
https://lib.uliege.be https://matheo.uliege.be

My Success Squared - Developing and Integrating a Smart Generator and

Corrector of Maths exercises

Auteur : Wéry, Victor

Promoteur(s) : Donnet, Benoît

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "computer systems security"

Année académique : 2023-2024

URI/URL : http://hdl.handle.net/2268.2/21156

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Master thesis

Civil Engineering in Computer Science

My Success Squared

Developing and Integrating a Smart
Generator and Corrector of Maths Exercises

Author: Victor Wéry

Promoter: Prof. Benoît Donnet

Liege University:

Academic Year 2023-2024

Abstract

My Success Squared is an application to support Mathematics learning and practice
in a playful way for secondary school students. However, in its current state, exercises
statements and the corresponding solutions have to be created and added by hand.
The �rst objective of this project is thus to provide a smart generator capable of
creating exercises of desired types (equations, fraction simpli�cation, etc) and with
desired properties (complexity, parameters, etc).
As it is an application for learning students, it would be desirable to be able to
deliver consistent feedback depending on the answer those students will provide and
the second objective is thus to provide a smart corrector that will be able to �nd what
mistake has been made based on the answer and/or step-by-step reasoning provided
by a student and to provide corresponding feedback.

2

Acknowledgements

I want to thank Pr. Donnet and Ms. Brieven for their insights, help and patience.
Their guidance has been essential to this project's completion.

3

Table of contents

1 Introduction 6

2 State of the art 8
2.1 Exercise generation . 8

2.1.1 Template . 8
2.1.2 CLP . 9
2.1.3 Others . 9

2.2 Feedback generation . 10
2.3 Chosen methods . 11

2.3.1 Exercise generation method 11
2.3.2 Feedback generation method 11

3 Introduction to SymPy 12

4 Exercise generation 14
4.1 General . 14

4.1.1 Parameters . 14
4.1.2 Generation . 16

4.2 First degree equation exercises . 19
4.2.1 Exercise format . 19
4.2.2 Parameters . 20
4.2.3 Generation . 22
4.2.4 Evaluation . 24

4.3 Fraction simpli�cation exercises . 30
4.3.1 Exercise format . 30
4.3.2 Parameters . 31
4.3.3 Generation . 32
4.3.4 Evaluation . 35

4.4 Extensibility . 44

4

5 Feedback generation 45
5.1 Asynchronous feedback generation . 46

5.1.1 General principles . 46
5.1.2 Reasoning steps . 48
5.1.3 Reasoning tree . 49
5.1.4 Associate feedback to answer 57
5.1.5 Reasoning step application . 58
5.1.6 Evaluation . 62

5.2 Synchronous feedback generation . 68
5.3 Speci�c correctors . 68

5.3.1 First degree equation corrector 69
5.3.2 Fraction simpli�cation corrector 69

5.4 Extensibility . 70

6 Guide 71
6.1 File organization . 71

6.1.1 Main �les . 71
6.1.2 Secondary �les . 72

6.2 Running the program . 72
6.2.1 Dependencies . 72
6.2.2 Generation demo . 72
6.2.3 Generation testing . 73
6.2.4 Integration to My Success Squared 73

6.3 Edition and Extension . 75

7 Conclusion 76

5

Chapter 1

Introduction

Learning mathematics is often not very exciting, especially in the �rst years of sec-
ondary school when it mainly consists in drilling the same exercises on simple concepts
such as simple equations, fraction calculations, factorization, etc for those to be
assimilated.
As a result, it is not always easy for teachers to keep these phases interesting for their
students.

For that purpose, My Success Squared was created.
It allows to perform those basic concepts learning and drilling in a "gami�ed" way.
The di�erent chapters are associated to islands that have to be explored, containing
tutorials to learn the concepts and exercises to practice on them. It includes a
competitive mode as well in which students can compete against each other and
try to become the presidents of the islands described above.

However, in its current state, the application is unable to generate any exercise and
those have to be added by hand by the teachers wanting to create a lesson.
Moreover, for the application to be a good tool that can be used in the context of
learning, it is essential that the students using the application and solving exercises
on it are given consistent feedback when they fail. That is, not just knowing if their
answer is right or wrong but what mistake they made if their answer is wrong.

6

That is the context of this thesis and the two big topics that we will have to address and
solve are the automated generation of exercises of various types (exercise generator)
and the generation of consistent feedback for any exercise and that is adapted to each
speci�c student's case (feedback generator). The chosen solution should be as general
as possible as to allow to easily extend them and bring new exercise types.

More speci�cally, we will have a brief overview of the di�erent ways in which similar
problems have already been addressed.
Then we will have a quick look at the tools that were used to carry out this project.
We will then get in the heart of the matter with a detailed explanation on how both
exercise and feedback generators have been implemented for both �rst degree equation
and fraction simpli�cation exercises.
Finally, we will have a guide through the actual �les that were written for this project
and how to use them.

7

Chapter 2

State of the art

We are not the �rst ones to address the problem of automated exercise and feedback
generation. Numerous works have already been done on the subject though not
that much on the speci�c topic of mathematics exercises. The topic of programming
exercises for example is much more often addressed. Valentin Baum did a complete
state of the art analysis on this subject in his work "Implementing an Automatic
Pointers Exercises Generator in CAFÉ 2.0"(2023)[3] and although it is not precisely
our subject, it still brings quite pertinent elements that can help us to �nd a solution
to our problem.

2.1 Exercise generation

2.1.1 Template

Template generation is a generation method that uses generic templates de�ning the
global structure of exercises. The generator then replaces the parameters with random
values. This is explored in "Math exercise generation and smart assessment"(Almeida
et al., 2013)[1] with the system Passarola which provides a simple and powerful lan-
guage to de�ne templates ("Exercise generation with the system Passarola"(Almeida
et al., 2013)[2]).

8

2.1.2 CLP

CLP (Constraint Logic Programming) is a grammar based scheme where exercises
formats are de�ned with context free grammars and constraints are then used during
generation to prefer some choices over others. This allows to have a general solution
while keeping the possibility to tune the exercise properties thanks to the constraints.
This method is studied in "A CLP-based tool for computer aided generation and
solving of maths exercises"(Tomás et al., 2002)[5] and used to generate math quizzes
in "Automatic generation and delivery of multiple-choice math quizzes"(Tomás et al.,
2013)[6] with the help of AGILMAT which is web application aiming at facilitating
math education ("AGILMAT�a Web Application for Math Education", Tomás et al.,
[7]).

2.1.3 Others

In the work of Valentin Baum [3] we can learn about other methods that could be
used for mathematics exercise generation:

� Mutation : Consists in starting from an existing exercise and create new ones
by slightly modifying it.

� Construction from solution : Consists in generating the solution �rst and
then build the exercise on top of that solution.

9

2.2 Feedback generation

Not much has been made on the topic of generating feedback for mathematics exer-
cises.
In "Math exercise generation and smart assessment"(Almeida et al., 2013)[1] (tem-
plate based generation), they use the fact that a solution to an exercise could be
represented by a sequence of operators applied to data vectors. If the operators are
reversible, starting form an erroneous answer, one could revert to the state in which
the error has been made and thus �nd the appropriate feedback.
Others like in "Feedback design patterns for math online learning systems"(Inventado
et al., 2017)[4] implement a feedback generation scheme based on history of students
errors to de�ne typical errors and associated feedback.

Again, Valentin Baum[3] brings additional information:

� Path construction : Consists in creating a graph that links the exercise
statement to the possible solutions through nodes representing intermediate
states and edges representing the transition between those nodes.

� Transformation model : Consists de�ning the answer to the exercise and
some transitions with associated feedback that link wrong answers to the right
one. This allows to �nd the correct feedback to provide given the student's
answer by performing all the transitions on it and matching with the correct
answer.

10

2.3 Chosen methods

2.3.1 Exercise generation method

In the context of this thesis, we will generate �rst degree equation and fraction
simpli�cation exercises which are two very di�erent types of exercises. We thus chose
to use di�erent methods for each type:

� First degree equation : We use the template based model. The exact scheme
is detailed in section 4.2.

� Fraction simpli�cation : For that exercise type, we chose the construction
from solution model. The reasoning that yielded this conclusion is detailed in
section 4.3.3.

2.3.2 Feedback generation method

As we need to be able to provide feedback to students from the beginning, the errors
history model is therefore inadequate.
So is the reversible operators scheme as it only allows to generate feedback for a
restricted set of exercise types.

We then consider two possible models:

� Transformation model : A bit di�erent from the one described earlier, it con-
sists in applying transformations to the exercise statement that each represents
a possible error made somewhere in the reasoning.

� Path construction

The transformation model has the advantage of not having to represent even correct
reasoning steps. However path construction model allows for more speci�c feedback
which is a key feature when generating feedback for young students who may not
know the equivalence between the error A + B = C → A = B + C and the error
A+B = C → A−B = C.

The chosen feedback generation scheme is thus path construction as it is the model
that allows for the greatest precision in feedback.

11

Chapter 3

Introduction to SymPy

Sympy is a Pyhon library that is very useful to perform symbolic calculations.
It allows to de�ne and maintain mathematical expressions (expression = a + b) and
to easily perform arithmetic operations on them (expression+ 3 = a+ b+ 3).
It de�nes the following operators:

� The multiplication operator "∗"/"Mul" (a
b
= a ∗ b−1).

� The addition operator "+"/"Add" (a− b = a+ (−b)).

� The power operator "**"/"Pow".

Many very useful functions are de�ned to solve equations, simplify or factorize an
expression, etc.

12

Sympy expressions are built in tree structures

which will be very useful both for exercise and feedback generations.
A Sympy expression has two attributes:

� func which is the operator at the root of the expression tree.

� args which is the list of the arguments on which the operator is applied and
that are Sympy expressions as well. These correspond to the sub-trees whose
roots are the children of the tree root.

expression = 4 ∗ x+ 3

expression.func = Add

expression.args = (4 ∗ x, 3)

For expressions that do not contain an operator, their func attribute is Number or
Symbol etc and their args is an empty list.

Sympy spares us the tasks of de�ning structures for representing mathematical op-
erations, parsers, and algorithms for solving, simplifying, etc, and allows us to easily
perform many operations on mathematical expressions.

13

Chapter 4

Exercise generation

We want to o�er the teachers a way to order bunches of exercises for their lessons
without having to de�ne the exercise statements or answers themselves.
However, they need to keep control on the exercise properties such as complexity,
di�culty level, etc.
For that purpose, the exercise generator takes as input a json �le containing a set of
parameters which values are set by the teachers.

4.1 General

In this section, we will discuss the general concepts and mechanisms that may apply
to any type of exercise.

4.1.1 Parameters

Let's consider the fact that any exercise statement of any type is composed of math-
ematical expressions. These expressions are composed of operators (+, *, ...) applied
to other sub-expressions or tokens. These tokens can be numbers or parameters (a,
b, c, x, y, ...). Teachers may want to have some control over these tokens:

14

� They may or may not want parameters to get involved in their exercises. They
may indeed want to order fraction simpli�cation exercises for beginners and keep
it simple with only numbers for example:

Simplify: −60
−360

or introduce parameters for more advanced exercises:

Simplify: 4b2

−4ab2+2b3

They may as well want to vary the number of parameters involved in the
exercises.

For that purpose, we de�ne the nb_param_range parameter composed of two
numbers ([lower_bound, higher_bound]) bounding the number of parameters
that will appear in the exercise. If the teachers want to de�ne the exact number
of parameters to appear, they can simply use that number for both bounds, and
use 0 if they don't want any parameter in their exercises.

� We also give the teachers the opportunity to chose which parameters may appear
in their exercises with the possible_params parameter.

� They may want to bound the value of the numbers that are introduced during
the exercise generation because it may lead to unnecessarily complex expressions
and di�culty in terms of mental calculation. As an example, here are two
generated fraction simpli�cation exercises with 2 factors bounded in absolute
value respectively by 19 and by 5:

Unnecessarily complex: −1404
−24024

= −12×11×9
−12×11×154

= 9
154

Acceptable: 200
32

= 4×2×25
4×2×4

= 25
4

15

4.1.2 Generation

The generation of the mathematical expressions and the enforcement of the constraints
on the token that constitutes them are implemented by a general generator class from
which each specialized generator will inherit.

First, this generator is able to generate complex mathematical expressions.
What we call a complex expression in an expression composed of an operator applied
to one or more operands as opposed to tokens which are composed of a single param-
eter or number.

Complex expression: a+ b composed of tokens: a, b

A complexity value is associated to each expression and computed as follow:

complexity(expression) =

{
0 if expression is token

1 + complexity(expression.args) if expression is complex

where complexity(expression.args) is the sum of the complexities of expression's operands.
As for example, the complexity of (a+ b)c is:

complexity((a+ b)c) = 1 + complexity(a+ b) + complexity(c)

= 1 + (1 + complexity(a) + complexity(b)) + 0

= 1 + (1 + 0 + 0) + 0

= 2

Parameters selection

The number n of parameters to appear in the exercise to be generated is a random
number bounded by the nb_param_range parameter. The n �rst parameters in
possible_params then form the list of parameters to appear in the exercise.

16

Complex expression generation

From there we can de�ne a complex expression generation algorithm:

Algorithm 1 Generate Complex Expression

procedure GenerateComplexExpression(complexity)
if complexity == 0 then

return DrawRandomToken()
else

complexity ← complexity − 1
operator ← DrawRandomOperator()

first_arg_complexity ← random(0, complexity)
second_arg_complexity ← complexity − first_arg_complexity

first_arg ← GenerateComplexExpression(first_arg_complexity)
second_arg ← GenerateComplexExpression(second_arg_complexity)

return operator(first_arg, second_arg)
end if

end procedure

In other words, given the complexity of the expression to generate, if that complexity
is 0, then the expression is a randomly drawn token.
If it is greater than 0, then an operator is randomly drawn as well as the complexities
of the operand. This is done in such a way that their sum is equal to the initial
complexity-1. Operands are then generated with this same algorithm with their
corresponding complexities. Finally the resulting expression is the chosen operator
applied to the generated operands.

However this is a generalized view and some tuning is still required:

� Depending on the context, certain operators may or may not be desirable. For
example we may not want the power operator to appear in low level exercises
as to keep them simple. We thus need to specify the list of acceptable operators
to the algorithm.

17

� For the same reason, we may not want every operators to appear equally often.
We thus need to dynamically associate a probability of appearance to each
operator and adapt the operator drawing algorithm accordingly.

� Not every operator should be treated in the same way. Except in very speci�c
cases, the power operator for example should only have integers as power value
and the algorithm should be adapted accordingly.

� In order to prevent high powers from appearing in exercises that we would want
to keep simple, we should as well specify bounds to the power value of power
operations.

Token generation

The token generation is more simple. A token can be either a parameter or a number
which itself can be an integer or a fraction (bringing decimal point numbers into the
exercises would be of no interest). The generation algorithm requires to specify:

� The list of parameters that can appear in the exercise.

� The probability for a token to be a fraction. As fraction operations can be
di�cult for younger students, it is important to be able to specify whether or
not fractions can be included and how often.

� Whether 0 can be drawn as it cannot be the denominator of a fraction or would
nullify any multiplication operation, etc.

� Whether 1 can be drawn as it is neutral as a factor or denominator, etc.

18

The algorithm works as follow:

Decide whether the token will be a fraction or not in accordance with the associated
probability.
If it is, generate both numerator and denominator as non-fraction tokens with this
same algorithm.
If not, choose, among the possible parameters or an integer between 0, 1 or 2 (depend-
ing on whether 0 and 1 are allowed) and the maximum value de�ned in the general
parameters. The sign of the token is then randomly chosen.

Parameter number enforcement

One problem persists with the token generation algorithm described above. Indeed,
although one could have asked for having at least n parameters in his exercises, there
is a chance for an exercise with m<n parameters to be generated. This could be just
because at least one parameter has never been chosen during token generation. We
thus need to enforce that each parameter that has been asked is present at least once
in the exercise.
We can do that by checking for missing parameters in a given exercise and for each
one of them, adding it to a random sub-expression of the exercise.

4.2 First degree equation exercises

4.2.1 Exercise format

A �rst degree equation is typically of the form ax + b = c, with x the equation's
unknown and a, b and c numbers:

Solve: 3x+ 7 = −1

But we could complexify it into the form a(bx+ c) + d = e:

Solve: 5(3x− 1)− 1 = 0

From now on, we will call the a(bx+ c) + d block a complex factor (not term).

19

Furthermore, we could increase the complexity by adding several unknown dependent
terms in the equation:

Solve: 5− (x− 3) = 4x− (3x− 8)

Finally, the reason why we call a a(bx + c) + d block a complex factor instead of a
complex term is that we could have several unknown dependent factors multiplying.
Indeed, although that would mean having powers of x greater than 1, as long as these
powers of x cancel out, we would still have a �rst degree equation:

(x+ 2)(x+ 1) = (x+ 4)(x− 5)

x2 + 3x+ 2 = x2 + x− 20

3x+ 2 = x− 20

The simpler forms ax+ b = c and a(bx+ c)+d = e are typically for beginner students
who may have di�culties with fraction calculations. We thus want to ensure that the
answers to such exercises are integers.

For the same reasons, it is important to be able to control the frequency of fraction
token appearance.

4.2.2 Parameters

In addition to the general parameters, we de�ne 6 speci�c parameters to tune the
equations form:

� possible_unknowns de�nes the list of symbols that can be used as the equa-
tion's unknown.

� fraction_token_proba is the probability for each token other that the un-
known to be a fraction token.

20

� complex_factor_proba is the probability for each unknown dependent factor
to be a complex factor (a(bx+ c) + d instead of ax+ b).

� add_unknown_terms_range de�nes the lower and upper bounds to the
number of additional unknown dependent terms (thus in addition to the one
necessarily present by default).

[0, 0] :5− (x− 3) = 9

[1, 1] :5− (x− 3) = 4x− (3x− 8)

� add_unknown_factors_range de�nes the lower and upper bounds to the
number of additional unknown dependent factors per term (thus in addition to
the one necessarily present by default in each term)

[0, 0] :5− (x− 3) = 3x− 8

[1, 1] :(5− (x− 3))(3x+ 7) = (3x− 8)(−x− 2)

� unknown_division_proba is the probability for an unknown dependent fac-
tor to be put at the denominator.

−2x
x− 6

=
8x

3− 4x

However, generating such forms of equations appeared to be quite complicated.
As it was only a secondary requirement, we thus chose not to implement it and
the parameter is left unused in the current generator version.

21

4.2.3 Generation

The generation process for �rst degree equations is as follow:

First of all, we obviously need to choose the parameters and equation's unknown ac-
cordingly with possible_unknowns and with the help of the selection process discussed
in section 4.1.2.

Then we can proceed with the equation generation.

Equation generation

Starting with both sides of the equation equal to 0, randomly draw the number of un-
known dependent terms to generate. This is done accordingly with add_unknown_terms_range.
Then, generate these terms and add them to a randomly chosen side of the equation.

If one side of the equation is left zero, replace it with a random token generated
accordingly with fraction_token_proba and allowing 0 and 1.

If there are some parameters in the equation, ensure that all chosen parameters do
appear in the equation thanks to methods discussed in section 4.1.2.

If nb_param_range, fraction_token_proba, add_unknown_terms_range
and add_unknown_factors_range are all zero, consider that the exercise is of the
simplest form and should have an integer solution as discussed in section 4.2.1.
The solution that has been chosen is the following:

We can rewrite any �rst degree equation into their homogeneous form:

2x− (x− 2) + 3 = x− 4

2x+ x+ 2 + 3 = x− 4

3x+ 5 = x− 4

2x+ 9 = 0

22

Which is of the form ax + b = 0 and whose solution is −b
a
. Thankfully, the SymPy

library de�nes the Poly function that yields a polynomial if applied to the subtraction
of the right hand side from the left hand side of the equation. Solving the homogeneous
equation is then equivalent to equalizing this polynomial to 0.

Now b is not necessarily divisible by a so we need to change the equation as to have
the solution c

a
with c divisible by a.

We can obtain that by de�ning c = −b+ adj where adj = b mod a is an adjustment
and b mod a is the modulo of b by a (which is equal to the remainder of the integer
division of b by a. Ex: 7 mod 3 = 1 because 3/7 = 2 remaining 1). This ensures by
de�nition of the modulo operator that c is divisible by a.
We thus simply need to add adj to the equation (even in its initial, non-homogeneous
form).

Finally, to ensure the greatest diversity and randomness, we can add to adj n × a
with n randomly chosen between 0 and max_int_value and with random sign. This
is correct as n× a is of course divisible by a.
Furthermore, we can randomly chose whether to add it to the right hand side of the
equation or subtract it from its left hand side.

Unknown dependent term generation

The unknown dependent term generation is as follow:

Choose the number of unknown dependent factor the term will be composed of
accordingly with add_unknown_factors_range. Then generate these factors and
de�ne the new term as their product.

However, as we have seen, some terms are composed of more than 1 factor, higher
powers of x will appear and we need them to cancel out as to keep a �rst degree
equation.
We thus need to ensure that the last term is such that it cancels out each power of x
greater than 1. The chosen solution to that problem is the following:

Start with the new term equal to 0.
Reduce the equation to its homogeneous form and for each term of degree >1, add it
to the new term.

23

Then, to add randomness, complete the new term by generating an unknown depen-
dent factor and adding it to the term.
Randomly choose whether to add it to the right hand side or subtract it from the left
hand side of the equation.

Equation before adding new term: (3x+ 5)(2x− 4) = −3x(2x− 5)

6x2 − 12x+ 10x− 20 = −6x2 + 15x

12x2 − 17x− 20 = 0

New term: 12x2 − x− 2

Equation after adding new term:

(3x+ 5)(2x− 4) = −3x(2x− 5) + 12x2 − x− 2

Unknown dependent factor generation

The unknown dependent factor generation is as follow:

Choose whether to generate a simple factor (ax+b) or a complex factor (c(dx+e)+f)
in accordance with complex_factor_proba.
Then replace the parameters values by random tokens generated accordingly with
fraction_token_proba and allowing 1(except for c) and 0 (except for a, c, d, e).

4.2.4 Evaluation

We want to make sure that the implementation of the generator allows for a maximum
diversity in the exercises. We don't want the students to be able to exploit patterns
in the exercise generation and be able to guess the answers without properly solving
the exercises.

A simple way to make sure that will not be the case is by checking the diversity in
the exercise answers. The closer we are to the case where each exercise has an answer
not shared by any other exercise, the better.

24

Before analyzing the results for the 2 most important parameters in �rst degree equa-
tion generation fraction_token_proba and complex_factor_proba, let's �rst clearly
de�ne the notions addressed in �gures 4.1, 4.2, 4.3 and 4.4 and how they were made.

Graphs explanation

Graphs 4.1a and 4.2a allow to compare the occurrence rates of respectively frac-
tion tokens and complex factors to the values of fraction_token_proba and com-
plex_factor_proba. If the generator implementation is correct, both values should be
approximately equal.

Graphs 4.1b and 4.2b display as a function of their respective parameter the measured
diversity in the sampled exercises. That diversity is de�ned as the ratio between the
number of di�erent answers encountered and the number of exercises in the sample.

Figures 4.3 and 4.4 show for di�erent values of their respective parameter the com-
puted probabilities for an answer to be shared by several exercises. As an example,
Percentage = 0.6 for Nb of exercises sharing the common answer = 3 means that 60%
of encountered answers were shared by exactly 3 di�erent exercises in the sample.
For better readability, only non-zero percentages are displayed.

Those graphs were generated by, for each considered value of the respective parameter,
generating 20 batches of 50 exercises (thus samples of 1000 exercises).
For each batch bi, the mean occurrence rate µi was computed, and the �nal average
occurrence rate µ was computed over all the batches.
The error err was computed as σ(µ1,...,µn)√

n
with σ(µ1, ..., µn) the standard deviation

over µi and n = 20 (The errors are present on graphs 4.1a and 4.2a but are so tiny
that they can barely be seen).

The exercises were generated with:

Parameter Value
nb_param_range [0, 0]
max_int_value 5

add_unknown_terms_range [0, 2]
add_unknown_factors_range [0, 0]

as those are parameter values that will most typically be chosen by teachers.

25

Graphs analysis

First thing we can observe on graphs 4.1a and 4.2a is that the real occurrence rates
correspond to the values of the respective parameters as expected.

Second, graphs 4.1b and 4.2b show an increase in exercise diversity with the respective
parameter.
It is expected for fraction_token_proba as a fraction token can take many more values
that other tokens. It is thus logical that exercises with more fraction tokens generate
a greater answer diversity.
Likewise, as complex factors include more tokens than simple factors, the increase in
exercise diversity with the value of complex_factor_proba is also expected.

However the exercise diversities for low values of the parameters seem quite low,
especially for fraction_token_proba.
A diversity of 0.4 as in graph 4.1 for fraction_token_proba = 0 could be problematic.
Indeed, for 1000 exercises, this means that there are only 400 di�erent answers.
If it is because some answers are shared by not too many exercises, this is acceptable.
However, if it is because very few answers are shared by many exercises (for example,
1 answer shared by 601 exercises and 399 other answers shared by only one exercise)
then this is problematic.

Thankfully, we can see on �gures 4.3 and 4.4 that we are in the acceptable case.
Indeed, for any value of the parameter, the percentage of answers that are shared
by several exercises decrease really fast in a decreasing exponential fashion with the
number of exercises sharing the answer.
As the worst case is a tiny percentage of the answers (probably corresponding to a
single answer) shared by 43 exercises, that is, not even 1 exercise out of 20, it is safe
to conclude that the generator satis�es the properties we expected.

26

(a) (b)

Figure 4.1: Generator evaluation regarding
fraction_token_proba over samples of 1000 exercises

(a) (b)

Figure 4.2: Generator evaluation regarding
complex_factor_proba over samples of 1000 exercises

27

(a) (b)

(c) (d)

Figure 4.3: Diversity analysis with di�erent values of
fraction_token_proba over samples of 1000 exercises

28

(a) (b)

(c) (d)

Figure 4.4: Diversity analysis with di�erent values of
complex_factor_proba over samples of 1000 exercises

29

4.3 Fraction simpli�cation exercises

4.3.1 Exercise format

The simplest form an exercise can take is a fraction with integers as numerator and de-
nominator that are not prime to each other (thus such that it can be simpli�ed).

Simplify :
36

100

We can then complexify the exercise by adding parameters:

Simplify :
10x2y3

12xy2

And using more complex expressions:

Simplify :
10x2y3 + 4x3y

12xy2

Finally, we could even have several fraction that need to be put back together:

Simplify :
9

3(x2 − y2)
+

x

x(y − x)

But, as explained in section 4.3.3, the current version of the generator does not support
the generation of such form of exercise.

30

We consider an answer to be as simpli�ed as possible when there are no more common
factor between the fully factorized numerator and denominator. We will not set any
more constraint on the form of the answer.
Indeed, asking for the answer to be as expanded as possible would mean rejecting
3x(x2+y)

y
as an answer and accepting 3x3+3xy

y
which would seem counter-intuitive for

many students.
On the other hand, asking for the answer to be as factorized as possible would mean
asking to factorize −12x2 +23x+1 into (24x− 23−

√
577)(−24x+23−

√
577) as an

example, which is not the aim of the exercise either.
Obviously, any constraint of the form "factorize but not too much" cannot be formally
de�ned and could not be implemented in an automatized generator/corrector.

4.3.2 Parameters

In addition to the general parameters, we de�ne 4 speci�c parameters to tune the
fractions form:

� answer_num_complexity_range is the expression complexity of the nu-
merator of the answer.

� answer_denom_complexity_range is the expression complexity of the de-
nominator of the answer.

� nb_factor_range de�nes the lower and upper bounds to the number of factors
that multiply both numerator and denominator of the answer to form the
exercise.

� factor_complexity_range de�nes the lower and upper bounds to the expres-
sion complexity of each additional factor forming the exercise.

Those parameters are linked to the chosen way of generating exercises discussed in
next section.

However, as explained in section 4.3.4, total compliance can be ensured only with
nb_factor_range while only partial compliance can be ensured with the other three
parameters.

31

4.3.3 Generation

Choosing the generation method

There are 2 possible ways to generate a fraction simpli�cation exercise:

� Generate random expressions for both numerator and denominator. This allows
to easily generate any form of exercise, even those with several fractions that
need to be put together.
However, control over how much the fraction can be simpli�ed is impossible and
we cannot ensure that the generated fraction is even simpli�able.

3x+ 6

x2 − y2
+

x+ y

4x(y − x)
=

(3x+ 6)4x(y − x)

(x2 − y2)4x(y − x)
+

(x+ y)(x2 − y2)

(x2 − y2)4x(y − x)

=
(3x+ 6)4x(y − x) + (x+ y)(x2 − y2)

(x2 − y2)4x(y − x)

=
12x(x+ 2)(y − x) + (x+ y)(x+ y)(x− y)

4x(y − x)(x+ y)(x− y)

=
−12x(x+ 2) + (x+ y)(x+ y)

4x(y − x)(x+ y)

=
−12x2 − 24x+ x2 + 2xy + y2

4x(y − x)(x+ y)

=
−11x2 + y2 + 2xy − 24x

4x(y − x)(x+ y)

� Generate the exercise's answer and then generate factors that will multiply both
answer numerator and denominator to form the �nal exercise.

Answer:
3x

y

First factor: x+ y

Second factor: 7y

Final fraction:
21x2y + 21xy2

7xy2 + 7y3

32

However, it would be di�cult to generate exercises with several fractions that
need to be put together with such a method.

The second method was chosen because being able to tune the exercises properties is
too important whereas being able to generate the most complex forms of exercises is
not a priority.

Exercise generation

The �rst step of fraction simpli�cation exercise generation is to chose the parameters
if any, that will appear in the exercise.

Then generate the answer expression by generating complex expressions for the nu-
merator and denominator with randomly chosen complexities in accordance with an-
swer_num_complexity_range and answer_denom_complexity_range and with the
methods discussed in section 4.1.2.

We then must ensure that all chosen parameters are present in the answer with
methods discussed in section 4.1.2.
We could do that at the end of the generation as all parameters do not need to appear
in the answer but only in the �nal expression. That would however disturb the whole
structure of the exercise and that is not acceptable.

Exercise:
3a3 + 6a

9a

Answer:
a2 + 2

3
Factorizable: 3a

33

Exercise with parameter

inserted in answer:
3(a+ b)3 + 6a

9a+ 3ab

Answer:
a2 + 2

3 + b

Factorizable: 3a

Exercise with parameter

inserted at the end:
3(a+ b)3 + 6a

9a

Answer:
3(a+ b)3 + 2a

3a
Factorizable: 3

The price to pay however is that the complexity of numerator and/or denominator
is slightly changed and exact compliance with answer_num_complexity_range and
answer_denom_complexity_range cannot be ensured.

Then we can complexify the answer with several factors multiplying both numerator
and denominator to form the �nal exercise.
The number of factors and their complexities are randomly drawn accordingly with
nb_factor_range and factor_complexity_range.

Finally the exercise expression is expanded so as to make solving the exercise chal-
lenging.

34

4.3.4 Evaluation

Once again we want to ensure that the generated exercises are satisfactorily diversi�ed.

The answer diversity is thus important and we will analyze it for di�erent values of the
answer_num_complexity_range and answer_denom_complexity_range parameters.

Moreover, diversity in the factors that can be factorized from the exercise expression
is important as well. We do not want students to be able to systematically guess how
they can factorize the fraction without searching by themselves. We will thus analyze
that factor diversity with di�erent values of factor_complexity_range.

We will see that the results greatly depend on the number of parameters involved in the
exercises and thus repeat the analysis listed above for several values of nb_param_range.

Graphs explanation

Only notions that have not already been discussed in section 4.2.4 will be discussed
in this section.

Figure 4.5 is about the notion of answer complexity which in this case is de�ned as
the sum of both answer numerator and denominator complexities. If we have an-
swer_num_complexity_range=2 and answer_denom_complexity_range=2, we thus
expect the answer complexity to be equal to 2 + 2 = 4.
Keep in mind however that on �gure 4.5 the value of Answer numerator/denominator
complexity is the value of separately answer_num_complexity_range and
answer_denom_complexity_range and not their sum.

Figure 4.6 shows an analysis of factors diversity. This notion is quite similar to answer
diversity and is de�ned as the ratio between the number of di�erent factor values that
have been encountered and the number of factors that were considered.

The graphs were generated in the same fashion as described in section 4.2.4.
Both evaluations were performed on the same sampled exercises as their answers and
factors values do not in�uence one another. Those evaluations were performed for
three values of nb_param_range: [0, 0], [1, 1], [2, 2].

35

Only graphs with the parameter=[0, 0] and [1, 1] are displayed in �gures 4.7 to 4.12
as those are the most interesting results.

The chosen values for answer_num_complexity_range,
answer_denom_complexity_range and factor_complexity_range were [0, 0], [1, 1],
[2, 2] and [3, 3] as those are the most likely to be used when ordering exercises.

The only static parameters' values were nb_factor_range=[1, 1] as more would have
been useless and without consequence on the analysis and max_int_value=5 as such
a value is likely to be chosen when ordering exercises.

Graphs analysis

First of all we can see on graphs 4.5a and 4.6a that the measured complexity is zero
no matter what the parameter's value is when there is no parameter in the exercise.
This is because in that case, we only deal with numbers which naturally associate
into a single number no matter what operators are applied to them.

5 + 3× 6

7− 3
=

23

4

Complexity = 0

In the case where there are no parameter in the exercise, complexity parameters'
values thus cannot be re�ected by the actual expressions' complexities as de�ned in
section 4.1.2 but only in the sizes of the numbers involved.

For the same reason, we can observe on those same graphs that even with more
than zero parameter, the measured complexities are substantially lower than expected
(for an Answer numerator/denominator complexity value of 3, we expect an answer
complexity of 6).

36

a+ 3b

7a

Complexity = 2 + 1 = 3

a+ 3× 6

7a
=

a+ 18

7a

Complexity = 1 + 1 = 2

Another thing that we can note on graph 4.5a is that for an expected complexity of 0
however, with some parameters in the exercise, the measured complexity is non-zero.
This is because with such a value for answer_num_complexity_range and
answer_denom_complexity_range there should only be 2 tokens forming the answer
(one at the numerator and one at the denominator). However, as soon as 2 numbers
(1 if nb_param_range=[2, 2]) are chosen over the exercise's parameters during token
generation, at least one asked parameter cannot appear in the exercise answer, and
is thus inserted by force.

Expected complexity = 0

nb_param_range = [2, 2]

Generated answer :
a

7

Parameter insertion :
a+ b

7

Complexity = 1 + 0 = 1

Next, we can see on graphs 4.5b and 4.6b that for a zero complexity, the diversity is
close to 0, which seems pretty bad.
The reason is that for such a complexity, any factor or answer's numerator/denominator
can only take the possible integers or parameters, negative or positive, as a value.
As an example, the numerator's value can only be ±1, ±2, ±3, ±4, ±5, ±a or ±b
with nb_param_range=[2, 2] and max_int_value=5, that is 14 possible values.

37

Considering the fact that some possible values of the answer are redundant due to
simpli�cation (5

5
= 4

4
= ...), or that a factor cannot be equal to ±1 as it would be

without impact on the expression, that yields at most a few tens of possible values
for 1000 exercises/factors and that explains the results on graphs 4.5b and 4.6b.

We can note on the other hand, that the general tendency of the diversity to increase
with the number of parameters is expected. Indeed, more parameters means more
possible values and values that are not miscible.

1 + 4

3
=

2 + 3

3
=

5

3

1 + a

3
̸= 1 + b

3

Let's now take a closer look into the answers/factors' values distribution over the
sampled exercises/factors on �gures 4.7 to 4.12.

We can see on graph 4.10a that the factors' values are all shared by a similar amount
of sample factors. This is expected as in that case, there are only 8 possible values
(±2, ±3, ±4 and ±5) which are all equally likely to be drawn. We thus have for each
value representing 1

8
= 12.5%, 1000

8
= 125 factors sharing it which is roughly what we

can observe on the graph.

As for the other graphs, we can make the observation that most of answers/factors'
values are shared by relatively few exercises/factors and only a few extreme values
are shared by a greater number of exercises/factors.
Let's take graph 4.7a. We can see that there are 2 values shared by about 100 exercises.
This is due to the answers' possible values redundancy discussed above, making 1 and
-1 far most likely as an answer than other values.
If we add a parameter, on graph 4.8a, then because of the token generation drawing
any parameter as likely as a number in general (here 50% chance of drawing ±a and
50% chance of drawing a number in ±1, ±2, ±3, ±4 or ±5), ±a will be far more
redundant than any other value as a token. That explains the two isolated values
around 140.

38

Another interesting case is graph 4.11b. The single isolated value at about 150 is due
to both facts that the single parameter is far more likely to be drawn than any other
number and the fact that with a complexity of 1, expressions a× a, −a×−a, a2 and
(−a)2 all yield the same value (a2). It thus becomes in those conditions the most
likely value for a factor by far.

All those combined mechanisms explain the other isolated points on the other graphs.
They are all natural consequences of the way the generator is implemented.
Although there are these unexpected at �rst but explainable extreme cases, they do
not seem to be extreme enough to generate real problems.

Should this special cases however prove to be truly problematic (by testing through
practice), one could remedy the problem by tuning the probability of appearance of
the Power operator, or the probability distribution between parameters and numbers
in token generation for example.

39

(a) (b)

Figure 4.5: Generator evaluation regarding
answer_num_complexity_range and

answer_denom_complexity_range over samples of 1000
exercises

(a) (b)

Figure 4.6: Generator evaluation regarding
factor_complexity_range over samples of 1000 factors

40

(a) (b)

Figure 4.7: Diversity analysis with di�erent values of an-
swer_num_complexity_range/answer_denom_complexity_range,

0 parameter and over samples of 1000 exercises

(a) (b)

Figure 4.8: Diversity analysis with di�erent values of an-
swer_num_complexity_range/answer_denom_complexity_range�

1 parameter and over samples of 1000 exercises

41

(a) (b)

Figure 4.9: Diversity analysis with di�erent values of an-
swer_num_complexity_range/answer_denom_complexity_range,

2 parameters and over samples of 1000 exercises

(a) (b)

Figure 4.10: Diversity analysis with di�erent values of
factor_complexity_range, 0 parameter and over samples of

1000 exercises

42

(a) (b)

Figure 4.11: Diversity analysis with di�erent values of
factor_complexity_range, 1 parameter and over samples of

1000 exercises

(a) (b)

Figure 4.12: Diversity analysis with di�erent values of
factor_complexity_range, 2 parameters and over samples of

1000 exercises

43

4.4 Extensibility

What has already been implemented for those two generators may serve as well for
the generation of new types of exercises.

Factorization exercise generation could reuse factor generation de�ned for equation
simpli�cation exercises.
Second degree equations may be build from the multiplication of two �rst degree fac-
tors whose generation is already implemented by the �rst degree equation generator.

44

Chapter 5

Feedback generation

We want to be able to provide consistent feedback to students when they provide
wrong answers to the exercises.

The chosen way to do that is by de�ning a set of mistakes that can be performed by
a student associated with their corresponding feedback and compute all the ways to
introduce those mistakes at any point of the exercise resolution. The resulting wrong
answers are compiled with their respective feedback and ready to be sent along with
the exercise to the students.
Their application will then be able to provide the correct feedback in addition to
detecting whether the provided answer is right or wrong.
This is asynchronous feedback generation.

This allows to propose MCQ exercises to the students as the application only has to
chose some already computed and plausible wrong answers along with the correct one
and propose them to the students. If a wrong answer is chosen by the student, the
corresponding feedback can directly be returned.

However, this is not su�cient for open question exercises. Indeed, as explained in
the next section, computing the possible wrong answers in an exhaustive manner is
impossible. The sets of wrong answers provided with the exercises to the application
will thus be incomplete and a student may then make a mistake for which the
application will be unable to provide any feedback.

45

To solve this problem, we provide as well the possibility to reach back to the server and
ask it to detect the mistake and provide a consistent feedback based on the written
reasoning of the student.
This is synchronous feedback generation.

The reason why not everything is done synchronously is that this would mean that
the server hosting My Success Squared would have to manage each and every student
that is active on the app and solving exercises. This could cause a major bottleneck
problem, with long delays to receive feedback and an overloaded server. Such a model
would thus clearly not be scalable.

5.1 Asynchronous feedback generation

5.1.1 General principles

The asynchronous feedback generator should provide the set of possible wrong answers
associated with their respective feedback for a given exercise.

To produce that set, we can build a tree structure whose root corresponds to the
initial expression of the exercise and each other node of the tree corresponds to the
result of the application of a certain step (correct or not) to the expression of the
parent node. The leafs of the tree then correspond to the di�erent answers resulting
of the path between the root and themselves.
This tree structure represents all the ways to solve an exercises, with or without
mistakes, that is, all the possible reasonings for solving the exercise. We thus call
that structure a reasoning tree.

46

Figure 5.1: Simple reasoning tree example

Then for each leaf, we can retrieve the corresponding feedback by checking the path
from the root to the leaf.

Answer :− 15

Feedback :"You don't maintain equality. On the left-hand side, you

divide by B, while on the right-hand side you multiply by B."

47

5.1.2 Reasoning steps

We need to de�ne a reasoning step set that allows to explore all the possible ways to
introduce the mistakes under consideration.
For now we de�ne the steps:

Correct:

A+B = C → A = C −B

AB = C → A =
B

C
AB

AC
→ B

C

Incorrect:

A+B = C → A = B + C

AB = C → A = BC

AB = C → A = B + C

A+B = C → A =
B

C
A

B
=

C

D
E → A+ C

B +D
= E

AB + AC → A(B + AC)

AB

AC
→ AB

C
AB

AC
→ B

AC

Some of them are incorrect and thus de�ne the mistakes that are considered. The
others are necessary to be able to introduce mistakes later in the development instead
of right at the beginning (see �gure 5.1).
We can also note that some involve the equality sign (equation step) and some do not
(non-equation step).

These steps are de�ned in the most general way such that it is not necessary to consider
whether the expression mapped to A for example involves or not the unknown of the
equation, etc.

48

In order to be able to distinguish more probable mistakes from rarer ones, we also
associate a weight to those steps (the higher the rarer).

5.1.3 Reasoning tree

Basic algorithm

The tree generation algorithm is theoretically very simple.

Algorithm 2 Reasoning tree building

procedure ExpandTree(tree, fromNode)
if fromNode is leaf then

return tree
else

for step in steps do
resultingExpressions← ApplyStep(step, fromNode)
for expression in resultingExpressions do

parent← fromNode
child← NewChild(expression, parent)
tree← ExpandTree(tree, child)

end for
end for

end if
end procedure

tree← Tree()
root← SetRoot(exersiseExpression, tree)
tree← ExpandTree(tree, root)

We apply the tree expansion algorithm starting at the root of the tree, thus the initial
exercise expression :
We compute the expressions resulting from all the possible ways to apply each step
to the considered node's expression.
We then create a new node for each one of these expressions and add them to the tree
as children of the considered node.
We then recursively apply this algorithm to those children nodes until we get to the
leafs.

However, this is a simpli�ed scheme and there are some phenomena that force us to
complexify it.

49

Ensuring termination

First of all, several path may lead to the same expression and thus the same node. A
�rst consequence is that the same computations may be performed several times in
di�erent places in the tree, which is not very e�cient.

The other far more problematic consequence is that even loops can appear, generating
an in�nite tree.

50

The solution to that �rst problem is to stop extending the tree as soon as a node that is
identical to an already existing node is reached and merge both identical nodes.

There is another in�nite loop problem caused by the fact that some series of erroneous
steps may come back to an expression similar to the initial one, but with di�erent
values. The resulting expression's node is thus not already existing and we are yet
again in an in�nite tree extension scheme.

51

The only way to prevent that is to bound the tree to a certain depth. This depth
however should be high enough for the tree to be able to reach the end of a reasoning
so that mistakes introduced close to the end of a reasoning can be taken into account
as well.

We now have an algorithm for generating the tree that is guaranteed to terminate.
Indeed the �rst level of the tree only contains 1 (the root) and thus, a �nite number
of nodes.
At each level, a �nite set of steps is applied to each node which thus have a �nite set
of children.
Any level of the tree thus contains a �nite set of nodes and as the tree depth is
bounded (�nite), the number of nodes in the �nal tree is �nite and the tree building
thus necessarily terminates.

To be exact, this is true if we ensure that each step may apply to any expression in
a �nite set of ways and that the algorithm to compute this set and apply its element
to any expression terminates. This will be the matter of section 5.1.5.

Time and space constraints enforcement

Termination is not the only criteria that has to be met. We have to ensure a certain
time and space e�ciency. We would not want the feedback generation to take hours
or an exercise to come along with Gb of feedback.

52

As for the time constraint, we decided that feedback generation for an exercise should
not take an average time greater than 1 minute. Indeed, although it may seem
quite long, as this is asynchronous generation and the exercises are thus generated in
advance, it remains acceptable.

The algorithm as designed until now is not able to comply with the time constraint.
Indeed, feedback generation can take several tens of minutes or more for relatively
complex exercises.
This is due to the fact that the size of a full tree structure is ndepth − 1, with n the
number of child per non-leaf node, and depth the depth of the tree.
In the case of a reasoning tree, the depth grows with the exercise complexity as
more steps are needed to solve the exercise (depth = f(complexity) with f a strictly
increasing function) whereas n is proportional to the number of di�erent possible steps
step_nb that can be applied to each node multiplied with the average number of ways
to apply those steps to a given expression. This again increases with the exercise
complexity (n = step_nb× g(complexity) with g a strictly increasing function). The
size of a reasoning tree can thus be approximated to :

(step_nb× g(complexity))f(complexity) = ef(complexity)×(ln(step_nb)+ln(g(complexity)))

We can see that the complexity of an exercise has a great impact on the size of the tree
as f(complexity) might not be precisely de�ned but is most probably proportional to
complexity. On the other hand, step_nb has a smaller yet signi�cant impact on the
tree size.
As the nodes have to be added one by one, the time to build the tree is thus
proportional to its size.

A �rst solution is to de�ne a maximum number of mistakes that can be introduced in
a reasoning. Indeed, we can consider that students have passed the tutorial and will
not make more than a few mistakes.
This is a way to reduce the tree's depth as the tree is not full anymore and the average
depth is thus decreased.
We arbitrarily set that maximum number to 3.
Correct steps are applied during tree extension only to be able to reach further into the
reasoning and consider more possible mistakes. We can thus stop the tree extension
as soon as the maximum number of mistakes have been reached in the considered path
and directly link the last added node to the corresponding result (tree leaf).

53

This can greatly reduce the size of the tree and thus the computation time.

However, this is not enough yet as feedback generation for complex exercises still take
several tens of minutes.
As we were not able to identify any unnecessary tree development scheme that could be
eliminated, the solution we chose is to bound the number of wrong answers considered.
The principle is simple, as soon as the number of leafs in the tree (which are unique
as redundant nodes are merged together) exceeds a certain threshold, we stop the
extension of the tree. This allows to e�ciently manage the time complexity of the
generation as well as its space complexity. Setting 500 as the maximum threshold
should ensure for most of the exercises that the feedback generation takes less than a
minute and guarantees an acceptable use of space per exercise.

54

There is one problem however with this solution as it is. Indeed, the tree is extended
in a depth �rst manner.

As a consequence, if an early branch ends up in so much di�erent leaves that the
threshold is exceeded, other early branches will not be explored at all. The result is
then 500 feedbacks corresponding to reasonings that all begin in the same way which
is a serious lack of diversity and thus quality.
We prefer a feedback generator that misses evenly distributed possibilities over a
feedback generator that is complete for a very speci�c category of reasoning but
useless for the rest of the possible reasonings.
Moreover, with such a scheme, the number of generated reasonings containing n
mistakes increases with n although we would like it to be the opposite as it is
considered to be less likely for a student to make many mistakes than just a few.

55

The solution would be to change the tree extension algorithm into more of a width-�rst
scheme.

More precisely, we will �rst generate only reasonings containing one single mistake.
Then if all the possibilities have been explored and the maximum leaf number thresh-
old has not been exceeded yet, resume the tree extension. Starting from the erroneous
nodes generated during last step, generate all the reasonings containing two mistakes.
Repeat this last step until either the threshold is exceeded or the maximum number
of mistakes to be considered per reasoning is reached.
We thus need to keep the list of erroneous nodes generated during previous step in
order to be able to perform next step.

In order to prevent the generated feedback to depend on the order in which the
reasoning steps have been de�ned, the erroneous nodes from which to resume the tree
extension at each step are chosen randomly.
Also, as the tree extension is not complete anymore, while applying reasoning steps in
a random order we should still give the priority to reasoning steps that have a lower
weight.

56

5.1.4 Associate feedback to answer

Once the tree is built, we still need a way to �nd the correct feedback to associate to
each wrong answer (leaves of the tree).
For that purpose, each node associates to each one of its parents (there may be several
paths from the root to a same node) the step by which the node results. We can then
know for each path the mistakes that were introduced and thus the corresponding
feedback.

Each leaf is linked to the root through several paths, i.e. through several possible
reasonings. For each leaf, we can then select the most probable path that we de�ne as
the path for which the sum of its mistakes' weights is the smallest (thus few mistakes
and/or probable ones).

However, visiting each one of the possible paths can be very long and ine�cient.
Instead, we run Dijkstra's algorithm to e�ciently �nd the shortest weighted path
between a leaf and the root without visiting each path from end to end.
It is important to run Dijkstra's algorithm from the leaf and to the root and not the
opposite. Indeed, only the corresponding branch gathering all the possible paths is
reachable from the leaf before reaching the root whereas the entire tree is reachable
from the root. Added the fact that the tree is mainly composed of nodes resulting
from non-erroneous steps that have a zero weight and the one who knows Dijkstra's
algorithm will understand that it applied to the root is not so di�erent from the
exclusive path comparison.

The feedback generator associates to each considered answer the feedbacks associated
to all the mistakes that appear in the reasoning and in their order of appearance.
It also gives for each mistake the generic step expression as well as the corresponding
speci�c expression in the computed reasoning.

57

5.1.5 Reasoning step application

We still need to address the problem of applying a reasoning step represented by a
generic expression to an exercise expression.

Expression before :4x+ 3 = 1

Step expression :A+B = C → A = C −B

Expression after :4x = −2

Mapping generic expression to speci�c expression

To do that, we need a way to map the symbols in the step's generic expression to
sub-expressions of the exercise.

Expression before :4x+ 3 = 1

Prior step expression :A+B = C

Mapping :{A = 4x,B = 3, C = 1}

Once we have that mapping, we can rebuild the resulting speci�c expression.

Posterior step expression :A = C −B

Mapping :{A = 4x,B = 3, C = 1}
Expression after :4x = −2

In order to build the mapping, we can use the fact that in Sympy, expressions are
represented as tree structures.

58

(In Sympy, equations cannot be represented as such and we thus divide it into 2
expressions, one for each side of the equation.)

We can then recursively explore both generic and speci�c expressions' trees at the
same time.
While the leafs of the generic tree are not reached yet, we just compare both trees as
both considered operators should be equal. If the comparison fails, there is simply no
mapping possible and the step cannot be applied (A+B cannot be mapped to 4x).
Once the generic tree leaves are reached, the corresponding speci�c sub-expression is
mapped to the generic symbol.

59

mapping :{A = 4x,B = 3}

Note that a symbol may appear several times in the generic expression.

Step expression :AB + AC → A(B + C)

3x+ 4y :No mapping

3x+ 3y{A = 3, B = x,C = y}

Dealing with several possible mappings

Most of the time, there is not only one single possible mapping an thus not only one
single way to apply a reasoning step to an expression.

Mapping A+B = C → A = C −B to x+ y + 1 = 3 :

Mapping Resulting expression
{A = x,B = y + 1, C = 3} x = 2− y
{A = x+ y,B = 1, C = 3} x+ y = 2
{A = x+ 1, B = y, C = 3} x+ 1 = 3− y
{A = y,B = x+ 1, C = 3} y = 2− x
{A = y + 1, B = x,C = 3} y + 1 = 3− x
{A = 1, B = x+ y, C = 3} 1 = 3− x− y

60

We thus need an algorithm to compute all the ways of mapping the generic expression's
arguments to the speci�c ones. In other words, we need an algorithm to compute all
the ways to distribute m elements in n boxes with m ≥ n.
This algorithm is as follow:

Find all the combinations of between 1 and m-(n-1) elements to put in the �rst box
(there needs to remain at least n-1 elements to be distributed in the n-1 remaining
boxes). This can easily be done with the combinations() function of the python
itertools library.
Then for each combination, associate it with each one of the possibilities computed
by the algorithm applied to the remaining elements and boxes.

Equation and non-equation reasoning steps

As said earlier, equations cannot really be represented by a single expression but
rather by a pair of expressions, each corresponding to the right or left hand side of
the equation. There are thus 2 ways of applying an equation reasoning step to an
equation exercise.

Mapping A+B = C to x+ 1 = x− 6 :

Mapping
{A+B = x+ 1, C = x− 6}
{A+B = x− 6, C = x+ 1}

Naturally, an equation step cannot be mapped to a non-equation exercise (ex: fraction
simpli�cation exercise).

On the other hand, non-equation steps may potentially be applied to the exercise
expression (expressions if it is an equation exercise) but also to each sub-expression
of the exercise.

Mapping AB + AC to 2(x+ y) + 2(3x+ 3y) :

Mapping
{A = 2, B = (x+ y), C = (3x+ 3y)}

{A = 3, B = x,C = y}

We thus need to check for ways of applying the reasoning step starting at any node
of the speci�c expression tree.

61

Generalized and speci�c reasoning step application

Although this reasoning step application scheme is quite elegant in its generality, some
reasoning steps unfortunately need a more speci�c processing.

Indeed steps like AB + AC → A(B + C) may encounter some problems namely if
dealing with numbers. As an example, it would not be possible to factorize 2x + 6
into 2(x+ 3) as 6 and 2× 3 are not the same in the sense of expressions.
There is also the fact that with Sympy, 2(x + 3) would be automatically simpli�ed
back to 2x+ 6.

For such reasons, it is sometimes necessary to de�ne more speci�c schemes to apply
certain reasoning steps. These could include namely integers decomposition into
products of prime factors (36 = 2× 2× 3× 3) or specifying to Sympy not to simplify
the expressions, etc. We could as well use the opportunity to optimize the mappings
generation or other parts of the step application.

The current version of the feedback generator thus de�nes speci�c schemes for steps:

AB + AC → A(B + AC)

AB

AC
→ AB

C
AB

AC
→ B

AC

5.1.6 Evaluation

Unfortunately, there is not really any way to evaluate the quality of the feedback
generator else than putting it into practice. That is, get student's feedback on the
quality of the received feedback, on how often the application is able to deliver a
feedback when mistakes are made, or measure the use of each feedback to know if it
is pertinent.

62

The only thing that we are able to measure without practice is the time required to
generate an exercise, including the generation of its feedbacks. For that purpose, we
can analyze the data on �gures 5.4 and 5.5.

Graphs explanation

Each �gure contains for respectively �rst degree equation and fraction simpli�cation
exercises a graph showing the mean generation time for three levels of exercise com-
plexity. For each of those levels, it provides as well a boxplot detailing the distribution
of the sampled data that led to those mean values.
Each mean graph associates error bars to its values.

To produce those data, we generated for each complexity level of each exercise type
5 batches of 20 exercises (thus 100 exercises in total). The mean is the mean value of
the generation times of all the exercises and the error is computed as σ(µ1,...,µn)√

n
with µi

the mean value over batch bi, σ(µ1, ..., µn) the standard deviation over µi and n = 5.
The sample size is only of 100 exercises instead of 1000 for exercise generation evalu-
ation. This is because exercise generation including feedback generation takes much
more time than without feedback generation.

The complexity level de�nition for each exercise type is quite arbitrary. We de�ne
simple, mid-complex and complex exercises. These correspond respectively to what
is estimated to be the most simple form of exercise that could be ordered, a more
complex form but that is still likely to be ordered, and very complex forms to test
the generator in more extreme cases and be able to identify potential limitations to it.

First degree equation exercises
Parameter Simple Mid-complex Complex

exercise exercise exercise
nb_param_range [0, 0] [0, 0] [0, 0]

fraction_token_proba 0.25 0.75 0.75
complex_factor_proba 0.5 0.75 0.75

add_unknown_terms_range [0, 0] [1, 1] [1, 2]
add_unknown_factors_range [0, 0] [0, 0] [1, 1]

63

Fraction simpli�cation exercises
Parameter Simple Mid-complex Complex

exercise exercise exercise
nb_param_range [0, 0] [1, 1] [2, 2]

answer_num_complexity_range [0, 0] [0, 1] [1, 2]
answer_denom_complexity_range [0, 0] [0, 1] [1, 2]

nb_factor_range [2, 2] [2, 2] [2, 2]
factor_complexity_range [0, 0] [1, 1] [2, 2]

Graphs analysis

We can see on both graphs 5.4a and 5.5a that simple and mid-complex exercises
generation times are in average below the time limit of 1 minute that was imposed
for exercise generation. Let's however further analyze the results.

We can see on graphs 5.4b and 5.5b that generation time for simple exercises always
have been far below the threshold and we can conclude that the generator's perfor-
mance for such complexity is perfectly acceptable.
On the other hand, we can observe on graphs 5.4c and 5.5c that there are some mid-
complex exercises whose generation time exceeded the limit. We can see however that
these cases are a clearly a minority and do not exceed the limit by too far anyway.
As teachers will most probably order bunches of several tens of exercises, there is no
risk for the generation to take an unexpectedly long time.

Unfortunately, as can be seen on both �gures, complex exercise generation times
clearly exceed the time limit. In fact, generation time increases so fast with the
exercise complexity that complex exercises as de�ned for both exercise types are not
even that much complex. Even more complex exercises would just have taken too
much time to generate.

This is due to the fact that generation time does unfortunately not depend only
on the number of wrong answers that are considered. It also depends on the time to
apply reasoning steps on the exercises which may increase very fast with the exercise's
complexity.
As an example let's consider the reasoning step AC + AB → A(C + AB). Applying
it to a sum expression requires to map AC and AB to the terms of that sum.

64

Let's consider now a fraction simpli�cation exercise with :

Parameter Value
nb_param_range [2, 2]

answer_num_complexity_range [1, 1]
answer_denom_complexity_range [1, 1]

nb_factor_range [3, 3]
factor_complexity_range [1, 1]

that is, with 2 parameters, numerator and denominator complexities of 1 and 3 factors
with complexities of 1.
In the worst case, we could then have each factor and numerator/denominator being
a sum of 2 terms. Multiplying a sum of m terms with a sum of n terms yielding a
sum of m×n terms, we could thus end up with 24 = 16 terms both at numerator and
denominator.
Mapping AC + AB to such a sum means considering all the ways to distribute 16
elements in two boxes which amounts to more than 65 000 combinations.
Considering such numbers, we can easily understand the cause for such generation
times.

We could consider several partial solutions:

� Further limit the maximum number of wrong answers to be considered.

� Some reasoning steps might be less pertinent for some exercise types than for
others (ex: factorization for �rst degree equations). We could then restrict the
set of reasoning steps to be applied in function of the exercise type.

� Not exploring the entirety of the combination possibilities when applying a
reasoning step. However, that would mean �nding and implement a way to
restrict this exploration. This could be di�cult, especially if selecting the
combinations in term of pertinence instead of randomly proves to be necessary.

� Restrict the complexity of the exercises that can be ordered.

65

(a) (b)

(c) (d)

Figure 5.4: First degree equation exercise generation time for
di�erent exercise complexities

66

(a) (b)

(c) (d)

Figure 5.5: Fraction simpli�cation exercise generation time for
di�erent exercise complexities

67

5.2 Synchronous feedback generation

In the case where the asynchronous feedback generator has been unable to predict a
student's mistake, we want a synchronous feedback generator to be able to analyze the
student's speci�c reasoning and take a last chance of delivering consistent feedback.

The algorithm is quite simple:
Given the student's reasoning step by step, check for each step that it leads to the
correct answer (Would an exercise whose expression is equal to the considered step
have the same solution than the initial exercise?).
As soon as a step leads to a di�erent answer, we can conclude that the transition
between this step and the previous one is erroneous.
Check all possible expressions resulting from all the ways to perform all the de�ned
reasoning steps on the previous step (using algorithms de�ned in section 5.1.5). If
one of these expressions has a corresponding answer equal to the one corresponding
to the considered step, then the reasoning step that resulted in this expression is
considered to be the cause of the error. The corresponding feedback is thus sent back
along with the reasoning step's generic expression and the student's reasoning steps
between which the mistake was introduced.

We don't check if other mistakes were introduced somewhere else in the student's
reasoning as this is synchronous feedback generation. Indeed we don't want the
server to preform too much computation and we want students to quickly receive
their feedback.

5.3 Speci�c correctors

We have de�ned that the nodes of a reasoning tree are leaves if they correspond to
the expression of the answer to the exercise.
We also de�ned a reasoning tree as bounded in depth.

The de�nitions of answer expression and the depth bound vary with the exercise type
and we thus need to de�ne speci�c feedback generators that manage those notions for
each exercise type.

68

5.3.1 First degree equation corrector

In the case of �rst degree equations, an answer expression is de�ned as the unknown
equaled to a simpli�ed unknown independent expression. Simpli�cation can be per-
formed and checked by the Sympy function "simplify()".

Answer :x = 3

Answer :x = a+ b

The depth bound is de�ned as the sum of the complexities of both side expressions
of the equation.

5.3.2 Fraction simpli�cation corrector

An answer expression for a fraction simpli�cation exercise is simply a maximally
simpli�ed expression.

Answer :
a+ b

3

The depth bound is de�ned as equal to 2 times the number of factors that multiplied
both the numerator and denominator of the exercise's answer during exercise gener-
ation.

69

5.4 Extensibility

We have seen that the part of a feedback generator that is speci�c to the exercise
type is quite restrained. It should thus be relatively easy to modify it as to be able
to support other types such as factorization exercises for example.
However there are still exercise types that would require major additions. As an
example, second degree equation resolution involves going through three stages:

ax2 + bx+ c = 0

ρ = b2 − 4ac

then set

x1,2 =
−b±√ρ

2a

These steps do not directly follow one another. We cannot move from the homoge-
neous equation to the ρ calculation by a reasoning step as currently de�ned.

We have also seen that the reasoning step application scheme is as general as possible
but yet is not compatible with every possible step.
One who wants to add new reasoning steps thus may be able to do it very easily but
may as well have to de�ne a speci�c application scheme. In any case, one should have
a good understanding of the algorithms used to apply a step in order to be able to
de�ne new steps in an optimal way.

70

Chapter 6

Guide

This section is a guide explaining the �le structure of the code and how to use it and
extend/edit it.

6.1 File organization

6.1.1 Main �les

The �les that are essential to the project are:

� generator.py : Contains the exercise generators implementations.

� corrector.py : Contains the feedback generators implementations.

� exercise.py : De�nes the Exercise class used to de�ne exercises and associate
their attributes.

� reasoningTree.py : De�nes the Tree and Node classes used to build the
reasoning tree during asynchronous feedback generation.

� step.py : De�nes the Step class used to de�ne reasoning steps and associate
their attributes.

� steps.xlsx : An excel �le in which reasoning steps are manually de�ned.

� generatorCon�g.json : A json �le de�ning the generator's parameters.

71

6.1.2 Secondary �les

There are other �les for testing, etc :

� testGenerators.py : Contains the code for the exercise generators evaluation.

� testCorrectors.py : Contains the code for the feedback generators evaluation.

� testCorrectorsData.json : Contains the data computed by testCorrectors.py
(in case we want to rebuild the graphs without having to regenerate hundreds
of exercises).

� graphs : A folder containing the graphs produced by test �les.

� example.py : A small demo of the exercise and feedback generation.

� �rstDegEquExample.json and fracSimpExample.json : Each contain a
precomputed exercise (so that the user can try di�erent answer on same exercise
without having to regenerate it).

6.2 Running the program

6.2.1 Dependencies

Running the code requires to have the pandas, numpy, sympy and matplotlib (for
graph generation) libraries installed. A make�le is provided to install these and can
be executed by running the command "make install".

6.2.2 Generation demo

An example.py �le is provided as a demo for exercise and feedback generation. The
program can be launched with the command
./example.py <ex_type> [-generateNew] [-seed <seed>]
where <ex_type> can take 'fraction_simpli�cation' or '�rst_degree_equation' as a
value and -generateNew and -seed <seed> are optional parameters. -generateNew
indicates to generate a new exercise instead of loading the precomputed one (which
will then be overwritten by the new exercise). -seed <seed> indicates the seed for
the random generator if the user wants to specify it.

72

6.2.3 Generation testing

The program for testing the exercise generation can be launched with the command
./testGenerators.py <ex_type>
where <ex_type> can take 'fraction_simpli�cation' or '�rst_degree_equation' as a
value.
The resulting graphs are located in respectively graphs/First_degree_equation and
graphs/Fraction_simpli�cation.

The program for testing the feedback generation can be launched with the command
./testGenerators.py [-graphOnly]
where -graphOnly is an optional parameter that speci�es to only recompute the graphs
based on the precomputed data instead of regenerating all the exercises.
The resulting graphs are located in respectively graphs/First_degree_equation and
graphs/Corrector.

6.2.4 Integration to My Success Squared

In the context of this project being integrated into the My Success Squared project,
the code is meant to be used in the following way :

First create an instance of the right corrector with
FracSimpCorrector(max_considered_answers, max_considered_errors) or
FirstDegEquCorrector(max_considered_answers, max_considered_errors) where
max_considered_answers and max_considered_errors are the bounds respectively
to the number of considered wrong answer and the number of mistakes to be inserted
in a reasoning. Their default values are respectively 500 and 3.

Then create an instance of the right generator with
FracSimpGenerator(con�g_�le, corrector, con�g, seed) or
FirstDegEquGenerator(con�g_�le, corrector, con�g, seed) where corrector is the cor-
rector instance created in previous step, seed (optional) is the seed for the random
generator, con�g_�le (optional) is the opened json �le containing the generator's
con�guration and con�g (optional) is the python dictionary containing the generator's
con�guration (either con�g_�le or con�g should thus be provided).
This yields a generator capable of providing exercises with their feedback and corre-
sponding to the provided con�guration.

73

An exercise can be ordered along with its feedback with the generator's function
generateEx(seed) where seed (optional) is the seed for the random generator. This
function returns a json containing all the necessary data :

� params : The set of parameters appearing in the exercise.

� is_equation : Whether the exercise is an equation.

� ex_expr : The set of the exercise's expression(s) (2 if the exercise is an
equation).

� unknowns : The set of unknowns for this exercise (for equations).

� factors : The set of factors that by which the answer was multiplied (if fraction
simpli�cation).

� answers : The set of answers to the exercise (second degree equation would
have 2).

� answers_feedbacks : A dictionary associating feedbacks to the corresponding
wrong answer.

Synchronous feedback can be ordered with the corrector's function
getFeedbacksFromReasoning(ex_json, reasoning) where ex_json is the exercise's json
(the one returned by generateEx(seed)) and reasoning is the set of steps in the
student's reasoning.

A feedback is a set containing one element for each mistake in the reasoning in order
of appearance.
Each one of those elements are then constituted of three elements:

� generic error : The generic expression of the mistake that has been made.

� speci�c error : The expressions of the steps of reasoning between which the
mistake has been introduced (student reasoning if synchronous feedback).

� error message : The feedback message associated to the mistake.

For synchronous feedback, only the �rst mistake is considered.

74

6.3 Edition and Extension

Exercise generation parameters can be edited in generatorCon�g.json and the correc-
tor's parameters are to be speci�ed at initialization.

Reasoning steps may be edited in steps.xlsx where each reasoning step is de�ned with
the following components:

� Name : The step's identi�er.

� Weight : The step's weight re�ecting it's probability of occurrence (the higher,
the less probable).

� Is error : Whether it is an erroneous step.

� Is equation : Whether the step applies to an equation or to a single expression.

� Message : The feedback message associated to the step.

� Pattern : The generic pattern associated to the step.

New steps may then be easily added. However, as discussed in section 5.1.5, depending
on the step, more consequent editing on the corrector may be required.

No component (corrector, step or exercise classes) have been designed for one exercise
type in particular. Things have been implemented in the most general way possible
to facilitate addition of new types of exercises.

75

Chapter 7

Conclusion

This project was aimed at �nding a solution to the problem of automatically gener-
ating exercises of di�erent types and di�erent complexities on one hand, and to the
problem of providing pertinent and helpful feedback in case of mistakes on the other
hand.

Although all the exercise types have not been covered in this project, tools that may
be useful for any exercise type, a model allowing for tuning the exercises' complexities
and complex but general algorithms for generating feedback for a given exercise have
been provided.
We have ensured that the diversity of the generated exercise is satisfying and exercises'
feedbacks are generated in a reasonable time as long as the exercises are not too
complex.
A weakness however remains in the feedback generator as there is a trade-o� between
exercise complexity and time e�ciency and thus a trade-o� between exercise com-
plexity and feedback quality (complex exercise means less feedback considered).

The work that has been accomplished in this project thus provides a good basis to
which extensions may easily be brought to de�ne new exercise or error types without
having to modify the whole code or design the whole exercise/feedback generation
process.

The code can easily be inserted into the rest of the My Success squared project as it
works only with two simple api points.

76

Bibliography

[1] José João Almeida, Isabel Araújo, Irene Brito, Nuno Carvalho, Gaspar J
Machado, Rui MS Pereira, and Georgi Smirnov. Math exercise generation and
smart assessment. In 2013 8th Iberian Conference on Information Systems and
Technologies (CISTI), pages 1�6. IEEE, 2013.

[2] José João Almeida, Isabel Araújo, Irene Brito, Nuno Carvalho, Gaspar J.
Machado, Rui M. S. Pereira, and Georgi Smirnov. Exercise generation with
the system passarola. In Proceedings of the 2013 International Conference on
Advanced ICT and Education, pages 305�309. Atlantis Press, 2013/08.

[3] Valentin Baum. Implementing an automatic pointers exercises generator in
cafÉ 2.0. Unpublished master's thesis, Université de Liège, 2023. Available at
https://matheo.uliege.be/handle/2268.2/18258.

[4] Paul Salvador Inventado, Peter Scupelli, Cristina He�ernan, and Neil He�ernan.
Feedback design patterns for math online learning systems. In Proceedings of the
22nd European Conference on Pattern Languages of Programs, pages 1�15, 2017.

[5] Ana Paula Tomás and José Paulo Leal. A clp-based tool for computer aided
generation and solving of maths exercises. In International Symposium on
Practical Aspects of Declarative Languages, pages 223�240. Springer, 2002.

[6] Ana Paula Tomás and José Paulo Leal. Automatic generation and delivery of
multiple-choice math quizzes. In International Conference on Principles and
Practice of Constraint Programming, pages 848�863. Springer, 2013.

[7] Ana Paula Tomás, José Carlos Santos, José Paulo Leal, Marcos Domingues, Miguel
Filgueiras, Nelma Moreira, and Nuno Pereira. Agilmat�a web application for math
education.

77

