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Summary

While the latest Large Language Models (LLMs) continue to expand in size and context window capacity,
their knowledge base remains constrained by their training corpus. Retrieval Augmented Generation (RAG)
offers a solution to this limitation by enhancing the LLM’s responses with relevant information retrieved
from external sources. In contrast to the rapidly growing context windows, which now extend to millions
of tokens, this study evaluates the effectiveness of augmenting prompts as an alternative approach to
using large contexts, this is done by evaluating multiple-choice questions originally made for long context
settings. By using parts of the context with RAG, I demonstrate that a well-constructed RAG system
can achieve strong performance with significantly reduced token usage. However, the results also reveal
challenges related to prompt sensitivity. Despite these challenges, the potential reduction in inference
costs due to lower token usage makes this approach particularly appealing, depending on the application
context.
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Introduction

Natural Language Processing (NLP) is a field dedicated to the automatic processing of language through
statistical models, machine learning, and artificial intelligence. Over the past century, NLP has evolved
from simple statistical models like Markov chains to more complex computer-assisted approaches, such
as Bag-of-Words (BoW) and recurrent models. This progression eventually led to the development of
transformer-based architectures, marking the advent of neural-based language models. Today, Large
Language Models (LLMs), which are massive transformer-based models, have revolutionized the industry,
with significant investments from tech giants like Google, Facebook, and Microsoft. The widespread
adoption of LLMs across various sectors, driven by their potential to achieve General Artificial Intelligence
(GAI), has sparked both excitement and concern, particularly regarding their limitations.

LLMs excel at processing large volumes of text and can perform a wide range of tasks, including
summarizing books, identifying writing errors, engaging in extended conversations, and even generating
creative content. However, the rapid development of LLMs, coupled with increasing context sizes and
associated costs, raises critical questions about their scalability and effectiveness. Despite their impressive
capabilities, LLMs remain "black boxes", models that are hard to explain, with little theoretical understand-
ing of how they produce extraordinary results from relatively limited data. This uncertainty underscores
the need for robust evaluation frameworks, comprehensive datasets, and improved metrics to assess their
strengths and weaknesses.

One area that requires further exploration is the ability of LLMs to handle long contexts. Existing
evaluation frameworks are often handcrafted and limited in size, while new models boast context windows
that can accommodate millions of tokens. The challenge lies in developing methods that can effectively
evaluate LLMs on tasks involving such extensive contexts.

Retrieval Augmented Generation (RAG) is an emerging technique that enhances LLMs by incorporating
external knowledge sources. Unlike traditional fine-tuning, RAG allows for the dynamic augmentation of
prompts with relevant information from these sources. This approach has the potential to improve response
quality while minimizing the number of tokens required, thereby reducing the cost of using large LLMs.
Given the increasing context sizes of new LLMs, RAG offers a promising solution for maintaining high
performance at a lower cost.

This study aims to evaluate the effectiveness of RAG in combination with the GPT-3.5 turbo model,
which supports input contexts of up to 16,000 tokens. Specifically, we will assess the model’s performance
on a long-context comprehension task using multiple-choice questions from the BAMBOO benchmark [6].
Our objective is to determine whether RAG can achieve comparable results to the baseline (full context)
while using a reduced context size. If successful, this approach could pave the way for more cost-effective
alternatives to current LLM usage.

Throughout this study, we will provide a detailed analysis of RAG systems, explore different configura-
tions, and evaluate their performance. By the conclusion, we aim to demonstrate the viability of RAG for
tasks that require long-context comprehension. However, the sensitivity of prompts within RAG systems
poses a significant challenge, leading to variability in performance even with semantically similar prompts.
This instability underscores the need for further research and refinement in the topic of prompt sensibility.

1



Chapter 1

Theoretical backgrounds

1.1 Language Models

Language is a series of letters, syllables, or words put one after another. The recursive nature is evident
in the statement: letters make syllables, syllables make words, and so forth. Therefore, the formalization
of its serial nature can take on different granularity levels depending on the formalization. One such
formalization dates back to 1906 when Andrei Andreevich Markov, a Russian mathematician with an
interest in poetry, described his now-famous Markov Chains. Suppose that w1, w2, . . . , wN is a sequence
of words; the probability of the word sequence can be computed as:

p(w1, w2, . . . , wN) =

N∏
i=1

p(wi | w1, w2, . . . , wi−1) (1.1)

Naturally, the number of words in a language ranges in the tens of thousands, making this expression
hardly tractable. Such formalization usually amounts to predicting a word with respect to its n-1 pre-
decessors; we commonly call such an approach an n-gram model. Equivalently, this principle is named a
Markov Chain of order n-1, and the joint probability expresses as:

p(w1, w2, . . . , wN) =

N∏
i=1

p(wi | wi−n, wi−n+1, . . . , wi−1) (1.2)

A. Markov applied this principle by counting series of vowels and consonants in the novel Eugene Onegin
by Alexander Pushkin in 1913. The probabilistic formalization of a piece of text connected literature and
mathematics.

A few decades passed until Claude Shannon published the paper The Mathematical Theory of Com-
munication, which cast a new view on Language Modeling. The probability associated with a particular
element contained "information," a concept measured by C. Shannon as "entropy," a positive measure
of uncertainty expressing how surprising an element is. Assuming again an n-gram with p the probability
associated with all possible sequences of words w1, w2, . . . , wN :

Hn(p) = −
∑

w1,w2,...,wN

p(w1, w2, . . . , wN) log2 p(w1, w2, . . . , wN) (1.3)

Consequently, given the true probability p and a model q, the cross-entropy expresses the average
surprise of a model for a sequence of words drawn from p.

Hn(p, q) = −
∑

w1,w2,...,wN

p(w1, w2, . . . , wN) log2 q(w1, w2, . . . , wN) (1.4)

2



CHAPTER 1 1.2. RECURRENT MODELS

This leads to the relationHn(p) ≤ Hn(p, q). In limit of n →∞ and under ergodicity and stationarity of
the stochastic process behind the sequence generation, the Shannon-McMillan-Breiman theorem ensures
the relationship. Therefore a model perfectly generates a language when its entropy is minimal.

Naturally, in practice, no such model can be tractably computed given the exponential complexity of
languages. However, using finite-state models such as n-grams proves inadequate to accommodate long
and complex sequences. In 1956, Noam Chomsky proposed a hierarchy for grammars, outlining the rules
behind the syntax of a language. He showed that finite-state grammars (such as n-grams) are inadequate
for representing complex sentences. For instance, the sentences "The cat sat on a couch" and "The cat,
after a long stroll, sat on a couch" both express the same subject and actions, but the latter proves much
more difficult for a 2-gram because the distance between the subject and the verb phrase is too great.
Instead, context-free grammars better handle different levels of structure in languages. A context-free
grammar works on a set of rules, associating elements based on a set structure, e.g., a verb follows a
subject, and a direct object follows a verb. Therefore, while the serial aspect of language modeling is
reflected in Markov Chain-based models, they’re inadequate for complex sentences.

Some time after this, statistical language models gave birth to neural language models, where deep
learning techniques are applied for language modeling. These have developed into what we know as large
language models. While technically different from the models described above, their fundamentals and
limitations have the same roots.

Neural language models usually operate at a token level. Neither whole words nor sentences are used
as input; instead, words are broken down into smaller units called tokens. A single word can be broken
down up to a certain number of times, depending on the language [7].

1.2 Recurrent Models

Recurrent models are among the first neural language models to become popular. They generate realiza-
tions from the equation 1.1.

X

Y

...

x0 ... xN

y0 ... yN

Figure 1.1: Recurrent Neural Network

In a recurrent neural network (RNN), the network recursively processes the input, with each state
consecutively inheriting information (a hidden state) from the previous state. In a generative task, there
is a feedback loop between the output and the input, such that xi = yi−1, i > 0, while in translation tasks,
the input and output are disjointed. This basic architecture has several issues: input and output sequences
do not necessarily have the same length, the next state is assumed to give more importance to the most
recent previous state, and there is a loss of memory over long sequences.

The community quickly devised new techniques to address these issues: the use of stop words, multi-
stage generation, additional units trained to memorize information, attention mechanisms to increase the
information flow from other states, and more.

3



CHAPTER 1 1.3. TRANSFORMERS

Popular architectures for addressing memory issues are LSTM [8] and GRU [9]. The latter emerged
as a cheaper alternative (with fewer parameters) to LSTM. The LSTM architecture uses an additional
cell in parallel with three components: forget, update, and output gates, each interacting with the current
state. GRU contains similar components but updates the hidden state directly, with no additional cell.

Figure 1.2: LSTM1 (left) and GRU2 (right) cells. The LSTM cell has an additional information path, c,
while the GRU cell does not.

However, a neural network remains a black box, and the intentional naming of the components does
not necessarily translate into their intended usage by the network during training and inference. This led to
the emergence of another concept: attention. Among the shortcomings of LSTM and GRU architectures
is their support for only short-range memory. In long contexts, the model should be able to attend to
any part of the sentence, depending on the word being processed. The attention mechanism presented by
Bahdanau et al. in 2014 [1] uses an additional bilinear RNN that passes over the input at each step to
compute a context vector ci . This vector is a weighted sum of the concatenated forward and backward
hidden layers of the input. The model generates subsequent hidden states si from the last hidden state
si−1, the last output yi−1, and the context vector ci , i.e., si = f (si−1, yi−1, ci).

Presently, RNNs are less frequently used; they have been largely replaced by transformers, an attention-
based model. One of the main reasons is that attention, as presented by Bahdanau, being based on a
bilinear RNN, gives greater focus to the first and last tokens due to the recursive nature of the model.
Long sentences are still difficult for RNNs to handle for the same reason, and there are also issues with
the lack of parallelization.

1.3 Transformers

The transformer is an architecture developed by several employees from Google, first presented in the
paper "Attention is All You Need" [2]. It was designed as a replacement for previous architectures (Figure
1.3). Attention, as proposed by Bahdanau, is employed through a bilinear RNN. However, this approach
tends to concentrate most of the information extraction at the beginning and the end of the sequence.
Even if the attention mechanism’s weights during training favor mid-sequence information, this hardly
generalizes to unseen data on diverse topics. The strength of the transformer architecture lies in its use
of a fixed-size input sequence and a scaled dot product score instead of a learned alignment feed-forward
network (i.e., the weights attributed to each location).

1https://en.wikipedia.org/wiki/Long_short-term_memory
2https://www.oreilly.com/library/view/advanced-deep-learning/9781789956177/8ad9dc41-3237-483e-8f6b-

7e5f653dc693.xhtml
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Figure 1.3: The graphical illustration of a model using attention through a bilinear RNN to generate the
t-th target word yt given a source sentence (x1, x2, . . . , xT ). (Bahdanau et al. [1])

The transformer is an auto-regressive generative model, where the output is fed back into the decoder.
Depending on the purpose, only the decoder is kept (e.g., for language generation). Compared to Figure
1.3, the alignment focuses on the vectorial representation of the language, which is the result of using a
dot product. In contrast, the alignment method of the former tries to find patterns in the vectorial space.
The notion of vectors is important because each token of a sequence is transformed into an embedding
during inference, its vector representation.

One of the downsides of attention, and consequently of transformers, is their quadratic time and space
complexity with respect to the sequence length. This is challenging as longer inputs are required for text
comprehension or information retrieval tasks. Furthermore, the fixed size of the transformer architecture
makes it very bulky; the latest GPT-4 model, for example, boasts 100 trillion parameters. Alternative
solutions with different takes on attention or using RNNs have since been proposed.

Model Time Space
Transformer (2017) O(T 2d) O(T 2 + Td)
Reformer (2020) O(T logTd) O(T logT + Td)
Performer (2020) O(Td2 log d) O(Td log d + d2 log d)
Linear Transformers (2020) O(Td2) O(Td + d2)
AFT-full (2021) O(T 2d) O(Td)
AFT-local (2021) O(Tsd) O(Td)
MEGA (2022) O(cTd) O(cd)
RWKV (2023) O(Td) O(d)

Table 1.1: Comparison of Time and Space Complexities of different architectures. (Peng et al. [4]) Lower
complexities involve point-wise operators, local windows or operators. Reformer uses a local hash function,
AFT-local uses a local window and point-wise operations.

1.4 Embeddings

Characters are pictograms and words are chains of pictograms. Neural networks are pieces of software that
apply mathematical operations to vectors. In order to represents pictograms as vectors we need to project
them into a vector space. We address their projections as embeddings. In Natural Language Processing
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Figure 1.4: From left to right: Transformer, Multi-Head Attention unit, Scaled Dot-Product Attention.
(Vaswani et al. [2]) The transformer consists of two elements: a encoder (left) and a decoder (right)
parts. These parts contains a series of attention heads and feed forward network with skip connections. A
linear projection is used to discriminate which part of the sequence should be attended, attention is then
applied through a scaled dot product.

(NLP) we find several types of embeddings : character embedding, word embedding, context embedding,
document embedding. Character embedding lacks context and do not properly encompasses semantic,
word embedding statically addresses words (you have to retrain/recompute them if you want to account
for new information), context embedding dynamically addresses embedding at sequence-level, however
long might a sequence be (ie. From a word to a whole document). Document embedding addresses
documents but most of them boils down to aggregating embeddings lower granularity methods.

Common word embeddings are BoW (Bag-of-Word), CBoW (Continuous BoW) or Skip-Gram. CBoW
and Skip-Gram are part of a family called Word2Vec (based on a window around the target word). It is
often compared to GloVe (Global Vectors for Word Representation) which uses unsupervised techniques
to generate embeddings.

BoW (Bag-of-Word) has several variants, but the starting point is a set of documents, all of which
are vectorized by counting the frequency of each word. For example, the document "the cat is the
best animal", would lead to the vector [2, 1, 1, 1, 1] for the word [the, cast, is, best, animal ]. The more
documents, the longer these vectors becomes, with a risk of high sparsity and dimensionality as a many
more words are added. The embedding of a word would be a cross-section of the frequency across all
documents. For example given four documents, the embedding of a word "the" is [2, 0, 0, 1] if it is
mentioned 2 times, 0 time, 0 time and 1 time across the four documents. Depending on the approach,
the frequency is normalized, or adjusted with a weight. A common adjustment is to use TF-IDF (Term-
Frequency Inverse-Document Frequency) where the term frequency for a document (tft,d) is weighted by
its inverse-document frequency (dft), that is log Ndft , where N is the number of documents and dft the
number of documents mentioning the term t.

tf − idft,d = tft,d × idft = tft,d × log
N

dft

CBoW and Skip-Gram are anti-symmetric approaches, both of them are neural-based embeddings,
where the former uses n words around the a given word wt as input and wt as output, Skip-Gram is just
the reverse.
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Figure 1.5: Architectures of the CBOW and Skip-Gram models (Mikolov et al. [3]). The former uses a
context (up to n words before and after w(t)) while the other predicts the context. The embedding is
learned from the updated weights, one-hot encoding is used to select the entry.

Context embedding is more popular because it takes into account all words provided, and many large
language models have as a base model the embedding model often ranking in benchmarks1 (i.e a head is
attached depending on the task). This makes it de facto the standard. Often embedding models such
as BERT or ELMO are provided as examples because they used to be state of the art in 2020, BERT is
based on transformer units and ELMO and LSTM units. The idea is that attention techniques in neural
networks are trained to capture information across the context focusing on the most relevant words, the
output is finally confined to the embedding dimension.

1https://huggingface.co/spaces/mteb/leaderboard
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Chapter 2

Retrieval Augmented Generation

2.1 RAG pipeline

Retrieval Augmented Generation (RAG) is a technique coined in 2020 [10] that consists in augmenting
the prompt provided to a LLM with additional information in order to increase the quality of the inference.
It’s integrated into a pipeline and its components are the following : query, contextual information,
chunking, embedding, ranking, prompt, inference. Each of these elements bear weights and depending on
the context, the deployment of such a pipeline may assemble or isolate those components. For example
during my internship at EY we used Azure AI Search which offered both retrieval and ranking capabilities.

The user asks a question, this question is embedded using some technique (usually an embedding
network), this vector is used to find the chunks of the documents that are more relevant. This is done
using either vector-based methods (e.g KNN, cosine similarity) or character-based methods (e.g tag, date,
word matching). Naturally, the documents have been split beforehand and the embedding technique is
the same. After which the user’s input is incorporated into a template with the relevant chunks, this
boils down to rephrasing the query and making the LLM understand the distinction between the additional
resources and the question. Finally the augmented prompt is sent to the LLM for inference.

Figure 2.1: RAG architecture1

1https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
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2.2 History and press

LLM are pretrained over general corpora of texts (e.g PILE, RoBERTa), this leads to general knowledge
and often the need for fine-tuning on specific tasks. LLMs consequently generate wrong answers, intrinsic
or extrinsic hallucinations. The exact origin of hallucinations is a hot topic, with hallucination inversely
linked to the model’s size [11], or often the data is pointed as poorly filtered or skewed [12] [13], other
reasons pertain to the architecture [13]. Since not all models are trained with the same data and in the
same way, spotting common factors is difficult. Therefore, if the model showcases misinformation, in
order to mitigate this issue without addressing all possible point of defect is to directly inform the model
of the information that’s required to answer.

Text mining for question answering has been around for a long time, celebrity guesser Akinator (2007)
finds a celebrity by branching over provided information, Ask Jeeves (1997) works like a search engine to
answer questions. TV show like "Going for Gold" provides participants with increasing informative content
in order for them to answer the question the fastest. This approach had already been employed before
Lewis [10] on deep learning architecture through multi-stage generation by retrieving information through
a primary network [14] [15]. Retrieval Augmented Generation formalizes the process by dissociating the
user from the documents, the retrieval and the inference. Often compared in performance to the process
of fine-tuning [16], it’s a cheaper alternative that helps to improve closed models capabilities (e.g GPT,
Claude), for which it is impossible to fine-tune for a specific user by definition.

We are now in 2024, four years after the term "RAG" was coined. The number of papers mentioning
"RAG" has substantially increased, Semantic Scholar reports 24 in 2020 and 212 in 2023. Many companies
are now investing resources in R&D and commercializing AI solutions based on RAG systems. All biggest
cloud providers actively support RAG pipelines (i.e AWS2, GCP3, Azure4, ...)

2.3 Features

This Section describes the different features of a RAG pipeline but, contrary to Figure 2.1, the vector
database is not included. In practice, the vector database comprises different elements such as indexing,
storage, ranking and retrieval. It was deliberately omitted of the list that follows because indexing and
storage are pragmatic considerations that are out of scope. Ranking and retrieval are addressed under
the "Chunking" and "Ranking" components, because the subject of retrieval usually includes post-ranking
techniques, parsing, granularity, and other pragmatic considerations that are partially addressed in the
Chunking and Ranking features.

1. Query In a non-RAG setting, LLMs are queried directly with the initial prompt. Several techniques
and best practices have been developed and collected under the concept of "Prompt Engineering"5.
The essence of writing a good prompt is, naturally, dependent of the task but for many it revolves
around clarity, verbosity, examples/templates. These are very human-like aspects of communication.
Clarity advocates for simple sentences (avoid multiple synonyms, double negative, rephrasing), de-
limiters (abstract or literal markers for separating elements of the prompt), role-play (e.g "You’re a
helpful assistant who...") or thought process (e.g Chain-of-Thought, instruct the model to respond
by following a set of instructions). Verbosity might contradict clarity, but the general idea is to
be as detailed as possible while avoiding digression. Similar to a forum post, you want readers to
understand the situation, by providing the steps to reproduce (but obviously a model will not be
able to re-execute the problem). Examples are part of the concept of n-shot learning: you show
the type of answer expected for a provided prompt. Templating the answer to follow a given format

2https://aws.amazon.com/fr/what-is/retrieval-augmented-generation/
3https://cloud.google.com/use-cases/retrieval-augmented-generation?hl=en
4https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview
5https://www.datacamp.com/blog/what-is-prompt-engineering-the-future-of-ai-communication
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helps reducing the variance of the answer. These "best practices" should not all be applied at the
user’s level, verbosity and syntactical clarity are of course advised, but other aspects pertaining to
the generation should be excluded as they could come in conflict with rest of the pipeline.

2. Contextual information The set of documents that bear the information should be as extensive as
possible but relate to the usage of the system. If the user is expected to question some conditions
on his insurance’s contract, he might not precise "regarding the conditions of insurance I for user
U regarding S, dated on year Y". Otherwise it could cause the retrieved documents to not con-
tain the right information. The ingestion of the documents usually require parsing tools adapted
for the format, for example PDF files contains images, graphs, diagrams, page numbers, tables,
etc. Extracting the textual representation in natural-language-friendly format and removing noisy
information is not straight-forward.

3. Chunking Documents can span from a few pages to hundreds. LLMs have a limited context size,
even though recent evolution of the context size looks exponential6, the size of the context is difficult
to evaluate, and financial costs incurred by ingesting large contexts are also increasing with the model
size (GPT-4 is 10-100 times more expensive than GPT-3.5 turbo7). In a service perspective, this
cost is multiplied by the number of requests per user. These elements encourage short queries.
Aside from economical incentive, providing too much information to the query is not necessarily a
good idea, some studies highlight U-shape loss of information across long context [17]. Chunking
allows to sample only parts of the documents (hopefully the relevant ones), the techniques have
several levels of complexity8 but primarily you either set a number of characters per chunk (i.e text
chunking) or you use embedding models and split sentences based on semantic dissimilarity (i.e
semantic chunking).

4. Embedding The embedding component of a RAG pipeline is used during ranking. Competitive em-
bedding models includer SFR-embedding-mistral or SFR-Embedding-2_R9 which are neural based.
As mentioned in chapter 1.4 there are several techniques, however neural based embeddings are
more popular. This step of the pipeline is done offline for contextual information and online for
query, necessarily these two need to be embedded by the same model.

5. Ranking The query is used to locate the most relevant chunks, several techniques based on term
matching or on semantic are used to retrieve the most relevant chunks. BM25 is a popular term
matching score with several variants, but the most commonly implemented is Okapi BM25. Given a
document D, a request Q where q1, . . . , qn are his terms, avgdl the average document length, k1 and
b are parameters, f (qi , D) the frequency of term qi in document D, and IDF the inverse-document
frequency (see chapter 1.4).

score(D,Q) =
n∑
i=1

IDF(qi) ·
f (qi , D) · (k1 + 1)

f (qi , D) + k1 ·
(
1− b + b · |D|avgdl

) (2.1)

Semantic scoring involves cosine similarity and nearest neighbours algorithms (often approximate
implementation like HNSW for large corpora). Therefore the importance of the embedding model is
paramount. A common example of bad embedding is when sentences like "I like apples" and "I hate
apples" are shown more similar than "I like apples" and "I do like apples". This causes confusion and
improper ranking. Additional labels and timestamps are sometimes added to fine-tune the scoring.
Additional post-ranking processing can occur to filter the chunks in multiple steps.

6https://www.tensorops.ai/post/rag-vs-large-context-models-how-gemini-1-5-changes-the-world
7https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/
8https://www.youtube.com/watch?v=8OJC21T2SL4
9https://huggingface.co/spaces/mteb/leaderboard
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6. Prompt The integration of the query and the chunks (Figure 2.2) in a single prompt uses prompt
engineering concepts presented above. At this point the system should avoid confusion between the
instructions, the query and the contextual information. The "best prompt" is something that should
be adapted to each use case as LLMs are known to be very prompt-sensitive regardless of the model
size or architecture [18].

You are a helpful assistant, conversing with a user about the subjects contained
in a set of documents.
Use the information from the DOCUMENTS section to provide accurate answers. If
unsure or if the answer
isn’t found in the DOCUMENTS section, simply state that you don’t know the
answer.

QUESTION:
{input}

DOCUMENTS:
{documents}

Figure 2.2: Prompt template example

7. Inference The last component of the RAG pipeline is the LLM used to generate the answer. In
practice the considerations around the choice of a model are mostly convenience and popularity.
Open source models may prove as performing and closed-models but many companies do not like
the idea of retraining and managing cloud environment, usually by lack of expertise. For example,
Azure only proposes the GPT series through OpenAI, and GCP only proposes the Gemini series.

2.4 Benefits of using RAG

RAG systems are a cost-effective alternative to fine-tuning that shows increased response quality. State of
the art models that are commonly used during the inference steps are expensive to train, with companies
spending billions (if not trillions10) on GPUs. Using RAG allows for some control over the input, while
hinting the correct answer. Furthermore, the size of the required context is reduced by the chunking and
retrieval elements. Documents spanning millions of words can be captured by chunks of a few hundred
words. Naturally, this puts pressure on the quality of the retrieval mechanisms. Ideally you would want
to provide as much information as possible to the LLM and let it device the answer on its own, but most
models do not exceed 100k tokens, aside from the practical limits (that are not yet reached, with new
models boasting millions or tens of millions of tokens11) and financial constraints due to rising inference
costs, the lack of study on long contexts is discomforting to say the least. Therefore the logic should
go as "using smaller models we have been able to evaluate". However, latest models have grown more
and more popular, and their utilization cost at the same time (e.g OpenAI’s GPT-4012 has an ingestion
cost rate of $5/1M tokens and inference cost rate of $15/1M tokens, with an adult fiction book spanning
100K words, a word equivalent to 4/3 tokens, the sheer ingestion of the book already costs half a dollar),

10https://www.wsj.com/tech/ai/sam-altman-seeks-trillions-of-dollars-to-reshape-business-of-chips-
and-ai-89ab3db0

11https://github.com/mustafaaljadery/gemma-2B-10M
12https://openai.com/api/pricing/
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the subject of Retrieval Augmented Generation allows for a steep decrease of the inference and ingestion
cost by using less tokens for the same information.
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Chapter 3

Dataset and evaluation

3.1 Datasets

3.1.1 Pre-training Datasets

Large Language Models (LLMs) require extensive and diverse corpora to learn the myriad combinations of
words and syntactic structures present in human language. Pre-training datasets encompass a vast array
of text sources, including conversations, articles, comments, reactions, and books. These datasets often
range in size from gigabytes to terabytes (e.g., PushShift.io Reddit is 21.1GB, mC4 [19] is 38.49TB).
Their primary objective is to instill general knowledge and syntactic rules within the model. These datasets
are generated using web crawlers, public repositories, journals. PushShift.io Reddit is an access point for
Reddit’s comments and feeds, mC4 is a processed version from the corpus of Common Crawl’s web
crawler1.

However data used from pre-training have imbalanced distribution across languages which require
models to use a pivot language, temporarily transiton to a high-resource language or use n-shot learning
or Chain-of-Thought reasoning [20], Still, multilingualism remains a big problem, for instance Zihao li
et al. [21] shows that similarity score and embedding space coverage differences between high and low
resource languages.

3.1.2 Fine-tuning Datasets

Fine-tuning datasets are more specialized, focusing on specific tasks such as question answering, classi-
fication, summarization, and sentiment analysis. Pre-training starts with the objective of predicting the
next token, but if the query is expected to follow a certain structure or for safe responses [22]. These
datasets are typically smaller than pre-training datasets, containing thousands to millions of samples with
clear instructional labels (e.g., Unnatural Instructions [23] has 68,000 samples, Pool of Prompt (P3) [24]
has 12 million samples). Manually crafted datasets involve fine-tuning models by augmenting datasets
with additional in-context information [24] or prompt templating [25]. Automatic methods include using
specific models to incrementally modify instructions [26] [27], or rank generated responses [28].

3.1.3 Evaluation Datasets

Evaluating LLMs necessitates a diverse array of datasets to accurately measure performance across mul-
tiple applications such as sentiment analysis, natural language inference, translation, summarization, and
dialogue. Evaluations must also consider aspects like bias, robustness, toxicity, fluency, privacy, and hal-
lucination. Subject proficiency varies, as evidenced by GPT-4’s performance on specialized exams like the

1https://commoncrawl.org/
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bar exam2(note: the claim on the percentile has been rejected by a study3), adding complexity to the
evaluation process.

3.1.4 Challenges in Dataset Quality

Datasets often suffer from noise, resulting from automated parsing errors or human annotation mistakes.
This noise can lead models to learn incorrect predictions. The impact of such noise is not fully understood,
but studies like Havrilla et al. [29] suggest that dynamic noise during multi-stage inference can cause
cumulative degradation, this hints that training on multiple noisy samples may have a great impact on the
pre-training process. Reinforcement Learning with Human Feedback (RLHF) has emerged as a technique
to mitigate these issues, using human annotations to fine-tune models with methods like proximal policy
optimization. However, human intervention is costly; for example, the QuALITY dataset reports a cost
of 9.10perquestion [30].

3.1.5 Long Context Evaluation

A significant challenge in NLP is the lack of long samples in evaluation datasets. While pre-training involves
long sequences of unstructured information, evaluation tasks use shorter, cherry-picked examples. As
models now handle millions of tokens in context, understanding their performance in such settings is critical.
Datasets like QuALITY [30] (2-8k tokens), BAMBOO [6] (up to 16k tokens), and NarrativeQA [31] (up
to 63k tokens) provide longer contexts, but are primarily focused on question answering. This limits
the scope of evaluation. While some applications are dubious to study in long contexts (e.g sentiment
analysis of long texts), others are increasingly more difficult to operate (e.g how do we fix the standard
of summarization of long text?).

3.2 Metrics and frameworks

3.2.1 General discrepancies

We’ve discussed the difficulties of obtaining qualitative data for training, fine-tuning, and evaluating Large
Language Models. Evaluation is particularly challenging due to the diverse domains that must be con-
sidered, including aspects like robustness and bias to protect against prompt-based attacks [32] and the
diffusion of ethically questionable content4. NLP tasks often overlap; for instance, question answering
requires reasoning capabilities, and text summarization requires natural language inference and knowledge
completion.

Furthermore, different datasets and performance indicators for the same task often do not correlate.
This issue arises not only from the quality of the datasets but also from the metrics used and their
applicability in different contexts. Consider the evaluation framework TRUE [33], which evaluates tasks
such as "abstractive summarization, dialogue generation, fact verification, and paraphrase detection"
under the scope of "factual consistency." Although their terminology may not be standard, it is clear
enough in our context. They use 11 datasets and 9 metrics (including n-gram based, model-based, and
NLI metrics). From the outset they mention a striking difference with other works on factual consistency:
"While some previous works distinguished between inconsistent erroneous text to inconsistent correct text
(Maynez et al., 2020 [34]), we take a strict approach, requiring the text to be faithful to its grounding
text."(from 2.1 Definitions and Terminology). Moreover, not all datasets are equal. TRUE does not
use fine-grained annotation schemes [35] because most datasets lack such detailed labeling, preferring

2https://openai.com/index/gpt-4-research/
3https://www.livescience.com/technology/artificial-intelligence/gpt-4-didnt-ace-the-bar-exam-after-

all-mit-research-suggests-it-barely-passed
4https://www.scmp.com/news/china/politics/article/3263530/china-rolls-out-large-language-model-

based-xi-jinping-thought
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binary annotations for standardization. Their results show discrepancies in the top-ranking metrics for
each dataset under test aggravated when the test cases are beyond 200 tokens, highlighting the need for
careful consideration of metrics and datasets in LLM evaluation.

3.2.2 Evaluation

Large Language Models (LLMs) are complex due to their billions or trillions of parameters, despite being
composed of simple components: embeddings, transformers, skip connections, fully-connected layers,
dot product, and softmax. The combination of these elements in series and parallel renders the models
intricate and difficult to interpret. Neural networks are known for their "black box" nature5, making
evaluation crucial to understand their failures. Unfortunately, current evaluation metrics are often seen
as indicators of quality rather than as tools for identifying failures within a defined scope. High scores
do not necessarily imply good models but suggest that critical failures have not been found within limited
testing conditions. Ideally, a broader evaluation scope should reduce the likelihood of errors; however no
guarantees are provided, this is an important nuance. We have already discussed issues with datasets;
however, metrics are also not all equal. Chang et al. [5] classify metrics into two categories: automatic
and human.

Automatic metrics are time-saving and standardizing tools that do not require human intervention to
produce results. They rely on mathematical formulas and tallying. However, their values do not always
correlate, and top-scoring models for a given dataset in one metric may perform poorly in another. Recent
alternatives, such as "agent-based metrics," use LLMs to automatically evaluate responses. For instance,
Azure AI Studio6 assists in evaluating Retrieval-Augmented Generation (RAG) systems with AI-assisted
metrics like Coherence, Fluency, Groundedness, Relevance, Retrieval score, and Similarity, which are (for
most) derived from human evaluation criteria (Table 3.2).

Table 3.1: Key metrics of automatic evaluation (Chang et al. [5])
General metrics Metrics
Accuracy Exact match, Quasi-exact match, F1 score, ROUGE score
Calibration Expected calibration error, Area under the curve
Fairness Demographic parity difference, Equalized odds difference
Robustness Attack success rate, Performance drop rate

A significant issue with automatic metrics is their tendency to favor certain patterns that may lack
semantic meaning. For example, in evaluating a model’s ability to rephrase sentences, ROUGE-L measures
the longest common subsequence (LCS) between two sequences of words. Consider the sequences "the
cat and the dog" and "the cat is on the mat"; the LCS is "the cat the." The precision, recall, and F1
scores are calculated based on this LCS. Changing the sequences to "the cat and the dog" and "a cat
and a dog together" yields the same LCS length and scores, even though the semantic content differs
significantly. Perplexity, another common metric, is computed as exp{−1t

∑t
i log pθ(xi |x<i)}. For long

sequences, perplexity converges to a language-level value dominated by common words, making it less
useful for distinguishing between models. This illustrates how metrics can obscure meaningful differences.

Human evaluation remains essential for capturing nuanced aspects of model performance. Key factors
include the number of evaluators, evaluation rubrics, and the evaluators’ expertise levels (Table 3.2).
Effective human evaluation provides insights that are difficult to obtain through automatic metrics alone.
However human evaluation suffers from the lack of portability, for example evaluation frameworks with
human annotation often mention "expert" and "non-expert" evaluators, without properly defining what
is an "expert". The settings for evaluation should also be kept as neutral as possible to avoid cognitive or

5https://promptengineering.org/the-black-box-problem-opaque-inner-workings-of-large-language-
models/

6https://learn.microsoft.com/en-us/azure/ai-studio/concepts/evaluation-metrics-built-in?tabs=warning
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Table 3.2: Summary of key factors in human evaluation (Chang et al. [5])
Evaluation Criteria Key Factor
Number of evaluators Adequate representation, Statistical significance
Evaluation rubrics Accuracy, Relevance, Fluency, Transparency, Safety, Human alignment
Evaluator’s expertise level Relevant domain expertise, Task familiarity, Methodological training

sociological bias, but these settings are hardly formalized in studies. Data scientists are not educated in
psychology and sociology, this puts a veil over human evaluation. For instance, LMSYS Chatbot Arena7

uses an ELO score to rank LLMs, however the user can choose which model to put as first responder and
as a second responder (from left to right). The choice of a specific model and its position on the screen
leads to bias.

3.3 RAG

RAG systems are made of several components (Section 2.3) and each of them can impact the quality
of the response. While everything can be evaluated in terms of the response, it serves to look at other
components. Azure AI Studio suggests several metrics, namely Coherence, Fluency, Groundedness, Rel-
evance, Retrieval score and Similarity. Each of these metrics require different elements of the pipeline to
be computed. Without going into too many details (the reader can freely review them), let us mention
for instance Groundedness which requires both the query, the contextual information and the output and
serves to "measure how well the model’s generated answers align with information from the source data".
Fluency only requires the query and the output while Similarity requires the query, output and the ground
truth. However these metrics only look at textual components and do so in a mixed manner, the RAG
pipeline has other components, let us review how we can evaluate each of them independently.

1. Query The query holds elements of the target to be retrieved in the documents. Its evaluation
rests on the evaluation of the output by adapting the phrasing of the query. We can look at the
verbosity of the query, the sensitivity to noise (i.e syntactical or grammatical errors, out-of-context
characters), the formulation (i.e. Prompt Engineering) or its relevance to the target.

2. Contextual information The contextual information contains the target to be found from the query
and similarly its evaluation rests on the evaluation of the output. The key difference is the quality
of the document in terms of informativeness, noise, format, etc. The lack or addition of relevant
information can highlight the bias of the model and if the evaluation dataset has already been shown
during pre-training.

3. Chunking The documents that contain the target are to be splitted in more manageable parts. The
different approaches to chunking can be evaluated with the output.

4. Embedding Embedding is a component with already extensive evaluation methods. Since state of
the art embeddings methods involve deep learning, the models can be evaluated as any other neural
networks, that is in terms of size, input dimension, input size, ... Furthermore evaluated with regards
to proficiency in classification, ranking, clustering, etc.

5. Ranking The ranking capabilities of the system depends on previous component. When ranking is
done through the embedding, evaluation of the embedding model in terms of ranking is sufficient.
The ranking technique, whether neural-based or not, requires to find the target chunk and assures
it is at the top.

7https://chat.lmsys.org/?leaderboard
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6. Prompt The prompt contextualizes the query and the retrieved chunks, it is evaluated similarly to
the query.

7. Inference The LLM that serves to do the final inference can be evaluated in many manners. Similarly
to the embedding model, when neural-based, the LLM can be evaluated for its architecture aspects
and furthermore in terms of ethical bias, sensitivity to noise, fluency, reasoning, etc.
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Chapter 4

Related works

The evaluation of Large Language Models (LLMs) in text comprehension has been extensively studied by
the research community. However, there is a noticeable lack of evaluation protocols specifically addressing
the challenges of long contexts. Researchers have recognized the unpredictability that arises when handling
long contexts, especially when models are not trained to retrieve information from distant positions within
the text. Issues such as U-shaped memory loss, known as "Lost in the Middle" [17], and random retrieval in
long contexts (i.e., "Needle in the Haystack") are well-documented problems. Most research has focused
on adapting the training or inference processes of models to better manage large contexts.

For example, SelfExtend [36] and LongRoPE [37] propose modifications to Rotary Positional Encod-
ing (RoPE) by introducing additional factors in the encoding computation. SelfExtend employs a floor
operator, while LongRoPE rescales the rotation angle. Both methods achieve this without requiring ad-
ditional training. Another approach, IN2 [38], suggests that the challenges of long contexts stem from
biases during training, where the paragraphs that describe the task to the model are often placed at the
beginning or end of the input. IN2 addresses this by randomly positioning the answer at any point within
the context. While these solutions accommodate context sizes of up to 16,000 or 32,000 tokens (for
SelfExtend and IN2) or even 2 million tokens, they lag behind newer models boasting context windows
of hundreds of thousands or even millions of tokens. Furthermore, the feasibility of evaluating such large
context sizes remains a significant challenge, casting doubt on the practical implications of these methods.

Early-stage augmented generation demonstrated effectiveness in standalone systems for certain tasks,
such as Question Answering [39], through the concept of multi-stage inference. Today, Retrieval-
Augmented Generation (RAG) has emerged as a strong alternative to fine-tuning for solving various
tasks, with research focusing on its application and potential [40] [41] [42]. Hu et al. (2024) [43] showed
that even slight prompt perturbations could significantly alter how a RAG system responds. This issue of
prompt sensitivity is widely recognized in LLMs and is often associated with the dissemination of sensitive
information. Radeva et al. (2024) [44] developed a web framework that integrates RAG systems with
blockchains and smart agriculture. RAG systems typically operate with chunks of limited size (usually hun-
dreds of tokens at most). However, Jiang et al. (2024) [45] explored the use of longer chunks, extending
up to 4,000 tokens, which dramatically reduces the retrieval space. For instance, the number of chunks
tested against a query could be reduced from 22 million to 600,000, as demonstrated using data sourced
from Wikipedia.
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Chapter 5

Experimental setup

5.1 Context and settings

5.1.1 Context

Firstly, the Data & AI team at EY, where I completed a four-month internship, has a partnership with
Azure. Azure’s AI platform primarily integrates with OpenAI’s solutions, including Whisper for speech-
to-text, the GPT series for language modeling, and various embedding models. Consequently, my study
focused on utilizing OpenAI technologies, with the choice of embedding strategies and Large Language
Models (LLMs) heavily influenced by this context. Secondly, in selecting a topic for my thesis, it was crucial
to identify existing literature for comparative purposes while avoiding duplication of previous research.
Therefore, the choice of datasets, metrics, and LLMs was guided by relevant studies. Thirdly, it’s important
to note that working with long contexts is costly. The expenses for data ingestion and inference increase
exponentially—by a factor of 50 to 100—when moving from GPT-3.5 to GPT-4. Estimating the total cost
of my study was challenging, as trial-and-error experimentation would necessitate multiple iterations over
the data, leading to unpredictable expenses. Although open-source models were considered, they were not
necessarily more cost-effective, as the team lacked cloud infrastructure for interns. While a shared Google
Colab account with a limited budget was available, processing large contexts requires expensive GPUs,
which further constrained the scope of my research regarding both data and models. Lastly, the team I
worked with was developing a tool based on an Azure GitHub repository that utilizes Retrieval Augmented
Generation (RAG). Therefore, the subject of my research aligned with the team’s focus, and some of the
code was provided by my colleagues, which influenced the choice of storage for the documents.

5.1.2 Settings

The LLM used for the experiments was GPT-3.5-Turbo-0125. The model was accessed via either the
OpenAI API or the Azure OpenAI API endpoint (Azure ultimately feeds back to OpenAI). This model
has a context window of 16,000 tokens and is priced at $0.5 per million tokens for input and $1.5 per
million tokens for output, regardless of whether it is accessed through Azure or OpenAI. The embedding
model used across all experiments was Davinci-002, available on both platforms at a rate of $2 per million
tokens.

The primary datasets used were MeetingQA 4K and PaperQA 4K from the BAMBOO benchmark [6].
These datasets are designed to evaluate the Question Answering capabilities of language models. Both
datasets contain 100 questions each and include either a discussion among multiple participants or a paper,
each spanning up to 4,000 tokens. For each scenario, a question is posed, and the model must select
the correct answer from four options. The QuALITY dataset [30] was used sparingly for cross-checking
results. It is structured similarly to MeetingQA and PaperQA and also assesses Text Comprehension
through multiple-choice questions. Each question requires a thorough understanding of the text to derive
the correct answer. Each case (see Figures 5.1 and 5.2) contains the question, the evidence (either partly
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or entirely extracted from the context), a set of answer options labeled with letters, the correct answer,
and the content (either an interview or a paper) transcribed from websites.

{
"question": "what is Mark Thomas\u2019s attitude towards the Minister\u2019s
behavior?",
"evidence": " Mark Thomas: Again, our concern is, at the moment, that in
recent weeks..."
"options": [

"A. he thinks it is supportive.",
"B. he thinks it is impractical.",
"C. he thinks it is useful.",
"D. he thinks it is worth high praise."

],
"answer": "B",
"content": "John Griffiths AM: We’ll move on, then, to item 2 on our agenda
today..."

}

Figure 5.1: MeetingQA case example formatted in json

{
"question": "How to get additional knowledge for entities?",
"evidence": " Our evaluation of the table generation revealed that part of
the knowledge in the V&L model...",
"options": [

"A. Making V&L model pre-trained.",
"B. Supplementing image information.",
"C. Build a bigger dataset.",
"D. Supplementing textual information."

],
"answer": "B",
"content": "\nIntroduction\nVision & Language (V&L), which is the fusion of
vision and language tasks...

}

Figure 5.2: PaperQA case example formatted in json

Other elements were implemented locally and will be presented in the following sections.
Experiments were both done locally and on Google Colab, the hosting environment has no impact on

the results aside from a computation time perspective.

5.1.3 Justifications

Firstly, a GPT model was selected for reasons outlined earlier. Additionally, the company hosting my
internship primarily worked with GPT models for visibility purposes. The growing popularity of OpenAI
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provides good publicity to prospective clients, who are likely to prefer solutions built with well-known
models. Moreover, during my internship, few LLMs could handle contexts larger than 4,000 tokens, and
those that could were difficult or expensive to run on Google Colab. I lacked the resources to run large
models locally. Since the company was already developing tools with GPT models, they provided an
endpoint for API calls, which further justified using GPT.

Secondly, LLMs are currently evaluated under various frameworks across numerous tasks, including
Language Modeling, Summarization, Classification, and Reasoning. RAG pipelines are particularly effective
in retrieval tasks, as they leverage external resources to retrieve specific information. This makes traditional
Information Retrieval tasks straightforward. However, to evaluate the model’s more complex capabilities
within a RAG pipeline, I chose to focus on a Text Comprehension task. While one might argue that a
RAG system, which only retrieves parts of the context, might struggle with tasks requiring full context
comprehension, natural language tends to cluster and reiterate relevant information. For instance, in a
discussion about a football team’s strategy during a match, mentions of a player’s performance are likely
to occur within a certain timeframe and be repeated, as conversations naturally involve correlated ideas
rather than random bursts of information.

Thirdly, the BAMBOO benchmark provides multiple datasets across various tasks, including Question
Answering, Hallucination Detection, Text Sorting, Language Modeling, and Code Completion. These
datasets support evaluations over long contexts, ranging from 4,000 to 16,000 tokens. To narrow the
study’s scope, I selected the Question Answering task. This choice was partly motivated by the ease of
manually evaluating the impact of each RAG pipeline component. Additionally, other tasks, like Hallucina-
tion Detection, are not compatible with the RAG pipeline’s "query and retrieve" scheme, as they require
side-by-side comparisons or the simultaneous evaluation of multiple contexts.

Both BAMBOO’s and QuALITY’s datasets evaluate Text Comprehension over long contexts, which
cannot be easily addressed through simple information retrieval. BAMBOO was evaluated using GPT-3.5
turbo (see paper [6]), while QuALITY was assessed using Anthropic’s Claude series (see report [46]). The
evaluation process in both datasets is straightforward: if the model is expected to respond with "A" and
does so correctly, the answer is marked as correct; otherwise, it is marked as incorrect. This approach
enabled a baseline comparison. The decision to use BAMBOO over QuALITY was based on the fact
that the model under test was GPT-3.5 turbo, aligning with BAMBOO’s evaluation methodology. The
choice of these datasets was further supported by their suitability for long context evaluation and RAG
applications.

Finally, it is important to note that while both datasets offer 16,000-token versions, these were not
selected despite GPT-3.5 turbo’s ability to handle 16,000 tokens. The decision was influenced by the
constraints of the infrastructure used during my internship, which limited the window size to 50% of the
maximum to reduce usage rates and costs.

5.1.4 Pipeline

The pipeline was developed using Langchain, a Python framework designed for building applications with
Large Language Models (LLMs). Langchain provides various tools for prompt engineering, chaining com-
ponents, developing chat agents, and more. The goal of this pipeline was to explore diverse approaches
for each component rather than optimize for the best model or parameterization.

Before detailing each component of the experiments, the overall procedure is summarized below:

1. The question or evidence is used to identify the most relevant text chunk.

2. The article or meeting transcript is divided into chunks using two strategies: fixed-length chunking
and semantic chunking.

3. The top five chunks are identified using four strategies: Cosine Similarity, Exemplar SVM, BM25,
and common word comparison.
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4. The query and selected chunks are incorporated into one of three context prompts: one from the
BAMBOO benchmark and two custom-designed prompts.

5. The LLM’s response is evaluated by tallying correct and incorrect answers.

1. Query The query in a RAG pipeline fetches contextual information. In this case, the goal is to
answer questions based on an interview or publication. Two approaches were used: one using the
question provided by the dataset and the other using the evidence provided by the dataset. The
question is the natural choice, as it reflects how someone would typically ask and retrieve relevant
information. The evidence, however, is a more detailed query. The rationale is that someone with
specific knowledge might describe the problem more thoroughly. Ideally, the evidence would not be
used because it contains too much information, making retrieval too trivial. However, re-engineering
the dataset to create unbiased expert queries was too labor-intensive. It should be noted that the
query is not shown to the LLM during inference.

2. Chunking The chunking of the context follows two strategy. In both strategies, five chunks are
retrieved for ranking:

• Fixed-Length Chunking: This strategy limits chunks to a maximum of 512 characters. The
text is split using separators (e.g., double line breaks, single line breaks, spaces) until the chunks
fit within this limit. This approach may produce incoherent chunks if the content is noisy, has
many separators, or splits words.

• Semantic Chunking: In this strategy, sentences are separated based on their embeddings,
with chunks created when a significant distance is observed between consecutive sentence
embeddings. Since chunk size cannot be directly controlled, the default is to generate 30
chunks, each roughly 500 characters long. However, this method may result in chunks of
varying sizes.

3. Embedding Embeddings are generated through API calls. Although alternative embeddings (e.g.,
text-embedding-small, text-embedding-large) became available on the Azure platform later in the
year, they were not included in this study. The performance of the existing embedding model was
sufficient, and the study does not aim to justify a particular embedding model choice.

4. Ranking Four different strategies were used to rank the chunks:

• Cosine Similarity This is a widely used metric for comparing vectors. Given two vectors u and
v of dimension n, their similarity is calculated as

Cosine Similarity = cos(θ) =
u · v
∥u∥∥v∥

The advantage of Cosine Similarity is its interpretability and linear computation time in both
dimension and number of vectors. However, it is highly dependent on the quality of the embed-
ding space. For instance, using the davinci-002 model, the sentences “I like potatoes” and “I
hate potatoes” have a similarity of 0.9226, while “I like potatoes” and “I don’t hate potatoes”
have a similarity of 0.9185, even though "not hating" should be semantically closer to "liking."

• Exemplar SVM Proposed by Andrej Karpathy, Exemplar SVM uses a target chunk as the
positive example and others as negatives, classifying them with an SVM. This method was
tested out of curiosity, as it is similar to the Nearest Neighbor method used in Cosine Similarity.
The main difference is its non-linear computation time, which is required for training.

• BM25 A term-matching score mention in Section 2.3 that uses an inverse document frequency
(IDF) factor to evaluate relevance between a query and a document. There exists many
implementations which can be found in Trotman et Al. (2014) [47], but the paper does not
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conclude over a best implementation, the most famous implementation is called BM25 Okapi
(or Atire BM25 in the paper) due to historical reasons. Its simplicity in term matching is
both its strength and weakness. For example, if multiple documents use synonyms with similar
meanings, BM25 may not capture their semantic similarity. Additionally, while BM25 has
linear computation time, it can become lengthy with a large number of documents and long
queries. However its computation does not require embeddings and is linear with the number
of documents and terms in both the query and each document, however for a high number of
documents and long queries the computation proves to be lengthy.

• Common Word Comparison A simple method that ranks chunks by counting the common
words shared with the query.

5. Prompt The prompt includes the question, document, possible answers, and formatting for the
expected output. Three prompts were used (Figures 5.3, 5.4, 5.5): the BAMBOO benchmark
prompt and two custom prompts based on principles like separation and chain-of-thought. Each
prompt also includes a "system" instruction that defines the LLM as a helpful assistant, per OpenAI’s
framework.

You are given an article or a long dialogue, a multiple-choice question with four
optional answer(marked by A, B, C, D). Please choose the best answer to the
question based on the given content by responsing its corresponding letter
(either A, B, C, or D). Do not provide any explanation.

Article part n°1: ‘‘‘{part 1}‘‘‘

Article part n°2: ‘‘‘{part 2}‘‘‘

Article part n°3: ‘‘‘{part 3}‘‘‘

Question: {question}
Options: "A. {option A}", "B. {option B}", "C. {option C}", "D. {option D}"

Answer(Only give the corresponding letter (either A, B, C, or D)):

Figure 5.3: BAMBOO’s context prompt, originally the article was not subdivided, only "Article : “ ‘arti-
cle“ ‘" was written. The benchmark uses the term "Article" both for the meetings and the papers.

6. Inference The final step is inference using GPT-3.5 Turbo, with a temperature setting of 0 to ensure
consistent outputs. The LLM’s responses are then evaluated as correct or incorrect and tallied as
accuracy.

5.2 Data management

The datasets used in this study were provided in JSON format and transferred to a local directory for
processing. All data manipulations were conducted locally, with results saved accordingly. During the initial
inspection, several questions were removed due to issues such as an incorrect number of options, making
them either trivial or unanswerable. Additionally, one redundant question was identified and excluded.
Although the research team was notified of these issues early in the study, no response was received. As
a result, 21% of the original dataset was removed, leaving 84 cases from the MeetingQA 4K dataset and
74 cases from the PaperQA 4K dataset, for a total of 158 cases.
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Your task is to read a paper or an interview between people, after which a
question with several choice is given,
please answer to the best of your ability by a giving the letter corresponding to
the right answer.
First, the interview follows AFTER the disclaimer "CONTENT HERE:".
Second, the question follows AFTER the disclaimer "QUESTION HERE:".
Third, the choices follow AFTER the disclaimer "CHOICES HERE:".
Lastly, the answer you will provide MUST be one of the letter provided in the
choices and follows AFTER the disclaimer "ANSWER HERE:"

CONTENT HERE:
Part n°1: ‘‘‘{part 1}‘‘‘

Part n°2: ‘‘‘{part 2}‘‘‘

Part n°3: ‘‘‘{part 3}‘‘‘

QUESTION HERE:
{question}

CHOICES HERE:
A. {option A}
B. {option B}
C. {option C}
D. {option D}

ANSWER HERE (Only give the corresponding letter (either A, B, C, or D)) :

Figure 5.4: First context prompt (CTX1). The prompt does not use separators but instead properly
defined what will follow. This is more akin to a chain-of-thought approach.
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Act as a helpful assistant, a question is provided and you must respond to the
question by picking an answer among multiple choices.
The answer MUST be the LETTER of the choice you have picked and best responds
to the question even if you cannot find evidences in the provided information.

Here is the question you have to answer :
##############################################################################
##############################################################################
{question}
##############################################################################
##############################################################################

Here are all possible choices you can pick to answer the question:
##############################################################################
##############################################################################
A. {option A}
B. {option B}
C. {option C}
D. {option D}
##############################################################################
##############################################################################

Here are the information you are provided to answer the question, this is either
a paper or a discussion between several people:
##############################################################################
##############################################################################
Article part n°1: ‘‘‘{part 1}‘‘‘

Article part n°2: ‘‘‘{part 2}‘‘‘

Article part n°3: ‘‘‘{part 3}‘‘‘
##############################################################################
##############################################################################

The answer MUST be the LETTER of the choice you have picked and best responds
to the question even if you cannot find evidences in the provided information.
Here are all possible choices you can pick to answer the question:
##############################################################################
##############################################################################
""" + ’\n’.join(choices) + f"""
##############################################################################
##############################################################################

What is the answer? (Only give the corresponding letter (either A, B, C, or D))

Figure 5.5: Second context prompt (CTX2). The prompt presents each part by using non-ambiguous and
well-defined separators.
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Results

6.1 Reproduction

BAMBOO acc.(%) CTX1 acc.(%) CTX2 acc.(%)
Original & Raw MeetingQA/PaperQA 4k 75.00/78.00 - -
Clean & Parsed MeetingQA/PaperQA 4k 77.00/75.00 83.33/85.13 71.42/77.02

Table 6.1: Accuracy of the model with the original content across three context prompts. The first row
concerns the original dataset with raw answers (if the answer does not start by the right letter is considered
incorrect), the second row concerns the dataset with removed rows and the answer is manually parsed
even if the format is wrong. The accuracy for CTX1 and CTX2 are not generated for the original dataset
because the model produces answers that are ill-formatted. This leads to a great decrease of accuracy,
also their results are not important for this section.

One of the primary objectives was to reproduce the results reported in the BAMBOO benchmark using
the MeetingQA 4K and PaperQA 4K datasets, evaluated with ChatGPT-3.5 Turbo. The original paper
reported accuracies of 75% and 78% for these datasets, respectively. The reproduction of these results
yielded similar accuracies, with 77% for MeetingQA 4K and 75% for PaperQA 4K. The slight variations
in accuracy may be attributed to differences in the model’s save points.

However, during this reproduction process, it became evident that the model often generated outputs
in an incorrect format, requiring manual cleaning. A brief review of the evaluation code provided by the
BAMBOO benchmark on their GitHub repository1 revealed that they simply removed escape characters
and whitespace. Following this, we re-evaluated the datasets after manually correcting the ill-formatted
answers, resulting in an improved accuracy of 81.65%.

Unless otherwise stated, all future results will refer to this cleaned dataset with parsed answers. Addi-
tionally, when testing the model with two alternative context prompts, we observed a significant variance
in accuracy, ranging from 71.42% to 85.13%, highlighting the model’s sensitivity to prompt formulation.

6.2 Needle In A Haystack

To further understand the behavior of the model in handling long contexts, we conduct the Needle In
A Haystack (NIAH) test, a method devised by Greg Kamradt2 and presented on X. The test involves
selecting a lengthy document (the haystack) and randomly inserting a fact (the needle). The model is
then tasked with finding the fact, and a second model evaluates the accuracy of the output on a scale
from 1 to 10. In our experiments, the same model was used for both retrieval and evaluation.

1https://github.com/RUCAIBox/BAMBOO/tree/main
2https://x.com/GregKamradt
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Figure 6.1: Needle In A Haystack pressure test with a simple and a more complex needle. The simple
needle was "The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny
day.", the complex needle was "A simple cost-effective laser diode can selectively amplify only one sideband
of a fiber-electrooptically-modulated seed laser and produce moderate-power phase-locked light with sub-
Hz relative linewidth and tunable difference frequencies up to 15 GHz.". The haystack was made of some
of Paul Graham’s essays. The retrieval and evaluation was done with the same model. The lighter the
color, the worse is the score.

Originally, G. Kamradt tested GPT-4 128k context and Claude-2.1 200k using this method (Figures
7.1 and 7.2). His findings indicated that both models struggled to retrieve the fact when over 50% of
the context was filled. However, it’s important to note that these tests were not intended to measure the
absolute performance of the models, and the models have since been retrained or replaced. G. Kamradt’s
conclusions, while insightful, lacked certain details, and given the high cost of running NIAH tests, further
exploration is challenging. For instance, his tests on GPT-4 cost approximately $200, while those on
Claude-2.1 reached around $1,000. For independent researchers without significant funding, these costs
present a substantial barrier. In comparison, a single NIAH test on GPT-3.5 cost around $5, while the
jump from GPT-3.5 to GPT-4 raises the cost fiftyfold.

In the context of G. Kamradt’s findings, the key observations were primarily focused on areas where
models failed to retrieve the fact, particularly in cases where the needle was deeply embedded in a large
context. However, his rationale for choosing specific needles and documents lacked detailed consideration.

When conducting NIAH on GPT-3.5 Turbo, two needles were used: the original from G. Kamradt and
a second from a 2024 academic paper. The second needle was selected to ensure that the information was
not part of the model’s training corpus, given the model’s assumed knowledge cut-off. The simple needle
was: "The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day."
The complex needle was: "A simple cost-effective laser diode can selectively amplify only one sideband of
a fiber-electrooptically-modulated seed laser and produce moderate-power phase-locked light with sub-Hz
relative linewidth and tunable difference frequencies up to 15 GHz."

The results, shown in Figure 6.1, reveal that the model consistently found the complex needle, even
in long contexts, while it occasionally failed with the simple needle when more than 30% of the context
was used. Additionally, unlike G. Kamradt’s findings, no significant drop in performance was observed in
the upper right quadrant (large context, end of context). More recent models, such as Claude 3 from
Anthropic, have also shown lower scores in this region, indicating variability in LLM performance during
information retrieval in (very) large contexts. For a reminder, we are limited to half the size of the context,
with only 8k tokens.

One possible hypothesis is that training larger models with extensive context sizes is more challenging
due to a lack of high-quality training data for these scenarios. This might explain some of the inconsis-
tencies observed in performance. Upon closer examination of the results, the perfect NIAH scores for the
complex needle could be attributed to the lack of overlapping terms between the needle and the surround-
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ing text, unlike the simple needle, which contained common words such as "best thing", "San Francisco",
and "Park". The simple needle’s frequent word repetition throughout the context may confuse the model,
while the technicalities of the complex needle’s terms helps it stand out.

The rationale for using a long, technical fact was based on the assumption that "difficult things are
harder to remember," a perspective rooted in human cognition. However, while LLMs can exhibit human-
like behavior, they do not "think" like humans. Consequently, the surprise factor of encountering a complex
fact within an unrelated context may aid the LLM in recalling it, suggesting that what we perceive as
"complex information" may differ significantly for LLMs.

6.3 Basic RAG pipeline

Continuing our experiments, we implement a standard RAG pipeline on the MeetingQA 4K dataset.
The pipeline consists of the following components: a question, fixed-length chunking, ranking by cosine
similarity, and the BAMBOO context prompt. In this setup, the question is used to retrieve the most
relevant content chunks, which have been split using fixed-length chunking. Both the question and chunks
are embedded using the davinci-002 model, and the top chunks are selected based on their cosine similarity
with the question embedding. Finally, the BAMBOO context prompt incorporates these chunks into a
response template, as shown in Figure 5.3.

Case GT RAG Case GT RAG Case GT RAG Case GT RAG
1 B B 26 B B 51 A D 76 A A
2 A A 27 - - 52 D D 77 A C
3 C C 28 C A 53 A A 78 A A
4 C D 29 C C 54 B B 79 C A
5 - - 30 C C 55 B None 80 A A
6 B B 31 - - 56 A A 81 - -
7 A A 32 A C 57 A B 82 - -
8 D D 33 D D 58 - - 83 C A
9 A A 34 A A 59 - - 84 - -
10 B B 35 C D 60 C C 85 - -
11 A A 36 B B 61 B D 86 D D
12 C D 37 D D 62 - - 87 B B
13 B B 38 B B 63 C C 88 C B
14 D D 39 C B 64 C C 89 A A
15 D D 40 D D 65 C C 90 A B
16 - - 41 - - 66 D D 91 D D
17 A A 42 B B 67 D B 92 B A
18 B B 43 B B 68 D D 93 D D
19 C C 44 C C 69 C C 94 C C
20 D D 45 B B 70 C C 95 D D
21 - - 46 D D 71 A A 96 - -
22 A A 47 A A 72 B B 97 - -
23 C B 48 C C 73 C C 98 B B
24 C C 49 C C 74 C C 99 C B
25 C C 50 B B 75 A A 100 - -

Table 6.2: Results of the basic RAG pipeline over MeetingQA 4K. Removed cases have no reported results,
and absence of reponse from the LLM after inference are marked as "None". In any cases if the RAG
prediction is wrong it is visible in red.

Examining the results (Figure 6.2), we observe a total of 19 incorrect answers, including one instance
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(case 55) where the language model (LLM) refused to produce an answer, citing insufficient information.
The resulting accuracy is 65/84 = 77.38%. The incorrect answers can stem from various factors such
as lack of information, reasoning errors, random guessing, and prompt sensitivity. These issues are often
interconnected; for example, a lack of information can lead to reasoning errors, or unclear prompts can
result in random guessing.

Case 4 Analysis:

Question : "Why Evans says WRU has unique role in the sporting, economic and
civic life in Wales?",
Options:
- A. Because it’s named after Wales.
- B. Because it has nearly 8,000 players, 300 clubs.
-> C. Because it’s well-funded and big, with school youths from all over Wales.
- D. Because it is well-funded and provides public services without using public
funds.
Evidence: "We have 80,000 players across 300 clubs, and many more thousands of
young people in schools across Wales playing rugby. We’re a showcase for Wales
to the world. We are a £100 million-turnover business, and that includes some
public funding."

In case 4, the evidence includes several key details: "80,000 players", "300 clubs", "many more
[...] across Wales", "£100 million-turnover", and "includes some public funding". Option A is clearly
incorrect, while Option B incorrectly states the number of players. Options C and D are more plausible.
The pipeline ultimately selected Option D. The first retrieved chunk reads, "We fully understand [...] the
WRU’s unique role in the sporting, economic, and civic life in Wales [...]. We are a £100 million-turnover
business, and that". However, the reference to public funding is truncated, and mentions of players across
the country are absent, creating ambiguity between Options C and D. This issue appears to be related to
the chunking process.

Case 12 Analysis:

Question : "What key support scheme is mentioned as not being in the next budget,
and what is its current impact on households according to the response from Luke
Young?",
Options:
- A. The UK Government support scheme; it has had a significant positive impact
on households.
- B. The UK Government support scheme; it has not had a significant impact on
households.
-> C. The Wales fuel support scheme; it has had a significant positive impact
on households.
- D. The Wales fuel support scheme; it has not had a significant impact on
households

Evidence: "Luke Young: i. the Wales fuel support scheme will not be in the next
budget, and UK Government support will reduce alongside the energy guarantee,
alongside rising prices. ii. The UK Government and Welsh Government support have
helped a large group of people with direct funding and direct payments over the
last few months."
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In case 12, the evidence mentions: "Wales fuel support scheme will not be in the budget", "The UK
Government and Welsh Government support have helped a large group", and "direct funding and direct
payments". Options A and B do not reference a specific support scheme, while Options C and D have
slight phrasing differences, with Option C being the correct answer based on the phrase "helped a large
group." Although all key elements are present in the retrieved chunks, they are fragmented. The mention
of support from the UK and Welsh Governments is separated from the reference to the Wales fuel support
scheme. The pipeline selected Option D, but this choice may have been influenced by a phrase in the third
chunk: "we’re starting to see an increase in households who haven’t necessarily had financial difficulties
before". While this phrasing does not directly relate to the Wales fuel support scheme, it might introduce
confusion. In this case, the chunking process appears adequate, but the model’s reasoning or sensitivity
to ambiguous language could be at fault.

Case 55 Analysis:

Question : "What is the committee’s decision regarding item 3.2 on the agenda,
and what factors influence this decision?",
Options:
- A. The committee decides to close the petition.
-> B. The committee decides to keep the petition open.
- C. The committee decides to forward the petition to the Welsh Government.
- D. The committee decides to wait for the consultation before making a decision.

Evidence: "I think it is appropriate that we can keep this open and review it,
perhaps later on this year, when either the counterpetition comes to committee
or the consultation has been launched and closed."

In case 55, where the LLM failed to provide an answer, the evidence includes the following elements:
"appropriate that we can keep this open", "counterpetition", and "consultation has been launched and
closed". Option A contradicts the first element, Option C is unrelated, and Option D mentions waiting
for the consultation but also contradicts the first element. Although the question includes a sub-question
about factors influencing the decision, only Option D refers to the consultation. However, the evidence
clearly supports Option B. None of the retrieved chunks mention "Item 3.2" or keeping something open.
Instead, the chunks refer to other items like "Item 2.1" or "Item 2.3". The query failed to retrieve the
correct chunk, and the ranking did not prioritize the relevant information. Surprisingly, the term "Item
3.2" was never retrieved, possibly due to cosine similarity favoring semantic closeness over term matching.

Across these examples, it is clear that errors in the RAG pipeline are not always due to a single element,
such as chunking or ranking. In some cases, the chunking might omit critical terms, while in others, the
ranking may not identify the most relevant information. In Sections 6.5 and 6.6, we will explore additional
examples that challenge these assumptions and suggest other potential issues.

6.4 Chunking and Ranking

6.4.1 Evidence

To effectively compare different chunking strategies, it is essential first to identify the position of the
evidence within the contextual information. The BAMBOO benchmark does not specify the exact location
of the evidence, and in many cases, the evidence is not confined to a single location but is dispersed
throughout the text. Therefore, it is necessary to evaluate each case individually to determine how the
evidence is generally located and then assess the ranking performance when using the query.

In this analysis, we consider the following settings: fixed-length chunking, five retrieved chunks, and
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Chunk position
Case Ranking 1 2 3 4 5

1 BM25 17 18 5 6 13
Cosine 17 18 13 7 14
Naive 17 18 5 12 6
SVM 17 18 13 1 12

2 BM25 10 11 18 29 20
Cosine 10 11 14 3 6
Naive 10 11 17 13 20
SVM 10 11 4 6 7

3 BM25 5 11 6 1 26
Cosine 11 6 31 7 29
Naive 5 11 6 1 33
SVM 14 11 6 31 7

Table 6.3: Ranking of the first five chunks created using fixed-length chunking from three cases of
MeetingQA 4K by several technique, namely, BM25, Cosine Similarity, Naive comparison of common
words, Exemplar SVM. The numbers displayed are the chunks’ indices from the chunking strategy. The
chunks are queried using the evidence provided by the dataset.

four different ranking strategies. Focusing on the MeetingQA 4K dataset, we utilize the evidence provided
for each case. Table 6.3 illustrates the lack of agreement among the ranking strategies in case 3, while
in cases 1 and 2, the strategies largely concur on the top two chunks. The phrasing of the evidence by
the benchmark may contribute to these discrepancies, explaining the disagreement observed in case 3.
However, the divergence in ranking beyond the top two chunks is also evident in cases 1 and 2. Specifically,
in case 3, while the first chunk is contested by all four strategies, chunk 11 consistently appears among
the top ranks. We will now examine case 3 in more detail, focusing on chunks 5, 11, and 14.

Question : "What is the current status of implementing a public health approach
to preventing gender-based violence in Wales according to Lara Snowdon’s
testimony?"

Evidence: "However, I think it’s fair to say that, at the moment, the approach in
Wales is very much in its infancy."

Chunk n°5: "Lara Snowdon: Thank you, Chair. We really welcome the inclusion of a
public health approach in the violence against women, domestic abuse and sexual
violence strategy. I think it will be really key to achieving the goal in the
Violence against Women, Domestic Abuse and Sexual Violence (Wales) Act 2015 of
ensuring that the Welsh Government implements preventative practice to prevent
VAWDASV. However, I think it’s fair to say that, at the moment, the approach in
Wales is very much in its infancy. So, we have"
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Chunk n°11: "Lara Snowdon: As I said, it’s really an approach that I think is in
its infancy in Wales. So, there is this commitment. I think there’s a real drive
by a range, particularly, of public sector agencies to understand what this is
and to implement it, but there’s still a long way to go, I think, in terms of
implementing it fully.I wanted to mention as well the serious violence duty. So,
this is another legislative driver that we have at the moment to implement a
public health approach. The serious violence"

Chunk n°14: "ensure there isn’t duplication or siloed working, really. So, as I
said, quite a long way to go to implement it fully, but we certainly now have
some of the drivers to ensure that it can be put into place."

The evidence for case 3 mentions an approach in its "infancy," a critical detail for answering the
question. This phrase is found verbatim toward the end of chunk 5, which is not ranked among the top
five by Cosine Similarity. However, chunk 11 begins with the phrase "I think is in its infancy in Wales,"
and is ranked first by Cosine Similarity. While this fortunate alignment highlights the variability in evidence
placement, it also underscores the need to be cautious, as key elements of the evidence may appear in
multiple locations. In fact, both chunks 5 and 11 contain critical parts of the evidence and are ranked
highly by BM25 and the naive approach. This alignment makes sense, given that the evidence is directly
excerpted from the text, making term-matching strategies more effective. Additionally, BM25 and the
naive approach often agree or have minimal rank differences.

Further review of other cases shows that evidence is frequently found in multiple parts of the text,
either in fragments or in its entirety. Term-matching strategies tend to place chunks containing these
fragments in the top ranks, whereas semantic ranking often positions the evidence lower. However, in
most cases examined, retrieving the top five chunks is sufficient, as at least one chunk containing the
evidence is typically found among the top three, even with semantic ranking. In Section 6.5, we will
explore examples where the RAG pipeline fails, despite successfully retrieving the evidence chunks.

6.4.2 Position

Having established some confidence in the chunk locations, despite possible imperfections due to chunking
cutoffs, we can now evaluate the positions of chunks when using the query. Scoring these positions is
not straightforward. Although we could simply compare the offset using a term-matching ranking of the
evidence, previous examples have shown that chunk positions may not always rank first or second, and
multiple chunks may be involved. Therefore, we need a scoring method that accounts for these factors.
We aim to assign a score that reflects whether chunks are present and well-ranked, with a perfect score
of zero indicating alignment with the evidence position. Thus, our scoring method must consider both
chunk position and rank.

Given A and B two ordered sequences of length n of elements 1 ≤ Ai , Bj ≤ m, we calculate their
distance D(A,B) by minimizing the sum of the distances between paired elements Ai , Bj , as follows:

D(A,B) = min
σ∈Sn

n∑
i=1

αdr (Ai , Bσ(i)) + (1− α)dp(Ai , Bσ(i))

where
dr (Ai , Bσ(i)) = |i − σ(i)|

dp(Ai , Bσ(i)) = |Ai − Bσ(i)|
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and σ is a permutation of indices {1, ..., n}, Sn is the set of all permutations of n elements, α is a value
between 0 and 1 that weighs the importance of the rank distance dr compared to the positional distance
dp.

To normalize the distance, we use the rank distance normalized by the worst rank pairing dr (Ai , Bσ(i)) =
|i−σ(i)|
n−1 , and similarly normalize the positional distance dp(Ai , Bσ(i)) =

|Ai−Bσ(i)|
m−1 . Finally, we divide the total

sum by n:

D(A,B) = min
σ∈Sn

∑n
i=1 α

|i−σ(i)|
n−1 + (1− α)

|Ai−Bσ(i)|
m−1

n

Note: In practice, we limit n to the number of chunks, as not all documents are split into the same number
of chunks

In summary, this is an "assignment problem," where we aim to minimize the cost of pairing elements
from two sets. We use the Hungarian Algorithm, which operates in O(n3) time, to find the optimal
pairing.

Figure 6.2: Evaluation of different ranking strategies on MeetingQA 4K and PaperQA 4K together when
retrieving five chunks. The target ranking is assumed by using the evidence as query and ranking by BM25.
The different strategies are run on either the question (left) or evidence (right, for comparison purpose)
as query, evaluated case by case by applying Hungarian Method and then plotted together. The alpha
value is set to 0.05 to penalize more the absence of the evidence chunk than the ranking.

We calculated these distances for both the MeetingQA and PaperQA datasets combined, providing
a larger sample for analysis (see Figure 6.2). The alpha value was set to 0.05, prioritizing the presence
of good chunks over their exact ranking order. A comparative plot of rankings using evidence shows the
appearance of good distributions. Naturally, achieving a good rank is trivial with evidence, but it’s worth
noting verbosity of the evidence remains an issue for semantic ranking strategies. Cosine Similarity and
Exemplar SVM exhibit broader density, while the naive term-matching strategy exhibit results more parallel
to the target due our preliminary analysis on the ability of term-matching strategies to locate evidence
effectively. However, this advantage diminishes when querying with the question, where Cosine Similarity
shows the best performance, followed closely by Exemplar SVM. Nevertheless, the distributions are broad
across all strategies, indicating no clear winner.

Finally, the reader can find additional parameterizations of the pipeline and their effects on the distances
in the appendices. Notably, increasing the number of chunks leads to more concentrated distributions closer
to the evidence distribution, which is expected since more chunks increase the likelihood of retrieving the
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correct ones. However, adding more chunks contradicts the goal of this study, which is to achieve high
response quality with a reduced context length. Increasing the alpha value also leads to more concentrated
distributions because the Hungarian method tends to pair chunks within a closer range when the ranking
penalty is high, artificially lowering the score without testifying an actual quality of retrieval.

6.5 Comparative results

Figure 6.3: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
BAMBOO run on three settings: Full, RAG, Evidence. The RAG is set with cosine similarity ranking,
question as query and textual chunking. The Full setting is the baseline using the whole article, RAG is
using the pipeline with defined parameters, Evidence uses this evidence is the Full setting where the article
is replaced by the evidence. Each case label tells the number of case that passed or not in the designated
settings. For examples,"FRE" counts cases that passed in all settings, "F-E" counts cases that passed
only in Full and Evidence settings.

To further explore the capabilities of RAG systems, we will examine different RAG pipelines and draw
conclusions based on their performance. Figure 6.3 presents the results from the RAG pipeline we have
been using until now in this until now in this chapter. It shows the count of cases across three settings
incorporated into the BAMBOO context prompt: the full article setting (F), the RAG pipeline (R), in this
case with Cosine Similarity, question as query, and textual chunking, and the evidence setting (E) which
is similar to the full article, but with the article replaced by the evidence as-is. These settings provide
two baselines alongside the RAG system: the assumed capabilities of the LLM with full context and the
upper limit of the LLM’s reasoning capabilities with evidence as-is. Using evidence represents an ideal
RAG pipeline that perfectly captures the information needed to answer the question.

The plots reveal interesting distributions of cases across these settings. Let’s review each combination:

• "FRE": The model passed 108 out of 158 cases across all settings.

• "FR-": The model failed to answer one question even when provided with evidence.

• "F-E": The RAG pipeline failed to retrieve relevant or clear information in 16 cases.

• "F–": The full context was needed to answer four questions, which neither the RAG nor the evidence
provided.
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• "-RE": The full context introduced confusion in 10 cases, where RAG provided a positive contribu-
tion.

• "-R-": There were no cases where only the RAG pipeline successfully answered the question.

• "–E": In nine cases, the RAG pipeline failed to clarify a (possibly) confusing context, because the
evidence was sufficient to answer.

• "—" The model failed to answer the question in all settings, likely due to inadequate reasoning
capabilities.

The purpose here is not to defend or promote the model but it’s worth noting its strong performance,
with a large number of "FRE" cases and very few "—" cases. The accuracy scores are high, ranging
from 75.32% to 90.51%. The conclusions drawn from these settings attempt to explain these values,
though many will be further examined in the following sections. Columns 1, 3, 5, and 7 are critical for
understanding RAG’s contributions, while columns 2, 4, and 6 are more related to noise and will receive
less attention. Columns 3 and 7 highlight where the RAG setup was suboptimal, indicating areas for
improvement in the pipeline. Meanwhile, improvement to the RAG pipeline should be reflected on the
columns 1 and 5 should, with any reduction in "F-E" and "–E" cases.

Figure 6.4: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
BAMBOO run on three settings: Full, RAG, Evidence. The RAG is set with Cosine Similarity ranking,
question as query and semantic chunking (left) or BM25 ranking, question as query and text chunking
(right).

In Section 6.3 we went over a couple examples, and some of the issues were explained by the chunking
that failed to capture the whole sentence or the ranking that failed to bring up the correct chunks. Figure
6.4 tells us that a better chunking may indeed split the contextual information at appropriate spots allowing
to correctly answer the question. Even more, we can see that using a different ranking strategy leads
to worse results. This is sensible with the elements we have covered in Section 6.4.2, where Cosine
Similarity captures better the semantic relationship between the query and the chunks when the query is
the question, because BM25 cannot match enough terms. Using semantic chunking increase by 5% the
accuracy of the pipeline and makes it competitive with the Full settings, without a context substantively
smaller. This can be seen by the "F-E" and "F–" columns that are smaller than on Figure 6.3.

In Section 6.3, we discussed several examples where issues arose due to chunking that failed to
capture complete sentences or ranking that did not surface the correct chunks. Figure 6.4 illustrates
that improved chunking can indeed split contextual information at the right points, leading to correct
answers. Additionally, we see that using a different ranking strategy can result in poorer outcomes. This
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aligns with the findings in Section 6.4.2, where Cosine Similarity better captures the semantic relationship
between the query and the chunks when the query is the question, as BM25 cannot match enough terms.
Using semantic chunking increases the pipeline’s accuracy by 5%, making it competitive with the full
setting, without substantially reducing context size. This improvement is evident from the smaller "F-E"
and "F–" columns compared to Figure 6.3.

Figure 6.5: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
BAMBOO run on three settings: Full, RAG, Evidence. The RAG is set with Cosine Similarity ranking,
evidence as query and semantic chunking (left) or BM25 ranking, evidence as query and text chunking
(right).

In Figure 6.5, we observe a similar accuracy increase for RAG settings when using evidence as the
query. The "F-E" column is nearly eliminated, and some cases from the "–E" column are shifted to
"-RE" compared to Figure 6.3.

Naturally using evidence simplifies the problem, the key takeaway is that the RAG pipeline doesn’t
necessarily return the evidence itself but rather chunks that align with the query, which in this case is the
evidence. Therefore, the verbosity of the query is a crucial factor. The more detailed and precise the
query, the easier it is for the system to retrieve the correct chunks. While it might seem unnecessary to
use an external system to answer a question we’re already comfortable with, there’s a difference between
a well-formed question and a poorly defined one. An individual may have knowledge about a problem
without knowing the exact answer, making explicitness key.

Additionally, we see that both ranking techniques achieve similar accuracies when using evidence as
the query, with Cosine Similarity slightly ahead. This suggests that while Cosine Similarity might be a
better ranking metric, this is not the primary focus of our study. Readers can refer to the appendices
for examples where BM25 outperforms slightly Cosine Similarity. Thus, the ranking technique’s impact
appears limited.

Prompt Sensitivity Lastly, it’s important to note that all results exhibit even greater variation across
different context prompts. The general trends we’ve described hold, but the degree of improvement varies.
For example, in Figure 6.6, the accuracy increase from using semantic chunking is less pronounced with
context prompt 1 than with context prompt 2. Surprisingly, while RAG performance increases only slightly
with context prompt 1 (even without semantic chunking, it shows poor results), the full setting achieves
84.18% accuracy, outperforming both the BAMBOO prompt (81.65%, Figure 6.4) and context prompt
2 in the full setting (74.05%, Figure 6.6). The content of the article or chunks does not change, but it
appears that some prompts are better suited to handling large contexts.

(Additional figures are available in the appendices. All results are presented across the three context
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Figure 6.6: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
1 (left) and 2 (right) run on three settings: Full, RAG, Evidence. The RAG is set with Cosine Similarity
ranking, question as query and semantic chunking.

prompts, and the reader is encouraged to have a look at the performance disparities affecting all settings.)

6.6 Comments and analysis

Summary and Key Factors Our analysis reveals that certain components, particularly the chunking
strategy, query verbosity, and context prompt, significantly affect the quality of the RAG pipeline. Through-
out our efforts, we have attempted to rationalize the observed results. However, a central issue across all
pipeline configurations is the "F-E" column. The primary factor contributing to RAG’s inability to achieve
results comparable to the baseline is the quality of chunking. Notably, the most substantial reduction in
"F-E" cases occurred when we used the evidence as the query, suggesting that the precision with which
the evidence chunk is retrieved is critical. Although the chunking strategy positively influences the overall
quality of RAG, the strong reduction in "F-E" cases with textual chunking indicates that chunking indi-
rectly aids the ranking process more than it reduces noise. This reasoning underscores the importance of
the ranking strategy, even though no single approach emerged as a clear candidate based on the results or
their distance scores (see Section 6.4.2). Ideally, even with poorly defined questions, an effective ranking
strategy should compensate for a lack of verbosity in the query and help identify the most relevant chunks.

Prompt Sensitivity The sensitivity of the model to different context prompts has not received sufficient
attention in our results. To address this, we conclude by examining the discrepancies in "F-E" cases
across different prompts.

We have highlighted several factors that influence the selection of components for a RAG pipeline.
While some are within our control, others depend on the user’s ability to convey their intentions clearly,
thereby optimizing the retrieval process. However, does improving our RAG pipeline through chunking,
ranking, or other methods guarantee consistent improvements in all scenarios? We might assume that
reducing "F-E" cases means an across-the-board improvement, but this is not necessarily the case. In
Figure 6.7, we observe the different cases that populate the "F-E" column across various strategies and
context prompts. The only case consistently found across all prompts is MeetingQA case 28. Analyzing
the specific causes of failures on a case-by-case basis proves impractical. For example, PaperQA case 38
failed when using Cosine Similarity but not with BM25, yet this inconsistency does not hold across all
prompts. Case 38 failed with Cosine Similarity, using the question as the query and textual chunking in
prompts 1 and BAMBOO, but succeeded in prompt 2. We might hypothesize that certain characters in
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the retrieved chunks conflicted with the prompt, but a review of these chunks reveals nothing unusual.
Some cases do involve content with Chinese characters or escaped characters due to parsing errors from
source web pages, but this particular case does not exhibit those issues. Additionally, cases involving noisy
characters do not necessarily align with the discrepancies observed here.
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Figure 6.7: Discrepancies of the "F-E" cases across different RAG pipelines and prompt contexts. Tiles
are colored when the "F-E" case is found and otherwise gray. Strategies are : CQT/CET for Cosine
Similarity ranking, question/evidence as query and textual chunking; BQT/BET for BM25 ranking, ques-
tion/evidence as query and textual chunking, CQS for Cosine Similarity ranking, question as query and
semantic chunking.
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Chapter 7

Conclusion

The evolution of language models has been marked by significant scientific breakthroughs over the past
century. Beginning with Andrei Andreevich Markov’s pioneering work in statistical language modeling
using graph theory, subsequent developments in coding and information theory paved the way for the
advent of computers and their immense processing power. This progression led to the emergence of
neural language models, starting with recurrent models and eventually giving rise to transformer-based
architectures that now underpin Large Language Models (LLMs). In less than a decade, neural language
modeling has advanced to a point where these models can be applied across various fields, provided they
have been appropriately trained. However, training these models is expensive and requires specialized
infrastructure. To mitigate this, Retrieval Augmented Generation (RAG) offers a way to enhance LLMs
by augmenting the input prompt with additional information, eliminating the need for costly retraining. By
integrating relevant external knowledge, RAG systems can improve the quality of responses, though this
process involves multiple components, such as query formulation, context splitting, and chunk ranking.

RAG systems excel in answering questions where the required information can be extracted from locally
within the source documents. However, their effectiveness is less apparent when questions necessitate
contextualized knowledge. This research demonstrates that by fine-tuning the components of RAG sys-
tems, we can achieve performance close to settings where the entirety of the context is required. RAG
is particularly valuable for reducing token consumption, sometimes by tenfold or more, depending on its
configuration. This is especially important given the high costs associated with current LLMs (e.g., GPT-4
incurs 50 to 100 times the usage cost of its predecessor). As such, RAG systems represent a significant
step toward making LLMs more accessible.

In this study, we evaluated text comprehension tasks using documents composed of meeting transcripts
and papers, each up to 4,000 tokens in length. We explored various chunking and ranking techniques and
analyzed how RAG systems perform with these methods. Our findings indicate that the impact of each
component is neither balanced nor stable, with prompting sensitivity leading to varied results. Generally,
more verbose queries, semantic chunking, and semantic ranking improve the final generation. However,
query verbosity is user-dependent, and while chunking strategies can be tailored, the effectiveness of rank-
ing mechanisms is influenced by both the context and the query. Term-matching ranking appears better
suited for long, verbose queries, whereas semantic ranking performs better with shorter queries. Never-
theless, the contribution of each component is significantly affected by the prompt used to contextualize
the task. From a RAG system’s perspective, this sensitivity remains largely beyond our control. Despite
occasional failures, RAG systems are worth investing in, though they should be approached with caution.

Finally, a key motivation for this work was to highlight the lack of evaluation frameworks for large
contexts, particularly as models continue to grow in size and handle increasingly large contexts without
adequate evaluation procedures. While RAG systems circumvent the need for large contexts, they cannot
be universally applied to all natural language tasks, such as narration, summarization, or language modeling.
It is my hope that the rapid development of LLMs will be met with both diligence and skepticism from
the community, ensuring the evolution of safe and intelligent artificial systems.
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Appendices

Figures

Figure 7.1: Needle In The Haystack performed on GPT-4 128k by Greg Kamradt. Picture taken from the
X’s post1, for more information visit the original post.

Figure 7.2: Needle In The Haystack performed on Claude-2.1 200k by Greg Kamradt. Picture taken from
the X’s post2, for more information visit the original post.

1https://x.com/GregKamradt/status/1722386725635580292
2https://x.com/GregKamradt/status/1727018183608193393
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Figure 7.3: Evaluation of different ranking strategies. Five chunks retrieved, alpha value is set to 0.5. For
more information, refer to Section 6.4.2.

Figure 7.4: Evaluation of different ranking strategies. Ten chunks retrieved, alpha value is set to 0.05.
For more information, refer to Section 6.4.2.
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Figure 7.5: Evaluation of different ranking strategies. Ten chunks retrieved, alpha value is set to 0.5. For
more information, refer to Section 6.4.2.

Figure 7.6: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
1 (left), 2 (middle) and BAMBOO (right) run on three settings: Full, RAG, Evidence. The RAG is set
with BM25 ranking, evidence as query and textual chunking.

Figure 7.7: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
1 (left), 2 (middle) and BAMBOO (right) run on three settings: Full, RAG, Evidence. The RAG is set
with BM25 ranking, question as query and textual chunking.
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Figure 7.8: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
1 (left), 2 (middle) and BAMBOO (right) run on three settings: Full, RAG, Evidence. The RAG is set
with Cosine Similarity ranking, evidence as query and textual chunking.

Figure 7.9: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
1 (left), 2 (middle) and BAMBOO (right) run on three settings: Full, RAG, Evidence. The RAG is set
with Cosine Similarity ranking, question as query and textual chunking.

Figure 7.10: Comparative results of the inference over MeetingQA 4K and PaperQA 4K on context prompt
1 (left), 2 (middle) and BAMBOO (right) run on three settings: Full, RAG, Evidence. The RAG is set
with Cosine Similarity ranking, question as query and semantic chunking.
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