
https://lib.uliege.be https://matheo.uliege.be

Local machine learning-based feature importances for gene regulatory network inference

Auteur : Kerff, Alexandre

Promoteur(s) : Geurts, Pierre; Huynh-Thu, Vân Anh

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "management"

Année académique : 2023-2024

URI/URL : http://hdl.handle.net/2268.2/21141

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



University of Liège - Faculty of Applied
Sciences

Local machine learning-based feature
importances for gene regulatory network

inference

Final work carried out with the aim of obtaining the degree of Master
"Computer Engineering” by

Alexandre KERFF

Supervisor :
Prof. Pierre GEURTS

Academic year 2023-2024



Acknowledgement

My heartfelt appreciation goes out to everyone who helped make this work a reality, whether
directly or indirectly. Your help has been really helpful, and I sincerely appreciate it.

I am particularly grateful to my supervisors Pierre Geurts and Vân Anh Huynh-Thu for their
guidance, support and disponibility. They have frequently given me smart suggestions to im-
prove my work, responded to all of my inquiries, and given me wise counsel.

I would also like to express my sincere thanks to my friends for their invaluable help in complet-
ing this thesis. Their emotional and logistical support, the many hours they spent re-reading
my work, as well as the many hours they devoted to my research, all contributed to the reali-
sation of this thesis.

I express my gratitude to all the inviduals cited above.

I



Abstract

Understanding how a cell (or organism) reacts to a change in the environment or disturbance
requires an understanding of the intricate processes controlling gene expression and, therefore,
protein synthesis. A common representation of these mechanisms is the gene regulatory net-
work, that aims at defining the regulation links between genes as a set of interactions. Inferring
those gene regulatory networks from expression data has been a widely studied field at the
level of bulk expression data. However, recent breakthroughs in sequencing technologies en-
ables measurements at the resolution of a single cell. Such data allows the development of
research towards the analysis of gene regulatory networks for a single specific cell or for a dis-
tinct cell type, rather than global interactions. This thesis has the objective to perform these
analyses.

Exploiting the foundations of a technique elaborated for bulk data, Genie3 [1], the prob-
lem of cell-specific and cell-type specific network inference can be addressed by the means of
local feature importance methods instead of global algorithms.

To this extent, this study first examines numerous local feature importance methods and pro-
vides new implementations for a few of them. It evaluates them with respect to the global
methods on simple regression problems. Analysing these techniques highlights particular meth-
ods of interest with promising results (Shap, Saabas, local mean decrease of impurity, and local
mean decrease of accuracy).

Subsequently, the local methods are employed to address the cell-specific network inference
issue in order to examine their applicability in this domain. To evaluate the anticipated local
networks’ capacity to identify distinct interactions, they are contrasted with global networks on
a synthetic dataset. It is demonstrated that analysing the local feature importance algorithms
(Shap, Saabas, local mean decrease of impurity, and local mean decrease of accuracy) yields
more accurate findings at single-cell resolution than analysing the global networks.

Next, the efficient local methods are investigated in the context of cell-type specific network
inference. This problem is addressed in the thesis by averaging the local scores of cells sharing
the same types on a synthetic dataset with mixed types. Comparing the methodology to the
application of global method to each separated type, it is shown that all the local algorithms
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perform poorly.

Subsequently, a real dataset containing gene expression data from several cell types obtained
from peripheral blood is subjected to local techniques. As there are no ground truth networks
accessible, the cell-type feature importance inference is performed to recover rankings of fea-
tures scores. Common and unique interactions between types are highlighted by comparing the
most important significance values for each type. The use of local mean decrease of impurity
is shown to identify common and different rankings than global methods run on the separated
datasets.

Lastly, certain genetic markers found in each patient that contributes to the actual dataset
are examined. A correlation is calculated between networks created from patients who have
the genetic marker and patients who do not. A few low correlation values found by local mean
decrease of impurity enable the identification of certain indicators that affect gene regulation.
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Introduction

Fundamental biology study aims increasingly to understand the intricate systems
that control how a cell responds to changes in its environment. To this extent,
since gene regulation is the primary mechanism defining a cell’s response to per-
turbations, variables influencing gene regulation are of great relevance. A common
representation of gene regulation is the representation using networks defining links
of inhibition or activation between different genes. This representation is called gene
regulatory networks (GRN). The inference of GRNs from experimental data is a ma-
jor challenge in computational biology and a widely studied field. Many approaches
use machine learning to solve this problem, such as Genie3, a framework developed
to infer GRNs using ensemble of regression trees from bulk gene expression data.

The utilization of bulk expression data — that is, gene expression measurements
at the level of the body, organs, or tissues — has been the main focus of previous
GRN inference research. Recent advances in technology have made it possible to
detect gene expression at the single-cell level. The inference of regulatory interac-
tions unique to a particular cell type, or cell-specific regulatory network inference, is
theoretically made feasible by such data. Such discoveries would allow an in-depth
understanding of complex and unique regulation mechanisms. But to solve this
issue, new inference techniques must be created. Although a number of network
inference techniques for single-cell data have been put forth in the literature, the
issue is still difficult, and these techniques have not yet matured to the same extent
as GRN inference techniques using bulk expression data.

This thesis aims to address these gaps using methodology that has not been studied
in the literature. A machine learning regression model is trained from a dataset of
single-cell measurements to predict the expression of a given gene from the expres-
sions of all other genes (or a subset of candidate transcription factors). A cell-specific
network can then be derived from local importance scores derived from the machine
learning model for each cell (or cell type) in the dataset. This approach follows the
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regression approach proposed in GENIE3, but instead of using global scores, it uses
local measures to solve the problem of cell-specific network inference. This is a simple
extension of GENIE3, although it hasn’t been thoroughly examined in the literature.

The assessment and comparison of several local significance scores for cell-specific
gene network inference from single-cell data is thus the aim of this master’s thesis.
Several methods that may be used to obtain local significance scores from various
machine learning models exist, and this thesis will mainly focus the derivation of
local scores from regression tree ensembles.

First, in Chapter 1, this paper begins with a comprehensive introduction to the
concepts of machine learning models and metrics. It explores the foundation of
machine-learning related tasks and introduces tree-based models, the basis of the
procedure explored in this thesis. An explanation of gene regulation fundamentals
is also provided, and a description of the GRNs, single-cell GRNS, and cell-type
GRNs inference methodology is presented.

Then, in Chapter 2, an in-depth description of global and local feature importance
methods is introduced. As the detection of the regulation links is brought by the use
of local feature scoring techniques, these techniques constitute the main work of this
thesis. Some of the explored techniques are existing implementations (Shap, Saabas,
local mean decrease of impurity, fair-equivalent-symmetric-perturbations, and equal-
surplus value) while others are implementations and derivations of existing values
(local mean decrease of accuracy implementations). A review of normalisation tech-
niques that will be used is also provided.

Next, in Chapter 3, datasets explored in this thesis are presented. The methods
will be confronted first to a simple regression problem, Friedman 1, to verify their
working. The synthetic generation of datasets for single-cell GRN inference with
Dyngen is reviewed, as well as the methodology chosen in this thesis to mimic cell-
type representations and generate corresponding datasets with boolODE. A real
dataset issued from peripheral blood data is also introduced.

Finally, in Chapter 4, the results obtained using the local methods on each dataset
together with the corresponding methodology to obtain these results are presented.
A first evaluation considers the mean area under the receiver operating characteristic
curve (AUROC) and area under the precision recall curve (AUPR) on the Friedman1
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dataset. Spearman’s correlation is also explored on this dataset to measure similar-
ity between methods. The assesment of the AUROC and AUPR measures is then
performed on single-cell and cell-type GRN inference synthetic datasets. The impact
of normalisation is also addressed. Finally, the real dataset is explored, comparing
the feature rankings of one local method (localMDI) and global methods (Genie3).
Another analysis is also carried out by comparing the impact of genetic markers on
the feature importance scores, by computing the Spearman’s correlation between
the local feature importance scores of patients with and without the markers.
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Chapter 1

Background

In the context of gene regulatory network inference, it is important to understand
the context of machine learning models and gene regulation. In particular, the foun-
dation of the methods used in this thesis are regression tree-based models. To better
understand the task of the thesis, a short analysis of what is gene regulation and
gene regulatory network inference is as well mandatory.

This chapter will describe all the steps required to understand what are random
forest regressors, from the basic principles of machine learning, and also develop the
concept of gene, gene regulation networks and how to infer these.

1.1 Machine Learning models

In this section, a closer look about what is machine learning will be provided. Es-
pecially, highlight will be made on the regression task. Since this one is here solved
with tree-based model, explanations about what is a regression tree and in particular
what is a random forest regressor will be given.

1.1.1 What is Machine Learning ?

"Machine learning is concerned with the design, the analysis, and the application of
algorithms to extract a model of a system from the sole observation (or the simula-
tion) of this system in some situations (i.e., by collecting data)"??.

The goal of machine learning is thus to define a model through algorithms applied
to a system. This model can describe relationships and, more generally, provides
information about the system it is based on. It can even be used to make predictions

4



about unseen data.

In machine learning, problems of interest can be divided in four classes: super-
vised learning, unsupervised learning, semisupervised learning and, reinforcement
learning. The problem studied in this thesis concerns supervised learning.

Formally, "From a learning sample {(xi, yi)|i = 1, ..., N} with xi ∈ X and yi ∈ Y,
find a function f : X → Y that minimizes the expectation of some loss function
l : Y × Y → R over the joint distribution of input/output pairs" [2].

EX,yl(f(x), y) (1.1)

The learning sample, from which the model will be built, thus contains data (features
xi) and their corresponding labels yi. The model f , will be built learning from these
data and labels. Regression, in particular, is a problem of machine learning where
the outputs and labels are quantitative values. The most common loss function in
regression is the squared error loss [3]

L(Y, f(X)) = (Y − f(X))2 (1.2)

Supervised learning has two main goals : either make predictions on unseen data,
either studying relationships between features and outputs, which in this thesis will
be the principal objective [2].

1.1.2 Regression tree

Tree-based methods’ goal is to divide feature space into different regions. In partic-
ular, it is based on binary trees partitioning (figure 1.1) [3].
The algorithm (CART) used to build the model is the following:

1. Choose a pair of feature k and threshold tk that achieves the best split of the
feature space in 2 regions (figure 1.1)

2. If needed, restart splitting on and on subsets, recursively.

3. If a criterion is reached, the node is a leaf of the tree (end node) and the value
of the output is attached to it
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Figure 1.1: Regression Tree growing through CART algorithm example.
Visualization of the feature space division leading to a tree structure [3].

The best possible split is defined by the split that maximize the reduction of impu-
rity i(t). This measure of impurity can be defined by several different ways. In the
case of regression trees, the impurity measure is based on the mean squared error
loss.
The split can then be determined by looking for the feature that causes the biggest
reduction of variance in the child nodes [4].

The function the algorithm tries to minimize for each pair split k with threshold tk

is the following :

J(k, tk) =
mleft

m
MSEleft +

mright

m
MSEright (1.3)

with MSEnode =
∑

i∈node(ŷnode − y(i))2 and ŷnode =
1

mnode

∑
i∈node y

(i) and mleft/right

representing the amount of instances of the learning sample in the corresponding
subset [5].
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As far as the criterion for stopping the tree’s growth is concerned, many approaches
can be considered, conducting to different degrees of overfitting. Overfitting occurs
when the model matches too precisely the learning set, leading to poor predictions
on unseen data. The basic option chosen in this case was to grow the tree until there
are fewer samples left in the node to split than a specific value min_samples_split.

The representation of a tree is thus a "tree" of nodes, testing each a particular
feature. Depending on the threshold, each feature will either follow a path to the
right or the left node, where another test on a feature will be conducted. It will
eventually reach a terminal ("leaf") node, where an output value will be given de-
pending on the leaf reached.

This structure is great for its interpretability. Indeed, it is straightforward to fol-
low a path of the tree and understand which splits and features contributed to a
prediction.

1.1.3 Random Forest Regressor

One main default of regression and decision trees is that they have a high variance
and instability. Indeed, a small perturbation in the data is sufficient for one splitting
node and often all subsequent nodes to change, leading to a totally different tree.
This instability is hard to avoid in the model, even trying to modify splitting or
stopping criteria. One possible solution is through bagging [3].

Bagging is a method for decreasing an estimated prediction function’s variance [3].
The main mechanism behind bagging is just to average many models to reduce the
variance. Random Forest is thus a model fitting many regression trees and averag-
ing their predictions (figure 1.2). This model was chosen in this thesis due to its
performance while keeping a high degree of interpretability, allowing some specific
methods of feature importance to work.
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Figure 1.2: Random Forest schematic. Predictions are aggregated.

1.2 Measurement tools

In this section, scoring tools and ways to assess the efficiency of the methods will
be presented. The area under the receiver operating characteristic curve (AUROC)
and the area under the precision recall curve (AUPR) are common tools to evaluate
the quality of classification methods. Both are used in this thesis to quantify the
quality of classification of existing and absent regulation links between genes of the
methods used. Another metric, Spearman’s rank correlation, is a tool to evaluate
correlation between values. It is applied to the results of the different methods used
in this thesis to compare their similarities.

1.2.1 AUROC & AUPR

In the context of a classification problem, a confusion matrix can be defined to
extract four useful metrics [6] (figure 1.3).
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Figure 1.3: Confusion Matrix. Metrics are defined, comparing values predicted by
the model and ground truth values.

1. Precision represents the proportion of accurate True predictions, i.e.

precision =
TP

TP + FP
(1.4)

2. Recall defines the proportion of positive instances determined as true by the
classifier, i.e.

recall =
TP

TP + FN
(1.5)

3. False positive rate (FPR) is the proportion of predicted true on all negative
class, i.e.

FPR =
FP

FP + TN
(1.6)

Two particular curves can be deduced from these metrics: receiver operating curve
(ROC) and precision-recall curve (PR). The first one represents the recall as a func-
tion of false positive rate. Each classification model prediction is attached to a
threshold influencing its results, and the ROC curve represents the recall/FPR for
different values of threshold.
Similarly, the PR curve can be defined as the curve defining the precision related to
the recall for different thresholds. This specific metric defines a trade-off. Indeed,
the more the threshold is decreased to have more positive instances well classified
and a good recall, the more the risk to have false positives and, to lower the precision
increases. [6]

To study the performance of a classifier, a common way is thus to determine the
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area under (AU-) these two curves to get rid of a specific threshold. Area under
the receiver operating characteristic curve (AUROC) is a score that determines the
ability of a model to distinguish classes, with the best score being 1, while area
under the precision-recall curve (AUPR) is an indicator of how precise the classifier
is, the best score being once again [6].
In this thesis, even if the problem is about regression, the feature importance values
will be considered as being scores used to determine existing (True) or not (False)
regulatory links. Thresholds will then be used on determined scores to deduce the
curves, and thus the AUPR/AUROC.

1.2.2 Spearman’s rank correlation

Spearman’s rank correlation rS is a measure of correlation between vectors of values.
Considering a ranking of the observations of 2 samples u and v of size n, and the
corresponding rank of their ith observations ui and vi, one can define Spearman’s
rank correlation rS as (1.8).

rS =
n
∑n

i=1 uivi − (
∑n

i=1 ui)(
∑n

i=1 vi)√
(n

∑n
i=1 u

2
i − (

∑n
i=1 ui)2)(n

∑n
i=1 v

2
i − (

∑n
i=1 vi)

2)
(1.7)

= 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
where di = ui − vi (1.8)

With equation 1.8, the differences di are a good approximation if those differences
are not too small [7].
In this thesis, Spearman’s rank correlation was computed using scipy library and
corresponding function spearmanr. This correlation value was computed to compare
the rankings of the methods on a same problem.

1.3 Gene Network Inference problem

This thesis aims to apply feature importance methods from machine learning to
infer gene regulatory networks, especially cell-types and cell-specific regulatory net-
work. To effectively address this task, it is essential to first explore the fundamental
concepts underlying gene regulatory networks.

The following section provides a comprehensive overview, beginning with the defi-
nition and the structure of a gene, followed by the mechanisms of gene regulation,
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and culminating in the concept of gene regulatory network inference.
The section concludes with a discussion on the methodology of gene network infer-
ence derived from the existing algorithm Genie3.

1.3.1 Genes and Gene Regulation

Definitions

A gene is a specific region of DNA that encodes information responsible for particular
characteristics of an individual. A gene consists of sequences of coding nucleotides
(exon) interspersed with non-coding sequences (intron).
In particular, DNA is a double-helical structure comprising different nucleotides,
and is present in all cells. It contains the genetic material of an individual.

Nucleotides are organic molecules distinguished by their specific base. There are
only a few possible bases, and the uniqueness of DNA is determined by the sequence
of these nucleotides. RNA, or ribonucleic acid, is transcribed from a single strand
of DNA.

Protein synthesis

Proteins, and the process of their synthesis, form the link between genes and phe-
notypic traits-the observable characteristics of an individual. Gene expression is the
process by which the information in genes directs proteins synthesis, comprising two
main steps: transcription, and translation.

During transcription, an enzyme called RNA polymerase separates the DNA strands
in two. Only one of the two strands is transcribed to synthesise a complementary
RNA strand. In eukaryotic cells, which have a defined nucleus, transcription initia-
tion is regulated by transcription factors that bind to a specific region of the DNA
known as the promoter. The RNA strand produced during transcription is known
as messenger RNA (mRNA), which serves as the template for translation — the
process by which proteins are synthesised based on the sequence encoded in the
mRNA (figure 1.4)[8].
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Figure 1.4: Gene expression steps. Gene is translated in messenger RNA during
transcription and then translated in a protein. [8].

Gene regulation

Cells must regulate gene expression in response to environmental changes. While
gene expression is often regulated at the transcription level, it can also occur at
other times (after the transcription, chromatin modification, ...).
Despite containing the same genome, different cell types express distinct subset of
genes, which allows for cellular differentiation and specialisation. This regulation is
crucial for adaptation and is mediated by transcription factors that interact with
specific regions of the DNA, known as enhancers and promoters, see figure 1.5. The
speed and efficiency of gene expression are influenced by these interactions, with ac-
tivators and repressors binding to these control elements to modulate transcription
rates.

Importantly, gene regulation is often non-linear, with the combination of control
elements in an enhancer region being more critical than the presence of a single
control element [8].

Figure 1.5: Gene structure. Enhancers and control elements are key targets of gene
regulation. The gene consists of coding regions (exon) and non-coding regions

(intron), and includes start and stop signals for transcription [8].
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In a cell, activators and repressors production is itself regulated by the expression
of specific genes, leading to complex structures and sequences of differential gene
expression, a cascade of specific interactions between the speed of expression of a
subset of genes. These intricate sequences of interactions are referred to as gene
regulatory networks.

1.3.2 Gene Regulatory Networks inference & Genie3

The gene regulatory network inference problem involves predicting interactions from
regulator genes r to their target genes t within a given gene subset. Numerous meth-
ods have been developed and bench-marked for inferring global gene regulatory net-
works across a set of genes and a sample of cells [9]. A key method of interest in
this thesis is the Genie3 algorithm [1].

Genie3 decomposes the problem of the gene regulatory networks inference for a
set of p genes into p regression problems. Each subproblem involves predicting the
expression level of one gene p from the expression levels of all other genes in the
dataset (figure 1.6).
For each subproblem, a random forest model is trained on the gene expression data,
followed by the application of a global feature importance algorithm is then run
on the trained model. This algorithm assigns an importance score to each feature,
reflecting the significance of the feature to predict the output.

A high importance score for a feature f indicates that the gene f is likely to regulate
the output gene p. From this hypothesis, it is possible to infer a list of interactions
between the p genes and their predicted regulators, thereby constructing the gene
regulatory network. However, this method has limitations, such as its inability to
predict self-regulating genes. [1]
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Figure 1.6: Genie3 procedure. Expression data is divided into p learning samples,
each corresponding to a different gene. Models are trained on these samples and

rankings are determined using global feature importance methods [1].

The global feature importance used by Genie3 is known as the mean decrease in
impurity. A detailed review of this method is provided in section 2.1.1.

1.3.3 Cell-specific and cell-type specific network inference

Global gene regulatory network inference deduces genes interactions and networks
across the entire dataset. However, in certain applications, it is useful to infer net-
works specific to particular regions of the dataset.

One such problem of interest is the inference of gene regulatory networks for
individual cells within the dataset.
Advances in single-cell sequencing technologies have provided a wealth of single-cell
data, enabling identification of more complex and non-linear dependencies between
cells. Single-cell regulatory network inference aims to leverage this data to capture
differences between cells under varying environmental conditions.
Several methods have been proposed in the literature to infer single-cell gene regu-
latory networks [10, 11, 12, 13].

This thesis proposes an approach based on Genie3, but instead of using a global
feature importance method, the algorithm uses local feature importance methods.
These methods function similarly to global feature importance algorithms but as-
sign importance scores to features of each sample. As in Genie3, interactions and
networks can then be inferred from these importance scores for each sample (in this
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case, each cell).

Another application of this approach is to aggregate local feature importance scores
based on specific criteria. A common criterion is to group cells by cell type.
Cell-type-specific gene regulatory network inference thus involves identifying net-
works specific to particular cell types based on single-cell gene expression data.

The methodology followed in this thesis to solve this task is to average single-cell gene
regulatory networks for cells of the same type. The objective is to capture common
interactions across cell types as in [11], while using the entire dataset rather than
applying global methods to each type individually.
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Chapter 2

Methods

As outlined in subsections 1.3.2 and 1.3.3, the methodology for identifying regulatory
connections among p genes within a network involves applying feature importance
methods to p machine learning models. Each model provides information about the
key genes that contributes to predict the expression level of the pth gene, i.e. genes
that regulates its expression.

Feature importance methods offer a range of approaches to assess the significance
of each feature in influencing the behaviour of a machine learning model. These
methods can be classified into two categories: global methods, which evaluate the
importance of each feature in the behaviour of the model, and local methods, which
focus on the importance of each feature in the context of the specific prediction of
a sample.

This chapter details the feature importance methods employed, including specific
implementations. The two first sections describe global and local feature impor-
tance methods, while the final section discusses various normalisation methods used
on the feature importance values.

2.1 Global Feature importance Methods

Global feature importance methods rank the contribution of each feature to the
overall behaviour of a model. This section introduces two such methods. The
Genie3 algorithm, which is commonly used for gene regulatory network inference,
uses a particular global feature importance method, called GlobalMDI. Additionally,
GlobalMDA, is also detailed.
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2.1.1 Genie3 feature importance method

Genie3 uses tree-based models and global feature importance to infer a global gene
regulatory network from gene expression data. As described in section 1.3.2, Genie3
employs a generic feature importance method provided by scikit-learn, specifi-
cally the mean decrease of impurity (MDI) for regression trees. The method compute
the reduction in impurity, ∆i(st, t), at each node where a particular variable is cho-
sen for splitting [14, 15].

For a given tree T , the importance for the variable Xm in predicting output Y is
given by

Imp(Xm, T ) =
∑

t∈T :v(st)=Xm

p(t)∆i(st, t), (2.1)

where t represents internal nodes of the tree, p(t) denotes the proportion of training
samples reaching node t, and v(st) is the variable used for splitting at node t.

This measure can be generalised to an entire forest, by averaging the importance
over all trees

Imp(Xm) =
1

NT

∑
T

Imp(Xm, T ). (2.2)

In regression trees, impurity is defined as the reduction in variance. Therefore,
equation (2.1) can alternatively be characterised as the reduction in variance of Y
due to all splits

Imp(Xm, T ) =
∑

t∈T :v(st)=Xm

#StV ar(St)−#SV ar(Strue)−#SV ar(Sfalse), (2.3)

where St is the set of training samples reaching node t, and Strue (respectively Sfalse)
is the subset for which the test done at node t is true (respectively false) [1].

This method efficiently exploits the tree structure, as feature importance is com-
puted during tree growth, making it computationally inexpensive. However, the
instability of the regression trees (section 1.1.2) can affect these measures, though
this issue is strongly mitigated by the forest structure [16].

2.1.2 GlobalMDA

Another global feature importance method is the mean decrease of accuracy (MDA),
which was originally developed for random forest models in [14], and later adapted
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to be model-agnostic, i.e. to work on all machine learning models [17].

The global MDA of a model is computed through the use of permutations of the
feature’s values, and is based on the following algorithm.

1. Computation of the model loss L(Y, f(X)) = (Y − f(X))2,

2. Construction of a matrix where feature i is permuted,

3. Computation of the model loss on the permuted data Lp(Y, f(Xp)) = (Y −
f(Xp))

2,

4. Computation of ith feature importance as the difference between Lp and L.

This procedure is repeated npermutations times for each feature. There are two main
approaches to consider those permutations: either f(Xp) in the loss function is re-
placed by the mean of the predictions from the permuted samples, or the mean of the
npermutations differences in the loss function between the permuted and non-permuted
samples is used.
The algorithm applies these permutations to a feature i to assess the relationship
between the inputs and the output as though ith did not exist. This process effec-
tively "breaks" the dependence between ith feature and the output [16].

However, this method has the drawback of requiring numerous permutations to
achieve stable results, which leads to a longer computation time compared to MDI
[16].

2.2 Local importance Methods

Local feature importance methods rank the contribution of each feature to the be-
haviour of a specific instance provided to a model.

In this thesis, these methods are employed to determine cell-specific gene regula-
tory networks by calculating feature importance scores for each individual cell.

2.2.1 Shap

Shap is a practical implementation of a method for computing Shapley values, as
defined in [18].
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Shapley values

Shapley values originate from game theory, where they provide a method to fairly
distribute a payout among players. When applied to machine learning, the "payout"
corresponds to the model’s output, and the "players" are the features. Each feature
is assigned a score that reflects its influence on the output.
Given p players V = {X1, ...Xp} and a characteristic function v : v → R with
v(∅) = 0, assessing each possible subset of features, the Shapley value distribution
is defined as equation 2.4 [19].

ϕj(v) =
∑

S⊆{1,...,p}\j

|S|!(p− |S| − 1)!

p!
(v(S ∪ {j})− v(S)). (2.4)

In this equation, the Shapley value is computed as the sum over all possible coali-
tions S of features that exclude feature j. Each term in the sum is weighted by
|S|!(p−|S|−1)!

p!
, and the expression (v(S ∪ {j})− v(S)), represent the marginal contri-

bution of feature j to the coalition [20]. The purpose of the characteristic function
in evaluating the Shapley value is to map each coalition to a real number.

Thus, Shapley values can be summarised as the weighted average marginal contri-
bution of a feature across all possible combinations of feature [16]. They describe
how much each feature contributes to the model’s prediction.

Shapley values satisfy several important properties [21, 20, 19].

• Efficiency: The total sum of contributions equals the total payout∑
Xm

Φv(Xm) = v(V ). (2.5)

• Null Player: A feature that does not contribute to any coalitions has a
Shapley value of zero

Φv(Xm) = 0 if v(S ∪ {Xm}) = v(S) for all S ⊆ V −i,j (2.6)

• Symmetry: Identical features receive the same contribution

Φv(Xm) ≥ Φw(Xm) if = Φv(Xj) if v(S∪{Xi}) = v(S∪{Xj}) for all S ⊆ V −i,j

(2.7)

• Additivity: For a game with 2 characteristic functions, the Shapley value of
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the sum of games is the sum of Shapley values

ϕj,v1+v2 = ϕj,v1 + ϕj,v2 (2.8)

Shapley values are unique in that they are the only marginal values that satisfy
these properties [20].

To calculate the Shapley value, it is necessary to compute values for all possible
coalitions, which is often computationally unfeasible. Various methods such as Mon-
teCarlo sampling, approximations or specific implementations exist to address this
challenge [16].

A popular package that introduces several of these methods is Shap.

Shapley Additive Explanations

Shap is a method introduced by Lundberg and Lee in 2017 [18]. The Shap ap-
proach to compute Shapley values treats the model as an additive feature importance
method. In this context, the contribution of each feature to the model’s output can
be expressed as a linear model

g(z′) = ϕ0 +
M∑
j=1

ϕjz
′
j, (2.9)

Let g be the explanation model, and let z′ ∈ {0, 1}M represent the coalition vector,
where z′j = 1 indicates the presence of feature j in the coalition and z′j = 0 indi-
cates its absence. Here, M denotes the maximum size of the coalition. The feature
attribution for a feature j is denoted by ϕj ∈ R, which corresponds to the Shapley
value of feature j [16].

Shap defines its characteristic function for a model f and an instance xi as shown
in equation 2.10 [20].

vf,xi(S) =

∫
f(xi

S ∪Xc)dPXc − E(f(X)). (2.10)

In this equation, the term f(xi
S ∪ Xc)dPXc , simulates the features not included in

S as random variables. The equation (2.10) thus involves integrating over their dis-
tribution, a process known as marginalisation. When equation (2.10) is substituted
in the Shapley value equation ((2.4)), the expectation term E simplifies. The re-
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maining expression calculates a weighted difference in the marginalisation between
the set S ∪ {j} and S for all subset S that do not include feature j, capturing the
marginal contribution of j.

Given the number of possible coalitions increases exponentially with the number
of features p (O(2p)), approximating Shapley values become more efficient. In this
thesis, a specific variant of Shap, known as TreeShap, is used.

TreeShap exploits the tree structure to accelerate computations. Although there
are a high number of potential coalitions, the tree structure restricts the possible
outcomes, with many coalitions yielding to the same result at a particular node [20].

It is straightforward to decompose a model’s prediction with p features using equa-
tion (2.9) [19], as follows

f̂(X) = E{f̂(X)}+ ϕv(X1) + · · ·+ ϕv(Xp). (2.11)

As an illustration, consider an explanation of a model’s output provided in the
Shap package [22] (see figure 2.1). This example demonstrates how the contribution
(Shapley value) of each feature is added to the mean of prediction to determine its
specific contribution for a given prediction.
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Figure 2.1: Shap decomposition of features contribution to the output. Each
feature’s contribution adds up to explain the difference between the expected value

of predictions and the sample prediction [22].

2.2.2 Saabas

Saabas is a method detailed in the TreeInterpreter package. Like Shap, its pur-
pose is to decompose a model’s prediction into a sum of a bias term and feature
contributions. Given a vector of N features X and θi representing the contribution
of the ith feature to the prediction, the prediction f̂(X) is expressed as

f̂(X) = bias+
N∑
i=1

θi. (2.12)

Here, the bias term represents the average prediction value over the model’s training
set samples.

In Saabas, each regression node of the tree, not just the leaves, has an associated
"output" value. The contribution of a feature i at a split k is calculated as the
difference in value between the node before the split k and the node reached after
the split k on feature i. The total contribution of the ith feature is the sum of its
contribution across all splits where it is used (see figure 2.2) [23].
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Figure 2.2: Saabas decomposition of feature contributions to the output. Each
feature’s contribution is the difference in value between the node before the split and
the node reached after the split, for all nodes where the feature is used to split ??.

Saabas can be viewed as an approximation of Shap. Unlike Shap, which considers
all possible feature coalitions, Saabas uses only one specific ordering of features,
defined by the path taken by the particular sample of interest [24].
In the context of random forests, the feature importance scores are averaged across
all the trees in the forest.

2.2.3 LocalMDI

LocalMDI is a method derived from the global MDI method, as presented in [15]
and implemented in [25]. It can be seen as a decomposition of the global measure.

Let us indicate a specific instance of the input variables by x = (x, · · · , xp)
T , where

xj represents the value of variable Xj. For a given instance x, the local MDI impor-
tance Imp(Xm,x) of a variable Xm with regard to Y is defined as

Imp(Xm,x) =
1

NT

∑
t∈T :v(st)=Xm∧x∈t

i(t)− i(tXm), (2.13)
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where Xm is used to split, tXm is the successor of node t followed by x in the tree,
and i() is the impurity function used. The outer sum is over the NT trees in the
ensemble, the inner sum is over all nodes that are traversed by x.[15].

This measure computes the significance of the specific path taken by the sample
of interest, focusing on how the variables used in splits contribute to the prediction
for that particular sample. The term i(t)− i(tXm) quantifies the differences in impu-
rity between nodes on the path taken by the sample through the trees. A variable
is considered highly important if it consistently leads to a significant reduction in
impurity across the majority of trees.

The global MDI measure, from which LocalMDI is derived, can be obtained by
summing the values as

Imp(Xm) =
1

N

N∑
i=1

Imp(Xm,xi), (2.14)

where {(x1, y1), · · · , (xN , yN)} represent the N learning samples [15].

Similar to its global version, LocalMDI is highly efficient because the impurity mea-
sures are already computed and used during the tree-growing process.

2.2.4 LocalMDA

The localMDA method is a decomposition of globalMDA defined in [14]. Given a
loss function L(), the labels Y , the prediction f(X) of the samples X by a model f ,
and a sample Xp where the feature p has been permuted in all samples by the value
of another sample, the globalMDA feature importance for the pth feature is defined
as

Imp(p) = L(Y, f(X))− Lp(Y, f(Xp)). (2.15)

For a specific sample and its label (xi, yi), the localMDA feature importance is
defined as

Imp(p,xi) = L(yi, f(xi))− Lp(y
i, f(xi

p)). (2.16)

As in the global method, the permutations are repeated multiple times. This thesis
explores two possible approximations of the decrease in accuracy. The first approach
replaces the prediction f(xi

p) in the loss function with the mean of the predictions
of the permuted samples, while the second approach computes the mean over the
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npermutations differences in loss between permuted and non-permuted samples will be
taken. As in globalMDA, the permutation is introduced to simulate the removal of
the feature p from the sample.

Like global MDI, localMDA can be seen as a decomposition of globalMDA:

Imp(p) =
1

N

N∑
i=1

Imp(p,xi), (2.17)

where {(x1, y1), · · · , (xN , yN)} represents the learning sample of N examples used
to grow the ensemble of trees.

Three different implementations of the localMDA method were developed. The
first one applies the model-agnostic method directly to the random forest model,
the second one exploits the ensemble structure of a random forest, and the third
directly uses the tree structure to compute the loss of accuracy, as described in [26].

LocalMDA based on perturbations of the forest

The application of the localMDA model-agnostic methods treats consider the ran-
dom forest regressor as the model. The loss function (in this case, the mean squared
error loss) is computed based on the prediction of the forest, when permuting values
of the pth feature, for each feature.
To reduce sensitivity to a particular permutation, 100 permutations were conducted
for each feature per sample. However, this setting leads to high computational time.
In this method, the mean of the prediction from permutations is used to define the
prediction f(xi

p).

LocalMDA based on perturbations of the trees

The main drawback of the permutation-based methods is the high computational
complexity involved in computing predictions for each permutation.
An alternative is to take advantage of the ensemble structure of the forest. The
prediction ŷ of a sample x by a forest model T with respect to its trees t is given by

ŷ(T,x) =
1

Nt

∑
t∈T

ŷt(x). (2.18)

Using the formalism of equations (2.18) and (2.16), another measure of the average
decrease in accuracy is defined, considering a different permutation for the sample
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xi
p.

Imp(p,xi) =
1

Nt

∑
t∈T

L(yi, f(xi), t)− Lp(y
i, f(xi

p), t), (2.19)

where L(yi, f(xi), t) (respectively, Lp) represents the loss function evaluated for each
regression tree separately for the non-permuted (respectively, permuted) sample, and
xi
p is the ith sample where feature p is permuted with another value, -different for

each tree.

Here, the permutations differ for each tree, and the mean of the difference in loss
values across trees is computed for the permuted and non-permuted samples.
This method requires only one passage through all the trees, rather than of npermutations

passages, which reduces computational time. However, the forest must contain a suf-
ficient number of trees to provide stable results. In this thesis, forests composed of
1000 trees were used, and the results were available for interpretation.

LocalMDA based on tree structure

Another method, as described in [26], takes advantage of the tree structure itself.
The goal of the permutations mentioned earlier is to simulate the removal of a fea-
ture. Another approach to achieve this is by modifying the path that samples follow
within the trees.

The localMDA importance value of a feature p for a sample xi using a regression
tree model t, can be defined as

Imp(p,xi, t) =
∑
v∈V

L(yi, gv(xi, p, t), p, t), (2.20)

where V is the set of leaves in the tree where the samples xi could end up if, at each
node where the feature p is tested, the sample is propagated on both sides.

To quantify the effect of removing the feature from a tree, the value gv(xi, p, t) is
computed for each leaf where the sample could end up:

gv(xi, p, t) = ŷv
∏
k∈K

Nk,v

Nk

, (2.21)

where K the set of nodes where a split occurs on p, and Nk,v/Nk corresponds to the
number of samples that followed the path leading to v after node k where p was
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tested, relative to the number of samples reaching node k. The value ŷv corresponds
to the output value returned by the leaf v.

For a forest T , the measure can be summarised as

Imp(p,xi) =
1

Nt

∑
t∈T

L(yi, f(xi), t)− Lp(y
i, f(xi

p), t) (2.22)

No implementation of this method was previously provided. The implementation
developed in this thesis was based on the information provided in [26] and algorithms
used to traverse decision trees, as defined in [27].

2.2.5 LES values

The FESP (Fair-efficient-symmetric-perturbation) value and the ES (Equal-surplus)
method were developed as fair alternatives to Shapley values for solving the feature
importance attribution problem [28]. These methods belong to the family of LES
(Linear-Efficient-Symmetric) values. Their primary goal is to avoid the exact com-
putation of Shapley values.

These values satisfy the key properties of Shapley values: additivity, efficiency, and
symmetry, as well as monotonicity, covariance, non-negativity. They also preserve
additive games, and marginalism as described in [29].

The LES values, denoted as ΨA, can be expressed as

ΨA
i (v) =

n∑
k=1

[ ∑
i∈S,|S|=k

(n− k)!(k − 1)!

n!

[
A(k)v(S)− A(k − 1)(S − {i})

]]
. (2.23)

From equation 2.23, it can be observed that the Shapley value is a specific case of
these LES values.
Specificallly, considering Γ as the set of n+1-vectors of real numbers A = (A(k))k=0,··· ,n,
such that A(0) is a fixed real number and A(n) = 1, and Γ as the 2n−1 dimensional
linear space of all n-person games on N , a finite collection of n players [29],

∀v ∈ Γ,∀i ∈ N,∀A ∈ Ω,ΨA(v) = Shap(vA),

where vA(S) = A(k)v(S) for each S such that |S| = k.
(2.24)

Thus, Shapley values represent the particular case where A(1), ..., A(n) = 1. An-
other value within this framework is the Equal-Surplus value [30], characterised by
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A(1) = n− 1 and A(n) = 1, and 0 otherwise. In this context, the term in A(n) = 1

represents the contribution of the specific feature, while A(1) = N − 1 corresponds
to the ES value, which uses the difference between the total coalition and the sum
of individual feature contributions. This term, however, remains constant across all
features [28].

The three methods discussed in this section use the source code provided in the
GitHub repository [31]. However, since the model is a Random Forest model and its
scoring function is not well-defined for individual samples, this package was modified
to use the least square error as evaluation metric for predictions.

FESP

To address the issue of this constant term across all features, [28] proposed a model
that considers not the equal surplus value, but the value of v(N \ {j}) (extreme
coalitions model). This approach respects efficiency, symmetry, and fairness, as
demonstrated in [28].

ES

The ES method strictly adheres to the evaluation of ES values as described above[28].

2.3 Normalisation Methods

This section discusses various normalisation and scaling methods applied to feature
importance values obtained after running the algorithms.

2.3.1 L1 normalisation

L1 normalisation transforms the values of a vector by dividing each value by the
sum of the absolute values of the entire vector, as shown below:

xl1 =
x∑
i |xi|

.

The primary advantage of the L1 normalisation is its ability to preserve the sparsity
of the data when the data is already sparse. Additionally, it is less sensitive to
outliers compared to others techniques such as L2 normalisation.

28



2.3.2 L2 normalisation

L2 normalisation scales the values of a vector such that the sum of the squared
values equals one. Specifically, each value is divided by the square root of the sum
of the squared values of the vector:

xl2 =
x∑
i x

2
i

.

While L2 normalisation is more sensitive to outliers due to the squaring of values,
it tends to smooth the data. This may lead to a reduction of the sparsity of the
vector.

2.3.3 Max normalisation

Max normalisation divides the values of a vector by its maximum value:

xmax =
x

xmax

.

This ensures that the maximum value of the vector is always one. However, this
method is highly sensitive to upper outliers. Indeed, those can be incorrectly iden-
tified as the maximum value, thereby distorting the scaling.

2.3.4 Min-max scaling

The min-max scaling technique scales the values of a vector over an interval between
0 and 1, where 0 corresponds to the minimum value and 1 to the maximum value:

x′
i =

xi − xmin

xmax − xmin

.

Despite its utility,this scaling is highly sensitive to outliers, as any outlier can be
mistaken for the minimum or the maximum value.
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Chapter 3

Datasets

In this chapter, different datasets will be reviewed, together with their role in the
master thesis. Four types of datasets will be investigated. A first dataset, Fried-
man1, will be used as a generic dataset to evaluate the methods on a simple problem.
Two other types of datasets, Dyngen-generated datasets and cell-type datasets, are
synthetic datasets used to evaluate the methods on the specific single-cell gene reg-
ulatory networks and cell-type gene regulatory networks inference problem. Finally,
a real dataset without ground truth networks will be investigated.

For synthetic datasets, the mechanisms behind their generation will be described,
as well as the methodology used to generate them. As the real dataset is concerned,
details about its origin will be given.

3.1 Friedman1

Friedman dataset finds its origins in the Friedman regression problem [32]. This
dataset contains n independent features with a uniform distribution between 0 and 1.
The particularity of the dataset is that only the 5 first features are taken into account
to produce the output y. All the remaining n− 5 are considered as independent of
y. The output y is generated using the relationship 3.1 [33]

y(x) = 10 sin (π × x1 × x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (3.1)

In this thesis, the dataset will be generated using the make_friedman1 function of
the scikit-learn library. In particular, 1000 samples will be drawn composed of
105 features each without noise addition.
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The relationship has the advantage to be non-linear and easily defines the features
related to the output. This dataset will be used in this thesis to make a first
comparison of our methods and to verify their working.

3.2 Dyngen

This section will focus on Dyngen, a multi-modal simulation engine for single-cell
resolution research on dynamic cellular processes [34]. Dyngen will be used to gener-
ate gene expression levels datasets with available ground truth regulatory networks
for each cell of the dataset.

3.2.1 Generation of Gene expression levels datasets using

Dyngen

Dyngen is a simulation tool used in the context of single-cell resolution analysis.
Single-cell biology is expanding, however, the lack of ground-truth makes quantita-
tive evaluations of methods often impossible. The goal of Dyngen is thus to generate
synthetic data with available ground truth [34].

The advantage of Dyngen compared to others single-cell simulators is to focus on
the fundamental biology governing these interactions [34].

The inner working of Dyngen is decomposable into 3 main steps [34]:

1. The first step in simulating biological processes is to convert a global gene reg-
ulatory network into a series of reactions (translation, splicing, transcription,
and regulation).

2. The use of a version of Gillespie’s stochastic simulation algorithm (SSA) allows
to then simulate individual cells.

3. Finally, single-cell methods are simulated using actual reference datasets.
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The use of Dyngen allows validating a lot of computational methods (figure 3.1):

1. Cell-specific network inference, which in this case is the main feature of inter-
est.

2. Trajectory alignment, methods to align the cell’s developmental trajectories.

3. RNA velocity methods, methods that estimate the RNA velocity.

4. Trajectory inference, methods that infer the cell developmental trajectories.

Figure 3.1: Review of Dyngen functionalities. Dyngen generates single-cell datasets
used to validate trajectory alignment and inference methods, cell-specific network

inference methods, and RNA velocity estimation methods [34].

3.2.2 Derivation of ground-truth single-cell GRN

In this thesis, the Dyngen functionality that will be used is its ability to label, for
each cell and its gene expression levels, a ground truth single-cell regulatory network.
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Dyngen allows defining all cell-specific regulatory interactions, computing the effect
of a regulator R on a target T , using the role that R plays in the transcription of
T ’s propensity function in relation to other regulators [34]. In particular, it can be
defined as

regeffectG =
proptransG(S)− proptransG(S[R← 0])

xprG
. (3.2)

Where proptansG is the propensity of transcription of a gene G. This last depends
on transcription factors and thermodynamic models. The numerator of the expres-
sion is thus the difference in propensity when R is set to 0, weighted by a term xpr

depending on pre-mRNA production rate of T . Pre-mRNA is the messenger RNA
before final stages of transcription [34].

By computing all regulatory effects, cell-specific networks can be deduced. The
regulatory effects have values between -1 and 1, representing total inhibition or
activation respectively, where 0 represents inactive regulation.

3.2.3 Methodology & datasets obtained

Dyngen simulator offers a wide range of various base networks on which simulations
can be run and datasets made. In [34], 42 distinct datasets were tested on single-cell
gene regulatory network inference, with 14 different backbones.

The backbones are the following:

1. Bifurcating,

2. Bifurcating Converging,

3. Bifurcating Cycle,

4. Bifurcating Loop,

5. Binary Tree,

6. Branching,

7. Consecutive Bifurcating,

8. Trifurcating,
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9. Converging,

10. Cycle,

11. Disconnected,

12. Linear,

13. Linear Simple,

14. Cycle Simple.

In this thesis, one dataset of each type of backbones available on Dyngen will be
investigated. A backbone is a base network, from which a dataset can be generated
with slight variations of the network.
Each dataset is generated with the backbone as network. To the backbone is added
10 housekeeping genes and 15 target genes. Housekeeping genes are genes with a
high expression value but not regulated by the main network. Target genes are genes
regulated by the regulatory network defined and by other genes. Each dataset is
made of 1000 cells.

The analysis will focus on the presence or absence of regulatory links, rather than
their strength or nature. Therefore, the ground truth will be represented in the
form of a matrix of all possible regulations. This matrix will contain binary values:
0 indicating the absence of regulation and 1 indicating the presence of regulation.
The directions of these links will also be considered. Indeed, if a network specifies a
regulator g and a target t, the only regulation defined as present will be g → t and
not t→ g.

3.3 Cell-type datasets

As described in section 1.3.3, another goal of this thesis was to take advantage of
models trained on many cell types to better describe common interactions, while
still describing particular interactions of each cell-type network. This specific work
can be done by aggregating local feature importance values of cells of the same type.
To evaluate this work, a dataset of expression levels data generated from different
ground truth networks, but with common interactions, was needed. This one was
constructed by permutations of a baseline network, from which gene expression
values were deduced using the BoolODE generator.
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3.3.1 Mimic cell-type representation through permutations

The goal is to compare various cell-types sharing common and different interactions.
A simple way to generate similar networks was to permute the edges of the reference
network randomly with a probability p, as explained in [11] (figure 3.2). These edges
will eventually be connected to other genes already present in the network, or to
genes not previously present in the network.

Figure 3.2: Example of edge permutation of a reference network to generate a
similar network [11].

3.3.2 BoolODE

BoolODE is a single-cell gene expression levels generator developed by [9]. It takes
as input a boolean model, and uses a system of stochastic differential equations to
generate gene expression values. The use of this generator was preferred here to
Dyngen, because it was specially designed to compare GRN inference algorithms
and preferred to Dyngen in [9]. BoolODE framework is based on GeneNetWeaver
framework [35], but with differences to better match existing biological processes (to
create variation of the expression profiles, capture single-cell expression trajectories
and create less dense regulatory subnetwork).

3.3.3 Methodology & datasets obtained

Three different datasets were built, each one with 10 distinct types derived from a
different baseline network.
The reference networks were not built from scratch, but based on existing refer-
ence networks, especially reference networks used by simulators. In this case, the
three networks chosen were networks from Dyngen already generated in the Dyngen
datasets.
These three networks were chosen because they contained fewer genes. Indeed, con-
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sidering permutations, the generated network can sometimes become more struc-
turally complex, and can lead to unpracticable computations for the simulators.

These networks were the following:

1. Bifurcating cycle.

2. Converging.

3. Linear.

Then, for each one, each edge was permuted with a probability p = 0.2, to generate
a new subnetwork, and the operation was repeated 10 times. The networks were
then used as reference for the BoolODE simulator, generating gene expression data.
The corresponding expression values matrix were labelled with their type (1, ..., 10)

and aggregated to form a unique dataset.

3.4 CEDAR dataset

CEDAR dataset is a real dataset composed of a normalised gene expression levels
matrix for 27 types of cells of peripheral blood, from different individuals. No
ground truth is available concerning the cell-type or global GRNs, however, a list of
particular genes of interest and a list of particular genetic markers for each individual
are available.

3.4.1 Methodology and datasets obtained

Since the dataset has no ground truth, it is not possible to use it to compare pre-
dicted and true gene regulatory networks. The analysis of the dataset will then
consider a comparison of the global and local rankings of the interactions. Since the
real dataset contains 16000 genes, the methods will only be applied to a list of genes
of interest.

A first analysis will consider a dataset composed of all the genes of interest expres-
sion values and the cell-types. For each type, the mean of the cell feature importance
rankings will be computed on the dataset with the 27 types mixed. It will be com-
pared to the global feature importance rankings computed on each of the 27 single
type datasets. The dataset is composed of the data of 200 patients. For each of
them, a cell of each type exists, with 174 gene expression levels (which are only the
genes of interest present in all cell-types) and a categorical value for each sample
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corresponding to its cell type.

A second dataset will be generated, with all the genes of interest expression levels
and a list of genetical markers present for each individual. The goal will be to
consider the correlation between the rankings of different samples to observe if the
markers affecting a patient have an influence on the generated interactions.
The dataset is composed of the same patients, cells and gene expression values.
However, instead of a categorical value indicating the type, it contains categorical
values for each sample corresponding to three values of presence of each genetic
marker (0 meaning the absence, 1 or 2 the presence).
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Chapter 4

Results & discussion

In this section, the outcomes of local techniques on each dataset, together with
the associated methodology for obtaining these outcomes, are presented. Using the
Friedman1 dataset, a preliminary analysis looks at the mean area under the receiver
operating characteristic curve (AUROC) and the area under the precision recall
curve (AUPR) and compare them to global rankings. Using this dataset, Spear-
man’s correlation is also investigated in order to gauge method similarity. Next,
using synthetic datasets for single-cell and cell-type GRN inference, the AUROC
and AUPR measures are evaluated.

Normalisation’s effects are also discussed. The actual dataset is examined in the
final section, where the feature rankings of one local approach (localMDI) and one
global method (Genie3) are contrasted. By calculating the Spearman’s correla-
tion between the local feature important scores of patients with and without genetic
markers, an additional analysis is performed to compare the effect of genetic markers
on the feature importance ratings.

4.1 Friedman 1 dataset

Friedman 1 dataset, described in section 3.1, will be a useful synthetic dataset to
compare our methods in the context of a simple regression problem. Since the exact
features used to generate the output are known, the dataset is exactly what is needed
to evaluate the efficiency of the methods.
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4.1.1 Methodology

Our goal will be to compute feature importance of each feature to predict the output
y. The mean AUPR and AUROC values will allow comparing the average of local
importance scores to global scores, to see if local methods perform on a simple
regression problem. The impact of normalisation will also be studied in this contest.
Another interest will be brought to the measure of the correlation between the
feature importance values to determine similarities between local techniques.
In particular, the evaluations will be made using a RandomForestRegressor model,
with nestimators equals to 1000. Others parameters will be kept as default.

4.1.2 AUROC & AUPR

In this section, all AUROC and AUPR curves were computed with corresponding
functions from scikit-learn library. AUPR and AUROC metrics are described in
the section 1.2.1.
In the case of Friedman dataset, all outputs are determined by the five first features.
In order to compute the AUROC & AUPR scores of methods, will be constructed a
vector of the size of the n features. It contains 0, the boolean False value, everywhere
excepted for the five feature of importance, which will be equal to 1, the boolean
True value.

In the case of local feature importance methods, for each sample the AUROC &
AUPR scores will be calculated comparing the sample’s feature importance vector
and the vector described above. Then, the mean of the scores over all the 1000
samples will be taken. For the global methods, the scores will simply be compared
to the vector.
Following the above methodology:
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Local methods meanAUROC score
Local MDI 0.996
Shap 0.992
Saabas 0.528
LocalMDA - forest perturbations 0.979
LocalMDA - tree perturbations 0.978
LocalMDA - tree structure 0.656
FESP 0.243
ES 0.448

Table 4.1: Mean AUROC scores for local feature importance methods for the
detection of the 5 important features in the generation of the output y in Friedman

1 dataset.

Local methods meanAUPR score
Local MDI 0.926
Shap 0.88
Saabas 0.496
LocalMDA - forest perturbations 0.831
LocalMDA - tree perturbations 0.866
LocalMDA - tree structure 0.572
FESP 0.186
ES 0.398

Table 4.2: Mean AUPR scores for local feature importance methods for the
detection of the 5 important features in the generation of the output y in friedman

1 dataset.

Global methods AUROC score
Global MDA 0.99
Genie3 MDI 0.99

Table 4.3: AUROC score for global feature importance methods for the detection of
the 5 important features in the generation of the output y in friedman 1 dataset.
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Global methods AUPR score
Global MDA 0.94
Genie3 MDI 0.94

Table 4.4: AUPR score for global feature importance methods for the detection of
the 5 important features in the generation of the output y in friedman 1 dataset.

Overall, the 2 global methods performs better than the local methods. That
can be easily explained by the design of the problem and the dataset. Indeed, since
all samples depend on the same 5 features, a global method, whose goal is to find the
overall most important features, will necessarily be more suited to this problem. The
goal of the analysis here was to find if some methods, applied locally, by taking their
mean AUPR/AUROC scores, could challenge these methods on this type of problem.

Three local methods provides superb results (Local MDI, Shap, LocalMDA
based on forest and tree perturbations) on the friedman1 dataset. They all shares a
AUROC score between 0.97 and 0.99, which relates to a nearly perfect classification
of important features (table 4.1), as the global methods (table 4.3). Their AUPR
score between 0.83 and 0.93 provides information that these methods were excellent
at finding the few features influencing the output, but they also did not take too
many other features into account, even considering a single sample (table 4.2). The
global methods, with a score of 0.94, are even more precise (table 4.4).

Methods as Saabas, ES and LocalMDA based on the tree structure results are a
bit less interesting, but have to be tested on other types of data, with more differ-
ences between the samples to highlight their performance on a more heterogeneous
dataset. With a AUROC score between 0.44 and 0.65, their performance is close to
the one of a random classifier (table 4.1). Their AUPR score between 0.39 and 0.6
highlights their lack of precision, even on a simple problem (table 4.2).

FESP method seems to perform poorly (tables 4.2 and 4.1). Both AUROC and
AUPR scores are around 0.2, which means that they are not able to distinguish the
features of interest.

4.1.3 Spearman correlation

Spearman correlation metric is described in the section 1.2.2. Another aspect that
can be studied, apart from how the rankings of the features correspond to the ground
truth computing the AUPR and AUROC, is how the local rankings correlate be-
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tween themselves.

Spearman correlation was hence computed between each pair of matrices of feature
importance values. It was computed comparing each sample feature importance
values, and the mean of the correlations was taken. The method used implies the
use of the scipy function spearmanr.

Correlation 1 2 3 4 5 6 7 8
1 / 0.494 0.011 0.57 0.48 0.11 0.16 0.17
2 0.494 / 0.009 0.67 0.369 0.179 0.18 0.05
3 0.011 0.009 / 0.007 0.008 0.001 0.05 0.01
4 0.57 0.67 0.007 / 0.45 0.235 0.25 0.06
5 0.48 0.369 0.008 0.45 / 0.616 0.18 0.05 =
6 0.11 0.179 0.001 0.235 0.616 / 0.18 0.05
7 0.16 0.18 0.05 0.25 0.18 0.18 / 0.37
8 0.17 0.05 0.01 0.06 0.05 0.05 0.37 /

Table 4.5: Mean Correlation values between matrix of feature importance values
generated by local methods on friedman 1 dataset. The methods identify as the

following: 1. LocalMDI, 2. Shap, 3. Saabas, 4. LocalMDA - forest perturbations,
5. LocalMDA - tree perturbations, 6. LocalMDA - tree structure, 7. FESP, 8. ES

From table 4.5 can be made the following observations.
In general, many high correlation scores concern methods that both well-
performed on the dataset. Considering the scores of the 4 methods that were
quoted above, methods (1,2,4,5), have the highest correlation scores of the table
between themselves, ranging from 0.36 to 0.67.
However, a few observations of correlations not related to the performance of the
methods can be made.

It is clear that LocalMDA different implementations (4,5 and 6) are rather
well correlated. Indeed, even if the method based on tree structure has very low
correlation scores (0.001–0.18) with most of the local methods, it shares rather high
scores with the 2 other localMDA implementations (0.23 and 0.616). It has the sec-
ond higher score of the table with the localMDA implementation with perturbations
on the trees, while having lower scores of AUPR/AUROC. It thus validates that the
implementation does affect the results, but that they are still correlated.

Saabas, ES and FESP local methods seem to give very singular results.
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For the first, by examination of the different correlations sample-wise, the low cor-
relation mean is due to the average of very distinct scores. Indeed, Saabas has for
some samples a very high correlation with well-performing methods, but for some
of them were inversely-correlated. Taking the means of highly positive and negative
values gave us this particular score nearly null.
The 2 others methods seem to be different from the others but are correlated. In-
deed, ES seems to share similarities with FESP that it does not share with other
methods. While its scores are consistently below 0.1, the correlation with FESP is
0.37.

4.1.4 Impact of FI values normalisation

In the Friedman 1 dataset, the normalisation methods applied on each sample did
not change any of the results. However, it can be seen on the next datasets that
these had an influence.
A possible cause is that the metrics evaluated here are produced by taking an av-
erage of all the samples, and that samples well-classified were clear samples with
very distinct scores, while misclassified samples were not impacted by a change in
their values. On more complex problems such as single-cell gene network inference,
normalisation could occur more changes in classification.

4.1.5 Discussion

Friedman1 dataset was a global feature importance problem where we could test
the performance of local methods on each sample and see their mean performance,
compared to global methods. A comparison of AUPR and AUROC scores was the
approach chosen to assess the methods (figure 4.1)
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Figure 4.1: mean of meanAUROC/meanAUPR plot for local methods and global
methods on Friedman 1 dataset

On this dataset, it could be shown that four methods (LocalMDI, Shap, LocalMDA
based on perturbations) showed significant results. Performance of the others meth-
ods remained low, but since the problem was designed for global methods, it is still
interesting to study their performance on datasets with more differientated samples.
FESP method was however reports catastrophic scores.

The mean of local methods values is thus comparable to the use of global methods
in finding a global set of interactions on a simple problem. This result enables the
test of local techniques on more complex problems such as cell-specific and cell-type
GRN inference.

4.2 Dyngen datasets

The objective of this section is to benchmark local feature importance methods on
a problem concerning GRN inference, especially cell-specific GRN inference.

The Dyngen simulator allows generating a single cell gene expression datasets from
a reference regulatory network, and extracts for each cell a cell-specific regulatory
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network. Dyngen generated datasets can then be used to evaluate the results of
local variable importance methods to predict single-cell GRNs.

4.2.1 Methodology

The local inference methods will be applied as described in section 1.3.3. For each
dataset of n samples and g genes generated by Dyngen in section 3.2, g random
forest regressors will be trained. Each of them is trained on a dataset where the kth

model with k = (1, ..., g) is trained on a sub-dataset composed of all genes expression
levels excepted the kth, whose expression level will be considered as the label.

For each of the models and corresponding sub-datasets, all local feature importance
methods and global feature importance described in chapter 2 will be run. These
feature scores will then be used to construct a matrix M ′. If a gene is considered as
important to predict the kth gene, then it is probably a regulator of k.

The matrix M is a matrix of size n × g × (g − 1). It contains boolean true val-
ues 1 for each pair {i, j} of row i and column j that correspond to a regulation link
from ith gene to jth gene, 0 otherwise, for each cell n. However, the algorithm is
not designed to discover self-regulatory links. Those were deleted from the ground
truth and the corresponding elements were erased from the matrix M .
The matrix M ′ is of size nmethods×n× g× (g− 1). It contains all the feature impor-
tance value computed by the nmethods, for the n cells, with kth, k = (0, ..., g) gene as
label and all the remaining as features. This matrix thus measures a score for each
value and, for each method, can be compared to matrix M to deduce AUPR and
AUROC.

4.2.2 AUROC & AUPR

AUPR and AUROC metrics are described in the section 1.2.1. In this section,
all AUROC and AUPR curves were computed with corresponding functions from
scikit-learn library.

The AUPR and AUROC metrics are deduced from the comparison of the ground
truth matrix of interactions M and matrix of feature importance M ′ for each
method. For local methods, each sample feature importances are compared to its
ground-truth interactions, defined by the Dyngen simulator in the section 3.2. For
global methods, the global feature importance are compared to each cell ground
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truth interactions.

Then, the means of the AUPR and AUROC scores of each of the samples are taken.
Since some methods require a lot of computation time, the choice to compute the
averages of the metrics on 100 random samples was made. The following scores are
obtained for each type of dataset described in section 3.2. Some scores were not
reported, because steps of execution of some algorithms could not work with some
datasets.

The following tables report the mean across the 14 datasets of the meanAUROC and
meanAUPR scores. The choice was made to not report the separated dataset values
to improve readiness and interpretability. The detailed values for each dataset are
available in appendix A.

Local methods meanAUROC score
Local MDI 0.69
Shap 0.7
Saabas 0.65
LocalMDA - forest perturbations 0.69
LocalMDA - tree perturbations 0.64
LocalMDA - tree structure 0.62
FESP 0.34
ES 0.33

Table 4.6: Mean over 14 datasets of meanAUROC scores for local feature
importance methods in Dyngen datasets.

Global methods AUROC score
Global MDA 0.8
Genie3 MDI 0.76

Table 4.7: Mean over 14 datasets of AUROC score for global feature importance
methods in Dyngen datasets.
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Local methods meanAUPR score
Local MDI 0.048
Shap 0.06
Saabas 0.071
LocalMDA - forest perturbations 0.051
LocalMDA - tree perturbations 0.031
LocalMDA - tree structure 0.025
FESP 0.019
ES 0.024

Table 4.8: Mean over 14 datasets of meanAUPR scores for local feature importance
methods in Dyngen datasets.

Global methods AUPR score
Global MDA 0.062
Genie3 MDI 0.066

Table 4.9: Mean over 14 datasets of AUPR score for global feature importance
methods in Dyngen datasets.

From those results can be observed that global methods outperforms local
methods. The both global methods provided nearly the same results on the two
metrics, but Genie3 seems overall better.

Considering AUROC score (tables 4.6 and 4.7), all the local methods are close,
with between 0.18 and 0.06 less score compared to global ones excepted two of
them. The worse techniques (FESP, ES) have differences up to 0.47.
Shap, Saabas, LocalMDA (forest perturbations) and LocalMDI seems to
provide the best results. The variants of LocalMDA are close in score but are never
the best options. The FESP, ES do not seem to capture the feature importance in
this dataset.

Considering AUPR scores (tables 4.8 and 4.9), It can be observed that the differ-
ence between global and local methods is tighter. A local method, Saabas,
even outperformed the global methods by 0.005. Other methods gave good scores
(Shap, Saabas, LocalMDA (forest perturbations) and LocalMDI) between 0.048 and
0.06. Variants of LocalMDA gave low results (0.025-0.031). FESP and ES did not
seem to capture the feature importance.
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4.2.3 Impact of FI values normalisation

A possible area for improvement was to consider feature importance values nor-
malisation. Especially, the normalisation and regularization techniques described in
section 2.3 (l1, l2, max and minmax) were implemented.
The normalisation is applied, for each of the vector of size g× (g− 1) of the matrix
M ′. It means it will result in a normalisation of the interactions in each cell of
the dataset. Then, to study the global effect of the techniques, the average of the
meanAUROC and meanAUPR for the best normalisation compared to the mean of
the base scores of the local methods is reported. The normalisation scores for each
method are available in appendix B.

Local methods \normalisation normalised base
LocalMDI 0.75 (max) 0.69
Shap 0.72 (all normalisations) 0.7
Saabas 0.65 (l1, l2, max) 0.65
LocalMDA - forest perturbations 0.75 (all normalisation) 0.69
LocalMDA - tree perturbations 0.70 (l1, l2) 0.64
LocalMDA - tree structure 0.68 (l1, l2) 0.62
FESP 0.35 (l2) 0.34
ES 0.36 (minmax) 0.33

Table 4.10: mean of meanAUROC score for normalised local feature importance
methods for the Dyngen datasets

Local methods \normalisation normalised base
LocalMDI 0.112 (max) 0.048
Shap 0.098 (max) 0.060
Saabas 0.07 (l2) 0.071
LocalMDA - forest perturbations 0.089 (max) 0.051
LocalMDA - tree perturbations 0.067 (max) 0.031
LocalMDA - tree structure 0.067 (max) 0.025
FESP 0.020 (l2) 0.019
ES 0.024 (max, minmax) 0.024

Table 4.11: mean of meanAUPR score for normalised local feature importance
methods for the Dyngen datasets

The normalisation of cells feature importance metric allows an increase
in both metrics. Comparing the AUROC metrics, all normalisations allow an

48



increase of between 0.02 and 0.07 for all the methods, excepted Saabas and FESP.
As far as the AUPR metrics are concerned, the increase is the most significant for
the normalisation concerning a division of all importance values by the maximum
importance value. For some methods, the increase went up to 0.064 (localMDI).

Considering the normalised local importance values, local methods now outper-
forms the global techniques. With the maximum normalisation, Shap, localMDI
and localMDA based on forest perturbations outperforms global methods in AUPR
while still having close results for the AUROC.

4.2.4 Discussion

Figure 4.2: mean of meanAUROC/meanAUPR plot for best normalized local
methods and global methods for Dyngen datasets

The application of local feature importance methods to Dyngen datasets to infer
cell-specific GRN provided interesting results.
In terms of AUROC, the normalized Shap, localMDI, LocalMDA(forest perturba-
tions) gave close results to the application of global GRN to all cells (tables 4.6, 4.7
and B.1).
The AUROC is a measure of the proportion of existing interactions determined as
existing by the method on the proportion of predicted existing interactions among
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all the absent ones. The difference shows that either the global methods predict
more true positive instances, either they do fewer errors by predicting an existing
link when there is not.

In terms of AUPR, the normalized Shap, localMDI, LocalMDA(forest perturba-
tions), and base Saabas gave better results (tables 4.8, 4.9 and B.2).
The AUPR is a measure of the proportion of well predicted existing interactions
among all predicted existing interactions on the proportion of existing interactions
determined as existing by the method. The low scores tell us that the methods pre-
dict too many regulatory links that there are. The difference between the local and
global methods shows that normalized local methods are more precise at predicting
existing interactions.

Local feature importance methods are more precise at predicting interactions be-
tween genes at a cell-specific resolution than considering the network predicted glob-
ally as the individual prediction for each cell. These methods allow to better distinct
existing interactions within each cell than global methods. The overall results are
however weak concerning the precision (AUPR) of the methods used, meaning that
networks determined are still way too large with respect to the ground truth net-
works.
The synthetic dataset generation process provide information about results. Each
cell-specific GRN is defined from the reference GRN and expression data. Links are
not existing in the reference networks will never appear in the cell’s networks, only
a part of the interactions of the baseline networks will appear in each cell. AUPR
scores can therefore be interpreted as a more precise definition of existing links in
cells, where the whole network is not expressed.

4.3 Cell-type specific datasets

The objective of this section is to benchmark local feature importance methods on
a problem concerning GRN inference, especially cell-type specific GRN inference.

As described in section 3.3, with permutations and the use of BoolODE genera-
tor, datasets with ten different subtypes were created.

The analysis will focus on determining if by applying local feature importance meth-
ods on the whole dataset and averaging over the ten types, better results are obtained
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than by training global methods on each of the ten cell-type dataset separatedly.
The objective is to highlight if the analysis of a bigger dataset allow us to better
detect common interactions, while still detecting different ones.

4.3.1 Methodology

The cell-types ground-truth regulatory networks were generated by the permutation
of the edges of a reference network as described in section 3.3. The datasets obtained
contains ten different types defined by 200 single cell gene expression levels each.
Three different kinds of reference networks were used, and thus three datasets of ten
types each were created.

Global feature importance methods will first be run on each separated datasets
and their AUPR and AUROC metrics will be computed. The AUPR and AUROC
metrics are deduced from the comparison of the ground truth matrix of interactions
of the cell-type network M and matrix of feature importance M ′ for each method,
and for each dataset. The matrix M is of size g × (g − 1). It contains boolean true
values 1 for each pair {i, j} of row i and column jthat correspond to a regulation
link from ith gene to jth gene, 0 otherwise. However, since our algorithm is not
designed to discover self-regulatory links, those were suppressed from the ground
truth and the corresponding elements were deleted from the matrix M . The matrix
M ′ is of size nmethods × g × (g − 1). It contains all the feature importance values
computed by the nmethods, with kth, k = (0, ..., g) gene as label and all the remaining
as features. This matrix thus measures a score for each value and, for each method,
can be compared to the matrix M to deduce AUPR and AUROC.

Local feature importance methods will be run on the whole datasets containing
all types mixed. The AUPR and AUROC metrics are deduced from the comparison
of the ground truth matrix of interactions of the 10 different cell-type networks M

and matrix of feature importance M ′ for each method. The matrix have the same
dimensions as earlier, with one more for the 10 different types. In the case of local
methods, M ′ will be constructed by taking the mean of the feature importance val-
ues of all cells of a particular type, and thus also has a dimension more that accounts
for the 10 types.
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4.3.2 AUPR and AUROC

AUPR and AUROC metrics are described in the section 1.2.1. In this section,
all AUROC and AUPR curves were computed with corresponding functions from
scikit-learn library.

The AUPR and AUROC metrics are deduced from the comparison of the ground
truth matrix of interactions M and matrix of feature importance M ′ for each
method. Global feature importances are compared to the cell-type ground truth
regulatory network. The following scores were computed using the Genie3 algo-
rithm on each of the separated type datasets. Since all subtypes datasets were
randomly generated and that it is not interesting to evaluate the method on specific
subtypes, the mean of these subtypes scores is taken to evaluate the performance of
the three global datasets. The results on each of the global datasets can be found
in appendix C

Dataset mean
meanAUROC 0.643
meanAUPR 0.169

Table 4.12: Mean of the meanAUROC/meanAUPR measures over the ten subtypes
for Genie3 on the detection of interactions for datasets deduced from three

reference networks

For local methods, the models are trained on the entire dataset (with the ten types
mixed) and then the means of the local feature importances of cell of the same types
are taken. Then, each averaged feature importances are compared to the cell-type
ground truth regulatory network. The following scores were computed using all the
local feature importance algorithms on each of the separated type datasets, excepted
ES and FESP technique. Indeed, these two methods showed very poor results in
the two preceding sections and were abandoned. Since all subtypes datasets were
randomly generated and that it is not interesting to evaluate the method on specific
subtypes, the mean of these subtypes scores is taken to evaluate the performance.
The results on the three different datasets are available in appendix C. The reported
scores are the mean across the three datasets.
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meanAUROC \Dataset mean
localMDI 0.54
Shap 0.56
Saabas 0.53
LocalMDA - forest perturbations 0.54
LocalMDA - tree perturbations 0.57
LocalMDA - tree structure 0.51

Table 4.13: Mean of the meanAUROC measures over the ten subtypes for local
methods on the detection of interactions for datasets deduced from three reference

networks

meanAUPR \Dataset mean
localMDI 0.041
Shap 0.044
Saabas 0.029
LocalMDA - forest perturbations 0.052
LocalMDA - tree perturbations 0.052
LocalMDA - tree structure 0.027

Table 4.14: Mean of the meanAUPR measures over the ten subtypes for local
methods on the detection of interactions for datasets deduced from three reference

networks

Comparing the results, it is clear that global methods applied to each subtype
dataset perform better than taking the mean of local methods results ap-
plied to the whole dataset for each subtype (tables 4.12, 4.13, 4.14). AUROC
scores for local methods are almost the same as a random classifier (0.5). Even if
the AUROC scores for the global method are not high, the difference between the
two approaches are significant. AUPR scores are really low for the local methods,
meaning they are not precise at all to discern accurate predictions. Results for the
global methods are around 4 to 5 times better.

4.3.3 Impact of FI values normalisation

A possible area for improvement is to consider feature importance values normalisa-
tion. Especially, the normalisation and regularization techniques described in section
2.3 are tested on our problem. The normalisation is applied, for each of the vector
of size g× (g− 1) of the matrix M ′. It means it will result in a normalisation of the
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interactions in each cell of the dataset. The mean of the local feature importances
to determine the vector to be compared with the type-specific ground truth ma-
trix of interactions is thus computed on normalized cell feature importances. Then,
to study the global effect of the techniques, the average of the meanAUROC and
meanAUPR for the best normalisation compared to the mean of the base scores of
the local methods is reported. Complete scores for each normalisation are available
in appendix D.

meanAUROC \normalisation normalised base
localMDI 0.59 (max) 0.54
Shap 0.57 (l1, l2, max) 0.56
Saabas 0.47 (l1) 0.53
LocalMDA - forest perturbations 0.55 (max, minmax) 0.54
LocalMDA - tree perturbations 0.54 (l1) 0.57
LocalMDA - tree structure 0.49 (minmax) 0.51

Table 4.15: comparison of base and normalised meanAUROC measures over the
ten subtypes for local methods on the detection of interactions for datasets averaged

on three reference networks

meanAUPR \normalisation normalised none
localMDI 0.046 (max) 0.041
Shap 0.0455 (l1) 0.044
Saabas 0.027 (max, minmax) 0.029
LocalMDA - forest perturbations 0.042 (l1) 0.052
LocalMDA - tree perturbations 0.057 (max) 0.052
LocalMDA - tree structure 0.04 (l1) 0.027

Table 4.16: comparison of base and normalized meanAUPR measures over the ten
subtypes for local methods on the detection of interactions for datasets averaged on

three reference networks

Impact of feature normalisation on the performance of the model is low. As in 4.2.3,
normalisation decreases a lot the results of Saabas. For other methods, results
observed are similar to the results without normalisation, and no conclusion can be
drawn on the effects of normalisation.
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4.3.4 Discussion

The methodology proposed in this thesis to infer cell-type specific gene regulatory
networks from mixed datasets is inefficient. The application of global methods to
datasets with distinct types allows capturing the importance of the features with
more precision (figure 4.3).

Figure 4.3: mean of meanAUROC/meanAUPR plot for local methods and global
methods on Cell-types datasets

In particular, the significant differences between AUPR of the global and local meth-
ods (tables 4.12 and 4.14) explain an incapacity of the local methodology to effec-
tively distinguish the existing regulations, the methods estimate numerous links as
being existing regulations. The AUROC score of local methods is close to the score
of a random classifier, demonstrating the inefficiency of the process in classifying
existing and non-existing links. The normalisation has no effect on the results.

The local methods take no advantages of running on the whole dataset in the de-
termination of regulatory links of distinct subtypes. The better way to analyse
regulatory links is still the application of global methods to each separated dataset.

Results must however be mitigated. Indeed, since neither the local approach, nei-
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ther the global approach gave strong results on this problem, no strict conclusion
can be made on the performance of the methodologies.

4.4 CEDAR datasets

The goal of this section is to apply cell-type specific network inference to a real
dataset. The dataset used is the CEDAR dataset described in 3.4. This dataset
is composed of gene expression data from 27 types of cells of peripheral blood. It
contains data from each cell-type for a list of distinct patients, together with a list
of 178 genes of interests.

However, this dataset does not provide any ground truth networks. The analy-
sis of the dataset will thus be composed of two steps: the comparison of rankings
of the different types, and an analysis of correlation between cells sharing specific
genetic markers.

4.4.1 Comparison of the rankings for the global and local

methods

As no ground truth is available, no metrics earlier used can be applied to this prob-
lem.

The methodology to compare the regulatory links found by computing cell-type
network inference is hence different. The local methods will be run on the whole
dataset with mixed types and average the results of local values for each cell-type
(as in 4.3). Then are compared the common and different interactions between each
cell-types, for the 10, 20 and 50 interactions with the highest scores.
On the other hand, a global feature importance technique will be applied to each
subtype separated dataset. As for the local method, common and different interac-
tions between each cell-types will be computed.
Afterwards, both interactions found by the methods for each cell-type will be com-
pared to see if they find the same interactions of importance.

Only one local method will be applied in this situation. Indeed, the only effec-
tive methods earlier tested with practicable computation time for a dataset of this
size and number of genes is localMDI.
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Common Interactions between cell-types #Top 10 #Top 20 #Top 50
Local MDI 0 6 40
Genie3 on separated sets 0 0 0

Table 4.17: Number of common interactions in the top rankings of interactions
between all cell types for an averaged local feature importance method trained on the
whole dataset and a global feature importance method trained on separated datasets

The results in table 4.17 state clearly that while training a model on the whole
dataset and taking averaged local feature importance value for cells that share the
same type, the gene regulatory links between cell-types found shares a lot of com-
mon mechanisms, especially considering larger sets of top scores. On the other hand,
no common interactions were found by comparing the top scores of global models
trained on each subtype dataset.

Comparing the top 100 interactions between the two methodologies on the 27 types,
we found the number of common interactions in both methods rankings in table
4.18. It can be observed that the two methods find common links for each cell-type,
but the number is rather low. However, these links found by the two methods should
be regulatory links of particular interest, since both different methodologies found
them as top 100 dominant among 31 506 interactions. A list of the common links
can be found in appendix E.
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Celltypes Common interactions between methods
Classical monocytes 25
Eosinophils 12
Granulocytes 17
ILC 21
Intermediate moncytes 23
MAIT 9
Memory B cells 18
Memory CD4 27
Memory CD8 39
Memory Treg 21
Myeloid DC 23
Naive B 12
Naive CD4 30
Naive CD8 23
Naive Treg 17
Neutrophils 20
NK 13
NKT 24
Non-classical monocytes 23
PBMC 20
Plasmablasts 23
Plasmacytoid 19
TCR 25
Th1 17 27
Th1 18
Th2 17
Th17 19

Table 4.18: Number of common interactions in the top 100 ranking of interactions
for each cell type between an averaged local feature importance method trained on
the whole dataset and a global feature importance method trained on separated

datasets
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4.4.2 Determination of the genetic marker influence through

correlations

Another feature coming with CEDAR dataset is a list of particular genetic markers
of interest present on each patient whose sampled cells belong to. These markers
either takes the value 0 (absence of the marker) or 1/2 (presence of the marker).
It is then possible to use local feature importance techniques on the dataset, and
compute the mean of the features scores for each cell of a patient presenting the
marker or not.
Next, the Spearman’s rank correlation between the averaged feature importance val-
ues of the samples with the marker and without is calculated. Highlighting the low
correlation scores, it is possible to find genetic markers that have a high influence
on gene regulation.

Only one local method will again be applied in this situation. Indeed, the only
effective methods earlier tested with practicable computation time for a dataset of
this size and number of genes is localMDI.

Comparing a histogram of all correlations for the 206 genetic markers :

Figure 4.4: Histogram of correlation values between feature importance values for
the absence and presence of each genetic markers

It can be observed that for a few genetic markers, correlation falls below 0.98.
These specific scores indicate genetic markers of interest in the determination of gene
regulation, since the feature importance scores are less correlated between patients
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with and without the marker. In particular, the genetic markers with correlation
below 0.95 are

1. chr1:2565210:C:G

2. chr1:67242007:G:A

3. chr1:161499264:G:C

4. chr2:144728756:A:C

5. chr3:47144160:C:G

6. chr4:48264785:C:T

7. chr6:159049210:G:T

8. chr6:166976754:A:G

9. chr7:100924735:G:A

10. chr22:39263768:C:T

4.4.3 Discussion

Exploration of CEDAR dataset conducts to interesting results. The evaluation of
common rankings (tables 4.17 and 4.18) shows that the use of local feature im-
portance methods on aggregated datasets tends to identify common interactions
between types, where the use of global methods on separated datasets do not. How-
ever, it is important to confront these results with the underlying biology to confirm
whether the common interactions are true common interactions or noise brought to
each cell-type networks caused by the common trained model. However, comparing
the global methods run on different cell-types dataset and the local methods aver-
aged on the whole dataset for each cell-type, a few interactions can be highlighted.
Given the difference in methodology between the techniques, these interactions are
links of interest to be investigated.

Concerning the analysis of genetic markers, the application of the method was con-
sidered with a comparison of the feature importance values’ correlation for cells with
and without the marker. These correlation values highlighted a few genetic markers
that influence the gene regulation, since correlation between the rankings of the pa-
tients presenting or not the marker is lower than expected. These genetic markers
should be investigated further by specialist to evaluates their relevance in the gene
regulation of blood cells.
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Chapter 5

Limitations and Conclusion

The objective of this master’s thesis was the evaluation of a methodology to in-
fer cell-specific and cell-type specific gene regulatory networks from single cell gene
expression data. The approach proposed was to follow the regression technique pro-
posed in GENIE3 algorithm, by using local feature importance scores in place of
global scores. To predict the expression of a given gene from the expressions of
all other genes (or a subset of candidate transcription factors), a machine learning
regression model is trained from a dataset of single-cell measurements. From the
local importance scores that the machine learning model derives for each cell (or cell
type) in the dataset, a cell-specific or cell-type specific network can then be derived.

To this extent, a selection of local feature importance attribution methods have
been investigated. The methods evaluated were Shap, local mean decrease of impu-
rity (localMDI), Saabas, fair-equivalent-symmetric-perturbation values (FESP), and
equal-surplus values (ES). Three different implementations of local mean decrease
of accuracy (local MDA) were also completed and examined.

At first, the evaluation of the local methods on a simple regression problem was per-
formed. The objective was to assess the quality of the deduced importance scores on
the Friedman 1 dataset, whose outputs are derived from a small subset of features.
The obtained results for each sample by local methods were aggregated to be com-
pared to the findings of global feature importance methods (Genie3, globalMDA).
It was shown that the average of local scores managed to match the AUROC and
AUPR scores of global methods for four different local techniques (Shap, localMDI,
and the two implementations of localMDA based on perturbations of the samples).
These algorithms are thus valid for the characterisation of more complex problems.
It was also shown by the analysis of Spearman’s rank correlation that the three
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implementations of localMDA were sharing similarities, as well as the four methods
performing well on the dataset.

Next, the local feature importance techniques were tested on the cell-specific network
inference problem. The datasets of interest were synthetic datasets generated using
the Dyngen simulator, whose cell-specific ground truth networks were known. An
analysis of the local and global methods showed that consideration of the rankings
made by global methods as cell-specific networks provided better results. However,
after application of normalisation at the cell-specific genes level of the importance
scores, three methods outperformed the global rankings methods. Shap, localMDI
and the implementation of localMDA based on perturbations at the level of the
forest gave similar AUROC results, but better AUPR score. FESP and ES showed
terrible results and were abandoned. Local methods allow a thus deeper character-
ization of cell-specific regulation mechanisms.

The cell-type specific network inference challenge was then assessed using the lo-
cal feature importance algorithms. To this extent, a synthetic dataset with permu-
tations to mimic cell-types networks was created. Cell’s feature importance scores
computed with local techniques were aggregated following each cell’s type, and com-
pared to global networks. These networks were found by the analysis of Genie3 on
each separated cell-type dataset. The AUPR and AUROC scores of all local ap-
proach were lower than the scores of global methods. The approach proposed in
this case is not working, the common interactions detected by the model trained
on the whole datasets are too disruptive. However, results of both local and global
methods were poor.

Finally, a real dataset (CEDAR) of 27 different cell-types issued from peripheral
blood was investigated. As no ground-truth networks were available, the analysis
summarised in comparing the top ranked interactions by the local mean decrease
of impurity method and the Genie3 algorithm applied on cell-types separately. The
results showed that the interactions found by localMDI were shared between types,
while not at all for the Genie3 approach. However, setting side by side the rank-
ings of the two approaches for each cell-type, a list of common interactions for both
methodologies was deduced. These interactions are thus regulation links of interests
to be explored.
Another look was brought to the association of genetic markers to each cell of the
real dataset, CEDAR. Comparison was made between a mean of localMDI scores for
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the cell of patients presenting a specific marker or not. Analysing the Spearman’s
correlation between both permitted to highlight low correlation scores inducing a
high interference of the marker in the gene regulation process. A list of ten markers
was established to be interesting.

The investigation of cell-specific and cell-type specific gene regulatory networks how-
ever strongly depends on the synthetic datasets and their simulators’ reliability. In-
deed, as no ground-truth is available for the dataset with real measurements, it can
not be concluded that the results are completely trustworthy. An area of improve-
ment would hence be the evaluation of ground-truth real datasets as they will be
available.

Furthermore, the advances in deep learning field could be an avenue for improv-
ing. Models as RandomForest and other tree-based methods are being more and
more outperformed by the evolution of deep learning-base models. A development
of local feature importance attribution algorithms on these models could allow in-
depth understanding of some process not captured by tree models.

Overall, even if the results on cell-type and cell-specific GRN inference were mixed,
the field holds potential for further research and innovation. By continuously ex-
ploring new technologies, ground-truth measurements, importance features applied
to modern learning models, future advances could be brought in the field.
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Appendix A

Dyngen detailed meanAUPR and
meanAUROC values

Local Methods \ Dataset 1 2 3 4 5 6 7
Local MDI 0.755 0.60 0.63 0.64 0.78 0.79 0.81
Shap 0.70 0.62 0.47 0.65 0.83 0.84 0.85
Saabas 0.69 0.52 0.62 0.61 0.73 0.73 0.75
LocalMDA - forest perturbations 0.70 0.59 0.61 0.64 0.81 0.83 0.83
LocalMDA - tree perturbations 0.71 0.59 0.52 0.63 0.70 0.72 0.72
LocalMDA - tree structure 0.68 0.57 0.51 0.62 0.67 0.69 0.67
FESP 0.33 0.45 0.34 0.40 0.22 0.26 0.18
ES 0.26 0.42 0.38 0.37 0.23 0.27 0.19

Table A.1: meanAUROC score for local feature importance methods for the Dyngen
datasets 1-7

67



Local Methods \ Dataset 8 9 10 11 12 13 14
Local MDI 0.75 0.69 0.60 0.86 0.65 0.45 0.75
Shap 0.77 0.71 0.62 0.85 0.72 0.49 0.72
Saabas 0.63 0.61 0.66 0.78 0.67 0.53 0.57
LocalMDA - forest perturbations 0.76 0.69 0.60 0.86 0.68 0.47 0.67
LocalMDA - tree perturbations 0.68 0.68 0.55 0.83 0.59 0.44 0.67
LocalMDA - tree structure 0.67 0.66 0.53 0.80 0.57 0.45 0.63
FESP / / 0.37 / 0.28 0.45 0.44
ES / / 0.34 / 0.30 0.41 0.45

Table A.2: meanAUROC score for local feature importance methods for the Dyngen
datasets 7-14

Global methods \dataset 1 2 3 4 5 6 7
Global MDA 0.81 0.69 0.71 0.71 0.91 0.88 0.93
Genie 3 0.78 0.63 0.81 0.74 0.92 0.92 0.93

Table A.3: meanAUROC score for global feature importance methods for the
Dyngen datasets 1-7

Global methods \dataset 8 9 10 11 12 13 14
Global MDA 0.85 0.69 0.72 0.78 0.77 0.54 0.68
Genie 3 0.85 0.75 0.80 0.89 0.82 0.61 0.78

Table A.4: meanAUROC score for global feature importance methods for the
Dyngen datasets 7-14
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Local Methods \ Dataset 1 2 3 4 5 6 7
Local MDI 0.046 0.029 0.048 0.058 0.054 0.060 0.065
Shap 0.057 0.036 0.018 0.054 0.077 0.069 0.066
Saabas 0.076 0.028 0.069 0.062 0.081 0.085 0.089
LocalMDA - forest perturbations 0.045 0.034 0.045 0.047 0.058 0.047 0.056
LocalMDA - tree perturbations 0.029 0.027 0.029 0.033 0.026 0.022 0.024
LocalMDA - tree structure 0.023 0.023 0.026 0.027 0.017 0.018 0.018
FESP 0.015 0.019 0.025 0.020 0.007 0.010 0.008
ES 0.013 0.015 0.020 0.017 0.011 0.010 0.010
Occlusion 0.028 0.024 0.021 0.026 0.012 0.017 0.011

Table A.5: meanAUPR score for local feature importance methods for the Dyngen
datasets 1-7

Local Methods \ Dataset 8 9 10 11 12 13 14
Local MDI 0.037 0.062 0.074 0.049 0.059 0.036 0.060
Shap 0.054 0.072 0.074 0.094 0.071 0.037 0.063
Saabas 0.060 0.085 0.088 0.097 0.068 0.039 0.068
LocalMDA - forest perturbations 0.044 0.058 0.052 0.081 0.055 0.035 0.057
LocalMDA - tree perturbations 0.025 0.043 0.032 0.041 0.025 0.029 0.059
LocalMDA - tree structure 0.021 0.040 0.027 0.024 0.021 0.029 0.048
FESP / / 0.024 / 0.013 0.030 0.044
ES / / 0.020 / 0.022 0.028 0.031
Occlusion / / 0.042 / 0.022 0.043 0.036

Table A.6: meanAUPR score for local feature importance methods for the Dyngen
datasets 7-14

Global methods \dataset 1 2 3 4 5 6 7
Global MDA 0.091 0.040 0.058 0.054 0.080 0.107 0.109
Genie 3 0.043 0.031 0.064 0.043 0.068 0.087 0.109

Table A.7: meanAUPR score for global feature importance methods for the Dyngen
datasets 1-7
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Global methods \dataset 8 9 10 11 12 13 14
Global MDA 0.039 0.063 0.060 0.017 0.078 0.034 0.042
Genie 3 0.053 0.067 0.102 0.038 0.127 0.043 0.049

Table A.8: meanAUPR score for global feature importance methods for the Dyngen
datasets 7-14
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Appendix B

Normalised feature importances
AUROC and AUPR scores for
dyngen datasets

Local methods \normalisation l1 l2 max min-max base
LocalMDI 0.74 0.75 0.75 0.72 0.69
Shap 0.72 0.72 0.72 0.72 0.7
Saabas 0.65 0.65 0.65 0.64 0.65
LocalMDA - forest perturbations 0.75 0.75 0.75 0.75 0.69
LocalMDA - tree perturbations 0.70 0.70 0.68 0.68 0.64
LocalMDA - tree structure 0.68 0.68 0.64 0.64 0.62
FESP 0.34 0.34 0.35 0.31 0.34
ES 0.35 0.35 0.35 0.36 0.33
Occlusion 0.364 0.353 0.368 0.381 0.341

Table B.1: mean of meanAUROC score for normalised local feature importance
methods for the Dyngen datasets
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Local methods \normalisation l1 l2 max min-max base
LocalMDI 0.066 0.07 0.112 0.049 0.048
Shap 0.06 0.06 0.098 0.0605 0.060
Saabas 0.054 0.07 0.031 0.031 0.071
LocalMDA - forest perturbations 0.050 0.050 0.089 0.076 0.051
LocalMDA - tree perturbations 0.0415 0.0414 0.067 0.036 0.031
LocalMDA - tree structure 0.04 0.04 0.067 0.032 0.025
FESP 0.017 0.019 0.020 0.016 0.019
ES 0.018 0.019 0.024 0.024 0.024
Occlusion 0.024 0.024 0.024 0.023 0.026

Table B.2: mean of meanAUPR score for normalised local feature importance
methods for the Dyngen datasets
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Appendix C

Cell-types datasets detailed AUPR
and AUROC values

Dataset 1 2 3 mean
meanAUROC 0.61 0.645 0.675 0.643
meanAUPR 0.156 0.127 0.225 0.169

Table C.1: meanAUROC/meanAUPR measures over the 10 sub-types for Genie3
on the detection of interactions for datasets deduced from reference networks 1, 2

and 3

meanAUROC \Dataset 1 2 3 mean
localMDI 0.52 0.46 0.64 0.54
Shap 0.56 0.47 0.64 0.56
Saabas 0.55 0.56 0.48 0.53
LocalMDA - forest perturbations 0.57 0.47 0.58 0.54
LocalMDA - tree perturbations 0.58 0.55 0.58 0.57
LocalMDA - tree structure 0.55 0.47 0.52 0.51

Table C.2: meanAUROC measures over the 10 sub-types for local methods on the
detection of interactions for datasets deduced from reference networks 1, 2 and 3
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meanAUPR \Dataset 1 2 3 mean
localMDI 0.034 0.042 0.047 0.041
Shap 0.04 0.044 0.048 0.044
Saabas 0.029 0.035 0.024 0.029
LocalMDA - forest perturbations 0.036 0.04 0.07 0.052
LocalMDA - tree perturbations 0.04 0.047 0.07 0.052
LocalMDA - tree structure 0.028 0.032 0.023 0.027

Table C.3: meanAUPR measures over the 10 sub-types for local methods on the
detection of interactions for datasets deduced from reference networks 1, 2 and 3
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Appendix D

Normalised feature importances
AUROC and AUPR scores for
cell-type dataset

meanAUROC \normalisation l1 l2 max minmax none
localMDI 0.56 0.58 0.59 0.52 0.54
Shap 0.57 0.57 0.57 0.56 0.56
Saabas 0.47 0.45 0.45 0.43 0.53
LocalMDA - forest perturbations 0.52 0.52 0.55 0.55 0.54
LocalMDA - tree perturbations 0.54 0.52 0.52 0.52 0.57
LocalMDA - tree structure 0.45 0.45 0.46 0.49 0.51

Table D.1: comparison of base and normalized meanAUROC measures over the 10
sub-types for local methods on the detection of interactions for datasets averaged on

reference networks 1, 2 and 3

meanAUPR \normalisation l1 l2 max minmax none
localMDI 0.045 0.043 0.046 0.045 0.041
Shap 0.0455 0.042 0.043 0.043 0.044
Saabas 0.025 0.025 0.027 0.027 0.029
LocalMDA - forest perturbations 0.042 0.04 0.041 0.041 0.052
LocalMDA - tree perturbations 0.052 0.049 0.057 0.047 0.052
LocalMDA - tree structure 0.04 0.039 0.033 0.036 0.027

Table D.2: comparison of base and normalized meanAUPR measures over the 10
sub-types for local methods on the detection of interactions for datasets averaged on

reference networks 1, 2 and 3
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Appendix E

Common links between localMDI
and global Genie3 methods on 27
types of CEDAR dataset

Here is a description of common links between the top 100 regulation links of both
methods used in section 4.4. The set numbers are corresponding to the order of cell
types defined in 4.4. Common elements between set 0 of the local method (MDI)
and set 0 of the global method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000142444 -> ENSG00000161179

3. Gene pair : ENSG00000198355 -> ENSG00000151414

4. Gene pair : ENSG00000169203 -> ENSG00000183604

5. Gene pair : ENSG00000112977 -> ENSG00000198355

6. Gene pair : ENSG00000241945 -> ENSG00000160221

7. Gene pair : ENSG00000161179 -> ENSG00000142444

8. Gene pair : ENSG00000268575 -> ENSG00000215790

9. Gene pair : ENSG00000009790 -> ENSG00000102901

10. Gene pair : ENSG00000198355 -> ENSG00000112977

11. Gene pair : ENSG00000149485 -> ENSG00000134824

12. Gene pair : ENSG00000172057 -> ENSG00000073605
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13. Gene pair : ENSG00000130592 -> ENSG00000102879

14. Gene pair : ENSG00000102901 -> ENSG00000157873

15. Gene pair : ENSG00000160221 -> ENSG00000241945

16. Gene pair : ENSG00000198355 -> ENSG00000152518

17. Gene pair : ENSG00000134824 -> ENSG00000149485

18. Gene pair : ENSG00000073605 -> ENSG00000172057

19. Gene pair : ENSG00000102901 -> ENSG00000009790

20. Gene pair : ENSG00000152518 -> ENSG00000198355

21. Gene pair : ENSG00000102901 -> ENSG00000143224

22. Gene pair : ENSG00000215790 -> ENSG00000268575

23. Gene pair : ENSG00000183604 -> ENSG00000169203

24. Gene pair : ENSG00000102879 -> ENSG00000130592

25. Gene pair : ENSG00000176340 -> ENSG00000184076

Number of common elements: 25

Common elements between set 1 of the local method (MDI) and set 1 of the global
method:

1. Gene pair : ENSG00000172057 -> ENSG00000073605

2. Gene pair : ENSG00000152518 -> ENSG00000168286

3. Gene pair : ENSG00000241945 -> ENSG00000160221

4. Gene pair : ENSG00000168286 -> ENSG00000152518

5. Gene pair : ENSG00000172543 -> ENSG00000172500

6. Gene pair : ENSG00000144381 -> ENSG00000115484

7. Gene pair : ENSG00000160221 -> ENSG00000241945

8. Gene pair : ENSG00000115484 -> ENSG00000144381

9. Gene pair : ENSG00000198355 -> ENSG00000152518
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10. Gene pair : ENSG00000134824 -> ENSG00000149485

11. Gene pair : ENSG00000073605 -> ENSG00000172057

12. Gene pair : ENSG00000149485 -> ENSG00000134824

Number of common elements: 12

Common elements between set 2 of the local method (MDI) and set 2 of the global
method:

1. Gene pair : ENSG00000189339 -> ENSG00000248333

2. Gene pair : ENSG00000241945 -> ENSG00000160221

3. Gene pair : ENSG00000161179 -> ENSG00000142444

4. Gene pair : ENSG00000142444 -> ENSG00000161179

5. Gene pair : ENSG00000248333 -> ENSG00000189339

6. Gene pair : ENSG00000136240 -> ENSG00000142444

7. Gene pair : ENSG00000142444 -> ENSG00000090238

8. Gene pair : ENSG00000160221 -> ENSG00000241945

9. Gene pair : ENSG00000183604 -> ENSG00000169203

10. Gene pair : ENSG00000142444 -> ENSG00000136240

11. Gene pair : ENSG00000141367 -> ENSG00000005844

12. Gene pair : ENSG00000090238 -> ENSG00000142444

13. Gene pair : ENSG00000268575 -> ENSG00000215790

14. Gene pair : ENSG00000169203 -> ENSG00000183604

15. Gene pair : ENSG00000134824 -> ENSG00000149485

16. Gene pair : ENSG00000215790 -> ENSG00000268575

17. Gene pair : ENSG00000149485 -> ENSG00000134824

Number of common elements: 17
Common elements between set 3 of the local method (MDI) and set 3 of the global
method:
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1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000168286 -> ENSG00000152518

3. Gene pair : ENSG00000090238 -> ENSG00000142444

4. Gene pair : ENSG00000176340 -> ENSG00000184076

5. Gene pair : ENSG00000169203 -> ENSG00000183604

6. Gene pair : ENSG00000169203 -> ENSG00000205534

7. Gene pair : ENSG00000081154 -> ENSG00000117500

8. Gene pair : ENSG00000241945 -> ENSG00000160221

9. Gene pair : ENSG00000268575 -> ENSG00000215790

10. Gene pair : ENSG00000149485 -> ENSG00000134824

11. Gene pair : ENSG00000172057 -> ENSG00000073605

12. Gene pair : ENSG00000189339 -> ENSG00000248333

13. Gene pair : ENSG00000160221 -> ENSG00000241945

14. Gene pair : ENSG00000198355 -> ENSG00000152518

15. Gene pair : ENSG00000134824 -> ENSG00000149485

16. Gene pair : ENSG00000073605 -> ENSG00000172057

17. Gene pair : ENSG00000205534 -> ENSG00000169203

18. Gene pair : ENSG00000152518 -> ENSG00000198355

19. Gene pair : ENSG00000215790 -> ENSG00000268575

20. Gene pair : ENSG00000183604 -> ENSG00000169203

21. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 21

Common elements between set 4 of the local method (MDI) and set 4 of the global
method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340
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2. Gene pair : ENSG00000142444 -> ENSG00000136240

3. Gene pair : ENSG00000176986 -> ENSG00000196305

4. Gene pair : ENSG00000176340 -> ENSG00000184076

5. Gene pair : ENSG00000141367 -> ENSG00000176986

6. Gene pair : ENSG00000169203 -> ENSG00000183604

7. Gene pair : ENSG00000102879 -> ENSG00000164054

8. Gene pair : ENSG00000241945 -> ENSG00000160221

9. Gene pair : ENSG00000149485 -> ENSG00000134824

10. Gene pair : ENSG00000172057 -> ENSG00000073605

11. Gene pair : ENSG00000136240 -> ENSG00000142444

12. Gene pair : ENSG00000160221 -> ENSG00000241945

13. Gene pair : ENSG00000115484 -> ENSG00000144381

14. Gene pair : ENSG00000134824 -> ENSG00000149485

15. Gene pair : ENSG00000073605 -> ENSG00000172057

16. Gene pair : ENSG00000215790 -> ENSG00000189339

17. Gene pair : ENSG00000164054 -> ENSG00000206503

18. Gene pair : ENSG00000172500 -> ENSG00000172543

19. Gene pair : ENSG00000176986 -> ENSG00000141367

20. Gene pair : ENSG00000172543 -> ENSG00000172500

21. Gene pair : ENSG00000144381 -> ENSG00000115484

22. Gene pair : ENSG00000183604 -> ENSG00000169203

23. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 23

Common elements between set 5 of the local method (MDI) and set 5 of the global
method:
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1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000241945 -> ENSG00000160221

3. Gene pair : ENSG00000115484 -> ENSG00000150753

4. Gene pair : ENSG00000189339 -> ENSG00000215790

5. Gene pair : ENSG00000160221 -> ENSG00000241945

6. Gene pair : ENSG00000134824 -> ENSG00000149485

7. Gene pair : ENSG00000176340 -> ENSG00000184076

8. Gene pair : ENSG00000215790 -> ENSG00000189339

9. Gene pair : ENSG00000149485 -> ENSG00000134824

Number of common elements: 9

Common elements between set 6 of the local method (MDI) and set 6 of the global
method:

1. Gene pair : ENSG00000168286 -> ENSG00000198355

2. Gene pair : ENSG00000198355 -> ENSG00000168286

3. Gene pair : ENSG00000184076 -> ENSG00000176340

4. Gene pair : ENSG00000152518 -> ENSG00000168286

5. Gene pair : ENSG00000152518 -> ENSG00000198355

6. Gene pair : ENSG00000241945 -> ENSG00000160221

7. Gene pair : ENSG00000168286 -> ENSG00000152518

8. Gene pair : ENSG00000136240 -> ENSG00000142444

9. Gene pair : ENSG00000149485 -> ENSG00000134824

10. Gene pair : ENSG00000160221 -> ENSG00000241945

11. Gene pair : ENSG00000268575 -> ENSG00000215790

12. Gene pair : ENSG00000142444 -> ENSG00000136240

13. Gene pair : ENSG00000010256 -> ENSG00000102879
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14. Gene pair : ENSG00000198355 -> ENSG00000152518

15. Gene pair : ENSG00000134824 -> ENSG00000149485

16. Gene pair : ENSG00000215790 -> ENSG00000268575

17. Gene pair : ENSG00000215790 -> ENSG00000189339

18. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 18
Common elements between set 7 of the local method (MDI) and set 7 of the global
method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000142444 -> ENSG00000161179

3. Gene pair : ENSG00000142444 -> ENSG00000136240

4. Gene pair : ENSG00000176340 -> ENSG00000184076

5. Gene pair : ENSG00000169203 -> ENSG00000183604

6. Gene pair : ENSG00000144381 -> ENSG00000150753

7. Gene pair : ENSG00000102879 -> ENSG00000164054

8. Gene pair : ENSG00000241945 -> ENSG00000160221

9. Gene pair : ENSG00000161179 -> ENSG00000142444

10. Gene pair : ENSG00000115484 -> ENSG00000150753

11. Gene pair : ENSG00000148090 -> ENSG00000161179

12. Gene pair : ENSG00000161179 -> ENSG00000148090

13. Gene pair : ENSG00000149485 -> ENSG00000134824

14. Gene pair : ENSG00000172046 -> ENSG00000149923

15. Gene pair : ENSG00000172057 -> ENSG00000073605

16. Gene pair : ENSG00000149923 -> ENSG00000172046

17. Gene pair : ENSG00000136240 -> ENSG00000142444
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18. Gene pair : ENSG00000160221 -> ENSG00000241945

19. Gene pair : ENSG00000134824 -> ENSG00000149485

20. Gene pair : ENSG00000073605 -> ENSG00000172057

21. Gene pair : ENSG00000215790 -> ENSG00000189339

22. Gene pair : ENSG00000150753 -> ENSG00000115484

23. Gene pair : ENSG00000205534 -> ENSG00000169203

24. Gene pair : ENSG00000135926 -> ENSG00000261338

25. Gene pair : ENSG00000164054 -> ENSG00000102879

26. Gene pair : ENSG00000183604 -> ENSG00000169203

27. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 27

Common elements between set 8 of the local method (MDI) and set 8 of the global
method:

1. Gene pair : ENSG00000149923 -> ENSG00000068831

2. Gene pair : ENSG00000184076 -> ENSG00000176340

3. Gene pair : ENSG00000142444 -> ENSG00000161179

4. Gene pair : ENSG00000142444 -> ENSG00000090238

5. Gene pair : ENSG00000142444 -> ENSG00000136240

6. Gene pair : ENSG00000068831 -> ENSG00000149923

7. Gene pair : ENSG00000090238 -> ENSG00000142444

8. Gene pair : ENSG00000169203 -> ENSG00000183604

9. Gene pair : ENSG00000112977 -> ENSG00000198355

10. Gene pair : ENSG00000144381 -> ENSG00000150753

11. Gene pair : ENSG00000241945 -> ENSG00000160221

12. Gene pair : ENSG00000115232 -> ENSG00000081237
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13. Gene pair : ENSG00000161179 -> ENSG00000142444

14. Gene pair : ENSG00000115484 -> ENSG00000150753

15. Gene pair : ENSG00000268575 -> ENSG00000215790

16. Gene pair : ENSG00000148090 -> ENSG00000161179

17. Gene pair : ENSG00000009790 -> ENSG00000102901

18. Gene pair : ENSG00000198355 -> ENSG00000112977

19. Gene pair : ENSG00000161179 -> ENSG00000148090

20. Gene pair : ENSG00000149485 -> ENSG00000134824

21. Gene pair : ENSG00000172046 -> ENSG00000149923

22. Gene pair : ENSG00000196502 -> ENSG00000178952

23. Gene pair : ENSG00000149923 -> ENSG00000172046

24. Gene pair : ENSG00000136240 -> ENSG00000142444

25. Gene pair : ENSG00000160221 -> ENSG00000241945

26. Gene pair : ENSG00000010256 -> ENSG00000102879

27. Gene pair : ENSG00000115484 -> ENSG00000144381

28. Gene pair : ENSG00000134824 -> ENSG00000149485

29. Gene pair : ENSG00000215790 -> ENSG00000189339

30. Gene pair : ENSG00000150753 -> ENSG00000115484

31. Gene pair : ENSG00000102879 -> ENSG00000010256

32. Gene pair : ENSG00000151151 -> ENSG00000096968

33. Gene pair : ENSG00000152518 -> ENSG00000198355

34. Gene pair : ENSG00000096968 -> ENSG00000151151

35. Gene pair : ENSG00000178952 -> ENSG00000196502

36. Gene pair : ENSG00000144381 -> ENSG00000115484
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37. Gene pair : ENSG00000183604 -> ENSG00000169203

38. Gene pair : ENSG00000150753 -> ENSG00000144381

39. Gene pair : ENSG00000176340 -> ENSG00000184076

Number of common elements: 39

Common elements between set 9 of the local method (MDI) and set 9 of the global
method:

1. Gene pair : ENSG00000121281 -> ENSG00000166164

2. Gene pair : ENSG00000081237 -> ENSG00000115232

3. Gene pair : ENSG00000142444 -> ENSG00000161179

4. Gene pair : ENSG00000196126 -> ENSG00000179583

5. Gene pair : ENSG00000169203 -> ENSG00000183604

6. Gene pair : ENSG00000241945 -> ENSG00000160221

7. Gene pair : ENSG00000115232 -> ENSG00000081237

8. Gene pair : ENSG00000161179 -> ENSG00000142444

9. Gene pair : ENSG00000149485 -> ENSG00000134824

10. Gene pair : ENSG00000172057 -> ENSG00000073605

11. Gene pair : ENSG00000160221 -> ENSG00000241945

12. Gene pair : ENSG00000198355 -> ENSG00000152518

13. Gene pair : ENSG00000134824 -> ENSG00000149485

14. Gene pair : ENSG00000073605 -> ENSG00000172057

15. Gene pair : ENSG00000152518 -> ENSG00000151414

16. Gene pair : ENSG00000166164 -> ENSG00000121281

17. Gene pair : ENSG00000172057 -> ENSG00000161395

18. Gene pair : ENSG00000152518 -> ENSG00000198355

19. Gene pair : ENSG00000172543 -> ENSG00000172500

85



20. Gene pair : ENSG00000183604 -> ENSG00000169203

21. Gene pair : ENSG00000151414 -> ENSG00000152518

Number of common elements: 21

Common elements between set 10 of the local method (MDI) and set 10 of the global
method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000142444 -> ENSG00000090238

3. Gene pair : ENSG00000142444 -> ENSG00000136240

4. Gene pair : ENSG00000090238 -> ENSG00000142444

5. Gene pair : ENSG00000241945 -> ENSG00000160221

6. Gene pair : ENSG00000268575 -> ENSG00000215790

7. Gene pair : ENSG00000009790 -> ENSG00000102901

8. Gene pair : ENSG00000090238 -> ENSG00000136240

9. Gene pair : ENSG00000149485 -> ENSG00000134824

10. Gene pair : ENSG00000172057 -> ENSG00000073605

11. Gene pair : ENSG00000130592 -> ENSG00000102879

12. Gene pair : ENSG00000136240 -> ENSG00000142444

13. Gene pair : ENSG00000160221 -> ENSG00000241945

14. Gene pair : ENSG00000134824 -> ENSG00000149485

15. Gene pair : ENSG00000073605 -> ENSG00000172057

16. Gene pair : ENSG00000205534 -> ENSG00000169203

17. Gene pair : ENSG00000172500 -> ENSG00000172543

18. Gene pair : ENSG00000176986 -> ENSG00000141367

19. Gene pair : ENSG00000152518 -> ENSG00000198355

20. Gene pair : ENSG00000172543 -> ENSG00000172500
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21. Gene pair : ENSG00000215790 -> ENSG00000268575

22. Gene pair : ENSG00000102879 -> ENSG00000130592

23. Gene pair : ENSG00000176340 -> ENSG00000184076

Number of common elements: 23

Common elements between set 11 of the local method (MDI) and set 11 of the global
method:

1. Gene pair : ENSG00000196502 -> ENSG00000178952

2. Gene pair : ENSG00000178952 -> ENSG00000184110

3. Gene pair : ENSG00000184076 -> ENSG00000176340

4. Gene pair : ENSG00000241945 -> ENSG00000160221

5. Gene pair : ENSG00000189339 -> ENSG00000215790

6. Gene pair : ENSG00000160221 -> ENSG00000241945

7. Gene pair : ENSG00000134824 -> ENSG00000149485

8. Gene pair : ENSG00000176340 -> ENSG00000184076

9. Gene pair : ENSG00000248333 -> ENSG00000189339

10. Gene pair : ENSG00000215790 -> ENSG00000189339

11. Gene pair : ENSG00000149485 -> ENSG00000134824

12. Gene pair : ENSG00000184110 -> ENSG00000178952

Number of common elements: 12

Common elements between set 12 of the local method (MDI) and set 12 of the global
method:

1. Gene pair : ENSG00000168286 -> ENSG00000152518

2. Gene pair : ENSG00000142444 -> ENSG00000090238

3. Gene pair : ENSG00000198355 -> ENSG00000151414

4. Gene pair : ENSG00000142444 -> ENSG00000136240
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5. Gene pair : ENSG00000090238 -> ENSG00000142444

6. Gene pair : ENSG00000169203 -> ENSG00000183604

7. Gene pair : ENSG00000102879 -> ENSG00000164054

8. Gene pair : ENSG00000152518 -> ENSG00000168286

9. Gene pair : ENSG00000241945 -> ENSG00000160221

10. Gene pair : ENSG00000102879 -> ENSG00000178952

11. Gene pair : ENSG00000090238 -> ENSG00000136240

12. Gene pair : ENSG00000149485 -> ENSG00000134824

13. Gene pair : ENSG00000168286 -> ENSG00000198355

14. Gene pair : ENSG00000198355 -> ENSG00000168286

15. Gene pair : ENSG00000136240 -> ENSG00000142444

16. Gene pair : ENSG00000160221 -> ENSG00000241945

17. Gene pair : ENSG00000172543 -> ENSG00000122223

18. Gene pair : ENSG00000198355 -> ENSG00000152518

19. Gene pair : ENSG00000134824 -> ENSG00000149485

20. Gene pair : ENSG00000215790 -> ENSG00000189339

21. Gene pair : ENSG00000164054 -> ENSG00000206503

22. Gene pair : ENSG00000102879 -> ENSG00000010256

23. Gene pair : ENSG00000122223 -> ENSG00000172543

24. Gene pair : ENSG00000152518 -> ENSG00000151414

25. Gene pair : ENSG00000152518 -> ENSG00000198355

26. Gene pair : ENSG00000164054 -> ENSG00000102879

27. Gene pair : ENSG00000136240 -> ENSG00000090238

28. Gene pair : ENSG00000183604 -> ENSG00000169203
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29. Gene pair : ENSG00000151414 -> ENSG00000152518

30. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 30

Common elements between set 13 of the local method (MDI) and set 13 of the global
method:

1. Gene pair : ENSG00000168286 -> ENSG00000152518

2. Gene pair : ENSG00000142444 -> ENSG00000136240

3. Gene pair : ENSG00000196126 -> ENSG00000179583

4. Gene pair : ENSG00000169203 -> ENSG00000183604

5. Gene pair : ENSG00000152518 -> ENSG00000168286

6. Gene pair : ENSG00000241945 -> ENSG00000160221

7. Gene pair : ENSG00000149485 -> ENSG00000134824

8. Gene pair : ENSG00000168286 -> ENSG00000198355

9. Gene pair : ENSG00000172057 -> ENSG00000073605

10. Gene pair : ENSG00000198355 -> ENSG00000168286

11. Gene pair : ENSG00000136240 -> ENSG00000142444

12. Gene pair : ENSG00000160221 -> ENSG00000241945

13. Gene pair : ENSG00000198355 -> ENSG00000152518

14. Gene pair : ENSG00000134824 -> ENSG00000149485

15. Gene pair : ENSG00000073605 -> ENSG00000172057

16. Gene pair : ENSG00000172500 -> ENSG00000172543

17. Gene pair : ENSG00000152518 -> ENSG00000151414

18. Gene pair : ENSG00000152518 -> ENSG00000198355

19. Gene pair : ENSG00000179583 -> ENSG00000196126

20. Gene pair : ENSG00000172543 -> ENSG00000172500
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21. Gene pair : ENSG00000215790 -> ENSG00000268575

22. Gene pair : ENSG00000183604 -> ENSG00000169203

23. Gene pair : ENSG00000151414 -> ENSG00000152518

Number of common elements: 23

Common elements between set 14 of the local method (MDI) and set 14 of the global
method:

1. Gene pair : ENSG00000172057 -> ENSG00000073605

2. Gene pair : ENSG00000152518 -> ENSG00000151414

3. Gene pair : ENSG00000184076 -> ENSG00000176340

4. Gene pair : ENSG00000151414 -> ENSG00000152518

5. Gene pair : ENSG00000241945 -> ENSG00000160221

6. Gene pair : ENSG00000169567 -> ENSG00000233276

7. Gene pair : ENSG00000179583 -> ENSG00000196126

8. Gene pair : ENSG00000268575 -> ENSG00000215790

9. Gene pair : ENSG00000149485 -> ENSG00000134824

10. Gene pair : ENSG00000160221 -> ENSG00000241945

11. Gene pair : ENSG00000215790 -> ENSG00000268575

12. Gene pair : ENSG00000196126 -> ENSG00000179583

13. Gene pair : ENSG00000134824 -> ENSG00000149485

14. Gene pair : ENSG00000176340 -> ENSG00000184076

15. Gene pair : ENSG00000073605 -> ENSG00000172057

16. Gene pair : ENSG00000215790 -> ENSG00000189339

17. Gene pair : ENSG00000189339 -> ENSG00000215790
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Number of common elements: 17

Common elements between set 15 of the local method (MDI) and set 15 of the global
method:

1. Gene pair : ENSG00000205534 -> ENSG00000183604

2. Gene pair : ENSG00000121281 -> ENSG00000166164

3. Gene pair : ENSG00000169203 -> ENSG00000183604

4. Gene pair : ENSG00000081154 -> ENSG00000117500

5. Gene pair : ENSG00000241945 -> ENSG00000160221

6. Gene pair : ENSG00000149485 -> ENSG00000134824

7. Gene pair : ENSG00000172057 -> ENSG00000073605

8. Gene pair : ENSG00000183604 -> ENSG00000205534

9. Gene pair : ENSG00000160221 -> ENSG00000241945

10. Gene pair : ENSG00000172543 -> ENSG00000122223

11. Gene pair : ENSG00000115484 -> ENSG00000144381

12. Gene pair : ENSG00000134824 -> ENSG00000149485

13. Gene pair : ENSG00000073605 -> ENSG00000172057

14. Gene pair : ENSG00000215790 -> ENSG00000189339

15. Gene pair : ENSG00000122223 -> ENSG00000172543

16. Gene pair : ENSG00000166164 -> ENSG00000121281

17. Gene pair : ENSG00000144381 -> ENSG00000115484

18. Gene pair : ENSG00000183604 -> ENSG00000169203

19. Gene pair : ENSG00000150753 -> ENSG00000144381

20. Gene pair : ENSG00000189339 -> ENSG00000215790

91



Number of common elements: 20

Common elements between set 16 of the local method (MDI) and set 16 of the global
method:

1. Gene pair : ENSG00000178952 -> ENSG00000184110

2. Gene pair : ENSG00000241945 -> ENSG00000160221

3. Gene pair : ENSG00000102901 -> ENSG00000157873

4. Gene pair : ENSG00000136240 -> ENSG00000142444

5. Gene pair : ENSG00000144381 -> ENSG00000115484

6. Gene pair : ENSG00000160221 -> ENSG00000241945

7. Gene pair : ENSG00000183604 -> ENSG00000169203

8. Gene pair : ENSG00000142444 -> ENSG00000136240

9. Gene pair : ENSG00000115484 -> ENSG00000144381

10. Gene pair : ENSG00000134824 -> ENSG00000149485

11. Gene pair : ENSG00000169203 -> ENSG00000183604

12. Gene pair : ENSG00000149485 -> ENSG00000134824

13. Gene pair : ENSG00000184110 -> ENSG00000178952

Number of common elements: 13

Common elements between set 17 of the local method (MDI) and set 17 of the global
method:

1. Gene pair : ENSG00000168286 -> ENSG00000152518

2. Gene pair : ENSG00000142444 -> ENSG00000161179

3. Gene pair : ENSG00000142444 -> ENSG00000090238

4. Gene pair : ENSG00000142444 -> ENSG00000136240

5. Gene pair : ENSG00000090238 -> ENSG00000142444

6. Gene pair : ENSG00000169203 -> ENSG00000183604
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7. Gene pair : ENSG00000152518 -> ENSG00000168286

8. Gene pair : ENSG00000241945 -> ENSG00000160221

9. Gene pair : ENSG00000161179 -> ENSG00000142444

10. Gene pair : ENSG00000009790 -> ENSG00000102901

11. Gene pair : ENSG00000149485 -> ENSG00000134824

12. Gene pair : ENSG00000168286 -> ENSG00000198355

13. Gene pair : ENSG00000198355 -> ENSG00000168286

14. Gene pair : ENSG00000136240 -> ENSG00000142444

15. Gene pair : ENSG00000160221 -> ENSG00000241945

16. Gene pair : ENSG00000198355 -> ENSG00000152518

17. Gene pair : ENSG00000134824 -> ENSG00000149485

18. Gene pair : ENSG00000102901 -> ENSG00000009790

19. Gene pair : ENSG00000152518 -> ENSG00000151414

20. Gene pair : ENSG00000151151 -> ENSG00000096968

21. Gene pair : ENSG00000152518 -> ENSG00000198355

22. Gene pair : ENSG00000096968 -> ENSG00000151151

23. Gene pair : ENSG00000183604 -> ENSG00000169203

24. Gene pair : ENSG00000151414 -> ENSG00000152518

Number of common elements: 24

Common elements between set 18 of the local method (MDI) and set 18 of the global
method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000168286 -> ENSG00000152518

3. Gene pair : ENSG00000142444 -> ENSG00000161179

4. Gene pair : ENSG00000261338 -> ENSG00000135926
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5. Gene pair : ENSG00000152518 -> ENSG00000168286

6. Gene pair : ENSG00000241945 -> ENSG00000160221

7. Gene pair : ENSG00000161179 -> ENSG00000142444

8. Gene pair : ENSG00000149485 -> ENSG00000134824

9. Gene pair : ENSG00000168286 -> ENSG00000198355

10. Gene pair : ENSG00000172057 -> ENSG00000073605

11. Gene pair : ENSG00000198355 -> ENSG00000168286

12. Gene pair : ENSG00000160221 -> ENSG00000241945

13. Gene pair : ENSG00000010256 -> ENSG00000102879

14. Gene pair : ENSG00000198355 -> ENSG00000152518

15. Gene pair : ENSG00000134824 -> ENSG00000149485

16. Gene pair : ENSG00000073605 -> ENSG00000172057

17. Gene pair : ENSG00000102879 -> ENSG00000010256

18. Gene pair : ENSG00000172500 -> ENSG00000172543

19. Gene pair : ENSG00000166164 -> ENSG00000121281

20. Gene pair : ENSG00000135926 -> ENSG00000261338

21. Gene pair : ENSG00000152518 -> ENSG00000198355

22. Gene pair : ENSG00000172543 -> ENSG00000172500

23. Gene pair : ENSG00000176340 -> ENSG00000184076

Number of common elements: 23

Common elements between set 19 of the local method (MDI) and set 19 of the global
method:

1. Gene pair : ENSG00000142444 -> ENSG00000090238

2. Gene pair : ENSG00000090238 -> ENSG00000142444

3. Gene pair : ENSG00000176340 -> ENSG00000184076
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4. Gene pair : ENSG00000241945 -> ENSG00000160221

5. Gene pair : ENSG00000268575 -> ENSG00000215790

6. Gene pair : ENSG00000149485 -> ENSG00000134824

7. Gene pair : ENSG00000172057 -> ENSG00000073605

8. Gene pair : ENSG00000268575 -> ENSG00000189339

9. Gene pair : ENSG00000189339 -> ENSG00000268575

10. Gene pair : ENSG00000160221 -> ENSG00000241945

11. Gene pair : ENSG00000178952 -> ENSG00000010256

12. Gene pair : ENSG00000134824 -> ENSG00000149485

13. Gene pair : ENSG00000073605 -> ENSG00000172057

14. Gene pair : ENSG00000215790 -> ENSG00000189339

15. Gene pair : ENSG00000122223 -> ENSG00000172543

16. Gene pair : ENSG00000010256 -> ENSG00000178952

17. Gene pair : ENSG00000102901 -> ENSG00000143224

18. Gene pair : ENSG00000215790 -> ENSG00000268575

19. Gene pair : ENSG00000183604 -> ENSG00000169203

20. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 20

Common elements between set 20 of the local method (MDI) and set 20 of the global
method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000081237 -> ENSG00000115232

3. Gene pair : ENSG00000198355 -> ENSG00000151414

4. Gene pair : ENSG00000176340 -> ENSG00000184076

5. Gene pair : ENSG00000169203 -> ENSG00000183604
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6. Gene pair : ENSG00000241945 -> ENSG00000160221

7. Gene pair : ENSG00000115232 -> ENSG00000081237

8. Gene pair : ENSG00000268575 -> ENSG00000215790

9. Gene pair : ENSG00000149485 -> ENSG00000134824

10. Gene pair : ENSG00000172057 -> ENSG00000073605

11. Gene pair : ENSG00000160221 -> ENSG00000241945

12. Gene pair : ENSG00000172543 -> ENSG00000122223

13. Gene pair : ENSG00000134824 -> ENSG00000149485

14. Gene pair : ENSG00000248333 -> ENSG00000189339

15. Gene pair : ENSG00000171700 -> ENSG00000102879

16. Gene pair : ENSG00000073605 -> ENSG00000172057

17. Gene pair : ENSG00000215790 -> ENSG00000189339

18. Gene pair : ENSG00000122223 -> ENSG00000172543

19. Gene pair : ENSG00000172057 -> ENSG00000161395

20. Gene pair : ENSG00000102879 -> ENSG00000171700

21. Gene pair : ENSG00000215790 -> ENSG00000268575

22. Gene pair : ENSG00000102879 -> ENSG00000130592

23. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 23

Common elements between set 21 of the local method (MDI) and set 21 of the global
method:

1. Gene pair : ENSG00000114395 -> ENSG00000102879

2. Gene pair : ENSG00000241945 -> ENSG00000160221

3. Gene pair : ENSG00000149485 -> ENSG00000134824

4. Gene pair : ENSG00000168286 -> ENSG00000198355
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5. Gene pair : ENSG00000196502 -> ENSG00000178952

6. Gene pair : ENSG00000172057 -> ENSG00000073605

7. Gene pair : ENSG00000198355 -> ENSG00000168286

8. Gene pair : ENSG00000189339 -> ENSG00000268575

9. Gene pair : ENSG00000160221 -> ENSG00000241945

10. Gene pair : ENSG00000134824 -> ENSG00000149485

11. Gene pair : ENSG00000073605 -> ENSG00000172057

12. Gene pair : ENSG00000172500 -> ENSG00000172543

13. Gene pair : ENSG00000152518 -> ENSG00000198355

14. Gene pair : ENSG00000164054 -> ENSG00000102879

15. Gene pair : ENSG00000178952 -> ENSG00000196502

16. Gene pair : ENSG00000172543 -> ENSG00000172500

17. Gene pair : ENSG00000183604 -> ENSG00000169203

18. Gene pair : ENSG00000151414 -> ENSG00000152518

19. Gene pair : ENSG00000176340 -> ENSG00000184076

Number of common elements: 19

Common elements between set 22 of the local method (MDI) and set 22 of the global
method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000081237 -> ENSG00000115232

3. Gene pair : ENSG00000068831 -> ENSG00000149923

4. Gene pair : ENSG00000176340 -> ENSG00000184076

5. Gene pair : ENSG00000169203 -> ENSG00000183604

6. Gene pair : ENSG00000144381 -> ENSG00000150753

7. Gene pair : ENSG00000241945 -> ENSG00000160221
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8. Gene pair : ENSG00000115232 -> ENSG00000081237

9. Gene pair : ENSG00000115484 -> ENSG00000150753

10. Gene pair : ENSG00000196502 -> ENSG00000178952

11. Gene pair : ENSG00000136240 -> ENSG00000142444

12. Gene pair : ENSG00000160221 -> ENSG00000241945

13. Gene pair : ENSG00000010256 -> ENSG00000102879

14. Gene pair : ENSG00000115484 -> ENSG00000144381

15. Gene pair : ENSG00000134824 -> ENSG00000149485

16. Gene pair : ENSG00000171700 -> ENSG00000102879

17. Gene pair : ENSG00000215790 -> ENSG00000189339

18. Gene pair : ENSG00000150753 -> ENSG00000115484

19. Gene pair : ENSG00000102879 -> ENSG00000010256

20. Gene pair : ENSG00000102879 -> ENSG00000171700

21. Gene pair : ENSG00000178952 -> ENSG00000196502

22. Gene pair : ENSG00000144381 -> ENSG00000115484

23. Gene pair : ENSG00000183604 -> ENSG00000169203

24. Gene pair : ENSG00000150753 -> ENSG00000144381

25. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 25

Common elements between set 23 of the local method (MDI) and set 23 of the global
method:

1. Gene pair : ENSG00000184076 -> ENSG00000176340

2. Gene pair : ENSG00000205534 -> ENSG00000183604

3. Gene pair : ENSG00000168286 -> ENSG00000152518

4. Gene pair : ENSG00000142444 -> ENSG00000136240
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5. Gene pair : ENSG00000176340 -> ENSG00000184076

6. Gene pair : ENSG00000141367 -> ENSG00000176986

7. Gene pair : ENSG00000152518 -> ENSG00000168286

8. Gene pair : ENSG00000241945 -> ENSG00000160221

9. Gene pair : ENSG00000149485 -> ENSG00000134824

10. Gene pair : ENSG00000172046 -> ENSG00000149923

11. Gene pair : ENSG00000168286 -> ENSG00000198355

12. Gene pair : ENSG00000198355 -> ENSG00000168286

13. Gene pair : ENSG00000183604 -> ENSG00000205534

14. Gene pair : ENSG00000149923 -> ENSG00000172046

15. Gene pair : ENSG00000136240 -> ENSG00000142444

16. Gene pair : ENSG00000160221 -> ENSG00000241945

17. Gene pair : ENSG00000010256 -> ENSG00000102879

18. Gene pair : ENSG00000198355 -> ENSG00000152518

19. Gene pair : ENSG00000134824 -> ENSG00000149485

20. Gene pair : ENSG00000215790 -> ENSG00000189339

21. Gene pair : ENSG00000102879 -> ENSG00000010256

22. Gene pair : ENSG00000172500 -> ENSG00000172543

23. Gene pair : ENSG00000176986 -> ENSG00000141367

24. Gene pair : ENSG00000152518 -> ENSG00000198355

25. Gene pair : ENSG00000164054 -> ENSG00000102879

26. Gene pair : ENSG00000172543 -> ENSG00000172500

27. Gene pair : ENSG00000189339 -> ENSG00000215790

99



Number of common elements: 27

Common elements between set 24 of the local method (MDI) and set 24 of the global
method:

1. Gene pair : ENSG00000196502 -> ENSG00000178952

2. Gene pair : ENSG00000189339 -> ENSG00000248333

3. Gene pair : ENSG00000152518 -> ENSG00000198355

4. Gene pair : ENSG00000241945 -> ENSG00000160221

5. Gene pair : ENSG00000115232 -> ENSG00000081237

6. Gene pair : ENSG00000178952 -> ENSG00000196502

7. Gene pair : ENSG00000149923 -> ENSG00000172046

8. Gene pair : ENSG00000189339 -> ENSG00000215790

9. Gene pair : ENSG00000081237 -> ENSG00000115232

10. Gene pair : ENSG00000149485 -> ENSG00000134824

11. Gene pair : ENSG00000136240 -> ENSG00000142444

12. Gene pair : ENSG00000160221 -> ENSG00000241945

13. Gene pair : ENSG00000198355 -> ENSG00000151414

14. Gene pair : ENSG00000215790 -> ENSG00000268575

15. Gene pair : ENSG00000134824 -> ENSG00000149485

16. Gene pair : ENSG00000248333 -> ENSG00000189339

17. Gene pair : ENSG00000215790 -> ENSG00000189339

18. Gene pair : ENSG00000172046 -> ENSG00000149923

Number of common elements: 18

Common elements between set 25 of the local method (MDI) and set 25 of the global
method:

1. Gene pair : ENSG00000151151 -> ENSG00000096968
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2. Gene pair : ENSG00000184076 -> ENSG00000176340

3. Gene pair : ENSG00000241945 -> ENSG00000160221

4. Gene pair : ENSG00000096968 -> ENSG00000151151

5. Gene pair : ENSG00000136240 -> ENSG00000142444

6. Gene pair : ENSG00000149485 -> ENSG00000134824

7. Gene pair : ENSG00000160221 -> ENSG00000241945

8. Gene pair : ENSG00000268575 -> ENSG00000215790

9. Gene pair : ENSG00000183604 -> ENSG00000169203

10. Gene pair : ENSG00000142444 -> ENSG00000136240

11. Gene pair : ENSG00000144381 -> ENSG00000115484

12. Gene pair : ENSG00000134824 -> ENSG00000149485

13. Gene pair : ENSG00000215790 -> ENSG00000268575

14. Gene pair : ENSG00000169203 -> ENSG00000183604

15. Gene pair : ENSG00000176340 -> ENSG00000184076

16. Gene pair : ENSG00000215790 -> ENSG00000189339

17. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 17

Common elements between set 26 of the local method (MDI) and set 26 of the global
method:

1. Gene pair : ENSG00000178952 -> ENSG00000184110

2. Gene pair : ENSG00000081237 -> ENSG00000115232

3. Gene pair : ENSG00000169203 -> ENSG00000183604

4. Gene pair : ENSG00000144381 -> ENSG00000150753

5. Gene pair : ENSG00000241945 -> ENSG00000160221

6. Gene pair : ENSG00000115232 -> ENSG00000081237
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7. Gene pair : ENSG00000115484 -> ENSG00000150753

8. Gene pair : ENSG00000149485 -> ENSG00000134824

9. Gene pair : ENSG00000102901 -> ENSG00000157873

10. Gene pair : ENSG00000136240 -> ENSG00000142444

11. Gene pair : ENSG00000160221 -> ENSG00000241945

12. Gene pair : ENSG00000115484 -> ENSG00000144381

13. Gene pair : ENSG00000134824 -> ENSG00000149485

14. Gene pair : ENSG00000215790 -> ENSG00000189339

15. Gene pair : ENSG00000184110 -> ENSG00000178952

16. Gene pair : ENSG00000144381 -> ENSG00000115484

17. Gene pair : ENSG00000183604 -> ENSG00000169203

18. Gene pair : ENSG00000150753 -> ENSG00000144381

19. Gene pair : ENSG00000189339 -> ENSG00000215790

Number of common elements: 19
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Appendix F

Code

All the main code informations used in this thesis are available at : https://github.com/AlexandreKff/LocalFIGRN
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