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Chapter 1

Introduction

1.1 Background
The history of software defined radios begins in the early 7O’s when researchers at
the United States Department of Defense created the first receiver whose operation
was defined in software. Contrary to what had been created up to that point in
radio technology, it was able to be reprogrammed to change its operation instead of
having to change physical components.

Fast forward half a century to today’s world and anyone can get a software
defined receiver for roughly 40C. This allows massive amounts of people to analyze
the radio spectrum. However, while setting everything up to listen to a particular
band is rather easy, not everyone is based in a good location nor has access to good
antennas, which can be costly. In addition to this, while basic receivers can be
found for cheap, they typically do not allow to analyze a wide bandwidth (they
usually allow up to a few MHz of bandwidth). A solution to this is the concept
of WebSDR. A WebSDR is an SDR that is connected to the internet which allows
users from around the world to connect to it and use it just as if they had their own
SDR.
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2024 Matteo Carallo 1 Introduction

1.2 Subject of this thesis
The main goal of this thesis is to develop, from scratch, a WebSDR. However, to set
it apart from what is currently available, the goal will be to provide coverage for a
very wide bandwidth (ideally close to 100 MHz) as well as provide a way for users
to receive the baseband signal directly instead of the demodulated audio.

In order to achieve this, multiple tasks that cover a wide range of software de-
velopment will be undertaken. The first step of this thesis is taking a look at the
drivers for the Software Defined Radio (SDR) that will be used (Fairwaves XTRX)
and possibly patch them. Indeed, this SDR is connected to the server via pcie. This
requires drivers to work, alas, the last version of the drivers that are available were
made for Linux kernel version 4.19 which is relatively old. The next step of the
thesis is the design and deployment of a back-end server that is going to handle the
communication with the SDR card, handle the incoming requests from clients and
process samples accordingly.

The final part of the thesis is the development of a front end for the users. This
front end takes the form of a website which allows the user to see a waterfall graph
of the radio band analyzed by the back end as well as pick a specific frequency of
interest, a bandwidth and a demodulation which will be sent to him. An example of
such a website can be found here1.

All throughout the thesis, it will be important to keep in mind that future work
will probably occur on it, so documentation and proper code commenting will be
very important.

The Git repository is available here2. A demonstration of the working system is
available here3.

1The WebSDR of the University of Twente
2Link : https://gitlab.uliege.be/Matteo.Carallo/TFE
3Link : https://youtu.be/fC0f_SNVJKw
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Chapter 2

Used technologies

In order to bring this project to fruition, several concepts have been used. These
concepts and technologies require a bit of background in order to understand how
they work and use them correctly.

This project revolves around signal processing. According to the IEEE, signal
processing is defined as ”a branch of electrical engineering that models and analyzes
data representations of physical events as well as data generated across multiple dis-
ciplines”1. For example, an antenna may receive signals from several radio stations
and signal processing will allow to isolate one particular radio station, demodulate
it and play the audio.

In signal processing, there are a lot of basic blocks which apply well studied
transformations to signals, these can be assembled together to produce the desired
output. There are also a lot of key concepts that need to be understood in order to
build a functional system.

In the case of this thesis, only digital signals will be relevant as the analog part
of the signals will be handled by a the SDR driver itself. Each of the concept and
technologies relevant to this project will be explained in the following sections.

1IEEE Signal Processing Society, What is signal processing?, 2024, available at https://
signalprocessingsociety.org/our-story/signal-processing-101
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2024 Matteo Carallo 2 Used technologies

2.1 Basic signal theory
Only a handful of signal theory concepts are needed to understand this thesis, the
following sections will not go over all the details of why specific requirements are
needed but one essential requirement is the Nyquist sampling theorem which states
that :

fs ≥ 2 fmax (2.1)

Where fs is the sampling frequency and fmax is the highest frequency of the signal.
Not respecting this condition may lead to aliasing. In simple terms, aliasing will
make the captured signal appear at a different frequency, thus preventing proper
analysis of said signal. Higher frequency parts of the signal captured will get folded
on the lower frequencies, making it impossible to do distinguish them.

But does that mean one needs a sample rate of 200 mega samples per second
(MSPS) to analyze signals from 99 MHz to 100 MHz? Not really, what can be
done is down-mixing the signal to bring it to a lower frequency. Indeed analyzing
the spectrum between 99 MHz and 100 MHz is the same as shifting the signal 99
MHz to the left and analyzing the spectrum between 0 MHz and 1 MHz. Now the
highest frequency is only 1 MHz, meaning that 2 MSPS are enough to capture the
information in the signal. In general, the requirement is to have a sample rate which
is twice the bandwidth that is to be captured.

As a side note, when working with IQ (complex) samples (like in this thesis),
each sample effectively comprises of two measurements, meaning that the sample
rate needed with IQ samples is the same as the bandwidth.

7
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2.2 Fast Fourier Transform (FFT)
In order to understand the Fast Fourier Transform (FFT), there is a need to start
with the basics : the Fourier Transform (FT). The Fourier transform is defined in
the continuous time domain as follows :

F(ω) =
∫

∞

−∞

f (t)e−iωt dt (2.2)

The resulting function can be interpreted as the representation of the initial func-
tion with a different set of basis functions, namely, a basis set comprised of sinu-
soids. F(ω) is called the spectrum of the signal and contains the same information
as f (t). It makes the frequency content of the signal become apparent. In the case
of periodic functions, the integral can be computed over one period.

In the case of discrete signal processing, the Fourier transform has an equivalent,
the Discrete Fourier Transform (DFT). The DFT’s coefficients can be obtained like
so :

F [n] =
N−1

∑
k=0

f [k]e−i 2π

N nk (2.3)

Where f [k] is a sequence of values sampled at particular moments from a continuous
signal and N is the total number of samples.

This DFT is ultimately what is needed to transform the time domain signal sam-
pled by an SDR to the frequency domain but computing it is expensive. Indeed,
it requires O(N2) operations (on complex numbers) to compute the DFT where N
is the total amount of samples. This becomes prohibitive for large N and a faster
algorithm to compute it (or at least approximate it) is required.

The Fast Fourier Transform (FFT) is such an algorithm. It enables to compute
the DFT while being O(nlog(n)). The library used in this project, FFTW3, uses
the Cooley-Tukey algorithm to compute the FFT[7]. This algorithm is particularly
efficient if N is taken as a power of 2.

8
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2.3 Filtering
The previous section has introduced the FFT, this section will explain why it is nec-
essary to use it in this project (and in applications of signal processing in general).

One action that is performed a lot in signal processing (and as a result in this
project) is applying filters. Applying a filter with impulse response h[n] to a discrete
time signal x[n] can be mathematically written as :

y[n] = (x∗h)[n] =
N−1

∑
m=0

x[m]h[n−m] (2.4)

Where (x ∗ h)[n] is called the convolution of x and h. The computation of this
convolution has complexity O(N2) with N the length of the sequence. This com-
plexity is prohibitive for large N meaning that another way to compute the filtered
signal is necessary.

When switching to the frequency domain, the filtered signal can be computed
as follows :

Y [k] = X [k] ·H[k] (2.5)

With X [k] the DFT of x[n] and H[k] the frequency domain impulse response of
the filter. In the frequency domain, the convolution is replaced by a product, which
is much easier to compute.

This is where the FFT comes into play, as it provides a way to go from time
domain to frequency domain in O(NlogN). Performing the filtering in the frequency
domain is O(N) and going back into the time domain is O(NlogN). In total, going in
the frequency domain, performing the filtering and going back still stays O(NlogN)
compared to O(N2) when performing the filtering in the time domain. The FFT
thus allows to filter efficiently. Of course, the constant in front of this theoretical
complexity is higher than the one for the filtering in time domain but for large values
of N (which is the case for this project), switching to the frequency domain is much
faster.
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2.4 Software Defined Radio (SDR)
The device that is central to this project is the Software Defined Radio (SDR). Such
a device is defined as a ”radio in which some or all physical layer functions are
software controlled”2. The physical layer is the layer in which signal processing
occurs. Transitioning parts of the radio design to software has huge benefits. First,
electronic designs take more time to create and are more expensive. Second, as
many different SDR’s use the same components, production costs can be lowered.
In addition to that, new features can be added without the need to change physical
components but by simply updating the software. It is also easier to handle very
large bandwidths with SDR’s than it is with ”physical” radios.

For this project, there is no need to delve into a lot of details about SDR’s as
that would not be very useful, however, a few key elements of the SDR are going to
be explained below just to give a bit of background on them.

The first element is the fact that they work in the digital domain. As their goal is
to use general purpose programmable electronics, the analog signals coming from
the antenna will need to be converted to digital signals. This is performed by an
Analog to Digital Converter (ADC). This conversion is performed early in the SDR
pipeline.

The second element directly ties into the first one. In order to perform the con-
version, the analog signal needs to be prepared. This is done by applying various
filters and amplifiers to the analog signal. However, as these operations are imple-
mented at the hardware level, the number of available filters are limited. As such,
some care needs to be taken as to not introduce unwanted behavior when configur-
ing the SDR.

Figure 2.1 shows the high level idea of what an SDR looks like.

Figure 2.1: High level components of an SDR. Remade from : [5]

2Travis F. Collins, Robin Gets, Di Pu, and Alexander M. Wyglinksi, Software-Defined Radio for
Engineers, Artech House, 2018, page 3
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2.5 Digital Down Converter (DDC)
A Digital Down Converter (DDC) is a signal processing block whose role is to
convert a digital, band-limited signal to a lower frequency and lower sample rate.
In more practical terms, the DDC will extract a single, narrower band signal from
an initial, wider band, signal. This is accomplished by 3 main blocks :

1. A Numerically Controlled Oscillator (NCO) which will generate samples
from a complex sinusoid at the frequency of the bandwidth of interest. When
multiplied by the input signal, it creates a signal which is the same as the in-
put signal but centered around the frequency of interest. In essence, the signal
is shifted from one frequency to another.

2. A low pass filter which will be used to filter out everything not in the band of
interest.

3. A downsampler which will reduce the sample rate of the signal. As the ef-
fective bandwidth of the signal has been reduced by low pass filtering, the
sample rate can be lowered without any risks of artifacts appearing due to
aliasing.

Once the signal is at a lower sample rate, it is easier to work with and subsequent
steps will be less computationally intensive than working with the original sample
rate as less samples have to be processed. Figure 2.2 shows an overview of a DDC
implementation.

NCO

data in

Sinusoid
samples

Downsampler data out

Figure 2.2: Overview of a DDC.
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2.6 FM and AM modulation
This project allows the user to select 2 demodulations, FM demodulation and AM
demodulation. Their modulations are both explained below. Both of them use a
carrier wave to contain the modulated signal.

For Frequency Modulated signals (FM), the modulating signal is contained in-
side the carrier by varying the instantaneous frequency of the wave. The equation
of the modulated signal is as follows :

s(t) = Ac cos
(

2π fct +2π f∆

∫ t

0
m(τ)dτ

)
(2.6)

where:

• s(t) is the FM modulated signal.

• Ac is the amplitude of the carrier signal.

• fc is the carrier frequency.

• f∆ = K f Am where f∆ is the frequency deviation, K f is the sensitivity of the
frequency modulator and Am is the amplitude of the modulating signal.

• m(t) ∈ [−1;1] is the message signal.

For Amplitude Modulated signals (AM), the modulating signal is contained inside
the carrier by varying the amplitude of the carrier proportionally to the amplitude
of the modulating signal. The equation of the modulated signal is as follows :

s(t) = Ac (1+ kam(t))cos(2π fct) (2.7)

where:

• s(t) is the AM modulated signal.

• Ac is the carrier amplitude.

• fc is the carrier frequency.

• ka is the amplitude sensitivity or modulation index.

• m(t) ∈ [−1;1] is the message signal.

For demodulation, both of the pipelines used in this project are explained in
section 6.1.5.

12



2024 Matteo Carallo 2 Used technologies

Figure 2.3 shows a comparison between the output signals obtained from FM
and AM modulations.

Modulating signal

Carrier signal

AM modulation

FM modulation

Figure 2.3: Result of FM and AM modulation

2.7 Hardware used
The SDR that is being used is an Fairwaves XTRX pro revision 5. It is capable of
handling a maximum sampling rate of 120 MSPS with each sample having an I and
Q value, each being 12 bits. The tuning range of the device goes from 30 MHz to
3.8 GHz.

The server that will be used is a Dell Poweredge T630 boasting two Intel Xeon
E5-2630 (for a total of 16 physical cores), 64Gb (4 x 16Gb) of 2133 MHz ECC
DDR4 memory and an RTX 2080Ti GPU.
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Chapter 3

Getting the XTRX to work

The first part of this thesis was to make the library and driver for XTRX work with
the server. There are a couple of errors when trying to get the XTRX library and
driver to work on Linux kernel 5 and above. All of these issues are reported in the
following section and, if a solution was found, the solution is also reported in the
same section.

3.1 General problems and solutions

3.1.1 Missing dependencies during compilation
Following the readme provided with the repository leads to the compilation not
succeeding. This is due to 2 issues :

1. libqcustomplot1.3 is not available anymore. This can be fixed by download-
ing it from the libq website1 and placing the header file as well as the source
file in the corresponding directory in the xtrx source files. The exact location
is ”source/libxtrx/examples/xtrx fft”. After that, simply mod-
ifying the cmake.txt in that same directory to include the newly added files is
enough.

Alternatively, one could simply remove the examples and all references to
them as they are not necessary for the driver to work.

2. The graphviz and swig packages are missing from the list of require-
ments, this can be fixed by simply installing the packages using a package
manager.

1https://www.qcustomplot.com/index.php/download
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2024 Matteo Carallo 3 Getting the XTRX to work

3.1.2 BAR 1 not able to be allocated

Taking a fork of the XTRX pcie driver2 that is patched to compile and run on the lat-
est Linux kernel also includes a fix for checking the successful allocation of BAR1.
However, BAR1 is never allocated as it doesn’t seem to be implemented at the hard-
ware level. This leads the driver to abort its launch.

An easy fix for this is to simply not do anything when BAR1 is not allocated.
This does not appear to hinder the working of the device.

3.2 Operating system incompatibility
The main issue when trying to make the XTRX device work with the server boils
down to incompatibilities between the driver/hardware and the operating system
that is being used.

Results of tests conducted on different operating systems can be seen in the table
shown below :

Operating System Kernel Version glibc Version Works?
Debian 10 4.19.0-25 2.28-10+deb10u2 Yes
Debian 10 5.10.0-0 2.28-10+deb10u2 No
Debian 11 5.10.0-26 2.31-13+deb11u7 No
Debian 12 6.1.0-13 2.36-9+deb12u3 No
Ubuntu 20.04 5.15.0-91 2.31-0ubuntu9.9 Yes
Ubuntu 22.04 6.2.0-37 2.35-0ubuntu3.5 No

Table 3.1: XTRX driver compatibility

On all of these configurations, the code compiles and the driver is loaded, how-
ever, the XTRX device does not manage to successfully conduct the tests provided
by the driver library. More information about the exact nature of the issue is given
in section 3.4.

3 ways of overcoming the compatibility issues have been devised and are as
such :

1. Using an OS where the driver and library work out of the box.

2. Finding and fixing the issues the driver has and run an OS with a up to date
Linux kernel.

3. Trying to flash the firmware of the XTRX with a more up to date LimeSDR
XTRX firmware and using the limeSDR software suite on it.

These 3 potential solutions have all been explored to some extent and the find-
ings have been reported in the following sections.

2https://github.com/myriadrf/xtrx_linux_pcie_drv
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2024 Matteo Carallo 3 Getting the XTRX to work

3.3 Using an older OS
This option is the easiest and requires the least amount of time to get the XTRX
to work. Simply using Ubuntu 20.04 works and allows to directly begin working
on the rest of the project. There will be no security updates beyond 2025 and it
will not be possible to upgrade the kernel but that should not pose any issues for
now. Additionally, given that the back end is being developed using the SoapySDR
API to communicate with the XTRX device (see section 6.1.3), swapping from the
XTRX to a more modern SDR is as easy as changing a line in the configuration file
as long as the new SDR supports SoapySDR. This would then allow a more modern
OS to be chosen.

3.4 Fixing the driver issues
Another solution that could be applied is to try to find the root cause of the issue
that prevents the XTRX device from working on more recent operating systems.
The issue itself manifests as the test program hanging and never finishing.

After analyzing the code associated to the testing program and going up the
chain of functions called, the following piece of code was found to be the one re-
sponsible for the process hanging :

208 static int xtrxllpciev0_i2c_cmd(struct xtrxll_base_dev* bdev, uint32_t cmd,
↪→ uint32_t *out)

209 {
210 struct xtrxll_pcie_dev* dev = (struct xtrxll_pcie_dev*)bdev;
211

212 internal_xtrxll_reg_out(dev, UL_GP_ADDR + GP_PORT_WR_TMP102, cmd);
213

214 if (out) {
215 ssize_t icnt;
216 do {
217 icnt = pread(dev->fd, NULL, 0, XTRX_KERN_MMAP_I2C_IRQS);
218 if (icnt < 0) {
219 int err = errno;
220 if (err != EAGAIN) {
221 XTRXLLS_LOG("PCIE", XTRXLL_ERROR, "%s: I2C IRQ error %d (%d)\n",
222 dev->base.id, err, XTRX_KERN_MMAP_I2C_IRQS);
223 return -err;
224 }
225 }
226 } while (icnt != 1);
227

228 *out = internal_xtrxll_reg_in(dev, UL_GP_ADDR + GP_PORT_RD_TMP102);
229 }
230 return 0;
231 }

Listing 3.1:
sources/libxtrxll/mod pcie/xtrxll pcie linux.c
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This function tries to read a register but it keeps reporting as busy. This means that
the program stays in an infinite loop. Looking at the driver code to see exactly what
a ”read” operation is supposed to do leads to the following code :

913 case XTRX_KERN_MMAP_I2C_IRQS:
914 i = wait_event_interruptible_timeout(
915 xtrxdev->queue_i2c,
916 atomic_read(((atomic_t*)xtrxdev->shared_mmap) + XTRX_KERN_MMAP_I2C_IRQS) !=

↪→ 0,
917 2 * HZ);
918

919 if (!i) {
920 return -EAGAIN;
921 }
922 return atomic_xchg(((atomic_t*)xtrxdev->shared_mmap) + XTRX_KERN_MMAP_I2C_IRQS

↪→ , 0);

Listing 3.2: sources/xtrx linux pcie drv/xtrx.c

The driver code waits for an interrupt that never happens. This interrupt is supposed
to arrive on the ”queue i2c” wait queue. The driver has the following code to
handle waking up the queue :

720 if (imask & (1 << INT_I2C)) {
721 atomic_inc((atomic_t*)xtrxdev->shared_mmap + XTRX_KERN_MMAP_I2C_IRQS);
722 wake_up_interruptible(&xtrxdev->queue_i2c);
723 }

Listing 3.3: sources/xtrx linux pcie drv/xtrx.c

This function gets called whenever the function ”xtrx msi irq other” is called
and creates the appropriate mask. Finally, this last function is called by an interrupt
request handler instantiated at the probing of the device when launching the driver.

On more recent versions of the Linux kernel, this step still works without any
issues but interrupts are never generated by the handler. When looking at the kernel
code responsible for the creation of the interrupt handler, no changes seem to have
been made between working and non working kernel versions.

This could mean that the issue stems from a more complex interaction inside the
kernel or even glibc, in which case a fix would be hard to find (except downgrading,
but at that point it is simpler to use Ubuntu 20.04).
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3.5 Changing the firmware
To change the firmware present on the XTRX device (i.e. : reprogram the FPGA),
3 requirements need to be fulfilled :

1. Having a new image to flash on the device which would allow more up to date
drivers to be installed.

2. Having a backup of the image already present on the device in case something
goes wrong in order to be able to re-flash it with the initial image.

3. Having a way to flash the image on the device.

For each of these requirements, a solution was found and is explained below.
The new image comes from a project called ”LimeSDR-XTRX” by Lime Mi-

crosystems3. This project aims to take up abandoned development of the Fairwaves
XTRX and improve it. After sending a email asking whether the LimeSDR-XTRX
firmware could work with the Fairwaves XTRX, the companny replied by stating
that it should work but that they could offer no support. Once installed, the new
firmware would allow the use of the LimeSDR software suite.

The backup of the image already present on the device can be obtained in two
different ways. The first way is to use the utility program available in the XTRX
library to read the content present on the FPGA. The second way is to use a Xilinx
(the FPGA’s manufacturer) probe that is made to read and write to the FPGA. The
second solution has been chosen as, given that the XTRX library is quite bugged,
there is no way to know if the read operation is actually working. If it isn’t, the
XTRX risks getting bricked without any way to restore it.

To flash the new image on the FPGA, the same tools as for reading the content
of the FPGA can be used.

3Lime Microsystems website
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3.6 Flashing process and end result
The first step is to install Vivado. This software suite, made by AMD, enables the
usage of the Xilinx probe which can read/write to the FPGA. Once installed, the
procedure to use it is described in the README file in the XTRX/FPGA directory.

The backup went fine but the produced bitstream could not be loaded back into
the FPGA, this could indicate a faulty original firmware. When trying to install the
firmware provided by LimeSDR, it seems to go well but when reading back from it,
no changes seem to have been applied. This leads to the LimeSDR software suite
not recognizing the XTRX.

As the risk of bricking the XTRX was too high given the impossibility of loading
back the original firmware, the decision was made to stop trying to flash the FPGA
and proceed with using Ubuntu 20.04.

After a bit more research, it appears that the issue may be linked to how Vivado
was configured and was writing to the FPGA directly instead of the flash memory.
Further attempts to reprogram the XTRX may lead to more success but the risk was
deemed too high.
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Chapter 4

Overall architecture of the project

The overall architecture of the project is represented on figure 4.1.
It is composed of 3 main parts :

1. The signal processing part, which is part of the server and handles everything
from acquiring samples from the SDR to processing data for each individual
client channel.

2. The client handling part, which is also part of the server and which is re-
sponsible for serving the website to clients as well as establishing websocket
connections and TCP connections. It also handles client commands and sends
the data streams to the client. The website serving is handled by a Node server
while the rest is handled by the C++ program.

3. The website which is the front end presented to the client.

SDR Signal
processing

Websocket
endpoint

TCP socket

Browser

Any program

Client

Server

IQ
samples

Real
samples

Node server

C++ server

Signal processing

IQ
samples

Client handling

Antenna

Commands

Data

Data

Analog
signal

Serves front end
website

Figure 4.1: Overview of the project’s architecture
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When connecting to the server, the user will have the choice between two modes.
The first one is one where he will receive the demodulated signal as an audio stream.
The second one is where he will receive the modulated signal and handle the pro-
cessing of samples on his own. If he chooses this second mode, a TCP socket will
be made available for him to connect to and the samples will be sent trough it.

The server is responsible for a lot of the work as sending the whole band cap-
tured by the SDR would not be possible due to it representing a lot of information.
This means that at least the down conversion needs to happen on the server to dras-
tically reduce the data rate that is required per client. To put these data rates into
perspective, for a 50 MHz band, the data rate would be 381.47 MBytes/sec per client
if all clients received the whole band, this is obviously not feasible in practice, jus-
tifying the processing work done on the server. More information regarding the
networking can be found in chapter 5. More information concerning the back-end
server is found in chapter 6, while information about the front end can be found in
chapter 7.
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4.1 Requirements
This project has a few requirements to work properly. Table 4.1 contains these
requirements as well as a brief explanation of what these requirements are used for
as well as the reason they were chosen.

Dependency Usage Reason

Boost/beast
Used for everything

related to networking
in the C++ server.

It is a mature and proven library with
a lot of documentation and is rather

easy to use.

Cuda
Used for performing
computations on the

GPU

The library used for the DDC
(Libgkr4gpu) requires the use of

Cuda.

FFTW3
Used to perform

FFT’s for the
overview.

It is a very widely used library, very
efficient and very robust.

GNURadio
Used to perform

demodulations in the
signal processing part.

It is the most mature and stable
signal processing library available for

C++. It also leverages vectorized
instructions making it efficient. The
documentation is also very good and

the community is active.

SoapySDR
Used to interface with

the SDR card.

Even though performance could be
better by using the SDR libraries

directly, SoapySDR allows to swap
SDR’s in and out without any

changes to the code. A lot of SDRs
support Soapy.

Libgkr4GPU
Acts as the DDC of

this project.

One of the only libraries that are
openly available and take advantage

of GPUs.

Node.js
Used to host the

website.

As the requirements for the website
are not very restrictive, anything
could have worked. Node.js was

chosen because of previous
experience with it as well as being

rather easy to use.

Table 4.1: Dependency table

22



2024 Matteo Carallo 4 Overall architecture of the project

Of course, each of these libraries has dependencies themselves but going over
them would not be of any use here. The readme files contain the steps to install
everything that is needed.

4.2 Chosen languages
This project being divided into two major parts, a front end and a back end, two
languages have been chosen, one for each. The back end has been coded in C++
as performance was of utmost importance. Additionally, Libgkr4GPU, a very pow-
erful DDC library, is only available in C++. All other requirements are also met
with popular and efficient C++ libraries. For the front end, Javascript was used for
all scripting and HTML along with CSS for webpage formatting. Javascript was
chosen mostly because of prior experience with it. Furthermore, since the web page
was not very complex, it is perfectly suited for a small Javascript project.

4.3 Development setup
As the machine running the server and housing the XTRX device is located at Mon-
tefiore, having access to a similar setup locally is a necessity. To achieve this, the
same OS has been installed locally and all the same libraries were installed too
(except the XTRX library of course).

The RTLSDR1 has been used to have a cheap SDR to develop locally. A very
interesting functionality of this RTLSDR is that it also has SoapySDR compatibility,
just like the XTRX. This means that the program can be developed and tested locally
using the RTLSDR and then deployed on the production machine with no changes.
This makes development cycles much faster.

1RTL-SDR website
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Chapter 5

Networking

5.1 General networking considerations
The most important part in searching for the appropriate networking technologies
to use in this project is to properly state the requirements of the system. Said re-
quirements are as follows :

• The client needs to be able to send commands to the server at any time during
the connection. These commands can be relatively frequent (multiple com-
mands per minute).

• The server needs to be able to send data to the client’s web browser in the
form of multiple data streams. These streams include the results of the FFT
of the whole spectrum and the selected box1 (to display it to the user) as well
as the audio samples2 if FM or AM demodulation is selected.

• The server needs to be able to send replies to specific queries made by the
client, for example it should be able to reply with server information if the
client asks for it.

• The server needs to be able to send data in the form of a continuous stream of
raw samples3 when the client asks for raw, non-demodulated, samples. These
raw samples should not be sent to the web browser of the client as they would
be of no use there. The client should be able to receive them anywhere.

• As the data rates are already quite high due to the PCM encoded audio and the
overview FFT data, additional data overhead should be kept to a minimum.

• Processing times should also be kept low as the application needs to stay
responsive.

1Represented by a byte for each sample
2Represented by real float values.
3Represented by complex float values.
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The requirements for the connection between the client’s web browser and the
server make websockets perfect for this use case. Once the connection is estab-
lished, raw binary data can be sent in it and interpreted accordingly on the other
side. There will be need for some bytes of overhead with each messages as multiple
streams will have to transit trough the same websocket connection but the amount of
overhead data will be kept to a minimum. Figure 5.1 shows a visual representation
of the message structure of messages sent out by the server.

Opcode number of
samples Sample Sample

Float samples message (FM, AM, overview FFT and window FFT)

Opcode Tuning
frequency Bandwidth Max

Bandwidth

Server info message

Max offset Min
bandwidth

Unsigned Byte (1 byte)

Unsigned int (4 bytes)

Float (4 bytes)

Opcode

DemodulationChannel
bandwidth

Channel
offset

Channel info message

Opcode
Port IP address (as text, 1 byte

per ASCII value)

TCP socket info message

Short unsigned (2 bytes)

Spectrum overview
resolution

Spectrum zoom
resoltion

Figure 5.1: Server message structure

As the raw samples values are of little use in a web browser, these should be
captured by another application by the client. The solution chosen for this problem
is to open a TCP socket with a unique port to which the client should connect and
which will send the raw data samples. This allows the client to have access to the
samples anywhere. The message structure of messages sent trough the TCP socket
are given on figure 5.2. Even though an opcode is not needed in this case as nothing
else will transit trough the socket, it allows for future additions without any changes
to the protocol.
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Opcode number of
samples Sample Sample

Complex Float samples message (Raw)

Unsigned byte (1 byte)

Unsigned int (4 bytes)

Complex float (8 bytes)

Figure 5.2: TCP socket message structure

The message structure for messages sent by the server trough the websocket
depends on the type of data that needs to be sent. Table 5.1 contains the identifier
values and their meaning alongside the next bytes that will be in the message. The
same has been done for the message type that is sent trough the TCP socket in table
5.2.

The message structure of messages sent by the client are simple. The first byte
indicates which operation is to be executed and the next bytes are the parameters of
said operations. The list of commands and their explanation are available in table
5.3.

One last point of discussion is the security aspect of the networking protocol.
The choice has been made to not secure the connection to simplify implementation.
This choice is motivated by the fact that none of the information exchanged between
the server and the client contain any form of personal or sensitive information.
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First
byte

Usage Next bytes

0

Used to signal that the
message contains float values
representing the output of the

demodulation.

4 bytes for the number of samples
followed by 4 bytes per sample (float

format).

2

Used to signal that the
message contains byte values
for the overview FFT and the
values for the selection box

FFT.

4 bytes for the number of samples
followed by 1 byte per sample. First all

the samples for the overview, then all the
samples for the box.

3

Used to signal that the
message contains

information about the TCP
socket opened for the client.

2 bytes for the number of bytes in the
message, 2 bytes for the port and one
byte per character for the IP address

string. The IP address is sent as a string
for convenience as it could be an IPV4 or

IPV6 address. Sending it as a string
makes it trivial to display it on the
website. As it is only sent once per

connection, the overhead doesn’t matter.

4
Used to signal that the

demodulation was changed.
None

5
Used to signal that the

bandwidth was changed.
None

6
Used to signal that the tuning

frequency was changed.
None

7
Used to signal a message

containing server
information.

4 bytes for the tuning frequency, 4 bytes
for the SDR bandwidth, 4 bytes for the

max bandwidth, 4 bytes for the max
offset, 4 bytes for the bandwidth step, 4

bytes for the spectrum overview
resolution and 4 bytes for the spectrum

zoom resolution.

8
Used to signal a message

containing Channel
information.

1 byte for the demodulation, 4 bytes for
the bandwidth and 4 bytes for the offset.

9
Used to signal that the client
box position was changed.

None

Table 5.1: Server message codes
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First
byte

Usage Next bytes

1

Used to signal that the
message contains complex

float values representing the
raw samples.

4 bytes for the number of samples
followed by 8 bytes per sample (complex

float format).

Table 5.2: TCP socket message codes

First Byte value Usage Next byte(s)

0
Used to request a change to

the demodulation.
1 byte for the demod type (0
→ FM, 1→ AM, 2→ RAW)

1
Used to request a change to

the bandwidth
4 bytes representing the new
bandwidth as a float (in Hz)

2
Used to request a change to

the frequency offset

4 bytes representing the new
frequency offset as a float (in

Hz)

3
Used to signal a request for

TCP socket information
None

4
Used to signal a request for

server information
None

5
Used to signal a request for

channel information
None

6
Used to signal a change in
the selection box position

4 bytes for the left offset and
4 bytes for the right offset

Table 5.3: Client message codes
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5.2 Theoretical data rates
Maximum theoretical data rates can be computed if some parameters are assumed.
Let us first assume that the data corresponding to commands are negligible com-
pared to the data coming from the samples themselves, let us also assume that the
header bytes are also negligible. In this case, the bandwidth required per client
for transferring both the values to display for the whole spectrum FFT and for the
zoomed in spectrum can be computed with the following formula :

rate [bytes/sec] =
ZR+OR

f
(5.1)

with ZR the resolution of the zoomed FFT, OR the resolution of the overview FFT
and f the update frequency.

The bandwidth required for the FM/AM data is very simple to get as it is fixed
(PCM encoded audio). Indeed, the sample rate of audio playback is fixed at 48000
Hz and there are 4 bytes per sample so 192000 bytes/sec are required for the audio
stream.

In total, the required bandwidth per client using FM/AM demodulation would
be :

rate [bytes/sec] = 192000+
ZR+OR

f
(5.2)

with ZR the resolution of the zoomed FFT, OR the resolution of the overview FFT
and f the update frequency.

For a resolution of 2048 values for both displays updated every 500 ms, the total
bandwidth required is 200192 Bytes/sec≈ 200 KBytes/sec.

In the case of raw samples being asked by the client, the bandwidth requirement
for the samples is simply equal to 8 times the channel bandwidth as each sample is
a complex float. The total bandwidth requirement in this case can be computed as
follows :

rate [bytes/sec] = 8×BW +
ZR+OR

f
(5.3)

with BW the client channel bandwidth, ZR the resolution of the zoomed FFT, OR
the resolution of the overview FFT and f the update frequency.

For the case of a channel with a width of 120 KHz and the same FFT configura-
tion as previously, the total bandwidth required per client would be 968192 Bytes/sec≈
950 KBytes/sec.
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Chapter 6

Back-end server

In this project, the back-end server is responsible for interfacing with the Software
Defined Radio (SDR) as well as processing the received samples and handling the
establishment of a websocket connection and TCP connection with the clients.

The samples processing is divided into two parts. The first one is a Digital Down
Converter (DDC) whose role is to take as input the samples coming from the SDR
and give as output the samples corresponding to a specific channel a client could
ask. Each client has its own channel. The second part of the samples processing is
taking the output samples from the DDC and applying a demodulation to them.

The network handling part of the back-end server is tasked with accepting new
websocket connections with clients and maintaining them as well as opening a TCP
socket for each ongoing websocket connection.

6.1 Architecture
The back end of the application is divided into multiple classes. Each class handles
a specific task, this allows to easily understand which piece of code is responsible
for which system. The whole back end is made in C++ using different libraries to
handle each part. All of the chosen libraries as well as the reason they were chosen
are explained in the following sections.

In order to understand the architecture of the back end, it is important to first
understand what type of data is being worked with and what kind of data is expected
at the output.

The collected data comes from an SDR in the form of complex numbers. The
rate at which these numbers arrive is controlled by the configuration file and de-
pends on the frequency range the SDR is currently analyzing. This bandwidth is
centered around a tuning frequency, which is also configured in the configuration
file of the server.
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The data type wanted at the end of the pipeline will depend on the mode the
client selected. There are two possibilities, either the end data is in the form of float
values representing the audio signal (PCM) or the end data can be complex samples
representing the signal, before demodulation, in the specific band the client has
chosen.

The audio samples are simply sent trough the websocket connection so that it
can be played in the client’s browser. The complex samples are made available via
a TCP socket which the client will need to connect to.

To process the data, the different parts of the back end will work one after the
other in the pipeline. The next sections will go more in detail for each of the parts.
Figure 6.1 gives an overview of what the back-end server architecture looks like at
a high level.

SDR

Soapy
SDR

Instantiate and configure

SDR interface

main

DDC Websocket
server

Instantiate and configure

Sigprocessor

Network

Websession

Complex float values

Float values

Control signal

Float/complex float
values (client choice)

Network serialized
data

Circular buffer

Instantiate and configure

Reset and activate

- Change params
- ask for window FFT
- notify end of connection

- Ask for channel
- set params
- Ask to delete channel

Spectrum FFT

Client specific output

TCPSocket

TCPSession

Instantiate and configure

Instantiate on client
connection

Aggregated spectrum FFT

FFT data

Audio
samples

RAW samplesByte values

Figure 6.1: Back end architecture
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As a side note, some values are defined via define statements in various
header files. They were not put inside the configuration file as they were not deemed
to be susceptible to change much.

6.1.1 Circular buffers
The way data is transferred from one part of the pipeline to the other is with the use
of circular buffers. The idea is that the writer needs to be able to write at full speed
without having to wait, while the reader may fall slightly behind as long as he keeps
up with the overall rate of the writer.

To handle this without race conditions, locking each cell of the circular buffer
for either shared reading or exclusive writing would be necessary. The issue with
this setup is that the writer may be blocked by a particularly slow reader (or stalled
reader). This would, in turn, block all the other connected readers as they would
be waiting for the writer to write. Instead, an approach without any lock and thus,
without any protection against data races was chosen. In the context of this project,
this is perfectly acceptable as there is only one writer and, if a reader is particularly
slow, he would simply be catching up with the newer data as the old one is being
erased while it is reading. Of course this would mean that one read would poten-
tially contain invalid data but it would be barely noticeable on the client side as one
chunk does not represent a lot of time.

There are 2 different scenarios that can occur when trying to read a particular
cell of the circular buffer. The first one is if the cell is not where the write head
is, in this case the content of the cell is simply returned. The second possibility is
when the cell is the one where the write head is. This means that the reader has
caught up to the writer and needs to wait until new data has been written. In that
case, the reader will wait for a notification from the writer to avoid busy waiting. A
timeout delay is also in place to avoid having to wait on a terminated writer. This
allows all the readers to eventually exit the wait condition and terminate properly.
This timeout has been chosen to be 500 ms. This chosen value is rather arbitrary as
it does not have a significant impact on the code. It should just not be too high as
to not incur a huge delay when shutting down the server and should also not be too
small as allow the writer enough time to write if it hasn’t been terminated.

There are 3 types of circular buffers being used in this project. All of them work
on the same base principle and accept either floats, complex floats or uint8 t. They
vary in how they handle reading and writing. Some write methods will copy the
data while others will merely copy the pointers. Pointer copy has been privileged
as much as possible as they are vastly more efficient but sometimes, value copies
were necessary as the circular buffers were used to bridge between two different
data formats for the same type.

The circular buffer between the SDR interface and the DDC copies only the
shared pointer inside the circular buffer.
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The circular buffers between the DDC and the signal processors copy the values
when writing because the data format used by the DDC library requires a specific
type of complex floats. Reading from that buffer is done by returning a pointer.

The circular buffers between the signal processors and the web sessions copy
the values if they are float values so that they are made into shared vectors. If they
are complex values, writing them is done by copying the pointer. Reading from
them is always done by returning a pointer.

Finally, the circular buffer used to store the FFT of the whole window writes by
copying a pointer and reads the same way.

One final note is that, over the course of the evolution of the project, the require-
ments for the data transfer have been changed slightly. Instead of having multiple
readers like initially envisioned, only one reader per buffer is now used. This means
that circular buffers are not the simplest nor the most efficient way to handle the
data transfer but, as they were already implemented, they were kept in the project.
Section 10.2 contains a way to improve this part of the project.

6.1.2 Main
The main function will handle the loading of the configuration parameters from the
configuration file as well as launching the necessary threads. It will then wait for
a user input to terminate the server. Some basic checks are made for some of the
configuration parameters but the user should take care to enter values that make
sense. This project assumes an operator that has some signal processing knowledge
and knows the hardware he is working with as to not input incorrect configurations.
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6.1.3 SDR interface
The sdrInterface class serves the purpose of communicating with the SDR
card via SoapySDR. SoapySDR is a library that allows to interface with a wide
variety of SDR’s as long as they have support. This makes swapping out one SDR
for another extremely easy as no changes to the code should be required. As Soapy
acts as an intermediary between the card and the sdrInterface, it could lead
to slight bottlenecks. However, as the XTRX is an old card without any form of
support, SoapySDR was still chosen despite this potential bottleneck as changing
SDR was likely in the near future. Directly working with the SDR driver functions
would make the code harder to adjust to a new SDR.

The class will create a session with the SDR card and then configure the card
according to the configuration file. It will continuously retrieve data from the card
trough Soapy and make it available in the object’s circular buffer. As a side note,
the XTRX driver seems to be buggy and requires an offset for tuning the frequency,
this has been accounted for in the code but other SDR’s should not require this. The
code will detect if the current SDR is an XTRX and adjust the settings accordingly.

The main processing loop of this class will simply read a certain fixed amount
of samples (which depends on the SDR itself) at each loop iteration. It will then put
them into a temporary buffer so that they are sent to the circular buffer only when
there are the same amount of samples as the FFT size used in the DDC. This ensures
a constant amount of samples in each block of the circular buffer as well as blocks
that are not too small, even if the transfer block size of the SDR is small.

There is one sdrInterface object running for the whole server.

34



2024 Matteo Carallo 6 Back-end server

6.1.4 Digital down converter
The digital down converter (DDC) is tasked with taking the samples collected on the
whole frequency band analyzed by the SDR and outputting samples for a specific
part of the band asked by a client. The DDC implementation is taken from Sylvain
Azarian’s Libgkr4gpu1, a CUDA powered DDC implementation that perfectly fits
the needs for down converting of this project. Additionally, the library is thread
safe, which is also perfect in the context of this thesis. This library has been chosen
because of the ease of use it provides as well as being one of the only ones that
leverages GPUs to process the samples.

The DDC class will handle the allocation of new channels, the deletion of ex-
isting channels, the changing of parameters on channels as well as the feeding of
samples to the DDC and the retrieval processed samples for each channel and mak-
ing them available in circular buffers for the next part of the pipeline. There will be
one channel per client as each of them is susceptible to ask for a different part of
the spectrum.

The DDC class will keep a translation table between channel ID’s provided by
Libgkr4gpu and the channel ID’s given to the rest of the pipeline. This is necessary
as changing the bandwidth of a channel is not supported by the library, instead, the
channel needs to be deleted then recreated with the new bandwidth. For this process
to be completely transparent, a mapping needs to be made as the library may give
a new channel ID. Each allocated channel will have its own circular buffer where
output samples will be stored. As the maximum amount of clients is known at server
launch, all the circular buffers are allocated in advance as to limit setup time when
a new client arrives. The buffers are simply reset when it is reused.

To allocate a new channel, concurrent requests need to be handled correctly as
multiple clients may want to create a channel at the same time. Even though the
library itself is thread safe, the ID’s given to the signal processor that requested a
new channel also need to be unique. To achieve this, a simple lock was used that
will make sure clients are processed one at a time as to not have conflicting channel
ID’s.

For each channel, only one configuration can be done at a time (i.e. the band-
width and the frequency cannot be changed at the same time). This is ensured by
having a mutex for modification for each channel.

One limitation Libgkr4gpu has is that the ratio of the input and output sample
rates needs to be an integer. This limitation makes it necessary to convert the arbi-
trary bandwidth requested by the client into one that is the result of the division of
the input sample rate by an integer. This part is handled in the signal processor.

1Github repository
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Another task the DDC class has is to compute the FFT of the whole spectrum
with a resolution given in the configuration file. The result of this computation is in
the form of float values. These will be normalized on a scale of 0.0 to 1.0. These
values will then be put on a 256 level scale with values ranging from 0 to 255 so that
they occupy much less space. Once this is done, the values will be made available
in a circular buffer.

The DDC will also produce and make available a version of the data which is
contained in a vector of a size specified by the clientOverviewSize option
in the configuration, this version is used by the client to display the data on the
displays without having to send too much data trough the network. If this option
stipulates a size that is equal to the FFT resolution, then nothing needs to be done.
If the option stipulates a size that is bigger than the FFT resolution, then values will
need to be repeated. However, the most likely case is when the size of the output
vector is smaller than the FFT resolution.

Two ways were devised to solve this. The first one involves simply taking
equally spaced samples from the original vector. This has the advantage of being
very simple and not computationally intensive.

The second way is to group samples together in groups that will allow to use all
samples while having the same amount of groups as there should be elements in the
new vector. Once the groups are made, an average is computed and the resulting
value is taken to be the value in the new vector. To make this work for arbitrary
sizes for both vectors, all groups are not necessarily of the same size. This way
of solving the array size issue requires more computation but provides a smoother
display. In practice, the groups are made by first computing a step ( input size

output size ). The
values from the first vector used to compute the average for the for the ith cell of the
output vector are the ones ranging from the one following the last one used to the
one at index bi∗ stepc (this interval always contains at least 1 value as the input size
is greater than the output size). This method allows to pick all values of the input
vector from the first one to the last one.

When testing both approaches, it appears that the first one did not yield satisfac-
tory visuals on the client displays and made it hard to discern signals. The second
one was thus chosen despite it being less efficient.

The library used to perform the FFT is FFTW3 as it is the fastest available li-
brary to compute FFT’s. As this computation happens rather rarely (default settings
at 500 ms interval), it is perfectly acceptable to run it on the CPU as it will not
incur a huge computational load. There will be one dedicated thread for this task as
well as one dedicated thread for the main data loop that takes input samples from
the SDR interface and makes output samples available in each channel’s circular
buffer.
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6.1.5 Signal processor
The sigProcessor class serves the purpose of taking the DDC output and ap-
plying any (if at all) signal processing steps the user may ask for from the list of
available ones. The sigProcessor objects are instantiated in advance and are
simply reset when a new client begins using them. This allows much simpler mem-
ory management as the memory simply stays allocated. It also means that setting
up a new client is faster as the object does not need to be created.

After reseting, the sigProcessor asks the DDC for a new channel so it can
start processing samples. It then loops until a termination signal is received. This
loop simply takes samples and, according to the demodulation requested by the
client, processes it using GNURadio blocks. GNURadio has been chosen as it is
the most mature and efficient signal processing library available in C++. Not all
GNURadio blocks are available as C++ blocks (many of them are only made for
Python) but all the needed blocks can be built using simpler blocks. It also supports
vectorized instructions so processing batches of data is much faster.

The data processing loop takes ownership of a lock at the start of the loop and re-
linquishes it at the end to avoid changing the configuration (and GNURadio blocks)
during processing as this would lead to a segmentation fault. When a thread wants
to change a parameter, it needs to first wait for the current loop to finish before
taking ownership of the lock and then changing the parameter. The issue that arose
here is that the loop is so fast, that it barely leaves any time for other threads to
acquire the lock. The solution was to implement and use a FIFO lock. As there is
only ever one instance of the data loop, the thread trying to change the parameters
is guaranteed to have access the next time the loop is done. This may lead to the
loop having to wait a bit before proceeding to another iteration but it is acceptable
as the user wanted to change what it computed anyways.

The output data will be put in one of two circular buffers. Either one containing
complex samples or one containing real samples based on the demodulation asked
by the client.

The output for both the AM and FM demodulation is PCM encoded audio sam-
ples represented by float values. This is what will be sent to the client. No com-
pression is applied as it makes it easier to play the audio in real time on the client’s
browser. The other reason why using compression would not make much sense is
because the user can ask for raw samples. In that case, the data rate required would
be much higher anyways. Optimizing the data rates for audio would effectively just
make the best case scenario better but would not improve the worst case scenario.
The difficulty of implementing compression has thus been deemed not worth the
benefits.
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The FM demodulation blocks are arranged as shown on figure 6.2. The quadra-
ture demodulation has a gain of BWI

2∗π∗ fk
with BWI the bandwidth at the input and fk

the maximum deviation (constant with regards to a geographical region). The re-
sampling rate of the re-sampler is simply given by 48000

BWI
as the output sample rate

wanted is 48000 Hz (for audio playback). The taps for the filter of the re-sampler
are obtained by using the finite impulse response filter designer from GNURadio
with a cutoff of 15000 Hz and a transition width of 2000 Hz. The de-emphasis filter
taps are obtained by using formulas from the GNURadio implementation2

Vector
source

Quadrature
demodulation

Polyphase
arbitrary

ressampler

De-emphasis
filter Vector sink

Figure 6.2: FM demodulation pipeline

The AM demodulation blocks are arranged as shown on figure 6.3. The sine
wave generator is at the same sampling frequency as the input signal and has a
frequency equal to the center frequency of the input signal. The re-sampler has the
exact same configuration as the one used for the FM demodulation.

Vector
source

Complex to
magnitude Vector sink

Sine wave source

Polyphase
arbitrary

ressampler

Figure 6.3: AM demodulation pipeline

One important point is how the channel bandwidth is set. As explained before,
the DDC library only supports integer ratios between input and output sample rates.
This implies that only select values are valid for the bandwidth chosen by the client.
In order to allow future work on the project that would allow arbitrary ratios, the
user is still allowed to input any value he wants for the bandwidth, the sigProce
ssor will handle the conversion to a valid value. This conversion is very simple, a
vector contains all the valid values and is searched for the closest value to the one
provided by the client, once it is found, it replaces the value given by the client.
This vector is built at server launch. The SDR bandwidth is divided by increasing
integers and the values obtained are stored in the vector. This process stops as
soon as the result obtained is smaller than the smallest allowed bandwidth, which is
configured in the config file.

2Link to the Github file.
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Another point of discussion is the static type conversion happening when set-
ting the tuning frequency of the channel. The decision has been made to work with
only integer frequency values as float values do not change the perceived tuning
frequency compared to the nearest integer. When setting the new tuning frequency,
the float value is cast to an integer. Another change that is made is that the cen-
ter frequency is adjusted so that the channel stays within the bounds of the whole
spectrum analyzed by the SDR. To do this, the center frequency is adjusted to be :

F ∈ [−O+B;O−B] (6.1)

with F the adjusted tuning frequency, O the maximum offset (SDR bandwidth
2 ) and B

the channel bandwidth. This means the tuning frequency may get adjusted when the
bandwidth is increased and would make the analyzed band go out of the analyzed
spectrum.

The last point of discussion is how the sigProcessor handles the preparation
of the buffer containing the values to be displayed on the client waterfall displays.
This buffer is divided into two parts, the first part contains the aggregated values
computed by the DDC which will be used to display the spectrum overview on
the first client screen. These values are simply retrieved from the circular buffer
in which the DDC put them. The second part of the buffer contains the values for
the zoomed spectrum and need to be computed individually for each client as it
depends on the part the client is currently zoomed in on. To handle this, the server
needs to know what the client is currently looking at. Once the server knows this, it
takes the vector containing all the FFT samples computed by the DDC and slices it
accordingly to only take the values in the desired range. It then performs the same
aggregation as previously done in the DDC and appends the result to the buffer to
be sent to the client.

There is one sigProcessor object per client.
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6.1.6 Websocket server
The websocketServer class is designed to listen on a specific port for new
client connection requests and, once a request is received, it will allocate necessary
resources for the websocket connection. Boost/Beast’s implementation of websock-
ets has been chosen for this part as it is a mature and proven library that has good
documentation and is rather easy to use.

The websocketServer object will, every time a new client tries to connect,
allocate a new webSession and assign a sigProcessor to it. The sigProce
ssors are pre-allocated and simply reset between uses. Both of them are then run
on a thread from Boost’s implementation of thread pools. The reason for which the
webSession objects are not pre-allocated is because they are setup with a specific
client on the other end, so they would not be reusable with a different client.

When a request is received, a lock is obtained and the first available sigProc
essor is assigned to the task. The lock ensures that each sigProcessor only
handles one client. If no sigProcessors are available, then the connection is
not established. A new webSession object is then created to handle the rest of
the handshake. A flag is immediately set in the sigProcessor object to signal that
the sigProcessor is currently in use.

When creating a new session, a port needs to be chosen for the associated TCP
socket that will be created in order for the client to be able to receive the raw sam-
ples. The available ports to pick from start from a value given in the configuration
file and go up to that value plus the maximum number of clients. To pick a port for
a particular client, the first available port is picked, this is simply checked by trying
to open a session with it and see if it is successful. TCP connections can linger for a
bit, even when closed (in case some packets arrive late), meaning that a simple flag
will not suffice to know if the port is truly available.

A single websocketServer object is created for the whole server and the
number of threads running on it depends on the configuration file. However, only
one connection can be established at a time, others will have to wait for the lock to
be unlocked.
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6.1.7 Websession
The webSession class handles the communication with clients by playing the
role of the end point of the websocket. It handles the transmission of the data to
the client and it acts in accordance with client commands. The first step the webS
ession does once it is created is accepting the websocket connection request and
performing the handshake.

To send the data trough the websocket, it needs to be prepared as only one web-
socket connection is opened but the different data streams and the control stream
share the same connection. To handle this correctly, 2 principles need to be fol-
lowed :

1. Making sure only one message is sent at a time (i.e. no interleaving of mes-
sages). This is ensured by taking ownership of a lock before trying to send
anything in the socket and relinquishing it after.

2. Making sure the receiver knows what type of data has been sent as well as the
length of the message. For the data streams, this is ensured by having the first
byte being a code for the type of data and the next 4 bytes being the number
of elements in the message. For the other messages (control messages), the
number of samples is not needed as message structure is fixed in that case.

Table 5.1 contains the information relative to the message codes. This method of
serialization was chosen because it wastes the least amount of data with each mes-
sage.

Particular care needs to be taken with regards to endianness. Everything is sent
in big endian format as that is the accepted network order for bytes. Another point
of importance is to set the websocket to binary mode as all data is sent in binary
format.

The webSession object constructor will open up a TCP socket on a port
unique to this connection. This TCP socket will listen for a connection. Once the
client connects to it, a TCP session is created for the complex data samples to be
transferred. The destructor of the webSession tries to join all the threads before
destroying the object.

The main data loop is rather simple, depending on the mode currently selected
by the user, the webSession object will fetch data from the appropriate buffer in
the sigProcessor. When changing parameters following a client command, it
is possible that some data frames will be skipped because buffers are reset to their
initial state while a data loop may already be executing. This is not an issue as
null pointers will simply be ignored and the next iteration of the loop will proceed
correctly. The alternative to this would be to use locks but that would add overhead
for solving a non-issue.
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In addition to the main data loop and the TCP socket that both run on separate
threads, one additional thread runs to handle the FFT overview values. Each con-
nection thus consists of 3 software threads to handle everything. There is also an
asynchronous function running for receiving messages.

The data coming from the client consists of commands to change the current
parameters. The possible messages are shown in table 5.3. Whenever a client mes-
sage is received, the appropriate actions are taken to change the parameters. An
ACK message is sent once the parameters are changed.

6.1.8 TCP socket and TCP session
These two classes handle pretty simple tasks : accepting a new TCP connection and
sending the raw complex samples if the raw mode is selected. To do this, Boost’s
implementation of the TCP socket has been chosen for the same reasons as it was
chosen for the websocket.

The tcpSocket is very simple, it listens for an incoming TCP connection
and when it happens, it creates a session and runs it. It does not accept any new
incoming connections until the one currently running is over.

The tcpSession is very straightforward, it simply executes a loop that will
check if the current chosen mode is raw samples and, if it is the case, it will get
samples and write them to the socket. It does not read anything on the socket as the
client is not supposed to send anything. If the current mode is not raw samples, it
will go to sleep for 500 ms and check again when it wakes up. This is done to avoid
busy waiting.
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6.1.9 Object lifetime management
Object lifetime management is very important to avoid memory leaks as clients
connect/disconnect. This means that webSession objects as well as tcpSessi
on objects and tcpSocket objects need to be properly managed. Shared pointers
were used to keep references to all of those objects as it eases memory management.

When creating the webSession, the thread launched for it holds a reference
to the object itself. The webSession also holds a reference to the tcpSocket
it has created.

The signal to destroy the connection (basically, an error on write or read) can
come from multiple places, possibly multiple times for the same object.

The first place where it could happen is in the tcpSession. In this case, the
termination flag for the tcpSession object is set and the socket is closed. Once
the flag is set, the reference to the tcpSocket is removed and the function re-
turns as the loop condition is not verified anymore. This allows the tcpSocket
to accept a new connection. As it is not considered the ”main” part of the connec-
tion (which would be the websocket), there is no need to terminate the websocket
connection.

The second place where it could happen is in the webSession object itself.
Many different operations could lead to having to terminate the connection. All of
these lead to the execution of the stopSession function. This function will try to
get ownership of a lock, if it succeeds, it proceeds to set all the flags for termination
and tells the tcpSocket to terminate as well. It also tells the sigProcesso
r to stop processing. All of these actions are only done once, if another thread
executes the same function again, the actions will not be repeated. If the locking
does not succeed, then the function simply returns as it means another thread is
already performing the necessary actions. As all references to the tcpSocket
and the tcpSession are removed and their threads are stopped, the objects will
be destroyed. The destructor of the webSession object ensures all threads are
correctly joined.
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Website

The website is the front end. What is presented to the end user. It needs to allow the
user to control the bandwidth of his channel, the tuning frequency of his channel
as well as the demodulation. It also needs to show the user information about the
server as well as information about the TCP socket prepared for him. It should also
show the overview of the whole spectrum received by the back-end server and play
the audio samples received from said server.

To handle this, a Node server has been setup. This allows the website to be built
using Javascript which is perfectly suited for the needs of this project. The next
sections will each delve deeper into specific parts of the website code. They will
explain why some choices were made and the overall inner workings of the website.

Figure 7.1: Website user interface
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7.1 Connection to the back-end server
In order to be able to receive any data from the back-end server, the client must open
a websocket connection to it. This is done as soon as the web page loads. Once the
websocket connection is open, the client will ask for server information and TCP
socket information in order to display it on the web page.

Each time a message is received, the first byte is extracted and the appropriate
action is taken. If the message contains PCM audio samples, they are buffered to
be played (see section 7.2). If FFT samples are received, they are used to render
a new line on the displays (see section 7.3). If server information or TCP socket
information are received, the corresponding elements are updated in the HTML of
the page. Finally, if channel information is received, all the relevant elements are
synchronized with the server values (see section 7.5).

The websocket connection is maintained as long as the web page is running.
The status of the connection is shown to the user at the top of the web page.

7.2 Audio stream
The audio samples coming from the server need to be played with minimal latency
so that it can be considered live. A couple seconds delay is acceptable of course.
The samples received are in the form of PCM audio, which is very easy to play in
Javascript using an audioContext object.

This audioContext works by providing it with audio nodes, which are
buffers containing the PCM samples as well as the information of when they should
start playing and to which output device they should play.

The scheduling is rather simple, each audio packet will be played after the pre-
vious one. The first packet however, is not played immediately. The script will wait
for 500 ms of audio to be buffered before starting to play audio. This is made to
ensure there are no stutters in the audio stream.

If the amount of buffered audio samples fall below the equivalent of 50 ms of
audio, the audio playback is paused and will be resumed once 500 ms worth of
audio is available in the buffer.

When the user changes a setting (like the bandwidth, tuning frequency or de-
modulation), all the audio buffers are flushed as they contain outdated samples.
Audio is then resumed once 500 ms of audio is contained in the buffers.
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7.3 Waterfall displays
There are 2 displays on the website, one shows the FFT over time for the whole
spectrum received by the back-end server, the other zooms in on a particular part
of the spectrum to allow the user to more clearly see what happens in that window.
Both of them are waterfall graphs.

The data received from the server has a part dedicated to the first display (the
spectrum overview) and a part dedicated to the second display (the zoomed spec-
trum). This data is in the form of equally spaced points on their respective frequency
ranges. The values are bytes representing the magnitude on a scale of 0 to 255 for
each point. The client simply needs to convert these magnitudes to RGB values.

To make rendering efficient, each time a new line of data is received from the
server, all previous lines are shifted upwards and the new line is inserted at the
bottom.

Additional information is also drawn on the displays such as graduations, cur-
rent tuning frequency as well as the selection box for zooming in on the first display.
The first display allows the user to make a selection box slide across the full spec-
trum so that a specific part gets zoomed in on. This zoomed in part is displayed on
the second display. Whenever the user grabs the box to make it slide across the first
display, the script will set a flag so that it knows the user is grabbing the box. When
releasing the box, the script will send the new box position to the server but only if
the box has actually changed position compared to before it had been grabbed.

Both displays also allow to click on any point to put the tuning frequency at
the selected frequency. A vertical line will be drawn at that location to let the user
know the current tuning frequency. As soon as a new tuning frequency is selected, a
conversion is made from position on the canvas to an offset in frequency compared
to the server tuning frequency. Then, a command is sent to the server to change the
tuning frequency.

To adjust the number of values received to fit the exact number of pixels that are
required on the client’s screen, the procedure is similar as to how it was done for
aggregating values in the DDC.

46



2024 Matteo Carallo 7 Website

7.4 User controls
In addition to the tuning frequency control explained in section 7.3, the user has
access to demodulation controls, channel bandwidth controls and volume control.
The demodulation control is in the form of 3 buttons allowing the user to select one
specific mode while the bandwidth control is in the form of an input box where the
user can enter a value. Finally, the volume control is a simple slider controlling the
gain for the audioContext.

For the bandwidth control, one important feature is that the server will auto-
matically adjust the requested bandwidth to the closest quotient of the total server
bandwidth by an integer. This is required as the DDC library used (libgkr4gpu) only
supports integer ratios between the input bandwidth and the output bandwidth.

The user controls also have a cooldown as to make it impossible for the user to
spam commands to the server. This cooldown is fixed at 100 ms so that it is not
noticeable to the user during normal operation.
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7.5 Synchronization with the server
In order for the user interface and the back-end server to stay synchronized with
respect to the current configuration, the API allows the client to ask for specific
information. This API allows 3 distinct types of information request :

• The user can ask for general server information. The script will ask this once
when the connection with the websocket server is established. As this infor-
mation should not change, there is no need to ask for it multiple times. Once
the information is received, it is displayed as a static text on the website.

• The user can ask for information regarding the TCP socket it has been at-
tributed. Similarly to the general server information, this is only asked for
once when the websocket connection is established. It is then displayed
alongside the general server information.

• The user can ask for information regarding his specific channel. The server
will then reply with the current demodulation, the current frequency offset
compared to the server tuning frequency and the current channel bandwidth.
With this information, the client user interface can be updated to display all
the information. The demodulation information will be used to make the
correct button appear pressed, the current bandwidth information will be dis-
played beneath the bandwidth selection box and the current tuning frequency
information will be used to draw the tuning frequency lines on the displays.
As these parameters are susceptible to be changed by user commands, a re-
quest for them is sent every 500 ms to keep them up to date. 500 ms is enough
time as to not burden the server with ”useless” requests but is fast enough to
be barely noticeable by the user.

7.6 Tests
As there isn’t a lot of code for the website, testing of the front end was done by
hand. Playing with the website itself and printing debug information. This was
sufficient to make sure everything worked as intended.
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Back end unit tests

As the code for the back-end server is quite large and has a lot of multi threaded
parts, extensive testing is required to ensure proper operation. To this end, a di-
rectory called ”test” has been added and filled with various tests. This allows to
test various aspects of normal server operation to ensure faster development and
debugging cycles as bugs can be identified faster.

These tests have been very helpful in finding a lot of bugs and unintended be-
haviors. The next sections go over these unit tests in order to explain what happens
in each of them. The setup of these tests uses the default configuration values for
nearly everything.
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8.1 Circular buffer unit tests
All three instances of circular buffers are tested in the same manner as they are
practically identical. The tests include the following :

• Creation of a new circular buffer.

• Writing to the circular buffer, this is done using all the different write func-
tions.

• Reading from the circular buffer.

• Checking if the read value and written value are the same.

• Testing if the circular buffer properly overwrites the values once it cycles
around.

• Resetting the circular buffer and checking if the reset was properly done.

• Testing the read timeout.

• Testing if concurrent reads work.

• Testing if reading the head of the buffer works as intended.

• Testing if reading can be done while writing without segfault.

Together, these tests account for all the use cases the circular buffers could see.

8.2 SDR interface unit tests
To simulate the context in which this class will run without actually having to start
a DDC (so that unit tests remain unit tests), the role of the DDC will be played
manually throughout the tests. The tests include :

• Creation of a new sdrInterface object.

• Changing the bandwidth, tuning frequency, sample rate and gain.

• Running the main sdrInterface loop.

• Basic reading of samples (and verifying the values obtained).

• Reading while the data loop runs.

• Performing data rate tests.

• Saving samples for further tests.
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8.3 DDC unit tests
As the DDC cannot run without being fed data, it needs the sdrInterface to
run so that it can itself perform tests. This means that an sdrInterface object
will be used to feed data to the DDC. The tests on the DDC include :

• Creation of a new DDC object.

• Launching of the FFT overview thread.

• Checking if the FFT overview data seems valid.

• Launching the main DDCloop.

• Allocating a channel.

• Activating a channel.

• Changing the bandwidth and tuning frequency of a channel (and checking if
it correctly returns an error if it is tried on non allocated channels).

• Getting the head of a channel’s circular buffer.

• Checking if the channel has plausible data.

• Measuring the throughput of a channel.

• Releasing a channel.

• Allocating multiple channels at once.

• Measuring throughput of multiple channels that run at the same time.

• Releasing multiple channels.

• Saving output samples for further tests.
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8.4 Signal processor unit tests
The sigProcessor also needs the sdrInterface as well as the DDC running
in order to be able to process samples that are significant. The unit tests include :

• Creation of a new sigProcessor object.

• Launching the main processing loop of the sigProcessor.

• Changing the demodulation, the bandwidth and the frequency.

• Checking if the FFT data seems valid.

• Checking the FM, AM and RAW demodulation output rates.

• Checking if the FM, AM and RAW output data seem good.

• Having multiple sigProcessors on the DDC.

• Stopping sigProcessors.

• Saving FM, AM and RAW output samples for further testing.
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8.5 Networking unit tests
For testing all the parts related to networking (webSession, websocketServ
er, tcpSession and tcpSocket), the server is launched as it would have been
in normal operation and various Python scripts are launched which will execute
specific actions to test all the systems. These tests include :

• Creation of a new websocketServer object.

• Establishing a new connection with a client (and thus creating a webSessi
on object as well as a tcpSocket object).

• Asking for general server information, channel information and TCP socket
information.

• Changing the demodulation, the bandwidth and the tuning frequency.

• Checking if the data received for FM samples seems valid. The same is done
for the FFT samples.

• Saving FM samples received by the client for further testing.

• Opening a connection to the TCP socket and collecting RAW samples.

• Trying to send garbage data to the server.

• Closing the connection gracefully.

• Closing the connection abruptly.

• Opening a connection with multiple clients at once and configuring each of
them.

• Running multiple clients at once.

• Quickly connecting/disconnecting a huge amount of clients each second.

8.6 Additional tests
Testing for memory leaks has also been conducted by simply executing the server
for a prolonged amount of time (roughly 2 hours) with a lot of clients connect-
ing/disconnecting and verifying memory usage. This test has shown no sign of
memory leaks. Another test was performed by adding print statements to the de-
structors of the concerned classes (webSession, tcpSocket and tcpSessio
n), making a client connect/disconnect and checking if the destructors are correctly
called, which was the case.
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Deployment and performance

9.1 Deployment
Deploying the back-end server along with the Node server for hosting the website
is very well documented in the readme files provided in the repository. The overall
approach is to clone the repository, install all the dependencies one by one, compile
the back end, change the configuration file with the required configurations, run it
then start the Node server. The only part that could pose some issues is installing
the drivers for the various SDR devices. This part will depend on which SDR is
being used so no out of the box instructions could be made.

Once everything is up and running on the server at Montefiore, the website will
be accessible from inside the university’s network at the following address : http://
websdr.mont.priv/

9.2 Code profiling

Code profiling has been attempted using Linux perf 1 along with Intel’s VTune2.
These sampling profilers are easy to setup and allow to have insights on parts of the
code that take up most of the compute time. VTune allows various different profiling
tests to be conducted and yields a lot of information.

Profiling has been done using the XTRX with the server bandwidth set at 10
MHz with 30 clients connected to simulate a certain load on the server. Running
Linux perf in this configuration yields interesting results shown on figure 9.1. These
results show that most of the time is spent on an instruction related to moving mem-
ory around.

1Linux perf wiki
2Intel VTune main page
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Figure 9.1: Profiling results with Linux perf at 10 MHz with 30 clients

When changing the server configuration to analyze a 50 MHz band with 30
clients connected, the result does not change much. When using the LimeSDR
connected via USB, the results only change a bit because of the fact that USB in-
terfacing takes much longer than PCIE transfers so it gets bottlenecked by the USB
rate instead of by the memory movements.

The next tests have been conducted using VTune. The first choice of test with
this profiler was an overview (called a snapshot) of the whole program to have an
idea of the next tests to run. The snapshot yielded little new information apart from
indicating which tests to run next.

The most important test that has been run with VTune is the hotspot test which
gives information about which parts of the code consume the most CPU time. The
results are shown on figure 9.2.

From these results, it can be seen that the major bottleneck appears to be the
signal processing part handled with GNURadio. This information did not appear
when profiling the code with Linux perf. VTune also provides more information on
the previously reported bottleneck in the form of the call stack. It is now possible
to see from where the majority of memmove operations come from. It appears they
come from the DDC library used in this project (Libgkr4gpu). With these profiling
results, it becomes evident what parts of the code need to be changed in priority to
improve performance.
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Figure 9.2: Hotspot results with VTune at 10 MHz with 30 clients

One such part is the signal processing part where the output from the DDC gets
demodulated. To improve this, more efficient blocks could be used or an entirely
new library could replace GNURadio. The issue here is that such a library is hard
to find. An alternative would be to develop a rudimentary signal processing library
with performance in mind which would cater to the needs of this project in particu-
lar.

Another part that could see improvements would be the DDC part of the code.
The library used seems to move memory around a lot. This is due to the library
requiring objects to be aligned in memory before use. This could be improved as
the source code of the library is available. Another way of improving this would
be to only work with aligned objects all throughout the project. However, it is very
clear that the most CPU time is spent on signal processing so changing or improving
the DDC library should not be the priority.
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9.3 Performance in practice
Performance of the back-end server has been measured using a Python script that
would open increasing amounts of connections to the server acting as clients. All
of these clients ask for a 100 KHz band with FM demodulation on a random tuning
frequency. The FFT size for computing an overview of the spectrum was set at
131072 points with an update interval of 500 ms. The number of values sent to
the clients for both the overview of the spectrum and the zoomed spectrum was set
at 2048. To estimate the performance, each client keeps track of the total amount
of samples received. Each connection lasts for 6 minutes and the average rate is
computed for each client. Once all clients have finished, an average of the rate of
all the clients is computed and displayed on the following plots. This is repeated
with increasing values for the total bandwidth of the server. The reception rate of
the clients should be 48000 samples/sec if the server is capable of handling them.
As soon as this value drops, it indicates that the server is incapable of handling the
load.
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Figure 9.3: Performance metrics for 2.048 MHz bandwidth
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Figure 9.4: Performance metrics for 10.0 MHz bandwidth
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Figure 9.5: Performance metrics for 30.0 MHz bandwidth
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Figure 9.6: Performance metrics for 50.0 MHz bandwidth
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Figure 9.7: Performance metrics for 75.0 MHz bandwidth

These performance figures show that the back-end server is not able to handle
very high bandwidth for a large number of clients. A good threshold for the band-
width would be 10 MHz as this allows roughly 50 people to use the website at
once. For the purpose of this project, it is sufficient. Further optimizations can be
conducted to handle more clients.

To ensure that the performance results obtained here actually amount to anything
in real use cases, another test has been conducted where 45 clients were connected
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via the same script and one real user played around on the front end to make sure
everything worked correctly when the server was under heavy load.

9.4 Known issues
This project has a few issues that unfortunately have not been fixed in time for the
deadline. These issues are not severe issues and do not prevent the project from
working. Said issues are listed below :

• When running at high bandwidth (starting at roughly 50 MHz) with a lot of
clients, the back-end server sometimes has the following runtime error : gr
::vmcircbuf:error:shmat(2):Invalidargument. This error is linked to shared
memory attribution. This specific error happens in the GNURadio library
so it is hard to check where exactly it comes from. Some tests have been
conducted such as increasing the maximum amount of shared memory and the
maximum size of shared memory segments. It does not appear to impact the
server operation as the server keeps running despite the error being reported.

• The machine may sometimes (although very rarely) crash on server startup.
This only happens on server startup when the SDR is getting initialized. This
happens only with the XTRX meaning that driver code is the most likely
culprit.

• When using the XTRX, the tuning frequency of the server is offset by a value
equal to the bandwidth selected. This is most likely due to a bug in the XTRX
driver as all other SDR’s tested did not have this behavior. The code has been
modified to account for this when using the XTRX.

• The XTRX cannot be configured to use a sample rate of 100 MSPS despite
it being advertised as being able to do it. This is, again, most likely due to a
faulty driver as other SDRs have no issues with setting sample rates.

• While not being an issue related to the project itself, the university’s fire-
wall does not allow the TCP sockets to be made available. Local testing has
revealed that the TCP sockets do indeed work. Opening the ports and config-
uring the server to use them should resolve the issue.
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Chapter 10

Conclusion and future work

10.1 Conclusion
This thesis’ goal was to create a WebSDR from the ground up, using a very high
bandwidth SDR, with the unique feature of allowing users to handle signal process-
ing themselves if they would so desire.

In order to bring this vision into reality, the first step was to make the XTRX
work by choosing a platform and finding the correct installation procedure as docu-
mentation on the matter was very sparse.

The next step this thesis had was the development of an overall architecture as
well as a network protocol. The architecture was specifically designed to allow easy
switching of different subsystems for future upgrades and the network protocol was
chosen to be as efficient as possible by reducing the amount of overhead data. The
most appropriate libraries were chosen with performance in mind. Performance is
also the reason why C++ was chosen as a language for the back-end server.

The implementation of both the back-end server and the user front end were the
natural next steps. A lot of time was dedicated to this as this project was essentially
just a concept at the beginning, no code had ever been written for it before.

The next step was the implementation of unit tests as well as using them for
debugging the program. Once that was done, performance testing could start.

All throughout this project, heavy emphasis was put on creating exhaustive doc-
umentation in the form of readme files explaining how to setup everything as well
as lots of code comments and this report which acts as more formal technical docu-
mentation. This was very important to allow future work on the project.

Said future work is bound to happen as the initial goals have not all been at-
tained. Creating a working prototype has taken much more time than anticipated
and has resulted in the project needing more work to work on very high bandwidths
with a lot of clients as initially envisioned.
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In conclusion, this project has brought a working first prototype of the WebSDR
which should allow future work to be conducted easily. It has gone from a blank
slate to a state where it can already start operating on a small set of test users. The
documentation also allows future developers to quickly and easily pick up where
the project was left off.

10.2 Future work
As this project already had a large scope, many features were left to be added in
the future. The following list contains such features and fixes that would be nice
improvements :

• Adding new demodulations. This is not a hard task as it would be as simple
as handling additional cases in the switch statements.

• Improving performance by changing the circular buffers into simple queues
as there is only ever 1 reader and 1 writer. Circular buffers had been chosen
in the beginning because the initial architecture had multiple readers. This is
not the case anymore.

• Improving performance by working on the bottlenecks identified in section
9.2. This includes potentially creating a signal processing library from scratch
to cater to the needs of this project specifically.

• Adapting the project to be able to be used on distributed systems so it can
scale better.

• Making the user interface more aesthetically pleasing.
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