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Abstract

This study focuses on validating and enhancing BEMT models for coaxial rotor designs.
Coaxial rotors offer significant advantages in efficiency and torque cancellation, making
them highly suitable for a variety of UAV applications. The research leverages the Rotare
code, an open-source MATLAB implementation renowned for its versatility in analyzing
rotor systems, including coaxial configurations.

The research builds upon the existing implementation in the Rotare code, introducing modi-
fications to better account for previously neglected physical aspects. These enhancements
include incorporating tangential velocity effects in rotor interactions while maintaining an-
gular momentum conservation. Furthermore, improvements eliminate the far-field approx-
imation where the lower rotor operates within the fully developed wake of the upper rotor.
Instead, operational conditions and rotor geometry are now accurately considered in coaxial
models, enhancing fidelity. A critical enhancement integrates the elimination of total torque
into the code, crucial for functional design optimization.

This study validates BEMT models and coaxial models within the Rotare code for coaxial
rotor designs. Validation efforts confirm the accuracy of these models. For single-rotor con-
figurations, various solution methods demonstrate good correspondence with experimental
data, with the induced velocities approach proving the most effective. Coaxial rotor models
similarly align well with experimental results. The general Multiple Stream Tube (MST)
model, identified for its superior fidelity in representing velocity and angle distributions
while maintaining computational efficiency, is recommended as optimal for coaxial rotor
design applications.

In the design phase, the study optimized coaxial rotor systems through BEMT simulations,
focusing on counter-rotating coaxial rotors with SAB blades tested by Generix. Compu-
tational predictions closely matched experimental thrust measurements, validating model
reliability. Torque balance predictions also aligned well with experimental data. Critical
design parameters, including the collective pitch of the lower rotor, airfoil geometry, chord
length, and differential blade diameters, have been identified as essential for enhancing
drone performance.
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1 Introduction

1.1 Motivation
The development of unmanned aerial vehicles (UAVs) has seen significant advancements in
recent years, driven by the need for improved performance in various applications such as
surveillance, delivery, and agricultural monitoring. Among the diverse UAV configurations,
coaxial rotor designs have emerged as a promising alternative, particularly for their poten-
tial to overcome the limitations faced by small UAV designers in terms of energy efficiency
and aerodynamic performance. This study focuses on the validation of Blade Element Mo-
mentum Theory (BEMT) models with the objective of utilizing them to accurately compute
the performance of coaxial rotors, thereby facilitating their design and optimization.

Coaxial rotors, defined as a pair of counter-rotating rotors rotating about a common shaft
axis [1], have a long history. It begins with Igor Sikorsky’s non-piloted prototype in 1909
and further developments by pioneers like Corradine d’Asconio in 1930 [2]. Despite their
early promise, coaxial rotors were not widely adopted in the industry due to the complexity
of their rotor hub design, which made manufacturing and maintenance more challenging
and expensive compared to simpler main-tail rotor configurations. Russian manufacturer
Kamov successfully produced coaxial rotor helicopters from the late 1940s, though these
were not designed for high-speed operations. In the 1970s, the Sikorsky X-59 introduced the
Advancing Blade Concept (ABC), achieving improved efficiency at high speeds by balancing
lift between advancing and retreating blades [3]. While the X-59 did not enter production,
Sikorsky’s X2 Technology Demonstrator (X2 TD) revitalized the ABC concept with modern
technologies, relaunching interest in coaxial rotors.

Coaxial rotors offer several advantages that are particularly relevant for UAVs [4]. One of the
primary motivations for investigating coaxial rotors is their superior lift-to-drag ratio, which
translates to greater efficiency in hover, forward flight, and maneuvering than single rotors
of the same solidity and blade geometry [3, 5]. This efficiency is crucial for UAVs that require
extended flight times and improved aerodynamic performance to meet operational demands.

The contra-rotating nature of coaxial rotors provides intrinsic torque cancellation, eliminat-
ing the need for a tail rotor or electronic stabilization systems. This configuration allows for
a larger lift capacity for a given rotor diameter, which is particularly advantageous in applic-
ations where vehicle size is constrained, such as in urban environments or naval operations
[6]. The ability to generate higher lift within a compact footprint makes coaxial rotors ideal
for UAVs that need to operate in confined spaces.
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1.2 Methodology
The methodology for this study builds upon Lambert’s thesis [7] and leverages the Rotare
code, a feature-rich and open-source implementation of the Blade Element Momentum The-
ory (BEMT) in MATLAB. Originally developed for teaching purposes, this code supports
the analysis and design of various rotors, including helicopter main/tail rotors, aircraft pro-
pellers, and wind/tidal turbines. Over time, the code has been expanded to incorporate
different solvers, numerous extensions to the base methodology, and the ability to handle
more complex geometries, transforming it into a comprehensive analysis tool applicable
beyond academic settings. This robust foundation allows for an in-depth exploration and
enhancement of coaxial rotor systems in the present research.

Initially, the theoretical aspects related to BEMT are revisited. This includes an in-depth
discussion of the Momentum Theory and Blade Element Theory, along with the addition
of the Prandtl-Glauert tip loss correction. The various models used to solve the nonlinear
equations of BEMT are thoroughly described. Furthermore, different models that account
for interactions between rotors in the coaxial case are explored in detail, providing a solid
theoretical foundation for subsequent analyses.

Building on the existing implementation in the Rotare code, modifications are introduced to
better account for certain physical aspects that have been previously neglected. These modi-
fications include considering the tangential velocity in rotor interactions while conserving
angular momentum. Additionally, the current version of the code assumed the far-field
condition where the lower rotor is positioned within the fully developed wake of the upper
rotor. The improvement involves eliminating this approximation and taking into account the
operational conditions and rotor geometry when considering the interaction in the coaxial
models. A last significant enhancement involves integrating the elimination of total torque
into the code. This final step was necessery to achieve a functional design.

Then, the methodology proceeds to compare and verify the validity of the models for a
simple case consisting of a single rotor. This step is crucial as it establishes the reliability
and accuracy of the models in a controlled and simplified scenario. Once the models are
validated for the simple rotor case, the focus shifts to the coaxial rotor system. Here, the
validity of the models is again compared and verified, but this time in the context of the
interactions between the upper and lower rotors.

Finally, the methodology involves identifying factors that could impact the performance of
a coaxial rotor system. This analysis, based on insights derived from the code and current
literature, seeks to identify potential pathways for design optimization.
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2 Theoretical Aspect

2.1 Momentum Theory
Drones, as rotating-wing vehicles, must navigate through a variety of flight regimes includ-
ing hovering, climbing, descending, and forward motion. These vehicles also can perform
complex maneuvers that integrate these fundamental flight modes. One of the key aspects
of drone operation is during hover or axial flight, where the airflow through the rotor is
axisymmetric, moving either upward or downward, indicating no lateral or longitudinal
movement. This condition is generally the simplest to analyze and should theoretically be
the easiest to predict using mathematical models. However, even with advanced modeling
techniques for rotor airflow, accurately predicting a drone’s hover performance remains a
challenging task. It is essential to recognize that the actual physical airflow around the rotor
involves a complex vortical wake structure. Despite the complexities, the essential function-
ality of the rotor can be assessed using the simpler momentum theory. This approach allows
for an initial estimate of the rotor’s thrust and power, providing a foundational basis for
more detailed investigations into rotor aerodynamics.

The Momentum theory, also called Actuator Disk Theory or Rankine-Froude Theory, sim-
plifies the analysis of propeller behavior by abstracting away the complexities of its physical
shape and intricate flow dynamics near the blades. Instead, it focuses on the global flow
passing through the rotor. In the general approach of this theory, the assumption is made
that the flow passing through the rotor adheres to certain characteristics: it is considered
one-dimensional, quasi-steady, incompressible, and inviscid.

2.1.1 Hover

Initially, the analysis will be focused on a single rotor operating in a hover state. In this
scenario, the drone maintains zero forward speed and zero vertical speed, focusing purely
on the aerodynamics of stationary flight in an upright position.

The following procedure, derived from Leishman [2], adapts the general equations of fluid
mass, momentum, and energy to analyze a hovering drone rotor. Referring to Figure 1,
cross-section 0 indicates the plane far upstream of the rotor, where the fluid remains still in
the hovering scenario (𝑉𝑐 “ 0). The rotor disk area is labeled 𝐴, with cross-sections 1 and
2 situated just above and below the rotor disk, and cross-section 8 representing the "far"
wake. At the rotor plane, the induced velocity, or the velocity imparted to the air mass at
the rotor disk, is denoted as 𝑣𝑖 . In the far wake, this velocity increases and is symbolized by𝑤.

Assuming quasi-steady flow and applying the principle of conservation of mass, the mass
flow rate, 9𝑚, must be constant within the rotor wake (control volume). Thus, the mass flow
rate is expressed as

9𝑚 “

ĳ

0

𝜌V ¨ 𝑑S “

ĳ

2

𝜌V ¨ 𝑑S, (2.1)
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Figure 1: Flow model for momentum theory analysis of a rotor in hovering flight.

which, under the assumption of 1-D incompressible flow, simplifies to

9𝑚 “ 𝜌𝐴0𝑉𝑐 “ 𝜌𝐴2𝑣𝑖 “ 𝜌𝐴8𝑤. (2.2)

Using the principle of conservation of momentum, the rotor thrust, 𝑇, is related to the net
rate of change of fluid momentum within the control volume, as per Newton’s second law.
The thrust is the force exerted on the fluid, given by

𝑇 “

ĳ

8

p𝜌V ¨ 𝑑SqV ´

ĳ

0

p𝜌V ¨ 𝑑SqV. (2.3)

For hovering flight, the upstream velocity 𝑉𝑐 is zero, simplifying the thrust to

𝑇 “

ĳ

8

p𝜌V ¨ 𝑑SqV “ 9𝑚𝑤. (2.4)

The principle of conservation of energy states that the work done on the rotor equals the
increase in the energy of the fluid per unit of time. The power consumed by the rotor is
given by 𝑇𝑣𝑖 , leading to the equation

𝑇𝑣𝑖 “

ĳ

8

1
2p𝜌V ¨ 𝑑SqV2

´

ĳ

0

1
2p𝜌V ¨ 𝑑SqV2. (2.5)
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For hover, with 𝑉𝑐 “ 0, this reduces to

𝑇𝑣𝑖 “

ż 8

2

1
2p𝜌V ¨ 𝑑SqV2

“
1
2

9𝑚𝑤2. (2.6)

From equations 2.4 and 2.6, we derive that

𝑣𝑖 “
1
2𝑤, (2.7)

or 𝑤 “ 2𝑣𝑖 , providing a direct relationship between the induced velocity at the rotor plane,
𝑢𝑖 , and the velocity 𝑤 in the far wake. Thus, the thrust is given by:

𝑇 “ 9𝑚𝑤 “ 9𝑚p2𝑣𝑖q “ 2p𝜌𝐴𝑣𝑖q𝑣𝑖 “ 2𝜌𝐴𝑣2
𝑖 . (2.8)

2.1.2 Axial climb

Figure 2: 2D model representation.

In this case, the three conservation laws will be now applied to a control volume surrounding
the climbing rotor and its flow field, as illustrated in Figure 2. Assuming a quasi-1-D problem,
we consider the flow properties to vary only in the vertical direction over cross-sectional
planes parallel to the disk, with uniform distribution at each cross-section. Unlike the hover
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case, where the climb velocity is zero, the relative velocity far upstream relative to the rotor
is 𝑉𝑐 ` 𝑣𝑖 , and the slipstream velocity in the vena contracta is now 𝑉𝑐 ` 𝑤. Then, by the
conservation of mass, the mass flow rate is constant within the boundaries of the wake and
so

9𝑚 “

ĳ

8

𝜌V ¨ 𝑑S “

ĳ

2

𝜌V ¨ 𝑑S (2.9)

“ 𝜌𝐴8p𝑉𝑐 ` 𝑤q “ 𝜌𝐴p𝑉𝑐 ` 𝑣𝑖q. (2.10)

The application of the principle of conservation of momentum gives

𝑇 “

ĳ

8

p𝜌V ¨ 𝑑SqV ´

ĳ

0

p𝜌V ¨ 𝑑SqV (2.11)

“ 9𝑚p𝑉𝑐 ` 𝑤q ´ 9𝑚𝑉𝑐 “ 9𝑚𝑤. (2.12)

Notice that this is the same equation obtained for the rotor thrust in the hover case (Eq. 2.4).
Because the work done by the climbing rotor is now 𝑇p𝑉𝑐 ` 𝑣𝑖q, then

𝑇p𝑉𝑐 ` 𝑣𝑖q “

ĳ

8

1
2p𝜌V ¨ 𝑑SqV2

´

ĳ

0

1
2p𝜌V ¨ 𝑑SqV2 (2.13)

“
1
2

9𝑚p𝑉𝑐 ` 𝑤q
2

´
1
2

9𝑚𝑉2
𝑐 (2.14)

“
1
2

9𝑚𝑤p2𝑉𝑐 ` 𝑤q. (2.15)

From equations 2.12 and 2.15, it can be seen that:

𝑉𝑐 ` 𝑣𝑖 “
1
2p2𝑉𝑐 ` 𝑤q, (2.16)

and
𝑣𝑖 “

1
2𝑤, (2.17)

Therefore, the thrust is now given by:

𝑇 “ 9𝑚𝑤 “ 𝜌𝐴p𝑉𝑐 ` 𝑣𝑖q𝑤 “ 2𝜌𝐴p𝑉𝑐 ` 𝑣𝑖q𝑣𝑖 . (2.18)

2.1.3 Axial descent and upflow

In a descent (where 𝑉𝑐 ă 0), the climb flow model cannot be used because 𝑉𝑐 is directed
upward, placing the slipstream above the rotor. This situation arises whenever |𝑉𝑐| exceeds
twice the average induced velocity at the disk. Within the range ´2𝑣ℎ ď 𝑉𝑐 ď 0, where 𝑣ℎ is
the induced velocity in hover, the velocity at any plane through the rotor slipstream can be
either upward or downward.
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Under these conditions, a more complex recirculating flow pattern, which is often more tur-
bulent and aperiodic, known as Vortex Ring State (VRS), may occur at the rotor. Momentum
theory is not applicable because it is impossible to establish a definitive control volume
surrounding the rotor and its wake. This same limitation applies to the blade element
momentum theory (BEMT). Due to the complexities and unique characteristics of descent
conditions, Rotare does not allow a negative operating speed.

In certain cases, some blade sections may experience a negative effective angle of attack even
when the axial velocity remains positive. For instance, a proprotor in hover or operating
at low forward speeds demonstrates this scenario [8]. A coaxial rotor can also experience
this phenomenon in the region affected by the upper rotor. This creates an upflow on those
sections due to the negative induced velocity, resulting in negative thrust and energy extrac-
tion from the flow. To maintain consistency with mass flow and momentum balances, these
sections should be treated as if they were in a descent scenario, while other sections should
be treated as if they were in a general axial climb or hover condition.

It is impractical to change conventions within a single simulation based on section position
or iteration number. Therefore, Rotare uses a consistent approach by always following the
default convention, where 8 is above the rotor and 𝑤 is below it. The absolute value of the
mass flow is used in the thrust equations. This method allows for negative induced velo-
cities when necessary and is crucial when predicting an upflow through the rotor annulus.
Therefore, the thrust is defined as:

𝑇 “ 2𝜌𝐴|𝑉𝑐 ` 𝑣𝑖|𝑣𝑖 . (2.19)

2.2 Blade Element Theory
The blade element theory (BET) is an essential tool for analyzing any rotor aerodynamics.
It supports nearly all modern computational methods used for rotor performance, airloads,
and aeroelastic analyses. BET operates by representing the airloads on 2-D sections of the
blades and integrating their effects to determine the rotor’s overall performance. This ap-
proach offers significant flexibility, allowing for detailed examination of airfoil shape effects,
Reynolds number, Mach number, and nonlinear aerodynamic phenomena, including stall.

BET provides estimates of radial and azimuthal distributions of aerodynamic loading across
the rotor disk. It assumes each blade section behaves as a quasi-2D airfoil generating aero-
dynamic forces and moments. By integrating sectional airloads over the blade length and
averaging over a rotor revolution, BET facilitates rotor blade design, considering blade twist,
platform distribution, and airfoil shape to achieve desired rotor performance.

Figure 3 illustrates the flow environment and aerodynamic forces on a representative blade
element of the rotor. These aerodynamic forces are assumed to arise solely from the velocity
and the angle of attack normal to the leading edge of the blade section. The 2-D aerodynamic
characteristics of the airfoil, dependent on the angle of attack and the Reynolds number, can
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be found in the airfoil database. The inflow angle of attack, 𝜙, primarily results from the
velocity induced by the rotor and its wake. Consequently, the induced velocity modifies
the direction of the relative flow velocity vector, altering the angle of attack at each blade
element from its 2-D value. This induced velocity also tilts the local lift vectors, which act
perpendicular to the resultant velocity vector at the blade element. This tilting generates
induced drag and is the source of the induced power required at the rotor shaft.

(a) Top view of the blade.

(b) Blade element.

Figure 3: Incident velocities and aerodynamic environment at a typical blade element.
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The resultant local flow velocity at any blade element at a radial distance 𝑦 from the rotational
axis has an out-of-plane component 𝑈𝑃 “ 𝑉𝑐 ` 𝑣𝑖 normal to the rotor as a result of climb
and induced inflow, and an in-plane component 𝑈𝑇 “ Ω𝑦 parallel to the rotor due to blade
rotation relative to the disk plane. The resultant velocity at the blade element is, therefore,

𝑈 “

b

𝑈2
𝑇

`𝑈2
𝑃
. (2.20)

The relative inflow angle (or induced angle of attack) at the blade element will be

𝜙 “ tan´1
ˆ

𝑈𝑃

𝑈𝑇

˙

«
𝑈𝑃

𝑈𝑇
, for small angles. (2.21)

Thus, if the pitch angle at the blade element is 𝜃, then the aerodynamic or effective angle of
attack is

𝛼 “ 𝜃 ´ 𝜙. (2.22)
The resultant incremental lift 𝑑𝐿 and drag 𝑑𝐷 per unit span on this blade element are

𝑑𝐿 “
1
2 𝜌 𝑈2 𝑐 𝐶𝐿 𝑑𝑦, and 𝑑𝐷 “

1
2 𝜌 𝑈2 𝑐 𝐶𝐷 𝑑𝑦, (2.23)

where 𝐶𝐿 and 𝐶𝐷 are the lift and drag coefficients, respectively, and 𝑐 is the local blade
chord. These forces act perpendicular and parallel to the resultant flow velocity, respectively.
Resolving these forces perpendicular and parallel to the rotor disk plane gives

𝑑𝐹𝑧 “ 𝑑𝐿 cos 𝜙 ´ 𝑑𝐷 sin 𝜙, and 𝑑𝐹𝑥 “ 𝑑𝐿 sin 𝜙 ` 𝑑𝐷 cos 𝜙. (2.24)

Therefore, the contributions to the thrust, torque, and power of the rotor are

𝑑𝑇 “ 𝑁𝑏 𝑑𝐹𝑧 , 𝑑𝑄 “ 𝑁𝑏 𝑑𝐹𝑥𝑦, and 𝑑𝑃 “ 𝑁𝑏 𝑑𝐹𝑥 Ω 𝑦, (2.25)

where 𝑁𝑏 is the number of blades comprising the rotor. In hover or axial flight conditions,
substituting the results for 𝑑𝐹𝑥 and 𝑑𝐹𝑧 gives

𝑑𝑇 “ 𝑁𝑏p𝑑𝐿 cos 𝜙 ´ 𝑑𝐷 sin 𝜙q, (2.26)
𝑑𝑄 “ 𝑁𝑏p𝑑𝐿 sin 𝜙 ` 𝑑𝐷 cos 𝜙q 𝑦, (2.27)
𝑑𝑃 “ 𝑁𝑏p𝑑𝐿 sin 𝜙 ` 𝑑𝐷 cos 𝜙q Ω 𝑦. (2.28)

2.3 Blade Element Momentum theory
The Blade Element Momentum Theory (BEMT) combines the principles of blade element
theory (BET) and Momentum Theory (MT) to compute thrust and torque in rotating wing
systems. This method divides rotor blades into small segments, calculating the aerody-
namic characteristics (lift, drag, and moment) of each segment based on theoretical models
or empirical data. By integrating these incremental loads, the total thrust, torque, and power
consumption of the rotor are determined.
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Consider first the application of the conservation laws to an annulus of the rotor disk, as
shown in as shown in Figure 4. This is the essence of Freud’s original differential theory for
propellers in axial motion. This annulus is at a distance 𝑦 from the rotational axis and has
a width 𝑑𝑦. The area of this annulus is, therefore, 𝑑𝐴 “ 2𝜋𝑦 𝑑𝑦. The incremental thrust,
𝑑𝑇, on this annulus may be calculated based on simple momentum theory and with the 2-D
assumption that successive rotor annuli have no mutual effects on each other. As might be
expected, this approach has good validity except near the blade tips. The removal of this 2-D
restriction requires a considerably more advanced treatment of the problem using a vortex
wake theory. However, a good approximation to the tip-loss effect on the inflow distribution
can be made using Prandtl’s “circulation-loss” function.

(a) Top view. (b) Cross-sectional view.

Figure 4: Annulus of rotor disk as used for a local momentum analysis of the hovering rotor.

Based on the simple one-dimensional momentum theory, we may compute the incremental
thrust on the rotor annulus as the product of the mass flow rate through the annulus and
the induced velocity at that section. In this case, the mass flow rate over the annulus of the
disk is

𝑑 9𝑚 “ 𝜌𝐴p𝑉𝑐 ` 𝑣𝑖q “ 2𝜋𝜌p𝑉𝑐 ` 𝑣𝑖q 𝑦 𝑑𝑦. (2.29)

As discussed in section 2.1.3, the absolute value of the mass flow is taken to prevent the
cases where negative induced velocities occur. Therefore, incremental thrust on the annulus
is given by

𝑑𝑇 “ |𝑑 9𝑚|𝑣𝑖 (2.30)
“ 4𝜋𝜌|𝑉𝑐 ` 𝑣𝑖|𝑣𝑖𝑦 𝑑𝑦. (2.31)

14



The incremental torque is defined as the product of an incremental radial force (|𝑑 9𝑚|p𝑢2´𝑢1q)
and its lever arm (𝑦).

𝑑𝑄 “ |𝑑 9𝑚|p𝑢2 ´ 𝑢1q𝑦 𝑑𝑦 (2.32)
“ 4𝜋𝜌|𝑉𝑐 ` 𝑣𝑖|𝑢𝑖𝑦

2 𝑑𝑦. (2.33)

The combination of Blade Element Theory (BET) and Momentum Theory (MT) results in the
following system of equations:

#

𝑁𝑏p𝑑𝐿 cos 𝜙 ´ 𝑑𝐷 sin 𝜙q “ 4𝜋𝜌|𝑉𝑐 ` 𝑣𝑖|𝑣𝑖𝑦 𝑑𝑦,

𝑁𝑏p𝑑𝐿 sin 𝜙 ` 𝑑𝐷 cos 𝜙q𝑦 “ 4𝜋𝜌|𝑉𝑐 ` 𝑣𝑖|𝑢𝑖𝑦
2 𝑑𝑦.

(2.34)

2.4 Tip loss correction
The Blade Element Momentum Theory (BEMT) assumes the flow is inviscid, incompress-
ible, steady, irrotational, and moves uniformly from upstream to downstream. It models the
wind rotor as a rotating actuator disk, representing an infinite number of blades, allowing
continuous airflow and causing a pressure jump at the disk. This simplification assumes that
forces on an annulus are only due to the local pressure jump, implying no flow interaction
between annuli and uniform thrust across the rotor area. The wake is modeled as a cylinder
rotating oppositely to the rotor. These assumptions limit BEMT’s accuracy, especially near
the blade tips where flow is non-uniform.

To correct these limitations, the Prandtl-Glauert tip loss factor is introduced. This factor
accounts for the reduced efficiency near the blade tips due to the helical wake structure and
non-uniform flow and is often used in the literature (see [8, 9, 10]). It uses conformal mapping
to describe the curved flow around the wake sheets, initially modeled as flow around a circle.
By mapping this to a flat plate, Prandtl derived a factor describing the non-uniform flow’s
impact, which Glauert simplified for practical use in BEMT, such as:

𝐹tip “
2
𝜋

arccos
ˆ

exp
ˆ

´
𝑁𝑏

2
𝑅 ´ 𝑟

𝑟

1
| sin 𝜙|

˙˙

. (2.35)

Additionally, the flow near the root of the blade, like the tip, experiences unique aerodynamic
effects that aren’t captured by the standard BEMT assumptions. The flow interaction at the
root can lead to increased drag and reduced lift. To correct for these root effects, a root
correction factor is applied. Thus, for each blade element, the total induced velocity must
incorporate both the tip loss and root loss corrections. Buhl extended Glauert’s empirical
relation to include these factors, ensuring that the calculations reflect the combined impact
of tip and root losses. This is expressed as:

𝐹 “
2
𝜋

arccos
´

𝑒´ 𝑓tip¨ 𝑓root
¯

.

15



Where,

𝑓tip “
𝑁𝑏

2
𝑅 ´ 𝑟

𝑟| sin 𝜙|
, (2.36)

𝑓tip “
𝑁𝑏

2
𝑟 ´ 𝑟0
𝑟| sin 𝜙|

. (2.37)

However, at 𝜙 “ 90˝ for 𝑑𝐶𝑇 and 𝜙 “ 0˝ for 𝑑𝐶𝑃 , the tip vortices do not contribute to the
induced velocities 𝑤𝑖 and 𝑢𝑖 . To account for this physical behavior, the expressions for the
decreases in thrust and power should gradually decrease to zero as the angles between the tip
vortex axes and the blade force vectors decrease. Consequently, the differential momentum
theory equations for the thrust and power coefficients can be modified to read

𝑑𝑇 “ 4𝜋𝜌𝐾𝑇 |𝑉𝑐 ` 𝑣𝑖|𝑣𝑖𝑦 𝑑𝑦, (2.38)
𝑑𝑄 “ 4𝜋𝜌𝐾𝑇 |𝑉𝑐 ` 𝑣𝑖|𝑢𝑖𝑦

2 𝑑𝑦. (2.39)

Where,

𝐾𝑇 “ r1 ´ p1 ´ 𝐹q cos 𝜙s, (2.40)
𝐾𝑃 “ r1 ´ p1 ´ 𝐹q sin 𝜙s. (2.41)

Consequently, the system of equation 2.34 becomes:
#

𝑁𝑏p𝑑𝐿 cos 𝜙 ´ 𝑑𝐷 sin 𝜙q “ 4𝜋𝜌𝐾𝑇 |𝑉𝑐 ` 𝑣𝑖|𝑣𝑖𝑦 𝑑𝑦,

𝑁𝑏p𝑑𝐿 sin 𝜙 ` 𝑑𝐷 cos 𝜙q𝑦 “ 4𝜋𝜌𝐾𝑇 |𝑉𝑐 ` 𝑣𝑖|𝑢𝑖𝑦
2 𝑑𝑦.

(2.42)

2.5 Performance characterisation
To facilitate comparisons between rotors with varying geometries and operating under dif-
ferent conditions, performance metrics are typically expressed using nondimensional coef-
ficients. However, due to the diverse range of rotor applications, the focus points can vary
significantly among helicopters, aircraft propellers, and wind turbines. As a result, different
definitions for performance metrics arise depending on the application type. Adding to the
complexity, the conventional definitions of helicopter coefficients generally include an addi-
tional factor of 1/2 in the denominator in most regions of the world, except for the United
States.

2.5.1 Operating point parameters

First, the parameters that concern the operation point are considered. The first one is
the advance ratio, which is proportional to the ratio between the flight speed and the tip
rotational speed. It is defined differently depending on whether it applies to helicopters or
propellers.
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Helicopter: 𝛾 “
𝑉8

Ω𝑅
(2.43)

Propeller: 𝐽 “
𝑉8

𝑛𝐷
(2.44)

where Ω and 𝑛 are, respectively, measured in radians and rotations per second. The advance
ratio can also be defined as the ratio of the forward distance covered by the air to the
tangential distance traveled by the rotor tip during a single revolution. Additionally, there is
the Reynolds number, which is used to determine the flow conditions and that is defined as:

𝑅𝑒 “
𝜌 𝑈 𝑐

𝜇
. (2.45)

2.5.2 Performance parameters

The performance parameters, such as the thrust, torque, and power coefficients, are also
dependent on the application type: helicopter, propeller, or wind turbine. Note that the last
one will not be of interest in this study. The definitions of these coefficients, depending on
whether they apply to helicopters or propellers, are summarized in Table 1.

Table 1: Force, moment, and power coefficients definitions for helicopter rotor and propeller
applications. Greyed out 1{2 factor only used in non-US convention.

Thrust CT Torque CQ Power CP

Helicopters 𝑇
1
2𝜌𝐴pΩ𝑅q2

𝑄
1
2𝜌𝐴Ω

2𝑅3
𝑃

1
2𝜌𝐴pΩ𝑅q3

Propellers 𝑇

𝜌𝑛2𝐷4
𝑄

𝜌𝑛2𝐷5
𝑃

𝜌𝑛3𝐷5

Note that for coaxial rotor systems, particular attention must be paid to the parameters by
which the numbers are made dimensionless when considering the total system performance.
If the contributions of each rotor are to be added, they must be nondimensionalized by the
same speed, the same radius, and so on.

2.6 Solvers
The system of equation 2.42 is inherently nonlinear, necessitating numerical methods for
solution. Over time, several strategies have been proposed to address this complexity,
each with its own advantages and drawbacks. Among these strategies, four are commonly
encountered. The first involves making supplementary assumptions to linearize the system,
while the remaining three approaches the base equations from different angles, ultimately
leading to equivalent results.
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2.6.1 Small Angle Approximations

The small angles approximation method, introduced by Leishman [2], linearizes the system
to enable an analytical solution for the inflow velocity.
This methodology uses the following simplifying assumptions:

1. The out-of-plane velocity 𝑈𝑃 is much smaller than the in-plane velocity 𝑈𝑇 , so 𝑈 “
b

𝑈2
𝑇

`𝑈2
𝑃

« 𝑈𝑇 . This approximation holds except near the blade root, where the
aerodynamic forces are negligible.

2. The induced angle 𝜙 is small, such that 𝜙 “ 𝑈𝑃{𝑈𝑇 . Additionally, sin 𝜙 « 𝜙 and
cos 𝜙 « 1. Given the small angles assumption, the lift coefficient is treated as a linear
function of the effective angle of attack, expressed as 𝑐𝑙p𝛼q “ 𝑐𝑙𝛼𝛼. If it is assumed
that the airfoil follows thin airfoil theory, the lift curve slope is directly established
as 𝑐𝑙𝛼 “ 2𝜋 rad´1. However, in practical cases, Leishman suggests using 5.73 rad´1

to account for finite thickness and Reynolds number effects. Under the small angle
assumption, the drag coefficient can be assumed constant and equal to 𝑐𝑑0.

3. Finally, due to the small inflow angle, the drag is considered at least an order of
magnitude less than the lift, resulting in 𝑑𝐷 cos 𝜙 « 𝑑𝐷 and 𝑑𝐷 sin 𝜙 « 0.

Applying these simplifications to equations 2.26-2.28 results in

𝑑𝑇 “ 𝑁𝑏 𝑑𝐿, (2.46)
𝑑𝑄 “ 𝑁𝑏 p𝜙 𝑑𝐿 ` 𝑑𝐷q 𝑦, (2.47)
𝑑𝑃 “ 𝑁𝑏 Ωp𝜙 𝑑𝐿 ` 𝑑𝐷q 𝑦. (2.48)

Proceeding further, it is convenient to introduce nondimensional quantities by dividing
lengths by 𝑅 and velocities by Ω𝑅. This leads to the nondimensional radius 𝑟 and the axial
inflow ratio 𝜆. These quantities are defined as follows:

𝑟 “
𝑦

𝑅
and 𝜆 “

𝑉𝑐 ` 𝑣𝑖

Ω𝑅
. (2.49)

Similarly, it is convenient to define the induced velocity ratio 𝜆𝑖 “ ´𝑣𝑖{pΩ𝑅q as well as the
axial velocity ratio 𝜆𝑐 “ 𝑉𝑐{pΩ𝑅q. Additionally, the local solidity can be defined as:

𝜎𝑙 “
𝑁𝑏 𝑐p𝑟q

2𝜋𝑦 (2.50)

which should not be confused with the global solidity, reduced to 𝜎 “ 𝑁𝑏𝑐{p𝜋𝑅q, correspond-
ing to untapered blades. Finally, note that the performance coefficients will be considered
using their definitions specific to the helicopter case.
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Using these new assumptions and definitions, the momentum equation 2.38 can be rewritten
as:

𝑑𝐶𝑇 “
𝑑𝑇

𝜌𝐴pΩ𝑅q2 “
4𝜋𝜌𝐾𝑇 |𝑉𝑐 ` 𝑣𝑖|𝑣𝑖𝑦 𝑑𝑦

𝜌𝜋𝑅2pΩ𝑅q2 , (2.51)

“ 4𝐹|𝑉𝑐 ` 𝑣𝑖|𝜆𝑖𝑟 𝑑𝑟, (2.52)
“ 4𝐹|𝜆𝑐 ` 𝜆𝑖|𝜆𝑖𝑟 𝑑𝑟, (2.53)
“ 4𝐹|𝜆| p𝜆 ´ 𝜆𝑐q 𝑟 𝑑𝑟. (2.54)

Similarly, the elementary thrust and torque coefficients which were obtained by blade ele-
ment theory and simplified using small inflow angle assumption (Eqs. 2.46-2.48) can be
reformulated as follows:

𝑑𝐶𝑇 “
𝑑𝑇

𝜌𝐴pΩ𝑅q2 “
𝑁𝑏𝑑𝐿

𝜌𝐴pΩ𝑅q2 , (2.55)

“
𝑁𝑏

`1
2𝜌𝑈

2𝑐𝑙p𝛼q𝑐𝑑𝑦
˘

𝜌𝜋𝑅2pΩ𝑅q2 , (2.56)

“
𝑁𝑏𝑐

2𝜋𝑅
𝑈2
𝑇

pΩ𝑅q2 𝑐𝑙𝑑
´ 𝑦

𝑅

¯

, (2.57)

“
𝑁𝑏𝑐

2𝜋𝑦 𝑟
ˆ

Ω𝑦

Ω𝑅

˙2
𝑐𝑙 ,𝛼 𝑑𝑟, (2.58)

“ 𝜎𝑙𝑟
3𝑐𝑙 p𝛽 ´ 𝛼0 ´ 𝜙q 𝑑𝑟, (2.59)

“ 𝜎𝑙𝑟
2𝑐𝑙 p𝑟p𝛽 ´ 𝛼0q ´ 𝜆q 𝑑𝑟. (2.60)

𝑑𝐶𝑄 “
𝑑𝑄

𝜌𝐴Ω2𝑅3 “
𝑁𝑏 p𝑑𝐿𝜙 ` 𝑑𝐷q 𝑦

𝜌𝐴Ω2𝑅3 , (2.61)

“
𝑁𝑏𝑑𝐿

𝜌𝐴pΩ𝑅q2
𝜙𝑦

𝑅
`
𝑁𝑏

`1
2𝜌𝑈

2𝑐𝑑p𝛼q𝑐𝑑𝑦
˘

𝜌𝐴Ω2𝑅3 , (2.62)

“ 𝑑𝐶𝑇
𝜙𝑦

𝑅
`
𝑁𝑏𝑐𝑙

2𝜋𝑅
𝑈2
𝑇

pΩ𝑅q2 𝑐𝑑
𝑦

𝑟

´

𝑑
𝑦

𝑅

¯

, (2.63)

“ 𝑑𝐶𝑇𝜙𝑟 ` 𝜎𝑙

ˆ

Ω𝑦

Ω𝑅

˙2
𝑐𝑑 𝑟

2 𝑑𝑟, (2.64)

“ 𝑑𝐶𝑇𝜆 ` 𝜎𝑙 𝑐𝑑 𝑟
4 𝑑𝑟. (2.65)

𝑑𝐶𝑃 “
𝑑𝑃

𝜌𝐴Ω2𝑅3 “
𝑁𝑏Ω p𝑑𝐿𝜙 ` 𝑑𝐷q 𝑦

𝜌𝐴pΩ𝑅q3 , (2.66)

“
𝑁𝑏 p𝑑𝐿𝜙 ` 𝑑𝐷q 𝑦

𝜌𝐴Ω2𝑅3 “ 𝑑𝐶𝑄 . (2.67)
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where 𝑐𝑑 “ 𝑐𝑑0 under the small angle assumption. Having reformulated the thrust coefficient
using the blade element and moment theories under the new assumptions, Eq. 2.54 and Eq.
2.60 can now be set equal to each other:

4𝐹|𝜆| p𝜆 ´ 𝜆𝑐q 𝑟 𝑑𝑟 “ 𝜎𝑙𝑟
2𝑐𝑙 p𝑟p𝛽 ´ 𝛼0q ´ 𝜆q 𝑑𝑟. (2.68)

Rearranging the terms provides a quadratic equation in 𝜆:

𝜆2
` pB´ 𝜆𝑐q𝜆 ´ B𝑟p𝛽 ` 𝛼0q “ 0. (2.69)

where,

B “ sgnp𝜆q
𝜎𝑙 𝑟 𝑐𝑙

4𝐹 . (2.70)

Since B explicitly depends on the sign of 𝜆, there are two potential solutions. However, it is
possible to pre-determine the correct solution by evaluating Eq. 2.69 at 𝜆 “ 0` as follows:

Hp𝜆 “ 0`
q “ ´Bp𝜆 “ 0`

q𝑟p𝛽 ` 𝛼0q, (2.71)

“
𝜎𝑙 𝑟2 𝑐𝑙

4𝐹 p𝛽 ` 𝛼0q. (2.72)

If Hp0`q ă 0, then the inflow ratio 𝜆 must necessarily be positive and is given by:

𝜆`
p𝑟,𝜆𝑐q “

d

ˆ

B`

2 ´
𝜆𝑐
2

˙2
` B`𝑟p𝛽 ` 𝛼0q ´

ˆ

B`

2 ´
𝜆𝑐
2

˙

. (2.73)

If Hp0`q ą 0, then the inflow ratio 𝜆 is negative and is given by:

𝜆´
p𝑟,𝜆𝑐q “

d

ˆ

´B`

2 ´
𝜆𝑐
2

˙2
´ B`𝑟p𝛽 ` 𝛼0q ´

ˆ

´B`

2 ´
𝜆𝑐
2

˙

, (2.74)

where B` “ Bp𝜆 ě 0q. It should be noted, however, that the analytical expression for 𝜆
still depends on the tip-loss factor 𝐹, which, in turn, depends on the inflow angle (and thus
𝜆). Therefore, if the calculation includes the tip-loss correction, it must be solved iteratively.
Once the inflow ratio is determined, the total thrust, torque, and power can be computed
using the equations of the blade element theory (Eqs. 2.60,2.65 and 2.67).

2.6.2 Induction factor

This solver is frequently used (see [9, 11]) since it does not require additional assumptions,
but instead reformulates the momentum equations using induction factors. This approach
simplifies the expressions and is relatively intuitive. However, its primary drawback is that
the resulting equations are not directly applicable to the analysis of rotors at zero external
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velocity, such as helicopters in hover or propellers in idle. The equations are derived by
initially defining the axial and tangential (swirl) induction factors:

𝑎 “
𝑣𝑖

𝑉𝑐
and 𝑏 “

𝑢𝑖

Ω𝑦
. (2.75)

It leads to:

𝑈𝑃 “ p1 ` 𝑎q 𝑉𝑐 , (2.76)
𝑈𝑇 “ p1 ´ 𝑏q Ω 𝑦. (2.77)

Additionally, integrating this change of variable in equations 2.38 and 2.39, we find:

𝑑𝑇 “ 4𝜋𝜌 |𝑉𝑐 ` 𝑣𝑖| 𝑣𝑖 𝑦 𝑑𝑦, (2.78)

“ 4𝜋𝜌
ˇ

ˇ

ˇ
1 `

𝑣𝑖

𝑉𝑐

ˇ

ˇ

ˇ

𝑣𝑖

𝑉𝑐
𝑉2
𝑐 𝑦 𝑑𝑦, (2.79)

“ 4𝜋𝜌 |1 ` 𝑎| 𝑎 𝑉2
𝑐 𝑦 𝑑𝑦. (2.80)

and

𝑑𝑄 “ 4𝜋𝜌 |𝑉𝑐 ` 𝑣𝑖| 𝑢𝑖 𝑦
2 𝑑𝑦, (2.81)

“ 4𝜋𝜌
ˇ

ˇ

ˇ
1 `

𝑣𝑖

𝑉𝑐

ˇ

ˇ

ˇ
p𝑏Ω 𝑦q𝑉𝑐 𝑦

2 𝑑𝑦, (2.82)

“ 4𝜋𝜌 |1 ` 𝑎| 𝑏Ω 𝑦3 𝑑𝑦. (2.83)

The system of equations 2.34 becomes:

𝑁𝑏 p𝑑𝐿 cos 𝜙 ´ 𝑑𝐷 sin 𝜙q “ 4𝜋𝜌 |1 ` 𝑎| 𝑎 𝑉2
𝑐 𝑦 𝑑𝑦, (2.84)

𝑁𝑏 p𝑑𝐿 sin 𝜙 ` 𝑑𝐷 cos 𝜙q𝑦 “ 4𝜋𝜌 |1 ` 𝑎| 𝑏Ω 𝑦3 𝑑𝑦, (2.85)

where the inflow angle is now defined as follows:

𝜙 “ tan´1
ˆ

𝑈𝑃

𝑈𝑇

˙

“ tan´1
ˆ

p1 ` 𝑎q𝑉𝑐

p1 ´ 𝑏qΩ 𝑦

˙

. (2.86)

For each annulus, the axial induction factor 𝑎p𝑟q and angular induction factor 𝑏p𝑟q can now
be calculated with an iterative algorithm:

1. Assume initial values for 𝑎0p𝑟q and 𝑏0p𝑟q.

2. Compute the inflow angle 𝜙𝑛p𝑟q with equation 2.86.

3. Compute the angle of attack 𝛼𝑛p𝑟q with equation 2.22.

4. Compute the velocity components 𝑈𝑝,𝑛p𝑟q and 𝑈𝑇,𝑛p𝑟q based on equations 2.76 and 7
as well as the velocity magnitude𝑈𝑛p𝑟q:

𝑈𝑛p𝑟q “

b

𝑈𝑃,𝑛p𝑟q `𝑈𝑇,𝑛p𝑟q. (2.87)
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5. Compute the angle of attack 𝛼 with equation 2.22 and the Reynolds numbers 𝑅𝑒𝑛 with:

𝑅𝑒𝑛p𝑟q “
𝜌𝑑𝑈𝑛p𝑟q𝑐p𝑟q

𝜇
. (2.88)

6. Determine the lift coefficient 𝑐𝑙 and drag coefficient 𝑐𝑑 corresponding to the calculated
angle of attack using airfoil data, and therefore the lift and drag forces:

𝑑𝐿𝑛p𝑟q “ 𝑐𝑙p𝛼𝑛p𝑟q, 𝑅𝑒𝑛p𝑟qq
1
2𝜌𝑑𝑈𝑛p𝑟q2𝑐𝑑𝑟, (2.89)

𝑑𝐷𝑛p𝑟q “ 𝑐𝑑p𝛼𝑛p𝑟q, 𝑅𝑒𝑛p𝑟qq
1
2𝜌𝑑𝑈𝑛p𝑟q2𝑐𝑑𝑟. (2.90)

7. Calculate new values for the axial induction factor 𝑎𝑛`1p𝑟q and angular induction factor
𝑏𝑛`1p𝑟q:

𝑎𝑛`1p𝑟q “
𝑁𝑏 p𝑑𝐿𝑛p𝑟q cos 𝜙𝑛p𝑟q ´ 𝑑𝐷𝑛p𝑟q sin 𝜙𝑛p𝑟qq

4𝐾𝑇𝜋𝜌𝑉2
𝑐 |1 ` 𝑎𝑛p𝑟q| 𝑦 𝑑𝑦

, (2.91)

𝑏𝑛`1p𝑟q “
𝑁𝑏 p𝑑𝐿𝑛p𝑟q sin 𝜙𝑛p𝑟q ` 𝑑𝐷𝑛p𝑟q cos 𝜙𝑛p𝑟qq 𝑦

4𝐾𝑃𝜋𝜌𝑉𝑐 |1 ` 𝑎𝑛p𝑟q|Ω𝑦3 𝑑𝑦
. (2.92)

8. As long as the induction factors change more than a specified tolerance throughout an
iteration, we start again at point 1. If the results are accepted, the thrust and torque
force can be calculated with equations 2.80, 2.83 respectively.

2.6.3 Induced velocity

This solver directly resolves the system of equations (cf. Eqs 2.34) without extensive rewriting
or added assumptions. Although it is somewhat more formal, it is advantageous because
it can be applied to any flow condition. However, it is rarely seen in the literature [12],
probably due to its apparent complexity. Since, 𝑣𝑖 “ 𝑈𝑃 ´𝑉𝑐 , the momentum equations (Eqs
2.38-2.39) can be rewritten as:

𝑑𝑇 “ 4𝜋𝜌𝑈𝑃 p𝑈𝑃 ´𝑉𝑐q 𝑦 𝑑𝑦, (2.93)
𝑑𝑄 “ 4𝜋𝜌𝑈𝑃𝑈𝑇 𝑦

2 𝑑𝑦. (2.94)

Or, such that

𝑑𝑇 “ 2𝑑 9𝑚 p𝑈𝑃 ´𝑉𝑐q, (2.95)
𝑑𝑄 “ 2𝑑 9𝑚𝑈𝑇 𝑦. (2.96)

And, we know that:

𝑈𝑝 “
𝑉𝑐 `𝑈𝑃,`

2 , (2.97)

𝑈𝑇 “
𝑈𝑇,`

2 , (2.98)
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where 𝑈𝑃,` and 𝑈𝑇,` denote, respectively, the axial and tangential velocities immediately
downstream of the disk. Therefore,

𝑑𝑇 “ 2𝑑 9𝑚
𝑈𝑃,` ´𝑉𝑐

2 “ 𝑑 9𝑚 p𝑈𝑃,` ´𝑉𝑐q, (2.99)

𝑑𝑄 “ 2𝑑 9𝑚
𝑈𝑇,`

2 𝑦 “ 𝑑 9𝑚𝑈𝑇,` 𝑦. (2.100)

The computation of the radial variation of thrust and torque needs to be done iteratively for
each considered radius. We need to iteratively determine𝑈𝑃,`p𝑟q and𝑈𝑇,`p𝑟q such that the
momentum balances are satisfied (cf. Eqs 2.99 and 2.100). The iterative procedure proceeds
as follows:

1. We start with initial estimates for𝑈𝑃,0`p𝑟q and𝑈𝑇,0`p𝑟q.

2. First, we compute the velocity components at the propeller disk:

𝑈𝑃,𝑛p𝑟q “
𝑉𝑐 `𝑈𝑃,𝑛´p𝑟q

2 , (2.101)

𝑈𝑇,𝑛p𝑟q “ Ω𝑅 ´
𝑈𝑇,𝑛`p𝑟q

2 . (2.102)

3. Then, we find the local mass flow:

𝑑 9𝑚p𝑟q “ 2𝜋𝑟𝑑𝑟𝜌𝑑𝑈𝑃,𝑛p𝑟q. (2.103)

4. From the relative velocity components, we first compute new estimates for the velocity
magnitude𝑈𝑛p𝑟q and flow angle 𝛽𝑛p𝑟q:

𝑈𝑛p𝑟q “

b

𝑈𝑃,𝑛p𝑟q2 `𝑈𝑇,𝑛p𝑟q2, (2.104)

𝜙𝑛p𝑟q “ tan´1
ˆ

𝑈𝑃,𝑛p𝑟q

𝑈𝑇,𝑛p𝑟q

˙

. (2.105)

Combined with the local pitch angle 𝜃 and chord 𝑐p𝑟q, we compute the angle of attack
𝛼𝑛p𝑟q and Reynolds number 𝑅𝑒𝑛p𝑟q:

𝛼𝑛p𝑟q “ 𝜃p𝑟q ´ 𝜙𝑛p𝑟q, (2.106)

𝑅𝑒𝑛p𝑟q “
𝜌𝑑𝑈𝑛p𝑟q 𝑐p𝑟q

𝜇
, (2.107)

which allow us to determine the lift and drag coefficients 𝑐𝑙 and 𝑐𝑑 from the airfoil
polar, and therefore the lift and drag forces:

𝑑𝐿𝑛p𝑟q “ 𝑐𝑙p𝛼𝑛p𝑟q, 𝑅𝑒𝑛p𝑟qq
1
2 𝜌𝑑𝑈𝑛p𝑟q2 𝑐p𝑟q 𝑑𝑟. (2.108)

𝑑𝐷𝑛p𝑟q “ 𝑐𝑑p𝛼𝑛p𝑟q, 𝑅𝑒𝑛p𝑟qq
1
2 𝜌𝑑𝑈𝑛p𝑟q2 𝑐p𝑟q 𝑑𝑟. (2.109)

Then, the contribution of the thrust and the torque can be obtained from equations 2.26
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5. From the forces, we find new approximations for the absolute velocity components:

𝑈𝑃,𝑛`1,`p𝑟q “ 𝑈𝑃,𝑛p𝑟q `
𝑑𝑇𝑛p𝑟q

𝑑 9𝑚𝑛p𝑟q
, (2.110)

𝑈𝑇,𝑛`1,`p𝑟q “
𝑑𝑄𝑛p𝑟q

𝑑 9𝑚𝑛p𝑟q
`𝑈𝑐p𝑟q. (2.111)

6. As long as the velocity components change more than a specified tolerance throughout
an iteration, we start again at point 1.

The iteration can be initiated by assuming𝑈𝑃,0`p𝑟q “ 𝑈𝑃,0´p𝑟q and𝑈𝑇,0`p𝑟q “ 0.

2.6.4 Single equation

Rather than solving the system of equations 2.42 concurrently, Winarto [13] proposed ex-
pressing the thrust and power equations in terms of the inflow angle 𝜓, combining them into
a single transcendental equation. This reduces the problem to solving only one equation.
Stahlhut and Leishman [8] later expanded this method to include tip losses and account
for potential upflow in the normal working state. Using the small angle approximation,
this approach begins by rewriting the momentum equations (Eqs. 2.38 and 2.39) and BEM
equations (Eq. 2.26 and 2.27) in terms of nondimensional quantities. In addition to the
nondimensional quantities used in the small angle approximation method (cf. Eq ??), the
swirl ratio 𝜉 “ p𝑈𝑇 ` 𝑢𝑖q{pΩ𝑅q will also be used. Therefore, the system 2.42 begins:

$

’

’

’

&

’

’

’

%

𝜎𝑙 𝑟
𝑈2 p𝑐𝑙 𝑐𝑜𝑠𝜙 ´ 𝑐𝑑 𝑠𝑖𝑛𝜙q

pΩ𝑅q2 𝑑𝑟 “ 4𝐾𝑇 |𝜆| p𝜆 ´ 𝜆𝑐q 𝑟 𝑑𝑟,

𝜎𝑙 𝑟2 𝑈
2 p𝑐𝑙 𝑠𝑖𝑛𝜙 ` 𝑐𝑑 𝑐𝑜𝑠𝜙q

pΩ𝑅q2 𝑑𝑟 “ 4𝐾𝑃 |𝜆| p𝑟 ´ 𝜉q 𝑟2 𝑑𝑟.

(2.112)

By defining tan 𝛾 “ 𝑐𝑑{𝑐𝑙 , while also nondimensionalizing by pΩ𝑅q2, we obtain:

$

&

%

𝜎𝑙 𝑈2 𝑐𝑙 sec 𝛾pcos 𝛾 cos 𝜙 ´ sin 𝛾 sin 𝜙q “ 4𝐾𝑇 𝑈 sin |𝜙| p𝑈 𝑠𝑖𝑛𝜙 ´𝑉𝑐q,

𝜎𝑙 𝑈2 𝑐𝑙 sec 𝛾psin 𝛾 sin 𝜙 ` cos 𝛾 cos 𝜙q “ 4𝐾𝑇 𝑈 sin |𝜙| p𝑈 cos 𝜙 ´ Ω 𝑦q.
(2.113)

Using the identities cosp𝜙 ` 𝛾q “ cos 𝜙 cos 𝛾 ´ sin 𝜙 sin 𝛾 and sinp𝜙 ` 𝛾q “ sin 𝛾 sin 𝜙 `

cos 𝛾 cos 𝜙 the above system can be rearranged into the form
$

’

’

&

’

’

%

1
8𝐾𝑇

1
𝑟
𝜎𝑈 𝑐𝑙 sec 𝛾 csc |𝜙| cosp𝜙 ` 𝛾q “ 𝑈 sin 𝜙 ´𝑉𝑐 ,

1
8𝐾𝑃

𝜎
𝑟
𝑐𝑙 sec 𝛾 csc |𝜙| sinp𝜙 ` 𝛾q “ ´𝑈 cos 𝜙 ´ Ω 𝑦.

(2.114)

Based on this system of equation, the function B1p𝜙q and B2p𝜙q can be defined:
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B1p𝜙q “
𝑉𝑐

𝑈
“ sin 𝜙 ´

1
4𝐾𝑇

𝜎
𝑟
𝑐𝑙 sec 𝛾 csc |𝜙| cosp𝜙 ` 𝛾q, (2.115)

B2p𝜙q “
Ω 𝑦

𝑈
“ cos 𝜙 `

1
4𝐾𝑃

𝜎
𝑟
𝑐𝑙 sec 𝛾 csc |𝜙| sinp𝜙 ` 𝛾q. (2.116)

Both functions B1p𝜙q and B2p𝜙q can combined into a single transcendental equation

𝑔p𝜙q “ rB1p𝜙qΩ 𝑦 ´ B2p𝜙q𝑉𝑐s sin 𝜙 “ 0. (2.117)

Or
𝑔p𝜙q “ pΩ 𝑦 sin 𝜙 ´𝑉8 cos 𝜙q sin 𝜙,

´ sgnp𝜙q
𝜎 𝑐𝑙 sec 𝛾

8 𝑟

„

Ω 𝑦

𝐾𝑇
cosp𝜙 ` 𝛾q `

𝑉8

𝐾𝑃
sinp𝜙 ` 𝛾q

ȷ

.
(2.118)

In Eq. 2.118, the inflow angle 𝜙 is the only unknown. The values of 𝐶𝑙 , 𝐶𝑑, 𝐾𝑇 , and 𝐾𝑃
are functions of several variables, with 𝜙 being the sole unknown. Once the inflow angle
has been determined, the inflow ratios 𝜆 and 𝜉 can be evaluated, enabling the calculation of
the thrust and torque for each element. To ensure better convergence, the Rotare code uses
the bisection method to solve this function. This approach is recommended over fixed-point
iteration, which is more prone to convergence issues, ensuring reliable and consistent results.

2.7 Coaxial rotor systems
In a coaxial rotor system, interactions between the rotors and their wakes create a more
complex flow field compared to a single rotor. The upper rotor affects the lower one, and
vice versa; the lower rotor induces a slight additional velocity over the entire upper rotor.
For lightly loaded rotors, this impact can be reasonably neglected, allowing the upper rotor
to be analyzed as if it were operated in isolation. This study adopts this assumption, as
it is usually done throughout the literature on coaxial rotors [2], thereby avoiding iterative
system-wide approaches.

Regarding the influence of the upper rotor on the lower one, since the lower rotor operates in
the vena contracta of the upper rotor, the inner area of the lower rotor encounters incoming
stream tubes with an upstream velocity dependent on the upper rotor, denoted𝑈𝑃,𝑤 . Figure
5 shows that the upstream velocity of the lower rotor, denoted as 𝑉K, can be composed as:

𝑉K “

#

𝑈𝑃,𝑤 , for 𝑦ℎ𝑢𝑏 ă 𝑦 ą 𝑦𝑐 ,

𝑉𝑐 , for 𝑦 ą 𝑦𝑐 .
(2.119)

Thus, the methodology adopted in this study involves initially solving the upper rotor as
if it were operating in isolation, followed by the resolution of the lower rotor, where the
axial velocity component𝑉𝑐 is substituted with𝑉K within the different solvers. The primary
challenge lies in accurately determining the upstream velocity and the resultant stream tube
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Figure 5: Flow model for a coaxial rotor analysis.

contraction induced by the upper rotor. This issue can be addressed by employing either a
single stream tube approach (see Figure 6a), as in the single stream tube model (SST), or by
using multiple stream tubes (see Figure 6b), as in the general multiple stream tubes model
(MST) or the simplified multiple stream tube model (SMST).

In each case, the lower rotor is assumed to be positioned within the fully developed wake
of the upper rotor. Therefore, based on the momentum theory (cf. equation 2.17), the axial
velocity in the wake𝑈𝑃,𝑤 can be rewritten as:

𝑈𝑃,𝑤 “ 𝑉𝑐 ` 𝑤, (2.120)
“ 𝑉𝑐 ` 2𝑣𝑖 , (2.121)
“ 2p𝑉𝑐 ` 𝑣𝑖q ´𝑉𝑐 , (2.122)
“ 2𝑈𝑃,𝑑 ´𝑉𝑐 . (2.123)

2.7.1 Single Streamtube (SST)

A straightforward approach is the single stream tube (SST) model, also referred as the simple
momentum theory. This model is based on the assumption of a constant axial velocity
upstream of the second rotor while ignoring the wake swirl velocity. Figure 6a illustrates the
velocities for this model.
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(a) Single stream tube. (b) Multiple stream tubes.

Figure 6: Coaxial models representation.

In this case, the axial velocity in the wake𝑈𝑃,𝑤 in equation 2.123 simplifies:

𝑈𝑃,𝑤 “ 2𝑈𝑃,𝑑 ´𝑉𝑐 . (2.124)

By conservation of mass, we have:

9𝑚𝑤 “ 9𝑚𝑑 , (2.125)
𝐴𝑤𝑈𝑃,𝑤 “ 𝐴𝑑𝑈𝑃,𝑑 , (2.126)

2𝜋 𝑟2
𝑤𝑈𝑃,𝑑 “ 2𝜋 𝑟2

𝑑
𝑈𝑃,𝑑 . (2.127)

By defining the nondimensional radial contraction of the upper wake, denoted as 𝑎, as

𝑎 “
𝑟𝑤

𝑟𝑑
. (2.128)

It comes:

𝑎 “

g

f

f

e

𝑈𝑃,𝑑

𝑈𝑃,𝑤

“

g

f

f

e

𝑈𝑃,𝑑

2𝑈𝑃,𝑑 ´𝑉𝑐
. (2.129)
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2.7.2 Multiple Streamtubes models

It is important to emphasize that these models do not exist in the literature and have been
specifically developed by Lambert [7]. Within the multiple stream tube models, each stream
tube undergoes contraction in relation to the thrust it produces. Consequently, the velocity
is no longer uniform within the wake of the upper rotor.

𝑈𝑃,𝑤p𝑦q “ 2𝑈𝑃,𝑑p𝑦q ´𝑉𝑐 . (2.130)
Therefore, the principle of mass flow conservation between the disk and the wake can be
applied for each annulus of the upper rotor

𝑑 9𝑚𝑤p𝑦q “ 𝑑 9𝑚𝑑p𝑦q, (2.131)
𝑑𝐴𝑤p𝑦q𝑈𝑃,𝑤p𝑦q “ 𝑑𝐴𝑑p𝑦q𝑈𝑃,𝑑p𝑦q, (2.132)

2𝜋 𝑦𝑤 𝑑𝑦2
𝑤 𝑈𝑃,𝑤p𝑦q “ 2𝜋 𝑦𝑑 𝑑𝑦 𝑈𝑃,𝑑p𝑦q, (2.133)
𝑦𝑤 𝑑𝑦𝑤 “ 𝑎p𝑦q

2 𝑦𝑑 𝑑𝑦𝑑 . (2.134)

Where a(y) is the contraction ratio specific to each annulus:

𝑎p𝑦q “

d

𝑈𝑃,𝑑p𝑦q

𝑈𝑃,𝑤p𝑦q
“

d

𝑈𝑃,𝑑p𝑦q

2𝑈𝑃,𝑑p𝑦q ´𝑉𝑐
. (2.135)

Simplified Multiple Streamtubes (SMST)

It is apparent from Eq. 2.134 that the contraction affects both the mean radius of the annulus
𝑦𝑤 and its width 𝑑𝑦𝑤 . A simplified multiple stream tube (SMST) model can be derived by
postulating that the mean radii and widths of all annuli identically undergo contraction.
Under this assumption, the solution is simplified, allowing the center position and the width
of each stream tube to be directly determined:

𝑦𝑤 “ 𝑎p𝑦q 𝑦𝑑 and 𝑑𝑦𝑤 “ 𝑎p𝑦q 𝑑𝑦𝑑 . (2.136)

General Multiple Streamtubes (MST)

Within the general MST model, the calculation of tube radius and width can be performed
iteratively, proceeding from the innermost tube to the outermost one. As the tubes are
impermeable, each tube lies perfectly against the previous one. This boundary condition
offers a direct means to establish the connection between the tube’s mean radius and width.
For any given annulus indexed as 𝑖, the following relations can be established:

𝑦𝑖 ´
𝑑𝑦𝑖

2 “ 𝑦𝑖´1 `
𝑑𝑦𝑖´1

2 . (2.137)

Incorporating this relation into the equation 2.134, it leads to:
„ˆ

𝑦𝑤,𝑖´1 `
𝑑𝑦𝑤,𝑖´1

2

˙

`
𝑑𝑦𝑤,𝑖

2

ȷ

𝑑𝑦𝑤,𝑖 “ 𝑦𝑑,𝑖 𝑑𝑦𝑑,𝑖 𝑎p𝑦q
2. (2.138)
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By developing this equation, it leads to the following second-order equation:

𝑑𝑦2
𝑤,𝑖 ` 2𝑑𝑦𝑤,𝑖

ˆ

𝑦𝑤,𝑖´1 `
𝑑𝑦𝑤,𝑖´1

2

˙

´ 𝑦𝑑,𝑖 𝑑𝑦𝑑,𝑖 𝑎p𝑦q
2

“ 0. (2.139)

Whose solution is:

𝑑𝑦𝑤,𝑖 “ ´

ˆ

𝑦𝑤,𝑖´1 `
𝑑𝑦𝑤,𝑖´1

2

˙

˘

d

ˆ

𝑦𝑤,𝑖´1 `
𝑑𝑦𝑤,𝑖´1

2

˙2
` 2 𝑦𝑑,𝑖 𝑑𝑦𝑑,𝑖 𝑎p𝑦q2. (2.140)

The negative solution is excluded since the width must be positive. The thickness and post-
contraction radius of the first annulus can be computed by initiating from the innermost
radius. Indeed, since the rotor hub is also assumed to be impermeable, the inner wall of the
first tube must maintain a straight alignment against it.

𝑦0 ´
𝑑𝑦0

2 “ 𝑦hub. (2.141)

Subsequently, this process is repeated iteratively for each successive annulus, progressing
outward until the last one is reached.
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3 Improvements

3.1 Incorporation of tangential velocity induced by the upper rotor on the
lower rotor

In the upper rotor, a tangential velocity is induced and, although it is calculated by the
different solvers, it has not been accounted for on the lower rotor until now.
As illustrated in Figure 7, the velocity before the first rotor is zero, and thus the velocity just
behind the disk can be directly obtained with:

𝑈𝑇,𝑑` “ 2𝑈𝑇,𝑑 . (3.1)

Figure 7: Tangential velocity distribution before and after the first rotor.

By conservation of angular momentum, this velocity increases as the wake contracts. There-
fore, it is given by:

𝑦𝑤 𝑈𝑇,𝑤p𝑦q “ 𝑦𝑑 𝑈𝑇,𝑑`p𝑦q, (3.2)

𝑈𝑇,𝑤p𝑦q “ 2
𝑦𝑑

𝑦𝑤
𝑈𝑇,𝑑p𝑦q. (3.3)

Once the tangential velocity upstream of the lower rotor is calculated, it is added to or sub-
tracted from the rotational speed of the lower rotor depending on the direction of rotation
of the rotors. If they rotate in the same direction, the tangential velocity will negatively con-
tribute to the second rotor. However, if a contra-rotating coaxial rotor system is considered,
as in the case of interest in this study, the opposite occurs, the upstream tangential velocity
will positively contribute and further increase the rotation of the second rotor. Therefore,
the methodology applied will consist of calculating the tangential velocity in the wake of the
first rotor. This velocity will then be respectively added to or subtracted from the rotational
speed Ω𝑦 depending on whether the rotors are contra-rotating or not.
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3.2 Wake contraction
Until now, it was assumed that the lower rotor was positioned within the fully developed
wake of the upper rotor. When the distance between the two rotors is reduced, the up-
stream velocity at the second rotor 𝑈𝑃,𝑤 is no longer equivalent to 𝑉𝑐 ` 𝑤, and therefore,
Equation 2.123 is no longer valid. By starting from the definition of thrust and applying the
conservation equations, a new definition of𝑈𝑃,𝑤 can be derived. The thrust is defined as:

𝑇 “ 𝐴𝑑 p𝑝`

𝑑
´ 𝑝´

𝑑
q. (3.4)

From the conservation of axial momentum, it is found that:

𝑇 “ 9𝑚 p𝑈𝑝,𝑤 ´𝑉𝑐q “ 𝜌 𝐴𝑑 𝑈𝑃,𝑑 p𝑈𝑝,𝑤 ´𝑉𝑐q. (3.5)

Therefore, it follows that:
𝑝`

𝑑
´ 𝑝´

𝑑
“ 𝜌 𝑈𝑃,𝑑 p𝑈𝑝,𝑤 ´𝑉𝑐q. (3.6)

Under the assumption of no losses in the upstream and downstream sections of the rotor,
the Bernoulli equation can be used to calculate the change in static pressure across the rotor:

𝑝8 `
1
2 𝜌 𝑉2

𝑐 “ 𝑝´

𝑑
`

1
2 𝜌 𝑈2

𝑃,𝑑
and 𝑝`

𝑑
`

1
2 𝜌 𝑈2

𝑃,𝑑
“ 𝑝𝑤 `

1
2 𝜌 𝑈2

𝑃,𝑤 . (3.7)

Thus, it is found that:

𝑝`

𝑑
´ 𝑝´

𝑑
“

1
2 𝜌 p𝑈2

𝑃,𝑤 ´𝑉2
𝑐 q ` p𝑝𝑤 ´ 𝑝8q. (3.8)

By combining Equations 3.6 and 3.8, the following equation is obtained:

𝜌 𝑈𝑃,𝑑 p𝑈𝑃,𝑤 ´𝑉𝑐q “
1
2 𝜌 p𝑈2

𝑃,𝑤 ´𝑉2
𝑐 q ` p𝑝𝑤 ´ 𝑝8q. (3.9)

This can be rewritten as a quadratic equation for𝑈𝑃,𝑤 :

𝑈2
𝑃,𝑤 ´ 2𝑈𝑃,𝑑 𝑈𝑃,𝑤 ´𝑉2

𝑐 ` 2 𝑉𝑐 𝑈𝑃,𝑑 `
2
𝜌

p𝑝𝑤 ´ 𝑝8q. (3.10)

The solution to this quadratic equation is:

𝑈𝑃,𝑤 “

2𝑈𝑃,𝑑 ˘

c

𝑈2
𝑃,𝑑

´ 4
´

𝑉2
𝑐 ` 2 𝑉𝑐 𝑈𝑃,𝑑 ` 2

𝜌 p𝑝𝑤 ´ 𝑝8q

¯

2 , (3.11)

“

2𝑈𝑃,𝑑 ˘

b

4p𝑈𝑃,𝑑 ´𝑉𝑐q2 ´ 8
𝜌p𝑝𝑤 ´ 𝑝8q

2 , (3.12)

“ 𝑈𝑃,𝑑 ˘

d

p𝑈𝑃,𝑑 ´𝑉𝑐q2 ´
2
𝜌

p𝑝𝑤 ´ 𝑝8q. (3.13)

31



By conservation of mass, the velocity at the disk 𝑈𝑃,𝑑 will increase as the tube contracts.
Therefore, the unique final solution is:

𝑈𝑃,𝑤 “ 𝑈𝑃,𝑑 `

d

p𝑈𝑃,𝑑 ´𝑉𝑐q2 ´
2
𝜌

p𝑝𝑤 ´ 𝑝8q. (3.14)

Note that in the far-field case, where 𝑝𝑤 “ 𝑝8, Equation 2.123 is retrieved. Conversely,
when 𝑝𝑤 ą 𝑝8, the axial velocity 𝑈𝑃,𝑤 is reduced. In the context of the blade element
momentum theory, it is not feasible to determine the exact pressure value upstream of the
second rotor. Consequently, an empirical formula may be employed to directly determine
the wake contraction ratio. This formula should incorporate the distance between the two
rotors, denoted as𝐻, along with the operating conditions such as the rotational speed (Ω), the
advance ratio (𝛾), the pitch angle (𝛼0), and the thrust coefficient (𝐶𝑇). These considerations
can be translated into the following relations:

𝑎 “
𝑟𝑤

𝑟𝑑
“ 𝑓 p𝐻, Ω, 𝛾, 𝛼0, 𝐶𝑇q. (3.15)

To address this, Anton J. Landgrebe [14] conducted a comprehensive analytical and exper-
imental investigation to systematically acquire data on model rotor performance and wake
geometry in hovering conditions. The tests encompassed a wide range of rotor configur-
ations, including variations in the number of blades, blade planform shapes, and twist.
Throughout this study, various analytical methods were rigorously evaluated, and an em-
pirical formula was derived based on the experimental wake data. Indeed, for the hovering
case, the tip vortex radial coordinate can be accurately represented by the following equation:

𝑎 “ 𝐴 ` p1 ´ 𝐴q𝑒´𝜆𝜓𝑤 . (3.16)

In this equation, the constant 𝐴 was determined to be 0.78, while the constant 𝜆 can be
expressed as a function of the rotor thrust coefficient 𝐶𝑇 only, which must be computed
specifically for helicopter applications (refer to Table 1):

𝜆 “ 0.145 ` 27 𝐶𝑇 . (3.17)

It should be noted that these values were chosen to accurately fit the near-wear radial
coordinates. Note that in equation 3.16, 𝜓𝑤 represents the wake azimuth angle, which is
equivalent to the blade azimuth travel from the time it generates the vortex cross-section and
can be defined as:

𝜓𝑤 “ Ω
𝐻

𝑈𝑃
. (3.18)

Figure 8 illustrates the evolution of wake contraction as a function of the wake azimuthal
angle and the thrust coefficient. It is evident that an increase in the azimuthal angle of the
wake, corresponding to an increased distance between the rotors, results in the contraction
asymptotically approaching a value of 0.78. This convergence occurs more rapidly with
higher thrust coefficients. The observed value of 0.78 deviates from the theoretical far-field
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value (𝑎 “
a

1{2). However, this value aligns more closely with experimental observations
[2]. This phenomenon is primarily a consequence of fluid viscosity, the non-uniform inflow
affecting the rotor disk, and a small swirling component of velocity induced in the wake by
the spinning rotor blades.
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Figure 8: Evolution of the wake contraction with the wake azimuthal angle and the thrust
coefficient.

As previously mentioned, the empirical modeling of the trailing vortex geometry primarily
concerns the hovering flight case. Only a few investigations have focused on axial or forward
flight. An example of empirical modeling of the propeller wake, sufficiently comprehensive
to serve as input data for a free wake analysis code, is provided by Favier [15]. Based on
analogous work [14, 16], the propeller wake has been investigated over a wide range of
thrust coefficients and operating conditions, specifically with angles of attack (𝛼0) ranging
from 23˝ to 32.5˝, and advance ratios (𝛾) between 0.2 and 1.1. The propeller used is a
model of an aerial quad-blade propeller, of the MARQUIS type, with blades defined by the
NACA 64A408 airfoil series. Based on this study, the contraction of the tip vortex has been
synthesized according to the following expression:

𝑎 “ 𝐴 ` p1 ´ 𝐴q𝑒´𝜓𝑤{𝐵. (3.19)

Where,

𝐴p𝛼0, 𝛾q “ 𝑃𝐴p𝛾q ` 𝛼0 𝑄𝐴p𝛾q, (3.20)
𝐵p𝛼0, 𝛾q “ 𝑃𝐵p𝛾q ` 𝛼0 𝑄𝐵p𝛾q. (3.21)

The terms depending on 𝛾 are second-degree polynomials of the form:
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𝑃𝐴p𝛾q “ 𝑎0 ` 𝑎1 𝛾 ` 𝑎2 𝛾2, 𝑄𝐴p𝛾q “ 𝑎1
0 ` 𝑎1

1 𝛾 ` 𝑎1
2 𝛾2,

𝑃𝐵p𝛾q “ 𝑏0 ` 𝑏1 𝛾 ` 𝑏2 𝛾2, 𝑄𝐵p𝛾q “ 𝑏1
0 ` 𝑏1

1 𝛾 ` 𝑏1
2 𝛾2.

For the studied propeller and within the range of considered parameters, these coefficients
have the following values:

𝑎0 “ 0.836692, 𝑎1 “ 0.113536, 𝑎2 “ 0.079580,
𝑎1

0 “ ´0.002059, 𝑎1
1 “ ´0.000298, 𝑎1

2 “ ´0.001806,

𝑏0 “ 161.727490, 𝑏1 “ 60.400684, 𝑏2 “ ´28.530729,
𝑏1

0 “ ´4.160263, 𝑏1
1 “ 3.816861, 𝑏1

2 “ 0.523051.

It is important to note that equation 3.19 holds for 𝜓𝑤 ă 𝜓𝑠 , where 𝜓𝑠 denotes the azimuthal
position in the far wake region where vortex instability appears. Beyond 𝜓𝑤 ą 𝜓𝑠 , the
accuracy in determining the position of the tip vortices decreases rapidly. The azimuthal
position 𝜓𝑠 in the far wake has also been synthesized according to the following empirical
law:

𝜓𝑠 “
𝑁𝑏 𝜓𝑏

4

”

8.5 ´
𝛼0
10 ´ 𝛾p2 ` 𝛾q

ı

` 𝜓𝑏 . (3.22)

Where, 𝜓𝑏 “ 360˝{𝑁𝑏 .

Figure 9 illustrates the evolution of wake contraction and the parameter 𝜓𝑠 with respect to
the wake azimuthal angle and the advance ratio for two different pitch angles.
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(a) 𝛼0 “ 25˝.
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(b) 𝛼0 “ 35˝.

Figure 9: Evolution of the wake contraction and 𝜓𝑠 parameter for 𝑁𝑏 “ 4 with the wake
azimuthal angle and the advance ratio for (a) 𝛼0 “ 25˝ and (b) 𝛼0 “ 35˝.
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Notably, the contraction no longer uniformly converges towards the previously observed
value of 0.78. Instead, it exhibits greater sensitivity to both the pitch angle 𝛼0 and the ad-
vance ratio 𝛾. Specifically, these curves demonstrate a more pronounced radial contraction
as 𝛾 decreases or 𝛼0 increases, indicative of higher thrust conditions.

Furthermore, as 𝛾 decreases, distant wake instability becomes evident at larger azimuth
angles. In addition, the contraction reaches its asymptotic value more swiftly with decreas-
ing 𝛾, suggesting that for small values of 𝛾, vortex instability occurs when the contraction
is nearly completed. Specifically, when 𝛾 approaches zero, the wake has already fully com-
pleted. Conversely, at higher 𝛾 values, instabilities manifest well before the wake achieves
its final asymptotic contraction. It is therefore crucial to apply this empirical model with
prudence in configurations involving high advance ratios and significant wake azimuthal
angles.

It can now be considered how these empirical models of radial wake contraction should be
applied to the different contraction models presented in Section 2.7. For the SST model,
it is evident that the azimuthal angle will be obtained by taking the average velocity. For
simplicity, this will be the velocity measured at the disk of the first rotor. The same applies to
the thrust coefficient, it will be the thrust coefficient measured for the first rotor. Additionally,
the angle 𝛼0 will be taken at 75% of the chord, and the advance ratio will be that of the upper
rotor. Once the wake contraction ratio 𝑎 has been determined, the averaged axial velocity in
the wake𝑈𝑃,𝑤 can be obtained by the conservation of mass flow, expressed as:

𝑈𝑃,𝑤 “
𝑈𝑃,𝑑

𝑎2 (3.23)

For the MST and SMST models, the application is less straightforward. It must be determined
whether the wake contraction ratio should be measured separately for each annulus. This
approach would involve considering the velocity at the disk at the level of each annulus, along
with the previously mentioned parameters calculated at that specific radial position (𝐶𝑇p𝑦q,
𝛾p𝑦q “ 𝑉𝑐{Ω𝑦, and 𝛼0p𝑦q). It is essential to assess whether the empirical relationships for the
wake contraction ratio will remain adequately representative of the actual physical behavior.
Alternatively, the calculation can be performed by maintaining a constant contraction across
the entire span, as in the SST model. The velocities for each tube would then be obtained by
applying the conservation of mass at each annular level:

𝑈𝑃,𝑤p𝑦q “
𝑈𝑃,𝑑p𝑦q

𝑎2 or, 𝑈𝑃,𝑤p𝑦q “
𝑈𝑃,𝑑p𝑦q

𝑎p𝑦q2 (3.24)

3.3 Torque cancelation
The cancellation of torque in coaxial counter-rotating rotors is crucial in drone design as it
prevents undesired rotational motion of the drone’s body. This inherent torque cancellation
in counter-rotating systems results in enhanced stability and control, eliminating the need
for constant adjustments by the control system. Energy efficiency is improved as power is
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not diverted to counteract torque, allowing more power for lift and propulsion, extending
flight time, and enabling precise maneuvers and hovering capabilities.

To achieve torque cancellation in coaxial counter-rotating rotors, two main strategies can be
employed: adjusting either the collective pitch or the rotational speed of the lower rotor. By
applying the secant method, either the collective pitch or the rotational speed of the lower
rotor is fine-tuned to cancel out the torque from the upper rotor while the other parameter
remains fixed. The secant method is an iterative numerical technique used to find the root
of a function, in this case, the difference in torques between the two rotors. The process is as
follows:

1. The function 𝑓 p𝑥q “ 𝑄upper ´ 𝑄lowerp𝑥q is defined, where 𝑥 is the variable parameter
(either collective pitch or rotational speed).

2. Initial guesses are used to compute the values of the function. For the collective
pitch strategy, the two starting points are respectively one degree under and over the
collective pitch of the upper rotor. For the second strategy, the secant method starts
with initial points 100 RPM under and over the upper rotor’s speed.

3. The secant formula is applied to find the next approximation:

𝑥𝑛`1 “ 𝑥𝑛 ´ 𝑓 p𝑥𝑛q
𝑥𝑛 ´ 𝑥𝑛´1

𝑓 p𝑥𝑛q ´ 𝑓 p𝑥𝑛´1q
(3.25)

4. The process is iterated until 𝑓 p𝑥𝑛`1q is sufficiently close to zero, indicating that the
torques are matched.

By carefully adjusting the chosen parameter (collective pitch or rotational speed) of the lower
rotor using the secant method, the torque from the lower rotor can be matched to that of
the upper rotor, achieving the desired torque cancellation and ensuring stable and efficient
flight.
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4 Model Validation

4.1 Single rotor
Before verifying the validity of the models for the coaxial rotor, it is crucial to first check
the accuracy of the models for the single rotor. Indeed, if the model cannot accurately
represent the simpler scenario where the rotor operates independently, it will not be capable
of handling more complex cases involving interactions between rotors, such as in a coaxial
rotor system.

4.1.1 Convergence with the number of elements

Before the validation of BEMT models for the single rotor configuration, it is essential to in-
vestigate the convergence of results as a function of the number of elements for each model.
This step is crucial to identify an adequate number of elements that ensures a sufficiently
converged solution, thereby facilitating a precise comparison of the models and enabling the
validation of their accuracy.

In Figure 10, the relative error in performance is depicted as a function of the number of
elements. This analysis is conducted on a thin electric APC 14x12 propeller as described
in Tables A.1 and A.2. It is observed that the results converge uniformly across all models.
Furthermore, Figure 11 illustrates the variation in computation time for a single operating
point as a function of the number of elements. It is evident that the Leishman model,
which employs linearized equations, exhibits the fastest computation time. Conversely, the
Stahlhut model demonstrates significantly longer computation times, exceeding ten seconds
per operating point when more than 500 blade elements are used.
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(a) Thrust coefficient.
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(b) Power coefficient.

Figure 10: Evolution of the relative error in performance as a function of the number of
elements.
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Figure 11: Evolution of the computation time as a function of the number of elements.

Based on these observations, a configuration with 100 blade elements is deemed to provide
an optimal balance between accuracy and computational efficiency. The relative error is
maintained below 0.3% for all models, and the computation time does not exceed 3 seconds
per operating point, even for the most computationally demanding models.

4.1.2 Comparison of the solvers

To verify the validity of the different models, the results will be compared with experimental
data. A database of propellers for small UAVs will be used to accomplish this validation. This
database corresponds to tests conducted at the University of Illinois at Urbana-Champaign
(UIUC) [17]. Recognizing the lack of data on propellers suited for the growing number of
UAVs, they carried out wind tunnel measurements for nearly 140 propellers typically used
on small UAVs and model aircraft. These propellers, mostly in the 9- to 11-inch diameter
range, were tested operating in the Reynolds number range of 50,000 to 100,000, typical for
many UAVs. The measurements included data on thrust and torque coefficients over a range
of advance ratios for specific RPMs. During these tests, the propeller speed (RPM) was
kept constant while varying the wind tunnel speed to cover a range of advance ratios until
reaching the windmill state (zero thrust). Additionally, measurements were taken in static
conditions for a sweep over RPMs. To examine the effects of the Reynolds number, several
different RPMs, ranging from 1,500 to 7,500 RPM depending on the propeller diameter, were
tested for each propeller.

In Figure 12, the results from the Rotare’s models are compared with the experimental data
[17] for a thin electric APC 14x12 as described in Tables A.1 and A.3. In comparing the
different models with the experimental data for thrust coefficient, power coefficient, and
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(a) Thrust coefficient.
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(b) Power coefficient.
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(c) Efficiency.

Figure 12: Comparison between the results obtained with the different models implemented
in Rotare and experimental data [17] for the thin electric APC 14x12 propeller (cf. Tables A.1
and A.3).

efficiency, distinct trends and levels of accuracy are observed across the models. For the
thrust coefficient, the small angle approximations model starts with a similar value at low
𝐽 and drops less steeply, deviating significantly from the experimental data, especially at
higher 𝐽 values. In contrast, the induction factors, induced velocities, and single equation
models, which are superimposed, provide a closer match to the experimental data. When
examining the power coefficient, an increase to a peak around 𝐽 « 0.4 to 0.6 is indicated by the
experimental data, followed by a decrease. A similar trend is predicted by all the solvers but
they tend to increasingly underestimate the power coefficient as the axial velocity decreases.
In addition, the small angle approximations model overestimates the power coefficient at
higher 𝐽 values. The induction factors, induced velocities, and single equation models offer
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a more accurate fit to the experimental data, especially at higher 𝐽 values, demonstrating
improved predictive capability. For efficiency, an increase to a peak around 𝐽 « 0.6 is shown
by the experimental data before declining. The small angle approximations model over-
estimates efficacy at low 𝐽 and fails to align well with the experimental data at higher 𝐽.
Conversely, the induction factors, induced velocities, and single equation models closely
match the experimental data, particularly around the peak efficiency region. The overlap of
the single equation model with the induction factors and induced velocities models suggests
that very similar results are produced, accurately reflecting the experimental trends. The
global enhanced accuracy of the small angle approximations model at lower axial speeds can
be attributed to its assumption of small angles, which implies that the induced velocity is
much less than the freestream velocity. Consequently, this model is particularly well-suited
for applications such as hover or slow axial flow conditions.

Furthermore, it may be valuable for the results obtained with Rotare to be compared to those
from other BEMT simulations found in the literature [18]. In Figure 13, Rotare’s induction
factor model is compared with an existing induction factor simulation for the thin electric
APC 14x12 (cf. Tables A.1 and A.3). The results are found to be very similar, with small
differences that could be attributed to the quality of the polars, as will be explained in section
4.1.4. This similarity is a good indication of the validity of the models.
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(a) Thrust coefficient.
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(b) Efficiency.

Figure 13: Comparison between the results obtained with the induction factor model imple-
mented by Rotare and the results from an existing induction factor simulation (Jdiobe [18])
for the thin electric APC 14x12 propeller (cf. Tables A.1 and A.3).

Additionally, static conditions can be examined. Figure 14 compares the results from Rotare’s
models with experimental data [17] for the thin electric APC 14x12 propeller in hover. The
operating conditions are now described in Tables A.1 and A.4. The solvers generally tend
to underestimate the power coefficient across the entire RPM range. This trend is consistent
with the observations in Figure 12, where decreasing axial velocity leads to an increased
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underestimation of the power coefficient. For the thrust coefficient, the results show that
Rotare’s models closely match the experimental data, with the small angle approximation
method providing the best fit. This consistency indicates that the solvers are generally
reliable for predicting the thrust coefficient under static conditions.
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(a) Thrust coefficient.
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Figure 14: Comparison between the results obtained with the different models implemented
in Rotare and experimental data [17] for the thin electric APC 14x12 propeller (cf.Tables A.1
and A.4).

To provide a comprehensive validation of the models under different conditions, another
data set will be used. The experimental results obtained by Biermann et al. [19] will be
reproduced. It should be noted that the focus is on the propeller designed with the Clark Y
blade profile, referred to as 5868-9. The configuration of this propeller is described in Tables
A.5 and A.6.

Figure 15 presents the comparison of the results from the different models with the experi-
mental data from [19]. It can be seen that the small angle approximations model overestim-
ates the thrust coefficient, particularly at smaller 𝐽 values. On the other hand, the induction
factors, induced velocities, and single equation models provide a closer match to the exper-
imental. When examining the power coefficient, the small angle tends to overestimate a bit
the power coefficient. The other models offer a more accurate fit to the experimental data,
especially near the peak region. For efficiency, the experimental data show an increase to a
peak around 𝐽 « 0.6 before declining. The small angle approximations model overestimates
efficiency, while induction factors, induced velocities, and single equation models closely
match the experimental data, particularly around the peak efficacy region. This trend paral-
lels the findings in the APC 14x12 comparison, where the solvers also demonstrated better
alignment with experimental data near the efficiency peak.
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(a) Thrust coefficient.
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Figure 15: Comparison of the results from the Rotare’s models with the experimental data
[19] for the 5868-9 propeller (cf. Tables A.5 an A.6).

In conclusion, it has been observed that the Induction factors, Induced velocities, and Single
equation models yield comparable results in both hover and axial flight. These results have
been found to be in reasonable agreement with experimental data and other BEMT simu-
lations conducted independently of this study. Additionally, it has been noted that these
models generally exhibit a closer correlation with experimental data compared to the results
produced by the Small angle approximation model.

An important aspect that has not yet been addressed is the convergence behavior of the
iterative systems. It has been determined that the Induction factors and Induced velocities
models do not consistently converge to a solution. Although the Single equation model
enhances convergence, it is significantly more time-consuming (see Figure 11).
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Given that the study will involve a coaxial rotor where torque cancellation is required, ne-
cessitating an additional iterative process (cf. section 3.3), computational time becomes a
crucial parameter. Consequently, to ensure an accurate solution while maintaining man-
ageable simulation times, the Induced velocities model will be employed in the subsequent
phases of this study.

4.1.3 Stall analysis

It could be beneficial to vary the collective pitch angle as done in the experiment [19]. By
doing so, the code’s ability to represent stall can be observed, ensuring it is consistently
aligned with both experimental data and the expected physical behavior.

Figure 16 shows the evolution of the thrust coefficient, power coefficient, and efficiency with
the blade angle (cf. Tables A.5 an A.7). Significant discrepancies are observed between the
results from Rotare and the experimental data at higher collective pitches when the advance
ratio is low. Specifically, in the experimental data, thrust exhibits a nearly continuous in-
crease as the advance ratio decreases. In contrast, the BEMT simulation indicates a decrease
in thrust beyond a certain threshold of the advance ratio, suggesting the onset of stall. In-
deed, when the axial velocity is decreasing, the angle of attack is increasing. Therefore, if
the lift is decreasing, it means that the stall point has been reached. It can also be observed
that the power coefficient is decreasing, although the drag coefficient is supposed to increase
with the angle of attack. Thus, it would be interesting to look at the distribution of the lift
and the drag relative to the power to check if no errors have been introduced in the code.

Therefore, to investigate this further, the case where the collective pitch is equal to 45 degrees
will be examined. Two advanced ratios will be considered: the first one is where the thrust
coefficient is maximal, and the second one is lower, where the thrust is decreasing, indicating
the stall region. These advanced ratios are respectively 𝐽 “ 1.2 and 𝐽 “ 0.5. Figure 17 shows
the distributions of the angle of attack, lift coefficient, and drag coefficient along the span for
these advanced ratios. It can be seen that when 𝐽 “ 0.5, the flow is detached over the entire
span. Therefore, the idea that a stall occurs at this operating point is confirmed. It can be
observed that the drag coefficient continues to increase while the lift coefficient has indeed
decreased, except at the inner part of the radius, where even the detached flow produces
more lift than when the flow was attached.
Given the significant increase in the drag coefficient, it raises the question of whether the
observed decrease in the power coefficient is expected (cf. Figure 16). The power distribution
is calculated based on equation 2.28 and can be decomposed into two components: induced
power (𝑑𝑃𝑖) and profile power (𝑑𝑃𝑝), as expressed by:

𝑑𝑃𝑖 “ 𝑁𝑏 sin 𝜙 𝑑𝐿 Ω 𝑦 and 𝑑𝑃𝑝 “ 𝑁𝑏 cos 𝜙 𝑑𝐷 Ω 𝑦. (4.1)
Figure 18 presents the distributions of profile power and induced power in the region of the
power coefficient peak (𝐽 “ 1.3) and the stall region (𝐽 “ 0.5). It is evident that although
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Figure 16: Comparison of the results from Rotare with the experimental data [19] for the
5868-9 propeller (cf. Tables A.5, A.7 and A.9).

profile drag increases significantly with the onset of stall, the predominant contribution is
from induced drag. Consequently, as the lift force diminishes during the stall, the total
power also decreases. This effect is further exacerbated by the reduction in the inflow angle
during stall (cf. Figure 17a), resulting in a lift force that is less aligned with the tangential
direction, thereby further reducing its contribution to the power.
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Figure 17: Distributions of (a) the angle of attack and inflow angle and (b) the lift and drag
coefficients along the span for the 5868-9 propeller in the region of the power coefficient peak
(𝐽 “ 1.3) and the stall region (𝐽 “ 0.5) (cf. Tables A.5 and A.9).
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Figure 18: Distributions of profile power and induced power along the span for the 5868-9
propeller in the region of the power coefficient peak (𝐽 “ 1.3) and the stall region (𝐽 “ 0.5)
(cf. Tables A.5 and A.9).

4.1.4 Impact of the polars

The APC propellers predominantly use NACA 4412 airfoils. Therefore, this airfoil cross-
section was assumed for each propeller segment in Rotare. For that, the 2-D aerodynamic
input data has been generated using the XFOIL tool. However, for the 14-inch diameter pro-
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peller, the Reynolds numbers range from 14000 to 74000 for the propeller operating at 3500
RPM with an advanced ratio varying from 0.2 to 0.9 (cf. Figure 19a) and range from 5000 to
65000 for the static conditions with the RPM varying from 1500 RPM to 3500 RPM (cf. Figure
19b). Consequently, for such low Reynolds numbers, the flow is dominated by viscous forces.
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Figure 19: Reynolds number distribution for the thin electric APC 14x12 propeller (a) in axial
flight (cf. Tables A.1 and A.3) and (b) in hover (cf. Tables A.1 and A.4).

Even though XFOIL is widely used for analyzing subsonic airfoils, it has limitations, espe-
cially at low Reynolds numbers. These arise from its simplified boundary layer and transition
models, which are less effective at capturing complex flow behaviors, such as laminar separ-
ation bubbles and significant viscous effects.

Additionally, XFOIL assumes a smooth transition from laminar to turbulent flow. However,
at low Reynolds numbers, this transition is highly sensitive to disturbances and surface
roughness, leading to earlier and more abrupt transitions.

Moreover, at low Reynolds numbers, flow characteristics become more complex and prone
to instability, especially near stall angles where flow separation occurs. XFOIL’s iterative
methods might struggle to converge under these conditions, leading to less reliable predic-
tions. The laminar separation bubbles that form at low Reynolds numbers are challenging
for XFOIL to model accurately, as they require detailed simulation of the viscous-inviscid
interaction, which is beyond XFOIL’s capabilities.

Comparative studies [20, 21] often show that XFOIL underpredicts the effects of laminar
separation bubbles and fails to capture the full complexity of low Reynolds number flows.
For accurate results, advanced CFD tools, which solve the Navier-Stokes equations with
greater detail, are recommended. These tools provide more precise simulations by incor-
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porating sophisticated models for turbulence and boundary layer interactions. Additionally,
experimental methods like wind tunnel testing offer essential validation and insights that
computational tools might miss.

However, certain modifications can be done in XFOIL software to be more accurate. First,
the critical amplification factor (𝑁𝑐𝑟𝑖𝑡), typically set around 9 for high Reynolds numbers,
should be adjusted to lower values like 5 to better simulate these earlier transitions. This
adjustment helps capture the onset of turbulence more accurately. The impact of the critical
amplification factor is shown in Figures 20 and 21. It can be seen that the results are
significantly improved for 𝑁𝑐𝑟𝑖𝑡 “ 5 compared to 𝑁𝑐𝑟𝑖𝑡 “ 9. Additionally, increasing the
number of panels can improve the resolution of the airfoil surface, leading to more accurate
predictions of aerodynamic characteristics. By using a finer panel distribution, the detailed
features of the flow, especially around critical areas such as the leading edge and separation
points, can be better captured.
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Figure 20: Lift coefficient from XFOIL for (a) 𝑁𝑐𝑟𝑖𝑡 “ 9 and for (b) 𝑁𝑐𝑟𝑖𝑡 “ 5 for a NACA 4412
airfoil.
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Figure 21: Drag coefficient from XFOIL for (a) 𝑁𝑐𝑟𝑖𝑡 “ 9 and for (b) 𝑁𝑐𝑟𝑖𝑡 “ 5 for a NACA
4412 airfoil.

Even by varying these parameters, the results remain inaccurate for Reynolds numbers below
50,000. This limitation is why such low Reynolds number effects have been disregarded.

4.2 Coaxial rotor
In the previous subsection, it was observed that the computational model produced accurate
results for a single rotor configuration, demonstrating good agreement with experimental
data. With the model validated for the single rotor case, the investigation can now be ex-
tended to the coaxial rotor configuration. This transition permits the assessment of the
reliability of the various contraction models.

4.2.1 Overall assessment of predictive performance validity

When considering contra-rotating coaxial rotors, the standard reference is the measurements
taken by Harrington [22] using two sets of nominally full-scale rotors in hovering conditions.
The geometries and technical information of these rotors are given in Tables A.10, A.11, A.12,
and A.11.

Figures 22 and 23 compare Harrington’s rotors results using the different coaxial models with
the measurements made by Harrington [22]. Furthermore, it also compares these results with
the BEMT results from Leishman [23, 24]. It is important to note that an upstream velocity
𝑈𝑃,𝑤 “ 𝑉𝑐 ` 𝑣𝑖{𝑎

2 is used for the lower rotor in the studies from Leishman, which is contrary
to what was determined in equations 3.23 and 3.24. This is considered incorrect since mass
conservation is no longer guaranteed with this equation. However, this is not an issue in
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this case because, for Harrington rotors, measurements are made in hover, so𝑉𝑐 “ 0 and the
equations are equivalent.
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(b) Coaxial rotors.

Figure 22: Validation of the coaxial models from Rotare for (a) single and (b) coaxial rotors
against measurements [22] and Leishman’s BEMT [23, 24] of for Harrington Rotor 1 (cf.
Tables A.10 and A.11).
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(a) Single rotor.
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Figure 23: Validation of the coaxial models from Rotare for (a) single and (b) coaxial rotors
against measurements [22] and Leishman’s BEMT [23, 24] of for Harrington Rotor 2 (cf.
Tables A.12 and A.13).

By examining the results, the first observation is that the coaxial models produce very
similar results for both rotors. These results are also quite close to the measurements taken
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by Harrington. However, the predictions consistently overestimate the thrust compared to
the experimental results. This overestimation is also observed when considering the case of
a single isolated rotor. One hypothesis for this discrepancy is that a portion of the measured
thrust is lost due to the influence of the test stand. Specifically, the device measures the net
change in total force. When the rotors generate a downward airflow, there is an upward force
known as thrust. Concurrently, the air passing through the propeller induces a downward
drag force. Thus, the net force change measured is the result of these two contributions. As
a result, the experimentally determined thrust coefficient is expressed by:

𝐶𝑇 “
𝑇 ´ 𝐷

𝜌𝐴pΩ𝑅q2 . (4.2)

and is consequently lower than the value predicted by the blade element momentum theory
(cf. section 2.5.2). Nonetheless, it remains inconsistent to see that Leishman’s model aligns
significantly better with the experimental results than the more precise models implemented
in Rotare. In Figure 24 and 25, the different distributions of adimensional thrust coefficient
and adimensional torque are compared between Leishman’s and Rotare’s simulation on both
the upper and the lower rotor. For this comparison, the Harrington rotor 1 was used with a
net system cT of 0.004 (cf. Table A.15).
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(a) Upper rotor.
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(b) Lower rotor.

Figure 24: Distribution of the adimensional thrust coefficient on (a) the upper and (b) the
lower rotor for Harrington Rotor 1, with Rotare (cf. Tables A.10 and A.15) and Leishman’s
simulation [23, 24].

It can be observed that even though the net system cT is 0.004 in each simulation, the nondi-
mensional thrust distributions obtained by Leishman seem to be slightly higher for both the
upper and lower rotors. This observation supports the idea that a correction might have
been applied by Leishman to account for the thrust on the nacelle, although this correction
is never explicitly mentioned. This hypothesis is further supported by the fact that, for the
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Figure 25: Distribution of the adimensional torque coefficient on (a) the upper and (b) the
lower rotor for Harrington Rotor 1, with Rotare (cf. Tables A.10 and A.15) and Leishman’s
simulation [23, 24].

same net system thrust (𝑐𝑇 “ 0.004), Leishman underestimates the torque compared to the
models in ROTARE for both the upper and lower rotors. This is contrary to the observations
made in Figure 22.

It would be valuable to compare and verify the validity of the models on another design and
under different operating conditions. Additionally, in the following set of data, the thrust
and efficiency values are provided separately for each rotor, allowing for a detailed compar-
ison of these values on each rotor. For this dataset, the geometry is based on the commercial
T-MOTOR G28x9.2 carbon fiber rotor, whose geometry and operating conditions are given
in Tables A.16 and A.17. To maintain consistency, the rotor geometry is modeled using
a single airfoil instead of the actual airfoil shape from the commercial rotor. The chosen
airfoil is the Archer A18, originally designed for free-flight airplanes. Although there are
some discrepancies, particularly towards the trailing edge, the overall agreement with the
expected geometry is good.

First, the results obtained for a single isolated rotor will be examined. In Figure 26, a com-
parison is shown of the computed thrust and efficiency using BEMT from ROTARE against
the experimental values for varying angular velocities. The results are also compared with
another BEMT model from Giljarhus [25]. It can be observed that, despite the thrust being
quite overestimated, especially at high rotation speeds, the efficiency is in good agreement
with the experimental data. It is important to note that the BEMT model from [25] uses, for
the sake of simplicity, a constant Reynolds number of Re = 175,000, which is approximately
the Reynolds number at r = 0.75R at a rotational speed of 2000 RPM. This simplification
could explain some of the discrepancies between the two BEMT simulations.
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Figure 26: Comparison between the results obtained with the coaxial models implemented
by Rotare, the experimental data [25], and the results from Giljarhus’s BEMT simulation [25]
for T-MOTOR G28x9.2 carbon fiber single rotor (cf. Tables A.16 and A.17).

The same analysis can now be applied to a coaxial rotor system. The rotors are positioned
0.115 meters apart, rotating in opposite directions at the same angular velocity. It is import-
ant to note that for this configuration, the overall system torque is not balanced. Figures 27
and 28 present a comparison of the efficiencies and thrusts for each rotor individually.
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Figure 27: Comparison between the results obtained with the coaxial models implemented
by Rotare, the experimental data [25], and the results from Giljarhus’s BEMT simulation [25]
for T-MOTOR G28x9.2 carbon fiber upper rotor (cf. Tables A.16 and A.17).
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Figure 28: Comparison between the results obtained with the coaxial models implemented
by Rotare, the experimental data [25], and the results from Giljarhus’s BEMT simulation [25]
for T-MOTOR G28x9.2 carbon fiber lower rotor (cf. Tables A.16 and A.17).

An initial observation indicates that the experimental results for the upper rotor are nearly
identical to those of the isolated rotor. This suggests that the upper rotor is minimally af-
fected by the lower rotor, thus substantiating the assumption that the upper rotor operates
independently. Consequently, the efficiencies for the upper rotor are always in good agree-
ment with the experimental data.

For the lower rotor, it is observed that both the thrust and efficiency decrease significantly.
This reduction is more pronounced in the results obtained from the BEMT from Rotare,
thereby reducing the discrepancy between the BEMT simulation outcomes and the experi-
mental data. Furthermore, it is noted that multiple stream tubes models yield lower thrust
compared to the single stream tube model. Nevertheless, the difference in efficiency among
the models is considerably less pronounced.

4.2.2 Impact of the incorporation of tangential velocity induced by the upper rotor on
the lower rotor.

In this section, the impact of incorporating tangential velocity upstream of the lower rotor,
as introduced in Section 3.1, will be analyzed. Figure 29 illustrates the effect of this addition
on the performance of the T-MOTOR G28x9.2 carbon fiber lower rotor. This figure allows
for the visualization of the impact on each of the coaxial models.

The initial observation indicates that no difference is observed for the SST model. This can
be attributed to the model’s assumption of a constant axial velocity upstream of the lower
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Figure 29: Comparison between the results obtained with (in full line) and without (in dot
line) the incorporation of tangential velocity induced by the upper rotor on the lower rotor,
for the performance of the T-MOTOR G28x9.2 carbon fiber lower rotor (cf. Tables A.16 and
A.17).

rotor while neglecting the wake swirl velocity.

Additionally, it is observed that the efficiency of the lower rotor remains practically unaffected
by this addition for the other models as well. Conversely, a significant impact on thrust
generation is noted for both the MST and SMST models. As explained in Section 3.1, in a
counter-rotating coaxial rotor system, the upstream tangential velocity positively contributes
to and enhances the rotational velocity of the second rotor. This results in an increase in
thrust due to the incorporation of this tangential velocity. Furthermore, it is observed that
the magnitude of this increase is proportional to the rotational speed, a logical conclusion
given that higher rotational speeds result in a greater tangential induced velocity in the
upper rotor, thereby amplifying the effect on the lower rotor.

4.2.3 Impact of the wake contraction

To determine the impact of wake contraction, the results for the first Harrington rotor will
be compared for the far-field scenario where the lower rotor is positioned within the fully
developed wake of the upper rotor and for the boundary limits of wake contraction ratios
derived from the empirical case, as shown in Figure 30.

Although the discrepancy between the results obtained for the different wake contractions
does not seem very significant, it is nevertheless more important than that obtained between
the different contraction models (see Figure 22b). It would therefore be inconsistent to
disregard this factor in the calculations. Furthermore, the difference is solely due to the con-
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(a) Single stream tube model (SST).
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(b) Multiple stream tubes model (MST).

Figure 30: Comparison between the results for the first Harrington rotor with the far-field
scenario and extreme wake contraction ratios from the empirical case (cf. Tables A.10 and
A.11).

tribution of the lower rotor. To better compare the discrepancies arising from the differences
in contraction, the performances are compared solely on the lower rotor in Figure 31. It is
evident that the contraction taken into account will have a significant impact on the lower
rotor’s performance. This impact will affect the overall system performance, especially as
the contribution of the lower rotor increases.
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(a) Single stream tube model (SST).
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(b) Multiple stream tubes model (MST).

Figure 31: Comparison between the results for the first Harrington rotor with the far-field
scenario and extreme wake contraction ratios from the empirical case for the lower rotor (cf.
Tables A.10 and A.11).

55



Now that the impact of wake contraction on the results is known, it is important to verify
if the contraction obtained through empirical models is valid. For this purpose, the nondi-
mensional inflow distribution for different models will be compared using the contraction
predicted by the empirical model, the far-field case, and contrasted with Leishman’s distri-
bution. Note that, for the multiple stream tube models, both approaches presented in section
3.2 are compared: one that averages the data to obtain a constant wake contraction ratio 𝑎
across the span, and another that uses the distributions of velocity and thrust coefficient
to derive a wake contraction ratio distribution 𝑎p𝑦q. Additionally, these comparisons will
be extended to include results obtained from the Finite Volume Method (FVM), which is
expected to provide higher accuracy due to the enhanced fidelity of computational fluid
dynamics simulations. The FVM offers a more detailed representation of the flow field by
solving the Navier-Stokes equations directly, thereby capturing complex interactions and
variations in the flow that may not be accounted for by simpler methods such as Blade Ele-
ment Momentum Theory (BEMT). Figure 32 shows these comparative results.

It can be observed that the inner part of the lower rotor, which is impacted by the upper
rotor, is generally well-modeled with the empirical model. Specifically, it closely matches
the distributions obtained by Leishman’s method and the Free Vortex Method, much better
than when the far-field approximation was applied. For the SST model, it is noted that the
distribution aligns quite well with the FVM. However, for the MST model, the distribution
deviates from the FVM distribution. Instead, it closely matches the distribution obtained
by Leishman but diverges towards the outer region impacted by the upper rotor. It is also
noted that for this model, using a constant contraction or a distribution of contraction yields
similar results. In contrast, for the SMST model, this is no longer the case. Using a variable
contraction along the span leads to results that further diverge from the distributions derived
from Leishman or the FVM.

The impact of wake contraction can also be observed in the case of the T-Motor. Figure 33
compares the results for the lower rotor in the far-field scenario, where the lower rotor is
positioned within the fully developed wake of the upper rotor, with the boundary limits of
wake contraction ratios derived from the empirical case, alongside the experimental data.

It can be observed that under the far-field assumption, there is a significant deviation from
the experimental results. Specifically, both thrust and efficiency are overestimated compared
to the empirical contraction. This discrepancy is expected, as the far-field assumption further
limits the area of the lower rotor within the vena contracta of the upper rotor, a region where
the thrust and the efficiency are reduced compared to the scenario in which it operates in
isolation.

Thus, utilizing the empirical model once again demonstrates an improvement in the res-
ults. It remains essential to question whether the contraction derived from the empirical
model accurately represents reality. To this end, the upstream velocity distribution at the
second rotor, obtained for a rotational speed of 1600 RPM, using the empirical model, will be
compared with higher-fidelity data, specifically results from computational fluid dynamics
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(a) Single stream tube model (SST).
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(b) Multiple stream tubes model (MST).
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(c) Simplified multiple stream tubes model
(SMST).

Figure 32: Comparison between the inflow distributions obtained from Rotare using the
empirical Method, Leishman’s BEMT, and the finite volume method (FVM) (cf. Tables A.10
and A.15).

(CFD)[25]. Additionally, these distributions will be compared to the far-field case and the
distribution derived from Giljarhus’ BEMT model. These comparisons are conducted for
each coaxial model, as illustrated in Figure 34.

The initial observation is that the distributions obtained using the empirical model exhibit
a closer alignment with those from CFD compared to the far-field assumption. Specifically,
the contracted wake area is larger and more accurately reflects reality. Furthermore, the axial
upstream velocity is lower across the entire span, aligning more closely with the CFD results.
In the SST model, the velocity is observed to be averaged within the wake, showing a good
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(b) Multiple stream tubes model (MST).

Figure 33: Comparison between the results for the T-MOTOR G28x9.2 carbon fiber lower
rotor with the far-field scenario and extreme wake contraction ratios from the empirical case
(cf. Tables A.16 and A.17).

match at the wake’s center but deviating near the hub and the wake’s extremities. For the
SMST and MST models, the velocity distribution within the wake aligns more closely with
the CFD data. However, at the wake’s extremities, the models predict an increase in velocity,
whereas the CFD data indicate the opposite. Additionally, it is observed that consistent
with previous findings for Harrington’s rotor, whether the radial contraction is variable or
constant has minimal influence on the MST model’s results but significantly impacts the
SMST model’s results. One final observation is that the transition of upstream velocity on
the lower rotor, between the section within the vena contracta of the upper rotor and the
clean region outside the vena contracta, is very abrupt in each coaxial model. Computational
fluid dynamic analysis indicates that this transition is significantly smoother in reality.

Similarly, the tangential velocity distribution along the span of this rotor under identical
conditions can be analyzed. The upstream tangential velocity is consistently disregarded in
the SST model and is therefore represented in Figure 35 exclusively for the MST and SMST
models.

A peak is observed near the hub, with this peak being more significant when the far-field
assumption is applied. Subsequently, the upstream tangential velocity increases until it be-
comes zero in the region unaffected by the upper rotor. In the empirical models, the higher
wake contraction ratio results in a non-zero tangential velocity over a larger portion of the
span. Moreover, this tangential velocity is greater throughout the outer region of the wake
compared to the far-field scenario. It is also noted that the distributions for the SMST and
MST models are almost identical.

58



0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

(a) Single stream tube model (SST).

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

(b) Multiple stream tubes model (MST).

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

(c) Simplified multiple stream tubes model
(SMST).

Figure 34: Comparison between the upstream axial velocity distributions obtained from
Rotare using the empirical Method and far-field assumption with Giljarhus’s BEMT [25],
and the computational fluid dynamics (CFD) [25] (cf. Tables A.16 and A.18).

When the case of advancing propellers is considered, it becomes challenging to obtain high-
fidelity data for validating the performance predictions of coaxial models. Additionally,
determining the validity and applicable conditions of the empirical model described by
Favier [15] presents significant difficulties. Therefore, it is proposed that, in a future study,
wind tunnel tests be conducted on specific coaxial systems to validate the performance pre-
dictions of the different coaxial models in the context of advancing propellers. Furthermore,
similar to the hover case, a CFD analysis could be performed on the coaxial system to determ-
ine the inflow ratio distribution over the span or other relevant parameters. This analysis
would aid in validating the empirical wake contraction ratio model as described by Favier

59



0 0.2 0.4 0.6 0.8 1

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(a) MST.

0 0.2 0.4 0.6 0.8 1

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

(b) SMST.

Figure 35: Comparison between the upstream tangential velocity distributions obtained from
Rotare using the empirical Method and far-field assumption with Giljarhus’s BEMT [25], and
the computational fluid dynamics (CFD) [25] (cf. Tables A.16 and A.18).

for each of the coaxial models.

4.2.4 Comparison of the coaxial models

In the preceding sections, it has been observed that comparing different models based on
the overall assessment of performance validity is rather challenging. While similarities were
noted in the results across models, distinctions became clearer when velocity or inflow ratio
distributions along the span were analyzed. These distributions indicated that reality was
more accurately represented by multi-tube models, particularly in the central wake region
near the hub.

Additionally, the velocity triangles for each of the coaxial models can also be compared. This
analysis is performed for the velocities upstream of the T-MOTOR G28x9.2 carbon fiber lower
rotor. Figures 36 and 37 show these velocity triangles at 20 and 65 percent span, respectively.
Note that the extension of the chord is also illustrated, along with the angle relative to the
normal, which corresponds precisely to the pitch angle at the respective blade section.

Initially, it is generally observed that far-field contraction (a = 0.707) results in higher axial
velocities and tangential velocities comparable to those predicted by the empirical contrac-
tion model (a = 0.813). Consequently, the inflow ratios are systematically lower with the
far-field assumption.

Subsequently, for the velocity triangles at 20% span, it is noted that the coaxial models pre-
dict a higher tangential velocity and a lower axial velocity relative to the single stream tube
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(a) Farfield wake contraction.
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Figure 36: Comparison of the velocity triangles upstream of the T-MOTOR G28x9.2 carbon
fiber lower rotor (cf. Tables A.16 and A.18) at 20% span for each of the coaxial models.
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(a) Farfield wake contraction.
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Figure 37: Comparison of the velocity triangles upstream of the T-MOTOR G28x9.2 carbon
fiber lower rotor (cf. Tables A.16 and A.18) at 65% span for each of the coaxial models.

model, resulting in a substantially larger inflow angle. At 65% span, the tangential velocity
remains slightly elevated with the multiple stream tube models, but the axial velocity also
increases, resulting in a smaller inflow angle compared to the SST model. Additionally, it is
observed that at 65% span, the angle of attack is consistently negative. At a 20% span, the
angle of attack is also negative for the SST model and for the SMST and MST models under
the far-field assumption.
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Therefore, it is pertinent to verify that for these blade sections, the forces are directed down-
ward and that the resultant thrust is negative in these scenarios. The thrust distributions
along the span for each model are depicted in Figure 38.
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Figure 38: Comparison of the thrust distribution on the T-MOTOR G28x9.2 carbon fiber
lower rotor (cf. Tables A.16 and A.18) for each of the coaxial models.

Negative thrust is observed for the models exhibiting negative angles in the velocity tri-
angles, both at 20 percent span and at 65 percent span. Furthermore, it is observed that
the relationships between the models are consistent with what is observed for the velocity
triangles: smaller angles of attack indeed result in higher thrust.

Moving forward, further investigation into model differences was pursued by examining
result convergence relative to the number of elements. Figures 39 and 40 illustrate this
convergence for performance parameters 𝐶𝑇 and 𝐶𝑃 for the first Harrington’s lower rotor.
This analysis is conducted for both the far-field assumption and the empirical model used
to predict radial contraction. It is noteworthy that results considering variable and constant
wake contraction ratios were differentiated in the latter case.

It is observed that the power coefficient converged uniformly across all models, regardless of
the type of coaxial or contraction model employed. For the thrust coefficient, it has been ob-
served that the SST model requires fewer elements overall compared to the other two coaxial
models to achieve a converged solution. Furthermore, it has been noted that the 𝐶𝑇 values
to which the different models converge are more similar when the far-field assumption is
employed. Conversely, when the empirical formula is utilized, the differences between the
models become more pronounced. Additionally, it has been observed that when a variable
wake contraction ratio is employed for the MST model, the results remain relatively similar
to those obtained with a constant wake contraction ratio. However, this is not the case for
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Figure 39: Evolution of the Harrington rotor 1 power coefficient (cf. Tables A.10 and A.15)
with the number of blade elements for each coaxial model. Note that the empirical graph
uses ’-’ for a constant wake contraction ratio �̄� and ’–’ for a variable wake contraction ratio
𝑎p𝑦q.
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(a) Farfield wake contraction.
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Figure 40: Evolution of the Harrington rotor 1 thrust coefficient (cf. Tables A.10 and A.15)
with the number of blade elements for each coaxial model. Note that the empirical graph
uses ’-’ for a constant wake contraction ratio �̄� and ’–’ for a variable wake contraction ratio
𝑎p𝑦q.

the SMST model. With a variable wake contraction ratio, the solution does not converge and
tends to diverge from the solution with a constant wake contraction ratio. These observations
are consistent with the upstream velocity distribution and inflow ratio on the lower rotor as
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discussed in the previous section.

The investigation into the differences between the coaxial models will be extended by examin-
ing whether mass conservation is accurately maintained for each model. Indeed, ensuring
the conservation among the following three mass flows is essential:

1. Mass flow across the entire previous rotor disk.

2. Mass flow in the wake after the contraction of the slipstream.

3. Mass flow on lower rotor elements inside the vena contracta after interpolation of the
wake.

The difference between the first two mass flows will be zero by definition. However, an
error may arise between the contracted wake and the lower rotor elements inside the vena
contracta after the interpolation of the wake. Specifically, to obtain the upstream velocity
on the lower rotor, the velocity in the contracted wake is interpolated from the contracted
elements of the upper disk onto the elements of the lower disk. The relative conservation
error between these two mass flows can be written as follows:

𝜉 “
9𝑚𝑤,𝑢𝑝𝑝𝑒𝑟 ´ 9𝑚𝑑,𝑙𝑜𝑤𝑒𝑟˚

9𝑚𝑤,𝑢𝑝𝑝𝑒𝑟
. (4.3)

Where, 9𝑚𝑑,𝑙𝑜𝑤𝑒𝑟˚ denotes the mass flow on the lower rotor elements within the vena con-
tracta. Figure 41 illustrates the evolution of the error with the number of elements for each
coaxial model.

It is observed that for all models, except the SMST model with a variable wake contraction
ratio, the error decreases as the number of elements increases. In the case of the SMST
model with a variable wake contraction ratio, the error continuously increases and diverges.
Notably, the error shown in the graph is in absolute value, but for the SMST model, the
error is actually negative. This indicates that the mass flow after the upstream velocity
interpolation on the lower rotor blade elements is significantly greater than the mass flow
in the wake, resulting in an overestimation of the upstream velocity at the lower rotor disk.
This phenomenon can explain why, for this model with variable wake contraction, the thrust
coefficient continuously decreases as the number of elements increases (Figure 40b). Since
an increase in the number of elements leads to a larger upstream mass flow perceived by the
lower rotor, the inflow angle will also be increased (cf. Equation 2.21), and consequently the
thrust produced by the blade will be reduced (cf. Equation 2.26). In conclusion, it can be
stated that the SMST model is unsuitable for use with a variable wake contraction ratio.

Furthermore, the MST model exhibits the smallest mass flow conservation error compared
to all other models. This error approaches even a negligible value both under the far-field
assumption and when using the empirical formula. Conversely, for the other models, even
with a large number of elements, the mass flow error always retains a residual value. This
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Figure 41: Evolution of the relative error on the mass flow for the Harrington rotor 1 (cf.
Tables A.10 and A.15) with the number of blade elements for each coaxial model. Note that
the empirical graph uses ’-’ for a constant wake contraction ratio �̄� and ’–’ for a variable wake
contraction ratio 𝑎p𝑦q.

residual value is a few percent when the far-field assumption is applied and is slightly smal-
ler when the radial contraction imposed by the empirical model is used.

A final point of comparison concerns the computation time required to evaluate perform-
ance at a given operating point. Figure 42 illustrates this time for each model as a function
of the number of elements, specifically for the first rotor of Harrington. It is observed that
computation time increases almost linearly with the number of elements. The computation
times are substantially higher compared to the single-rotor case due to the iterative process
over the torque, which significantly lengthens the overall computation process.

Despite the inherent simplicity of the SST model, it does not exhibit superior computational
speed compared to other models. Conversely, the simplified multiple stream tube model
exhibits a faster computation time than the general model. However, this difference is
marginal. Therefore, it may be more prudent to prioritize the most accurate model, which
achieves convergence with fewer elements, to minimize computation time.
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Figure 42: Evolution of the computational time for the Harrington rotor 1 (cf. Tables A.10
and A.15) with the number of blade elements for each coaxial model. Note that the empirical
graph uses ’-’ for a constant wake contraction ratio �̄� and ’–’ for a variable wake contraction
ratio 𝑎p𝑦q.

4.3 Summary
Throughout this section, the validity of the models implemented in Rotare has been demon-
strated. Initially, for the single-rotor case, it was shown that the results obtained using each
of the different methods to solve the system of equations 2.42 corresponded reasonably well
with experimental data. The induced velocities approach was identified as the method that
provided the most accurate and efficient results.

Subsequently, for the coaxial rotor configuration, the coaxial models were also validated in
the hover case. It was observed that these models produced results generally in agreement
with experimental data. The wake contraction ratio was found to have a significant impact.
indeed, the results were much more precise when the wake contraction ratio was accurately
estimated, compared to assuming that the lower rotor is situated within the fully developed
wake of the upper rotor.

Finally, it was noted that, although the models produced very similar results, the general
multiple stream tube model exhibits the highest fidelity in representing velocity and angle
distributions on the lower rotor. Moreover, it also minimizes the error in mass conservation
and doesn’t require significantly more computation time than the other models. Therefore,
the MST model is recommended as the most suitable choice for design purposes.
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5 Design
In a more in-depth study, it would be interesting to propose an optimal design configuration
aimed at maximizing the efficiency of the coaxial rotor through various joint designs and
control strategies. For instance, the optimal design for the blades, which are manufactured
and tested by the industry Generix, could be identified. This identification process could be
facilitated through BEMT simulations and the code implemented in Rotare.

Prior to proposing a design, it is essential to verify that the thrust generated by the code
aligns with the experimentally measured thrust provided by Generix. Failure to achieve
this alignment may result in a design that does not meet the necessary flight conditions
for the drone. Additionally, it is critical to confirm that a torque balance achieved by the
computational code is also observed experimentally. Alternatively, this can be verified by
ensuring that for Generix’s experimental measurements, where the torque is balanced, the
BEMT simulations yield corresponding results.

This validation process is depicted in Figure 43. The results are compared for the contra-
rotating coaxial rotor consisting of SAB 280 mm blades as described in Table A.19, where
the operating conditions (rotational speed and collective pitch) have been determined by the
company to cancel the torque.
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Figure 43: Comparison between the results from Rotare and the experimental measurements
from Generix for the counter-rotating coaxial rotor with SAB blades (cf. Table A.19).

Firstly, it is observed that the thrust generated and calculated using Rotare is closely aligned
with the measurements obtained by Generix. It should be noted that as the rotational speed
increases, the thrust tends to be slightly underestimated by the BEMT, particularly for the
lower rotor. Specifically, when approaching 3000 RPM, there is a relative error of approxim-

67



ately 5% for the upper rotor and 10% for the lower rotor. This discrepancy must be taken
into account during the design phase.

Secondly, it is evident that the torque measured by Rotare shows significant deviations from
the experimentally measured torque. However, despite these differences, the differential
torque between each rotor remains relatively small. To illustrate this further, it is essential to
analyze and compare this differential torque at each operational point, as detailed in Table 2.

Rotor angular velocity [RPM] Differential Torque [N.cm]
Upper Lower Experimental From Rotare
1250 1300 2 1.66
1660 1730 2 3.26
2030 2060 2 3.08
2400 2400 2 2.99
2560 2580 2 4.11
2740 2750 2 4.19
2900 2940 2 5.83

Table 2: Comparison between differential torque values from Rotare (cf. Table A.19) and
measurements by Generix.

The data clearly indicates that the torque is nearly balanced at most operational points, ex-
cept under high angular velocities. It would be beneficial to investigate the angular velocity
values for the lower rotor that would have been obtained if the torque cancellation method
implemented in Rotare had been used. Table 3 presents these angular velocities and com-
pares them with the values provided by Generix.

Experimental Angular Velocities [RPM] Rotare Angular Velocities [RPM]
Upper Rotor Lower Rotor Upper Rotor Lower Rotor

1250 1300 1250 1228.5
1660 1730 1660 1612.6
2030 2060 2030 1961.0
2400 2400 2400 2312.7
2560 2580 2560 2465.8
2740 2750 2740 2638.4
2900 2940 2900 2792.0

Table 3: Comparison between upper and lower rotors angular velocities for a balanced torque
from Rotare (cf. Table A.19) and measurements by Generix.

It can be observed that in contrast to the measurements provided by Generix, the angular
velocity predicted by the code for torque cancellation is consistently lower than that of the
upper rotor. This results in a discrepancy between the experimental measurements and the
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simulations, ranging from 70 RPM to nearly 150 RPM. This discrepancy must also be taken
into account during the design phase.

When considering the design, the primary objective is to optimize efficiency. In the sub-
sequent section, the variation of efficiency with respect to specific parameters will be ana-
lyzed. The purpose is to qualitatively assess the impact of these parameter variations. A
detailed investigation into the optimal configuration will be deferred to a more in-depth
study.

5.1 The effect of variation in differential collective pitch.
One parameter that can be studied is the differential collective pitch. Indeed, The impact of
increasing the lower rotor’s pitch relative to the upper rotor on efficiency can be analyzed.
In Figure 44, the efficiency curve for a coaxial rotor system with SAB blades, as described
in Table A.20, is illustrated as a function of the differential collective pitch for two different
angular velocities. It is important to note that these velocities refer exclusively to the upper
rotor, while the angular velocity of the lower rotor is adjusted at each data point to cancel
out the torque.
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Figure 44: Evolution of the efficiency for a coaxial rotor system with SAB blades (cf. Table
A.20) as a function of the differential collective pitch.

It can be observed that increasing the pitch of the lower rotor enhances efficiency. Further-
more, the peak efficiency is observed to occur at lower thrust values when the lower rotor’s
pitch is greater, and conversely.

69



5.2 The effect of the variation of the airfoil geometry.
The influence of airfoil selection on performance may also be considered. In this analysis, the
SAB blades from Generix, incorporating NACA 4-digit airfoils, are examined. Performance
curves presented in Figure 45 illustrate variations in airfoil thickness and camber. These
variations enable a separate evaluation of the impact of each parameter on overall perform-
ance.

The figure clearly indicates that as the airfoil thickness increases, the performance tends
to decrease. Indeed, thicker airfoils generally produce higher drag, which negatively im-
pacts overall efficiency. However, a thicker airfoil provides enhanced structural integrity,
crucial for supporting greater loads and withstanding mechanical stresses. Furthermore,
thicker airfoils are capable of generating higher lift. Consequently, the selection of airfoil
thickness involves a critical balance between aerodynamic efficiency and structural demands.

The camber of an airfoil is generally employed to enhance lift generation at a given angle of
attack. An airfoil with a significant camber will stall at a higher angle of attack compared
to a symmetrical or less cambered profile. However, a more pronounced camber not only
generates more lift but also increases drag. Consequently, at lower rotational speeds, it is
observed that a more cambered profile tends to decrease overall efficiency. In contrast, at
high rotational speeds, the lift becomes more significant, and this trend reverses. Therefore,
it is evident that the choice of airfoil geometry is a critical parameter that can greatly influence
rotor performance. It must be selected carefully based on the specific requirements of the
application to achieve the optimal balance between enhanced lift, increased stall angle,
structural integrity, and overall efficiency.
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Figure 45: Evolution of the efficiency for a coaxial rotor system with SAB blades (cf. Table
A.20) as a function of the airfoil geometry.

70



5.3 The effect of the variation of the chord length.
It is also pertinent to analyze the effect on the performance of varying the blade chord length,
either by increasing or decreasing it. This influence is illustrated in Figure 46. It is observed
that efficiency is significantly reduced as the chord length increases, primarily due to the
corresponding rise in drag. However, a larger chord also enhances the lift and is essential
for achieving adequate thrust. Thus, the chord size is a critical factor that must be carefully
considered in rotor design.
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Figure 46: Evolution of the efficiency for a coaxial rotor system with SAB blades (cf. Table
A.20) as a function of the chord length.

5.4 The effect of the variation of the inter-rotor distance.
It is also interesting to consider the effect of the inter-rotor distance. A compact design is
often preferred by manufacturers. However, a reduced distance between the rotors amplifies
the influence of the upper rotor on the lower rotor. The reciprocal influence, though not
incorporated in the Rotare calculation, is also intensified. This amplification is anticipated
to result in decreased efficiency.

Utilizing the empirical model, the influence of varying distances between the lower and
upper rotors can be quantified. In hover, radial contraction exhibits exponential growth
inversely proportional to the rotor separation distance (refer to equations 3.16 and 3.18).
Consequently, as this distance increases, it asymptotically approaches a value of 0.78. Con-
versely, if it decreases, it tends towards 1.

The actual effect of this distance on the efficiency of the coaxial rotor, as presented in Table
A.20, is illustrated in Figure 47. It can be seen that both the inter-rotor distance and the
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resultant contraction exert minimal influence on efficiency, according to the empirical model.
Nevertheless, in practical applications, this impact may be more pronounced.
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Figure 47: Evolution of the efficiency for a coaxial rotor system with SAB blades (cf. Table
A.20) as a function of the distance between the rotors.

5.5 The effect of the variation in differential blade diameters.
The impact of differential blade diameters can also be considered. since a part of the lower
rotor resides within the vena contracta of the upper rotor, efficiency is reduced in this region,
thereby affecting the overall performance of the coaxial system. By increasing the diameter
of the lower rotor or reducing that of the upper rotor, a larger "clean" zone, i.e., a larger area
unaffected by the upper rotor, could be achieved, thus enhancing efficiency.

Figure 48 illustrates the effect of differential blade diameters on the coaxial rotor equipped
with SAB blades, as specified in Table A.20. It can be observed that the effect is quite signi-
ficant. Consequently, further investigation into this parameter is recommended to achieve
an optimal balance between efficiency and compact design.
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Figure 48: Evolution of the efficiency for a coaxial rotor system with SAB blades (cf. Table
A.20) as a function of differential blade diameters.
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6 Conclusion
This thesis has explored the potential of coaxial rotor designs, focusing on the validation and
enhancement of BEMT and coaxial models developed in the Rotare code. The motivation for
this research stemmed from the need to improve UAV performance in various applications,
leveraging the unique advantages of coaxial rotors, such as superior lift-to-drag ratio and
intrinsic torque cancellation.

The theoretical groundwork laid out in this study included revisiting the Momentum The-
ory and Blade Element Theory and introducing necessary corrections and modifications
to the existing BEMT implementation in ROTARE. Significant improvements were made to
account for tangential velocity interactions, and accurate wake contraction, enhancing the
coaxial model’s fidelity.

The validation process rigorously compared Rotare’s model predictions with experimental
data for both single and coaxial rotor configurations. In the case of a single rotor, the model
was validated for hover and axial flight conditions, showing good agreement with experi-
mental results in both scenarios. The induced velocities approach was identified as the most
accurate and efficient for the single-rotor case and thus was utilized throughout the study.
At higher blade angles, stall phenomena were observed at low speeds, causing deviations
from expected outcomes. However, the BEMT model effectively accounted for stall effects.
Furthermore, the influence of airfoil characteristics on the solution was highlighted, emphas-
izing the importance of using accurate airfoil polars in the code.

For coaxial rotors, the model was validated specifically for hover conditions. It was demon-
strated that accurately estimating the wake contraction ratio was crucial for enhancing model
precision. Additionally, incorporating the interaction of tangential velocities between rotors
significantly influenced the outcomes. While the efficiency of the lower rotor remains largely
unaffected by this tangential velocity, thrust generation is impacted by this addition. Among
the evaluated models, the Multiple Stream Tube (MST) model demonstrated superior fidel-
ity in representing velocity and angle distributions, and it effectively maintained optimal
mass flow conservation, all while maintaining computational efficiency. Consequently, the
MST model is recommended as the most suitable choice for rotor design purposes. When
considering advancing propellers, obtaining high-fidelity validation data posed challenges,
particularly in determining the validity of empirical models such as those described by Favier
[15]. Therefore, future studies should include wind tunnel tests or a CFD analysis on specific
coaxial systems to validate performance predictions under advancing propeller conditions.

The design phase underscored the potential for optimizing coaxial rotor systems through
BEMT simulations. This investigation focused on counter-rotating coaxial rotors equipped
with SAB blades, manufactured and tested by the Generix company. For this rotor, the thrust
measurements obtained from Generix closely matched the computational predictions, val-
idating the model’s reliability. Furthermore, the balance of torque between the upper and
lower rotors, as predicted by the computational model, aligneCritical design parameters have
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been identified as essential for enhancing drone performance. Among these, the collective
pitch of the lower rotor emerges as a key variable that can be optimized to achieve peak
efficiency. Additionally, factors such as airfoil geometry, chord length, and differential blade
diameters significantly influence overall performance. These aspects could be the focus of a
more in-depth study using the BEMT code implemented in Rotare.

In summary, this thesis validated the enhanced BEMT model for coaxial rotors and demon-
strated its applicability in optimizing UAV rotor designs. Furthermore, the design phase
underscored the effectiveness of BEMT simulations in optimizing coaxial rotor systems. It
also identified several key design parameters that, if studied further, could lead to improved
efficiency.
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Appendix A

BEMT Configurations

y/R [-] c/R [-] Pitch [˝]
0.15 0.109 53.88
0.20 0.127 54.60
0.25 0.142 49.63
0.30 0.153 43.66
0.35 0.160 38.79
0.40 0.162 34.70
0.45 0.161 31.36
0.50 0.156 28.62
0.55 0.149 26.21
0.60 0.139 24.26
0.65 0.128 22.64
0.70 0.116 21.07
0.75 0.103 19.55
0.80 0.090 18.27
0.85 0.077 17.21
0.90 0.066 16.54
0.95 0.051 14.29
1.00 0.036 11.88

Table A.1: Geometric parameters of the APC14x12 propeller.
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Parameter Value
Ω [RPM] 3500
Axial Velocity [m/s] 0
Collective Pitch [˝] 0
Radius [m] 0.1778
Number of Blades [-] 2
Airfoil NACA 4412
Pitch Reference Chordline
Application Propeller
Tip Loss Taken into account

Table A.2: Technical information of the APC14x12 propeller.

Parameter Value
Ω [RPM] 3500
Axial Velocity [m/s] [3.7 19]
Collective Pitch [˝] 0
Radius [m] 0.1778
Number of Blades [-] 2
Airfoil NACA 4412
Pitch Reference Chordline
Application Propeller
Tip Loss Taken into account

Table A.3: Technical information of the APC14x12 advanced propeller.

Parameter Value
Ω [RPM] [1500 3500]
Axial Velocity [m/s] 0
Collective Pitch [˝] 0
Radius [m] 0.1778
Number of Blades [-] 2
Airfoil NACA 4412
Pitch Reference Chordline
Application Propeller
Tip Loss Taken into account

Table A.4: Technical information of the APC14x12 propeller in hover.
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y/R [-] c/R [-] Pitch [˝]
0.20 0.0360 46.8388
0.30 0.0525 41.7096
0.40 0.0700 36.7975
0.50 0.0760 31.9595
0.60 0.0735 28.4190
0.70 0.0660 26.3655
0.80 0.0565 24.1144
0.90 0.0450 22.8251
1.00 0.0330 22.3240

Table A.5: Geometric parameters of the 5868-9 propeller.

Parameter Value
Ω [RPM] 800
Axial Velocity [m/s] [12.2 50.8]
Collective Pitch [˝] 0
Radius [m] 1.524
Number of Blades [-] 3
Airfoil Clark-y
Pitch Reference Chordline
Application Propeller
Tip Loss Taken into account

Table A.6: Technical information of the 5868-9 propeller.

Parameter Value
Blade angle 15˝ 20˝ 25˝ 30˝

Ω [RPM] 1000 1000 800 800
Axial Velocity [m/s] [15.2, 39.6] [15.2, 50.8] [12.2, 50.8] [15.2, 61.7]
Collective Pitch [˝] -10 -5 0 5

Radius [m] 1.524
Number of Blades [-] 3

Airfoil Clark-y
Pitch Reference Chordline

Application Propeller
Tip Loss Taken into account

Table A.7: Technical information of the 5868-9 propeller with different blade angles.
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Parameter Value
Blade angle 35˝ 40˝ 45˝

Ω [RPM] 800 700 700
Axial Velocity [m/s] [15.2, 73.6] [10.7, 77.5] [10.7, 92.81]
Collective Pitch [˝] 10 15 20
Radius [m] 1.524
Number of Blades [-] 3
Airfoil Clark-y
Pitch Reference Chordline
Application Propeller
Tip Loss Taken into account

Table A.8: Technical information of the 5868-9 propeller with different blade angles.

Parameter Value
Ω [RPM] 700
Axial Velocity [m/s] 17.8 , 46.2
Collective Pitch [˝] 20
Radius [m] 1.524
Number of Blades [-] 3
Airfoil Clark-y
Pitch Reference Chordline
Application Propeller
Tip Loss Taken into account

Table A.9: Technical information of the 5868-9 propeller with 40˝ blade angle.

y/R [-] c/R [-] Pitch [˝] Airfoil
0.1600 0.0733 0 NACA 0030
0.2933 0.0667 0 NACA 0028
0.3067 0.0660 0 NACA 0026
0.5000 0.0567 0 NACA 0024
0.5800 0.0523 0 NACA 0023
0.7000 0.0453 0 NACA 0022
0.7667 0.0420 0 NACA 0021
0.8667 0.0367 0 NACA 0020
0.9333 0.0323 0 NACA 0018
1.0000 0.0293 0 NACA 0012

Table A.10: Geometric parameters of the blade for the first Harrington’s rotor.
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Parameter Value
Ω (upper rotor) [RPM] 382
Ω (lower rotor) [RPM] 382
Axial Velocity [m/s] 0
Radius [m] 3.81
Number of Blades [-] 2
Application Helicopter
Tip Loss Taken into account
Torque Balanced
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 70.9

Table A.11: Technical information for the first Harrington’s rotor.

y/R [-] c/R [-] Pitch [˝] Airfoil
0.1600 0.1200 0 NACA 0028
0.3000 0.1200 0 NACA 0026
0.4267 0.1200 0 NACA 0024
0.5533 0.1200 0 NACA 0022
0.6800 0.1200 0 NACA 0020
0.8067 0.1200 0 NACA 0018
0.9333 0.1200 0 NACA 0016
1.0000 0.1200 0 NACA 0015

Table A.12: Geometric parameters of the blade for the second Harrington’s rotor.

Parameter Value
Ω (upper rotor) [RPM] 249.8
Ω (lower rotor) [RPM] 249.8
Axial Velocity [m/s] 0
Radius [m] 3.81
Number of Blades [-] 2
Application Helicopter
Tip Loss Taken into account
Torque Balanced
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 61

Table A.13: Technical information for the second Harrington’s rotor.
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Parameter Value
Ω (upper rotor) [RPM] 382
Ω (lower rotor) [RPM] 382
Axial Velocity [m/s] 0
Collective pitch (upper rotor) ([˝] 8.1
Collective pitch (lower rotor) [˝] 8.4
Radius [m] 3.81
Number of Blades [-] 2
Application Helicopter
Tip Loss Taken into account
Torque Balanced
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 70.9

Table A.14: Technical information for the first Harrington’s rotor, 𝐶𝑇 “ 0.004.

Parameter Value
Ω [RPM] [1000 3000]
Axial Velocity [m/s] 0
Collective pitch [˝] 0
Radius [m] 3.81
Number of Blades [-] 2
Application Helicopter
Tip Loss Taken into account
Torque Not balanced
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 70.9

Table A.15: Technical information for the first Harrington’s rotor.
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y/R [-] c/R [-] Pitch [˝]
0.1012 0.0304 16.9940
0.1509 0.0442 20.9580
0.2006 0.0571 22.2761
0.2504 0.0632 22.7382
0.3002 0.0702 20.3987
0.3515 0.0700 17.3588
0.4000 0.0700 15.4083
0.4513 0.0676 13.6916
0.4998 0.0647 12.3635
0.5497 0.0614 11.1135
0.5997 0.0585 10.3306
0.6510 0.0542 9.4697
0.7009 0.0503 8.7645
0.7509 0.0470 8.2927
0.7994 0.0433 7.7431
0.8507 0.0392 7.2713
0.9007 0.0351 6.8773
0.9506 0.0310 6.4055
1.0000 0.0271 6.0894

Table A.16: Geometric parameters of the T-MOTOR G28x9.2 carbon fiber rotor.

Parameter Value
Ω (upper rotor) [RPM] [1000 3000]
Ω (lower rotor) [RPM] [1000 3000]
Axial Velocity [m/s] 0
Collective pitch (upper rotor) [˝] 0
Collective pitch (lower rotor) [˝] 0
Radius [m] 0.36
Number of Blades [-] 2
Airfoil A18
Pitch Reference Chordline
Application Helicopter
Tip Loss Taken into account
Torque Not balanced
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 11.5

Table A.17: Technical information for the T-MOTOR G28x9.2 carbon fiber rotor.
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Parameter Value
Ω (upper rotor) [RPM] 1600
Ω (lower rotor) [RPM] 1600
Axial Velocity [m/s] 0
Collective pitch (upper rotor) [˝] 0
Collective pitch (lower rotor) [˝] 0
Radius [m] 0.36
Number of Blades [-] 2
Airfoil A18
Pitch Reference Chordline
Application Helicopter
Tip Loss Taken into account
Torque Not balanced
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 11.5

Table A.18: Technical information for the T-MOTOR G28x9.2 carbon fiber rotor.

Parameter Value
Ω (upper rotor) [RPM] [1250 1660 2030 2400 2560 2740 2900]
Ω (lower rotor) [RPM] [1300 1730 2060 2400 2580 2750 2940]
Axial Velocity [m/s] 0
Collective pitch (upper rotor) [˝] 7.9
Collective pitch (lower rotor) [˝] 9.4
Root radius [cm] 10
Tip radius [cm] 35
Chord [cm] 2.5
Twist [˝] 0
Number of Blades [-] 2
Airfoil Selig S8035
Tip Loss Taken into account
Torque Not balanced
Coaxial model MST
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 30

Table A.19: Technical information for the blade SAB 280 mm.
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Parameter Value
Ω (upper rotor) [RPM] 1250 or 2900
Ω (lower rotor) [RPM] Adapted to cancel out the torque
Axial Velocity [m/s] 0
Collective pitch [˝] [1 15] (same for both rotors)
Root radius [cm] 10
Tip radius [cm] 35
Chord [cm] 2.5
Twist [˝] 0
Number of Blades [-] 2
Airfoil Selig S8035
Tip Loss Taken into account
Torque Balanced
Coaxial model MST
Wake contraction Empirical (constant wake contraction ratio)
Distance between rotors [cm] 30

Table A.20: Technical information for the blade SAB 280 mm.
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