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Abstract

Cell migration is a critical process that plays a fundamental role in a wide range of
biological phenomena, including embryogenesis, wound healing, and immune responses.
Despite its significance, accurately modelling the complex dynamics of cellular migration
remains challenging.

This thesis investigates the use of graph neural networks (GNNs) to simulate the
dynamics of cellular migration systems. In particular, this work explores the efficacy of
several message-passing GNN architectures including a GaT and classical message-passing
GNNs. The performances of these models are evaluated with a focus on their ability to
replicate ground truth statistics.

Beyond simulation, a key objective of this thesis is to enhance the interpretability
of the models by recovering the underlying mathematical expressions of the interactions
governing cellular interactions. To achieve this, L1 sparsity regularization is applied to
the messages of a single-layer GNN. This results in a dimension reduction that enables
the use of genetic programming for symbolic regression.

Recognizing the challenges posed by symbolic regression in the context of highly
complex analytic equations, this thesis introduces a methodology that decomposes the
messages into a weighted sum of basis functions. Applying symbolic regression on the
weights provides a more tractable means to recover the governing equations.
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Chapter 1

Introduction

Physics is fundamentally concerned with developing models that predict natural phenom-
ena. Two primary approaches are commonly employed to derive these models. The first
one is a concept-based approach. Scientists propose hypotheses, such as energy or mass
conservation, and use mathematical reasoning to derive governing equations. The second
approach is data-oriented and consists in analyzing the correlation between different ob-
served variables to develop empirical theories. A prominent example of this method is
Kepler’s discovery of laws of planetary motion. In this work, the data-oriented approach
is further explored by developing a model that utilizes graph neural networks (GNN).
Numerous similar physical models exist in the literature, with applications in weather
forecasting [1], chemistry [2], structural mechanics [3], and more. The first step of this
work consists of implementing various graph neural networks to predict the dynamics of a
cellular system of active matter by modelling the force between cells. This is a fundamen-
tal domain of research as cell migration is a critical process that plays a fundamental role
in a wide range of biological phenomena, including embryogenesis, wound healing, and
immune responses. Despite its significance, accurately modelling the complex dynamics
of cellular migration remains challenging. Previous work [4] tried to solve this system by
using large Graph neural networks. This work continues this line of research by exploring
new architectures and applying specific physical inductive biases based on Occam’s razor
and Newton’s laws.

Current challenges with neural networks-based physical models include a lack of
interpretability and poor generalization when dealing with data outside their training
distribution. However, physics offers a language that appears to avoid these limitations:
algebraic equations. This motivates the next step, which involves applying sparsity reg-
ularization and symbolic regression to derive analytic equations that describe the forces
within the system. It is important to note that this method diverges from that of Ke-
pler. While Kepler identified laws characterizing planetary motions, the objective of this
work is to uncover the interactions driving movement without any a priori knowledge of
them.
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The structure of this master’s thesis follows these two steps. The development and
assessment of a neural network to predict cell trajectories comes first. Different models
and training schemes are explored. Then, symbolic regression is used to express the black
box neural network with mathematical equations.

The implementation mainly relies on pytorch [5] and pytorch_geometric [6] and is
available on github1.

1.1 Contributions
The contributions of this work are as follows:

• This work explores and evaluates various Graph Neural Network architectures to
predict the dynamics of cellular systems.

• It also demonstrates that it is possible to recover the interactions between cells can
be accurately recovered by applying sparsity regularization to the GNN messages,
even in a non-Newtonian framework.

• Additionally, this thesis introduces a method for obtaining interpretable interactions
with complex analytic expressions by decomposing the GNN emssags into a weighted
sum of basis functions.

1https://github.com/Jepi1202/master_thesis
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Chapter 2

Cellular System of Active Matter

Active matter refers to systems composed of individual agents that contain their own
energy source and consume it to move, exert mechanical forces or induce mechanical
changes. Such systems are inherently far from equilibrium which prohibits from solely
using thermodynamic theory to model them. Additionally, active matter systems spon-
taneously generate collective motion. Numerous examples can be observed in nature at
various scales. Macroscopic examples include bird flocks [7], schools of fish [8] and ant
group motions [9]. However, many microscopic systems, such as cell migration [10] and
colloids [11] also fall into the category of active matter. A deeper understanding of active
matter is essential, as these systems significantly influence biological processes such as
embryonic development and cancer progression.

This work focuses on the 2D dynamics of microscopic systems of cells. Since the
introduction of active Brownian particles and the Vicsek model, many models have been
developed [12] [13]. However, these systems are without limitations. Employing GNNs
to learn the dynamics of these systems could lead to new models that more accurately
reflect empirical observations.

2.1 Physical simulator
In line with previous research [14], the simulator is inspired by studies on the effects of cell
division and apoptosis on the collective dynamics of epithelial tissues 1 [15]. Specifically,
inspired by collective cell migration, the motion is considered to be over-damped:

ṙi = v0n̂i +
1

ζ

∑
j∈N (i)

Fij (2.1)

This equation indicates that the velocity ṙi depends on both cell-specific factors and
interactions with the other cells in its neighbourhood N (i). The term v0n̂i represents the
speed of the cell if there is no interaction with other particles. In this scenario, the cell
moves in the direction n̂i with speed v0 which is referred to as the active propulsion force
of the particle. Concerning the other term, the total interaction is scaled by the friction of

1Examples of ground truth simulations can be seen by going to the URL https://youtube.com/
playlist?list=PLzXmrzZW9EJ4S2wFZHaIhKHtkzi-CaUxG&si=KzlSAv-5vAaapLyc
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the system ζ and the interaction Fij between a cell of radius Ri and another one of radius
Rj is modelled as a piecewise linear function of the distance r between the two:

Fij(r) =


k(r − bij) if r

bij
< 1 + ε

−k(r − bij − 2εbij) if 1 + ε < r
bij

≤ 1 + 2ε

0 otherwise

(2.2)

where bij = Ri +Rj (2.3)

This equation introduces two new parameters ϵ and k. The dimensionless parameter
ϵ controls the strength of attraction and defines the distance threshold (1 + 2ϵ)bij within
which the interaction force is calculated. The other parameter, k, represents the stiffness
of the interaction and controls the slopes of the force function.

Figure 2.1: Illustration of the interaction with respect to the distance between cells.

Additionally, a noisy version of the simulator is considered by introducing Gaussian
noise η to the angular variable θ of the cells at each timestep.

θ̇i = ηi, ⟨ηi⟩ = 0, ⟨ηi(t)ηj(t′)⟩ =
1

τ
δijδ(t− t′) (2.4)

Here, δ is the Kronecker delta and τ is the persistence timescale.

Cell trajectories are obtained by applying the Euler method to the equations detailed
above with a time interval ∆t = 0.001 hours. Moreover, the system is constrained within a
square box of side length L, with boundary conditions that ensure cells experience elastic
collisions with the walls.

It is important to note that the different variables in this project have arbitrary units.
However, it is possible to rescale them to match empirical observations.
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The initial positions of the cells also significantly impact the dynamics that are
observed. In this work, the different cells are grouped by two and dispersed in a grid
manner in the box. This choice was made to ease the training. The idea is based on
the fact that learning a single force is more restrictive than learning the sum of forces.
Therefore, having graphs composed of groups of cells affected by a single interaction is
expected to improve the dataset quality.

Finally, unlike the initial model [15], neither cell death nor cell division is considered,
which means that the number of cells N remains the same during the simulations.

Parameter Value
nb steps 1000

∆t 0.001

N U(100, 300)
v0 60

n̂i θ ∼ U(0, 2π)
k 70

ϵ 0.5

ζ 1

τ 3.5

R 1

L 120

Table 2.1: Parameters of the physical simulator.
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Part I

Predicting physical systems
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Chapter 3

Graph Network-based Simulators

This chapter introduces the main notions that are needed to simulate particle systems
with neural networks. It serves as both a literature review and a background section.
It begins by introducing the concept of graph network-based simulations, followed by an
overview of graph neural networks (GNNs) and some notions of physics-informed neural
networks. A clear emphasis is put on message-passing graph neural networks which are
the kind of neural network architecture explored in this work.

3.1 Introduction
A cellular system consists of N cells, which can be interpreted as the nodes {v}Ni=1 of a
graph G = (V,E), where V = {v}Ni=1 is the set of nodes and E = {ei,j} is the set of
edges between them. In practice, each cell influences each other in a pairwise manner,
implying that the graph should be complete. However, similarly to other physical forces
such as gravity or Coulomb’s law, the influence between particles decreases with distance.
Therefore, it is only necessary to maintain edges corresponding to forces with a magnitude
above a certain threshold.

Graph Network-based Simulators (GNS) [16] involve designing a graph neural net-
work that can predict the graph configuration of a system at the next timestep based on
the current graph configuration. In this context, the task is to predict the next position
of each cell at the node level.

By iteratively applying the GNS to its own previous output, it is possible to generate
the trajectory of the cells over time. As illustrated in Figure 3.1, the goal is to develop a
graph neural network GNNθ with parameters θ that can predict the trajectory τG of the
graphs Gt for subsequent timesteps in a rollout manner. Denoting the different timesteps
by t, this can be formally expressed as:

τG = {(G⊔)}Tt=0 s.t.

{
GNNθ(Ĝt) =⇒ Ĝt+1

Ĝ0 = G0

(3.1)

7



Neural 
Network

Displacements

  

Figure 3.1: Illustration of the rollout simulation pipeline. Initially, a graph is fed into
the neural network, which is a GNN in this work. The output generated by the neural

network is then utilized to derive the next graph, which subsequently serves as the input
for the next iteration of the neural network. Here it is done by computing the

displacement of the cells.

The concept of GNS was formalized by Sanchez-Gonzales et al [16] for simulating
water, sand and goop systems. It has since then been adapted in subsequent research
for similar applications, such as granular flows [17] [18]. However, different papers were
already trying to simulate physical systems with GNNs before this formalization [19] [20]
[21] [22] [23]. The use of GNNs as simulators is particularly important because graphs
are data representations that are highly suitable for a wide range of real-life applications
beyond cellular systems. While it is possible to use classical Multi-Layer Perceptrons
(MLPs) for graphs, they lack permutation equivariance which makes them require expo-
nentially more data (O(n!)) compared to GNNs [24] [25]. Moreover, it was also shown that
GNNs are generally more efficient than classical simulators when dealing with complex
phenomena [26].

3.2 Graph Neural Networks
Graph Neural Networks are neural networks specifically designed for graphs and were
first introduced in the mid to late 2000s [27]. Over the years, a variety of GNN archi-
tectures have been developed. Initially, most implementations relied on recurrent GNNs.
Recurrent GNNs recursively apply layers with shared weights on a graph. Later, other
architectures emerged, such as ConvGNNs, graph auto-encoder [28], and spatial-temporal
graph neural networks [29]. For a comprehensive overview, readers can refer to the review
by Wu et al [30].

ConvGNNs are similar to Recurrent GNNs. The main difference is that they do
not share the weights across the different layers. In this work, the focus is exclusively on
message-passing GNNs [31]. Message-passing GNNs are a type of spatial ConvGNNs that

8



can be viewed as a specific case of graph networks [24] without graph properties. It is
also possible to give additional symmetries to the GNNs [32] [33] but this is not explored
here.

Message-passing GNNs

This work relies on message-passing GNNs to predict cell dynamics. Message-passing
GNNs consist of an edge model ϕe and a node update model ϕv. The edge model ϕe is
used to model the interaction between the different nodes in the graph, while ϕv updates
a given node based on the aggregated results of ϕe. In the notation used in this work,
vi denotes the features of the node i, e(i,j) represents the features of the edge between
nodes i and j and Ni is the set of nodes that have edges with node i. A GNN layer
then produces the updated features v′

i for node i according to the equation illustrated in
Figure 3.2.

v′
i = ϕv

(
xi,
⊕
j∈Ni

ϕe(vi,vj, e(i,j))

)
(3.2)

Figure 3.2: Illustration of a message passing GNN. First, messages are computed using
ϕe and then node features are updated by ϕv and the agglomerated messages.

In this paradigm, the nodes have access to the information of their direct neighbours.
However, it is common practice in the literature to apply multiple message-passing layers
consecutively, allowing nodes to access information from more distant neighbours [24].
While this can lead to better performances, it can also make the network less inter-
pretable.

9



3.3 Physics-informed Neural Network
Given that we are dealing with physical systems, it is beneficial to incorporate our knowl-
edge of physics into the neural network through various inductive biases. This can be
done in multiple ways.

A popular approach is to ensure sparsity in the model, leveraging the principle of
Occam’s razor. Occam’s razor is a philosophical principle that recommends using the
simplest possible models to explain natural phenomena. For example, it was shown that
messages containing the same number of elements as the number of spatial dimensions
have better generalization performances [34]. Similarly, Cranmer et al [35] applied sparsity
regularization on the messages in the edge model ϕe of a single-layer GNN to impart
physical meaning. This work is greatly inspired by this paper.

Another potential strategy is to enforce the action-reaction principle. Since this
study only considers closed systems, one approach could be to ensure that the sum of the
interactions across all nodes equals zero. However, this approach is less restrictive than di-
rectly enforcing that opposite messages are opposite (ϕe(vi,vj, e(i,j)) = −ϕe(vj,vi, e(j,i)))
[36].

There are still several ways to incorporate physical principles when working with
GNNs. One method is to enforce physical symmetries through data augmentation or
feature selection. For instance, it was shown that using relative positional information
instead of absolute ones enhances performances [16]. Other notable examples consist
in forcing the neural network to follow the Lagrangian or Hamiltonian formalism [37]
[38].

10



Chapter 4

Architecture choices

This chapter presents the different neural network architectures employed in this work,
along with the motivations behind the design of the features and the training proce-
dures.

4.1 Neural networks
This work focuses exclusively on message-passing neural networks. Specifically, three
distinct neural network architectures are examined: an Interaction Network [19] and two
Encoder-Process-Decode (EPD) architectures with different GNN layers [16]. One of the
EPD architectures employs Graph Attention Networks (GaT) [39], while the other relies
on a GNN layer similar to the Interaction Network.

All of these neural networks adhere to the structure described in equation 3.2 where
the aggregation operation (

⊕
) of the messages is implemented as a summation (

∑
).

Moreover, the update model in these architectures processes a concatenation of the
summed messages and the node features.

Interaction network and Baseline

The interaction network was the first GNS to scale up to real-world problems. It
is designed as a single-layer message-passing GNN with no encoder nor decoder. In this
implementation, the edge model ϕe and the update model ϕv are 3-layer MLPs with leaky
ReLU activation functions. As recommended in the literature, the weights of both these
MLPs are initialized following He initialization [40]. The specificity of this implementation
is that a normalization layer is used right after the concatenation of the messages and the
node features. In this case, by denoting the layer normalization with LN equation 3.2
becomes.

v′
i = MLP1

θ

[
LN

{
concat(xi,

∑
j∈Ni

ϕe(vi,vj, e(i,j)))

}]
(4.1)

By default, messages with 128 features are used in this project. However, inspired
by previous work [34], which demonstrated improved generalization performance when
using the same number of features as spatial dimensions, an alternative version of the
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Interaction Network with messages of size 2 is also implemented. This variant is referred
to as the baseline network.

Encode-Process-Decode GNNs

Motivated by previous promising results [16], two different EPD architectures are
considered. As depicted in Figure 4.1, EPD GNNs consist of a sequence that includes
an encoder, multiple rounds of message-passing layers, and a decoder applied to a graph.
The features obtained by the kth GNN layer within the processor are passed as inputs to
the subsequent GNN layers. A skip connection is also incorporated into the architecture
to reach better gradient backpropagation. In this architecture, both node and edge fea-
tures are encoded using 3-layer MLPs with leaky ReLU activation functions. As in the
interaction network, He initialization is used to initialize the weights [40].

One of the investigated EPD architectures relies on the same architecture as the
Interaction Network for the GNN layers of the processor. This architecture will be referred
to as EDP-GNN.

The other network relies on attention. Since its introduction [41], attention has had
large repercussions in many fields of deep learning. It is then only natural to assess
how effective it is with graphs. The last architecture relies on graph attention networks
(GaT) [39]. A GaT is a specific kind of message-passing GNN that employs the attention
mechanism to weight the different edges connected to each node. The GaT layer used in
this project are implemented in the following manner:

v′
i =

∑
j∈N (i)

αi,j ·Θtvj (4.2)

with αi,j =
exp

(
a⊤LeakyReLU (Θsvi +Θtvj +Θeei,j)

)∑
k∈N (i)

exp (a⊤LeakyReLU (Θsvi +Θtvk +Θeei,k))
(4.3)

In this expression, Θs, Θt and Θe are matrices that represent the importance of the
source node, the target node, and the edge, respectively. The term a denotes a linear
layer.

Attention mechanisms can be particularly beneficial in this context. They can provide
a means to access the weights of different edges, which should intuitively correlate with the
strength of interactions between cells. Previous research has investigated the use of Graph
Attention Networks in cellular migration models [4]. In this work, a similar architecture
as the one developed in the previous research is developed to compare the performance of
attention mechanisms against more traditional models. The only difference between this
model and the one developed in [4] is that this one does not rely on transformers for the
encoding and the decoding.
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Figure 4.1: Architecture of an Encoder-Processor-Decoder GNN. First, the edges and
the nodes are encoded into latent features by using two MLPs. Then, the newly
obtained graph is sent in the processor. The latent nodes are then updated by a

succession of GNN layers that also take as input the latent edges. Finally, the latent
nodes are sent through another MLP that is used to decode them into displacements.

4.2 Features
The graph used as input by the different neural networks is constructed as follows. Nodes
are obtained by concatenating the 4 previous velocities. Edges, on the other hand, are
constructed by concatenating all the features that could influence physical interactions
between cells such as the distance between the two cells, the cosine and the sine of the
line linking both cell centres and the cell radius. The graphs that we are dealing with are
not complete, edges are only created when the distance between two cells is smaller than
six.

The rationale behind this choice of edge features is to eliminate the need for node
features in the edge model ϕe. This approach significantly simplifies the architecture
and the symbolic regression part of this project. This decision can also be intuitively
motivated. Indeed, it is rare for interactions to depend on the speeds of the particles.
Therefore, it should be fine to get rid of them. It should be noted that the cell radii are
identical in our simulations. Initially, the goal was to start by developing a model that
handles identical radii and then extend it to the general case. However, due to timing
constraints, only identical radii are considered in this work.
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It is important to note that the absolute positions of the cells are not represented
in the graph. Previous research has demonstrated that preserving relative features can
enhance the performance of the model by forcing the model to yield functions that au-
tomatically verify translation invariance [16]. Unfortunately, applying a similar strategy
to enforce rotational invariance is more tricky. An alternative solution would be to apply
some specific data augmentation but such techniques were not necessary in this work.
The only data processing step applied during inference involves sorting the edges of the
graph, which is done for algorithmic considerations.

...

Figure 4.2: Illustration of the node
features and the edge features.

Figure 4.3: Illustration on the creation
of the edge features.

4.3 Training:
Two main strategies can be used to train neural networks for rollout simulations: training
on one-step transitions or directly optimizing the rollout simulation. Each approach has
its own drawbacks.

Training on one-step transitions ensures that the neural network always receives ex-
act ground truth inputs during training. However, during inference time, the network’s
predictions may deviate from the ground truth, causing errors that propagate and accu-
mulate over time. This error accumulation significantly affects the predicted trajectories.
A common solution to mitigate this issue is to add Gaussian noise to the network’s fea-
tures during training. Even though it is typical to apply a uniform standard deviation
across all features, it was shown to lead to large relative errors in this case. There-
fore, 0 mean Gaussian noise with different standard deviations for each feature is used
in this work. More precisely, velocities are perturbed with Gaussian noise characterized
by standard deviations of 1% of their absolute value, trigonometric features by standard
deviations around 0.02 (corresponding to a 3-degree error 99% of the time) and distances
by a standard deviation of 0.02.

The challenge with directly optimizing rollout simulations is that the neural network
may learn the mean trajectory. To address this, one can either weight the transitions
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differently or incrementally add transitions while training. In this work, the latter was
chosen. Specifically, the number of steps is increased by one every two epochs until a
maximum sequence length of five transitions is reached.

The various architectures are trained using the Adam optimizer [42] to minimize the
mean square error between the predicted speeds and the ground truth values. Addition-
ally, a regularization loss Lreg can added to the prediction loss Lpred to enforce sparsity
in the messages. The total loss L is then the linear combination of these two losses and
the weight regularization loss Lw.

L = α0Lpred + α1Lreg + α2Lw (4.4)

with



Lpred = 1
N

∑
i∈{1:Nv}

|v′
i − v̂′

i|

Lreg = δregu
1
Ne

∑
k∈{1:Ne}

|e′k|

Lw =
∑

l={1:Nw}
|wl|2

(4.5)

and α0 = 100, α1 = 0.001, α2 = 0.00001 (4.6)

where δregu controls when the L1 regularization is applied, and Ne, Nlayers and Nw

respectively denotes the number of edges, the number of layers in the GNN and the
number of weights in the architecture.

Moreover, boundary conditions are manually enforced in such a way that the model
can solely focus on physics. It is important to emphasize that the decision not to model the
boundary is crucial for eliminating absolute positions from the network’s features.

In this work, the one-step learning method is applied across all networks. Training is
conducted over 50 epochs using transitions from 200 simulations of 1000 timesteps. The
different methods are also trained by optimizing k-step trajectories. Different results are
available in the annex such as an ablation study. The training process utilizes batches of
32 transitions and a learning rate of 0.001 with an exponential decay relying on a γ = 0.9.
Various training losses are available in the annex.
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Chapter 5

Experiments

In this chapter, the different models are assessed. To do so, 20 rollout trajectories of 150
steps are generated with the differents models, are compared with the ones obtained with
the ground truth simulator.

The different models have been chosen following the ablation study realized in the
annexe. Specifically, no dropout was, it was also observed that using the inductive bias
that forces opposite messages to be opposite was not useful.

More specifically, it is observed in the ablation study in the annex that the results
for the one-step transitions are close to the ones corresponding to rollout training. In the
following, only models obtained by rollout training are used.

Analyzis

Examples of rollout simulations are available online1. It can be observed that the sim-
ulations get very different from the ground truth ones after a few iterations. Such a
behaviour is expected and quantitative experiments are necessary to assess the quality of
the simulation trajectories.

It is then necessary to compute quantitative measurements of the neural network
performances to assess its quality. First, the quality of 1-step transitions is assessed. The
results show that the methods are very accurate concerning one-step transitions. However,
neural network simulators always produce errors that scale exponentially with time. That
is why, it is also important to assess the quality of the rollout trajectories τG with different
statistics.

Important results are available in Table 5.1. More precisely, this table contains the
mean absolute error. This loss was further decomposed into norm and angle errors. The
table also contains MAE averaged. While previous metrics dealt with one-step transitions,
this one is more oriented with assessing trajectories. It is obtained by computing the mean
L1 errors between the ground truth trajectories and the simulated one. In this work, this
metrics is computed by generating 15 steps.

1To see the different rollout simulations, please refer to this URL https://youtube.com/playlist?
list=PLzXmrzZW9EJ4S2wFZHaIhKHtkzi-CaUxG&si=KzlSAv-5vAaapLyc.
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Errors Angle Error Norm Errors List MAE averaged
Baseline 0.00718± 0.00649 0.305± 0.305 0.00796± 0.00831 0.134± 0.00479
IN 0.00216± 0.00242 0.0514± 0.0514 0.00254± 0.00299 0.0485± 0.00216
EPD-GNN 0.000179± 0.00107 0.0338± 0.0338 0.0000563± 0.000960 0.0233± 0.00243
EPD-GAT 0.000319± 0.00102 0.0528± 0.0528 0.000215± 0.000801 0.0280± 0.00214

Table 5.1: Evaluation of the different models for non-noisy data. It can be observed that
EPD-GNN reaches the best performances compared to the other models.

Errors Angle Error Norm Errors List MAE averaged
Baseline 0.00665± 0.00673 0.253± 0.253 0.00668± 0.00862 0.0958± 0.00370
IN 0.00144± 0.00180 0.127± 0.127 0.00140± 0.00206 0.0361± 0.00262
EPD-GNN 0.000918± 0.00134 0.135± 0.135 0.000369± 0.00127 0.0320± 0.00266
EPD-GAT 0.000848± 0.00115 0.112± 0.112 0.000526± 0.000915 0.0277± 0.00228

Table 5.2: Evaluation of the different models for noisy data. It can be observed that
EPD-GNN reaches the best performances compared to the other models.

Tables 5.1 and 5.2 show that smaller networks are outperformed by larger ones. More
precisely, it is observed that the EDP-GNN has the best performance when dealing with
non-noisy data and the EPD-GaT is the best for noisy datasets. It can also be observed
that the baseline model performs significantly worse than the interaction network.

It can also be observed that models trained on noisy datasets do not have significantly
worse performances compared to the ones trained on non-noisy data. This may seem a bit
counterintuitive. A plausible explanation is that, as shown in Figure 5.9 and Figure 5.10,
the different models tend to underestimate the predicted speeds. This is possibly an effect
of the initial conditions. Indeed, by forcing particles to be distributed following a grid in
pairs, there is a large portion of the dataset that is characterized by cells having only a few
numbers of interactions. This lack of interaction partly explains the small velocities in the
dataset whose associated data distributions can be observed in Figures 5.3 - 5.4. Moreover,
applying multiple rotations to the speed can make it stay closer to the initial positions
which would then explain the better results with noisy data. Another element to this
explanation lies in the choice of parameters of the simulations. Indeed, by selecting this
set of parameters, the resulting noise is rather small with only rotations of a few degrees.
Such a small amplitude of noise does not affect the performances significantly.

The impact of the speed on the error can also be studied with Figures 5.1 - 5.2. These
figures show that the neural network performs better when dealing with slow cells with
relative MAEs smaller than 1%. This behaviour is expected considering that, as shown
in Figures 5.3 and 5.4, there are significantly more data points in this range of values.
However, it is still possible to observe a slight upwards tendency in the errors when the
norm is smaller than 0.12. One possible explanation is smaller speed norms keep cells
close.
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Figure 5.1: Evolution of the error with
respect to the norm of the speed for the

non-noisy data.

Figure 5.2: Evolution of the error with
respect to the norm of the speed for the

noisy data.

Figure 5.3: Speed norm distribution for
non-noisy data.

Figure 5.4: Speed norm distribution for
noisy data.

While the behaviour of the neural networks with respect to the speed is independent
of the architecture, the relation with the angles is a bit more complicated to analyse as
it depends on the different architecture choices. Two examples are available below. This
might indicate that the networks needed more training time and did not converge to the
optimal configuration.
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Figure 5.5: Evolution of the error with
the degree of the cell. In this case

(EPD-GaT), a slight increase can be
observed.

Figure 5.6: Evolution of the error with
the degree of the cell. In this case

(EPD-GNN), a decrease of the different
values can be observed

MSE rollout

Various other statistics can be computed to further compare the models and the
ground truth simulations. Figures 5.7 and 5.8 show the evolution of the mean square
error between the rollout trajectories of the different models and the ground truth. It
can be observed that. The different results are aligned with the Tables 5.1 and 5.2. The
only interesting observation is to realize that the rollout MSE of the EPD-GNN increases
faster than the one of the EPD-Gat which leads to the later becoming better after around
80 steps.

Figure 5.7: Rollout MSE when dealing
with non-noisy data.

Figure 5.8: Rollout MSE when dealing
with noisy data.
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Velocities distribution

A simple way to assess if the simulations are close to the ground truth ones is to
observe if the velocities are close to the ground truths. This can be done by computing
histograms representing the relative speed srel of the different cells. In this context, the
average speed is computed by applying the mean over all the timesteps of the speeds of
a cell.

Denoting by S the number of simulations, T the number of timesteps within each
of them and i the index given to each cell, the following summary statistics are intro-
duced.

srel =
|s|
⟨s⟩

⟨s⟩ =
T∑
t=1

|vi(t)| (5.1)

where || denotes the norm of the speed vector.

It is then possible to plot the histograms of the magnitude srel and the projections of
srel according to the x and y axes. Please refer to the annexe to observe the histograms
of the projections.

These results show that the models tend to underestimate the speeds as there is a
spike at srel = −2 and not a lot of values beyond two. It can also be observed that the
interaction and the EPD-GaT are the best models here.

Figure 5.9: Speed norm distribution for
non-noisy data.

Figure 5.10: Speed norm histogram for
noisy data.
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Mean square displacement

Analyzing dynamics is often performed by computing the different moments. Mo-
ments provide a measure of how far particles have moved from their initial position after τ
timesteps. The second moment which is referred to by mean square displacement (MSD)
is commonly used in the literature. It helps describe the kind of diffusion that is experi-
enced. In normal diffusion, the MSD increases linearly with time, while in subdiffusive or
superdiffusive processes, it respectively increases slower or faster.

MSD(τ) =
1

S

1

N

1

T − τ

S∑
s=1

T−τ∑
t=1

N∑
i=1

∣∣∣x(s,i)
t+τ − x

(s,i)
t

∣∣∣2 (5.2)

Figure 5.11 shows the MSD for the different models. In this case, angle corrections
are small enough not to affect the MSD, resulting in line graphs for all the models. Since
it is complicated to assess the difference between the different models, it is necessary to
compute the distance between the curves and the ground truth one. This is realized by
computing the MAE between them. Nevertheless, it has to be highlighted that it is not
always good practice to compute standard distance metrics when dealing with time series
data as they only assess the difference between values and do not consider the trends. In
this case, it is acceptable since the trends are qualitatively considered to be similar. This
technique is repeated with the other statistics.

Figure 5.11: MSD for different
trajectories generated by the different

models for non-noisy data. Most
statistics are close to the ground truth.

Figure 5.12: MSD for different
trajectories generated by the different
models for non-noisy data. Similar
results are observed compared to

non-noisy measurements as noise does
not have such an impact.
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Model MSD (non-noisy) MSD (noisy)
Baseline 12.28 ± 16.11 15.11 ± 19.37
IN 0.40 ± 0.57 0.00017 ± 0.00015
EPD-GNN 0.39 ± 0.61 1.64 ± 2.45
EDP-GAT 0.24 ± 0.31 0.25 ± 0.25

Table 5.3: MSD measurements of the different models (MAE from the ground truths).

Self-intermediate scattering function

The next statistic is the self-intermediate scattering function along the x dimension.
The intermediate scattering function is defined as the Fourier transform of the Van Hove
function and describes the interference between pairs of particles. The self-intermediate
scattering function describes how the position of a cell at a timestep t correlates with its
future position at timestep t + τ . On top of particle simulations, this statistic is widely
used to have a better understanding of liquid or glassy materials [43] [44].

SISF (q, τ) =
1

S

1

N

1

T − τ

S∑
s=1

T−τ∑
t=1

N∑
i=1

exp
[
iq ·

(
x
(s,i)
t+τ − x

(s,i)
t

)]
(5.3)

with q =
2π

R
·
[
1

0

]
(5.4)

In the different results that are obtained, an oscillatory behaviour can be observed.
This is the result of the initial conditions of the simulations that place the different cells
in a grid-like manner. It can be observed from Figure 5.13 and 5.14, that the EPD-GAT
and the EPD-GNN are closer to the ground truth which is another indicator that these
are the best models.

Figure 5.13: Intermediate self scattering
function for non-noisy dataset.

Figure 5.14: Intermediate self scattering
function for noisy dataset.
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Model SISF (normal) SISF (noisy)
Baseline 0.019 ± 0.020 0.0162± 0.0166

IN 0.0063 ± 0.0099 0.00795± 0.0105

EPD-GNN 0.0015 ± 0.0023 0.000915± 0.00141

EDP-GAT 0.00074 ± 0.0012 0.000902± 0.000981

Table 5.4: l1 Performance Metrics for Different Models (MAE from the ground truths).

Radial Distribution Function

Another interesting statistic is the radial distribution function rdf(x). This statistic
describes the density of cells from a specific one as a function of the distance. More
precisely, it is a histogram whose values are proportional to the number of cells found at
a distance r from another one.

Figures 5.15 and 5.16 show that it is more likely to encounter a cell around a distance
of 2 which makes sense as this is the position where the interaction gets equivalent to
0.

Figure 5.15: Radial distribution function
of the simulations with respect to the

ground truth one for non-noisy
simulations.

Figure 5.16: Radial distribution function
of the simulations with respect to the

ground truth one for noisy simulations.

Model RDF (normal) RDF (noisy)
Baseline 7.26± 22.2 7.97± 24.8

IN 8.30± 19.8 10.5± 25.4

EPD-GNN 6.81± 23.4 6.62± 21.5

EDP-GAT 7.94± 23.5 7.09± 22.0

Table 5.5: L1 Error Metrics for Different Models (MAE from the ground truths).

23



Overall, the models achieve very good performance on one-step transitions, with the
baseline performing slightly lower. However, when assessing the statistics and rollout
simulations, it can be observed that the larger the models, the better the results.
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Part II

Model recovery using symbolic
regression
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Chapter 6

Symbolic regression

This chapter introduces symbolic regression. The different kinds of symbolic regression
methods are briefly introduced. Since this work utilizes genetic algorithms, specifically
PySR, to perform symbolic regression, a more detailed explanation of this algorithm is
provided subsequently.

6.1 Introduction
In recent decades, the performances of neural networks have steadily improved with their
size, reaching state-of-the-art results on a wide range of problems and even surpassing
humans in certain tasks [45] [46]. Despite these impressive achievements, neural networks
are not perfect. One significant drawback is that they are black-box models which means
that it is complicated to understand how they relate inputs to outputs. This lack of inter-
pretability is particularly concerning in fields where understanding the decision-making
process is crucial. For example, in high-stakes areas such as medicine, interpretability
is essential since errors can have severe consequences. As a result, neural networks that
do not provide performance guarantees are unlikely to be adopted, regardless of their
accuracy. Various techniques, such as saliency maps, have been developed to mitigate the
black box issue.

This work demonstrates that symbolic regression can also be used to tackle this is-
sue. Symbolic regression is a machine learning task that focuses on deriving symbolic
mathematical expressions from data. The core idea is to leverage the performances of
neural networks in high-dimensional spaces while extracting simple equations that best
explain the behaviour of the network. Beyond enhancing interpretability, obtaining sym-
bolic models has the potential to improve generalization performance [47] and could also
uncover new insights that enable humans to develop a deeper understanding of complex
phenomena.

In this work, symbolic regression is employed for model discovery. More precisely,
symbolic regression is applied to the messages of the interaction network with l1 regular-
isation to extract the algebraic equations of the interactions.
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6.2 Symbolic regression methods
Model rediscovery of physical systems using symbolic regression is a current task that was
introduced in the 1970s [48]. Since then, symbolic regression has reached other fields and
various algorithms have been introduced. It is possible to divide them into four categories:
regression-based, expression-tree-based, physics-inspired and mathematics-inspired meth-
ods.

First, regression-based methods focus on optimizing a set of parameters that weight
different predefined functions [49]. Expression-tree are very different from this first cat-
egory. This kind of method relies on a tree structure to represent the equations. As
illustrated in Figure 6.1, the nodes of the tree are either operators, variables or constants.
These methods then make use of genetic algorithms [50], reinforcement learning [51] or
other methods to explore the space of possible expression trees. Finally, physics-inspired
and mathematics-inspired methods make use of specific physical or mathematical notions
to simplify the symbolic regression issue [52]. A notable example of a physics-inspired
method is AI-Feynman [53] [54] which utilizes concepts such as symmetry, dimensional
analysis or Occam’s razor to explore the hypothesis space.

Figure 6.1: Example of expression tree "x+ sin(2× x)". In this expression, "sin()" is
an unary operator and {×,+} are binary operators. The complexity of this equation is

6 because 6 nodes are in the expression tree.
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6.3 Genetic algorithms and PySr
Genetic algorithms have demonstrated strong performance compared to other methods
[55] and are therefore employed in this part of the work. More precisely, the open-source
and user-friendly package PySr [50] is utilized.

PySr employs an evolutionary-inspired tournament selection algorithm to perform
symbolic regression. Different populations of expression trees evolve simultaneously. At
each iteration, the best individuals are selected by computing the accuracy of the different
equations in the population. Additionally, the algorithm aims to find the best equations
at each level of complexity, where complexity is defined as the number of nodes in the
expression tree. Moreover, the selection process is probabilistic. The best individuals are
selected according to some probability p. If they are not selected, they are discarded and
the process starts again with the remaining of the population. On top of these classic
steps, PySr relies on simulated annealing to speed up the process.

Once the fittest individual is selected, a modified copy replaces the eldest individual
in the population. These modifications are based on three processes that can be performed
simultaneously: mutation, crossbreeding and migration. Mutation consists in replacing
a node with another one. Crossbreeding swaps an entire subtree of one expression tree
with a subtree from another equation. Finally, migration involves transferring the best
equation from one population to another.

Moreover, PySr apply other improvements to the typical genetic tournament selec-
tion. PySr is based on an Evolve-Simplify-optimize loop. Once multiple iterations of
evolution are performed, the algorithm simplifies the different equations by using a set
of algebraic equivalences. It also tries to further optimize the constant by using multiple
iterations of BFGS [56].

However, it is important to acknowledge that genetic algorithms like PySR are not
without limitations. While they generally perform well in practice, the results can be
difficult to reproduce. Indeed, these algorithms struggle when dealing with very large
hypothesis spaces and are highly sensitive to randomness or hyperparameters [57].

PySR has been applied across various domains, including astrophysics [58], particle
physics [59], and climate models [60]. Research using PySr to interpret neural networks
often builds on the work of Cranmer et al [35]. In the paper, the authors decided to apply
l1 regularisation to the messages. Then, they only keep the most important message
features and discover that the messages are linear transformations of forces. This thesis is
also greatly inspired by this paper. Some follow-up work has been realized. For instance,
PySr was also used to recover the equation of gravity and the masses of the celestial
bodies in a 31-body version of the solar system [36].
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Chapter 7

Experiments

This chapter contains the experiments conducted using symbolic regression. First, the
different messages are interpreted. Next, symbolic regression is applied to derive the
equations of the interactions. Finally, an extension of the current technique based on
general additive models is proposed to obtain more easily interpretable models.

For these experiments, data is generated by simulating 200 randomly initialized roll-
out simulations of 30 steps with a GNS. This limited number of steps is chosen to ensure
that the behaviour of the neural network remains consistent with the data it was trained
on. Specifically, the interaction network implementation that does not use dropout and
the one-step training procedure are used in this section. The different models are obtained
by taking the ones that perform best in the 1-step transition after 20 epochs.

7.1 Interpreting messages
In previous sections, the Interaction Network was introduced with an l1 regularization on
the messages. This regularization allows them to be sparse. It means that only a small
part of the features of the messages should bear most of the information. As illustrated in
Figure 7.1, it is possible to compute the standard deviation of the different features with
respect to different inputs to uncover which ones are the most important. It is current to
only have 2 features that change significantly more than the others. This result goes in
the same direction as previous work [34] [35] that argued that the most optimal dimension
to transmit the information is the same as the number of spatial dimensions. However, it
is not clear in practice that this is always the case. Indeed, many counter-examples were
found when training different neural networks. When related papers [35] tried to apply
this method to dark matter, a counter-example occurred with a single feature that was
significantly different from the others. It remains complicated to predict the number of
elements that will bear most of the information in the messages of GNNs.
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Figure 7.1: Standard deviation of the
features in the message. It can be
observed that 3 elements change

significantly when encountering different
inputs but that only 2 of them are

significantly larger than the rest. As
assumed in Cramner et al [35], it is

current to reach a size that is the same
as the spatial dimensionality.

Figure 7.2: Scatter plot of the ground
truth interaction and first message fea-
ture. It can be observed that the mes-
sage features are linear transformations
of ground truth interactions.

Various observations can be realized by observing the evolution of the messages with
respect to the different inputs. Figure B.7 shows that the different messages are very close
to the ground truth interaction forces. Previous works [35] showed that the messages are
linear transformations of the forces when dealing with systems that respect the second
Newton’s law. Moreover, this paper deals with a simple gravitational system where no
active force components appear, which means that only their edge model ϕe contains
semantic information. This seems to indicate that their task is simpler than the problem
tackled here.

However, it is possible to show that the messages mij are still linear transformations
of the ground truth in this case. The related mathematical demonstrations are available
in the appendix. This is also empirically verified by obtaining the scatter plots of the main
messages with respect to the ground truth interactions (Figure 7.2) and by computing
the R2 score of the corresponding linear regression, as realized in Table 7.1.

Another interesting observation from Figures B.7 and 7.4 is that message features
with a smaller standard deviation than the two larger ones still embody interesting in-
formation about the messages. For instance, it is possible to obtain other rotations of
the forces or even the magnitude of the force. However, among the different training
performed for this section, these kinds of messages would not always appear. Trying to
use these additional message features or understanding the reasons behind the apparition
of the interaction norm in the messages could be some further work.

Moreover, the obtained messages are compared with the ones from the baseline model.
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As expressed in Table 7.1, the baseline model has worse performances. This result is
possibly linked to the winning lottery ticket hypothesis [61]. Having larger output spaces
allows for more possible well-initialized weights that ease training. This might also be
part of the explanation why dropout leads to worse results for this model. It can also be
observed in Table 7.1 that using smaller l1 regularization leads to better messages.

Figure 7.4 shows that networks that are trained on the noisy dataset are still able
to uncover linear transformation of the different messages. On the other hand, as soon
as dropout is introduced in the model, a completely different behaviour is observed. As
Figure B.8 indicates, the standard deviation of the message features gets very low when
the distance between cells is fixed. While the equations of the different message features
could be obtained, the physical interpretation of these is still complicated. A possible ex-
planation is that using dropout with l1 regularization leads to instabilities during training
and degrades the results.

Figure 7.3: Impact of the distance on the most relevant features of the messages. It can
be observed that these elements seems to be very similar to each other which seems to

indicate that some information is repeated in the different elements.
(b) Ground truth evolution of the interactions with respect to the distance. The
messages contain scaled rotation of the messages as the R2 score is close to 1.

31



Figure 7.4: Impact of the distance on the most relevant features of the messages. It can
be observed that these elements seems to be very similar to each other which seems to

indicate that some information is repeated in the different elements.
(b) Ground truth evolution of the interactions with respect to the distance. The
messages contain scaled rotation of the messages as the R2 score is close to 1.

Model R2 score (non noisy) R2 score (noisy)
IN (l1 = 1) 0.781 0.972

IN (l1 = 0.01) 0.999 0.988

IN (l1 = 0.001) 0.999 0.995

IN (l1 = 0.0001) 0.999 0.999

Baseline 0.103 0.09651

Table 7.1: Table of R2 score for different architecture. These results seem to indicate that
l1 values have a small influence on the R2 score. As soon as the values are not too large,
the results are similar. Compared to these results, the R2 scores of the baseline model
are smaller than the other ones.
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7.2 Symbolic regression on messages
PySr is now used to fit equations to the two most significant features of the messages.
The parameters were chosen such that pySr performs efficiently and accurately. Genetic
algorithm struggles when the hypothesis space of expression trees is too large. That is
why different parameters such as the number of possible operators is kept as small as
possible. Another parameter that should remain small is the complexity which is the
number of nodes within the expression tree of an equation (cfr. Figure 6.1).

The algorithm is applied on the same edges {r , cos(θ) , sin(θ) , R1 , R2} as in the
first part of this master thesis. It is important to note that the inputs that are chosen for
symbolic regression are important as they will impact the complexity of the equation. For
instance, taking the two components of the vector between the cells instead of the current
configuration would have significantly increased the complexity of this task. Regarding
its outputs, PySr tries to yield equations that are accurate while remaining as simple as
possible. To do so, the final equation is selected by maximizing the score which is the
drop of mean square error (MSE) per increase in complexity. This idea of simplicity and
accuracy once again is in echo with Occam’s razor.

score =
|δ log(MSE)|
δ complexity

(7.1)

Unfortunately, since the interaction force between cells is a piecewise linear function,
the total complexity is large enough to prevent retrieving the exact solution. Equations
that are obtained in such a case can be observed below. It has to be noted that it is already
possible to find the limits of the different segments of forces with this method.

m0 =sin(θ)× 1.4444948× (0.31420892 + 0.9930598)

× Piecewise
(

0.0104460325, if − 0.3825599r − 0.3525599 + 1.5175834 > 0

0.0, otherwise

)
× (r + r − 2.1429582− 2.1429582 + 0.31420892)× 0.7894803

m1 =0.011282312× 1.8461835× cos(θ)

× Piecewise
(

r − 1.2624552− 0.6207398, if 0.6907398r − 2.1437254 < 0

0.0, otherwise

)

To tackle this issue, it is possible to simplify the task and apply symbolic regression
on each segment of the forces. Indeed, by inspecting the different messages in Figure B.7,
the different segments can be observed. The idea is then to apply symbolic regression on
the parts where the behaviour of the envelop significantly changes {r = 2, r = 3, r = 4}.
It has to be noted that the point r = 2 results from the change of sign in the norm of
the forces. Observing the higher-order messages could give some insights on the fact that
they should not be used to define segments. To make sure that no data points outside the
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expected segment are considered, some security margin κ = 0.1 is used to further restrict
the domains.

The different tables are available in the annexe and it was indeed found that each
segment is a linear function (m ≈ a · (r + k) · cos(θ) or m ≈ b · (r + c) · sin(θ)) which is
indeed the good expression.

7.3 General additive models and symbolic regression
As previously discussed, applying this method to derive interactions with highly complex
equations poses significant challenges. To address this issue, the following section intro-
duces an approach aimed at mitigating these difficulties. This remains a proof of concept
and further work on this method is necessary.

The core idea consists in decomposing the output of the edge model ϕe into a weighted
combination of basis functions in a similar manner to general additive models (GAM)[62].
However, in this method, the weights are generated by a neural network. The goal is to
produce simple weights that are independent of most inputs, facilitating easier analysis
through symbolic regression compared to directly analyzing the overall interaction.

This method can be motivated using physical arguments. In physics, it is common to
encounter specific types of functions. For example, quadratic potentials are more prevalent
than cubic ones. Consequently, it might be feasible to model complex interactions by
combining a limited set of functions.

Several works have share similar considerations. For instance, SinDy [63] and linear
symbolic regression [49] also try to sum different basis functions. The difference between
this method and such techniques is that in this case, weights are outputs of a neural
network instead of simple coefficients and that there is no ground truth known before-
hand.

As illustrated in Figure B.13, the edge model ϕe within the GNN incorporates an
MLP that computes the weights of the basis functions. These weights are then applied
to linearly combine the basis functions, ultimately producing the messages passed within
the GNN. To increase the expressiveness of the neural network, it is beneficial to generate
high-dimensional messages. Therefore, instead of computing a single weight for each of
the K basis functions, D will be computed. In this project, the polynomial basis with a
degree up to 2 is used.

Moreover, it is crucial to apply L1 regularization to both the messages mi,j and the
weights w during training. As shown in previous sections, this regularization technique
encourages sparsity and allows only a handful of messages and weights will bear most of
the information as in the previous sections and will limit the number of equations that
has to be found.
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Let w ∈ RD×K denote the weights produced by the MLPθ with parameters θ. The
edge model of this architecture can be expressed as follows:

w = MLPθ(eij) (7.2)

mi,j =
K∑
k=1

wkfk (7.3)

Figure 7.5: Illustration of the edge model for GAM symbolic regression. The edge model
ϕe relies on an MLP to generate the weights that scale the basis functions as expressed

in equation 7.3.

Application

This method is now applied to the same scenario as before. The first step involves
assessing the impact of the different messages by calculating their standard deviations. For
this purpose, a modified version of the Interaction Network with messages of dimension
128 and incorporating the action-reaction inductive bias (mij = −mji) is used. The l1
regularization of the weights is scaled with a constant factor of 10−4. Non-noisy data is
used as the default.

It can be seen in Figure 7.6 that two message features have standard deviations that
are significantly larger than the others. The feature corresponding to the largest standard
deviation is studied below.
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Figure 7.6: Standard deviation of the messages of the GAM with 128 message features.
It can be observed that 3 features have standard deviations significantly larger than the

other ones.

Figure 7.7 displays the relation between the different weights of the message with the
highest standard deviation and the distance. Several key observations can be made from
this figure.

Firstly, these plots suggest that the variance of the weight values is small when the
distance between cells is fixed. This indicates that it is acceptable to assume that weights
only depend on the distance.
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Figure 7.7: Evolution of the weights of the neural network with respect to the distance.
Examples of other messages are available in the annex.
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Next, as anticipated, the weights are simpler to analyze than the interactions from
Figure B.7. This can significantly ease symbolic regression. In this scenario, many of these
weights can even be approximated using piecewise linear functions. This is reassuring as
this is similar to the ground truth. It is also interesting to note that, as in the previous
section, the neural network successfully learned the boundaries between segments.

It is important to recall that Radius1 = Radius2 = 1 in all the simulations. Inter-
estingly, the network maintains symmetry with these inputs, as the related graphs are
qualitatively similar and share comparable orders of magnitude. However, this symmetry
introduces a challenge in the analysis, as it allows for the combination of terms in equa-
tion 7.3. For instance, the weights of cos(θ), sin(θ) and r can be scaled by a factor of
three.

Furthermore, it can also be noted that the weights corresponding to r × cos(θ) and
cos(θ) are respectively very similar to those of r × sin(θ) and sin(θ). Given that these
are angular terms, this behaviour is expected for a model of linearly transformed interac-
tions.

To conduct a more thorough analysis of the model, it is essential to identify the most
important terms from the equation 7.3. This can be done by computing the standard
deviation and the median of the weights. However, computing the median of the weights
does not give a correct indication of the magnitude of each term as the different basis
functions have significantly different ranges. 7.3. This is why, the standard deviation and
the median of the absolute values of wk × fk are also computated. The results can be
observed in Figures 7.8 - 7.11.

The analysis reveals that the two weights with the highest standard deviations are
the cos(θ) and r × cos(θ). This is interesting as the weight of cos(θ) is very similar to
the graph of the norm of the interaction, which aligns with expectations. However, the
high standard of the weight for r × cos(θ) is more complicated to explain. It is likely to
disappear with another training configuration. Nonetheless, the corresponding function
w × cos(θ)× r exhibits a shape similar to the interaction (see annexe, Figure ??).

At first glance, Figures 7.9 and 7.8 might raise concerns due to the high medians
of the weights for sin(θ) × sin(θ) and cos(θ) × cos(θ). However, it is important to note
that these two medians are very similar, and their standard deviations are quite small.
Therefore, it seems reasonable to conclude that these two terms could combine to form a
constant term.

By considering everything that was explained above and retaining only the significant
weights (i.e. cos(θ) and r × cos(θ)), it is possible to obtain the following approximation
of this message m0:

m0 ≈

{
γ1,k × r2 × cos(θ) + γ2,k × r × cos(θ) + γ3,k on each segment k
0 if r ≥ 4

(7.4)

where the different γ are constants.

38



This is not exactly the solution, as there should not be any term in r2× cos(θ) in the
sum. Although the method did not fully capture the exact interaction force, it successfully
uncovered several key insights related to the ground truth formula, which is encouraging
for potential further refinement.

Figure 7.8: Median values of the weights
of the message with highest standard

deviation. The largest values are
observed for the weights of r × cos(θ)

and cos2(θ), sin2(θ).

Figure 7.9: Median values of the weights
of the message with highest standard
deviation. It can be observed that the
weights of r × cos(θ) and cos(θ) have

the largest values.

Figure 7.10: Median of the absolute
value of wkfk. It can be observed that
r × cos(θ) is the largest. By considering
the impact of the multiple Radius, it

can be observed that the following terms
with the highest medians correspond to

cos(θ) and Radius1.

Figure 7.11: Standard deviation of the
wkfk. It can be observed that the term

in wk × r × cos(θ)
has the largest value. Many terms have
standard deviations that are very small
which indicates that these elements can

be considered as constants.
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Limitations:

Although some promising results have been achieved with this method, there is still
room for improvement. One significant drawback is the somewhat arbitrary choice of basis
functions. While it is possible to approximate any continuous functions using Taylor series
or Fourier series, these approaches often result in a large number of basis functions which
may be impractical for interpreting the model. A potential solution to this problem is
to learn the basis functions using neural networks with an approach similar to Radenovic
et al. [64]. It might also be possible to recursively apply this method to learn highly
complex basis functions that lead to sparse weights.

Another related issue is the inappropriate information repartition. An optimal model
would have zero weights for all but the most significant basis functions, resulting in a much
sparser and more interpretable model. However, the current results show that all weights
vary. While it was possible to identify the most important terms by analyzing standard
deviations, medians, and performing some simplifications, a model that is inherently sim-
pler to interpret would be more desirable. Several potential solutions could be explored to
address this. One approach is to train longer with more appropriate regularization. This
might involve tuning the factor for the regularization or applying another regularization
on the derivatives of the weights for instance. Another option is to use a ReLU right after
the MLP. However, this often led to the dead ReLU problem when similar experiments
were tried.
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Chapter 8

Conclusion

This work aimed to explore various Graph Neural Network (GNN) architectures to sim-
ulate cellular migration systems. The experiments demonstrated that larger models with
multiple GNN layers achieved superior performance compared to smaller, single-layer
models. It was also shown in the ablation study that dropout decreases the perfor-
mance.

Moreover, it was found that single-layer models are easily interpretable. More pre-
cisely, similarly to previous works dealing with Newtonian systems [35], it was shown that
linear transformations of the different interactions could be obtained by applying sparsity
regularization to the messages with both classical and noisy versions of the system of
equations considered here.

However, the application of symbolic regression presented challenges due to the com-
plexity of the underlying analytic equations. To address this, the piecewise segments of
the interactions were approximated, which allowed to use pySr on each of them to derive
the ground truth equations.

The difficulties encountered with symbolic regression motivated the introduction of
an end-to-end framework that generates easily interpretable equations. This framework
achieves this by decomposing the messages into a weighted sum of predefined basis func-
tions. In this context, the resulting weights are simple piecewise linear functions, which
allows to directly derive the analytic expressions by analyzing the magnitudes of the
weights.

Multiple works can be realized to further the study here. Firstly, it would be in-
teresting to have a more realistic dataset that also incorporates cells with different radii,
cell division and death to better reflect reality, and train the different architectures on it.
Once satisfactory results are obtained, the next would consist of applying the method to
real data to observe if the graph neural networks are able to generate trajectories similar
to reality.

Another aspect that could be further explored is the application of sparsity regular-
ization on architectures with multiple GNN layers. Moreover, the possibility of extending
the theoretical demonstrations outlined in the appendix to multi-layer GNNs remains an
open question.

Another critical consideration is the impact of the graph structure on the network’s
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ability to recover the analytic forms of the interactions. Indeed, given that cellular systems
often involve a large number of cells, it is impractical to work with a complete graph. It
can be expected that this will make the network struggle. However, different options such
as introducing virtual nodes [65] might alleviate the issue.

While only the two message features with the largest standard deviation are kept
for symbolic regression in this work, it was also highlighted that other message features
could provide valuable insights into interactions. For instance, it is possible to directly
recover the norm of the interactions among the features. Exploring methods to leverage
this additional information could lead to improved model discovery techniques.

Finally, there is considerable further development that is possible with the Gener-
alized Additive Model (GAM) symbolic method that is introduced. As explained in the
corresponding section, instead of selecting predefined basis functions, it may be possible
to generate them with learned neural networks. This approach could enable the recursive
application of the method to generate symbolic models for complex interaction functions.
Additionally, enhancing the regularization techniques could improve performance and in-
terpretability. In this work, a single kind of interaction is considered. However, since
forces can be summed, they could potentially be modelled within the symbolic GAM
framework. A logical next step for this method would then assess its performance when
dealing with multiple kinds of interactions.
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Appendix A

Ablation study

The different architecture choices that were performed are motivated based on the results
that are available here.

A.0.1 Interaction Network

Errors Angle Error Norm Errors List MAE averaged
Model 1 0.00559± 0.00485 0.0798± 0.0798 0.00837± 0.00584 0.101± 0.00230

Model 2 0.00476± 0.00392 0.0720± 0.0720 0.00722± 0.00477 0.0872± 0.00199

Model 3 0.00216± 0.00242 0.0529± 0.0529 0.00254± 0.00300 0.0485± 0.00216

Model 4 0.00340± 0.00331 0.0755± 0.0755 0.00440± 0.00410 0.0731± 0.00135

Model 5 0.00249± 0.00252 0.0687± 0.0687 0.00365± 0.00289 0.0534± 0.00146

Table A.1: Metrics for the different models.

Errors Angle Error Norm Errors List MAE averaged
Model 1 0.00487± 0.00470 0.143± 0.143 0.00756± 0.00533 0.0908± 0.00214

Model 2 0.00356± 0.00349 0.142± 0.142 0.00562± 0.00395 0.0666± 0.00222

Model 3 0.00535± 0.00456 0.117± 0.117 0.00797± 0.00559 0.0953± 0.00207

Model 4 0.00525± 0.00487 0.121± 0.121 0.00808± 0.00558 0.0934± 0.00222

Model 5 0.00144± 0.00180 0.142± 0.142 0.00140± 0.00206 0.0361± 0.00262

Table A.2: Metrics for the different models (noisy).

A.0.2 Baseline

Errors Angle Error Norm Errors MAE averaged
Model 1 0.00830± 0.00734 0.319± 0.319 0.0111± 0.00926 0.149± 0.00547

Model 2 0.00767± 0.00707 0.249± 0.249 0.00965± 0.00888 0.148± 0.00395

Model 3 0.00718± 0.00649 0.304± 0.304 0.00796± 0.00831 0.134± 0.00478

Model 4 0.00755± 0.00694 0.255± 0.255 0.00900± 0.00889 0.142± 0.00554

Table A.3: Metrics for the different baseline models when dealing with non-noisy data.
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Errors Angle Error Norm Errors List MAE averaged
Model 1 0.00739± 0.00680 0.308± 0.308 0.00887± 0.00863 0.131± 0.00385

Model 2 0.00804± 0.00712 0.300± 0.300 0.00998± 0.00904 0.150± 0.00454

Model 3 0.00678± 0.00629 0.292± 0.292 0.00700± 0.00817 0.132± 0.00397

Model 4 0.00747± 0.00704 0.262± 0.262 0.00908± 0.00901 0.131± 0.00449

Table A.4: Metrics for the different models (noisy data).

MSD SCAT RDF MAGN VEL X VEL Y
No dropout action-reaction 34.10 ± 44.55 0.047 ± 0.065 7.68 ± 27.81 0.018 ± 0.042 0.035 ± 0.21 0.023 ± 0.088
Dropout -action-reaction 28.57 ± 37.55 0.098 ± 0.092 7.43 ± 24.44 0.059 ± 0.172 0.049 ± 0.30 0.042 ± 0.19
No dropout 14.34 ± 18.70 0.021 ± 0.022 7.10 ± 20.70 0.10 ± 0.36 0.036 ± 0.15 0.031 ± 0.12
Dropout 24.00 ± 31.37 0.043 ± 0.060 7.98 ± 25.72 0.084 ± 0.33 0.057 ± 0.34 0.033 ± 0.16

Table A.5: Metrics for the different baseline models.

A.0.3 EDP-GNN

Errors Angle Error Norm Errors List MAE averaged
nb layer 1 0.000189± 0.00108 0.0322± 0.0322 0.0000785± 0.000982 0.0245± 0.00238

0.000196± 0.00108 0.0332± 0.0332 0.0000705± 0.000979 0.0239± 0.00247

nb layer 2 0.000179± 0.00107 0.0403± 0.0403 0.0000563± 0.000960 0.0233± 0.00243

0.000184± 0.00108 0.0481± 0.0481 0.0000571± 0.000977 0.0236± 0.00246

nb layer 3 0.000179± 0.00109 0.0251± 0.0251 0.0000380± 0.00100 0.0235± 0.00228

0.000174± 0.00109 0.0266± 0.0266 0.0000435± 0.000994 0.0230± 0.00245

nb layer 4 0.000197± 0.00112 0.0356± 0.0356 0.0000491± 0.00106 0.0256± 0.00249

0.000177± 0.00110 0.0359± 0.0359 0.0000385± 0.00101 0.0238± 0.00244

Table A.6: Metrics for the different models (non-noisy).

Errors Angle Error Norm Errors List MAE averaged
nb layer 1 0.000910± 0.00133 0.133± 0.133 0.000368± 0.00126 0.0320± 0.00267

0.000920± 0.00134 0.134± 0.134 0.000368± 0.00127 0.0315± 0.00252

nb layer 2 0.000918± 0.00134 0.145± 0.145 0.000369± 0.00127 0.0320± 0.00266

0.000926± 0.00135 0.137± 0.137 0.000372± 0.00128 0.0326± 0.00266

nb layer 3 0.000918± 0.00134 0.147± 0.147 0.000369± 0.00126 0.0320± 0.00263

0.000889± 0.00130 0.131± 0.131 0.000390± 0.00122 0.0312± 0.00254

nb layer 4 0.000921± 0.00134 0.145± 0.145 0.000370± 0.00127 0.0323± 0.00270

0.000924± 0.00134 0.125± 0.125 0.000375± 0.00127 0.0330± 0.00267

Table A.7: Metrics for the different models.

A.0.4 EDP-GaT

Let us start by analyzing the impact of the dropout in this architecture. As in the other
ones, it can be observed in Figure ?? that using dropout in the different MLPs leads to
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significantly worse results. This result remains true for both datasets, for each number of
layers and is also the presence of layer norm.

Errors Angle Error Norm Errors List MAE averaged
nb layer 1 0.000181± 0.00108 0.0370± 0.0370 0.0000444± 0.000981 0.0238± 0.00248

0.000181± 0.00107 0.0370± 0.0370 0.0000438± 0.000969 0.0241± 0.00225

nb layer 2 0.000227± 0.00109 0.0187± 0.0187 0.000102± 0.000989 0.0262± 0.00221

0.000211± 0.00106 0.0394± 0.0394 0.0000827± 0.000948 0.0257± 0.00211

nb layer 3 0.000196± 0.00107 0.0407± 0.0407 0.0000643± 0.000961 0.0249± 0.00218

0.000199± 0.00107 0.0304± 0.0304 0.0000758± 0.000965 0.0253± 0.00255

nb layer 4 0.000191± 0.00108 0.0283± 0.0283 0.0000540± 0.000980 0.0239± 0.00228

0.000185± 0.00107 0.0206± 0.0206 0.0000441± 0.000957 0.0243± 0.00233

Table A.8: Metrics for the different models (first set).

Errors Angle Error Norm Errors List MAE averaged
nb layer 1 0.000917± 0.00134 0.132± 0.132 0.000379± 0.00127 0.0323± 0.00272

0.000917± 0.00134 0.140± 0.140 0.000379± 0.00126 0.0327± 0.00264

nb layer 2 0.000919± 0.00133 0.130± 0.130 0.000399± 0.00124 0.0339± 0.00273

0.000916± 0.00133 0.135± 0.135 0.000382± 0.00124 0.0316± 0.00252

nb layer 3 0.000920± 0.00133 0.124± 0.124 0.000384± 0.00125 0.0316± 0.00224

0.000919± 0.00133 0.136± 0.136 0.000385± 0.00122 0.03098± 0.00243

nb layer 4 0.000917± 0.00133 0.135± 0.135 0.000381± 0.00126 0.0307± 0.00258

0.000924± 0.00134 0.151± 0.151 0.000384± 0.00127 0.0315± 0.00249

Table A.9: Metrics for the different models (second set).

Rollout Interaction Network

Errors Angle Error Norm Errors List MAE averaged
Model 1 0.00468± 0.00459 0.0754± 0.0754 0.00737± 0.00512 0.0710± 0.00153

Model 2 0.00270± 0.00289 0.150± 0.150 0.00316± 0.00329 0.0496± 0.00201

Table A.10: Metrics for the simplest models.

Rollout Baseline

Errors Angle Error Norm Errors List MAE averaged
Model 1 0.00761± 0.00755 0.268± 0.268 0.00821± 0.00968 7.134± 0.192

Model 2 0.00665± 0.00673 0.246± 0.246 0.00668± 0.00862 6.928± 0.166

Table A.11: Metrics for the different models (set 1).

Rollout EPD-GNN
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Errors Angle Error Norm Errors List MAE averaged
Model 1 0.000900± 0.00123 0.0794± 0.0794 0.000732± 0.00119 0.0492± 0.00191

Model 2 0.000432± 0.00125 0.0501± 0.0501 0.000274± 0.00118 0.0300± 0.00221

Model 3 0.000492± 0.00147 0.0445± 0.0445 0.000370± 0.00151 0.0335± 0.00244

Model 4 0.000423± 0.00119 0.0553± 0.0553 0.000230± 0.00104 0.0274± 0.00258

Table A.12: Metrics for the GNN models.

Errors Angle Error Norm Errors List MAE averaged
Model 1 0.000952± 0.00138 0.123± 0.123 0.000544± 0.00130 0.0371± 0.00250

Model 2 0.000923± 0.00141 0.130± 0.130 0.000429± 0.00135 0.0339± 0.00263

Model 3 0.000991± 0.00174 0.130± 0.130 0.000406± 0.00187 0.0354± 0.00253

Model 4 0.00109± 0.00175 0.130± 0.130 0.000628± 0.00186 0.0400± 0.00256

Table A.13: Metrics for the different models (set 2).

Rollout EPD-GAT

Errors Angle Error Norm Errors List MAE averaged
Model 1 0.000283± 0.00104 0.0384± 0.0384 0.000128± 0.000867 0.0298± 0.00206

Model 2 0.000319± 0.00102 0.0531± 0.0531 0.000215± 0.000801 0.0280± 0.00214

Model 3 0.00180± 0.00336 0.173± 0.173 0.00123± 0.00326 0.0565± 0.00311

Model 4 0.00633± 0.00466 0.348± 0.348 0.00615± 0.00430 0.0827± 0.00179

Table A.14: Metrics for the GAT models.

Errors Angle Error Norm Errors List MAE averaged
Model 1 0.000971± 0.00126 0.137± 0.137 0.000626± 0.00109 0.0342± 0.00215

Model 2 0.000848± 0.00115 0.138± 0.138 0.000526± 0.000915 0.0277± 0.00228

Model 3 0.000886± 0.00121 0.113± 0.113 0.000487± 0.00102 0.0268± 0.00228

Model 4 0.000879± 0.00119 0.125± 0.125 0.000566± 0.00100 0.0285± 0.00212

Table A.15: Metrics for the different models (set 3).
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A.1 Demonstrations
This section introduces the demonstration of the edges. As explained in the main section,
Cranmer et al [35] were able to show that the messages were linear transforms of the
forces by relying on some assumptions.

We also only consider models that are fully trained.

A.1.1 Demonstration in the literature

In the literature, the architectures have acceleration as output. The papers remain in
simple scenarios relying on classical Newtonian mechanics such as gravitational systems.
In this case, it is straightforward to demonstrate that the output of the edge modem ϕe

is a linear transformation of the forces from Newton’s second law (F = ma) and the
linearity of the forces that dictates that the total force applied on an entity is the sum of
all the forces applied on it (F =

∑
f).

Let us consider an update model ϕv that exactly yields the acceleration:

ϕv
i

(∑
j∈Ni

ϕe(eij)

)
= ϕv

i

(∑
j∈Ni

mij

)
= a =

F

m
=
∑
j∈Ni

fij
m

. (A.1)

where ϕe(eij) = mij are the messages of the GNN and ϕv(vi, .) := ϕv
i (.).

This result has to hold for any number of edges linked to a node. It is then possible
to find the expression of the individual forces and insert it in the equation above.

ϕv
i (mij) = a =

fij
m

. (A.2)

⇒
∑
j∈Ni

ϕv
i (mij) = ϕv

i

(∑
j∈Ni

mij

)
. (A.3)

Therefore, ϕv
i is a linear operator. This operator is inversible when it is a bijection

which occurs when the message dimension and the spatial dimensions are the same. Since
the inverse of a linear transformation is also linear, it is possible to observe that the
messages are linear transformations of the forces. Hence, neglecting the mass:

mij = (ϕv
i )

−1 (fij). (A.4)
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A.1.2 Demonstration for cellular systems

This demonstration can be extended to the non-noisy physical system of this work as
follows. Let us start by recalling the form of the equation. In this demonstration, only
the projected force is considered. Denoting the speed at timestep t with vt, the active
force with w0 and the total interaction forces with F =

∑
j∈Ni

fij.

vt = v0 + F. (A.5)

In this case, the update model is considered to yield the speed exactly:

vt = ϕv
i

(∑
j∈Ni

ϕe(eij)

)
= ϕv

i

(∑
j∈Ni

mij

)
= v0 + F. (A.6)

This is true for any number k of edges. By considering the case of a single edge and
exploiting the form of the interaction, it is possible to obtain a new equation that has to
be respected ∀k.

vt = ϕv
i (mij) = v0 + fij (A.7)

Inserting the new formulation of the individual force in the generic case of a node
with k edges:

ϕv
i

(
k∑

j∈Ni

mij

)
= v0 +

k∑
j∈Ni

(ϕv
i (mij)− v0) ∀k (A.8)

⇔ϕv
i

(
k∑

j=1

mij

)
− v0 =

k∑
j=1

(ϕv
i (mij)− v0) ∀k (A.9)

It is then possible to introduce the new operator ρvi (.) := ϕv
i (.)− v0.

ρ

(
k∑

j=1

mij

)
=

k∑
j=1

ρ(mij) (A.10)

This is a linear operator. By assumption, this is a bijection and is then inversible.
A similar result as the one from the previous page is then obtained. The messages are
linear transformations of the forces.

ρ(mij) = fij (A.11)
⇒mij = ρ−1(fij) (A.12)
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Appendix B

Additional figures

Additional results are displayed in this section.

B.1 Rollout training
Figures B.1 and B.2 are the evaluation of the models during training. The EPD models
rely on two GNN layers. It can be observed that the EDP models have similar perfor-
mances and outperform the baseline and the Interaction Network.

Figure B.1: Absolute error on step
transitions when models are trained

with rollout.

Figure B.2: MAE error on 15 rollout
steps for models when training with

rollout.

B.2 Speed distributions of the main models
Figures B.6 - B.6 show the speed distribution of different models
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Figure B.3: Speed norm distribution for
non-noisy data.

Figure B.4: Relative speed histograms
along x coordinate.

Figure B.5: Speed norm distribution for
non-noisy data.

Figure B.6: Relative speed histograms
along y coordinate.

As explained in the main section, the interaction network and the GaT network seem
to perform better than other networks when this statistics is observed.
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B.3 Message of Interaction Network with dropout

Figure B.7: Impact of the distance on the most relevant features of the messages. It can
be observed that these elements seems to be very similar to each other which seems to

indicate that some information is repeated in the different elements.
(b) Ground truth evolution of the interactions with respect to the distance. The
messages contain scaled rotation of the messages as the R2 score is close to 1.

B.4 Messages of the baseline network
The messages of the baseline are displayed below. It can be observed that the network
understood the limits of the different segments of the ground truth interactions. However,
the outputs are not linear transformations of the ground truth interactions.

Figure B.8: Evolution of the first
message of the baseline network with

respect to the distance.

Figure B.9: Evolution of the second
message of the baseline network with

respect to the distance.
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B.5 GAM
In this section, different figures related to the GAM section are displayed. The evolution
of the weights wk and the terms wk, fk are displayed with respect to the distance.

B.5.1 GAM - non-noisy data - 128

Figure B.10: Evolution of the weights of the neural network with respect to the distance.

58



Figure B.11
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Figure B.12
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Figure B.13

These figures show the network has learned similar weights for the terms related to the
cosine and sine increasing linearly with sine or cosine which is expected as cosine and sine
have the same nature. Moreover, it can be observed that the weights of the cos2 and sin2

terms have a very small range which further motivates that their sum can be considered as
a constant. However, it also highlights a limitation of this method for now: even though
the network learns that the variables should be comprised within a small range, it does
not learn to create constants. It is even possible to observe the impact of the different
segments in them.
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B.6 PySr Equations:
PySr raw results for the different architectures are described in this section.

B.7 Interaction Network
The different equations obtained for the

Applied on the whole equation

bsijbdsgk

Equation between l0 = 0 and l1 = 2

Equation Complexity Loss Score

y0 = −8.75 · 10−5 1 8.53 · 10−5 0.0

y0 = cos (−0.0112) 5 2.32 · 10−5 0.326

y0 = (cos (−0.0112) + 0.00780) 7 2.32 · 10−5 0.000165

y0 = (r − 1.99) cos (0.0302) 9 5.69 · 10−6 0.702

y0 = (r − 1.99) · 0.0302 · cos (−8.75 · 10−5) 11 5.69 · 10−6 0.000674

Table B.1: Results for y0 Equations.

Equation Complexity Loss Score

y1 = −5.81 · 10−5 1 8.53 · 10−5 0.0

y1 = sin(θ) (−0.0111) 5 2.29 · 10−5 0.329

y1 = (sin(θ) (−0.0111) + 0.00530) 7 2.29 · 10−5 7.55 · 10−5

y1 = sin(θ) (r · 0.0308− 0.0614) 9 5.39 · 10−6 0.724

y1 = (sin(θ) (r · 0.0308− 0.0614) + 0.00530) 11 5.38 · 10−6 0.000387

Table B.2: Results for y1 Equations.

Equation between l0 = 2 and l1 = 3

Equation Complexity Loss Score

y0 = −9.66 · 10−5 1 0.000198 0.0

y0 = 0.0175 · cos(θ) 3 3.48 · 10−5 0.870

y0 = cos(θ)(0.00699 · r) 5 2.53 · 10−5 0.159

y0 = cos(θ) (r · 0.0290− 0.0569) 7 1.22 · 10−5 0.367

y0 = (cos(θ) + 0.00178) · 0.0290 · (r − 1.96) 9 1.21 · 10−5 5.90 · 10−5

Table B.3: Results for y0 Equations.
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Equation Complexity Loss Score

y1 = 2.38 · 10−5 1 0.000181 0.0

y1 = sin(θ)(0.0175) 3 3.85 · 10−5 0.774

y1 = 0.00703 · r · sin 5 2.86 · 10−5 0.149

y1 = sin(θ) (r · 0.0319− 0.0642) 7 1.30 · 10−5 0.396

Table B.4: Results for y1 Equations.

Equation between l0 = 3 and l1 = 4

Equation Complexity Loss Score

y0 = 3.01 · 10−5 1 0.000122 0.0

y0 = cos(θ)(0.0131) 5 3.21 · 10−5 0.334

y0 = 0.0131 (cos(θ)(0.0131) + 0.00229) 7 3.21 · 10−5 1.42 · 10−5

y0 = cos(θ) (0.115 + r · (−0.0288)) 9 8.56 · 10−6 0.661

y0 = (0.115 + r · (−0.0288)) · (cos(θ)(0.0131) + 0.00229) 11 8.56 · 10−6 6.40 · 10−5

Table B.5: Results for y0 Equations (non-noisy).

Equation Complexity Loss Score

y1 = 9.32 · 10−5 1 0.000127 0.0

y1 = sin(θ)(0.0139) 5 3.43 · 10−5 0.327

y1 = (sin(θ)(0.0139) + 0.00664) · 0.0139 7 3.42 · 10−5 0.000125

y1 = sin(θ) (0.124− 0.0312 · r) 9 7.81 · 10−6 0.739

y1 = (0.124− 0.0312 · r) · (sin(θ)(0.0139) + 0.00888) 11 7.80 · 10−6 0.000573

Table B.6: Results for y1 Equations (noisy).

————————

—————-

Noisy

0-2

Equation Complexity Loss Score

y0 = 2.85 · 10−5 1 7.56 · 10−5 0.0

y0 = −0.0105 · sin(θ) 5 2.03 · 10−5 0.328

y0 = −0.0105(sin(θ)− 0.00272) 7 2.03 · 10−5 2.00 · 10−5

y0 = sin(0.0305 · r − 1.99) 9 8.06 · 10−7 1.61

y0 = (r − 1.99) · sin(0.0312) 11 7.77 · 10−7 0.0186

Table B.7: PySr results of the first message feature in [0, 2].
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Equation Complexity Loss Score

y1 = 1.66 · 10−5 1 6.64 · 10−5 0.0

y1 = 1.34 · 10−5 · r 3 6.64 · 10−5 1.58 · 10−6

y1 = −0.0100 · cos(θ) 5 1.62 · 10−5 0.705

y1 = 1.70 · 10−5 − 0.0100 · cos(θ) 7 1.62 · 10−5 8.89 · 10−6

y1 = cos(0.0307 · r − 0.0613) 9 5.80 · 10−7 1.67

y1 = cos(0.0307 · r − 0.0613) + 1.70 · 10−5 11 5.80 · 10−7 0.000250

y1 = cos(0.0307 · r − 0.0613) + r · 1.34 · 10−5 13 5.79 · 10−7 0.000182

Table B.8: PySr results of the second message feature in [0, 2].

2-3

Equation Complexity Loss Score

y0 = −8.74 · 10−5 1 0.000174 0.0

y0 = −3.43 · 10−5 · r 3 0.000174 4.31 · 10−7

y0 = 0.0165 · sin(θ) 5 2.92 · 10−5 0.891

y0 = sin(θ) · r · 0.00672 7 1.84 · 10−5 0.232

y0 = sin(0.0297 · r − 0.0587) 9 1.83 · 10−6 1.15

y0 = (0.0297 · r − 0.0587)(sin(θ)− 0.00850) 11 1.81 · 10−6 0.00673

y0 = sin(r · (0.0593 + r · (−0.00590))− 0.0956) 13 1.79 · 10−6 0.00510

Equation Complexity Loss Score

y1 = 3.19 · 10−5 1 0.000166 0.0

y1 = 0.0175 · cos(θ) 5 2.22 · 10−5 0.503

y1 = 0.00701 · cos(θ) · r 7 1.38 · 10−5 0.240

y1 = cos(θ) · (0.0305 · r − 0.0606) 9 1.17 · 10−6 1.23

3-4

Equation Complexity Loss Score

y0 = −0.000167 1 0.000115 0.0

y0 = −4.72 · 10−5 · r 3 0.000115 2.17 · 10−7

y0 = 0.0138 · sin(θ) 5 2.65 · 10−5 0.735

y0 = 0.0138 · sin(θ)− 0.000167 7 2.65 · 10−5 0.000527

y0 = sin(0.119− 0.0299 · r) 9 1.99 · 10−6 1.29

y0 = sin(0.119 + r · (−0.0299))− 0.000167 11 1.97 · 10−6 0.00705

y0 = r · (−4.72 · 10−5) + sin(0.119 + r · (−0.0299)) 13 1.97 · 10−6 1.76 · 10−5
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Equation Complexity Loss Score

y1 = 6.25 · 10−5 1 0.000123 0.0

y1 = 0.0133 · cos 5 2.86 · 10−5 0.365

y1 = 0.0133(cos(θ) + 0.00475) 7 2.86 · 10−5 6.96 · 10−5

y1 = 0.0133(cos(θ) + 1.13 · 0.00421) 9 2.86 · 10−5 6.99 · 10−8

y1 = cos ((−1.75) · r · 0.0172 + 0.120) 11 9.69 · 10−7 1.69
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