1.3 Problem Statement

1.3.1 Naive Formulation

To look deeper in the problem and begin exploring solutions, it is important to write a
more rigorous statement of the migration process. To achieve this, let us articulate the
problem in mathematical terms. Let :

• Xn be the sequence of codes forming Odoo for version n.

• Yn be the sequence of codes forming HAUERP codebase for version n.

The update of HAUERP can be defined as a sequence to sequence translation process

f : Xn × Yn ×Xn+1 → Yn+1 (1.1)

Where :

• f is the generative model.

1.3.2 Machine Learning Approach

In the realm of machine learning, the process typically begins with the recognition that
there exists a real-world data generation process that produces the data we observe. Here,
this process, denoted f , represents the successive modifications applied by the software
developers to the sequence of code Yn. The data consists of the sequences of codes
produced, mathematically represented as a sequence X . We seek to approximate this
underlying data generation model by training machine learning models on available data.
These models aim to capture the inherent patterns, relationships, and structures present in
the data, allowing them to make predictions. Through iterative learning and optimization,
machine learning algorithms strive to minimize the gap between the modeled distribution
and the true data generation process. Therefore, such a model could solve the migration
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process by automatically inferring the sequence of codes forming the codebase of the new
HAUERP version, given the previous codebase of HAUERP and Odoo respectively as
well as the one forming the new Odoo version we are updating to.

Formally, we aim at building a model F trained on a dataset D such that

FD ≈ f (1.2)

The choice of the dataset D is crucial. Data is the lifeblood of machine learning, serving as
the foundation upon which models are trained. Data provides the context and examples
necessary for algorithms to understand the problem space and make relevant decisions.
Therefore, the availability and quality of data are crucial, as it directly influence the
performance and accuracy of machine learning models.

To train our model, the dataset D consists of the history of previous HAUERP updates.
However, the challenge arises when we examine this history. Often, modifications to the
code are not solely driven by the update of Odoo itself, they can be influenced by various
other factors. Indeed, a new version of HAUERP is not simply a migration of the python
scripts to a new Odoo version, but a whole new project, reflected and engineered for
several different objectives. Meaning that several new features may be modified, added
and/or removed for the need of Haulogy and/or its clients, but certainly not because of
Odoo modifications. Therefore, we have to make a distinction between the migration
process and HAUERP update. The former is only a subprocess of the second.

While analyzing the historical data, we might observe changes in the codebase that are
seemingly unrelated to the migration process. These changes could be due to bug fixes,
feature additions, or even refactoring efforts independently of the update. As a result,
using this historical data as a dataset for training a machine learning model introduces
unwanted learnt behaviors. Without any prior labeling1, the model will not be able to
differentiate between changes directly tied to the migration and those influenced by other
factors, leading to inaccurate predictions and potentially harmful code modifications.
Therefore, it is crucial to recognize the complexity and context surrounding code changes
and be cautious when leveraging historical data for automated code updates. Without a
clear understanding of the underlying reasons for each modification, attempting to train
a model in this manner is hazardous and thus not an achievable solution.

Figure 1.4 illustrates the migration process as a Markov Chain. Like before, Xn is the
sequence of codes forming Odoo for version n and Yn is the sequence of codes forming
HAUERP codebase for version n. To complete this model, variables Zn are added. Those
are the sequence of modifications to apply to Yn and originate from Haulogy internal
decisions.

1.3.3 Towards Smart Assistance

As previously mentioned, the main challenge faced by developers during the migration
process is the need of a trial and error process to detect the bugs created by the new
version. If training a model to perform a fully automatic migration process is not realistic,
we can consider a process that generates suboptimal intermediate results to streamline

1The current HAUERP transitions history retrievable from the repository commits is too old and
large to properly classify the modifications
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Figure 1.4: HAUERP updates also depends on untracked variables. Zn are the untracked
decision that influenced the codebase Yn of HAUERP.

the complete migration process. In this scenario, the AI agent would serve as an assistant
for the software developers.

Figure 1.5: The illustration above depicts a scenario in which the AI agent autonomously
carries out tasks based on submitted requests. In contrast, the illustration below shows a
situation where the AI agent functions as an assistant to the human.

Let us describe an example of how assistance can be significantly helpful.
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The lack of documentation provided by Odoo when releasing a new version is one of
the main reason developers are struggling to find what parts of their code need to be
modified. Therefore, a good assistance lies in the production of an explicit, meaningful
and relevant listing of the modifications. For this purpose, we can investigate a model
generating a natural language description of the differences between the two versions taken
as inputs:

f : Xn ×Xn+1 → T (1.3)

Where T is a natural language explanation of the difference between the two given code-
bases.

1.4 Large Language Models
This thesis aims at leveraging Large Language Models (abbreviated to LLMs for the rest
of the report) to provide software developers with a proper assistance and relieve them
from their most tedious tasks in order to boost their productivity. In this report, we’ll dive
into the process of building, training, implementing and deploying these models.

A Large Language Model refers to a specific type of Language Model that has been
trained on a vast amount of text data, typically on the order of billions or even trillions
of words, to understand and/or generate human language sequences. Those models are
capable of capturing contextual understanding, and complex language patterns due to
their extensive training data and the sophisticated machine learning models used to build
them. Recently, LLMs have demonstrated applicable emergent abilities [1] making them
a fitting choice to deploy smart assistants that performs automatically generic tasks or
ease the more complex ones. LLMs can be used for various natural language processing
(NLP) tasks, such as text generation, translation, summarization, sentiment analysis, and
more.

Given their extensive capabilities, LLMs excel at being general assistants. Exploiting such
a large model to be a useful assistant only when software developers work on the migration
process would be a waste of resources. Therefore, in addition to leverage them to provide
a relevant assistance in the migration process, our objective extends to providing broader
assistance to software developers in their daily coding tasks. This includes tasks such as
automatic code synthesis, correction, explanation, etc...

We aim at deploying a general coding assistant. From model selection to deployment, and
from training to evaluation, we will meticulously outline each step of our framework.

7



Chapter 2

State Of The Art

2.1 History of Natural Language Processing
Natural Language Processing (NLP) is a crucial field within artificial intelligence that fo-
cuses on enabling machines to understand, interpret, and generate human language. NLP
includes a wide range of tasks such as text classification, machine translation, question
answering, text summarization, speech recognition, ...

Over time, NLP has evolved significantly, progressing from early rule-based systems [2]
to sophisticated deep learning models, which have transformed how machines process
language. Recurrent Neural Networks (RNNs) and their variants applied to NLP, such as
Long Short-Term Memory (LSTM) [3] and Gated Recurrent Units (GRUs) [4], became the
standard for sequence modeling. Those models however struggled to capture long-term
dependencies on top of being computationally expensive.

The most significant milestone in modern NLP came in 2017 with the introduction of
The Transformer model by Vaswani et al. [5]. By relying solely on attention mechanisms
[6], Transformers overcame the limitations of RNNs by enabling parallel processing and
better handling of long-range dependencies.

Since then, all state-of-the-art language models have been built upon the transformer
architecture.

Before diving into this architecture, we need to understand how a machine processes
sequences as inputs.

Tokenization

To be processed by machine learning models, raw text data undergo a fundamental step
in NLP tasks: tokenization.

Tokenization is the process of breaking down a text into smaller units called tokens.
These tokens can be words, subwords, or characters, depending on the granularity of the
tokenization method used.

Tokenization is the first step in text preprocessing pipelines. It prepares the text data for
further processing by language models.

8



Figure 2.1: The Transformer - model architecture. The left part is the Encoder and the
right part is the Decoder. [5]

Modern tokenizers1 are implemented as objects generating from a sequence of words the
corresponding sequence of tokens id each words (or sub-words) corresponds to.

Semantic embedding

Semantic embeddings are numerical representations of words, phrases, or sentences in a
high-dimensional vector space where the proximity of vectors reflects semantic similarity
between words. Once represented as numerical vectors, the model can apply a vari-
ous set of operations on the embedded words to produce an output. Historically, these
embeddings were generated using models such as word2vec [7] or GloVe [8]. Modern
transformer-based architectures, however, use learned embeddings (embeddings learned
during training) whose dimensions depend directly on the architecture.

2.2 The Transformer Model
Since its introduction in "Attention is All You Need" by Vaswani et al., in 2017 [5] the
transformer model architecture has revolutionized the field of natural language processing
by introducing a novel approach to sequence modeling without the need for recurrent or
convolutional layers. Instead, the model only uses attention layers (cf figure 2.1).

Understanding the transformer architecture is essential for grasping the underlying prin-
ciples behind large language models, as many state-of-the-art models, such as GPT series

1https://huggingface.co/docs/transformers/main_classes/tokenizer
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[9], rely on this architecture as their backbone.

This research will focus exclusively on transformer based architectures. Precisely, decoder-
only architecture (more on that later). So, we will thoroughly review each key component
of this architecture and its functionalities to understand how modern LLMs process se-
quences of words.

2.2.1 Model Architecture and Components

Encoder

The encoder stack consists of multiple layers, each containing a multi-head self-attention
mechanism followed by position-wise feedforward networks.

Decoder

The decoder stack also comprises multiple layers, but additionally includes multi-head
attention over the encoder’s output and self-attention over its own input.

Self-Attention Mechanism

At the core of the transformer model are self-attention mechanisms, which enable cap-
turing global dependencies between words in a sequence efficiently. Self-attention allows
each word in a sequence to attend to all other words, capturing contextual information
effectively. It computes attention scores between each pair of words, determining how
much focus should be given to each word when encoding or decoding the sequence. By
aggregating information from all words, self-attention enables the model to dynamically
understand the relationships between different parts of the input sequence.

The Queries (Q), Keys (K), and Values (V) help the model learn the extent and manner
in which words influence each other. This mechanism is formally described in the paper
as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.1)

Multi-Head Attention

This component allows the model to focus on different aspects of the input sequence
simultaneously by projecting the input embeddings into multiple subspaces and computing
attention independently in each subspace. This mechanism is formally described in the
paper as follows:

MultiHead(Q,K, V ) = Concat ( head 1, . . . , head h )W
O

where head i = Attention
(
QWQ

i , KWK
i , V W V

i

)
Where the projections are parameter matrices WQ

i ∈ Rd mod ×dk ,WK
i ∈ Rdmad 1×dk ,W V

i ∈
Rdmoda ×dv .
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MultiHead(Q,K, V ) = Concat ( head 1, . . . , head h)W
O (2.2)

Positional Encoding

Since transformers do not inherently understand the order of words in a sequence, po-
sitional encodings are added to the input embeddings to provide information about the
position of each word.

Feedforward Networks

These are fully connected layers applied independently to each position in the sequence,
enabling the model to learn complex relationships between words.

2.2.2 Advantages of Transformers

State-of-the-Art Performance

The transformer architecture has become the model for producing state-of-the-art NLP
models, setting new benchmarks across various tasks including language understanding,
generation, and translation.

Parallelization

Transformers can efficiently parallelize computations across different words in the se-
quence, leading to faster training and inference compared to sequential models like recur-
rent neural networks.

Multi Dependencies

The Multi Head attention mechanism allows the model to learn several different types of
word dependencies.

2.2.3 Limitations

Quadratic Complexity

The self-attention mechanism has a quadratic computational complexity with respect to
the sequence length, making it challenging to scale to long sequences. Usually, this means
that models do not have a large context window. However, while it may have been true for
the first released LLMs, latter models displayed the ability to process very large context
[10].

Memory Requirements

Transformers require significant memory resources, especially for large models with a high
number of parameters, posing challenges for deployment on resource-constrained devices.
These memory requirements will pose a significant challenge for the rest of the research.
Later we will discuss how they can be reduced effectively.
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Figure 2.2: Decoder-only architecture. [5]

2.3 From Transformers to Large Language Models
As previously mentioned, the transformer architecture consists of two main components:
an encoder and a decoder. In 2018, Radford et al. introduced the Generative Pre-Trained
Transformer (GPT) [9], a variant using only the decoder part of the transformer (Fig 2.2).
Those types of architectures are referred to as decoder-based or decoder-only.

Decoder-based models focus on the decoder of the transformer. At each stage, the atten-
tion layers for a given word can only access preceding words in the sequence. They are
well-suited for text generation tasks. The success of decoder-only architectures in gener-
ating coherent and contextually appropriate text has been a major factor in developing
LLMs for tasks like creative writing, dialogue generation, and code completion.

Encoder-only models also exists, like BERT [11]. Those are more effective for tasks
requiring full-sentence comprehension, such as sentence classification, sentiment analysis,
and token classification. This research focus exclusively on text generation tasks. Thus,
we will focus only on decoder models.

2.4 Mixture Of Experts (MOE)
A new type of architecture has recently gained significance. With the introduction of Mix-
tral 8x7B and, Mixture of Expert models have become popular in the field of LLMs.

MoE architectures have emerged as a promising approach to scaling deep learning models
while optimizing computational efficiency. The core concept behind MoE is dynamic rout-
ing of input data to a subset of "expert" neural network layers rather than activating the
entire model for each input. This approach allows the model to scale effectively, leverag-
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Figure 2.3: Mixtral 8x7B model [12]

ing the benefits of larger model capacity without a proportional increase in computation
cost. MoE models have demonstrated state-of-the-art performance in various language
task.

Figure 2.3 displays the simplified design of Mixtral 8x7B. At each layer, a router selects
two experts to process a token.

2.5 Training Large Language Models

2.5.1 Unsupervised Pre-Training and Supervised Fine-Tuning

But Radford et al. [9] also introduced something important to build large language
models; the training process. The model undergo a pre-training phase.

Early transformer models were trained on smaller and more focused datasets. However,
for LLMs, models are trained on vast and diverse datasets drawn from the web. This
large-scale pre-training allows the models to acquire broad, general knowledge, which can
then be fine-tuned for specific tasks or used directly in a wide variety of applications.

LLMs involves a multiphase process that consists of unsupervised pre-training, supervised
fine-tuning, and more specifically, instruction tuning. Each stage is crucial in shaping the
model’s performance and versatility across different tasks. The process is computationally
intensive and requires vast amounts of data, often ranging from terabytes to petabytes,
as well as large-scale infrastructure, such as powerful GPUs.

Radford et al. [9] mathematically described the task as follows:

Given an unsupervised set of tokens U = {u1, . . . , un}, we try to maximize the following
likelihood:
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L1(U) =
∑
i

logP (ui | ui−k, . . . , ui−1; Θ)

where k is the size of the context window.

After being pre-trained, models undergo a fine-tuning process where they are trained on
supervised dataset to predict according to labels given instruction.

L2(C) =
∑
(x,y)

logP
(
y | x1, . . . , xm

)

Where x1, . . . , xm are the set of tokens given as instruction and y the sequence to pre-
dict.

2.6 Generation
The output of a decoder-only architecture (or more generally, a transformer) is a proba-
bility distribution over all the tokens in the vocabulary for each position. Parameters can
be adjusted to sample for this distribution, like the temperature, that squeeze the proba-
bility distribution to allow for more hazardous predictions. Sampling the most probable
output is known as greedy decoding.

During a forward pass in training, the model predicts multiple tokens simultaneously, but
during inference, only the prediction for the final token is relevant, as earlier tokens are
part of the input sequence. While generating tokens one by one during inference may
seem inefficient, during training, the model predicts all tokens in the context window in
parallel, making the process more efficient.

To generate a full sentence during inference, the model first predicts one token based
on the input. It then appends this token to the input sequence and uses the updated
sequence to predict the next token, repeating this process iteratively.

This approach is why such models are referred to as autoregressive models. The same
principle applies whether the model is instruction-tuned or not.

2.6.1 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) [13] represents an approach in LLMs that ad-
dresses the limitations of generating responses only based on knowledge acquired during
pre-trained. Traditional LLMs, such as GPT and Llama2, rely on their internal param-
eters to generate responses. However, their fixed knowledge base can become outdated,
and scaling them to handle vast amounts of dynamic information can be computationally
expensive. RAG offers a hybrid solution by combining the strengths of retrieval-based
methods with generative models, allowing for more up-to-date and contextually relevant
outputs.

The architecture involves another component on top of the model, the retriever. The
retriever is responsible for fetching relevant documents based on the input query. Dense
retrievers typically use dual-encoder architectures like those introduced in the DPR (Dense
Passage Retrieval) model by Karpukhin et al [14].
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The overall process in RAG works as follows:

1. For a given input query, the retriever searches a pre-indexed knowledge base to
obtain the top-k relevant documents or passages.

2. The retrieved documents are then passed to the generator along with the original
query.

3. The model produces the final output, conditioned on both the query and the re-
trieved documents.

2.7 Prompt Engineering
Prompt engineering is a critical aspect of interacting with large language models (LLMs),
focusing on the creation and refinement of input prompts to optimize the model’s output.
This process is integral to harnessing the full potential of LLMs, as the structure, wording,
and context of a prompt significantly influence the quality, relevance, and accuracy of the
generated responses.

Prompts serve as the interface between the user and the LLM, guiding the model toward
producing desired outputs. They can range from simple questions to complex instructions,
depending on the task. Research has shown that even minor changes in a prompt can
lead to significant differences in the output.

Popular prompt engineering techniques involves Zero-shot and Few-shot Prompting.

• Zero-shot prompting involves presenting the model with a task it has not been
explicitly trained on, using carefully crafted prompts. Kojima et al. [15] increased
the model’s precision across various benchmarks by simply adding "Let’s think step
by step" to the prompt.

• Few-shot prompting, on the other hand, provides the model with a few examples to
guide its responses. Brown et al. [16] demonstrated that few-shot learning allows
models like GPT-3 to generalize across tasks with minimal examples, significantly
improving performance on unseen tasks.

2.8 Evaluation of Large Language Models

2.8.1 Benchmarks

Benchmarks for LLMs are standardized tests designed to assess and compare the perfor-
mance of these models across various tasks. The primary goal is to quantify the capabil-
ities of LLMs in areas such as natural language understanding, question-answering, text
generation, reasoning, coding, and more. These benchmarks are essential for guiding
model development and assessing progress in the domain.

The most important use of benchmarks is to compare LLMs to one another, as it is yet
the only way to state if a model is better than another in a given area.

There exists dozens of benchmarks. In section 3, we only describe the ones that will be
useful for this research.
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Benchmarks consists of a relatively small set of instruction/reference pairs. The predic-
tions are compared using evaluation metrics characteristics of the benchmark method of
evaluation. The value of those metrics is always in a 0 to 1 range. To our knowledge,
none of the popular benchmarks has been beaten yet.

2.8.2 pass@k

The pass@k metric, as defined by Chen et al. [17], measures the probability that at least
one of the top k generated samples for a given problem is correct. This metric is especially
useful for evaluating the performance of models that generate multiple possible outputs
for tasks like code generation.

pass@ k := E
Problems

[
1−

(
n−c
k

)(
n
k

) ] (2.3)

The computation require the generation of n candidates to reduce the metric variance.

2.8.3 BLEU

The BLEU (Bilingual Evaluation Understudy) metric is a widely used method for evalu-
ating the quality of machine translation models by comparing the generated translation
(hypothesis) against one or more reference translations.

BLEU calculates how many n-grams (continuous sequences of words of length n) in the
generated translation match with the reference translations. Commonly, BLEU considers
unigrams (1-grams), bigrams (2-grams), trigrams (3-grams), and 4-grams.

BLEU = BP · exp

(
N∑

n=1

wn log pn

)

with

BP=

{
1 if c > r

e(1−r/c) if c ≤ r

Smoothing has been introduced for this metric to minimize the penalty when calculating
the final score for n-grams, particularly when k-grams with k smaller than n are en-
countered. The classic BLEU metric does not account for these k-grams, but smoothing
addresses this by incorporating them into the evaluation.

2.9 Quantization
This section discusses the memory demands of LLMs on GPUs. Each parameter in the
model requires memory space. In the common case of using 32-bit floating-point precision
(FP32), each parameter takes up 4 bytes. To measure the memory space required to
lead a model using FP32, one’s simply need to multiply the number of parameters by 4
bytes. For instance, a model with 1 billion parameters would need approximately 4 GB of
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Figure 2.4: Different data types [18]

memory just to store the parameters. Usually, the number of parameters in these models
is massive, often ranging from hundreds of millions to tens of billions.

Examples:

• Llama2-70b with 70 billions of parameters requires approximately 28 GB of memory.

• GPT3 with 175 billions of parameters requires approximately 70 GB of memory.

The large size of LLMs arises the need to efficiently manage memory and computational
resources. One significant advancement in this area is the shift from FP32 representation
to 16-bit representations, which reduces memory requirements by half. Two main 16-
bit representation formats exist: FP16 and BF16. The latter sacrifices three bits of the
exponent to increase the size of the mantissa, allowing for a greater range of values. (Fig
2.4)

To estimate the memory space (in bytes) required to save a model can be estimated with
the following equation:

M = (#P × 4)× 1.2(B) (2.4)

Where #P is the number of parameters of the model and the 1.2 factor represents the
memory overhead. Q is the amount of bits used to load the model.

Quantization reduces the precision of the model’s parameters to 8-bit or 4-bit. Lowering
the memory size by two or four. Specifics methods of quantization are described in an
upcoming section.

2.10 Parameter Efficient-Tuning
Parameter-Efficient Tuning (PEFT) refers to techniques that fine-tune large language
models (LLMs) by adjusting only a small subset of their parameters, instead of updating
all the model weights. The goal is to achieve high performance on specific tasks while
significantly reducing the computational power requiered compared to traditional full fine-
tuning (FFT). PEFT methods are particularly useful for LLMs, where full fine-tuning can
be highly expensive due to their size. Especially when considering very large models such
as GPT3 [16].
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There exist various PEFT methods, and their efficiency is measured by the trade-off
between the loss of precision with respect to FFT and the cost saved.

2.10.1 Low-Rank Adaptation

Among those methods, Low-Rank Adaptation (LoRA) [19], a particularly popular method
that’s widely used for fine-tuning LLMs, offers the best performance and cost trade-off
[20].

LoRA insert layers are inserted between existing layers of the model. These additional
parameters, called the LoRA adapters, are retrained while the rest of the parameters are
frozen. The method assumes that the weight updates during fine-tuning are low-rank,
which means they can be expressed as the product of two smaller matrices. It introduces
trainable, low-rank matrices into the model’s architecture, enabling efficient fine-tuning
with minimal additional parameters.

Let W be the parameter matrix. For a pre-trained W0 ∈ Rd×k and its update ∆W

• A forward pass is given by h = W0x+∆Wx

• We constrain the update ∆W by representing the latter with a low-rank decomposi-
tion W0+∆W = W0+BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k)

• The forward pass becomes h = W0x+BAx

Figure 2.5: Low Rank Adaption: Only the A and B matrix are re-trained. [19]

The low-rank matrices are added at certain layers (often in the attention or feed-forward
layers) of existing pre-trained models without requiring any architectural changes, making
it easy to implement. The targeted layers can be manually chosen, making the method
flexible and adaptable for different case scenarios.

LoRA can achieve comparable performance to full fine-tuning while updating only a frac-
tion of the parameters.
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2.10.2 Quantized Low-Rank Adaptation

The QLoRA method introduces three key innovations for training LLMs.

1. 4-bit NormalFloat: A quantization data type that adjusts the block sizes of quan-
tization based on a normal distribution across the entire range.

2. Double quantization: The process of quantization requires a quantization constant,
which is itself further quantized.

3. LoRA with quantization: The LoRA technique is applied to a model that has been
quantized.

To quantize a 32-bit float tensor into an 8-bit tensor :

XInt8 = round

(
127

absmax (XFP32)
XFP32

)
= round

(
cFP32 ·XFP32

)

dequant
(
cFP32,XInt18

)
=

XInt18

cFP32
= XFP32

Where cFP32 is the quantization constant.

By denoting the A et B matrix of LoRA as L1 and L2, the forward pass becomes:

YBF16 = XBF16 doubleDequant
(
cFP321 , ck-bit

2 ,WNF4
)
+XBF16LBF16

1 LBF16
2

doubleDequant
(
cFP321 , ck-bit

2 ,Wk-bit ) = dequant
(
dequant

(
cFP321 , ck-bit

2

)
,W4bit

)
= WBF16

Upon reducing the number of parameter to train, QLoRA successfully achieves a reduction
of memory necessary when training large models with limited memory.

2.11 Large Language Models for Code
LLMs for code, often referred to as coders, are models able to handle coding-related tasks.
The primary task associated with coders is code generation, which is typically achieved
by pre-training an LLM on a vast corpus of raw code. These models can perform tasks
like auto-completion: given the definition of a function, they can complete the function’s
body. GitHub Copilot is a prominent example of a coding assistant that leverages such
models to provide code auto-completion. On the other hand, ChatGPT, while also pop-
ular, is instruction-tuned and therefore capable of more than just function generation. It
can generate code from natural language descriptions, debug existing code, explain code
snippets, and more.
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2.11.1 Related Works

Extensive research has been conducted to explore these new capabilities, improve model
accuracy, and evaluate performance across various coding tasks.

Chen et al. [17] laid a solid foundation for code generation research by introducing
a novel method to assess LLMs’ code generation abilities. Their approach emphasizes
correctness, using the pass@k metric for evaluation. They also introduced HumanEval,
which has become the most widely recognized benchmark for code generation.

Luet al. [21] introduced CodexGLUE, a large supervised dataset designed for training
and evaluating LLMs on both code understanding and generation. It features a diverse
collection of 10 tasks across 14 datasets.

Muenogiff et al. [22] demonstrated that instruction-tuning their auto-completion model,
Starcoder, unlocked new coding abilities. The model, post-tuning, could synthesize code
from natural language prompts. Additionally, their study focused on two emergent tasks:
code explanation and code fixing. Code explanation involves generating a description of
what a piece of code does, while code fixing addresses the ability to debug code. They
introduced distinct benchmarks to evaluate these tasks.

In Bhattacharya et al. [23] explored various models’ capabilities in generating natural
language explanations for given code snippets. They compared evaluation metrics and
prompt engineering strategies and fine-tuned models using QLoRA, yielding improved
results on test benchmarks.

Yu et al. [24] developed a state-of-the-art family of LLMs aimed at code understanding
and generation by fine-tuning on various CodeXGLUE [24] tasks.

Szalontai et al. [25] conducted a comparison of the most popular open-source LLMs for
code-related tasks, assessing their performance in code generation and summarization
across multiple benchmarks.
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Chapter 3

Methods

3.1 Framework

3.1.1 Leveraging The Git Structure

Early in this research, we came up with an approach that aims at exploiting the git struc-
ture of the ERP repository. Indeed, Git provides command, like git diff, that reports the
modification made to the files from one branch (version) to another. The idea is to exploit
the ability of LLMs to generate Git commands based on natural language instructions
and then translate the command output in natural language explanation.

However, this approach has been quickly abandoned when the tested models generated
wrong commands given certain instructions or wrongly interpreted.

We do not elaborate further on the experiments as only a few were run before dropping
the idea. However, the insights gained from this failure are important and tailored to the
rest of this work.

First, LLMs are not mysterious black boxes, and assuming they possess certain capa-
bilities without evaluation is a wrong assumption. It’s essential to establish a robust
framework for evaluating a model’s accuracy on a given task before claiming it has that
capability.

Secondly, focusing on abilities that are actively researched and for which datasets of
correct input/output pairs exist is a better starting point. These datasets can be possibly
used to fine-tune the models and enhance their performance when necessary.

3.1.2 Leveraging Coding Abilities

To achieve our objective of leveraging Large Language Models (LLMs) for code com-
parison, our starting point will be Coders, a family of LLMs tailored for coding tasks.
However, our aim extends beyond mere coding capabilities. Our work is built upon the
foundation laid by Muennighoff et al. [22]. In their study, Muennighoff et al. intro-
duced the concept of extending their coder model, StarCoder, for natural language tasks,
through instruction-tuning. Highlighting the potential of instruction-tuning to enhance
the capabilities of existing models. In our case, the goal is to deploy a Coder model capa-
ble of not only writing code but also correcting it, providing comprehensive explanations
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for the code it generates or evaluates and most importantly, compare two codes.

We aim to create an assistant that significantly enhances the efficiency and effectiveness of
code comparison tasks. This assistant will not only ease the comparison of code snippets
but will also provide valuable insights and explanations, thereby empowering developers
to make informed decisions and improve the quality of their codebases. Through this
innovative approach, we seek to leverage the power of LLMs to advance the field of code
comparison and foster greater collaboration and knowledge sharing within the developer
community.

This work aims to leverage coders’ abilities to provide effective assistance to software
developers. The literature describes and evaluates a wide range of these abilities. However,
considering the context of this study, we focus on the most relevant coding abilities to
exploit.

It is important to note that the terminology used for some abilities can be confusing. For
instance, code explanation in one publication might be referred to as code summa-
rization elsewhere while describing exactly the same task. In, code explanation may
sometimes refer to translating a code snippet into natural language [23], while in other
cases, it involves interpreting a larger piece of code.

Furthermore, we distinguish between generating code by continuing an existing code seg-
ment (for auto-completion models) and generating code based on a natural language in-
struction (for instruction-tuned models). We refer to the latter as code synthesis.

While humans tend to differentiate between these tasks, it is possible that LLMs do not
make the same distinctions. The relationship between input and output tokens could
be learned similarly across tasks, potentially activating the same neural pathways. This
hypothesis could be tested later by examining whether the performance of LLMs on these
two abilities is correlated.

We believe that establishing a clear and consistent nomenclature is crucial, so we provide
a precise definition for each of the abilities discussed. Furthermore, we provide for each
of them examples of how they can be used to provide assistance to software developers
and boost their productivity. We also specify whether the instructions and outputs are
written in code or natural language (nl).

Code Generation (code → code)

Code generation involves automatically completing a code given the header of the function
(or the class). It can be useful for generating several lines of code quickly, boosting
productivity of developers when they work on coding large codes made-up of several
functions. GitHub Copilot exploit this ability and has been extremely popular among
developers.

Code Synthesis (nl → code)

Code Synthesis involves automatically producing code from a higher-level description,
specification and/or instruction. For example, given a description like "write a Python
function to sort a list of numbers in ascending order," the system can generate the appro-
priate code. It can be useful for generating entire modules or scripts based on developers
requirements.
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Figure 3.1: GPU time, consumption and carbon emitted for training the Llama 2 family
of models. [26]

Code Explanation (code → nl)

Code explanation is the process describing in natural language what a line of code does.
This task is particularly useful for debugging or understanding precisely some codes.

Code Summarization (code → nl)

Code summarization involves condensing a block of code into a brief description or sum-
mary that captures the main purpose or functionality of the code. Unlike code expla-
nation, which focus and detail the purpose of one line of code only, code summarization
provides an overview.

Code Comparison (code → nl)

Code comparison is the process of analyzing two code snippets to identify differences and
translate them in a natural language explanation. To our knowledge, this task has not yet
been studied in previous research. In the context of this work, this ability is probably the
most useful. Indeed, it is a direct answer to the migration process challenge previously
described and could result in an important boost of productivity when developers work
on this tedious project.

3.2 Model Selection
In our approach to deploy LLMs, we use open source models as our starting point. Begin-
ning with open source models for fine-tuning rather than constructing one from scratch is
primarily motivated by the significant computational resources required for training large
language models.

Indeed, training a state-of-the-art language model from scratch requires a huge amount
of data and computational power, with high-end GPUs running for an extensive time.
Figure 3.1 display the ressources spent for pre-training the Llama 2 family of models
reported by Trouvon et al. [26].

3.2.1 Hugging Face

Hugging Face is a prominent player in the realm of AI generative models, particularly
renowned for its contributions to the deployment and use of LLMs. At the heart of
the platform offerings is the Transformers library, an open-source library that provides a
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comprehensive suite of pre-trained models and tools for building, training, and deploying
LLMs.

HugginFace also supports the development of LLMs by maintaining a leaderboard of the
model achieving the best performances on the most popular benchmarks1.

Figure 3.2: HuggingFace leaderboard.

In addition to the Transformers library, Hugging Face provides several tools and services
to streamline the deployment of LLMs. This includes the Hugging Face Model Hub, a
centralized repository where users can discover, share, and deploy pre-trained models for
various NLP tasks. But also datasets easily loaded through their API useful for training
or fine-tuning models. Moreover, Hugging Face offers hosted inference APIs, allowing
developers to easily deploy LLMs into their applications.

The important availability of models and dataset on this plateform and the strength of
its API is the reason we only consider models available there.

3.2.2 Open-Source & Commercial Use

Open-source models allow anyone to inspect and understand how the model was devel-
oped, how it operates, and what data it was trained on. This transparency is crucial for
building trust in AI systems. Users can verify that the models adhere to ethical guidelines
and are safe to use. They also have the freedom to fine-tune and modify the models to suit
particular contexts or industries. Open-source licensing ensures that these adaptations
can be done without legal or financial constraints.

Using models with open-source licenses that allow unrestricted commercial use ensures
that businesses are not caught in legal disputes.

In general, most of the models available in HuggingFace are open-sourced. Nevertheless,
some of them comes with conditions of use forbidding any commercial use. We avoid
those models.

Also, albeit the model availability, the training dataset is not necessarily available too.
However, we accept this scenario as far as the data collection and training process is
sufficiently documented.

3.2.3 Limited Computation Power and Financial Resources

The primary objective of this research is to enhance productivity by reducing the number
of employees or hours required to complete a task. The benefit to the company lies in

1The leaderboard has recently been updated to a new version using different, more modern bench-
marks
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the potential cost savings. Haulogy will only gain from this research if we successfully
implement a model that costs less than the resources it helps the firm conserve.

This imposes a key constraint on our research: rather than pursuing state-of-the-art
performances, our primary focus is to achieve satisfying results with minimal cost.

The cost of LLMs arises from two main areas:

1. Training: The computational power required to train a model, which often involves
running GPUs for extended periods.

2. Inference: High-end GPUs are needed to load the model and generate responses
quickly. Inference must be efficient enough to handle requests from multiple devel-
opers simultaneously.

In both cases, reducing the model’s memory footprint can lower costs, allowing for the
use of smaller GPUs and reducing both training and inference times.

To meet this objective, we limit our computational power to one single GPU for
both training and inference. Quantization is our primary strategy for reducing memory
usage. In an upcoming section, we detail all considerations and techniques involved in
making this feasible.

However, it’s important to note that quantization can reduce memory usage by at most
4. For example, even with 4-bit quantization, GPT-3 would still require around 17GB of
memory just to load. Therefore, we will focus on smaller LLMs with fewer than 10 billion
parameters.

This computation constraint is the guiding principle of our research, limiting the range
of models we can use and the scope of our experiments.

Furthermore, we are also limited by financial resources. Our experiments will be con-
ducted on Paperspace, a platform offering high-end GPUs at a reasonable cost. However,
this platform restricts GPU usage to 6 hours. Those financial constraints are significant,
as using a GPU on Paperspace for more than 6 hours incurs additional costs, which we
aim to avoid to stay within budget.

3.2.4 Final Selection Criteria

In summary, we select our models among the models available on HuggingFace, unre-
stricted for commercial use and that comes with a well documented data collection and
training process.

Building on the work of [22], we hypothesize that instruction-tuning a coding model
unlocks code understanding capabilities (Fig 3.5). If the model’s performance in code
understanding might come from its instruction-tuning, we hypothesize that it is at least
partly due to its original code generation capabilities. Its fluency in writing code likely
enhances its comprehension of code-related tokens. Therefore, we will begin with a model
that demonstrates state-of-the-art code generation abilities.
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Figure 3.3: Perfomances of the DeepSeek-Coder family of models on the Multilingual Hu-
manEval and MBPP Benchmarks. Those benchmarks evaluate code generation abilities
across different languages including python. [27]

3.3 DeepSeek-Coder
This family of models, introduced by [27], achieves state-of-the-art performances (Fig
3.3) for code generation and reasoning while being very small compared to other LLMs,
making it very efficient.

The authors release three models of different sizes (1.3B, 6.7B and 33B), along with
their instruction-tuned versions. Due to our memory constraints, only the 1.3B and 6.7B
versions of the model are further studied, while the 33B version is excluded.

Model Architecture

DeepSeek-Coder model architecture is a variant of LLaMAForCausalLM. An architecture
directly available on HuggingFace API. Like any other LLM designed for auto-regressive
generation, it is a decoder-only variant of the transformer model. Figure 3.4 shows a
simplified diagram of the architecture. But to better understand this model, let us describe
each layer and components in detail, as well as the dimensions chosen for the 6.7B version
of DeepSeek-Coder.

1. Token Embedding Layer:

Embedding(32256, 4096): The model uses an embedding layer with a vocabulary
size of 32,256 and an embedding dimension of 4,096. This layer converts input
tokens into dense vector representations that are passed through the decoder layers.

2. Decoder Layers (32 layers):

The model consists of 32 stacked decoder layers, where each layer performs the
following operations:

(a) Self-Attention Mechanism:

• q_proj, k_proj, v_proj, o_proj: These are projection layers for the query,
key, value, and output within the self-attention mechanism. All projections
are implemented using Linear layers.
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Figure 3.4: LLaMAForCausalLM Diagram [28]. The architecture of DeepSeek-Coder.

• rotary_emb: Rotary Position Embedding. This component handles the
rotational positional encoding, which improves the model’s ability to cap-
ture sequence information.

(b) MLP Block: The MLP (Multi-Layer Perceptron) consists of three linear layers:

• gate_proj: Projects the input from 4,096 dimensions to 11,008 dimensions.

• up_proj: Another projection from 4,096 to 11,008 dimensions, serving as
an expansion layer.

• down_proj: Reduces the dimensionality back from 11,008 to 4,096. The
activation function used is SiLU (Sigmoid-Weighted Linear Unit).

(c) Normalization Layers:

The model uses Root Mean Square Layer Normalization (RMSNorm) layers for
normalization both before and after the attention mechanism and MLP block.
RMSNorm is a variant of layer normalization.

3. Final Normalization Layer:

The output of the final transformer block is normalized using a global LlamaRM-
SNorm layer.

4. Language Modeling Head (LM Head):

Linear(in_features=4096, out_features=32256): The final output is passed through
a linear layer that projects the 4,096-dimensional hidden states back to the vocab-
ulary size of 32,256. This output is used to predict the next token in the sequence.
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Prompt:
You are an AI programming assistant, utilizing the Deepseek Coder model,
developed by Deepseek Company, and you only answer questions related to
computer science. For politically sensitive questions, security and privacy issues,
and other non-computer science questions, you will refuse to answer
### Instruction:
instruction given to the model
### Response:

Table 3.1: Instruction format for DeepSeekCoder instruction-tuned models.

5. Key Features:

• Rotary Position Embeddings ([29]) : A type of position embedding which en-
codes the position with a rotation matrix. The angle encodes the positions of
the tokens and overall improves the model’s handling of large sequence infor-
mation as their is no limit on the length.

• Large MLP Expansion (11,008 dimensions): The large expansion ratio in the
MLP block (roughly 2.7x) increases the model’s capacity to learn complex
representations.

To obtain the 1.3B model size, the following modifications are made:

• Reduced the number of Decoder Layers from 32 to 24.

• Decreased the embedding dimension from 4096 to 2048.

Specific Instruction Format

The instructed versions of DeepSeekCoder family of models make use of a specific in-
struction format (Table 3.1). When given to the tokenizer, a special token is added at
the end of the sequence to indicate an "end-of-turn" (or EOT) and simulate a chatting
experience. To exploit the most of the model ability to follow instruction, we will stick to
this format for any task.

3.4 Towards General Coders Assistant

3.4.1 Framework

The model already achieves state-of-the-art performance, but there are still specific areas
we need to explore further. The authors have neither evaluated the model’s code un-
derstanding capabilities nor assessed the impact of quantization on its performance—two
crucial aspects for this research.

Indeed, our goal is to deploy a general-purpose coding assistant that leverages more
than just code generation abilities. Building on the work of [22], we hypothesize that
instruction-tuning a coding model unlocks code understanding capabilities. In other
words, the instruction-tuned models in the DeepSeekCoder family likely possess code
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Figure 3.5: When instruction-tuned, coders unlock code understanding abilities.

understanding skills, or at least the ability to summarize code2 (Fig 3.5).

Given our limited computational resources, we aim to evaluate whether the model main-
tains strong performance when quantized, ensuring it remains effective if deployed on
smaller devices.

Our framework proceeds as follows:

1. We evaluate the code understanding capabilities of deepseek-coder-1.3b-instruct
and deepseek-coder-6.7b-instruct.

2. We quantize the models to assess the performance degradation.

3. We fine-tune the models on different datasets to improve their code understanding
abilities.

4. Regarding code generation, the DeepSeekCoder family is already good. So we pursue
instead a different objective. We fine-tune the non-instructed models on our local
codebase to better align their generations with Haulogy’s developer’s specific needs.

5. We measure and compare the performance of the fine-tuned models against the
original models.

3.4.2 Proof of Concept

We want to demonstrate that the model is capable of performing code comparison
and illustrate this important task. We build an application to automatically retrieve two
modules’ python code from Odoo API and give them to the model with the instruction to
compare them. The example chosen here is easy. The word advisors have been changed to
accountants in the comments and error messages. For such an easy example, deepseek-
coder-6.7b-instruct is able to spot the differences and make a correct comparison (Table
3.2).

2In their paper, this task is referred to as code explanation, but we use our terminology for consistency.
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Prompt:
You are an AI programming assistant, utilizing the Deepseek Coder model,
developed by Deepseek Company, and you only answer questions related to
computer science. For politically sensitive questions, security and privacy issues,
and other non-computer science questions, you will refuse to answer
### Instruction:
You will be presented with two versions of a Python code and your task will be to
describe the difference between the two
### Response:
Sure, please provide the two versions of Python code, and I’ll be happy to help you
identify the differences between them.
### Instruction:
First code version : code at version 15
Second code version : code at version 16
Answer:
The difference between the two versions is that the first version is for advisors and
the second version is for accountants. The method _autorise_lock_date_changes is also
different in both versions.

Table 3.2: Example of a conversation with deepseek-coder-6.7b-instruct to compare two
codes. The answer is correct.

3.5 Model Fine-Tuning
On top of evaluating the model’s code understanding capabilities, we explore the possi-
bility to enhance them through fine-tuning.

3.5.1 Problem Formulation

The problem of fine-tuning LLMs for NLP tasks can be formulated as follows:

Given:

• A pre-trained LLM with parameters learned from a large corpus of text data through
unsupervised learning.

• A specific downstream NLP task.

• A labeled dataset consisting of input-output pairs relevant to the downstream task.

The objective is to:

• Adapt the parameters of the pre-trained LLM to the specifics of the downstream
task by fine-tuning the model on the labeled dataset.

• Minimize a suitable loss function.
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Loss Function

The loss function to minimize is the cross-entropy loss. This loss aligns the model’s
predicted token distribution with the ground truth distribution over the vocabulary. The
PyTorch documentation [30] describes the implementation of this loss as follows:

ℓ(x, y) = L = {l1, . . . , lN}⊤ , ln = −wyn log
exp (xn,yn)∑C
c=1 exp (xn,c)

· 1 {yn ̸= ignore_index}

(3.1)

Where

• C is the number of classes.

• N is the batch size.

• xn is the input n of the batch.

• yn is the output n.

Learning Technique

Depending on whether the models are instruction-tuned or not, the training techniques
used will differ.

For base models, we employ next-token prediction. In this approach, we provide raw
code sequences as input and have the model predict the next token for each token in the
sequence.

For instruction-tuned models, we use supervised fine-tuning. Given an instruction, the
model should generate the corresponding output. Although the training process involves
feeding the model sequences that include both the instruction and the output, it still
performs next-token prediction for each token in the sequence. However, by seeting the
labels of the tokens corresponding to the instruction to the ignore_index, the contribution
of the instruction tokens to the loss is disregarded and the model focus solely on learning
from the labels.

Hyperparameters

All training process use AdamW optimizer. The other hyperparameters vary depending
on the task involved. The Experiments section details every training configuration.

Padding

When training LLMs, we need to ensure that all sequences have the same length. This
is done through padding and truncation. Two opposite operations performed by the
tokenizer. The former is and can be set to a fixed length or the length of the largest
sequence of the dataset. To perform padding, the tokenizer makes use of a special padding
tokens.
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Dataset

The dataset chosen depends on the specific task. For each fine-tuning experiment de-
scribed in Section 4, the exact dataset used is specified.

It is crucial that the dataset accurately reflects the task we aim to improve performance
on. Therefore, we use the training set provided with benchmark datasets, if available, to
enhance performance for the corresponding benchmark (further details will be provided
later).

3.6 Training on a Single GPU
When fine-tuning a large language model on a single GPU, resource limitations like GPU
memory and computational power present key challenges. This requires the implemen-
tation of strategies to efficiently manage the model’s memory footprint and computa-
tional load while maintaining training quality. The techniques used and considerations to
manage the fine-tuning of large models on a single GPU are a key aspect of our frame-
work.

Parameter Efficient Tuning

To reduce the number of parameters to train as well as the memory size of our mod-
els, we make use of QLoRA with a normal-float 4-bit (NF4) quantization and double
quantization.

For the retrained parameters, all linear layers are targeted by QLoRA modules, the at-
tention layers and the MLP blocks.

The number of parameters re-trained are the following:

• For the 1.3B version: 19,988,480 parameters are trained.

• For the 6.7B version: 7,495,680 parameters are trained.

Lengths of samples

When training, the samples will be padded to the longest sequence in the dataset. There-
fore, it is important to properly pre-process the data and ensure that the longest sequence
stays within an acceptable range. By doing so, there is no need to perform trunca-
tion.

Batch Size Considerations

One of the first adjustments is reducing the batch size. Due to limited GPU memory,
smaller batch sizes are necessary to accommodate the model’s parameters and activations
during training. Although a smaller batch size can lead to noisier gradients and slower
convergence, it is often unavoidable on single GPU setups.

Gradient accumulation can be employed to counter this, effectively simulating a larger
batch size by accumulating gradients over multiple steps before performing a backward
pass. But this technique only smooth the convergence and does not impact the speed
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Figure 3.6: A training process restarting with a lower batch size due to memory saturation

of convergence. Therefore, we do not use it to avoid any issues that accumulation could
cause.

Because we always train for a limited amount of time, it is better to set the batch to
the maximum size possible. But doing this could lead to memory saturation and break
the whole training. We use an option available in the trainer of huggingface that is
auto_find_batch_size. Upon activation, this technique ensures that the GPU never runs
out of memory by halving the batch size when the memory is saturated. If not, the process
would simply stop.

This approach, however, is not without its flaws. Whenever the memory saturates, the
batch size is halved, and the entire process restarts from step 1 (Fig3.6). Although the
training state remains unchanged, this implies that if we train for a fixed number of
epochs, the overall process becomes longer. Moreover, even if the training could have
been completed with a slightly smaller batch size, this method always halves it without
ever-increasing it again (cf Appendix B).

Therefore, it is crucial to select the right batch size to accelerate the process while mini-
mizing the risk of memory saturation during training.

Gradient Checkpointings

Gradient checkpointing (Chen et al. [31]) is another crucial technique to manage memory.
It reduces memory usage by trading off some recomputation for lower storage require-
ments. Instead of storing the activations of all layers (high-dimensional outputs produced
at each layer) during the forward pass, only certain checkpoints are saved. During back-
propagation, intermediate activations are recomputed as needed, leading to a significant
reduction in memory usage. While this increases the computation time slightly, it allows
the model to be trained with larger batch sizes or on larger models than would otherwise
be feasible.
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Figure 3.7: Gradient checkpointing. [32]

Minimum Memory Requirements

Taking into consideration everything mentioned above, the 6.7B and 1.3B models can be
fine-tuned on a single GPU with as little as 16GB of VRAM3.

Best Configuration

Appendix B presents a failed attempt at fine-tuning. After multiple trials, we concluded
that given the significant constraints on computational power, it is more effective to train
on a very small dataset. Although this may lead to overfitting (as discussed in Section
4), it at least allows the model to undergo training and reduces evaluation loss, even if
only slightly. This enables evaluation and further discussion.

3.6.1 Training and Testing set

Evaluation of our LLMs performances across all the chosen coding tasks is an essential
aspect of our methodology. To properly assess the performances of our model, we make
use of benchmarks. For each task, one benchmark is chosen.

Benchmark often comes from existing dataset that we can split in a training and a testing
set. Using the testing set as a benchmark and the training set for fine-tuning.

HumanEvalSynthesize

This benchmark is an extension of HumanEval [17], a benchmark that evaluate code
generation ability for python code using pass@k metric, by Muennighoff et al. [22] to
other coding languages. Python being the only language of interest in the context of
this work, we might conclude that this benchmark is no different than HumanEval. But
this benchmark is still useful, because its implementation also corresponds to a version of
HumanEval adapted for instruction-tuned models.

HumanEvalExplain

Introduced by Muennighoff et al. [22], this benchmark aims at evaluating the code summa-
rization abilities of the model by using the same approach as HumanEval and leveraging
the pass@k metric.

The idea is simple:

3We haven’t tested with less VRAM
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1. The model generates an explanation given a code (the code samples are the same
as HumanEval).

2. The model generates a code given as instruction the explanation he generated right
before.

3. The generated functions correctness

The strengths of this benchmark are similar to those of HumanEval, as it focuses on the
correctness of the generation rather than comparing it to a ground truth. This approach
is valuable because there are multiple ways to explain a piece of code.

However, a limitation of this benchmark is that the performance is constrained by the
model’s code generation capabilities.

Code −−→
CS

NL −−→
CG

Code (3.2)

When evaluated from a sample, the model first performs code summarization (CS) and
then code generation (CG). Consequently, we cannot rule out the possibility that an
erroneous answer could be due to a mistake made during the code generation phase.

We accept this limitation of the benchmark because our main goal is to compare different
models and identify which one is better. We are not focused on developing state-of-
the-art models, so we are willing to accept if the performance evaluations are underesti-
mated.

For all HumanEvaluation, we perform greedy sampling and thus measure the pass@1
performance.

While experimenting, we observed that the HumanEval family of benchmarks performance
is dependent on the execution environment and might be underestimated. To ensure a
fair comparison, we evaluated all models in the same environment.

CodeXGLUE

The CodeXGLUE dataset is a collection of evaluation datasets and tasks designed to
assess the performance of machine learning models on code-related tasks. It covers a
variety of programming languages and challenges, including code summarization, code
completion, code translation, and code clone detection, among others. It comes with a
testing set to use as benchmarks for evaluation.

For our purposes, we focus exclusively on the code summarization task. This means
that CodeXGLUE evaluates the same task as HumanEvalExplain, but uses a different
approach. Specifically, it uses a variant of the BLEU score named CodeBLEU [33] to
measure the similarity between a generated code summary and a ground truth. This
variant takes into account the syntax similarity to further accommodate to code.

One advantage of this approach is its simplicity, which allows for the creation of a large
dataset—over 10,000 samples for benchmarking alone, with hundreds of thousands more
available for training. However, this method can lead to a situation where a summary
might be rated poorly if it deviates significantly from the ground truth, even if it is
perfectly correct.
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Figure 3.8: HumanEvalExplain and HumanEvalSynthesis illustrated. [22]

We conduct experiments to compare this benchmark with HumanEvalExplain to deter-
mine if those two evaluation methods and metrics agree on the performances.

The first 200 samples are selected from the testing set. Due to computation power limi-
tation, it would take too long to evaluate on the whole set.

Conala

The CoNaLa (Code/Natural Language Challenge) dataset [34] is a collection of natural
language (NL) to code examples, specifically designed to aid in the development of systems
that can translate natural language descriptions into Python code. It contains over 2,900
manually curated NL-code pairs, with an additional 600,000+ examples mined from open-
source repositories. The dataset is often used for training and evaluating models in the
domain of code generation, and is particularly valuable for tasks that involve converting
user intents expressed in natural language into executable code. An example of code
generation.

Conala involves 2-shot prompting to generate answers. Two examples of correct instruction-
output pairs are provided along with the instruction to enhance performances.
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Prompt:
Instruction:examples[’instruction1’]
Solution:examples[’solution1’]
Instruction:examples[’instruction2’]
Solution:examples[’solution2’]
Instruction:text
Solution:"
Answer the following instructions in one line of Python code:

We use the training set to fine-tune the model for code explanation by swapping the
original inputs with the outputs and adapting the instructions accordingly.

This method might initially seem confusing because:

• Evaluating on the Conala testing set (benchmark) assesses the model’s code gener-
ation capabilities.

• Fine-tuning on Conala training set aims at enhancing code explanation abilities.

This approach might seem confusing at first, but since the two tasks are opposites, it can
provide valuable insights into how different coding abilities are correlated.

CommitPackFT & CompareEval

This dataset, which contains approximately 50,000 commit samples, was originally created
to instruction-tune the Starcoder model [22]. However, the dataset’s features are also
suitable for building a code comparison dataset as we have defined it. Each sample
includes a piece of code, an updated version of the code, and a commit message describing
the changes. Exactly the type of task we’re interested in.

After pre-processing the dataset (as detailed in the experiment section), we select the first
100 samples to create the benchmark. We name this benchmark CompareEval.

The remaining samples will be used for fine-tuning for code comparison. There’s no
specific reason for selecting the first 100. Initially, the selection strategy was random, but
choosing the first 100 offers the benefit of easily reviewing this portion of the data on
HuggingFace data viewer.

To compute a score for the benchmark, given the presence of a ground truth, it is straight-
forward to compare the generated answer using the BLEU metric with 4-grams, similar
to the approach used in Conala. Compared to the pass@k metric, this approach relies
on a ground truth, shifting the focus from evaluating the correctness of the comparison
to simply matching the expected output. While there exists in fact several ways to com-
pare codes. However, it is easier to implement, as using the pass@k metric would require
manually preparing a dataset with test units for each sample.

Nevertheless, it’s worth noting that a different approach, similar to HumanEvalExplain,
could have been considered. In this scenario, the model would generate a natural language
explanation of the differences between the two code versions. The model would then be
required to rewrite the new code based on the old code and the generated comparison.
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The generated function could be validated using the tests provided with the samples,
ensuring that the function is correct.

Prompt:
You will be given two Python code snippets: one is the original version,
and the other is the updated version. Your task is to provide a clear,
concise, and accurate short description of the update that was made in the
updated version. Now, here are the original and updated code snippets for you
to analyze:
Original code: old_code
Updated code: new_code

38



Chapter 4

Experiments And Results

4.1 Fine Tuning
This section details all the fine-tuning processes runned on different models of the DeepSeek-
Coder family.

Every process pursue a different objective, detailed at the beginning of each corresponding
sections.

The models of GPU used vary according to the computation power required for the
training.

4.1.1 Fine Tuning on Local Code

Objective

This experiment treat of the fine-tuning of deepseek-coder-1.3b-base and deepseek-
coder-6.7b-base, the non-instructed version of the models, on a local code base.

The goal is not to enhance the code generation capabilities of the models, but rather to
train the model on private codebases to increase its contextual understanding and better
align it with your organization’s specific needs. This allows the model to become familiar
with your organization’s internal conventions, libraries, classes, and more.

Data Collection & Preprocessing

The primary source of Data is Odoo GitHub repository, which contains all python codes
of the Odoo ERP across various versions. We only select one version, the version 15.0
which is the one currently used by HAUERP. On top of it, the HAUERP repository also
serves as a strong basis for the dataset. By scraping these two large repositories, we
retrieve and store the content of all python scripts.

Upon examination of the lengths of the sequences in the dataset, before and after tok-
enization (Figure 4.1), we notice that some samples are excessively long. These samples
far exceed DeepSeek-Coder’s context window. In fact, HAUERP contains several scripts
that define large dictionaries of data, leading to these oversized samples. These codes are
not relevant since we do not intend to train the model to predict specific data values.
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Figure 4.1: The distribution of the lengths of the codes in the dataset. Some samples are
too large, even after tokenization. After filtering, the maximum tokenized length in the
dataset is 1024.
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Prompt:
{raw code sample}

Table 4.1: Prompt used for fine tuning on local code. No instructions are provided.

During training, all sequences are padded to match the length of the largest sequence in
the dataset. If these large sequences are not filtered out, it would result in every sequence
being padded to the maximum size, way too large here. Although truncation is an op-
tion, it would lead to incomplete sequences of code being used for training, potentially
undermining the training process.

To ensure a smooth and efficient training process, the length of the sequences should
remain within a reasonable limit. Therefore, we set the maximum acceptable length of
the sequence to 1024 tokens and filtering the dataset accordingly. This approach allows
us to retain a significant portion of the dataset (4790/6180 ≈ 77%) while eliminating
problematic samples.

Training configuration

In this case, the dataset lacks any guidance or predefined input/output pairs. Therefore,
we fine-tune the auto-completion models (the non-instructed ones), and the models are
trained using a next-token prediction approach. The prompt consists of feeding the raw
code content directly into the model 4.1.

Hyperparameters :

• Optimizer: AdamW (β1 = 0.9, β2 = 0.95)

• Learing rate: 5e− 4

• Warming up steps: 50

• Batch size: 8

• Number of epochs:

– 4 for deepseek-coder-1.3b-base

– 7 for deepseek-coder-6.7b-base

Results

Figure 4.2 displays the training and evaluation loss curves for the fine-tuning of deepseek-
coder-1.3b-base.

Figure 4.3 displays the training and evaluation loss curves for the fine-tuning of deepseek-
coder-6.7b-base.

After only one epoch, deepseek-coder-6.7b-base and deepseek-coder-1.3b-base already over-
fit the evaluation set. Considering the relatively small size of the dataset, this result is
not so surprising.

This is probably due to the models being already really good at code generation. The
training loss curves plummet quickly, the models learn fast. Thus, it does not take long
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Figure 4.2: Loss curves obtained when fine-tuning deepseek-coder-1.3b-base on a local
code. Above: the loss over the training set. Below: the loss over the validation set.
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Figure 4.3: Loss curves obtained when fine-tuning deepseek-coder-6.7b-base on a local
code. Above: the loss over the training set. Below: the loss over the validation set.

43



Figure 4.4: Loss curves over the validation set when fine-tuning the two models. Deepseek-
coder-6.7b-base achieves the minimal loss.

Training split Testing split
Number of samples 2380 500

Table 4.2: Distribution of the number of samples across the dataset.

for the models to overfit.

Also, we cannot reject the possibility for the DeepSeek-Coder family of models to have
already been pre-trained on Odoo repository.

Out of the two models, deepseek-coder-6.7b-base achieves the minimum loss over the
validation set (Fig 4.4). For this reason, the next fine-tuning experiments are conducted
only on this model.

We save both models after one epoch of training and name them respectively deepseek6.7-
localcoder and deepseek1.3-localcoder. They are pushed to the Hub but kept private
as they are trained on confidential data. To access them, a special permission has to be
granted.

4.1.2 Fine Tuning for Code Explanation

Objective

The objective is to train deepseek-coder-6.7b-instruct on the training split of the
conala dataset to enhance its precision for the code explanation task.

Data Collection & Preprocessing

The dataset is directly loaded from HuggingFace Hub. No pre-processing is done be-
cause the number of samples is already pretty small (Table 4.2) and made-up of small
sequences.

The training split is used as the training set. The dataset is too small to further split
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the training split into a training and an evaluation set so the testing split is used as the
evaluation set. The testing split is also used for the benchmark. While it might not be
ideal to have the same evaluation and testing set, both use different metrics to evaluate
the model. This is thus an opportunity to explore how the cross-entropy loss relate to the
bleu score computed on the benchmark.

Training configuration

The prompt is made up of the instruction prompt format given for the instructed DeepSeek-
Coder models. The {code_snippet} corresponds to the snippet feature and the {output}
to the rewritten_intent feature (See 4.3).

Prompt:
You are an AI programming assistant, utilizing the DeepSeek Coder model,
developed by DeepSeek Company, and you only answer questions related to computer science.
For politically sensitive questions, security and privacy issues,
and other non-computer science questions, you will refuse to answer.
### Instruction:
Below is a line of python code that describes a task.
Write one line of summary that appropriately describes the task that the code is performing.
{code_snippet}
### Response:
{output}
<|EOT|>.

Table 4.3: Prompt used for fine tuning on Conala dataset.

The model is trained in a supervised-learning fashion, and the model is evaluated on its
prediction for the {output} only.

Hyperparameters:

• Optimizer: AdamW (β1 = 0.9, β2 = 0.95)

• Learing rate: 1e− 4

• Warming up steps: 50

• Batch size: 32

• Number of epochs: 20

Other configurations were tested, but the optimizer remained unchanged. We report only
the configuration that yielded the best results.

Results

Even though we manage to converge properly for the training loss, the model actually
overfit after four epochs (Fig 4.5). We hypothesize that this is again due to the small size
of the dataset. However, conversely to the overfitting occuring when fine-tuning on local
code, the minimum achieved for the evaluation loss is large.
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Figure 4.5: Loss curves obtained when fine-tuning deepseek-coder-6.7b-instruct on Conala.
Above: the loss over the training set and validation set. Below: the loss over the validation
set zoomed in.
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Nonetheless, we assume that this is the best we can achieve with our configuration and
save the model for evaluation to observe if any improvement was made.

The training is early stopped, the model is saved after 3 epochs and pushed to the Hub.
We name this fine-tuned version deepseek6.7-explain-coder.

4.1.3 Fine Tuning for Code Comparison

Objective

The goal is to develop the most effective model for code comparison, ensuring it achieves
a level of precision sufficient for deployment in assisting the migration process.

Data Collection & Preprocessing

This task requires the model to process not one but two codes as input. If one or the two
of them are long, then we might exceed DeepSeek-Coder context window size. And even
if we do not, we want to keep a reasonable length of sequence as input for training.

To anticipate the size during training, we build samples by concatenating the old and new
code. We also add the prompt instruction format but provide no instruction as it often
consist of one sentence only so this does not impact so much the final size.

Figure 4.6 shows that the samples are already pretty small with no real outliers as what
had been observed for local codes. Nonetheless, most of the samples being below 1024
length after tokenization we still filter so we can gain memory during fine-tuning. Out
of 56025 samples in total, we end up with 55827, preserving more than 99% of the
dataset.

Finally, 5000 samples are randomly selected from the filtered dataset to train on. This
subset is further split into a training and validation set.

Results

The training loss converges to 0, but the model actually overfit after only one epoch (Fig
4.7). And the minimum achieved for the evaluation loss is large.

Nonetheless, we assume that this is the best we can achieve with our configuration and
save the model for evaluation to observe if any improvement was made.

The model is saved after 1 epoch and pushed to the Hub. We name this fine-tuned version
deepseek6.7-compare-coder.

4.2 Models Performances
This section is dedicated to evaluating the performance of the models on the selected
benchmarks.

We begin by examining the performance of the DeepSeek-Coder family of models before
fine-tuning.

The authors of DeepSeek-Coder did not assess the code understanding capabilities of their
models. However, these results are crucial for our framework, as they establish a baseline
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Figure 4.6: The distribution of the lengths of the codes in the dataset. The samples
already have a small length, but filtering is still applied to gain memory during training.
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Figure 4.7: Loss curves obtained when fine-tuning deepseek-coder-6.7b-instruct on Conala.
Above: the loss over the training set and validation set. Below: the loss over the validation
set zoomed in.
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for performance. This allows us to determine whether the fine-tuned versions offer any
improvement.

Additionally, we investigate the impact of quantization on the performance of these mod-
els.

The fine-tuning processes produce a total of 4 new models :

• deepseek1.3-localcoder

• deepseek6.7-localcoder

• deepseek6.7-explain-coder

• deepseek6.7-compare-coder

Our goal is to compare the performance of these models across all benchmarks, both
against each other and against their non-fine-tuned counterparts.

4.2.1 Effect of quantization

To measure the impact of quantization on the models performances we evaluate deepseek-
coder-6.7b-instruct and deepseek-coder-1.3b-instruct with their 8bit and 4bit quan-
tized versions on both HumanEvalSynthesis and HumanEvalExplain.

Results

Figure 4.8 and 4.9 displays respectively the performances measured on HumanEvalExplain
and HumanEvalSynthesis for deepseek-coder-1.3b-instruct, deepseek-coder-6.7b-
instruct and their quantized versions.

In both scenarios, quantization preserves most of the models’ performance. Interest-
ingly, 8-bit quantization of deepseek-coder-1.3b-instruct even outperforms the origi-
nal model.

For code synthesis, both models can be safely quantized to 8-bit without any degradation
in precision. This implies that the memory requirements for deploying the DeepSeekCoder
family are low.

Nonetheless, the execution environment dependency is evident here, as the 1.3b model
does not exhibit the same performance as the self-reported results 3.3.

The exact pass@1 measurements are reported in 4.4.

4.2.2 CodeXGLUE: Code Summarization with BLEU

CodeXGLUE benchmark evaluates a model on the same task as HumanEvalExplain, code
summarization. The performances of deepseek-coder-6.7b-instruct or deepseek-
coder-1.3b-instruct on this benchmark are reported in table 4.5. The 1.3B model
achieves better performance, indicating that the smaller model outperforms the 6.7B
model. This result contradicts our previous results as well as the HumanEvalExplain
results, which emphasizes correctness and is therefore considered more reliable.
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Figure 4.8: Effect of quantization on deepseek-coder-1.3b-instruct performances on Hu-
manEvalExplain (above) and HumanEvalSynthesis (below).

Pass@1
Model HumanEvalExplain HumanEvalSynthesis

deepseekcoder-6.7-instruct 0.63 0.80
deepseekcoder-6.7-instruct-8bit 0.60 0.80
deepseekcoder-6.7-instruct-4bit 0.57 0.75

deepseekcoder-1.3-instruct 0.46 0.49
deepseekcoder-1.3-instruct-8bit 0.48 0.47
deepseekcoder-1.3-instruct-4bit 0.41 0.47

Table 4.4: Evaluation of the quantized models against the original model on HumanEval-
Explain and HumanEvalSynthesis.
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Figure 4.9: Effect of quantization on deepseek-coder-6.7b-instruct performances on Hu-
manEvalExplain (above) and HumanEvalSynthesis (below).
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BLEU (CodeXGLUE version)
deepseek-coder-6.7b-instruct 11.57%
deepseek-coder-1.3b-instruct 12.41%

Table 4.5: Performances evaluated on the CodeXGLUE benchmark.

Prompt:
-*- coding: utf-8 -*-

import calendar
from dateutil.relativedelta import relativedelta

from odoo import fields, models, api,
from odoo.exceptions import UserError

class ResCompany(models.Model):
_inherit = ’res.company’

def _autorise_lock_date_changes(self, vals):
” ’Check the lock dates for the current companies. This can’t be done in a
api.constrains because we need
to perform some comparison between new/old values. This method forces the lock dates to
be irreversible.
* You cannot set stricter restrictions on advisors than on users.

Table 4.6: Prompt used to test models fine-tuned on local code.

These results highlight the limitations of relying on the BLEU score. When the model’s
responses deviate from the ground truth, the BLEU score may fail to reflect their cor-
rectness, even if the answers are accurate. Therefore, we stop using this benchmark and
continue evaluating code summarization’s ability with HumanEvalExplain.

4.2.3 Local Coders

The two models fine-tuned on the local codebase, deepseek1.3-localcoder and deepseek6.7-
localcoder, cannot be evaluated like the others as there is no benchmark to assess code
generation performances across HAUERP and Odoo codebases.

We can still rely on a manual evaluation and generate outputs to analyze the models’
behavior. Since they were trained on version 15 of Odoo, we can use the Proof of Concept
example described earlier (see 3.4.2). We provide the initial part of the code (see table 4.6)
and simply change the word "accountants" to "advisors". This allows us to see whether
the models have merely memorized the training set. We also compare their generations
to those of their non-fine-tuned counterparts to observe any differences in behavior.

Figure 4.2 shows the answers of the 1.3B models and figure 4.11 the 6.7B models.

Neither of the models regenerates the code for version 16, and both produce different
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Figure 4.10: Generation of the original model above and the fine-tuned version below.
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Figure 4.11: Generation of the original model above and the fine-tuned version below.
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Figure 4.12: Evaluation of the fine-tuned models against the original model on Hu-
manEvalExplain.

completions. As anticipated, fine-tuning clearly affects their output.

For the 1.3B models, fine-tuning appears to have a positive impact, as the model now
generates code rather than repeating the same comment.

However, without expertise in the Odoo API, it is challenging to determine whether the
results are truly beneficial. Additionally, we cannot state whether one model is better
than the other, nor if the 6.7B version outperforms the 1.3B version. To accurately assess
their performance, the models need to be deployed and actively tested by developers who
can evaluate their accuracy and usefulness, and compare the performances through their
expertise.

4.2.4 HumanEvaluation: Code Summarization and Synthesis

Starting at this point, we aim to evaluate the performance of our fine-tuned models and
compare them to the original model.

Figure 4.12 shows the performance of deepseek6.7-explain-coder and deepseek6.7-
compare-coder in comparison to deepseekcoder-6.7-instruct. We observe a clear
degradation in code summarization capabilities.

Since the evaluation on this benchmark is directly linked to the models’ code synthe-
sis abilities, we assessed code synthesis performance as well to ensure that the observed
degradation in summarization is not a result of diminished synthesis capabilities. Figure
4.13 indicates that there is indeed some degradation in code synthesis. However, it is not
significant enough to conclude that this is the primary cause of the decline in summariza-
tion performance. To avoid overestimating our models, it is more prudent to conclude
that the fine-tuning processes have undermined our synthesis abilities.

The exact pass@1 measurements are reported in 4.7.

4.2.5 Conala Benchmark: Evaluate Code Generation

Fine-tuned models are evaluated on the Conala benchmark and compared to the original
model. The smoothed 4-grams BLEU score is measure, and the results are displayed in
figure 4.14 and reported in table 4.8.
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Figure 4.13: Evaluation of the fine-tuned models against the original model on Hu-
manEvalSynthesis.

Pass@1
Model HumanEvalExplain HumanEvalSynthesis

deepseekcoder-6.7-instruct 0.63 0.80
deepseek6.7-explain-coder 0.40 0.77
deepseek6.7-compare-coder 0.24 0.68

Table 4.7: Evaluation of the fine-tuned models against the original model on HumanEval-
Explain and HumanEvalSynthesis.

Fine-tuned models outperform the original one, but deepseek6.7-compare-coder is
the one that achieves the highest precision while having been fine-tuned for a different
task.

4.2.6 CompareEval: Evaluate Code Comparison

Fine-tuned models are evaluated on the CompareEval benchmark and compared to the
original model. The smoothed 4-grams BLEU score is measured, with results displayed
in figure 4.15 and reported in Table 4.9.

The two fine-tuned models outperform the original model. Notably, deepseek6.7-compare-
coder achieves the highest precision by improving its precision by a factor of 206.25%.

Conala
Model BLEU4

deepseekcoder-6.7-instruct 0.29
deepseek6.7-explain-coder 0.35
deepseek6.7-compare-coder 0.36

Table 4.8: Evaluation of the original model and the fine-tuned versions on Conala bench-
mark.
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Figure 4.14: Evaluation of the original model and the fine-tuned versions on Conala
benchmark.

CompareEval
Model BLEU4

deepseekcoder-6.7-instruct 0.0016
deepseek6.7-explain-coder 0.0029
deepseek6.7-compare-coder 0.0049

Table 4.9: Evaluation of the original model and the fine-tuned versions on CompareEval
benchmark.

Figure 4.15: Evaluation of the original model and the fine-tuned versions on CompareEval
benchmark.
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4.3 Final Discussion
Before concluding, we summarize the key observations from these experiments.

DeepSeekCoder’s instruction-tuned models exhibit strong performance in code under-
standing tasks.

Fine-tuning on a single GPU is challenging but feasible within our framework. However,
reflecting on the training results is complicated by the use of QLoRA and other simplifi-
cations, which may introduce errors. As a result, the high loss observed could be partly
due to these factors.

During fine-tuning, while cross-entropy loss may remain high, improvements are still ob-
served on benchmark evaluations. Since different benchmarks use varying metrics, the
relationship between cross-entropy reduction and benchmark performance is not straight-
forward. It remains unclear how much cross-entropy improvement is needed to reach
a specific level of benchmark precision, as variability is expected across different met-
rics.

Significantly, we demonstrate that fine-tuning on the dataset the benchmark originates
leads to better performance on that benchmark. Resulting in enhanced abilities for the
task evaluated by the benchmark. This remains true even if we fine-tune for a different
task than the one we evaluate for, like Conala. We do not speculate on the reasons for
this, as it may simply be due to the small size of the dataset, which could cause the model
to learn some examples by heart.

The experiments also show a correlation between various coding abilities, though this
correlation can be either positive or negative. For instance, fine-tuning on CoNaLa and
CommitPackFT improved performance on their respective benchmarks but negatively
impacted results on HumanEvalExplain and HumanEvalSynthesis. Also, fine-tuning on
CommitPackFT resulted in better performance on the Conala benchmark than fine-tuning
directly on the Conala dataset.

The interdependence between HumanEvalExplain and HumanEvalSynthesis benchmarks,
limits the scope of evaluation, as improvements in one can constrain the other and po-
tentially lead to underestimated performances.

Additionally, performance on HumanEval-type benchmarks is influenced by the execution
environment, since these tests involve running code. Nevertheless, all evaluations were
conducted in the same environment, ensuring fairness in comparison.

Benchmark limitations are also evident with BLEU scores, where comparisons to a ground
truth can be misleading, as observed with CodeXGLUE. In code-related tasks, there
is often more than one correct solution, and deviations from the ground truth can be
valid.

Finally, and most significantly, we demonstrate that fine-tuning on a specific benchmark
dataset leads to better performance on that benchmark, resulting in enhanced abilities
for the corresponding task.

59



Chapter 5

Conclusions

This research demonstrates the feasibility of deploying a General Coder’s Assistant capa-
ble of handling a wide range of code-related tasks relevant to our context.

We first demonstrate that instruction-tuned Large Language Models for code can exhibit
a diverse range of code understanding abilities, and that their performance is directly
correlated with their code generation capabilities.

We achieve fine-tuning under significant financial and computational constraints by lever-
aging state-of-the-art methods to minimize memory consumption. Our results also show
that small datasets can be sufficient for performance improvement.

Our findings indicate that fine-tuning for specific downstream tasks consistently leads to
improved accuracy on related benchmarks, even when cross-entropy loss remains high.

Additionally, we demonstrate a correlation between different coding capabilities: enhanc-
ing one can boost others.

Finally, we employ a rigorous evaluation framework, selecting relevant benchmarks and
metrics to assess model accuracy across each coding task of interest. We also address the
limitations of existing benchmarks in assessing model precision and adopt a more robust
evaluation approach focused on comparing model performance comprehensively.

To Go Further

This research can be further enhanced in several ways.

First, the methodology is fully reproducible with any model. If a model exhibits particu-
larly interesting capabilities, it can be fine-tuned and evaluated using the same approach
we have proposed.

Second, by removing constraints related to computational power and financial resources,
full fine-tuning can be performed without limitations on time or memory. This would
eliminate the need for simplifications aimed at reducing memory usage, which can in-
troduce errors and inaccuracies. It would also allow for a clearer assessment of whether
fine-tuning for a specific task is feasible or not.

Finally, the CompareEval benchmark could be refined to emphasize correctness by adopt-
ing an approach similar to HumanEvalExplain, as discussed earlier in this work.

60



Appendix A

Experiments with ChatGPT

Early in the research, some experiments were runned with ChatGPT to assess if it was
capable of code comparison. The experiments showed promising results (see figure A.1
A.2)

Figure A.1: GPT3 model answers to python code discussions and modifications

61



Figure A.2: GPT3 model answers to python code discussions and modifications
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Appendix B

Failed Fine-Tuning for Code
Summarization

The training process repeatedly restarted due to a memory leak issue, despite using an
A100-80G GPU with 80GB of memory. We set a high batch size because we were train-
ing on a large subset of the original dataset (20,000 samples). However, each time the
process completed an epoch and began evaluating the validation set, the memory became
saturated.

We had enabled the automatic batch size adjustment option, so instead of crashing,
the training resumed from the beginning with half the original batch size. Despite this
adjustment, and even when the batch size was reduced to nearly 1, the process still failed
during evaluation. We hypothesize that this issue arises from the losses being stored as
tensors. As the process attempts to allocate new loss tensors for the validation set, there
may not be enough memory available because the training loss tensors consume most of
the space.

The lack of documentation on this issue made it difficult to pinpoint the exact cause.
Consequently, we decided to abandon the training, especially after also discontinuing the
benchmark experiments.
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Figure B.1: Failed fine-tuning on CodeXGLUE
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Appendix C

Source Code

The source code can be found on this GitHub Repository: Master-Thesis.
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