
https://lib.uliege.be https://matheo.uliege.be

JSON-LD Representations of CityJSON

Auteur : Abdelaleem, Aly

Promoteur(s) : Debruyne, Christophe

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques, à finalité spécialisée en "computer systems security"

Année académique : 2023-2024

URI/URL : https://github.com/aly1551995/CityJSON-LD/; http://hdl.handle.net/2268.2/21151

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège
Faculty of Applied Sciences

School of Engineering and Computer Science

JSON-LD Representations of CityJSON

Master’s thesis completed in order to obtain the degree of
Master of Science in Computer Science

Author
ABDELALEEM Aly

supervisor
Prof. DEBRUYNE Christophe

Academic year 2023-2024

Abstract

CityJSON is a JSON encoding for 3D city models that provides a lightweight,
easy-to-read, and developer-friendly substitute for the traditional CityGML format.
However, the increasing demand for semantic interoperability and linked data ne-
cessitates using JSON-LD because it allows the incremental addition of semantics
to existing JSON documents. This thesis focuses on using JSON-LD to represent
CityJSON data to bridge the gap between city model data and Web 3.0 (Semantic
Web). We take a closer look at how to convert the CityJSON format into a more se-
mantically rich format and convert the implicitness of CityJSON into a more explicit
format that allows for easily sharing and querying data across multiple and differ-
ent systems. We will also highlight the changes JSON-LD could bring to managing
urban data by creating a more connected and semantically interoperable approach
to modeling cities.

Keywords: CityJSON, JSON-LD, CityGML, Semantic Web, Ontology, Vocabulary

Acknowledgments
I want to extend my deepest gratitude to my supervisor, Professor Christophe Debruyne,
for his constant help and the encouragement that he always provided throughout my
thesis. His expertise and knowledge have been invaluable in this academic pursuit.

I would also like to thank my family and friends for their constant encouragement and
unshakable support during this thesis.

Disclaimer
The text of this thesis has not been generated using text-generative AI tools; however,
tools such as Grammarly and QuillBot were used for grammar checking and applying
formal writing conventions, additionally ChatGPT as a coding assistance tool.

https://grammarly.com
https://quillbot.com
https://chatgpt.com/

Contents
Acronyms 2

1 Introduction 3
1.1 Research Question . 3
1.2 Research Objectives . 3
1.3 Thesis Structure . 4

2 Background 5
2.1 Semantic Web . 5

2.1.1 Ontology . 5
2.1.2 Linked Data . 6
2.1.3 SPARQL (SPARQL Protocol and RDF Query Language) 7

2.2 Spatial Data Infrastructure (SDI) . 9
2.3 Background Summary . 10

3 Literature Review 11
3.1 CityGML . 11

3.1.1 Overview . 11
3.1.2 Motivation . 11
3.1.3 The CityGML Data Model . 11
3.1.4 CityGML Levels of Detail (LoD) 11

3.2 CityJSON . 12
3.2.1 Overview . 12
3.2.2 Motivation . 12
3.2.3 Structure . 13

3.3 JSON-LD . 15
3.3.1 Overview . 15
3.3.2 Motivation . 15
3.3.3 Structure . 15
3.3.4 From JSON to JSON-LD . 15

3.4 Review of Related Work . 18
3.5 Literature Review Summary . 19

4 Approach 20
4.1 Vocabulary Engineering . 21
4.2 SHACL . 23
4.3 Data Collection . 23
4.4 Data Preprocessing . 23
4.5 Design of the Conversion Process . 26

4.5.1 Validation of the input file . 26
4.5.2 Supported Feature Check . 26
4.5.3 Field Extraction and Object Instantiation 26
4.5.4 Conversion Process . 26
4.5.5 SHACL Validation . 26
4.5.6 Output Formatting . 26
4.5.7 Design Summary . 26

4.6 Conversion to JSON-LD . 28

i

4.7 Approach Summary . 31

5 Implementation 32
5.1 Protégé . 35
5.2 Conversion Tool . 36
5.3 Validation and Testing Procedures . 37

5.3.1 cjio . 37
5.3.2 WKT . 37
5.3.3 PySHACL . 37

5.4 Implementation Summary . 39

6 Demonstration 40
6.1 Fuseki . 43
6.2 SPARQL . 44

6.2.1 Number of Vertices . 44
6.2.2 Number of CityObjects . 45
6.2.3 CityObjects and their LoDs . 45
6.2.4 Retrieve WKT strings of CityObjects 46
6.2.5 Retrieve Metadata’s geographical extent 47

6.3 GeoSPARQL . 48
6.3.1 Calculate the Convex Hull . 48
6.3.2 Calculate the Boundary . 50

6.4 Demonstration Summary . 51

7 Case Studies 52
7.1 Helsinki . 52

7.1.1 Intersection . 52
7.1.2 Union . 57
7.1.3 Concatenation . 58
7.1.4 Radius . 60
7.1.5 Heights of Buildings . 62

7.2 New York City . 64
7.2.1 Intersection . 65
7.2.2 Union . 67
7.2.3 Concatenation . 68
7.2.4 Radius . 70

7.3 Benchmark . 71
7.3.1 Dataset Characteristics . 71
7.3.2 Conversion Process . 72
7.3.3 Visualization . 72
7.3.4 Query Performance . 72
7.3.5 SPARQL . 73
7.3.6 GeoSPARQL . 73

7.4 Case Study Summary . 74

8 Discussion 75
8.1 Challenges . 75

8.1.1 Accurate Vocabulary . 75
8.1.2 Efficient Validation . 75

ii

8.1.3 Formation of WKT . 75
8.2 Limitations . 75

8.2.1 Non-Supported Features . 75
8.2.2 Data Scarcity . 76

8.3 Discussion Summary . 76

9 Conclusion 77
9.1 Summary . 77
9.2 Future Work . 78

9.2.1 Optimizing the Conversion Process 78
9.2.2 Adding Missing Optional Features and Extensions 78
9.2.3 Vocabulary Enhancement . 78
9.2.4 Graphical User Interface (GUI) . 78
9.2.5 GIS Integration . 78

iii

Acronyms
AI Artificial Intelligence.

CJ2JLD CityJSON To JSON-LD.

CJIO CityJSON/io.

CLI Command Line Interface.

CRS Coordinate Reference System.

GEOS Geometry Engine - Open Source.

GIS Geographic Information System.

GML Geography Markup Language.

GUI Graphical User Interface.

HDT Header Dictionary Triples.

HTML Hypertext Markup Language.

INSPIRE Infrastructure for Spatial Information in the European Community.

IRI Internationalized Resource Identifier.

ISO International Standards Organization.

JSON JavaScript Object Notation.

JSON-LD JavaScript Object Notation for Linked Data.

LOD Level Of Detail.

OGC Open GIS Consortium.

OWL Web Ontology Language.

RDF Resource Description Framework.

RDFS Resource Description Framework Schema.

SDI Spatial Data Infrastructure.

SHACL Shapes Constraint Language.

SPARQL SPARQL Protocol and RDF Query Language.

SQL Structured Query Language.

1

UML Unified Modeling Language.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

W3C World Wide Web Consortium.

WKT Well-known Text (WKT).

WWW World Wide Web.

XML Extensible Markup Language.

2

1 Introduction
The popularity and complexity of 3D urban data led to the need for a more effective
and standard way of encoding such data. Even though the currently available formats
provide such services, the current formats still have caveats. For instance, CityGML is
considered too verbose and complex; however, CityJSON is compact and utilizes JSON-
based encoding for 3D city urban models [1]. However, both formats still lack the semantic
richness required by new applications, which incorporate the Semantic Web principles that
enable data integration and interoperability in smart cities. This thesis aims to bridge the
gap by converting CityJSON to a more semantically rich format that is also JSON-based,
called JSON-LD, enabling improvements in the semantic capabilities of 3D city models.
Making it easier to share data, integrate data, and do advanced queries.

1.1 Research Question

Our main problem is finding an effective way to convert the CityJSON format to JSON-
LD to enhance semantic interoperability and integrate 3D city model data. This problem
leads us to our primary research question:

How can we effectively convert CityJSON into JSON-LD to enhance
semantic interoperability and facilitate the integration of 3D urban data?

1.2 Research Objectives

The primary goal of this thesis is to identify a “JSON-LD representation of CityJSON.”
By converting the developer-friendly CityJSON format to the machine-friendly JSON-LD
format, we leverage the advantages of both technologies. To achieve this, we must meet
the following objectives:

• Understanding CityJSON and other 3D city modeling formats and their limitations
will help us better comprehend the need for JSON-LD for semantic interoperability,
as shown in Chapters 2 and 3.

• The development of a methodology to convert CityJSON to JSON-LD while main-
taining and extending its semantics, as showcased in Chapter 4.

• The implementation of the previous approach takes the form of a CityJSON to
JSON-LD conversion tool, as explored in Chapter 5.

• Evaluate the conversion tool’s performance and effectiveness in real-world scenarios,
as documented in Chapters 6, 7, and 8.

3

1.3 Thesis Structure

The thesis is structured as follows:

• Chapter 1: Introduction
This chapter outlines the context, the research question, the objective, and the
structure of the thesis.

• Chapter 2: Background
This chapter summarizes essential information to enhance readers’ comprehension
of the thesis topic.

• Chapter 3: Literature
This chapter explores some literature reviews and related work.

• Chapter 4: Approach
This chapter comprehensively describes the approach taken to convert CityJSON
to JSON-LD.

• Chapter 5: Implementation
This chapter showcases the technical aspects of the conversion process.

• Chapter 6: Demonstration
This chapter provides a brief demonstration with dummy data.

• Chapter 7: Case Study
This chapter lists the tool’s applicable case studies using CityJSON data of real
cities such as Helsinki and New York City.

• Chapter 8: Discussion
This chapter discusses the challenges, the limitations, and potential areas of im-
provement.

• Chapter 9: Conclusion
This final chapter summarizes the work done throughout the thesis and explores
potential future work.

4

2 Background
This chapter provides a background for the fundamental concepts underlying this thesis:
the Semantic Web and the role of Spatial Data Infrastructure (SDI) in managing geospatial
data.

2.1 Semantic Web

First, a brief history of the World Wide Web (WWW) is needed to understand the big
picture. The first iteration, Web 1.0, or the static Web, marked the revolutionary begin-
nings of the Web. During this phase, individuals with minimal computer proficiency could
access information simply by clicking hyperlinks. Web 1.0 relied on Hypertext Markup
Language (HTML) to create static pages with hyperlinks for navigating between different
documents. The problem with Web 1.0 is that it was static and unidirectional, mean-
ing publishing content required significant experience and capabilities, which led to the
emergence of the next generation of the World Wide Web (WWW). Web 2.0, also known
as the Social Media Web, was more interactive because users could publish and interact
with it in real time. It also featured the use of JavaScript, giving the HTML pages a
more dynamic feel [2]. The rise in popularity of artificial intelligence (AI) is one of the
features that spurred the emergence of a new Web propelled by machine learning. Such a
Web is called a Semantic Web, or Web 3.0, characterized by the use of AI to ingest users’
data, which is easily accessed now due to the previous era of Web 2.0, to customize the
Web experience and target it based on the user’s behavior [3]. Web 3.0 enables machines
to understand the content of the HTML page, which improves the user’s experience by
inferring the correct choice just from the semantics and context used by the user, hence
the name Semantic Web. When a user searches for the word “apple” on Google, the user’s
browser might analyze the previous searches and personal data to determine the user’s
intent. As a result, it could prioritize showing the user’s search results related to the new
iPhone or the fruit, depending on the user’s browsing history [2].

Standards and technologies are required to allow machines to understand the semantics
and syntax of data on the Internet. The following sections explain the key components
that allow machines to process and interpret information meaningfully, allowing for a
better and more helpful internet experience.

2.1.1 Ontology

According to the Oxford Dictionary, ontology is “the science or study of being; that branch
of metaphysics concerned with the nature or essence of being or existence” [4]. In the
Semantic Web context, according to [5], an Ontology is “A formal, explicit specification
of a shared conceptualization.” The definition refers to conceptualization, which is an
abstraction of an object; it also refers to explicit (The documentation of all concepts
in a non-ambiguous way in an external document that machines can access), formal
(using a formalism so that one can use reasoners), and shared (by shared meaning to
allow access by multiple systems to ensure the common understanding of the domain,
meaning there is consensus about the ontology); it describes concepts, relations, and
properties in a structured and standardized way without obscurities or misunderstandings
[5]. Moreover, the Resource Description Framework (RDF) is a formal, machine-readable
way to conceptualize such ontologies. RDF provides a set of vocabulary that allows the

5

modeling of real-life objects in a machine-friendly manner. Machines can interrupt and
reason with this model to represent knowledge, achieve semantic interoperability, and
make logical inferences on the data based on the ontology’s axioms. Ontologies facilitate
extensibility by serving as templates for creating new ontologies and promoting reusability
[6]. RDF is an abstract graph data model that relies on IRIs to name resources, allowing
one to create a distributed graph. RDF models data as triples: subject, predicate, and
object, as shown in Figures 1 and 2.

Subject ObjectPredicate

Figure 1: RDF illustration

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix ex: <http://example.org/>.

ex:Person1 rdf:type foaf:Person;
foaf:name "John Doe";
foaf:age "30";
foaf:knows ex:Person2.

ex:Person2 rdf:type foaf:Person;
foaf:name "Jane Smith";
foaf:age "25";
foaf:knows ex:Person1.

Figure 2: RDF Data Example in Turtle

Resource Description Framework Schema (RDFS) is an extension of RDF that enables
it to represent more complex data, including classes, domains, and ranges of properties.
There is also Web Ontology Language (OWL), which can represent even richer objects if
needed [6]. These frameworks do not limit data serialization; many formats exist, such
as Turtle, JSON-LD, RDF/XML, and HDT. All these formats have their trade-offs; for
instance, allowing human readability can be helpful for debugging, but they add a lot of
overhead data that might occupy more space. Thus, the flexibility of choosing a specific
format can be part of the requirements [7].

2.1.2 Linked Data

Now that machines can understand the data, they still need to navigate through it, and
that is where Linked Data comes into play. Linked Data allows the user to connect dif-
ferent resources; it leverages the RDF data model representation of ontologies to connect
them to different ones. In doing so, it makes the resources extensible as well as reach-
able. According to [8], to enable the global sharing of resources, Linked Data employs the
following criteria:

• The Uniform Resource Identifier (URI) is the resource name in the RDF represen-
tation.

• It would be even better if those URIs were online accessible via HTTP (valid URLs).

6

https://www.w3.org/TR/rdf-schema/

• Include URIs to other resources to connect the graphs.

• Dereferenced URIs return meaningful data that is compliant with standards such
as RDF.

An example of a project that applies the Linked Data Principles is the Linked Open
Data project, which started the Semantic Web in January 2007 and grew exponentially,
as shown in Figure 3. This project is a community with the primary purpose of moving
open data, which is publicly available, free-to-use data, to linked open data, connecting
data, and allowing interoperability among the different entities [9].

Figure 3: The Linked Open Data Cloud as of February 2017 [10].

2.1.3 SPARQL (SPARQL Protocol and RDF Query Language)

SPARQL (pronounced SPARKL) is a recursive acronym for SPARQL Protocol and RDF
Query Language. It is a query language for RDF, similar to SQL for relational databases.
The syntax is quite similar to SQL; it uses the SELECT statement to select a particular
attribute from the data. It also uses the WHERE clause to narrow the data to a subset
that meets a specific condition. The condition representation is in a triple form (subject-
predicate-object). A variable can be bound to any part of the triple pattern and store its

7

https://lod-cloud.net/clouds/lod-cloud.svg
https://www.w3.org/TR/sparql11-query/

query results. There are two ways to refer to a resource in a query:

• Using the Universal Resource Identifier (URI).

• Assigning the URI to a prefix and using the prefix instead.

The previously stated approaches can be beneficial because they shorten the query, espe-
cially when a long URI requires repeating multiple times, making it more human-readable
[11]. Figure 4 shows this example of SPARQL using a Schema.org and DBpedia vocab-
ulary. In this example, we query the RDF data shown in Figure 5 to retrieve books and
their authors. The example also showcases the second approach, which involves assigning
the URI to a prefix. Here, we assign the prefix for Schema.org to the “schema” prefix,
thereby referencing the schema vocabulary. Figure 6 displays the query’s output.

PREFIX schema: <http://schema.org/>

SELECT ?book ?authorName
WHERE {

?book a schema:Book ;
schema:author ?author .

?author a schema:Person ;
schema:name ?authorName .

}

Figure 4: Simple SPARQL query to retrieve books and their authors.

@prefix schema: <http://schema.org/> .

<https://dbpedia.org/resource/The_Fellowship_of_the_Ring> a schema:Book
;↪→

schema:author <https://dbpedia.org/resource/J._R._R._Tolkien> .

<https://dbpedia.org/resource/Harry_Potter_and_the_Philosopher%27s_Stone>
a schema:Book ;↪→

schema:author <https://dbpedia.org/resource/J._K._Rowling> .

<https://dbpedia.org/resource/J._R._R._Tolkien> a schema:Person ;
schema:name "J.R.R. Tolkien" .

<https://dbpedia.org/resource/J._K._Rowling> a schema:Person ;
schema:name "J.K. Rowling" .

Figure 5: Simple Turtle of books and their authors.

8

https://www.schema.org
https://www.dbpedia.org/

Figure 6: The output of the query shown in Figure 4 for the data shown Figure 5.

2.2 Spatial Data Infrastructure (SDI)

Spatial Data Infrastructure (SDI) is an infrastructure that encapsulates all of the tech-
nologies, standards, frameworks, and workforce required to obtain, analyze, maintain,
and share spatial data. The emergency of SDI stems from the vast amount of geospatial
data decentralized among multiple government agencies and websites. This decentral-
ization led to significant duplication of geospatial data collection, hence a lot of wasted
resources (money, time, and effort). SDI exists at different geographical levels. It could
be international, such as the Global Earth Observation System of Systems. It could be
continent-wide, such as Infrastructure for Spatial Information in the European Commu-
nity (INSPIRE). It could also be national, such as Data.gov, a data provider for the USA
open dataset. SDI’s main components include the portal, standards, framework, human
resources, and data [12].

We will only concentrate on the standards component relevant to the thesis topic. SDI’s
standards allow a consistent, systematic way to serialize, exchange, and understand spatial
data. They are necessary to allow interoperability across multiple organizations and
platforms. The key is to choose widely accepted standards that meet the application’s
needs and can be used and shared by others without too much complexity. For spatial data
in particular, the governing bodies responsible for such standards are mainly the Open
GIS Consortium (OGC) and the International Standards Organization (ISO) [13].

Some of the data formats utilized to serialize and exchange spatial data, specifically 3D
urban spatial data, that are certified by the OGC include:

• CityGML has been an OGC standard since March 2021 [14].

• CityJSON has been an OGC community standard1, since November 2023 [15].

1A Community Standard is an official OGC standard developed and maintained outside of OGC. The
originator of the standard brings to OGC a “snapshot” of their work, which is then endorsed by OGC
membership as a stable, widely implemented standard that becomes part of the OGC Standards.

9

2.3 Background Summary

In this chapter, we discussed the necessary background information to follow the rest
of the chapters. This chapter included a small introduction to the Semantic Web and
its predecessors, followed by an explanation of the critical components that allow the
Semantic Web to function correctly, such as ontologies, Linked Data, and SPARQL. We
discussed ontology and its purpose in the Semantic Web. We discussed the principles that
constitute Linked Data. We gave an example of SPARQL and how it looks to query data
annotated with an ontology or vocabulary. Finally, we introduced SDI, its purpose, and
how it links to the Semantic Web. The next chapter will discuss the standards used for
3D city modeling. We will look closer at CityGML, CityJSON, and JSON-LD and the
reasons to convert CityJSON to JSON-LD.

10

3 Literature Review
This chapter provides more insight into CityGML, CityJSON, and JSON-LD, giving a
glimpse of each’s motivation and structure. The chapter also discusses work related to
the thesis’s topic.

3.1 CityGML

Before we explore CityJSON, it is crucial to grasp the significance of its predecessor,
CityGML. Understanding these formats and their differences from existing ones is vital
to appreciating their role in 3D urban modeling. This knowledge also highlights why
CityJSON is a preferred choice over CityGML.

3.1.1 Overview

CityGML is a spatial data model and format specifically designed for modeling 3D urban
objects. It is an OGC standard, as we mentioned before. It uses GML (Geography Markup
Language), an OGC standard, with Extensible Markup Language (XML) to define its
elements and structure. Any CityGML document is both a GML and an XML document,
and GML is one of the most popular formats for storing geographical information. In
contrast, XML is considered one of the most widely used formats for transferring data
over the Web and storing data in both human and machine-readable formats [16].

3.1.2 Motivation

CityGML [16] emerged when the generation of 3D city data surged, primarily for visual-
ization. Using such data for visualization only led to a lot of semantically rich information
needing appropriate utilization. With that in mind, CityGML explicitly defines the re-
lationships between each city object. A city object is anything found in a city, not just
buildings.

3.1.3 The CityGML Data Model

The CityGML data model, according to [16], contains several sub-models, including the
following:

• Appearance Model: This model handles the physical properties of objects, which
can be visible (such as color and texture) or non-visible (such as infrared radiation
and noise pollution).

• Thematic Model: This model represents city objects as classes based on widely
found urban features such as vegetation, water bodies, bridges, and city furniture.

• Spatial Model: This model is responsible for geometrical and topological repre-
sentation of city objects.

3.1.4 CityGML Levels of Detail (LoD)

As illustrated in Figure 7, CityGML supports multiple representations of a city object to
cater to different purposes. It provides five levels of detail (LoDs), ranging from the most
basic 2D representation to the most complex 3D representation. It allows for scalable

11

https://www.ogc.org/standard/citygml/
https://www.cityjson.org/
https://json-ld.org/

and flexible modeling, where a city object can be depicted with varying degrees of detail
based on the application’s specific requirements and serve different functionalities [16].
As described in [16] CityGML LoDs:

• LOD0: a basic 2D representation of an object.

• LOD1: a basic 3D representation of an object.

• LOD2: a more advanced 3D representation of an object; it includes roof shapes and
minimal architectural detail.

• LOD3: a highly detailed 3D representation of an object that includes windows,
doors, and other architectural features.

• LOD4: a highly detailed 3D representation of an object, the highest of which in-
cludes the interior design of the object.

Figure 7: The five LODs of CityGML 2.0 as illustrated by F. Biljecki et al. [17]

3.2 CityJSON

Section 3.1.1 discussed how CityGML is a spatial data model and format. CityJSON,
on the other hand, is another format that represents the CityGML data model. It uses
JSON (JavaScript Object Notation) to encode the CityGML data model.

3.2.1 Overview

CityJSON is a JSON encoding of most of the CityGML data model to represent 3D urban
data. CityJSON leverages the simple and human-readable syntax of JSON to represent
such data. Using JSON as the encoding format, the model can be represented in a
lightweight, developer-friendly way while maintaining the CityGML standards [18].

3.2.2 Motivation

Some of the flaws in the CityGML encoding that led to the development of CityJSON
include [19]:

• CityGML is not developer-friendly due to the verbosity of the XML format.

• CityGML occupies significant storage, seven times the storage of CityJSON, again
due to the XML language’s verbosity and CityJSON compression capabilities.

• Due to XML’s complexity, the same geometry can be represented in multiple ways,
which could be problematic.

12

• There is no enforced standardization of CRS (Coordinate Reference System) in
GML, meaning a valid CityGML file could theoretically have a building in one CRS
and its doors in another. However, this is not considered best practice in CityGML.

3.2.3 Structure

CityJSON implements most of the CityGML modules discussed earlier in Section 3.1.3.
However, some modules were left out to keep it simple and lightweight, such as the rarely
used LoD4 to represent the interior of buildings. As the name suggests, CityJSON uses
JSON, structured in single or nested objects as a key-value pair wrapped around curly
braces, where the key is the property. The value is the value assigned to such a property,
similar to that of a Python dictionary, and it uses an array list to store ordered data
[19].

A CityJSON file must contain the following, as can be seen in Figure 8:

• Key “type” with the value “CityJSON”.

• Key “version” with value a string of the form (X.Y).

• A “transform” object that contains a “scale” and “translate” object is required, as
CityJSON stores the vertices as integers and applies a transformation function to
retrieve their original value. This method maintains a small file.

• A “CityObjects” is an object of objects where each object is a unique city object
that must contain a key “type” with a value that is one of the predefined first-level
or second-level objects, as illustrated in Figure 9. If the city object is a second-level
object, then a key “parent” with a value that corresponds to the identifier of the
first-level object that is the parent of this object is required.

• An array of “vertices” that contains all the coordinates for all the objects in the city.

A CityJSON file may also contain:

• “metadata”, which contains an object to describe the CRS of the entire object among
other metadata attributes.

• “extensions”, which contains an object representing the added extension.

• “appearance” which describes the texture or material of surfaces.

• “geometry-templates” refers to templates, allowing reusability for later.

• Any valid JSON object that is not part of the CityGML model, which CityJSON
parsers will ignore.

A “CityObject” in a CityJSON file may contain the following:

• A “geometry” object, which must contain:

– Key “type” with a value from one of the following: “MultiPoint”, “Multi-
LineString”, “MultiSurface”, “CompositeSurface”, “Solid”, “MultiSolid”, “Com-
positeSolid”, or “GeometryInstance”.

– Key “lod” with a value of the form X(.Y), where X and Y can be any digits,
and Y is optional.

13

– Key “boundaries” with a value of a nested array. The depth of the nesting
depends on the “type” of geometry. The array contains the integer indices of
the coordinates of the object in the vertex array.

• Key “attributes” and value any valid JSON object.

• Key “geographicalExtent” and value an array of six floats representing the min and
max of each spatial axis.

• Key “children” and value an array of all the city objects in which this object is the
parent.

{
"type": "CityJSON", //Must be CityJSON
"version": "2.0", // CityJSON version 2.0 (latest)
"transform": {

"scale": [0.001, 0.001, 0.001], // Scale x, y, z coordinates by 0.001
"translate": [2.5, 60.8, -1.804] // Shift x, y, z coordinates by 2.5, 60.8, -1.804 respectively

},
"CityObjects": {}, // Empty city objects
"vertices": [] // Empty vertices array

}

Figure 8: Minimal valid CityJSON file

Figure 9: First and second-level CityJSON objects as illustrated by H. Ledoux et al. [19]

14

3.3 JSON-LD

3.3.1 Overview

JSON-LD is an RDF serialization format that uses JSON encoding to serialize data. Its
development considered minimal changes needed to convert normal JSON to JSON-LD.
The design of JSON-LD encourages developers to adopt a more Linked Data approach
and enrich the semantics of the data exchanged.

3.3.2 Motivation

The exponential increase in the amount of data generated, as data nowadays is generated
by humans and machines (for example, sensors and servers), led to the need for JSON-
LD. One way to connect such data islands is by applying the Linked Data Principles [20].
Many existing data formats serialize data and apply such principles as Turtle, RDF, RDFa,
RDF/XML, N-TRIPLES, N-QUADS, and TriG [21]. The advantage that separates JSON-
LD from the previous formats is that it does not require many changes to the existing
data serialized in JSON. More importantly, it eliminates the fear of using the Semantic
Web, known as “Semaphobia” [20], by not requiring the developer to understand RDF
and Linked Data. This reassurance allows developers to confidently use JSON-LD and
its benefits, including integration with RDF tools such as SPARQL endpoint, reasoners,
and triple stores.

3.3.3 Structure

As with all RDF formats, the JSON-LD structure is a directed label graph where each
node connects via an edge. A node can be a primitive data type such as a string, number,
date, or time. Alternatively, a node may be an Internationalized Resource Identifier (IRI)
referencing an entity. An IRI is a more generalized form of a URI mentioned earlier
in Chapter 2, which includes non-ASCII characters [22]. JSON-LD serializes the RDF
model, classifying a node as a subject when an edge originates from it and an object
when an edge terminates at it, where the edge represents the predicate. Although this
violates the Linked Data Principle, JSON-LD permits non-dereferenceable IRIs for local
referencing within the same document [20].

3.3.4 From JSON to JSON-LD

Extending a JSON document into a JSON-LD mainly requires some annotation on top
of the already known JSON syntax; all other JSON data types are still valid [20]. As
seen in Figure 11, there are only three different types of new keywords from the regular
JSON syntax. We will discuss the essential keywords widely used in a JSON-LD context
to convert JSON to JSON-LD, according to [23]:

• @context: defines the terms used later in the document. The terms are short-hand
notations for IRIs, which help keep the document compact.

• @type: defines the type of the node using an IRI.

• @id: define the node identifier using an IRI or as a blank node.

• @list: defines ordered set of data.

15

By extending the human-readable CityJSON format to the machine-readable JSON-LD
format, we leverage the advantages of both technologies. Those advantages allow us to
improve 3D city modeling and spatial data. Such advantages may include:

• Semantic Interoperability: This would allow machines to exchange data without
ambiguity or human input.

• Improved Data Integration: JSON-LD makes it simple to integrate data with
systems that already use JSON and can link data from various sources.

• Improved Data Sharing: It allows the application of the Linked Data Princi-
ples and uses the standard JSON format, making sharing simple.

• Enhanced Querying and Reasoning Capabilities: JSON-LD’s capabilities as
an RDF serialization enable complex and advanced queries, inferences, and reason-
ing over the data.

• Extensibility: By converting the data to JSON-LD, adding new requirements is
simple and can be done without significantly changing the underlying structure.

To illustrate the differences between JSON and JSON-LD, we will start with a simple
JSON document representing a person, then add semantics to create an RDF representa-
tion with explicit semantics serialized as JSON-LD. Figure 10 shows a JSON that contains
the following keys and values:

• key “name” and value “Alice”.

• key “jobTitle” and value “Professor”.

• key “telephone” and value “(425) 123-4567)”.

• key “know” and value “http://www.bob.com”.

However, the meanings of name, job title, and the other keys are vague and require more
explicitness. For example, what does the key “name” represent? Is it the person’s first,
last, or family name? To add such explicitness, this is the role of a vocabulary. Let us
assume we want Schema.org to represent people, their names, and their other attributes.
Schema.org is just one of many vocabularies used to represent the concept of people, and
one of the representations could be the one seen in Figure 11.

{

"name": "Alice",
"jobTitle": "Professor",
"telephone": "(425) 123-4567",
"knows": "http://www.bob.com"

}

Figure 10: Simple JSON example describing a person.

16

https://schema.org/

{
"@context": {

"schema": "http://schema.org/",
"foaf": "http://xmlns.com/foaf/0.1/",
"name": "schema:name",
"jobTitle": "schema:jobTitle",
"telephone": "schema:telephone",
"knows": {

"@id": "foaf:knows",
"@type": "@id"

}
},

"@type": "schema:Person",
"@id": "http://www.alice.com",
"name": "Alice",
"jobTitle": "Professor",
"telephone": "(425) 123-4567",
"knows": "http://www.bob.com"

}

Figure 11: A JSON-LD representation of Figure 10.

Figure 12: RDF triple representation of Figure 11.

17

3.4 Review of Related Work

At the time of writing this thesis, there has yet to be an attempt to convert CityJSON into
JSON-LD. The only related effort is a request on the W3C GitHub repository suggesting
that CityJSON should rely on JSON-LD, but there have yet to be any advancements
on this request. However, there have been attempts to convert CityJSON’s predeces-
sor, CityGML, to RDF, as evidenced by this paper [24]. The result is a comprehensive
CityGML OWL ontology and the conversion of CityGML 2.0 to RDF, as shown in Figure
13.

Figure 13: Overview of the pipeline for CityGML conversion according to [24].

The paper [25] resulted in another CityGML ontology in OWL and ontologies for In-
doorGML and SensorThings API, as shown in Figure 14.

Figure 14: Overall framework of [25] solution.

The above papers have influenced this paper’s approach to converting CityJSON to JSON-
LD. Some of the methodologies for ontology engineering were adopted, as well as the
conversion tool’s approach.

18

https://github.com/w3c/strategy/issues/114#issuecomment-505050048

3.5 Literature Review Summary

This chapter discussed relevant literature reviews, including the overview, motivation,
and structure of CityGML, CityJSON, and JSON-LD, respectively. We also mentioned
work related to the thesis and its impact on this thesis’s methodology. In the upcoming
chapter, we will discuss the approach taken to convert CityJSON to a JSON-LD RDF
format.

19

4 Approach
In this chapter, we will discuss the practical part of this thesis by describing in detail the
approach used to convert CityJSON to JSON-LD, as seen in Figure 15. The approach
combines different technologies to help convert a CityJSON file into a semantically rich
JSON-LD file. The conversion process incorporated the following technologies and tools:
cjio tool for validating the CityJSON file and ensuring it complies with the CityJSON’s
schema and ISO 19107 geometric primitives for geometry representations. Protégé , a
free, open-source ontology editor, was used to build the vocabulary used as a context
in the JSON-LD output of our tool. Shapes Constraint Language (SHACL) is a W3C
recommendation defining constraints the data needs to meet. Combined with the earlier
vocabulary, they serve as the validation schema with which the CityJSON-LD output
should comply. The output of this thesis is a conversion tool called “cj2jld”. It is a
Python-based CLI tool that takes a valid CityJSON file as input and converts it into a
JSON-LD file; however, the tool does not support some optional CityJSON features such
as appearances, geometry templates, extensions, and geometry semantics.

Figure 15: CityJSON to JSON-LD Overview

20

https://github.com/cityjson/cjio

4.1 Vocabulary Engineering

Firstly, the distinction between a vocabulary and an ontology is in place, even though
we often use them interchangeably. There is a subtle distinction between the two. A
vocabulary utilizes RDFS and some “lightweight” OWL (e.g., inverseOf); an ontology, on
the other hand, uses OWL with all its capabilities. However, it is crucial to understand
that the tool solely showcases the potential benefits of converting CityJSON to JSON-LD,
particularly the ability to leverage GeoSPARQL queries and their power on CityJSON
data. Moreover, to create a more explicit representation of CityJSON that different
technologies can use without needing a complicated conversion or a unique tool.

Using a vocabulary is well suited as it can adequately capture the essential relations
between classes without needing more complex reasoning. Additionally, managing cardi-
nality and integrity constraints using OWL can be cumbersome due to the open-world
assumption. This assumption states that a missing piece of information in the knowledge
base should be considered unknown, unlike in a relational database, which considers miss-
ing data false; this has significant implications for data interpretation and querying.

We used a top-down approach to create the vocabulary, map the general classes, and define
their data properties from the CityJSON schema on their website before moving on to
the more specific ones. An example would be mapping the CityJSON object to an RDF
class, followed by the transform object, the city object, the vertices object, and finally,
the metadata object, all of which have a relationship with the CityJSON object. Once
we finished creating the classes, we began mapping their relations. This process started
with the hierarchical definition of the sub-super classes, like the relationship between
Cityobject (super-class) and FirstLevelCityObject (sub-class), and then proceeded to the
mapping of object properties, such as the hasVertices relationship between Cityobject and
Vertices classes.

The output shown in Figure 16 is a CityJSON vocabulary, which assumes that the vocab-
ulary can be found online on this link “https://www.cityjson.org/ont/cityjson.ttl”, which
is not the case as the vocabulary is experimental for this thesis and is not available on
the official website of CityJSON, it also assumes that the vocabulary is in Turtle for-
mat. We will continue to see the previous two assumptions throughout the thesis for
illustration purposes. The resulting vocabulary contains the set of CityJSON terms that
will provide the context for the generated JSON-LD. It encompasses all the necessary
features of CityJSON and includes a 2D well-known text (WKT) representation of the
geometry within CityJSON to enable the use of GeoSPARQL. It also makes the CityJ-
SON data more explicit by containing the relations between objects; it also adds more
details regarding vertices coordinates used in the geometry object; it makes it more ex-
plicit with the actual coordinates being shown rather than the coordinate index in the
vertices array.

The vocabulary contains metadata information to be used by machines in order to make
well-structured suggestions; an example would be the seeAlso property of RDFS that
would enable a machine to suggest related topics to the user, which is similar or deemed
to be similar by the authors of the vocabulary to the object currently viewed. Another
example is assigning the language to the label property, which is helpful for the machine
to suggest the relevant language to the user.

21

https://www.ogc.org/standard/wkt-crs/

###
Classes
###
...
https://www.cityjson.org/ont/cityjson.ttl#Bridge
:Bridge rdf:type owl:Class ;

rdfs:subClassOf :FirstLevelCityObject ;
rdfs:comment "The Bridge module provides the representation of thematic and

spatial aspects of bridges. Bridges are movable or unmovable structures
that span intervening natural or built elements. In this way, bridges
allow the passage of pedestrians, animals, vehicles, and service(s) above
obstacles or between two points at a height above ground."@en ;

↪→

↪→

↪→

↪→

rdfs:isDefinedBy :Bridge ;
rdfs:label "Bridge"@en ;
rdfs:seeAlso <https://docs.ogc.org/is/20-010/20-010.html#toc44> ,

<https://www.cityjson.org/specs/2.0.0/#bridge> .
https://www.cityjson.org/ont/cityjson.ttl#BridgeConstructiveElement
:BridgeConstructiveElement rdf:type owl:Class ;

rdfs:subClassOf :BridgeSecondLevelObjects ;
rdfs:isDefinedBy :BridgeConstructiveElement ;
rdfs:label "Bridge Constructive Element"@en .

https://www.cityjson.org/ont/cityjson.ttl#BridgeFurniture
:BridgeFurniture rdf:type owl:Class ;

rdfs:subClassOf :BridgeSecondLevelObjects ;
rdfs:isDefinedBy :BridgeFurniture ;
rdfs:label "Bridge Furniture"@en .

https://www.cityjson.org/ont/cityjson.ttl#BridgePart
:BridgePart rdf:type owl:Class ;

rdfs:subClassOf :BridgeSecondLevelObjects ;
rdfs:isDefinedBy :BridgePart ;
rdfs:label "Bridge Part"@en .

https://www.cityjson.org/ont/cityjson.ttl#BridgeRoom
:BridgeRoom rdf:type owl:Class ;

rdfs:subClassOf :BridgeSecondLevelObjects ;
rdfs:isDefinedBy :BridgeRoom ;
rdfs:label "Bridge Room"@en .

https://www.cityjson.org/ont/cityjson.ttl#BridgeSecondLevelObjects
:BridgeSecondLevelObjects rdf:type owl:Class ;

rdfs:subClassOf :SecondLevelCityObject ;
rdfs:isDefinedBy :BridgeSecondLevelObjects ;
rdfs:label "Bridge Second-Level Objects"@en .

https://www.cityjson.org/ont/cityjson.ttl#BrigeInstallation
:BrigeInstallation rdf:type owl:Class ;

rdfs:subClassOf :BridgeSecondLevelObjects ;
rdfs:isDefinedBy <https://www.cityjson.org/ont/cityjson.ttl#> ;
rdfs:label "Bridge Installation"@en .

...

Figure 16: CityJSON’s Vocabulary2 in Turtle

2The vocabulary has been truncated to fit the page. For the complete vocabulary, please visit this
link: https://github.com/aly1551995/CityJSON-LD/blob/main/Ontology/cityjson.ttl

22

https://github.com/aly1551995/CityJSON-LD/blob/main/Ontology/cityjson.ttl

4.2 SHACL

SHACL, a W3C recommendation designed to validate RDF [26], was required in addition
to the vocabulary to create a SHACL shape file, which contains the shape of how the
JSON-LD output should look. It will be used as a validation schema for the tool to
ensure that the output matches the vocabulary generated earlier, as shown in Figure
17. SHACL provided functionalities that allowed to keep the vocabulary simple and yet
defined the constraints without the need to use OWL and to deal with the open-world
assumptions mentioned earlier in Section 4.1.

The SHACL file was designed based on the CityJSON specification in their documentation
and the JSON schema supplied on their website, as shown in Figure 18. The schema
supplied the following:

• The cardinality for each object.

• The type of each object.

• The enumeration values for an object, if it has any.

• The pattern for the value of an object, if it has any.

• The format of the value of an object, if it has any.

• The mandatory and optional objects.

SHACL Playground was used as the platform to develop the SHACL file used by the
conversion tool. A top-down approach was applied to generate the SHACL file, starting
with each separate object and creating its constraints, then referring to those shapes
inside other objects. We continued the process until we met all constraints and created
all object shapes.

4.3 Data Collection

We acquired data from the CityJSON’s official website; the website contained simple ex-
amples of different geometric shapes, such as cube and tetrahedron shapes, as well as data
from real cities such as New York, Deen Haag, Ingolstadt, Montréal, Rotterdam, Vienna,
and Zürich. Nevertheless, we obtained another dataset from this repository on GitHub.
The dataset represents the city of Helsinki, located in Finland. It was converted from
CityGML to CityJSON using citygml-tools. After removing the appearance object and
manually adding the CRS, it was tested by uploading to CityJSON Ninja and CityJSON
Up3date for visualization. However, both tools validate their input before usage, so a
successful upload means a valid CityJSON file.

4.4 Data Preprocessing

Before the collected data was considered valid testing data for the conversion tool, it first
went through a preprocessing step by jq, a command-line JSON processor, to remove all
the unsupported objects. This step was needed to avoid discarding valid data, and it was
also necessary because the publicly available CityJSON data are scarce and hard to find,
so it was necessary to utilize as much of the data available as possible.

23

https://www.w3.org/TR/shacl/
https://shacl.org/playground/
https://www.cityjson.org/datasets/
https://github.com/kinotus/HelsinkiCityJSON/tree/main/CityJSON%20examples
https://github.com/citygml4j/citygml-tools
https://ninja.cityjson.org/
https://github.com/cityjson/Up3date
https://github.com/cityjson/Up3date
https://jqlang.github.io/jq/

###
FirstSecondLevelCityObject Shape
###

cj:FirstLevelCityObjectShape
a sh:NodeShape ;
sh:targetClass cj:FirstLevelCityObject ;
sh:closed true ;
sh:property [

sh:path rdf:type ;
sh:hasValue cj:FirstLevelCityObject

] ;
sh:property [

sh:path cj:type ;
sh:in (

"Bridge"
"Building"
"CityFurniture"
"CityObjectGroup"
"GenericCityObject"
"LandUse"
"Metadata"
"OtherConstruction"
"PlantCover"
"Railway"
"Road"
"SolitaryVegetationObject"
"TINRelief"
"TransportationSquare"
"Tunnel"
"Waterbody"
"Waterway"

) ;
sh:minCount 1 ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path cj:hasAttribute ;
sh:minCount 0 ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path cj:hasGeographicalExtent ;
sh:node cj:GeographicalExtent ;
sh:minCount 0 ;
sh:maxCount 1 ;

] ;
sh:property [

sh:path cj:hasChildren ;
sh:node cj:SecondLevelCityObject ;
sh:minCount 0 ;

] ;

sh:property [
sh:path cj:hasGeometry ;
sh:node cj:GeometryShape ;
sh:minCount 0 ;
] .

Figure 17: SHACL for CityJSON’s FirstLevelCityObject in Turtle

24

{
"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "https://www.cityjson.org/schemas/2.0.1/metadata.schema.json",
"title": "CityJSON metadata schema v2.0.1",
"definitions": {

"contactDetails": {
"type": "object",
"properties": {

"contactName": { "type": "string" },
"phone": { "type": "string" },
"address": { "type": "object" },
"emailAddress": { "type": "string", "format": "email" },
"contactType": { "type": "string", "enum": ["individual", "organization"] },
"role": {

"type": "string",
"description": "Role of the contact as per ISO 19115 codelist",
"enum": [

"resourceProvider",
"custodian",
"owner",
"user",
"distributor",
"originator",
"pointOfContact",
"principalInvestigator",
"processor",
"publisher",
"author",
"sponsor",
"co-author",
"collaborator",
"editor",
"mediator",
"rightsHolder",
"contributor",
"funder",
"stakeholder"

]
},
"organization": { "type": "string" },
"website": { "type": "string", "format": "uri", "pattern": "^(https?)://" }

},
"required": ["contactName", "emailAddress"]

}
},
"metadata": {

"type": "object",
"properties": {

"identifier": { "type": "string" },
"pointOfContact": { "$ref": "#/definitions/contactDetails" },
"referenceDate": { "type": "string", "format": "date" },
"title": { "type": "string" },
"geographicalExtent": { "type": "array", "items": { "type": "number" }, "minItems": 6,

"maxItems": 6 },↪→
"referenceSystem": { "type": "string", "pattern": "^(http|https)://www.opengis.net/def/crs/"

}↪→
}

}
}

Figure 18: CityJSON metadata schema

25

4.5 Design of the Conversion Process

In this section, we will discuss the design of the conversion tool. The tool depends on
the vocabulary and the SHACL shape file mentioned earlier in Section 4.1. The design
process consists of several steps, as seen in Figure 19. Below, we outline the detailed steps
involved in the conversion process.

4.5.1 Validation of the input file

Using the Python cjio package, the tool first determines whether the input file is a valid
CityJSON. If the file is invalid, the tool displays an error message and terminates; other-
wise, it advances to the next step.

4.5.2 Supported Feature Check

The tool checks for non-supported features in the file; if such features exist, the tool
displays an appropriate error message and terminates.

4.5.3 Field Extraction and Object Instantiation

If the non-supported features are not in the supplied CityJSON input file, the tool extracts
the required fields and supplies them as arguments to the class constructor corresponding
to the extracted CityJSON object.

4.5.4 Conversion Process

After completing the previous step, the result would be a CityJSON class object populated
with the data that the input CityJSON contained; the class includes a to_json method
that, when invoked, returns a JSON-LD representation of the CityJSON object. A process
we will elaborate on more thoroughly in Section 4.6.

4.5.5 SHACL Validation

If the user sets the --enable-pyshacl flag up, we use the resulting JSON-LD representa-
tion of the CityJSON as input to the PySHACL package. The PySHACL package returns
a boolean that is true when the data conforms with the supplied SHACL file and false
otherwise; it also returns a validation report containing the details of the violation, if
there are any.

4.5.6 Output Formatting

If the user has set the --formatted flag, the system writes the conforming data in a
formatted manner to the file; if not, it saves the data in its raw form. If the data does
not conform, the console prints the violation report.

4.5.7 Design Summary

We designed the tool to ensure a user-friendly and straightforward conversion process that
is flexible enough to handle various scenarios and provides clear feedback at each stage.
The tool uses Python packages such as cjio and PySHACL for the optimal validation and

26

transformation of CityJSON data, giving the user the power and flexibility to work with
CityJSON files and Linked Data technologies.

Figure 19: cj2jld Design Flowchart

27

4.6 Conversion to JSON-LD

We adopted an object-oriented approach by creating a class for each CityJSON object.
The approach is similar to the Builder Pattern, as our conversion tool creates different
representations of a complex object. In this case, it is the CityJSON class; the sole purpose
of each class was to convert its content into a valid JSON-LD representation that follows
the previously designed vocabulary and SHACL file. The previous is the case for most
objects, with an additional requirement for the geometry object on top of the conversion,
which is constructing a WKT string, as seen in Figures 20 and 21. WKT is a lightweight
format for encoding geometric vectors in machine-readable and human-readable simple
text [27]. A mapping between CityJSON geometries and the geometries represented by
WKT was needed, as indicated in Table 1.

CityJSON Geometry WKT Geometry

MultiPoint MULTIPOINT
MultiLineString MULTILINESTRING

MultiSurface MULTIPOLYGON
CompositeSurface MULTIPOLYGON

Solid MULTIPOLYGON
MultiSolid MULTIPOLYGON

CompositeSolid MULTIPOLYGON

Table 1: Table mapping CityJSON geometry to WKT

As mentioned earlier in Section 4.1, one of the main goals of this conversion is to allow
the usage of GeoSPARQL. For that, we chose the WKT format as GeoSPARQL supports
it, and it is also one of the widely used formats to represent geometry in RDF [28], but
it supports only 2D geometries. We needed to apply projection to the 3D geometry to
convert it to 2D. Our initial approach was as follows:

• Remove the Z-Coordinate from the 3D array and convert it into a 2D array.

• Apply a convex hull function to capture the simplest multi-polygon that can en-
compass all the polygons inside of it.

However, we found that this approach needed to be revised. The convex hull approach
resulted in an inaccurate representation of the city objects’ boundaries. This inaccuracy
could be because of how each city object is encoded individually without complex objects
within each other, and by applying the convex hull, we lose information rather than
maintaining the geometry without losing much information; therefore, we realized that
the projection alone was a sufficient approach, as indicated by Figures 22b and 22a, which
compare the visualization of two solid buildings from the Helsinki dataset in WKT.

28

{
...

"geometry": [
{

"type": "MultiPoint",
"lod": "1",
"boundaries": [1, 2, 3]

}
]

...
}

Figure 20: An example of a MultiPoint Geometry object in CityJSON

{
...

"cj:hasGeometry": [
{

"@type": "cj:Geometry",
"cj:type": "MultiPoint",
"cj:lod": "1",
"geosparql:asWKT": {"@value": "MULTIPOINT (1 0, 1 1, 0 1)", "@type": "geosparql:wktLiteral"},
"cj:hasBoundingBox": {

"@type": "cj:MultiPoint",
"cj:hasPoint": [

{
"@type": "cj:Point",
"cj:boundaryX": { "@value": 1.0, "@type": "xsd:float" },
"cj:boundaryY": { "@value": 0.0, "@type": "xsd:float" },
"cj:boundaryZ": { "@value": 1.0, "@type": "xsd:float" }

},
{

"@type": "cj:Point",
"cj:boundaryX": { "@value": 1.0, "@type": "xsd:float" },
"cj:boundaryY": { "@value": 1.0, "@type": "xsd:float" },
"cj:boundaryZ": { "@value": 1.0, "@type": "xsd:float" }

},
{

"@type": "cj:Point",
"cj:boundaryX": { "@value": 0.0, "@type": "xsd:float" },
"cj:boundaryY": { "@value": 1.0, "@type": "xsd:float" },
"cj:boundaryZ": { "@value": 1.0, "@type": "xsd:float" }

}
]

}
}

]

...
}

Figure 21: Example 20 converted to JSON-LD, in accordance with our Vocabulary

29

(a) Without convex hull applied

(b) With convex hull applied

Figure 22: A Comparison between WKT without and with convex hull applied

30

4.7 Approach Summary

This chapter discussed the approach to implementing the vocabulary, SHACL file, and the
CityJSON to JSON-LD conversion tool. We talked about the overview design, architec-
ture, and technologies used. We documented how the data was collected and prepossessed
before use and explained in detail the conversion of CityJSON geometry to a WKT string.
In the next chapter, we will take a deep dive into the technical aspect of the tool in the
implementation chapter.

31

5 Implementation
In this chapter, we will discuss the implementation of the CLI conversion tool, starting
with the creation of the vocabulary with the help of the Protégé ontology editor, followed
by the creation and utilization of the Unified Modeling Language (UML), depicted in
Figure 24. The UML is a class diagram displaying the used Python classes and the
relationships they have with each other. Next, we delve deeper into the conversion tool’s
arguments and the features it can use when it receives them. We also delve into validating
and testing the conversion tool’s output, emphasizing the significance of PySHACL in this
process and its preference over other SHACL validation tools. Finally, we discuss the role
of the Shapely Python package in generating and validating the WKT representation of
the CityJSON city object’s geometry.

To illustrate the tool’s conversion of a CityJSON file into a JSON-LD using the vocabulary
in Section 4.1. We will discuss an example; in the example, we will assume that the input
file supplied to the tool contains a Multipoint geometry that requires conversion to
JSON-LD. Figure 23 shows the Geometry class. The class will work as follows:

• First, the constructor is called to initialize the class instance variables with the
provided values for type, load, boundaries, vertices, scale, and translate.

• The constructor also calls a class method called to_wkt, which takes the following
input: boundaries, vertices, scale, and translate. Based on the type, it calls the
method responsible for returning the corresponding WKT string using the Shapely
Python package. In this case, it is the point_to_wkt.

• The point_to_wkt method takes boundaries, vertices, scale, and translate, and it
calls the get_real_vertex; this function is responsible for retrieving the actual
coordinate from the vertices array by using the boundaries which contain the ac-
tual location of the coordinates in the vertices array. After that, it applies the
transformation function which corresponds to this equation:

vertex[i] ∗ scale[i] + translate[i]

where i is either 0, 1, or 2, corresponding to the location of the x,y, and z coordinates
in the vertices array.

The method returns both a version of the boundaries with actual coordinates and
the WKT string.

• to_wkt uses the returned boundaries to be passed to the constructor for the appro-
priate class representing that type; in the example, it is the MultiPoint class.

• Finally, the class initialization step is complete, and the to_json method is ready to
be called to provide the complete JSON-LD representation of the Geometry object.

32

class Geometry:
"""
A class to represent a cityJSON geometric object with various types such as MultiPoint, MultiLineString, MultiSurface,
CompositeSurface, Solid, MultiSolid, CompositeSolid.e
Attributes:

type (str): The type of the geometric object.
lod (str): The level of detail of the geometric object.
boundaries (List): The boundaries of the geometric object in CityJSON format.
boundingBox (CjMultiPoint | CjMultiLineString | CjMultiCompositeSurface | CjSolid | CjMultiCompositeSolid): The bounding box of the

the geometric object↪→
Arguments:

type (str): The type of the geometric object.
lod (str): The level of detail of the geometric object.
boundaries (List): The boundaries of the geometric object.
vertices: The vertices of the geometric object.
scale: The scale factor for the vertices.
translate: The translation vector for the vertices.

"""

def __init__(self, type: str, lod: str, boundaries, vertices, scale, translate):
self.type = type
self.lod = lod
self.boundaries = self.to_wkt(boundaries, vertices, scale, translate)

def get_real_vertex(self, index, vertices, scale, translate):
"""
Replace vertex index with actual vertex coordinates and apply the transform function.
:param index: The index of the vertex.
:param vertices: List of vertices.
:param scale: The scale factors.
:param translate: The translation factors.
:return: Transformed vertex.
"""
vertex = vertices[index]
return (vertex[0] * scale[0] + translate[0], vertex[1] * scale[1] + translate[1], vertex[2] * scale[2] + translate[2])

def point_to_wkt(self, points, vertices, scale, translate):
"""
Convert (Multi)points to WKT format.
:param points: List of points.
:param vertices: List of vertices.
:param scale: The scale factors.
:param translate: The translation factors.
:return: (Multi)Points in 2D WKT format and (Multi)Points in 3D coordinates in JSON-LD format.
"""
points_as_vertices_3d = [self.get_real_vertex(point, vertices, scale, translate) for point in points]
Convert to 2D by ignoring the Z-coordinate
points_as_vertices_2d = [(pt[0], pt[1]) for pt in points_as_vertices_3d]
multi_point = MultiPoint(points_as_vertices_2d)
return multi_point.wkt, points_as_vertices_3d

...

def to_wkt(self, boundaries, vertices, scale, translate):
"""
Convert the cityJSON geometry boundaries to WKT format.
:param boundaries: The boundaries of the geometric object.
:param vertices: The vertices of the geometric object.
:param scale: The scale factors.
:param translate: The translation factors.
:return: Boundaries in WKT format.
"""
if self.type == "MultiPoint":

multi_point_wkt, multi_point_3d = self.point_to_wkt(boundaries, vertices, scale, translate)
self.boundingBox = CjMultiPoint(multi_point_3d)
return multi_point_wkt

...

def to_json(self):
"""
Convert the CityJSON Geometry object to a JSON-LD representation.
:return: JSON-LD representation of the Geometry object.
"""
data = {

"@type": "cj:Geometry",
"cj:type": self.type,
"cj:lod": self.lod,
"geosparql:asWKT": {

"@value": self.boundaries,
"@type": "geosparql:wktLiteral"

},
"cj:hasBoundingBox": self.boundingBox.to_json()

}
return data

Figure 23: Geometry Class3

3The code has been truncated to fit the page. For the complete code, please visit this link: https://
github.com/aly1551995/CityJSON-LD/blob/main/Code/src/Cityobjects/Geometry/geometry.py.

33

https://github.com/aly1551995/CityJSON-LD/blob/main/Code/src/Cityobjects/Geometry/geometry.py
https://github.com/aly1551995/CityJSON-LD/blob/main/Code/src/Cityobjects/Geometry/geometry.py

Figure 24: Class diagram of the conversion tool design

34

5.1 Protégé

We used the Protégé tool to create the CityJSON vocabulary. The tool is one of the most
widely used ontology editors [29], available as a desktop and web application. Such a tool
was beneficial, as it contains numerous tools that facilitate an ontology’s organized and
straightforward construction. Such tools include the OntoGraf to visualize the ontology,
as seen in Figure 25. Protégé also features multiple configurable reasoners for inferring
axioms and rules and validating the ontology, as well as various plug-ins developed for
visualization, validation, and other purposes. The tool allows the user to export the
ontology in many formats, such as Turtle, RDF/XML, OWL/XML, OWL Functional
Syntax, Manchester OWL Syntax, OBO Format, and JSON-LD. It also helped import
other ontologies, like the GeoSPARQL ontology, which added a WKT representation to
the CityJSON object geometry.

Additionally, it includes standard ontologies such as RDF, RDFS, OWL, and XML by
default and allows adding external ontologies either by providing their IRIs or by uploading
them. After using Protégé to create the basic vocabulary and exporting it in Turtle format
because it was the most straightforward and human-readable format, the next step was to
develop a SHACL shape file to set the constraints and provide a way to check the tool’s
output based on the developed vocabulary.

Figure 25: Protégé’s OntoGraf visualization of CityJSON vocabulary

35

https://protege.stanford.edu/

5.2 Conversion Tool

The CLI Python tool performs the following:

• Accept a valid CityJSON file without appearance, extensions, or semantics. Other-
wise, it should throw a descriptive, not support, message.

• Generate a valid CityJSON-LD for a given CityJSON file.

• Allow the usage of the following argument:

– -i or --input-file: Allow the user to provide the input CityJSON file path, rel-
ative or absolute; if relative, the file should be in the src/data folder (required).

– -o or --output-file: Allow the user to provide the output JSON file path
relative or absolute; if relative, the tool will place the file in the output folder
inside the src/output folder (required).

– -b or --base-url: Allow the user to provide the base URL (required).

– -id: Allow the user to provide the ID of the supplied CityJSON file input
(required if -idp argument not provided).

– -idp or --id-path: Allow the user to provide the path to a JSON file containing
a metadata object with an identifier key representing the ID of the supplied
CityJSON file input (required if -id not supplied).

– -epyshacl or --enable-pyshacl: Allow the user to enable PySHACL valida-
tion (Warning: could potentially take a significant amount of time with big
files; not recommended by default, false).

– -f or --formatted: Allow the user to enable formatting or beautifying the
JSON-LD into a human-readable format; we do not recommend it, as it takes
too much space by default; it is false.

– -h or --help: This argument provides a manual for the tool, guides the user
through its use, and provides documentation for the arguments mentioned
earlier.

• Convert the CityJSON geometry in the file to a valid WKT format geometry sup-
ported by GeoSPARQL endpoints and replace the CityJSON geometry vertices in-
dices array with the actual values of the vertices.

The tool takes into account all mandatory CityJSON features as well as most optional
ones. The tool lacks support for the following features: appearance, geometry templates,
extensions, and semantics of geometric primitives.

36

5.3 Validation and Testing Procedures

This section will discuss the validation and testing procedures used for the conversion
tool. The validation procedure consists of two steps. The first step involves validating a
CityJSON file as the tool’s input. The second part involves validating the tool’s output
using PySHACL against the previously mentioned SHACL shape file.

5.3.1 cjio

The initial step entails validating the CityJSON file, the tool received as input. For this,
we utilize the cjio tool, which is a Python CLI to process and manipulate CityJSON
files; cjio can validate the CityJSON file supplied to it; it validates against the CityJSON
schema and the validity of the geometry; it then returns a boolean on whether this is a
valid file or not; in that case, we return an appropriate message in case the file is invalid,
or we continue processing the file otherwise.

5.3.2 WKT

There was also a testing procedure for the WKT string generated in the geometry of a
city object to ensure the string’s validity before testing the WKT representation of the
geometry. We confirmed the WKT string by using the Shapely Python package based
on the well-known GEOS to generate the WKT string of the spatial object. Next, we
conducted user testing to verify the correct correspondence between the generated WKT
and the spatial object it described. The validation included copying the WKT string to
a WKT visualization tool; the one used was the online WKT Map. The tool takes the
WKT string along with the CRS used and gives a visualization of the object on a map.
We then tested manually to check that the generated WKT string correctly reflects the
actual spatial object on the map.

5.3.3 PySHACL

After the conversion tool converts CityJSON to JSON-LD, the user can apply an optional
step: testing using PySHACL, a Python tool that validates any RDF file of any format
against a supplied SHACL shape file; the result is a validation report that contains all
the violations in the provided input file regarding the supplied SHACL shape file, as seen
in Figure 26.

The choice of using PySHACL for validating the JSON-LD output of the tool stems from
the following:

• Easily imported Python package, the same language the tool uses.

• Flexibility to change shapes maximum recursion depth.

• It does not stop after the first violation and provides a full report of all the viola-
tions [30].

37

https://cjio.readthedocs.io/en/latest/
https://pypi.org/project/shapely/
https://wktmap.com/

Data does not conform to SHACL shapes. Validation errors:
Validation Report
Conforms: False
Results (1):
Constraint Violation in InConstraintComponent

(http://www.w3.org/ns/shacl#InConstraintComponent):↪→

Severity: sh:Violation
Source Shape:

[
sh:datatype xsd:string ;
sh:in (Literal("CityJSON")) ;
sh:maxCount Literal("1", datatype=xsd:integer) ;
sh:message Literal("Only one type should exist and the

value must be "CityJSON"") ;↪→

sh:minCount Literal("1", datatype=xsd:integer) ;
sh:path cj:type

]
Focus Node: ex:eaeceeaa-3f66-429a-b81d-bbc6140b8c1cclea
Value Node: Literal("CityJSONE")
Result Path: cj:type
Message: Only one type should exist and the value must be "CityJSON"

Figure 26: SHACL validation report example

This step is optional because our vocabulary includes a list of vertices, which must be
defined in a recursive method to validate each vertex in the list of vertices, ensuring that
each vertex shape aligns with the SHACL shape that describes it. The problem is that
recursion shapes in SHACL are not defined, and according to W3C, the SHACL processor
implementation determines how to handle recursion however they see fit [31]. In the case
of a large city with many vertices encoded in its CityJSON file, recursion could lead to
exceeding the maximum recursion depth set by the SHACL tool. In PySHACL, the --
max-depth argument allows the user to set the maximum depth; if --enable-pyshacl
is present in the conversion tool arguments, the tool sets the --max-depth argument to
999 in order to avoid the need for more depth. We recommend using PySHACL only for
small CityJSON files, as larger ones may take too long and fail.

Technically, enabling PySHACL is unnecessary, as the tool has undergone testing across
multiple scenarios and corner cases, ensuring that the output does not violate the SHACL
shape file. Since different SHACL processors might have different implementations, the
test cases were also run on processors other than PySHACL, such as Apache Jena SHACL,
and SHACL processors found online, like SHACL Playground. All of these gave the
same results, but the selection of PySHACL was due to the reasons explained earlier in
Section 5.3.3.

38

5.4 Implementation Summary

To summarize, in this chapter, we talked about the implementation of the conversion tool;
we discussed the class diagram used as a blueprint to create the Python classes, and we
gave an example of how the Geometry class converts the geometry supplied to JSON-LD.
We then discussed the vocabulary creation and the involvement of the Protégé ontology
editor in the creation process. After we delved into the arguments accepted by the tool
and how to use them, followed by how the tool validates the input and tests the output.
The next chapter will demonstrate how the tool works on a simple CityJSON file.

39

6 Demonstration
This chapter will demonstrate the tool using a simple CityJSON example from the CityJ-
SON website. The file is called cube.city.json, and it contains the following:

• Eight vertices.

• One city object of type “GenericCityObject”, which in turn contains:

* A geometry of type “Solid”.

* LoD equals to “1”.

• An attribute in the form of a JSON object.

• A Metadata object including the geographical extent.

• A Transform object containing a Scale and a Translate object.

The city object is supposed to represent a unit cube, hence the name cube.city.json, as
seen in Figure 27.

Figure 27: Visualization of cube.city.json using CityJSON Ninja

The cube.city.json, depicted in Figure 28, was converted to cube.city.jsonld shown in
Figure 29, using the following command:

python main.py -i cube.city.json -o cube.city.jsonld -b http://example.com/
-id eaeceeaa-3f66-429a-b81d-bbc6140b8c1cclea -f

40

https://3d.bk.tudelft.nl/opendata/cityjson/simplegeom/v2.0/cube.city.json
https://ninja.cityjson.org/

{

"CityObjects": {
"id-1": {

"geometry": [
{

"boundaries": [

[
[[0, 1, 2, 3]],
[[4, 5, 1, 0]],
[[5, 6, 2, 1]],
[[6, 7, 3, 2]],
[[7, 4, 0, 3]],
[[7, 6, 5, 4]]

]

],
"lod": "1",
"type": "Solid"

}
],

"attributes": {
"function": "something"

},

"type": "GenericCityObject"
}

},
"type": "CityJSON",
"version": "2.0",
"vertices":
[

[0 , 0, 1000],
[1000 , 0, 1000],
[1000 , 1000, 1000],
[0 , 1000, 1000],
[0 , 0, 0],
[1000 , 0, 0],
[1000 , 1000, 0],
[0 , 1000, 0]

],
"metadata": {

"geographicalExtent": [0, 0, 0, 1, 1, 1]
},
"transform": {

"scale": [0.001, 0.001, 0.001],
"translate": [0, 0, 0]

}

}

Figure 28: cube.city.json

41

{
"@context": {

"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"cj": "https://www.cityjson.org/ont/cityjson.ttl#", "xsd": "http://www.w3.org/2001/XMLSchema#",
"geosparql": "http://www.opengis.net/ont/geosparql#", "ex": "http://example.com/"

},
"@id": "http://example.com/eaeceeaa-3f66-429a-b81d-bbc6140b8c1cclea", "@type": "cj:CityJSON",
"cj:type": "CityJSON", "cj:version": "2.0",
"cj:hasVertices": {

"@list": [
{ "@type": "cj:Vertex",

"cj:vertexX": { "@value": 0, "@type": "xsd:integer" }, "cj:vertexY": { "@value": 0, "@type": "xsd:integer" },
"cj:vertexZ": { "@value": 1000, "@type": "xsd:integer" }

},
{ "@type": "cj:Vertex",

"cj:vertexX": { "@value": 1000, "@type": "xsd:integer" }, "cj:vertexY": { "@value": 0, "@type": "xsd:integer" },
"cj:vertexZ": { "@value": 1000, "@type": "xsd:integer" }

},
{ "@type": "cj:Vertex",

"cj:vertexX": { "@value": 1000, "@type": "xsd:integer" }, "cj:vertexY": { "@value": 1000, "@type": "xsd:integer" },
"cj:vertexZ": { "@value": 1000, "@type": "xsd:integer" }

},
{ "@type": "cj:Vertex",

"cj:vertexX": { "@value": 0, "@type": "xsd:integer" }, "cj:vertexY": { "@value": 1000, "@type": "xsd:integer" },
"cj:vertexZ": { "@value": 1000, "@type": "xsd:integer" }

},
...

]
},
"cj:hasCityObjects": [

{ "@id": "ex:id-1", "@type": "cj:FirstLevelCityObject", "cj:type": "GenericCityObject", "cj:hasAttribute": { "function":
"something" },↪→
"cj:hasGeometry": [

{ "@type": "cj:Geometry", "cj:type": "Solid", "cj:lod": "1",
"geosparql:asWKT": { "@value": "MULTIPOLYGON (((0 0, 1 0, 1 1, 0 1, 0 0)), ((0 1, 1 1, 1 0, 0 0, 0 1)))", "@type":

"geosparql:wktLiteral" },↪→
"cj:hasBoundingBox": {

"@type": "cj:Solid",
" cj:hasExteriorShell": {

"@type": "cj:ExteriorShell",
"cj:hasSurface": [

{ "@type": "cj:Surface",
"cj:hasExteriorBoundary": {

"@type": "cj:ExteriorShell",
"cj:hasLineString": [

{ "@type": "cj:LineString",
"cj:hasPoint": [

{ "@type": "cj:Point",
"cj:boundaryX": { "@value": 0, "@type": "xsd:float" }, "cj:boundaryY": {

"@value": 0, "@type": "xsd:float" }, "cj:boundaryZ": { "@value": 1, "@type":
"xsd:float" }},

↪→
↪→

{ "@type": "cj:Point",
"cj:boundaryX": { "@value": 1, "@type": "xsd:float" }, "cj:boundaryY": { "@value":

0, "@type": "xsd:float" }, "cj:boundaryZ": { "@value": 1, "@type": "xsd:float"
}},

↪→
↪→

{ "@type": "cj:Point",
"cj:boundaryX": { "@value": 1, "@type": "xsd:float" }, "cj:boundaryY": { "@value":

1, "@type": "xsd:float" }, "cj:boundaryZ": { "@value": 1, "@type": "xsd:float"
}},

↪→
↪→

...
]}]}}]}}}]}],
"cj:hasTransform": {

"@type": "cj:Transform",
"cj:hasScale": { "@type": "cj:Scale",

"cj:scaleX": { "@value": 0.001, "@type": "xsd:float" }, "cj:scaleY": { "@value": 0.001, "@type": "xsd:float" },
"cj:scaleZ": { "@value": 0.001, "@type": "xsd:float" }

},
"cj:hasTranslate": { "@type": "cj:Translate",

"cj:translateX": { "@value": 0, "@type": "xsd:float" }, "cj:translateY": { "@value": 0, "@type":
"xsd:float" },↪→

"cj:translateZ": { "@value": 0, "@type": "xsd:float" }
}

},
"cj:hasMetadata": { "@type": "cj:Metadata",

"cj:hasGeographicalExtent": {
"@type": "cj:GeographicalExtent",
"cj:minX": { "@value": 0, "@type": "xsd:float" }, "cj:maxX": { "@value": 1, "@type": "xsd:float" },
"cj:minY": { "@value": 0, "@type": "xsd:float" }, "cj:maxY": { "@value": 1, "@type": "xsd:float" },
"cj:minZ": { "@value": 0, "@type": "xsd:float" }, "cj:maxZ": { "@value": 0, "@type": "xsd:float" }

}
}

}

Figure 29: The output4 after the conversion (cube.city.jsonld)

4The output has been truncated to fit the page. For the complete example, please visit this link:
https://github.com/aly1551995/CityJSON-LD/blob/main/Code/src/output/cube.city.jsonld

42

https://github.com/aly1551995/CityJSON-LD/blob/main/Code/src/output/cube.city.jsonld

6.1 Fuseki

Now that we have a valid JSON-LD of the cube file, we can use all the functionalities that
RDF permits, including the ability to query the data using SPARQL and its extension
GeoSPARQL. For this purpose, we set up an Apache Jena Fuseki server. Fuseki is a
SPARQL server that can run as a service, WAR, or standalone server. First, we ran
Fuseki in a Docker container as a standalone server using the following command:

docker run -d –name fuseki-geo -p 3030:3030 ghcr.io/zazuko/fuseki-geosparql 5

After the Docker container is up and running, we then created a new dataset using an
arbitrary name in this case “Cube” with the TDB2 option for persistency, as seen in
Figure 30.

Figure 30: Adding a new dataset to Fuseki server

Then, we upload the file to the newly created dataset and get a confirmation of the
successful upload in the form of the number of triples uploaded to the server. In this case,
it is 243 triples, as shown in Figure 31.

Figure 31: Uploading the tool’s output to the Fuseki server

5ghcr.io/zazuko/fuseki-geosparql is an unofficial Docker image of Fuseki with GeoSPARQL installed.

43

https://jena.apache.org/documentation/fuseki2/
https://github.com/zazuko/fuseki-geosparql/pkgs/container/fuseki-geosparql

6.2 SPARQL

Now that the data is uploaded, we can use SPARQL queries to query the triples, verify
the information about the data mentioned in Section 6, and retrieve the new data created
by the conversion tool. From now on, the structure for this section and Section 6.3 will
consist of subsections demonstrating each query within it. Each query and its response will
be explained and visualized. To avoid redundancy, we are omitting previously mentioned
parts of queries.

6.2.1 Number of Vertices

First, we will check how many vertices the file contains. Figure 32 shows both the query
and response. The query consists of the following:

• PREFIX cj: Defines a shorthand for the CityJSON ontology.

• PREFIX rdf: Defines a shorthand for the RDF syntax namespace.

• SELECT (COUNT(?vertex) AS ?numVertices): Selects the count of vertices
and labels it as ?numVertices.

• WHERE ?city cj:hasVertices ?vertices: Finds city objects and their associated
vertex lists.

• WHERE ?vertices rdf:rest*/rdf:first ?vertex: Traverses the list of vertices to
find each vertex using the RDF list structure.

Figure 32: Number of Vertices query and response

44

6.2.2 Number of CityObjects

The query is similar to the one used in Section 6.2.1 to find the number of vertices, except
now we are looking for the number of city objects in the file, as shown in Figure 33. The
query consists of the following:

• SELECT (COUNT(?city) AS ?numCityObjects): Selects the count of city
objects and labels it as ?numCityObjects.

• WHERE ?city cj:hasCityObjects ?numCityObjects: Finds city objects within
a city.

Figure 33: Number of city objects in the file query and response

6.2.3 CityObjects and their LoDs

Below is the SPARQL query to retrieve the Level of Detail (LoD) of city geometries, as
shown in Figure 34, along with a detailed breakdown of each part:

• SELECT ?cityObjects ?lod: Selects the city objects and their Level of Detail
(LoD).

• WHERE ?city cj:hasCityObjects ?cityObjects: Finds city objects within a
city.

• WHERE ?cityObjects cj:hasGeometry ?geometry: Finds city objects and
their associated geometries.

• WHERE ?geometry cj:lod ?lod: Retrieves the geometries’ Level of Detail
(LoD).

45

Figure 34: City objects and their LODs query and response

6.2.4 Retrieve WKT strings of CityObjects

The query retrieves the WKT string of each city object geometry. A city object may
contain zero or more geometry with different LoDs. Hence, there is a possibility of yielding
no data or the same city object more than once. Therefore, the addition of the LoD to
differentiate between the WKT strings of the same city object with different geometries.
This query marks the first time we have used the GeoSPARQL vocabulary in our queries.
The query uses the vocabulary to retrieve the WKT data property. We will elaborate
more on GeoSPARQL and its functions in Section 6.3. Below is the SPARQL query to
retrieve WKT strings of geometries, along with a detailed breakdown of each part:

• PREFIX geosparql: Defines a shorthand for the GeoSPARQL ontology names-
pace.

• SELECT ?cityObjects ?lod ?wkt: Selects the variables representing city ob-
jects, levels of detail (LoD), and the Well-Known Text (WKT) representation of
geometries.

• WHERE ?geometry geosparql:asWKT ?wkt: Retrieves the WKT represen-
tation of the geometry.

46

Figure 35: WKT strings of city objects query and response

6.2.5 Retrieve Metadata’s geographical extent

This SPARQL query retrieves the geographical extent found in the Metadata object in
a CityJSON file. This query has the potential to return with no data as the Metadata
object is optional in CityJSON, and even if it is present, the geographical extent object
is also optional; the details of the query are as follows:

• SELECT ?minX ?maxX ?minY ?maxY ?minZ ?maxZ: Selects the minimum
and maximum X, Y, and Z coordinates.

• WHERE ?city cj:hasMetadata ?metadata: Finds city objects and their asso-
ciated metadata.

• WHERE ?metadata cj:hasGeographicalExtent ?geographicalExtent: Finds
the geographical extent within the Metadata.

• WHERE ?geographicalExtent cj:minX ?minX ; cj:maxX ?maxX ; cj:minY
?minY ; cj:maxY ?maxY ; cj:minZ ?minZ ; cj:maxZ ?maxZ: Retrieves the
minimum and maximum X, Y, and Z coordinates of the geographical extent.

47

Figure 36: Metadata’s geographical extent query and response

6.3 GeoSPARQL

In this section, we will demonstrate some GeoSPARQL queries applied to the tool’s out-
put. The section will follow the previous structure as Section 6.2 with one addition: the
use of Yasgui, a tool to visualize SPARQL and GeoSPARQL queries. We give it the
SPARQL endpoint URL, and it connects to it. We can run the queries from it, and if
there is a WKT string, it displays it on 2D and 3D maps.

6.3.1 Calculate the Convex Hull

In this GeoSPARQL query, we take advantage of one of GeoSPARQL Non-Topological
Functions, which is the convexHull function that takes as an input a WKT string rep-
resenting the geometry of the object and returns an object containing all the points in
the convex hull of the input of object. Below is the formulated GeoSPARQL query to
calculate the convex hull of the geometry of the city objects, as shown in Figure 37, and
in Figure 38, we can see the visualization of the response. Next, we will break down the
query in detail:

• PREFIX geof: http://www.opengis.net/def/function/geosparql/: Defines
the prefix geof to refer to the GeoSPARQL function namespace.

• SELECT ?cityObject (geof (?geometryWKT) AS ?convexHull): Selects
the city objects and calculates the convex hull of their geometries, labeling it as
?convexHull.

48

https://yasgui.triply.cc/

Figure 37: The calculated convex hull

Figure 38: Visualization of the calculated convex hull (convex hull in red)

49

6.3.2 Calculate the Boundary

This GeoSPARQL query uses the Non-Topological function boundary, a function that
takes the geometry of an object as an input and returns the boundary surrounding that
object. Figure 39 shows the GeoSPARQL query used to calculate the boundary of the
city objects’ geometry. Figure 40 shows the response’s visualization. The query consists
of the following:

• SELECT?cityObject ?geometryWKT (geof:boundary(?geometryWKT) AS
?boundary): Selects the city objects, their geometries in WKT format, and calcu-
lates the boundary of the geometries, labeling it as ?boundary.

Figure 39: The Calculated Boundary

50

Figure 40: Visualization of the calculated boundary (boundary in black)

6.4 Demonstration Summary

In the chapter, we showcased the conversion tool and highlighted its advantage in enabling
SPARQL and GeoSPARQL queries6. on the converted data. We specifically demonstrated
how to upload the converted data into Apache Jena Fuseki and query it using SPARQL
and GeoSPARQL. Some of the SPARQL queries we demonstrated were retrieving the
number of vertices, the number of city objects, the LoDs of each city object, the WKT
string of the city object’s geometry, and finally, the retrieval of the geographical extent of
the Metadata embedded in the CityJSON file. For GeoSPARQL, we showed two queries:
one to calculate the convex hull and the other to calculate the boundary of an object. In
the next chapter, we will showcase the tool’s capabilities and the power of GeoSPARQL
on actual city data, such as New York City and Helsinki.

6All the queries and commands used in this chapter can be found in this link https://github.com/
aly1551995/CityJSON-LD/tree/main/Demo

51

https://github.com/aly1551995/CityJSON-LD/tree/main/Demo
https://github.com/aly1551995/CityJSON-LD/tree/main/Demo

7 Case Studies
In this Chapter, we will study two datasets of two cities: Helsinki and New York City.
Both datasets have different characteristics. Both have been converted using the tool and
uploaded to Fuseki using the same procedure shown in Chapter 6. Since the datasets
represent real cities, utilizing more advanced GeoSPARQL queries is possible. Moreover,
it allows us to emphasize the advantages of converting to JSON-LD and extending the
features of CityJSON with WKT string for geometries by showcasing real-life situations
and examples.

7.1 Helsinki

Before we delve into more advanced queries, we ran some queries to explore and get
acquainted with the dataset; also, it will help benchmark this dataset with the New York
dataset, as we will see in Section 7.3. Here is a summary of some of the properties of the
Helsinki dataset:

Metric Value
Number of Triples 1,911,692

Number of City Objects 677
Number of Buildings 677
Number of Vertices 72,519
Types of Geometry Solid

Types of LoDs LoD1 and LoD2
Coordinate Reference System (CRS) EPSG 3879

Table 2: Summary of the Helsinki Dataset.

7.1.1 Intersection

First, we will take a building in Helsinki, shown in Figure 41, and check whether it in-
tersects with any other building. The query, shown in Figure 42, first retrieves the WKT
of the target building (BID_9c1fc3d5c69c4de1b61ace84432f72f0). Since this dataset con-
tains two LoD geometry representations, we will pick LoD1. Simpler geometry is better
for faster response due to less complexity and does not require the boundary function. As
we will see in Section 7.2.1, we get all the WKT of the other buildings with LoD1. We fil-
ter based on whether they intersect with the target building or not using the GeoSPARQL
function sfIntersects, which is a function when given two geometries return a true if they
intersect and false if they do not intersect; we then exclude the geometry of the target
building itself and then calculate the intersection of geometry of the target building with
the other building using the GeoSPARQL intersection function which given two geome-
tries return all points in the intersection of the input geometries. As we can see again in
Figure 42, two buildings intersect with the target building, and we have the WKT of the
intersections shown in Figure 43.

52

Figure 41: The target building (BID_9c1fc3d5c69c4de1b61ace84432f72f0).

Figure 42: GeoSPARQL query and response for buildings that intersect with
BID_9c1fc3d5c69c4de1b61ace84432f72f0.

53

(a) Left Intersecting Building.

(b) Intersection points.

(c) Right Intersecting Building.

Figure 43: Intersection points and the intersecting buildings.

54

We can even take this a step further and get all the buildings that intersect with one
another using the query in Figure 44. The query checks if a building intersects with
another building, and if it does, it returns the intersection point. We can show all the
intersection points by modifying the query, as seen in Figure 45. We can also show a map
of all the buildings that intersect in the city, as seen in Figure 46.

Figure 44: GeoSPARQL query and response for all intersection points in the city.

55

Figure 45: Visualization of all the intersection points.

Figure 46: Visualization of all the buildings that have intersection points.

56

7.1.2 Union

Now, another query, as seen in Figure 47, demonstrates that GeoSPARQL can be used to
combine all the buildings from Section 7.1.1 into a single WKT for visualization purposes.
This can be achieved using the union function, which, when given two geometries, returns
the union of those geometries’ points. However, it is not explicitly stated whether the
GeoSPARQL union function merges intersecting points during the union, similar to what
the PostGIS union function does, as discussed in this link 7. The result, as shown in
Figure 48, suggests that the function does indeed merge the intersections. Given that
we have the IRIs of the buildings from the previous query’s results, we can retrieve their
WKT individually and then apply the union function on them.

Figure 47: GeoSPARQL union query and response for the three buildings mentioned in
Section 7.1.1.

7https://postgis.net/workshops/uk/postgis-intro/geometry_returning.html#st-union

57

https://postgis.net/workshops/uk/postgis-intro/geometry_returning.html#st-union
https://postgis.net/workshops/uk/postgis-intro/geometry_returning.html#st-union

Figure 48: Visualization of the union of the three buildings mentioned in Section 7.1.1.

7.1.3 Concatenation

We can also use the query shown in Figure 49 to concatenate all the geometries to visu-
alize all the buildings in the city with specific LoDs. This query could help visualize a
neighborhood or district, as Figures 50 and 51 show.

Figure 49: GeoSPARQL concatenation query and response for all buildings with LoD1.

58

Figure 50: Visualization of the concatenation of all the building’s geometries with LoD1.

Figure 51: Visualization of the concatenation of all the building’s geometries with LoD2.

59

7.1.4 Radius

Assuming we want to form a perimeter around the same building from the previous
Sections 7.1.1 and 7.1.2, then retrieve all the buildings within that perimeter, this can
be applied using the query shown in Figure 52. The query first retrieves the WKT of
the building and then applies the GeoSPARQL buffer function. This function takes a
geometry, a radius, and a unit of measure as inputs. It outputs a polygon of points with
a distance less than or equal to the given radius from the geometry’s center. Now the
issue is that the buffer function seems to have problems, as indicated by an issue on the
official GeoSPARQL GitHub repository, which states that the unit of measure can be
problematic; in our case, if we use meters as a unit, we receive an empty output even
thought it should return a radius of 1 KM. However, it seems to work when using the
degree as the unit. That is why we have a degree as the unit of measure in the query
with a value not equivalent to 1 KM in degrees. However, we verified the correctness
of the output, as shown in Figure 54, by drawing a circle of a 1 KM radius from the
address of the building using the online tool Map Developers, and the output matches
the result shown in Figure 53. Finally, we get all the buildings and then filter using the
GeoSPARQL sfWithin to filter on the buildings within that created boundary.

Figure 52: The perimeter around the building previously mentioned in Sections 7.1.1 and
7.1.2 and the buildings within that perimeter.

60

https://github.com/opengeospatial/ogc-geosparql/issues/468
https://www.mapdevelopers.com/draw-circle-tool.php?circles=%5B%5B5000%2C60.1648152%2C24.9285073%2C%22%23AAAAAA%22%2C%22%23000000%22%2C0.4%5D%5D

Figure 53: Visualization of the perimeter around the building previously mentioned in
Sections 7.1.1 and 7.1.2 and the buildings within that perimeter.

Figure 54: Verification of the 1 KM radius output of the GeoSPARQL query.

61

7.1.5 Heights of Buildings

We noticed that all the buildings in the Helsinki dataset contain the measuredHeight
attribute, which indicates the height of the building. This attribute is not standardized.
It is just a deduction from the analysis of the data. Hence, it is only applicable to this
dataset. So, we can use this attribute to retrieve each building’s height. The difficulty is
that the CityJSON attribute field can be any valid JSON object. Therefore, we would
need to either string manipulate the JSON object to retrieve the needed values, which is
possible within the query itself, as shown in Figure 55, or post-process the query result
using Python to obtain the required values, as shown in Figure 56.

Figure 55: GeoSPARQL query and response to retrieve measuredHeight attribute using
string manipulation.

62

Figure 56: Using Python to query GeoSPARQL endpoint and extract measuredHeight.

63

Subsequently, we can measure the average height of all the buildings in the dataset, as
seen in Figure 57.

Figure 57: GeoSPARQL query and response to retrieve the average measuredHeight.

7.2 New York City

Similar to the approach we used in Section 7.1, here is a summary of the New York City
file:

Metric Value
Number of Triples 6,287,270

Number of City Objects 23,777
Number of Buildings 23,777
Number of Vertices 1,035,804
Types of Geometry MultiSurface

Types of LoDs LoD2
Coordinate Reference System (CRS) EPSG 2263

Table 3: Summary of the New York City Dataset.

64

7.2.1 Intersection

The New York City dataset is characterized by buildings with LoD2 only, meaning they are
buildings with complex geometry and might have repeated and overlapping coordinates.
So, in order for the GeoSPARQL intersection function to work correctly, we need to
simplify the geometry, and that is achieved by calculating the boundary of the buildings
and comparing it with the other buildings rather than what we did in Section 7.2.1 where
we just first retrieved the WKT and then filtered on buildings that intersect and then
computed the intersection on the retrieved WKT string directly, However, in this case, we
also have to use the GeoSPARQL boundary function, which is a function given a geometry
returns the closure of the boundary of the specified geometry, The query, response, and
the visualization are shown in Figures 58 and 59.

Figure 58: GeoSPARQL query and response for buildings that intersect with the target
building.

65

(a) Target Building.

(b) Intersection points.

(c) Intersecting Building.

Figure 59: Target building and the intersecting building.

66

7.2.2 Union

The below query is the same as the one executed in Section 7.1.2, with the difference of
using a LoD2 building from the New York City dataset, the result as seen in Figures 60
and 61.

Figure 60: GeoSPARQL union query and response for the buildings mentioned in
Section 7.2.1.

Figure 61: Visualization of the union of the buildings mentioned in Section 7.2.1.

67

7.2.3 Concatenation

This query required the use of SPARQLWrapper, a Python package that wraps around a
SPARQL service to execute RDF queries remotely. Its usage was due to browser interface
crashing because of the amount of data sent in the HTTP response from the Fuseki
server. It also required the use of GeoPandas and Folium for conversion and visualization.
In Figure 62, the Python script ran the query and generated a visualization of all the
buildings in New York City, as seen in Figures 63 and 64.

Figure 62: Python concatenation query, response, and visualization script for New York
City dataset.

68

https://sparqlwrapper.readthedocs.io/en/latest/
https://geopandas.org/en/stable/index.html
https://python-visualization.github.io/folium/latest/index.html

Figure 63: Visualization of the concatenation of all the buildings in New York City dataset.

Figure 64: Visualization of the concatenation of all the buildings in New York City Dataset
(Close-up).

69

7.2.4 Radius

Figures 65 and 66 show the query, response, and visualization for applying a 1 KM radius
around the target building used in Section 7.2.1.

Figure 65: The Query and response to retrieve the perimeter around the building previ-
ously mentioned in Sections 7.2.1 and 7.2.2 and the buildings within that perimeter.

70

Figure 66: Visualization of the perimeter around the building previously mentioned in
Sections 7.2.1 and 7.2.2 and the buildings within that perimeter.

7.3 Benchmark

This comparative case study of the Helsinki and New York City datasets highlights crit-
ical differences in dataset characteristics, conversion processes, query performance, and
visualization methods. The analysis and benchmarking provide valuable insights into the
strengths and challenges of handling datasets of varying complexity and size.

7.3.1 Dataset Characteristics

The Helsinki dataset, which contains 677 buildings and 72,519 vertices, contrasts sharply
with the New York City dataset, featuring 23,777 buildings and over a million vertices.
This significant difference in scale had a pronounced impact on processing times. The
initial attempt to upload the New York dataset to Fuseki failed due to a “ran out of
memory” error, caused by the large number of vertices overwhelming the system’s capacity.
To address this issue and successfully upload the data, the converted JSON-LD file was
partitioned into six separate parts: one file containing all the data except the vertices,
and five additional files, each containing a portion of the vertices. This partitioning
allowed the upload process to proceed without exceeding memory limits. A summary of
the characteristics of both datasets is shown in Table 4.

71

Metric Helsinki New York City
Coordinate Reference System (CRS) EPSG 3879 EPSG 2263

File Size 20 MB 170 MB
Source CityJSON GitHub

Converted From CityGML Yes Yes
Time To Upload to Fuseki ≈ 4 mins ≈ 15 mins and required batching

Number of Vertices 72,519 1,035,804
Number of Attributes Per Building 12 3

Table 4: Characteristics Comparison between Helsinki and New York City Datasets.

7.3.2 Conversion Process

The conversion times varied according to the complexity of the datasets, with the Helsinki
dataset converting faster than the New York dataset. Both datasets were converted from
CityJSON to JSON-LD using the cj2jld tool, in both formatted and raw (unformatted)
forms. The formatted conversion resulted in a file size that was at least twice as large
as the unformatted version, indicating a significant increase in size due to formatting.
Additionally, using PySHACL for validating the output proved impractical when the
--enable-pyshacl argument was applied, as the validation process became excessively
time-consuming. A summary of the conversion tool’s performance with respect to the two
datasets is provided in Table 5.

Metric Helsinki New York City
Conversion Time (without PySHACL) ≈ 26 seconds ≈ 1 minute and 4 seconds

Conversion Time (with PySHACL) N/A N/A
File Size After Conversion (Unformatted) 73.3 MB 326 MB
File Size After Conversion (Formatted) 318 MB 718 MB

Table 5: Conversion Tool Comparison between Helsinki and New York City Datasets.

7.3.3 Visualization

Visualization methods differed between datasets, with the Helsinki dataset visualization
using more straightforward online tools like WKT MAP. Due to its size and complex-
ity, the New York City dataset often required external tools like Python’s Folium and
GeoPandas for adequate visualization, especially when handling large queries like con-
catenation.

7.3.4 Query Performance

Query execution times were significantly shorter for the Helsinki dataset across all queries.
The simpler geometry of Helsinki buildings enabled more efficient intersection, union, and
concatenation operations. In contrast, the New York dataset required more computational
resources due to its LoD2 complexity and the necessity of additional GeoSPARQL func-
tions, such as boundary, to simplify the geometry. A summary of the query response times
is provided in Table 6.

72

https://www.cityjson.org/datasets/
https://github.com/kinotus/HelsinkiCityJSON/tree/main/CityJSON%20examples

Query Helsinki (Time) New York City (Time)
Intersection 0.203 seconds 1.818 seconds
Union 0.071 seconds (3 buildings) 0.065 seconds (2 buildings)
Concatenation 0.098 seconds 5.300 seconds
Radius 0.067 seconds 0.203 seconds
Building Height 0.091 seconds Not Applicable

Table 6: Comparison of Fuseki Query Response Times between Helsinki and New York
City Datasets.

7.3.5 SPARQL

Applying some basic SPARQL queries provided additional insight into both datasets.
The Helsinki dataset contains 1,911,692 triples, while the New York City dataset includes
6,287,270 triples. Both datasets consist of city objects, specifically buildings, with the
Helsinki dataset representing 677 buildings and the New York City dataset representing
23,777 buildings. In terms of geometry, the Helsinki dataset uses “Solid” geometry, whereas
the New York City dataset utilizes “MultiSurface” geometry. Additionally, the Helsinki
dataset features both LoD1 and LoD2, while the New York City dataset is represented at
LoD2. These characteristics are summarized in Table 7.

Query Helsinki New York City
Number of Triples 1,911,692 6,287,270

Number of City Objects 677 23,777
Number of Buildings 677 23,777
Types of Geometry Solid MultiSurface

Types of LoDs LoD1 and LoD2 LoD2

Table 7: Comparison of Basic SPARQL Query Characteristics between Helsinki and New
York City Datasets.

7.3.6 GeoSPARQL

GeoSPARQL queries for the union, concatenation, and buffer operations were consistently
applied across both datasets using the GeoSPARQL functions union and buffer to retrieve
the results. However, the intersection operation required a different approach between the
two datasets.

For the intersection queries, both the Helsinki and New York City datasets utilized the
GeoSPARQL functions sfIntersects and intersection. The sfIntersects function was em-
ployed to determine whether a building intersected with a specified building, while the
intersection function was used to obtain the Well-Known Text (WKT) representation of
the intersection.

In the case of the New York City dataset, an additional step was necessary due to the
complexity of its geometry. The conversion from 3D to 2D introduced self-intersecting
polygons, which caused errors when using the intersection function. To address this
issue, the boundary of the building was used instead of the complex geometry to search

73

for intersections and calculate the intersection WKT. This approach circumvented the
problems associated with self-intersecting polygons and enabled accurate determination
of intersecting buildings.

In contrast, the Helsinki dataset allowed for the retrieval and calculation of building
heights due to the presence of a non-standardized building height attribute. This made
it possible to calculate the average building height within the city. Unfortunately, this
analysis could not be replicated for the New York City dataset due to the absence of a
corresponding height attribute.

7.4 Case Study Summary

This chapter presented the application of the conversion tool, as well as the execution of
SPARQL and GeoSPARQL queries8 on two datasets: Helsinki and New York City. In
the next chapter, we will discuss the challenges and limitations encountered during the
course of this thesis.

8All the queries and commands used in this chapter are available at the following link: https:
//github.com/aly1551995/CityJSON-LD/tree/main/Case%20Study.

74

https://github.com/aly1551995/CityJSON-LD/tree/main/Case%20Study
https://github.com/aly1551995/CityJSON-LD/tree/main/Case%20Study

8 Discussion
This chapter showcases some challenges and limitations encountered throughout the the-
sis.

8.1 Challenges

Developing the conversion tool was a complex and tedious process involving several chal-
lenges.

8.1.1 Accurate Vocabulary

One of these challenges was formulating a vocabulary that accurately captured CityJ-
SON’s objects and their relations. The vocabulary needed to preserve semantics and
promote the use of other vocabularies, such as the GeoSPARQL vocabulary used to de-
fine the WKT string of the 2D geometry of a CityJSON object.

8.1.2 Efficient Validation

Another significant challenge, besides accurate output, is efficiency. The tool required
handling large files, reading them, validating them, converting them, and writing them
back to disk in an acceptable amount of time. The validation step, in particular, was
the bottleneck of the process, as it relied on a third-party library like PySHACL. Val-
idation proved to be a significantly time-consuming process when handling large files,
especially those with many vertices, as their recursive definition in our vocabulary proved
computationally expensive to validate.

8.1.3 Formation of WKT

Finding the best way to generate the WKT string was difficult. The initial approach was
to construct it manually, but then the Shapely package seemed more suitable. Besides
generating the string, there was the obstacle of converting the given 3D geometric shapes
to a 2D one without losing much information. Our initial approach was to project by
removing the Z-coordinate and then compute the convex hull. However, the approach
proved inaccurate compared to just projecting without any other functions applied to the
geometry.

8.2 Limitations

In addition to challenges, the development process faced several limitations.

8.2.1 Non-Supported Features

While some optional CityJSON features such as appearances, geometry templates, ex-
tensions, and geometry semantics were not supported in this project due to their added
complexity and time constraints, the core components of CityJSON were successfully
converted. Our work focused on the essential elements of CityJSON, providing a robust
foundation for the conversion process. By prioritizing these core features, we ensured that
the most critical aspects of CityJSON were fully integrated into our vocabulary and the

75

https://www.ogc.org/standard/geosparql/

conversion tool. This approach not only facilitated the successful conversion of the pri-
mary dataset elements but also laid the groundwork for future expansions. The structure
we developed is extendable, offering a strong starting point for incorporating additional
features and further enhancements.

8.2.2 Data Scarcity

The lack of CityJSON data, especially CityJSON data with specific geometry types such as
CompositeSurface, MultiSolid, and CompositeSolid, rendered the testing process difficult.
Nevertheless, the tool works well with the example CityJSON files found on their original
website for these geometries. In addition, there was an attempt to create more CityJSON
data by converting CityGML data to CityJSON using citygml-tools similar to the method
discussed in 4.3. However, the method was cumbersome and out of the scope of this thesis.
It only provided conversion to solids as geometry types; this type already had much data
for testing purposes.

8.3 Discussion Summary

This discussion outlines the key challenges, such as creating an accurate vocabulary that
encompasses the CityJSON semantics, efficient validation of the output and PySHACL
bottleneck, and the approach to generating the WKT string for the geometry. The chap-
ter also outlines the limitations faced during the duration of the thesis, including the
time constraints and complexity for the non-included features and the hard-to-come-by
CityJSON data.

76

https://github.com/citygml4j/citygml-tools

9 Conclusion
In this chapter, we will summarize all the accomplishments throughout the thesis and
reflect on future work to develop the tool further.

9.1 Summary

This thesis investigated the conversion of CityJSON to JSON-LD to enhance semantic
interoperability and data integration for 3D urban models. We began by explaining the
formats used for 3D urban data, such as CityGML and CityJSON, and their limitation,
which, while effective in certain aspects, fall short of providing the semantic richness
needed for integration with the Semantic Web. We then identified JSON-LD as a promi-
nent RDF format for adding semantics to CityJSON.

We then showed the feasibility of converting CityJSON to JSON-LD by developing a con-
version tool. We explained the approach and the implementations we took in developing
the conversion tool, which included:

• A vocabulary that extended the original CityJSON semantics with a WKT string
representation of the geometry object to allow for using GeoSPARQL. The leverage
of GeoSPARQL allows powerful spatial functions and relations to be used.

• A SHACL file for validating the tool’s output allows for avoiding the usage of OWL
while still validating the output against the engineered vocabulary.

• A CLI tool with multiple arguments for flexible management of the conversion pro-
cess.

With the tool’s completion, we began showcasing its capability on two real-world datasets,
Helsinki and New York, by converting them and uploading them to Apache Fuseki to apply
queries using SPARQL and GeoSPARQL. The two use cases also allowed us to benchmark
the tool’s performance on two datasets with different characteristics.

We encountered and overcame many challenges during the tool’s development, including
creating the vocabulary, handling large datasets, and adding WKT. Despite these chal-
lenges, we developed the tool successfully, but there are still some limitations, such as
deciding which features to support and the limited number of testing datasets. There is
also potential for future improvements with better vocabulary, adding the missing fea-
tures, and a GUI for a better user experience.

In conclusion, this thesis provides a proof of concept for more interoperable 3D city
models. By bridging the gap between CityJSON and JSON-LD, the research paves the
way for using CityJSON with the Semantic Web in urban modeling and planning via a
conversion tool, which is the primary outcome of this thesis.

77

9.2 Future Work

Although the tool works as intended, there still could be room for several improvements
to enhance the functionality and performance of the CityJSON to JSON-LD conversion
tool.

9.2.1 Optimizing the Conversion Process

Optimize the conversion process to handle large datasets more efficiently. The optimiza-
tion could involve applying a more efficient approach for processing and validating data,
such as processing the CityJSON file in batches; the idea came from uploading the output
of New York to Fuseki, which failed if the whole file was uploaded together, but when
batch uploaded, it succeeded especially with the splitting of the vertices object on mul-
tiple uploads. Another option if the vertices are the source of the bottleneck is not to
validate the vertices while validating the other object; this could allow mitigating the
PySHACL recursion depth problem, especially when processing vertices to process the
data faster.

9.2.2 Adding Missing Optional Features and Extensions

Expanding the tool’s support to include optional CityJSON features and extensions would
broaden its applicability. These missing elements are not part of the core CityJSON spec-
ification but are optional features and extensions that provide additional capabilities. For
example, appearances enable more detailed visual representations, such as material and
texture attributes, which are essential for realistic visualization of urban environments.
Similarly, CityJSON extensions allow for the inclusion of specialized data and semantics
tailored to specific applications. By incorporating support for these features, the tool
could be used in a broader range of scenarios.

9.2.3 Vocabulary Enhancement

Enhancing the semantic expressiveness of the converted JSON-LD data is an area for
future work. These enhancements involve developing more comprehensive ontologies and
vocabularies that better capture the complexities of CityJSON and incorporate the miss-
ing CityJSON features. Such Ontologies and vocabularies enable more advanced queries
and data integration possibilities.

9.2.4 Graphical User Interface (GUI)

Developing a GUI with interactive elements for the CLI tool will facilitate and improve
the user experience. It also provides the potential addition of visualization and preview
capabilities, which can be helpful for more insights and debugging in case of errors.

9.2.5 GIS Integration

Finally, future work should also focus on the tool’s integration with existing Geographic
Information Systems (GIS), such as QGIS, and its potential to facilitate interoperability
and data sharing across different platforms.

78

https://www.qgis.org/

References
[1] Gilles-Antoine Nys and Roland Billen. “From consistency to flexibility: A simplified

database schema for the management of CityJSON 3D city models”. In: Transactions
in GIS 25.6 (2021), pp. 3048–3066 (page 3).

[2] Karwan Jacksi and Shakir M Abass. “Development history of the world wide web”.
In: Int. J. Sci. Technol. Res 8.9 (2019), pp. 75–79 (page 5).

[3] Jasmin Praful Bharadiya. “Artificial intelligence and the future of web 3.0: Op-
portunities and challenges ahead”. In: American Journal of Computer Science and
Technology 6.2 (2023), pp. 91–96 (page 5).

[4] Angus Stevenson. Oxford dictionary of English. Oxford University Press, USA, 2010
(page 5).

[5] Nicola Guarino, Daniel Oberle, and Steffen Staab. “What is an ontology?” In: Hand-
book on ontologies (2009), pp. 1–17 (page 5).

[6] Li Ding, Pranam Kolari, Zhongli Ding, and Sasikanth Avancha. “Using ontologies
in the semantic web: A survey”. In: Ontologies: A Handbook of Principles, Concepts
and Applications in Information Systems (2007), pp. 79–113 (page 6).

[7] Antonio Hernández-Illera, Miguel A Martínez-Prieto, and Javier D Fernández. “Se-
rializing RDF in compressed space”. In: 2015 Data Compression Conference. IEEE.
2015, pp. 363–372 (page 6).

[8] Tim Berners-Lee. Linked Data - Design Issues. 2006. url: https://www.w3.org/
DesignIssues/LinkedData.html (page 6).

[9] Florian Bauer and Martin Kaltenböck. “Linked open data: The essentials”. In: Edi-
tion mono/monochrom, Vienna 710.21 (2011) (page 7).

[10] Richard Cyganiak. The Linked Open Data Cloud Diagram. http://id.loc.gov/vocabulary/iso639-
2/eng. Date created: 2014-08-30 04:00:00.000. 2014. url: http://lod-cloud.net/
(page 7).

[11] Bob DuCharme. Learning SPARQL: querying and updating with SPARQL 1.1. "
O’Reilly Media, Inc.", 2013 (page 8).

[12] Yingjie Hu and Wenwen Li. “Spatial data infrastructures”. In: arXiv preprint arXiv:1707.03969
(2017) (page 9).

[13] M Caprioli, A Scognamiglio, G Strisciuglio, and E Tarantino. “Rules and standards
for spatial data quality in GIS environments”. In: Proc. 21st Int. Cartographic Conf.
Durban, South Africa 10–16 August 2003. 2003 (page 9).

[14] Open Geospatial Consortium. OGC CityGML Standard. Accessed: 2024-06-28. 2023.
url: https://www.ogc.org/standards/citygml (page 9).

[15] CityJSON. CityJSON: Now an OGC Standard. Accessed: 2024-06-28. 2023. url:
https://www.cityjson.org/news/2023/11/06/cityjsonv2-ogc (page 9).

[16] Gerhard Gröger, Thomas H Kolbe, Claus Nagel, and Karl-Heinz Häfele. OGC City
Geography Markup Language (CityGML) Encoding Standard. Tech. rep. 12-019.
Open Geospatial Consortium, 2012 (pages 11, 12).

[17] Filip Biljecki, Hugo Ledoux, and Jantien Stoter. “An improved LOD specification
for 3D building models”. In: Computers, environment and urban systems 59 (2016),
pp. 25–37 (page 12).

[18] Stelios Vitalis, Ken Arroyo Ohori, and Jantien Stoter. “CityJSON in QGIS: Devel-
opment of an open-source plugin”. In: Transactions in GIS 24.5 (2020), pp. 1147–
1164 (page 12).

79

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net/
https://www.ogc.org/standards/citygml
https://www.cityjson.org/news/2023/11/06/cityjsonv2-ogc

[19] Hugo Ledoux, Ken Arroyo Ohori, Kavisha Kumar, Balázs Dukai, Anna Labet-
ski, and Stelios Vitalis. “CityJSON: A compact and easy-to-use encoding of the
CityGML data model”. In: Open Geospatial Data, Software and Standards 4.1 (2019),
pp. 1–12 (pages 12–14).

[20] Markus Lanthaler and Christian Gütl. “On using JSON-LD to create evolvable
RESTful services”. In: Proceedings of the third international workshop on RESTful
design. 2012, pp. 25–32 (page 15).

[21] World Wide Web Consortium et al. RDF 1.1 Primer. Tech. rep. World Wide Web
Consortium, 2014 (page 15).

[22] Martin J Dürst. “Internationalized resource identifiers: From specification to test-
ing”. In: 19th International Unicode Conference. 2001 (page 15).

[23] Gregg Kellogg, Pierre-Antoine Champin, and Dave Longley. JSON-LD 1.1 – A
JSON-based Serialization for Linked Data. Technical Report. W3C Working Draft.
W3C, 2019. url: https : / / hal . archives - ouvertes . fr / hal - 02141614v1
(page 15).

[24] Diego Vinasco-Alvarez, John Samuel Samuel, Sylvie Servigne, and Gilles Gesquière.
“Towards a semantic web representation from a 3D geospatial urban data model”.
In: SAGEO 2021, 16ème Conférence Internationale de la Géomatique, de l’Analyse
Spatiale et des Sciences de l’Information Géographique. hal-03240567. La Rochelle
[Online Event], France, May 2021, pp. 227–238 (page 18).

[25] Chih-Yuan Huang, Yao-Hsin Chiang, and Fuan Tsai. “An ontology integrating the
open standards of city models and Internet of things for smart-city applications”.
In: IEEE Internet of Things Journal 9.20 (2022), pp. 20444–20457 (page 18).

[26] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. “SHACL: A de-
scription logic in disguise”. In: International Conference on Logic Programming and
Nonmonotonic Reasoning. Springer. 2022, pp. 75–88 (page 23).

[27] Open Geospatial Consortium. Geographic information — Well-known text repre-
sentation of coordinate reference systems. Tech. rep. OGC Document Number: 18-
010r11. Accessed: 2024-07-23. Open Geospatial Consortium, Mar. 2019. url: https:
//docs.ogc.org/is/18-010r11/18-010r11.pdf (page 28).

[28] Dongming Guo, Erling Onstein, and Angela Daniela La Rosa. “An improved ap-
proach for effective describing geometric data in ifcOWL through WKT high order
expressions”. In: An Improved Approach for Effective Describing Geometric Data in
ifcOWL through WKT High Order Expressions (2021) (page 28).

[29] Vishal Jain and Mayank Singh. “Ontology development and query retrieval using
protégé tool”. In: International Journal of Intelligent Systems and Applications 9.9
(2013), pp. 67–75 (page 35).

[30] Leon Martin and Andreas Henrich. “Specification and Validation of Quality Cri-
teria for Git Repositories using RDF and SHACL.” In: LWDA. 2022, pp. 124–135
(page 37).

[31] W3C RDF Data Shapes Working Group. Shapes Constraint Language (SHACL).
Tech. rep. Accessed: 2024-07-15. World Wide Web Consortium (W3C), 2017. url:
https://www.w3.org/TR/shacl/ (page 38).

80

https://hal.archives-ouvertes.fr/hal-02141614v1
https://docs.ogc.org/is/18-010r11/18-010r11.pdf
https://docs.ogc.org/is/18-010r11/18-010r11.pdf
https://www.w3.org/TR/shacl/

