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Abstract

The problem of fraud detection is one of the most discussed topics in the field of
machine learning. This study addresses four key areas essential for a fraud detection
platform: prediction accuracy in imbalanced datasets, interpretability of predictions,
deployment and sustainability of the platform, monetary costs associated with model
errors. To tackle these issues, we first conducted extensive research in the field,
then proposed and evaluated our solutions. We introduce methods such as using a
WCGAN (Wasserstein Conditional Generative Adversarial Network) for sampling
or cost-sensitive learning with new models like Light Gradient Boosting, employing
interpretable models like Explainable Boosting, deploying and automating training
processes with Kubernetes and Kubeflow, and utilizing approaches like thresholding
or tuning metrics that account for monetary costs. Each of these solutions shows
promising results and improves upon existing research in the field.
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1 Introduction

1.1 Problem formalisation

The Oxford Dictionary defined fraud as "a type of dishonesty calculated to obtain ad-
vantage, generally financial advantage, by some wrongful means (a tort or crime)"1. In
the case of preventing these bank transfer frauds, fraud detection and fraud prevention
are two essential tools to minimize the losses caused by them. Fraud prevention involves
proactive strategies aimed at thwarting fraud before it occurs, whereas fraud detection
systems are activated when criminals manage to bypass fraud protection measures and
carry out a fraudulent transaction.

Since the advent of credit cards, various types of fraud have emerged over the years.
From simple credit card theft to more sophisticated techniques facilitated by the use of
the internet. In fact, fraudulent activities on the Internet are rapidly increasing due to
the global accessibility of the web and the ease with which users can conceal their identity
and location during online transactions.

Currently, numerous preventive fraud security measures have been implemented to protect
against bank transfer fraud, such as PIN codes, NRI (Never Received Issue), beneficiary
verification, strong authentication, or identification to prevent interception of credit cards
before their initial use. However, these numerous preventive measures are currently not
sufficient to contain the expansion of bank transfer fraud2.

As a result, it is important to focus on the concept of fraud detection in order to promptly
identify these bank frauds and pursue necessary legal actions. The principle of fraud
detection can be divided into two main parts:

1. Firstly, the detection of these frauds based on predefined rules. This approach in-
volves defining a set of rules or specific criteria to identify transactions that may be
fraudulent. Considered criteria may include the location of the transfer, similarity
with the user’s transaction history, the amount and frequency of transfers, the web-
site where the transfer is made, etc. While these predefined rules are effective, they
can be circumvented once known.

2. Secondly, fraud detection through machine learning on historical bank transfer data.
The advantage of these models is that they can be constantly updated to remain
effective and cannot be easily circumvented. However, according to Intech, they
face numerous challenges such as data protection, the low occurrence of fraud in the
dataset, the possibility of making errors leading to significant costs or loss of clients,
and the complexity of the models which can lead to difficulties in interpretation by
humans.

Since machine learning is a continuously evolving science, numerous new technologies
haven’t been explored. Therefore, in this project, we will attempt to address the challenges
related to the field of machine learning and try to find the most suitable solution to the
problem of fraud detection.

1Oxford Dictionary, last checked 11/07/2024 on https://www.oxfordreference.com/
2Synetics Solution, The evolution of fraud prevention, detection and risk mitigation, 18 may

2017, last checked: 11/07/2024 on https://www.synectics-solutions.com/our-thinking/evolution-of-fraud-
prevention-detection-and-risk-mitigation

6



1.2 Challenges

According to Intech and the literature, implementing a fraud detection platform using
machine learning involves four major challenges that we have attempted to address in
this thesis.

1.2.1 Model Development in Imbalanced Situations

As will be further explained in 1.5, fraud detection is particularly complex due to the
imbalance in the data. This imbalance significantly affects the results of machine learning
models. Several solutions exist to address this issue, such as sampling, cost-sensitive
learning, or the use of ensemble models.

1.2.2 Model Development in the Context of Interpretability

The field of fraud detection is particularly complex because each decision can have sig-
nificant consequences. Therefore, it is crucial to obtain explanations for the decisions
made by the models. Fraud detection without explanation cannot lead to real judicial
proceedings. This is why, in this thesis, we will conduct research on interpretable models
and explainable methods.

1.2.3 Continuous Training and Application Deployment

Many studies in the field of fraud detection have already been conducted in the past. So
why is it still interesting to pursue such a research project today? As explained in this
article3, many machine learning models are not industrialized and accessible through a
real platform. Additionally, the training of these machine learning models is often frozen
in time, relying on historical data. To achieve a truly sustainable product, it is necessary
to approach the concepts of application deployment and continuous model training over
time through monitoring by fraud experts. Therefore, in this thesis, we will attempt to
address these concepts and create a method that allows for the continuous training of
models over time.

1.2.4 Approach Related to Monetary Costs

The final challenge addressed in this thesis is the monetary value associated with errors
in fraud detection. Indeed, a false accusation can sometimes result in costs of hundreds
of thousands of euros. However, these costs depend heavily on the information we have
about them (whether we know the direct cost of an error or not), the time available for
model retraining based on the cost, and the performance we desire. Based on these three
factors, we will aim to develop three concrete solutions for each problem.

3Machine Learning: How to Industrialize Your Models? onepoint, last checked 11/08/2024
on https://www.groupeonepoint.com/fr/publications/machine-learning-comment-industrialiser-vos-
modeles/
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1.3 Mathematical formulation of the problem

Let T = {t1, t2, ..., tn} be a set of transactions, where each transaction ti is represented
by a feature vector xi ∈ Rd. The goal is to build a classification function f : Rn → {0, 1}
that assigns a label yi ∈ {0, 1} to each transaction ti, where yi = 0 indicates a legitimate
transaction and yi = 1 indicates a fraudulent transaction.

In practice, we approximate the function f using machine learning techniques, such as
logistic regression, random forests, gradient boosting, or deep neural networks. These
techniques allow us to learn a function f ∗ from a labeled dataset D = {(x1, y1),
(x2, y2), ..., (xm, ym)} where m is the number of labeled transactions. Our goal is to obtain
a function f ∗ that is as close as possible to the true function f . In fact, if D ⊂ R(n+1)×m

and under certain assumptions, it can indeed be demonstrated that by minimizing the
loss function, we can find an approximate function f ∗ that closely approximates the true
function f . The complete demonstration can be found on my introduction to machine
learning course [1].

We can show that as the size of the representative dataset D increases, the difference
between the learned function f ∗ and the true function f will converge to zero in probability.
In other words, with a large enough dataset, we can find an approximate function f ∗ that
is very close to the true function f with high probability.

1.4 Company Description

This thesis was carried out in collaboration with Intech.

Founded in 1995, InTech is a Luxembourgish IT Services and Engineering Company
employing 130 specialists in the design and implementation of business software solu-
tions, including specific developments and integration of generic industrial components.
A human-sized company, Intech primarily operates in project mode, combining multidis-
ciplinary skills in project management, architecture consulting, technical expertise, and
development. On May 6, 2014, InTech became a subsidiary of the POST Luxembourg
group. This decision solidifies InTech’s position as a leading digital services company in
Luxembourg.

1.4.1 Training

During this internship with Intech, I had the opportunity to participate in numerous
training sessions to better understand the skills necessary for a consulting engineer. I
attended training on agile methods, CI/CD and testing, front-end and back-end develop-
ment, and deployment using Docker and Kubernetes. These training sessions took place
over 12 days of my internship. It is important to note that these 12 days were in addition
to the 80 days allocated for my thesis, in accordance with the requirements for completing
a thesis in a company setting.

1.4.2 Work in the Company and Team Building

During this internship, I also had the chance to participate in various team-building
activities, such as the LuxiO Day, a conference day organized within Intech for its em-
ployees. Additionally, some team-building events among interns helped foster a positive
atmosphere within the company among different colleagues.

8



1.5 Datasets

In this thesis, several datasets needed to be considered to best develop the fraud detection
platform.

1.5.1 Post Group Luxembourg Dataset

This thesis was initially in collaboration with the Post Luxembourg group, of which Intech
S.A. is a subsidiary. We were supposed to obtain a dataset of historical transactions
involving Post Luxembourg members. However, due to GDPR issues and other internal
problems at Post, Intech was unable to access this dataset.

As a result, we (along with Intech) decided to use a public dataset1. This choice not only
allows for the verification of our research results but also enables us to potentially market
this platform to other clients.

1.5.2 European Transactions by ULB

After searching for public datasets, the one provided by the Université Libre de Bruxelles
(ULB) 1 seemed to be the most used in the field of fraud detection. This dataset contains
credit card transactions made in September 2013 by European cardholders. It includes
transactions that occurred over two days, with 492 frauds out of a total of 284,807 trans-
actions. The dataset is highly imbalanced, with the positive class (frauds) representing
0.172% of all transactions.

This dataset was then fully anonymized using PCA transformation. Principal Component
Analysis (PCA) is a dimensionality reduction technique that transforms a dataset into
a set of orthogonal components ordered by the amount of variance they explain. Here
the variables V1, V2, . . . , V28 represent the 28 first principal components of these various
variables. Only two variables were not transformed: Time, which represents the time in
seconds since the first recorded transaction, and Amount, which represents the amount
of the transaction. Finally, the variable Class represents the label of the transaction,
being 1 if the transaction is fraudulent and 0 otherwise.

1Credit Card Fraud Detection Dataset, provided by ULB on kaggle, last checked 11/07/2024,
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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2 Related Work
As previously stated, the purpose of this thesis is to find a representation of a fraud
prediction model in the context of bank transfers as well as credit card payments. During
my research, we reviewed several papers related to the broader field of fraud detection in
bank transfers.

In this review of related work, we will first consider various research efforts conducted in
this field, organizing these papers into four main parts:

1. Firstly, the formulation of the problem and the creation of the Fraud Detection
System Design principle.

2. Next, the research undertaken to address the issue of class imbalance, which is one
of the main challenges in fraud detection.

3. Subsequently, an evaluation of the various models used and the results they have
achieved in the scope of fraud detection.

4. Finally, we will consider the research conducted in the area of interpretable models,
which appear to be underutilized in the field of fraud detection.

2.1 Different Fraud management possibilities

In this section, we will consider how the principle of fraud detection has been defined and
what process has been considered to identify to find solution to this problem.

Firstly, the field refers to the solution to the fraud problem as Fraud Detection System
Design. This well-known concept today was primarily introduced by Andrea Dal Pozzolo,
and Olivier Caelen [2]. The basic principle upon which this concept was formed is suc-
cinctly and comprehensively explained by Eunji Kim [3], as illustrated in Figure 1a. In
this concept, we can observe two parts: the first representing a set of precises if-then rules
designed to highlight certain predefined characteristics studied in advance by specialists.
Then, the Data-Driven Scoring Model represents the machine learning aspect aiming to
alert the specialist to potential fraudulent transactions.

Subsequently, Wesley Kenneth Wilhelm [4] proposed a method dividing the part managed
by the AI model and the experts into four parts. These four parts were synthesized and
explained in " The accuracy versus interpretability trade-off in fraud detection mode" [5],
and their approach can be visualized in Figure 1b. In this approach, they propose the
idea of monitoring and fine-tuning the labels to continually improve the models and allow
them to adapt to changes in the fraud domain, such as the emergence of new fraud types
or shifts in data distribution (changes in consumer interests, etc.).

Next, Mr Dal Pozzolo [2] proposes a scoring system rather than a binary alert system. This
approach was developed following an analysis of specialists’ problems. Indeed, specialists
often did not have the time to analyze all frauds detected by a model. To address this
issue without disregarding fraud cases, they devised a scoring system ranging from 1 to 5.
Initially, this system was manually labeled, and later, it was labeled directly by the model
monitored by a specialist (an idea proposed by Eunji Kim [3]). This scoring system rates
transactions from one star, indicating almost certainly not fraud, to five stars, indicating
definitely fraud. This scoring system enables specialists to focus on transactions with
higher scores to avoid wasting time on potentially legitimate transactions. The FDS
envisioned at this point by Mr Dal Pozzolo [2] can be found in Figure 1c.
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Finally, Mr Dal Pozzolo [6] improve his FDS model by introduced the idea of adding a
model to assess the risk that a transaction is fraudulent before applying precise blocking
rules as expressed by in the figure 1d. This allowed for the implementation of more time-
consuming rules if the risk was moderately elevated and also to block certain transactions
earlier when the risk was too high. Then if the risk is low or moderate the transaction
is passing to a data-driven scoring model called 3DDSM, which is compute by using the
last technologies of cloud computing.

(a) Fraud detection system design an overview,
[3] (b) FDS with division of the model process, [5]

(c) FDS with scoring methods, [2] (d) Last version of FDS [6]

Figure 1: Evolution of Fraud detection design

A new possibility that is widely discussed in the field of fraud detection is to no longer
consider frauds as a transaction with associated metadata, thus stored in a database in
tabular form, but to visualize the transactions as data exchanges between two people.
This data can be stored in databases in the form of graphs such that each account is a
node and each transaction represents an edge between two nodes. This new approach is
due to the emergence of Graph Neural Networks, which are proving to be increasingly
effective. An example of a GNN through message passing applied to fraud detection
and providing good results had a performance over 95% in F1 score [7]. The major
advancement they made is to manage to include information from unlabeled nodes in the
GNN, which provides context to a labeled node based on its neighbors.

Some other projects have tried other strategies such as using attention models with LSTM
[8] or the use of transformers adapted for fraud detection [9], however, these different
research efforts have not brought significant advances in the field.

In this project, we will develop an application to alert, investigate, and monitor bank
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transfers. Due to InTech’s constraints, we have a binary dataset rather than a dataset
labeled with scores. Additionally, given the various challenges to be addressed and the
time allocated for this research, we will not explore the option of adding a machine learning
model in the initial steps.

2.2 Imbalenced management

Imbalanced class problems are a major issue in fraud detection. The principle of imbal-
anced classes simply refers to the situation where one class (here, fraudulent transactions)
is much less prevalent than another class (legitimate transactions). Several solutions exist
to best manage these problems.

• Oversampling: the practice of synthetically generating data in the minority class.

• Undersampling: the practice of removing data from the majority class while trying
to minimize information loss.

• Cost-sensitive learning: adjusts the model weights to address the unequal im-
portance and frequency of classes by assigning higher costs to errors involving the
minority class.

2.2.1 Oversampling

Most fraud detection projects start by using oversampling as the first method to handle
imbalanced class issues, typically employing techniques such as SMOTE and its vari-
ants (ADASYN, BorderlineSMOTE, etc.), all of which are provided by imbalanced-learn
[10]. Although these methods are functional in some models, they have their limitations.
Indeed, these methods do not always result in performance improvements, and other
methods such as the cost-sensitive approach can outperform them. We will use these
oversampling methods as a fundamental approach to see if the new methods discussed
perform better.

Firstly, Peter Gnip [11] introduces the Selective Oversampling Approach (SOA). SOA’s
strategy involves two steps. It starts with a one-class support vector machine (OCSVM)
trained on the majority class to detect outliers in the minority class. This helps iden-
tify minority samples that might mislead the classifier due to atypical characteristics.
These misclassified samples are removed, and only those that are correctly identified and
representative of their class are retained. SOA then balances the training dataset by gen-
erating synthetic samples from these retained minority class observations using SMOTE
or ADASYN. A schema of the SOA models can be found on 2a. However, while this
method seems relevant and useful within the scope of this project, the code is no longer
accessible and therefore we will no more investigate this approach.

Subsequently, Justin Engelmann [12] proposes an approach with a Generative Adversarial
Network named cWGAN-based. A GAN consists of a generator, which creates data, and
a discriminator, which evaluates their authenticity. The generator learns to produce in-
creasingly realistic data, while the discriminator improves in detecting fakes, thus creating
a kind of competition that enhances the quality of the generated outcomes. The model
proposed adds some key concepts that lead to real improvements.

1. Effective management of mixed data types: cWGAN-based is capable of
simultaneously processing numerical and categorical data in tabular form, essential
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for applications such as credit scoring which often involve mixed data types.

2. Auxiliary classifier loss: cWGAN-based incorporates an auxiliary classifier in the
GAN training process, ensuring that the generated samples are not only realistic
but also relevant for downstream classification tasks. This is achieved by adding an
auxiliary classifier loss to the GAN training objectives.

3. cWGAN framework: Use of the Wasserstein loss with a gradient penalty (WGAN-
GP) to generate high-quality samples by stabilizing the GAN training process.

4. Conditionally train the generator The generator G now estimates a conditional
probability P (X|y) and the discriminator estimates D(X, y) = P (fake|X, y), which
is the probability that the sample of a specific class is not real. In this way, we can
generate synthetic individuals of the minority class by considering the distribution
of the data.

The structure of cWGAN-based can be found in 2b. At the top of the figure, the generator
schema, where ‘Cross‘ corresponds to the Crosslayers wich calculate feature interaction
layer, and ‘Cat‘ are the parts associated with categorical data. Similarly, the bottom part
of the figure shows the schema of the discriminator.

(a) Selective Oversampling Approach models
[11]

(b) Generator and Discriminator Structure of
the WCGAN [12]

Figure 2: Elaborate oversampling methods schema
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Finally, Zhuoyuan Zhen [13] create a method called Sigma Nearest Oversampling based
on Convex Combination (SNOCC), designed to address the limitations of SMOTE in
handling imbalanced datasets. The method is developed to produce synthetic samples
that better reflect the original distribution of minority class samples.

SNOCC incorporates several key improvements:

1. Convex Combination of Seed Samples: Unlike SMOTE, which linearly interpo-
lates between pairs of seed samples, SNOCC uses a convex combination of multiple
seed samples to generate synthetic instances. This allows for a more diverse repre-
sentation of the minority class in the feature space.

2. Advanced Nearest Neighbors Search: SNOCC employs an enhanced algorithm
for nearest neighbor search, which not only looks at the closest neighbors but con-
siders a broader range based on a dynamically calculated sigma value. This prevents
the overlapping of classes and produces a more dispersed sample distribution.

3. Cluster-Based Approach: Prior to oversampling, SNOCC may utilize cluster-
ing techniques to group similar instances within the minority class, enhancing the
relevancy and variety of the synthetic samples generated.

However, while this method seems relevant and useful within the scope of this project, the
code is no longer accessible and therefore we will no more investigate this approach.

2.2.2 Undersampling

Undersampling is a commonly used technique to address the problem of imbalanced
dataset by balancing the classes through the reduction of instances from the majority
class. This method can be implemented in three principal manners:

1. Pure Undersampling: This approach directly reduces the number of majority
class instances to balance the dataset. Key techniques include:

• Condensed Nearest Neighbor (CNN):

CNN [14] is an early prototype selection method that aims to reduce the train-
ing dataset by keeping only those samples that are necessary to retain the
classifier’s performance. It selects a subset of points that can classify the re-
maining points with the same accuracy as would the entire set.

• Tomek Links:

The Tomek links [15] method identifies pairs of very close instances, but of
opposite classes. Removing such Tomek links can help in cleaning overlapping
data points and thus can improve the decision boundary between classes.

2. Hybrid Undersampling: This strategy combines undersampling with other data
processing techniques to enhance the effectiveness of the undersampling process,
such as:

• Cluster-based Undersampling:

Cluster-based Undersampling [16] involves clustering the majority class in-
stances and then performing undersampling within each cluster to ensure that
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the undersampling process does not affect the representativeness of the major-
ity class. It leverages the internal structure of the data to maintain diversity
within the sampled dataset. Currently, the most commonly used algorithm
that employs this clustering concept is Centroid Clustering, provided by the
imbalanced-learn library [10].

3. Undersampling with ensemble or evolutionary methods: These methods
integrate undersampling into ensemble learning frameworks or use evolutionary al-
gorithms to optimize the subset selection, such as:

• RUSBoost:

RUSBoost [17] is an adaptation of the AdaBoost algorithm which incorporates
random undersampling. It specifically addresses class imbalance by iteratively
focusing more on incorrectly classified minority samples.

While some other undersampling techniques, which seem more elaborate, have been pub-
lished [18]. We retained the algorithms and the research that could be used in this project
or where the code was open source.

To summarize, undersampling helps to improve model performance by preventing bias
towards the majority class, however it is crucial to apply it judiciously to avoid significant
information loss.

2.2.3 Cost Sensitive Learning

The idea behind cost-sensitive learning (CSL) is to integrate the concept of asymmetric
error costs directly into the machine learning algorithms’ learning process. In practice,
not all classification errors are equal in terms of consequences: some may have more severe
repercussions than others. Therefore, CSL aims to minimize not only the number of errors
but, more importantly, the total cost associated with these errors.

Much research has been conducted in the field of cost-sensitive learning, which can be
classified into four main methods:

1. Relabeling:

As part of the preprocessing, one of the best-known methods is MetaCost [19]. In
this algorithm, a model is placed upstream of training our model to adjust the actual
values of the classes in order to minimize costs. The advantage of this method is
that it can be applied to any model and is easily implementable. However, the
training time is therefore doubled, and it heavily depends on the predictions of the
base model.

2. Instance Weighting:

Instance weighting introduced by Kai Ming Ting [20] and improved [21] over the
years, is a technique that assigns different importances to examples in a dataset,
guiding the learning algorithm to focus more on specific examples. This method
allows adaptability to each instance if desired, but if misused, can quickly lead to
overfitting of our model.

3. Direct Approach:
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In this approach, the costs associated with classification errors are directly integrated
into the learning algorithm itself. This may involve modifying loss functions, split
criteria in decision trees, or other internal elements of the model. Generally, this
method allows for better performance on specific cost criteria. In this method, costs
are intrinsically linked to the model and thus directly depend on the algorithm used.
An example of a direct approach was developed by Charles X. Ling [22] to apply a
cost-sensitive approach to decision trees.

4. Thresholding:

Thresholding [23] involves adjusting the decision threshold of a classifier to account
for different costs. By default, many classifiers use 0.5 as the threshold in binary
classification tasks, but this threshold can be modified to reduce the impact of
costly errors. Thresholding is easy to implement and can be done without needing
to retrain the model. Certain thresholds can minimize overall costs when adjusted
based on them.

2.3 Models Used in Fraud Detection

This section is dedicated to the different results of models or preprocessing algorithms
other than those dealing only with data imbalance, which have achieved good results. In
order to conduct a concrete analysis with my work later, we searched for research papers
providing results on the same public dataset that we used. The different result can be
found on Table 1. We can already see that we outperform all result in the field with our
different approach evaluate in Section 4

2.3.1 Preprocessing

1. Genetic Algorithm for feature selection [24]

In this paper they use the Genetic Algorithm for feature selection. The idea behind
this approach follows these steps:

(a) Create subsets of features and evaluate the fitness of these subsets with a
classifier (Random Forest in this case).

(b) Select the best-performing feature subsets based on their fitness scores.

(c) Combine pairs of feature subsets from the mating pool to produce new off-
spring.

(d) Introduce random changes to some feature subsets to maintain diversity and
explore new potential solutions.

(e) Form a new population by replacing some or all of the old population with the
new offspring.

2. Pipelining and ensemble methods [25]

The idea proposed here is to use a pipeline. Pipelining involves applying a series of
transformations followed by a final classifier. In this work, selectKBest from sklearn
is used to select features based on the top scores, utilizing f-regression for univariate
linear regression tests to determine the influence of each feature. Finally, a Random
Forest Classifier is used for classification and prediction.
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2.3.2 Modelling

1. Boosting model

In this paper [26] they conducted a comparative study between many models as well
as numerous sampling algorithms. In their research, they noticed that Boosting algo-
rithms such as CatBoost, Extreme Gradient Boosting, and Light Gradient Boosting
provided better results than the traditionally used ensemble models. Furthermore,
undersampling methods such as A11 K-Nearest-Neighbors and oversampling meth-
ods such as SVMSmote appear to be the most appropriate methods for Boosting
models.

Some other research papers [27], had new ideas when tackling the problem of fraud detec-
tion. However, it seems that the sampling was done on the whole dataset, which created
a lot of overfitting or errors in the calculation of the metrics.

Table 1: Table representing the result of different models with their prepossessing, ?
noticing a maetric value not provided in the search paper.

Model Accuracy Precison Recall F1 AUC
GA-Random-Forest-full 0.87 0.926 0.777 0.846 ?
GA-Random-Forest-v5 0.998 0.725 0.953 0.824 0.95
GA-Random-Forest-v4 0.999 0.778 0.838 0.807 0.95

Pipelining 0.999 0.84 0.86 0.85 ?
CatBoost-A11KNN 0.999 0.803 0.959 0.874 0.979

CatBoost-OSS 0.999 0.795 0.961 0.86 0.981
XGB-OSS 0.999 0.7947 0.9541 0.8669 0.976

XGB-Border-Smote1 0.999 0.823 0.929 0.873 0.964
RF-SVM-Smote 0.999 0.792 0.953 0.865 0.976

Repeated Edited NN 0.999 0.788 0.958 0.865 0.978

2.4 Interpretability and Explainability

The explainability of machine learning models in fraud detection is crucial for building user
trust and ensuring fair decision-making. As fraud detection systems become increasingly
complex, understanding how and why certain decisions are made becomes essential and
so for three reason according to Intech.

1. Scientific Perspective: It is important to understand how the model thinks to
better comprehend the studied phenomenon and thus verify the coherence of the
results.

2. Ethical Perspective: If the platform refuses an individual’s transaction without
explanation and therefore without justification by an expert afterward, it is unac-
ceptable.

3. Legislative Perspective: Article 22 of the GDPR states: "The data subject shall
have the right not to be subject to a decision based solely on automated processing,
including profiling, which produces legal effects concerning him or her or similarly
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significantly affects him or her."4

This involves demystifying the internal mechanisms of algorithmic models to ensure their
transparency and accountability. Indeed, by providing understandable explanations of
model outcomes, institutions can not only justify the actions taken but also enable experts
to regulate and continuously improve these systems. Explainability thus becomes an
indispensable bridge between the technical capabilities of fraud detection models and
their social and regulatory acceptability.

2.4.1 Explainability vs Interpretability

Explainability and interpretability are closely related yet distinct concepts. Interpretabil-
ity refers to "the ability of a model to present its decisions in a comprehensible
manner to a human," [28], thus enabling the tracing of cause-and-effect relationships
between system inputs and outputs. It focuses on the intuition behind a model’s re-
sults. In contrast explainability can be defined as "the understanding of the internal
mechanisms and operational logic of a machine learning system, aiming to
reveal the internal processes during the model’s training or decision-making"
[29]. These two dimensions, although complementary, do not guarantee each other, mak-
ing the integration of both aspects crucial for enhancing the transparency and trust in
machine learning systems.

2.4.2 The Scope of Interpretability and Explainability

Pantelis Linardatos [30] proposes a classification of interpretable models based on four
main characteristics, providing a better understanding of how models can be explained
and analyzed, as shown in Figure 3.

1. Local vs Global:

• Local: Explains individual predictions, detailing why specific decisions were
made for given samples.

• Global: Provides an overview of a model’s logic, enabling an understanding
of its overall operation.

2. Data Types:

• The different models can be divided based on the types of data they can handle,
such as tabular data, text, images, graphs, etc.

3. Purposes of Interpretability:

• Includes objectives such as creating inherently transparent models, explain-
ing complex models after their development, enhancing model fairness, and
evaluating the sensitivity of predictions.

4. Model Specific vs Model Agnostic:

• Model Specific: Methods designed for particular models.

• Model Agnostic: Techniques applicable regardless of the model’s architec-
ture, offering increased flexibility.

4Article 22 of the GDPR, last checked 11/08/24 on https://www.gdpr.org/regulation/article-22.html
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Figure 3: Mind-map of the different particularities of interpretable models [30]

In our case, we will focus on locally and globally interpretable models since we want
as much interpretability as possible, whether they are agnostic or specific, to tackle as
many methods as possible for tabular data given our dataset. Our aim is to either create
interpretable white-box models or explain black-box models to both explain the most
performant models (black-box) and have models where we can fully explain the predictions
(white-box).

2.4.3 White-box Models

White-box models in machine learning are characterized by their transparency and inher-
ent interpretability. They are designed so that users can clearly understand how inputs
are transformed into outputs. Traditional examples of white-box models include simple
decision trees and logistic regression. However, recent advancements have highlighted two
particularly complex approaches that maintain clarity and usability:

1. Supersparse Linear Integer Models (SLIM)

SLIMs [31] utilize basic arithmetic operations such as addition, subtraction, and
multiplication on input features. This method enhances interpretability by em-
ploying straightforward computational processes, making it easier to comprehend
how inputs are transformed into outputs. Despite being open-source, available on
GitHub, there has been little recent activity on its development, and the model has
seen limited use in real-world contexts.

2. Generalized Additive Models with Pairwise Interactions (GA2Ms)

Before introducing GA2M we need to introduce the principle of generalized additive
models (GAM).

Generalized Additive Models 5 (GAM) are a type of statistical model that combines

5GAM: The Predictive Modeling Silver Bullet, KIM LARSEN, 30/07/2015, last checked 11/07/2024
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the properties of generalized linear models (GLM) with additive models. The key
idea is to model the response variable as a sum of smooth functions of the predictors.
Each predictor can have its own smooth function, which can capture nonlinear
relationships.

Mathematically, a GAM can be represented as:

g(E[y]) = β0 + f1(x1) + f2(x2) + . . .+ fn(xn)

or
g(E[y]) = β0 +

∑
fj(xj)

where:

• β0 is the intercept,

• fi(xi) are smooth functions of the predictors xi

The smooth functions fi are typically estimated using techniques such as splines
or kernel smoothing, allowing for flexible and interpretable modeling of the data.
GAMs are particularly useful when the relationship between the predictors and the
response is not strictly linear, providing a balance between flexibility and inter-
pretability.

Lets introduce GA2M [32]. They propose to improve the GAM by incorporating
modern machine learning techniques such as bagging and boosting. They also au-
tomatically include pairwise interactions, which significantly boost their predictive
power. Such that the mathematical expression of GA2M is

g(E[y]) = β0 +
∑

fi(xi) +
∑

fi,j(xi, xj)

Where:

• β0 is the intercept.

•
∑

fi(xi) represents the sum of functions fi applied to each predictor xi.

•
∑

fi,j(xi, xj) denotes the sum of interaction terms between pairs of predictors,
modeled by functions fi,j also called FAST function in the paper [32].

The pairwise interaction is calculated with a method introduced in the paper called
FAST. Instead of building a full interaction model, which is computationally expen-
sive, FAST estimates the benefit of modeling interactions by reducing the Residual
Sum of Squares (RSS). It should also be noted that for large datasets (which is
our case here), in order to reduce computation time, FAST retains only the K best
interactions for training, K is chosen according to computing power

The structure of GA2Ms allows for a clear calculation and understanding of each
feature’s contribution, enhancing both their interpretability and effectiveness. Con-
trary to SLIM, GA2M has been implemented in the Explainable Boosting Machine
model, which is part of the InterpretML library. This model is easily importable
and added to a project. This model will be more detailled in the Modelling part.

on https://www.taylorfrancis.com/books/mono/10.1201/9781315370279/generalized-additive-models-
simon-wood
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These models exemplify significant strides in the field of interpretable machine learn-
ing, illustrating the potential to combine high accuracy with transparent, under-
standable decision-making processes.

2.4.4 Black box Model

This second category includes methods that aim to make pre-trained models explainable.
These models are called black-box types because they are naturally difficult to interpret
and explain. In summary, these methods do not attempt to create interpretable models,
but rather to explain already trained models.

There are many algorithms for the interpretability of black-box models; however, two
seem to stand out and be more widely used.

1. SHAP (SHapley Additive exPlanations)

Before introducing SHAP, it is necessary to introduce Shapley values [33], which
derive from cooperative game theory and evaluate the contributions of individual
players (features, in this context) to the overall game (the prediction result). To
simplify this concept, let’s assume there are three variables in a prediction (V1, V2,
V3) as shown in Figure 4. We will look for the Shapley value of V1. To do this, we
consider all possible combinations of variables with and without V1 and calculate
the probability of being a fraud for each case. By averaging these probabilities, we
obtain the Shapley value of this variable.

Figure 4: Shapley values calculation

The advantage of this method is that it is based on clear and understandable theo-
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retical concepts, which allows for a real understanding of the interpretability results
we obtain. However, the complexity of calculating a Shapley value is O(N !), which
can be problematic when the number of features is large (as is the case this thesis).

SHapley Additive exPlanations (SHAP) [34] intervenes to overcome the limitations
of Shapley values. SHAP creates various approximations to optimize the calculation
of Shapley values. However, for these approximations to be valid, they must adhere
to the three principles introduced by SHAP:

(a) Accuracy
The explanation model should accurately represent the original model’s output
for a specific input instance. In other words, the sum of the SHAP values for all
features plus the average prediction (baseline) should equal the actual model
prediction for that instance.

(b) Missingness
If a feature is missing in the model (i.e., it has no impact on the prediction),
then the SHAP value for that feature should be zero.

(c) Consistency
If a model changes in a way that increases the marginal contribution of a
feature (holding all else constant), the SHAP value for that feature should not
decrease.

These three principles ensure that SHAP results are faithful. The various approxi-
mations provide us with different algorithms approximating the Shapley values.

(a) KernelSHAP
KernalSHAP is the first method [34] that estimates Shapley values by solving a
weighted linear regression problem. This method involves sampling instances
from the feature space and using a Lasso regression model to estimate the
Shapley values. The Lasso model is a linear model that includes an L1 penalty
term, which helps with feature selection and provides a sparse explanation.

The KernelSHAP algorithm involves the following steps:

i. Generate a dataset of binary-masked instances by randomly selecting com-
binations of features.

ii. Calculate the output of the black-box model for each masked instance.

iii. Fit a weighted linear regression model on the generated dataset, where the
weights are determined by the similarity between the masked instance and
the instance of interest.

The coefficients of the linear regression model obtained represent the approxi-
mate Shapley values for each feature.

(b) TreeSHAP
In contrast to KernelSHAP, TreeSHAP also introduce by [34] calculates the
exact Shapley values for each feature by recursively traversing the decision
tree, assigning contributions to each feature as it descends the tree. It uses a
dynamic programming approach to avoid redundant calculations and reduce
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computational complexity. However, this method is specific to tree-based mod-
els.

The TreeSHAP algorithm involves the following steps:

i. Traverse the tree from the root to the leaf nodes, recording the decision
path for the instance of interest.

ii. Assign contributions to each feature encountered along the path, taking
into account the number of possible feature combinations and the proba-
bility of each combination.

iii. Repeat the process for all trees in the ensemble, if applicable.

iv. Average the contributions across all trees to obtain the final Shapley values.

Some other optimizations have been proposed by [34], such as DeepSHAP, Lin-
earSHAP, Sampling SHAP, and Partition SHAP. However, since these methods
are linked to specific models that are either not sufficiently performant or not
suitable for the project (e.g., models used for image classification or text recog-
nition), these methods seem less useful in our context.

Other interpretability methods exist; however, they are less recognized in the field.
For example, Individual Conditional Expectation (ICE) often provides results that
are not always reliable, which can be problematic in areas where each decision can
result in significant costs, such as fraud detection. Other methods like Counterfac-
tual Explanations provide multiple different explanations for a single model, which
can require a lot of time to analyze in order to make a correct decision, making it
difficult to implement in real-world scenarios.6

2. LIME (Local Interpretable Model-agnostic Explanations)

LIME [35] is based on the idea that even if a global model is complex and difficult
to interpret, it is possible to approximate it locally with a simpler and interpretable
model. The main steps of LIME are as follows:

(a) To explain a specific prediction, LIME generates a set of synthetic data around
the instance of interest by perturbing its features.

(b) The model is used to predict the outcomes for the generated synthetic data.

(c) Each synthetic instance is weighted based on its similarity to the instance of
interest (using distances such as Euclidean distance or cosine similarity).

(d) A simple and interpretable model (such as linear regression or a decision tree)
is fitted on the weighted synthetic data.

(e) The coefficients of the interpretable model are used to explain the prediction
of the instance of interest, indicating the importance of the local features.

However, LIME has several drawbacks that make it less preferable compared to
SHAP for local explanations of black-box models:

(a) LIME assumes that models are locally linear, which is not always the case.

6Interpretable Machine Learning, Christoph Molnar, 2024-05-26, last check 11/07/2024 on
https://christophm.github.io/interpretable-ml-book
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(b) Unlike SHAP, LIME, being a newer approach, is not yet optimized and there-
fore takes a long time to compute.

(c) LIME is not stable [36], meaning that for the same prediction, some results
may differ from one instance to another.

(d) LIME is sensitive to adversarial attacks [37] , which could disrupt the inter-
pretation of frauds and complicate legal proceedings.

Due to these drawbacks of LIME, we prefer to use SHAP for black-box model
explanations in this project.
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3 Methodology
In this chapter, we will present the approach used for fraud detection. The previous
chapter served as a starting point on the methods addressed in this research. We will
provide a step-by-step explanation of our method, including the details of each step and
the underlying concepts that inform our approach.

This method consists of main steps: data preprocessing, imbalance management, feature
engineering, model selection and optimization, model explainability and interpretability.
We will describe each of these steps in detail below.

3.1 Preprocessing

As mentioned in Section 1.5, we will use the dataset provided by the Université Libre de
Bruxelles in this research. This dataset, having only been anonymized, is still raw and
preprocessing needs to be performed.

First, we conducted an analysis of the raw data. This allowed us to notice that there are
no missing values. However, among the data, we found 1081 duplicate entries, including
19 in the fraudulent class. These duplicates were removed to avoid any bias that could
be introduced into the models. In fact, if some duplicate transactions are in both the
training and testing sets, the evaluation of the model will be biased and it could be prone
to overfitting.

Next, we needed to divide the dataset coherently. Since the data is time-related, we
chose to split the dataset based on time, allowing for a more logical training and use case
context. Additionally, we needed to reserve a portion of the data to generate a continuous
data flow for the application that will serve as a POC (proof of concept).

We removed the last 20% to become our dataset use to simulate the data flow. From the
remaining 80%, we kept 20% for the test set and 80% for the training set. All validation
will be made with a Kfold cross validation.

Outlier management was considered. We tried two different approaches: a Z-score ap-
proach and an Isolation Forest approach. However, certain frauds are often considered
outliers. It is therefore important to consider whether it is appropriate to remove these
outliers. An evaluative study will be conducted in Chapter 4. In fact, some methods even
rely on this concept for fraud detection [38].

We then performed several data scaling techniques, studying both standard scaling, min
max scaling and robust scaling. In our case, robust scaling seems to be the preferred
choice. Since the outliers are retained, it is better to use this scaler to prevent the data
from being compressed during scaling, which might occur with standard scaling or min
max scaling. However, the results of our models did not differ significantly between using
standard scaling, min max scaling or robust scaling, so we will consider both cases simul-
taneously, preferring robust scaling when results are identical due to its more appropriate
properties in this context.

Finally, we studied the possibility of multicollinearity between our independent variables.
As shown in Figure 18, the variables appear to be independent, indicating no multi-
collinearity issues (consistent with the dataset’s description of being anonymized by PCA).
This is confirmed by the fact that none of the variables have a variance inflation factor
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Figure 5: Sampling steps for training GANs

score greater than 5, except for Amount, as shown in Table 8. However, since Amount is
one of the two non-anonymized and typically important variables in prediction, we decided
to retain it for now but will pay particular attention to it during feature selection.

3.2 Imbalanced Management

As explained in Section 1.5, the dataset is highly imbalanced. This imbalance directly
causes performance issues in the models. We noticed that certain methods worked better
with some models and not with others. Here, I will detail the different preprocessing tech-
niques used for imbalanced management in this research to develop performant models.
To compare the different methods, we will use our three most recognized and performant
machine learning models, namely Light Gradient Boosting, Extreme Gradient Boosting,
and Random Forest.

3.2.1 Hybrid Sampling

The first method we employed, which provided consistent results with models such as
CATBoost and XGBoost, is a hybrid approach involving both under-sampling and an
over-sampling method called cWGAN [12], which was explained earlier in Section 2.2.
Noted that the data was preprocessed and scaled before the following steps. The proposed
solution’s schema can be found in Figure 5.

In our research, we noticed that training the cWGAN directly on the dataset was ex-
tremely computationally expensive and less performant than simply not performing any
sampling. Due to this, we performed an undersampling phase before training the cWGAN.
Initially, we found that undersampling methods such as OSS and A11KNN worked best
with algorithms like XGBoost and CatBoost [27]. In addition to these two methods, we
tested ClusterCentroids, being one of the most recognized methods, as well as NearMiss-
Sampling, which reduces training time without diminishing model performance.

Information on the distribution of new sampled values, GAN training, and loss, along with
various graphs on optimizing the sampling ratio, can be found in the Figure 28 and Figure
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29. We can notice that some distribution approximated by the c-WGAN like the one for
the variable V12 seems not to fit perfectly the distribution. Besides, different trials by
modifying the hyperparameters we always had one or two variables that is not approximate
perfectly. However, these distorted distributions don’t always seem to negatively influence
our results with the data sampled by this method. It may still be worth investigating
another type of GAN that could better approximate our distributions. It’s also worth
noting that this c-WGAN chose the wassertain distance to determine the error made by
the generator. Indeed, previous studies have shown that a distance achieving a smaller
error tends to decrease the variance of the error committed by the generator, which
complicates its training and therefore its overall performance. For more information,
please read Justin Engelmann’s paper [12]. Once the cWGAN was trained, we could
generate data at will. We studied different sampling ratio possibilities with our model.
By default, the ratio of minority to majority classes after resampling is 1:1, meaning we
perform oversampling until we have as many fraud cases as non-fraud cases. However, this
proportion may not be optimal. From our research on the optimum sampling ratio, we
found that adjusting this ratio could slightly improve predictions (by one or two correct
predictions compared to the default ratio), but the optimal ratio depended directly on
the initial sampling. Since GAN sampling is random, the optimal sampling ratio is also
random. Due to all these deductions, we decided to retain the default sampling ratio of
1:1.

Additionally, since the cWGAN involves a learning step based on the loss of a machine
learning model, we tested our most performant models, such as LightGBM and XGBoost,
in addition to RandomForest, which is the base model. However, no significant differences
were observed.

3.2.2 Cost-sensitive Approach

As discussed in Section 2.2, the second method to manage imbalanced data is the cost-
sensitive approach. Among the various approaches, the relabeling method did not provide
satisfactory results with our models. Conversely, Instance Weighting and Direct Approach
yielded very good results with LightGBM as we can see in Table 2.In the case of the Direct
Approach, we performed hyperparameter tuning with GridSearch to find the ideal weights
to assign to the loss function of our model. This tuning was conducted simultaneously
with the tuning of the model’s hyperparameters. In this context, the ideal weight is
{0 : 1, 1 : 8}.

Model Accuracy F1 Precision Recall ROC AUC PR AUC
LightGBM 0.999736 0.915493 0.984848 0.855263 0.971832 0.842547

Table 2: Cost-sensitive direct Aproach for Light GBM

We also considered the Instance Weighting technique and found that the optimal choice
was to assign a weight of 1 to non-fraud cases and a value of 8 to fraud cases, which is
equivalent to the Direct Approach. When we attempt to modify the weights for instances
where the model makes errors, we observe that while sometimes the model successfully
detects these frauds, it introduces errors in numerous other transactions. It might be
interesting to retain the concept of this approach when we aim to clearly identify a specific
type of fraud, allowing us to assign more weight to these fraud cases.
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3.3 Feature Engineering

In this section, we will consider the various manipulations that can be performed on
features.

3.3.1 Creation of New Features

In the context of machine learning, creating new features from existing ones can be a
wise choice to add information or simplify the model’s learning process by, for example,
reducing dimensions. Several techniques are known to apply this idea.

1. Feature Interaction It is possible to highlight feature interactions through various
statistical methods such as mean, variance, entropy, etc. Unfortunately, in our case,
not knowing the actual values of the data due to anonymization via PCA, it is
difficult to choose which variables to combine.

2. Polynomial Features Another possibility is to perform polynomial regression to
extract information from multiple correlated features. Here, as we have seen, our
features are hardly correlated, so this method does not seem feasible.

3. Dimensionality Reduction Since the variables are already principal components
from PCA, performing dimensionality reduction on already reduced dimensions does
not seem useful. This idea was proven during some of our inconclusive tests.

4. Binarization Another idea is to provide information on a threshold for variables.
Unfortunately, since the variables are anonymized, it is difficult to use thresholds
when we do not know the physical values behind them.

3.3.2 Feature Selection

As seen in the paper "machine learning based credit card fraud detection using the GA
algorithm for feature selection" [24], selecting a subset of features to extract the most
useful information from this model can provide better performance in terms of model
accuracy or computation time.

Different methods were considered in this project to select the best features.

1. Chi-Square We performed a feature selection of the top k features based on a
chi-square score.

2. Select From Model We selected features based on the weights associated with the
prediction of variables in a machine learning model. We chose the Random Forest
model, being one of our very good models but not the most performant, to avoid
overfitting on our best models.

3. Info-Gain We performed a feature selection of the top k features with the highest
information gain score.

For each of these methods, we decided to retain the top 3 subset of features for our
models.

The results of these different feature selections can be found in Table 3
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3.4 Model Selection

This section is dedicated to exploring the models utilized in this project. These investi-
gations were initially guided by my knowledge and subsequently refined as my research
in the field progressed. Interpretable models will be discussed in the next section.

During my research, I learned that ensemble models are the most appropriate for classifi-
cation tasks on imbalanced datasets. Therefore, ensemble models were prioritized in this
study.

3.4.1 Bagging

As mentioned, the first ensemble models I used were based on my knowledge from courses
such as Machine Learning [1] and Machine Learning in Space Science [39]. At first, I
explored models using the Bagging principle, which is based on three main steps:

1. Create multiple subsets of data by sampling with replacement from the original
dataset.

2. Train a distinct model on each subset.

3. Combine the predictions of all models by averaging (for regression problems) or
majority voting (for classification problems).

The model that clearly uses this concept is Random Forest, where each distinct model
is a decision tree. Another model adapting the Random Forest technique is Extra Trees.
These models do not perform bootstrapping on the dataset but use the entire dataset,
which reduces the bias introduced by this method. The Extra Trees model then splits
nodes randomly, which reduces variance compared to Random Forest, which splits nodes
to choose the best division.

3.4.2 Boosting

The second method explored is Boosting. This method, already covered in machine
learning courses and in the context of fraud detection, as discussed in the Related Works
section, is based on the idea of sequentially placing simple models, where each model
attempts to correct the errors of the previous models. These models, placed sequentially,
give more importance to errors made by previous models so that the final decision is a
weighted sum of the different models.

Among the models using this Boosting phenomenon, the most performant are Extreme
Gradient Boosting (XGB) [40], Light Gradient Boosting (LGB) [41], and Categorical
Boosting (CatBoost) [42]. These three models incorporate different approaches to the
Boosting concept. Extreme Gradient Boosting is the first model to significantly improve
Gradient Boosting models and is by far the most popular model on the market.

LightGradientBoosting, developed by Microsoft, aims to optimize training time with
two methods:

1. Gradient-Based One-Side Sampling (GOSS): The idea of GOSS is that data
instances with higher gradients contribute more to information gain. To maintain
the accuracy of the information, GOSS retains instances with higher gradients and
performs random sampling on instances with lower gradients.
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2. Exclusive Feature Bundling (EFB): To reduce dimensionality, improve effi-
ciency, and maintain accuracy, EFB bundles these features into an "Exclusive Fea-
ture Bundle".

Categorical Boosting also brings modifications to the Boosting principles. The main
improvements are:

1. Symmetric Trees: CatBoost uses level-wise growth for trees, however these trees
are symmetric, unlike XGB. This balanced tree architecture aids in efficient CPU
implementation, thus reducing training and prediction time.

2. Ordered Boosting: CatBoost counters prediction shift, which is defined as over-
fitting when the dataset is too small.

3. Native Feature Support: CatBoost automatically handles the conversion of data
regardless of whether it is numerical, categorical, or even text.

Although XGBoost currently outperforms LightGBM, which in turn outperforms Cat-
Boost, the comparison between these models should be done in each case. The perfor-
mance of these three models depends directly on the datasets used and will be studied
simultaneously in this project. However, since CatBoost and LightGBM are faster to
train and predict, we may prefer one of these models in production.

3.4.3 Stacking

The last method for creating ensemble models is called Stacking. This method collects
the predictions of different models and uses this information as input to generate a final
prediction. Being more flexible, this method requires a detailed study to determine the
specific models to choose in the first stage of stacking.

3.5 Interpretable Model

As explained in the Related Works, the pursuit of interpretability is essential in domains
where predictions can be critical, such as fraud detection.

To evaluate the performance of our more complex interpretable models, we used the
Logistic Regression model as a reference, being a simple and interpretable model. This
model allows us to compare whether our interpretable models significantly reduce accuracy
in the quest for interpretability.

Subsequently, we utilized another simple and interpretable model, which is decision trees.
Given that ensemble methods using decision trees provide good results, it is interesting
to use them here.

Finally, we employed the Explainable Boosting model [43], which utilizes research con-
ducted on GA2M [32]. This method allows the model to be interpretable while only
observing a 0.01 decrease in the F1 score. Recall that GA2M seeks to explain the model
by:

g(E[y]) = β0 +
∑

fi(xi) +
∑

fi,j(xi, xj)

To achieve this, the model follows several key steps represented in Figure 6.

1. First, the model uses a boosting procedure where each step of the training recursion
is limited to access only one or two variables at most, in an alternating manner.
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It aims to learn the best function fj for each variable. This step corresponds to a
line in Figure 6. During this learning process, the learning rate is kept very low to
ensure that the order in which variables are addressed does not introduce bias.

2. Next, the model employs the bagging method. The model performs the boosting
procedure limited to each variable a large number of times. Finally, it determines
fj by averaging the results (values in the case of regression and probabilities of
belonging to a class in the case of classification) to obtain graphs that allow for
great interpretability of our results. This step corresponds to the greens boxes in
Figure 6.

Figure 6: Main steps of Explainable Boosting [43]

Having access to the final graph fj, representing how the model actually predicts, allows
us to obtain both global and local interpretations.

The various graphs associated with the interpretation of different variables can be found
in the appendix.

3.6 Explainable Method

For the models mentioned above in Section 3.4, we applied the SHAP library to our
trained model to obtain explanations of the predictions. For more information on SHAP,
we invite you to read the Related Works Section 2.4.4. The Evaluations of the differents
plot can be found on Section 5.1
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4 Evaluation
In this chapter, we will begin by introducing the different metrics used for model eval-
uation. We will then discuss these metrics in relation to the topic of our report, which
focuses on Fraud Detection with an imbalanced dataset and varying error costs associated
with prediction errors. Following this, we will evaluate different preprocessing methods
using the three best-performing models we have identified—Extreme Gradient Boosting,
Light Gradient Boosting, and Random Forest—along with our most interpretable model,
Explainable Boosting.

Next, we will assess the models discussed in the previous chapter (Section 3.4) using both
sampling methods and cost-sensitive learning approaches. In the final two sections of the
evaluation part (sampling and cost-sensitive methods), the models have been fine-tuned
using GridSearch with a cross-validation method where k is equal to 5. The different
hyperparameter values tested can be found in the notebooks related to this thesis. The
most significant results will be presented in this report, either directly in the text or in
the appendix. However, numerous tests with lesser performance will not be included, but
they are available in the notebook "final-modelling."

4.1 Metrics

In this part of the project we will define the different metrics we will use.

4.1.1 Accuracy

Accuracy is the most straightforward metric, representing the ratio of correctly predicted
instances to the total instances in the dataset.

Accuracy =
True Positives + True Negatives

Total Population

While accuracy is useful, it can be misleading for imbalanced datasets where the number
of instances in each class is not equal.

4.1.2 AUC (Area Under the Curve)

AUC refers to the area under the Receiver Operating Characteristic (ROC) curve. The
ROC curve is a plot of the true positive rate (sensitivity) against the false positive rate (1-
specificity). This value represents the likelihood that a randomly chosen positive instance
is ranked higher than a randomly chosen negative one. A model with a ROC AUC of 0.5
is no better than random guessing, whereas a model with a ROC AUC of 1.0 indicates
perfect classification. However, similar to Accuracy, this score can be misleading when
dealing with imbalanced datasets since it could yield good results even if all the frauds
are misclassified.

4.1.3 Precision

Precision, also known as positive predictive value, measures the ratio of correctly predicted
positive observations to the total predicted positives.
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Precision =
True Positives

True Positives + False Positives

High precision indicates a low false positive rate, which is particularly important in cases
where false positives are costly (e.g., spam detection).

4.1.4 Recall

Recall, also known as sensitivity or true positive rate, measures the ratio of correctly
predicted positive observations to all observations in the actual class.

Recall =
True Positives

True Positives + False Negatives

High recall indicates that most actual positives are identified by the model, which is
crucial in scenarios where missing positive cases is costly (e.g., disease detection).

4.1.5 F1 Score

The F1 Score is the harmonic mean of precision and recall, providing a single metric that
balances both concerns.

F1 Score = 2× Precision × Recall
Precision + Recall

It is especially useful when the class distribution is imbalanced, as it considers both false
positives and false negatives.

4.1.6 PR AUC (Precision-Recall Area Under Curve)

The PR AUC measures the area under the Precision-Recall curve, which plots preci-
sion against recall for different threshold values. This metric is particularly useful for
imbalanced datasets7. A higher value indicates better performance, with a value of 1.0
representing a perfect model. Unlike ROC AUC, PR AUC focuses on the performance of
the positive class.

These metrics together provide a comprehensive picture of a model’s performance, helping
to make informed decisions on model selection and improvement.

4.2 Cost Adapted Metrics

As we have seen, Accuracy and ROC AUC can lead to misleading results in our project
due to the imbalanced dataset. However, since these metrics are widely used in research,
we will include them for comparison purposes, but we must remain critical of their values.
Let’s now take into account the cost behind the prediction of our model.

7Ultimate Guide to PR-AUC: Calculations, uses, and limitations Tom alon, April 8,
2024, Last checked 11/07/2024 on https://www.aporia.com/learn/ultimate-guide-to-precision-recall-auc-
understanding-calculating-using-pr-auc-in-ml/
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The important aspect of this problem is that the costs associated with different classifica-
tion errors are not the same. Indeed, not detecting bank fraud is often much less serious
than wrongly accusing someone. Indeed, while letting a fraud go through will "only" cost
the value of the transaction, wrongly accusing someone can incur enormous costs, includ-
ing the potential loss of the client, loss of trust among other clients aware of the bank’s
mistake, and legal fees from a lawsuit in which the bank is likely to lose. On average, the
costs incurred by a bank transfer fraud amount to €4782 in France in 20228 compared to
several tens of thousands of euros for wrongly accusing someone in justice according to
Intech. If we look at the cost function of our fraud detection problem9:

J(y, ŷ) = Cfp × (1− ŷ)× y + Cfn × ŷ × (1− y)

where:

1. y is the true binary variable (1 for fraudulent, 0 for legitimate)

2. ŷ is the predicted binary variable (1 for fraudulent, 0 for legitimate)

3. Cfp is the cost of a false positive (i.e., the cost of wrongly accusing a non-fraudulent
transfer of being fraudulent)

4. Cfn is the cost of a false negative (i.e., the cost of not detecting a fraudulent transfer)

In this equation we admit that the Cost of a good prediction is equal to 0

We can rewrite this cost function in terms of False Positives and False Negatives as:

J(y, ŷ) = Cfp × FP + Cfn × FN

However, since we know that Cfp is much higher than Cfn, and in our case, we aim
to achieve the least amount of error possible. Our use case suggests that the costs are
generally much higher than the number of errors made by our model. For all these reasons,
we can approximate by saying that Cfn is negligible.

J(y, ŷ) ∼ Cfp × FP

Minimizing a constant (here we suppose that the cost is the average cost and so is con-
stant over a period of time where the model is trained) times a variable is equivalent to
minimizing the variable. Moreover, since TP + FP = P , which is constant, minimizing
FP is equivalent to maximizing TP. Let’s get the weighted value maximization of TP over
all positive values.

P =
TP

TP + FP

8Les entreprises face à la menace de la fraude au virement bancaire, 19/12/2023, Last
checked 11/07/2024 on https://rendre-notre-monde-plus-sur.goron.fr/les-entreprises-face-a-la-menace-de-
la-fraude-au-virement-bancaire/

9Fraud detection with cost-sensitive machine learning by Roman Moser in Towards Data Sci-
ence, 29/03/2019. Last checked: 10/07/2024 https://towardsdatascience.com/fraud-detection-with-cost-
sensitive-machine-learning-24b8760d35d9
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where we redefine precision.

This shows clearly that if we want our model to achieve the best results in the scope of
fraud detection, we should optimize the precision.

In the previous demonstration, we approximated that the cost of false negatives is neg-
ligible compared to that of false positives. However, the costs of false positives can vary
greatly depending on the specific transfer. For instance, if the transfer is internal (within
the same bank), the costs will be much lower if a transfer is wrongly denied for potential
fraud. Similarly, depending on the transfer, the costs of false positives can vary signifi-
cantly. For example, there could be a loss of customer trust, or if an individual sees that
a type of fraud is not being blocked, they might attempt that kind of fraud again.

To address this, let’s define θ as the ratio between the costs of false negatives and false
positives. At equilibrium, we aim to find θ such that

θ =
Cfn

Cfp

=
FN

FP

while keeping it as small as possible.

Therefore, if we seek to minimize Cfp × FP + Cfn × FN while maximizing the number
of correct predictions, we need to aim to maximize the F1 Score. Indeed, starting from
the formula explained in Section 4.1.5, we have

F1 Score = 2× Precision × Recall
Precision + Recall

By substituting Precision and Recall with their values as expressed in Section 4.1.3 and
Section 4.1.4:

F1 =
2× TP

TP+FP
× TP

TP+FN
TP

TP+FP
+ TP

TP+FN

This gives us

F1 =
2× TP 2

(TP+FP )×(TP+FN)

TP×(2TP+FP+FN)
(TP+FP )×(TP+FN)

Which simplifies to

F1 =
2× TP

2× TP + FN + FP

This proves that this metric is optimal when TP is maximized and FN+FP is minimized.
However, here we seek to minimize Cfn ×FN +Cfp ×FP , where Cfn

Cfp
×FN +FP .

The F1 score is a particular case of the F-beta score, which is defined as:

Fβ =
(1 + β2)× P ×R

β2 × P +R

which can be rewritten as:

Fβ =
TP

TP + 1
1+β2 (β2 × FN + FP )
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This metric will be optimal when 1
1+β2 (β

2 × FN + FP ) is minimal. Therefore, if β2 =

θ =
Cfn

Cfp
, the metric will indeed seek to minimize our weighted cost function for frauds

Cfn×FN+Cfp×FP

Cfn+Cfp
.

In conclusion, the idea will be to optimize the Precision or the F1 Score if we do not have
the different values of the cost (in function if we want to make the approximation or not),
or to optimize the Fβ Score if the costs are known.

4.3 Preprocessing

In this section, we will evaluate the different preprocessing methods we developed in
Section 3.1. To do this, we will evaluate four reference models selected based on their
results and the methods they employ. We selected two boosting methods (XGBoost,
which seems to perform well with sampling methods, and Light Gradient Boosting, which
is effective with cost-sensitive methods), Random Forest as a bagging method, and Ex-
plainable Boosting as an interpretable model. We can look at the results on the dataset
without any preprocessing in Table 40.

As explained in Chapter 3, we implemented outliers management. However, as seen in
Tables 11 and 12, removing these outliers significantly impacts the results of our reference
models. Therefore, the following results will include these outliers.

Next, we examined the different scalers available. Although logarithmic scaling in the
presence of outliers might remove some information about the extreme values that some
frauds might have, thus negatively impacting our models. As mentioned in Section 3.1,
no differences seem to emerge between the different scalers for Random Forest, Extreme
Gradient Boosting, and Explainable Boosting models, as seen in Tables 13, 14, and 15.
However, for Light Gradient Boosting, we observe that results vary significantly depending
on the scaler used. The results are not very conclusive at the moment, probably due to
data imbalance. We will need to look at the differences for Light Gradient Boosting in
the final model evaluation.

4.3.1 Feature Selection

As explained in Section 3.3.2, performing feature selection on our dataset can provide
better results. A study was conducted to determine if this could provide better or at least
similar results to those obtained with all variables, but with optimized computation time.
To select the variables to keep, we used SelectKBest, InfoGain, and SelectFromModel
functions from the SKlearn library. Among numerous tests, which can be found in the
notebooks, it is noted that InfoGain appears to be the method that selects the most
effective variables. However, it is also noted that removing even one variable results in a
decrease in the F1 score by at least 0.02. After that, we can retain up to 6 variables without
diminishing significantly the results. The best results can be found in Table 3.

It should be noted that the best results between each selection of variables in terms of
F1 scores are achieved with the subset Vb or a parent of this subset. It can be observed
that, once we remove a variable, the best results are at most equivalent to Vb as long as
the subset considered is a parent (i.e., containing at least the variables included in Vb).
Additionally, the training time primarily varies for the EBM model, from 2 minutes 25
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seconds to 50 seconds for Vb. For the other models, training time differences are less
noticeable, with only a 1 to 2 seconds difference.

Subset Method and Model F1
Va V4, V10, V11, V12, V14, V17 Select From Model on RF 0.863
Vb V3, V4, V9, V10, V11, V12, V14, V16, V17, V18 InfoGain with RF 0.872
Vc V4, V7, V10, V11, V12, V14, V16, V17 Select From Model on EBM 0.866

Table 3: Table of the three best subsets found in our feature selection studies

4.4 Sampling

As explained in Sections 2.2 and 3.2, several sampling methods were considered. All
the undersampling and oversampling approaches that provided correct results are visible
in Tables 16 to 39. Each methods can be found on imbalanced-learn library. These
evaluations are based on default values for the different models. Among these models, we
selected the top 10 results for all models. The results can be found in Table 4. As we can
see here, the Random Oversampling method surprisingly performs very well, with the best
precision for Random Forest and the best recall for XGBoost. It also provides the best F1
score when we scale our data using a robust scaler. However, it is also worth mentioning
that BorderlineSMOTE is the sampling method which provide the best results.

In addition to the libraries provided by imbalanced-learn, we considered the conditional
Wasserstein GAN discussed in Section 3.2. We tested this method on numerous models
such as Logistic Regression, K-Nearest Neighbors, Decision Tree, CatBoost Classifier,
Light Gradient Boosting Classifier, Explainable Boosting Classifier, Extreme Gradient
Boosting Classifier, and Random Forest. The different results can be seen in Table 5. In
our various tests, we obtained correct results for XGBoost and ExtraTrees. Although the
results for LightGBM seem satisfactory, the cost-sensitive method provides better results.
It is noted that the sampling of GANs is stochastic, as we randomly sample from the
distribution approximated by the generator. The results obtained in Table 5 are the best
empirical results obtained in 10 trials (it is noted that in 3 out of the 10 trials, we obtained
the results shown in Table 5). Finally, tuning was performed via cross-validation with
K=5 before evaluating these different models on the validation set. The various parameter
values can be easily found in the Modelling Notebook.
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Model AUC Accuracy F1 Precision Recall PR AUC
Random Forest (Table 20) 0.954 1.000 0.884 0.970 0.813 0.891
XGBoost (Table 20) 0.984 1.000 0.872 0.895 0.850 0.873
LightGBM (Table 20) 0.974 1.000 0.873 0.885 0.863 0.874
EBM (Table 20) 0.983 1.000 0.880 0.943 0.825 0.884
Random Forest (Table 23) 0.942 1.000 0.877 0.970 0.800 0.885
XGBoost (Table 23) 0.985 1.000 0.882 0.931 0.838 0.884
LightGBM (Table 23) 0.972 1.000 0.868 0.917 0.825 0.871
EBM (Table 23) 0.983 1.000 0.872 0.942 0.813 0.877
Random Forest (Table 27) 0.967 1.000 0.869 0.969 0.788 0.879
XGBoost (Table 27) 0.982 1.000 0.895 0.944 0.850 0.897

Table 4: Top 10 models based on F1 score and precision for sampling methods from
imbalance learn

Model AUC Accuracy F1 Precision Recall PR AUC
Logistic Regression 0.84 0.99 0.79 0.93 0.68 0.81
KNN 0.69 0.99 0.54 0.98 0.38 0.68
Decision Tree 0.82 0.99 0.77 0.99 0.63 0.81
CatBoost 0.83 0.99 0.80 0.99 0.67 0.83
Extratrees 0.92 0.99 0.90 0.94 0.86 0.90
Xgboost 0.93 0.99 0.92 0.99 0.86 0.92
Randomforest 0.91 0.99 0.87 0.98 0.78 0.89
LightGBM 0.93 0.99 0.91 0.98 0.84 0.91

Table 5: Performance Metrics of Different Models with the WCGAN oversampling

4.5 Cost-sensitive Learning

As discussed in Section 3.2.2, we implemented a cost-sensitive approach across our differ-
ent models. During our studies, we observed that the weight assigned in the cost function
or distributed to instances via the instance weighting method had to be tuned based on
the dataset and the model. After tuning the various models, we found that Light Gradient
Boosting seems to benefit the most from the cost-sensitive approach.

The results of simple cost-sensitive learning can be found in Table 6. It should be noted
that in this table, the ideal weight for each model was tuned to achieve the best results.
Additionally, no hyperparameter tuning is currently provided for Explainable Boosting to
perform cost-sensitive learning.
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Model Ratio AUC Accuracy F1 Precision Recall PR AUC
LightGBM 1:8 0.93 1.00 0.92 0.97 0.87 0.92
RandomForest 1:12 0.91 1.00 0.88 0.95 0.82 0.88
CatBoost 1:1 0.92 1.00 0.91 0.98 0.84 0.91
XGBoost 1:8 0.93 1.00 0.89 0.93 0.86 0.89
Extra Tree 1:8 0.90 1.00 0.87 0.95 0.80 0.88

Table 6: Performance Metrics of Different Models with Cost Sensitive Ratios

Afterward, a hybrid approach was tested where we first performed sampling at different
scales (1:10, 1:20, 1:100) using GAN and ADASYN sampling methods. We then trained
a cost-sensitive model by re-tuning the model. It turned out that during tuning, we often
obtained the best results with a weight of 1:1, indicating that no modification to the cost
function was needed to achieve the best model. Additionally, the results obtained using
this method were less effective than simply using GAN oversampling or a cost-sensitive
approach.
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5 Explanation of the Prediction
In this chapter, we will evaluate the different plots provided by the various interpretable
models first, and the plots provided by the SHAP method to explain our so-called Black
Box models.

5.1 Interpretable Model

In this section, we will explore the various possibilities for interpretability of our models.
As explained in section 3.5, we will address the different explanations provided by Logistic
Regression, Decision Tree, and Explainable Boosting models. These three models are
available in the interpretML library [43].

5.1.1 Decision Tree

First, we will focus on the decisions that can be explained by a simple Decision Tree. Two
functions provided by interpretML allow us to explain this decision tree both locally and
globally. The global graph, shown in Figure 7, is quite similar to the local graph in Figure
9. The advantage of the local graph is that we can trace the different decisions made in
this tree to classify this transaction. Finally, it is also possible to highlight a variable to
see how important it is in the decision-making process. For example, in Figure 8, we can
see that variable V14 influences three decisions in this tree. It is also noted that on each of
these graphs, the longer the branches, the higher the number of instances classified.
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5.1.2 Explainable Boosting and Logistic Regression

Next, we can look at Logistic Regression and compare it directly with Explainable Boost-
ing. As we can see in Figures 10a and 10b, both models provide a global explanation of
the results in the form of a Bar Plot. It is noted that as explained in Section 3.5.

(a) Explainable Boosting model

(b) Logistic Regression

Figure 10: Bar plot of Global Explanation

Explainable Boosting also provides the interaction weights of two variables in the predic-
tions. For example, we can see on the Figure 12 the pairwise interaction between v19
and v24. We can see, for example, that if V29 is greater than 1.8 and V4 is less than -2,
we have a high probability of being a fraud. Then, the two models allow us to see the
evolution of the probability of being a fraudster as a function of the value of a variable,
as shown in Figures 11a and 11b. A higher score indicates a greater probability that the
model predicts fraud. It’s worth noting that the non-linear nature of EBM allows us to
reveal what we call critical areas, i.e. areas where we can detect spikes in the probability
of falling victim to fraud. For example, in Figure 11c, which is an enlarged version of
the graph mentioned above for the variable V1, there is a peak when the value of V1 is
between 0.474 and 0.545. It might be useful for an expert familiar with the actual values
of these variables to ask why these values are critical, and whether it is possible to identify
a specific type of fraud.
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Figure 12: pairwise interaction with FAST on Explainable Boosting

(a) Explainable Boosting model for V14

(b) Logistic Regression for V14

(c) Explainable Boosting model for V1 (zoom)

Figure 11: Global Explanation of a selected variable

Finally, as we can see in Figures 13a and 13b, it is also possible to obtain a local expla-
nation for a given transaction for both Logistic Regression and the Explainable Boosting
model.
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(a) Explainable Boosting model

(b) Logistic Regression

Figure 13: Bar plot of Local Explanation

5.2 Explain Black Box Model with SHAP

The SHAP library provides three main types of plots for obtaining interpretability, local
plot, global plot and dependence plot. In this exploration of the SHAP explanation, we
will use our best model the Ligth Gradient Boosting model with a Cost sensitive approach.
Firstly, SHAP propose two plots for global explanation:

1. Bar Plots: The bar plot is probably the simplest form of global explanation. It
plots, for each feature, either the mean or the max of the absolute SHAP values
for that feature. The blue part represents the weight of this variable in predicting
non-fraud, and the red part represents the weight in predicting fraud. We can see
an example in Figure 14a, where it is evident that feature 4 seems to influence the
model’s prediction the most on average.

2. Beeswarm Plot: This second plot, shown in Figure 14b, displays all SHAP values
for each element in our dataset. Although this plot provides much more information
than the bar plot, it can be more complicated to interpret for non-experts. This
graph shows the distribution of SHAP values for the data. A negative SHAP value
indicates that the variable’s value for that instance influences the prediction towards
non-fraud, and a positive value influences towards fraud. The colors associated with
the points represent the values of the variables. For instance, for feature 14, high
values seem to influence the prediction towards fraud. However, the values most
influencing the prediction seem to be rather low for this feature, according to the
graph. It could be interesting for an expert to explore these variable values to
determine if there are critical values for the model (i.e., values where the model
automatically predicts fraud). Additionally, it shows that some instances of the
variables significantly influence the average value since many SHAP values are close
to 0. Finally, we can see that although feature 4 seems to influence the model the
most on average, in some cases, feature 14 is the most influential.
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(a) Global Bar Plot from SHAP (b) Beeswarm Plot from SHAP

Figure 14: Global Explanation Plots from SHAP

The SHAP library also provides local interpretability for specific predictions. There are
4 functions provided by SHAP:

1. Force Plot: The force plot shows the tendency of each variable’s value to influence
a fraud or a legitimate transfer. Red indicates values influencing fraud, and blue
indicates values influencing a legitimate transfer. This plot also shows the variable
values for that instance. In the example shown in Figure 15a, we see the explanation
for the first prediction on our train set. For instance, the value of variable V4
significantly influences the prediction towards fraud with a value of -1.129.

2. Waterfall Plot: This plot provides the same information as the force plot but in
a more readable format.

3. Bar Plot: Again, this plot is another way to highlight the information shown in
the waterfall plot or force plot.

4. Decision Plot: This plot shows the cumulative SHAP values for each instance
of our variables. The advantage of this plot is that it is possible to plot multiple
instances on the same plot, which can be useful for comparing two model decisions
based on variable values. For example, in Figure 15d, we see that for two frauds,
the variable influencing the model’s decision the most seems to be V14 for the first
transfer (dashed line on the graph), while the other (solid line on the graph) is
mainly influenced by the value of V4.

47



(a) Local Force Plot from SHAP

(b) Local Waterfall Plot from SHAP (c) Local Bar Plot from SHAP

(d) Decision Plot for 2 Fraud and 2 Legitimate Transfers

Figure 15: Local Explanation Plots from SHAP

48



Finally, the last type of plot that provides explanations related to the features interaction
is the Dependence Plot. This plot provides a global view of SHAP values based on the
variable values. Additionally, the color of the points indicates if the feature of interest
has interactions that influence the model’s decision with other variables. By default, the
variable with the most average interactions is chosen, but this can be specified in the
function parameters. For example, in Figure 16, we can see that elements with a V3 value
around 1 and a high V4 value are likely to be classified as fraud. A more illustrative
example can be found with non-anonymized variables in the SHAP documentation.10

Other dependence plots can be found in Figure 30.

Figure 16: Dependence Plot for V3

10SHAP documentation, last checked 17/07/2024 on https : //shap −
lrjball.readthedocs.io/en/latest/example_notebooks/plots/dependence_plot.html
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6 Considering Costs
The context of fraud detection is difficult to address because the errors made by the model
bring a direct financial cost. Additionally, the financial impact of these errors varies
significantly depending on the type of error, whether it involves a missed fraud (False
Negative) or a mistake involving legitimate transactions (False Positive). Each of these
costs also differs depending on the transfer itself, as well as other factors intrinsically
linked to the transfer such as the bank, location, date, etc. For this reason, we have
studied several possibilities to allow our models to understand the costs associated with
these errors.

6.1 Cost Weighting Approach

Our first idea was to use the non-anonymized variable representing the transaction amounts
as weights in the model’s decision-making process. Indeed, if we look at the results pro-
vided in Table 7, we can see that although the performances seem slightly lower than our
best model, the cost of errors is lower. We deduce that the model ends up making more
errors, but those errors are less costly.

Model AUC Accuracy F1 Precision Recall PR AUC
Cost
LightGBM-BEST 0.937 0.999 0.915 0.984 0.776 0.864
2781.19
LightGBM-Cost 0.937 0.999 0.855 0.951 0.776 0.864
2480.28

Table 7: Model performance with cost instance weighting

Although this method seems effective at first glance, it is important to remember that the
cost of an undetected fraud or a wrongful accusation on a legitimate transfer is generally
not the amount of the transfer. It is indeed a good idea because the larger the amount of
the transfer, the greater the costs incurred by an undetected fraud. Moreover, the financial
impact of a wrongful accusation can match the scale of the transfer amount.11

6.2 Training with Adapted Metrics

Our second idea was to consider training the model when we know the exact cost. If we
allow the user to input the costs considered in this context, we could train a model that
aims to minimize these given costs. It is important to specify that here we are talking
about estimated average costs (because it is difficult to obtain the exact costs generated
by an error due to costs sometimes being related to the transfer itself, see 4.2).

Therefore, we demonstrate at point 4.2 that using the Fβ score with β2 =
Cfn

Cfp
is beneficial.

Assuming that the cost of a wrongful accusation is 100 times more costly than a fraud,
we can search for the optimal model.

11Acknowledgment to Arthur Desaive, a graduate student of the University of Liège in the Faculty of
Law.
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However, from a usability standpoint, performing tuning to create a new model adapted
to the costs incurred by errors involves latency on the application during the time it takes
to find the optimal hyperparameters for the newly defined Fβ score and train this new
model. As a result, this approach may not be feasible as the data volume increases and
thus the training time extends.

6.3 Thresholding

The last approach considered was thresholding. By default, models assign a threshold of
0.5 for the final decision. This means that the model calculates the probability of each
instance being fraud or not, and if this probability is greater than 0.5, the classifier will
classify the transfer as fraudulent and vice versa. However, it is possible to modify this
threshold so that the model tends to classify more instances as fraud or vice versa. Our
final approach is to find the optimal threshold that minimizes the average cost provided
by the user. The great advantage of this method is that it does not require retraining the
model and is thus not as demanding in terms of computation time.

First, we defined a function to find the best threshold that minimizes a cost function we
also created. The idea behind this approach is to consider 40 thresholds between 0 and
1 and find the optimal threshold based on costs. To do this, we divide our training set
into 3 stratified datasets and alternately train our model. For each model, we calculate
the cost function:12

J(y, ŷ) = Cfp × (1− ŷ)× y + Cfn × ŷ × (1− y)

We then retrieve the average cost of these models based on the considered threshold. In
the end, we simply return the threshold allowing for the lowest cost. Our experimental
results prove that when the cost of not detecting a fraud increases and surpasses the cost
of a wrongful accusation, the threshold will be adjusted to find the optimal cost. For
example, if the cost of an undetected fraud becomes 100 times greater than the cost of
a wrongful accusation, we obtain an optimal threshold of 0.076, which gives us a cost of
510 compared to 1101 for our model optimized according to precision.

On May 27, 2024, a new function from the Scikit-learn library named TunedThreshold-
ClassifierCV was created. This function post-tunes the decision threshold using cross-
validation. When using this function, we aimed to optimize the Fβ score with β2 =

Cfn

Cfp
.

Although the two methods seem similar, the method we developed and the one imple-
mented in TunedThresholdClassifierCV did not provide the same results. Indeed, through
experimental tests, we found that postprocessing with TunedThresholdClassifierCV did
not provide an optimal cost. We propose several hypotheses for this result:

1. The TunedThresholdClassifierCV function may have been misused on our part.

2. The Fβ score does not minimize costs as we thought, and thus the result obtained
at point 4.2 may not be correct.

3. The TunedThresholdClassifierCV function contains errors.

12Fraud detection with cost-sensitive machine learning by Roman Moser in Towards
Data Science, 29/03/2019. Last check: 10/07/2024. https://towardsdatascience.com/
fraud-detection-with-cost-sensitive-machine-learning-24b8760d35d9
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For these various reasons and because our experiments indicate that the thresholding
method used in this project works, we have retained our method despite it being more
time-consuming in terms of computation.

Although the thresholding method seems to provide a concrete solution to our problem,
it is worth noting that thresholding may not always lead to the optimal cost for the given
costs, which could potentially be achieved through the retraining method by tuning our
hyperparameters.
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7 Drifting and Continuous Development
According to Intech, the last challenge of this project was to create accessible and perfor-
mant models over time. This means that the models needed to be easily trainable, capable
of being retrained and redeployed without disrupting the application. Each model must
therefore be deployed independently and accessible via requests. Additionally, the phe-
nomenon of drifting is highly prevalent in the field of fraud detection. Fraudsters are
constantly seeking new ways to reinvent fraud in order to circumvent security measures
like our machine learning models. Moreover, the different variables in our dataset repre-
sent information about transactions and enable our model to differentiate between usual
transactions and fraud. However, the values of usual transactions can vary over time as
they may depend on external factors such as purchasing power, the arrival of new banks,
new currencies, etc.

7.1 Continuous Development with MLOps

An important aspect of managing drifting and deploying a machine learning model is the
MLOps management of the project. This MLOps management relies on several key steps
that we aim to automate.13

1. Integration of new data: Being able to store a data flow. In our case, we used
Apache Kafka14, which according to Intech, is the most appropriate technology to
use and is already utilized within the company.

2. Preparation, storage, and versioning of data: Once the data is integrated, we can
perform the preprocessing defined in Section 3.1. For storing this data, we used a
technology called MinIO15, which is the most used storage in the field of machine
learning and is widely used within Intech.

3. Retraining the model: Determine if model retraining is necessary, and if so, retrain
it, version it, and store it on a storage platform. Here, we will also use MinIO to
store our models.

4. Adapting the model as a REST API: We used FAST API to generate these APIs
for the various requests necessary for the application (prediction, explanation, eval-
uation, etc.).

5. Dockerization of the model: The model must be transformed into an image (here a
Docker image) that can be pushed and pulled from a registry (here we use Harbor
technology, which provides an internal registry to Intech).

6. Deployment and Orchestration of Docker: The final point involves orchestrating
these different Docker containers using an orchestrator such as Kubernetes.

13Réentrainer automatiquement un modèle : fausse bonne idée ?, Paul PETON, 18/12/2021, Last
checked 15/07/2024, https://paul-peton.medium.com/réentrainer-automatiquement-un-modèle-fausse-
bonne-idée-a885e0783d86

14Apache Kafka Documentation, Last checked on 19/08/2024 on
https://kafka.apache.org/documentation/

15Minio documentation, Last checked on 19/08/2024 on https://min.io/docs/minio/kubernetes/upstream/
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7.2 Deployment of Models

It is important to revisit the deployment part of the models mentioned earlier. To effec-
tively improve and update our application, we opted for a microservices approach as the
deployment structure of our project.

The microservices approach is an architectural style where an application is decomposed
into small and independent services, called microservices.16 Each microservice is designed
to perform one or more specific tasks unique to that microservice. In our case, we will have
one microservice per model and one microservice for our application. Our application will
allow access to information from our models via API requests defined using FAST API.
This architecture allows for model updates without affecting the rest of the application.
It also makes it easier to roll back if we find that a new model does not function properly
or makes too many errors.

The microservices architecture of our project includes several models where each model
runs in a Docker container. These Docker containers are orchestrated within a Kubernetes
cluster. In this cluster, each Docker container runs in a pod, managed by a deployment
(which allows for scaling, ensuring the desired number of running pods, etc.) and accessi-
ble via a service. The application itself has an additional LoadBalancer service linked to
an Ingress, making it accessible to an external user. More information about the applica-
tion can be found on Section A in the appendix. The schema of our Kubernetes cluster
architecture can be found in Figure 20 while the schema of the all architecture of the
deployment use in this project can be found on Figure 19.

7.3 Concept Drift

Concept drift is defined as:
"Concept drift describes unforeseeable changes in the underlying distri-
bution of streaming data over time. Data analysis has revealed that ma-
chine learning in a concept drift environment will result in poor learning
results if the drift is not addressed" [44]

As Jie Lu mentioned in his paper, the problem of drift can reduce the performance of our
models if not managed. This phenomenon, also known as data shift or concept shift, can
occur for several reasons:

1. Model drift: This type of drift occurs when the task for which the model is
designed changes completely. In our case, this corresponds to the emergence of a
new type of fraud or the disappearance of an existing one. These new fraud types
may not be detected by the model.

2. Data drift: This type of drift happens when the distribution of variables changes,
making values that were previously considered anomalies by the model now appear
normal due to shifts in the value distributions over time. A good example would be
a change in the distribution of a monetary value. For instance, if the value of the
euro were to drop significantly, the distribution of transaction values could change
and show much higher values.

16Microservice Architecture pattern, Chris Richardson, Last checked 15/07/2024 on
https://microservices.io/patterns/microservices.html
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7.4 Handling Drift

There are several methods to address the concept of drift, including approaches related
to model performance or data distribution [44].17

1. Performance Approach:

This simplistic approach retrains the model when its performance begins to decline.

2. Distribution Approach:

This method estimates the distance between the distributions of the historical
dataset on which the model was trained and the new dataset that has just been
relabeled. To calculate these distances, we can use methods such as Kolmogorov-
Smirnov, Jensen-Shannon, or Wasserstein.

3. Population Stability Index (PSI):

The PSI is a statistical measure used to compare the distribution of a categori-
cal variable across two different datasets. High PSI values indicate a significant
difference between the distributions of the variable in the two datasets.

4. Page-Hinkley Method:

The Page-Hinkley method works by accumulating the difference between observed
data points and a reference value (typically the mean of the initial data). A signifi-
cant increase in the cumulative sum of these differences indicates a potential model
drift.

7.5 Retraining Models

When our models are no longer up to date, it is necessary to retrain them. However, there
are several retraining options:

1. Complete Retraining:

The most basic method is to simply reselect part or all of the historical dataset
along with the new dataset to create a new model. However, this method can
quickly become time-consuming (as the amount of data increases) and is not always
practical in real cases.

2. Incremental Retraining:18

Some models train iteratively on data batches, making it possible to retrain them
incrementally on the new dataset without completely retraining the model. This
method is less time-consuming and allows for frequent and quick updates. However,
over time, this method can introduce bias. Additionally, it is only applicable to
machine learning models that support incremental learning.

3. Transfer Learning:19

17Understanding Data Drift and Model Drift, Moez Ali, 01/2023, Last checked 15/07/2024 on
https://www.datacamp.com/tutorial/understanding-data-drift-model-drift

18What is Incremental Learning?, Abid Ali Awan, 06/2023, last checked 15/07/2024 on
https://www.datacamp.com/blog/what-is-incremental-learning

19What is transfer learning?, Jacob Murel, Eda Kavlakoglu, 12/02/2024, last checked 15/07/2024 on
https://www.ibm.com/topics/transfer-learning
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Transfer learning is a technique in which knowledge gained in one context is used
to improve generalization in another context. This method reduces training time
and the dataset required for training. It also allows for better generalization by
using information learned on an older dataset while incorporating new information.
However, for transfer learning to be effective, the following three conditions must
be met:

(a) First, the model’s task must not change (i.e., the criteria for classifying fraud
should not change completely, which can happen when a new type of fraud
emerges).

(b) The distributions of the new dataset and the old dataset should not vary too
much.

(c) The historical model and the model to be trained should be comparable.

7.6 Our Approach

Once we obtain a new dataset relabeled by an expert who may have corrected the model’s
errors, we start by testing if the model’s prediction on this new dataset yields results
lower than expected in terms of F1 score. Specifically, we test on the new dataset and
the historical dataset; if the results are lower, we might be experiencing drift. We then
conduct a probabilistic distance test between the new data and the historical data. If
this distance exceeds a certain threshold, we perform a complete retraining of our model;
otherwise, we perform transfer learning retraining of our model.

This method has been developed in the file pipeline.py for LightGBM. However, we were
unable to implement this same pipeline for other models due to time constraints.

All the architecture of our platform can be found on Figure 19 while the architectue of
the kubernetes cluster can be found on Figure 20.

7.7 Kubeflow

Finally, we considerate a purely MLOps approach. To optimize the retraining of models,
we sought technologies that could facilitate this process.

In our research on how to optimize the retraining system for our models, we reviewed
numerous topics on MLflow and Kubeflow. Although these two technologies offer different
tools within the MLOps framework, we decided to focus more on Kubeflow. This tool
was designed to be used as an overlay on a Kubernetes cluster, whereas MLflow can be
used with other orchestrators. Among its many features, Kubeflow includes three major
tools that seemed useful for our project: Katib, KServe, and Kubeflow Pipelines.

7.7.1 Katib

Katib is a Kubeflow feature that enables automated machine learning. It can be used to
effectively tune the hyperparameters of our models. This technology allows for scaling and
parallelizing the different steps of hyperparameter tuning by running them on different
Docker containers.

56



7.7.2 Kubeflow Pipelines

Kubeflow Pipelines is a platform for creating machine learning pipelines with a user
interface that makes it easier to manage and track experiments, jobs, and runs. Directly
associated with a notebook, it is possible to create our pipelines directly on Kubeflow.
A pipeline represents the various steps in performing machine learning training. Each of
these steps is deployed in a Docker container. The various steps include:

• Downloading the dataset

• Scaling the data

• Handling imbalanced data

• Hyperparameter tuning (with Katib, for example)

• Training the model

• Evaluating the model on the test set

Each of these steps is thus dockerized; in the context of Kubeflow Pipelines, each Docker
container is called a component. Each component is reusable. This allows us to retrain
the model without retraining certain preprocessing steps by reusing the preprocessing
components and only changing the training component. Moreover, creating the pipeline
is considered as a Kubernetes job. It is easy to create cronjobs (also called recurring
runs in Kubeflow) to run the pipeline job at predefined time intervals. It is also possible
to create conditional components, meaning we can execute a specific component only if
a condition is met (e.g., retraining the model only if drifting is detected). Finally, the
interface provides a visual representation of our entire machine learning infrastructure
and shows the various results of our models. An example of a Kubeflow Pipeline is shown
in Figure 17. In this figure, all the learning parts are inside the conditional branching
components, which represent the conditional choice of whether or not to train our model
based on a potential drift.

Figure 17: Kubeflow Pipeline for LigthGBM training

7.7.3 KServe

The last tool from Kubeflow is KServe. KServe is a standard Model Inference Platform
on Kubernetes, built for highly scalable use cases. It allows for advanced deployment
methods such as canary rollouts. It integrates the use of explainable methods like SHAP.
However, this method will not be used in our thesis for several reasons. First, model
inference is limited to the options provided by KServe, which are sometimes too limited
for specific uses needed in our application and generally more complex to implement
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than simply creating an API. Moreover, an inference method had already been developed
using FAST API before considering the option of using Kubeflow in this project. Finally,
KServe is available for a limited number of models. For instance, it is not possible to use
this method for serving Explainable Boosting or CatBoost models.

For all these reasons, we decided not to use this tool in our thesis.

Finally, other Kubeflow tools, such as Spark Operator, Models Registry, and Training
Operator, seem to be very useful. However, they were not considered in this thesis mainly
due to time constraints or because they were perhaps too rigorous and demanding in terms
of time investment compared to their utility (Models Registry, for example).
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8 Discussion
In this chapter, we will discuss the various results obtained in this thesis. These results
will be divided according to the objectives that were predefined in the introduction of
this report in Section 1.2. For each issue raised, we will discuss what was addressed in
relation to that objective.

8.1 Model Development in Imbalanced Situations

We provided a novel approach using WCGANs [12], which gave us very satisfactory results
with an F1 score of 0.91 with new models such as Extreme Gradient Boosting [40].Our
approach is novel since GAN models have not been fully explored in the field of fraud
detection, and the WCGAN, in particular, does not appear to have ever been used in
this context. Additionally, we explored new ensemble models like CatBoost [42] and
Light Gradient Boosting [41], achieving results up to 0.92 in F1 score when we adopted
a cost-sensitive approach. All these results are significantly better than what had been
previously achieved with the same dataset, as we have recorded in Table 1.

8.2 Model Development in the Context of Interpretability

We adopted an methodological approach to analyze and utilize the explanatory method
that is the simplest (i.e., least computationally expensive) and the most truthful (i.e.,
where we can almost completely explain the process behind the explanation). In this
research, we found that SHAP [34] was the technology that best met these criteria.

Next, we addressed interpretable models, seeking a model that could be fully interpretable
while only losing a little efficiency in the results. In this research, the Explainable Boosting
Model [43] using the GA2M [32] method seemed to be the most suitable model to best
resolve these issues, achieving results up to an F1 score of 0.9.

8.3 Continuous Training and Application Deployment

We aimed to develop an application that detects fraudulent transactions rather than just
models. This application needed to be deployed and sustainable over time. To achieve
this, we used Kubernetes20 to deploy our various models, as well as Kubeflow21 to ensure
continuous retraining of our models when faced with model drifting or data drift. This
method seems to work well with our artificial tests; however, due to factors beyond our
control, we were unable to test it in a real-world situation.

8.4 Approach Related to Monetary Costs

We explored three possibilities to account for the monetary values behind potential model
errors. This approach was considered to enable direct discussions with future Intech clients
about their actual situations and to determine the most practical method for their specific
case. The three possibilities explored were:

• Instance weighting with the direct cost of each transaction.

20Kubernetes documentation, Last checked on 12/08/2024 on https://kubernetes.io/
21Kubeflow documentation, Last checked on 12/08/2024 on https://www.kubeflow.org/
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• Fine-tuning of hyperparameters on a cost-adapted metric (Fβ score).

• Thresholding of our models based on the average costs attributed to errors.

Each of these methods addresses the problem in different ways, allowing for different
approaches to each client’s specific issues.
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9 Limitation
In this chapter, we will present the various limitations we encountered during this the-
sis.

9.1 Datasets

The first limitation was, of course, the difficulty in obtaining a dataset. The internal
restructuring of POST Group made exchanges between Intech and their banking interme-
diary, BGL, difficult. These challenging exchanges complicated the signing of contracts
allowing access to such data, which is protected by GDPR. Additionally, client-company
communication was not optimal for the same reasons.

As a result, we used the dataset provided by the Université Libre de Bruxelles. However,
this dataset is quite limited (only 470,000 transactions) and contains a higher presence of
fraud compared to reality, according to Intech. Moreover, this dataset is anonymized via
the PCA method, leading to the loss of much information about the data in the process.
Additionally, this PCA transformation prevents us from performing statistical or machine
learning methods that could be useful, such as clustering based on categorical variables.
For example, clustering by country could be helpful since a transaction from Bangladesh
is logically more likely to be fraudulent than a transaction from Belgium.

The small amount of data prevents us from using the latest deep learning models (our best
MLP achieved around 0.86 in F1 score), so a separate study would be useful to consider
the option of different deep learning models.

9.2 Time Constraints

The duration of this master’s thesis being six months does not leave much time to explore
the entirety of the existing methods. For example, as we saw in Section 3.2, WCGAN did
not always provide distributions close to our data. Some other GANs, such as CTGAN
[45], seem to find distributions closer to our data.

Moreover, the time allotted for this project did not allow for a full exploration of the
Kubeflow technology. We were able to achieve continuous training for one model, but due
to time constraints, we could not explore additional solutions for all the models considered
in this thesis. Other MLOps technologies, such as Rflow or MLflow, were not explored.
Moreover, since the continuous training aspect of the project was the last to be considered,
due to a lack of time, there was no opportunity to conduct a thorough state-of-the-art
review or explore research in this area.

Finally, with more time, we could have completed other steps in our fraud detection
process. Indeed, our platform does not include all the possibilities proposed by Dal Pozzolo
[6]. For example, a model evaluating the risk of fraud upstream and the implementation
of predefined rules would increase the chances of detecting larger frauds.

9.3 Libraries in Development

Many of the technologies we used are evolving rapidly, with new versions released fre-
quently. For example, InterpretML is currently considering a cost-sensitive approach for
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their models and is working on implementing it in their library. Additionally, Imbalanced-
learn has released several functions for thresholding, which we did not have time to ex-
plore.

Similarly, we used version 1.8 of Kubeflow to ensure stability in our application. However,
version 1.10 is currently in development, with new features for Katib to fine-tune the
hyperparameters of our models in the best way possible.
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10 Conclusions and Future work
In conclusion, this project successfully developed a fraud detection platform deployed us-
ing various frameworks. The research behind this platform led to improved performance
by leveraging newer models, such as Light Gradient Boosting and Extreme Gradient
Boosting, which are not yet widely used in the fraud detection field. We explored dif-
ferent solutions for handling data imbalance through cost-sensitive learning or sampling
via the Wasserstein Conditional Generative Adversarial Network (WCGAN). We also ad-
dressed the concept of explainability using two options: SHAP and Explainable Boosting.
Subsequently, we devised three methods to account for the monetary cost of errors: Direct
Weighting, Fine Tuning, and Thresholding. Finally, we developed a solution to ensure
our models are resistant to data and model drift using Kubeflow.

The impact of this thesis has been to introduce new approaches in the field of fraud
detection, leading to better results than those found in the existing literature. For Intech,
this thesis also provided valuable insights into the potential impact of Kubeflow in the
broader world of machine learning. Additionally, this thesis demonstrates to potential
future clients what Intech is capable of in terms of machine learning model development.
Furthermore, if Post desires, this project could serve as the foundation for developing a
more comprehensive and complex fraud detection platform. Lastly, this work has helped
to identify the available options for incorporating monetary costs into fraud detection
models.

In continuation of this thesis, there are many opportunities for future work. Indeed, this
thesis is just a step toward what is possible in the field of fraud detection.

First, it may be possible to conduct a comparative study between different GANs to
understand why WCTGAN is used in fraud detection compared to others such as CTGAN
in order to find better data generators, which is a crucial aspect of fraud detection.

Next, conducting research that evaluates the potential of using Graph Neural Networks
(GNNs) could yield promising results, as proposed by Wei Zhuo [7]. Furthermore, research
already exists to make these Graph Neural Networks explainable [46]. GNNs are rapidly
growing in the field of deep learning. If this type of model proves effective, it might be
useful to consider a new version of fraud detection system design tailored to this model
(with rules specific to graphs, for example).

Additionally, with a larger dataset, deep learning methods could be employed to predict
whether a transaction is fraudulent. These deep learning methods can be interpreted using
techniques like Neural Additive Models [47]. This approach complicates the principle of
GAMs by incorporating Neural Networks.

Subsequently, with direct contact with industry experts, several adaptations could be
made based on their actual needs. Additionally, with more information on the data (and
therefore less anonymization), it would be possible to highlight the actual variable values
through the explainability of our models and thus provide real context behind these
explanations. For example, one could identify countries where fraud is more prevalent
or types of transactions that have a higher probability of fraud. Based on these results
and further discussions with experts, certain rules could be redefined, making it easier to
predict fraud.

Moreover, Explainable Boosting is a model that already seems highly effective in the do-
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main of interpretable models. However, as explained in Section 4.5, there is currently no
method to make the model cost-sensitive. A detailed study of the model and a deeper ex-
amination of the algorithm’s code could enable the implementation of such learning. This
model could then show even more impressive results in the field of fraud detection.

Furthermore, if a large amount of data is accumulated, it could be possible, using in-
creasingly powerful new LLM models, to analyze transactions as a set of characteristics
rather than tabular information, thereby learning to differentiate frauds from non-frauds.
Models such as LAMA 3, recently released by Meta, could be tested to see if this type of
model could be effective in the field of fraud detection.

Finally, new technologies are emerging, and recently, we have heard about KAN (Kol-
mogorov–Arnold Networks) [48]. The main idea behind this new technology is to have
learnable activation functions rather than fixed ones and to use only sum operations on the
nodes. These new models could offer better accuracy while maintaining model explain-
ability. Following this project, it might be useful to test this new model in an imbalanced
context like fraud detection and see if the imbalance management methods proposed in
this thesis also work well with these models.
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