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1 Introduction  

1.1 Current context  

In the current era of Big Data, information has become ubiquitous, flooding our daily lives through a 

multitude of sources. Bajaj and Ramteke (2014) define Big Data as "a large amount of data which 

requires new technologies and architectures to make possible to extract value from it by capturing and 

analysis process." Big Data refers to the profiling of extensive datasets (Fan et al., 2014) and is also 

known by the 3Vs model: Volume, Variety and Velocity (Chen et al., 2014). Volume denotes the vast 

quantity of data being produced and available. The diverse array of data types (such as photos, text, 

and audio) along with their multitude of sources collectively represent the Variety within Big Data (Bajaj 

& Ramteke, 2014). Velocity describes the speed at which Big Data is collected and processed (Chen et 

al. 2014). 

Big Data originate from a plethora of diverse sources, particularly with the advent of the Internet of 

Things (Chen et al., 2014). For instance, photos shared on social networks, data from wearable sensors, 

GPS signals, and website cookies all contribute to the generation of Big Data, potentially containing 

valuable information (Bajaj & Ramteke, 2014). Consequently, one of the challenges associated with Big 

Data is its inherent heterogeneity, wherein information stems from varied sources, making aggregation 

challenging, especially considering that the populations of these sources likely do not align (Fan et al., 

2014). 

This ground-breaking technology is also opening up unparalleled opportunities for stakeholders 

worldwide. It enables the extraction of essential information for commercial, medical, scientific, and 

other applications. For instance, a company could utilise this data to gain deeper insights into the 

characteristics of its customers and tailor advertising efforts accordingly (Bajaj & Ramteke, 2014). 

Despite the abundance of available information, challenges arise when attempting to consolidate data. 

This study will therefore address the issue of data heterogeneity. As previously discussed, a vast 

amount of data is accessible and generated on the internet, through surveys, interviews, and by 

connected devices, resulting in a proliferation of data sources (Van Der Putten et al., 2002). Both private 

and public organisations leverage this data to gather pertinent information for analysis and to draw 

conclusions on specific subjects of interest. 

Nonetheless, the essential variables needed for a particular study are frequently dispersed across 

multiple databases. However, conducting a new survey to collect all necessary variables for a 

comprehensive analysis is not only cost-prohibitive but also time-consuming. Hence, a more pragmatic 

and efficient solution lies in integrating relevant databases. By merging databases, the research process 

is streamlined, and all essential variables are readily accessible within a single, consolidated database. 

This approach not only conserves resources but also facilitates a more cohesive and coherent analysis. 

This is the reason why integration of diverse data sources has become a critical aspect of contemporary 

research and analysis across various fields. 

Statistical matching, also known as data fusion or synthetical matching (Annoye et al., 2024), is a 

technique used to merge data from various sources that cannot be perfectly matched. This method is 
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particularly valuable when dealing with disparate datasets that cover related aspects but are not 

inherently linked. Moreover, the improvement of algorithms, particularly through the integration of 

machine learning techniques, plays a crucial role in enhancing the accuracy and efficiency of statistical 

matching. Machine learning algorithms can learn and adapt to complex relationships between 

variables, providing more sophisticated insights into the interplay between the relationship in study.  

Three methods are exposed by the paper of Annoye et al. (2024): “the Kernel Canonical Correlation 

analysis (KCCA), the Super-Organising Map (Super-OM) and Autoencoders and Canonical Correlation 

Analysis (A-CCA)”. The first method reduces the dimensionality and uses the kernel trick. This approach 

also allows detecting matching between texts and images. Then, the Super-OM method uses the ANN 

(Artificial Neural Network) to have a low dimensionality. Finally, the A-CCA also uses an encoder, the 

ANN. In other words, the data is compressed by an encoder and then decompressed by a decoder. This 

process creates low dimensionality. The Canonical Correlation Analysis approach is then applied for 

statistical matching. 

There are also other techniques unrelated to machine learning. These include parametric multivariate 

distributions, regression, and hot deck. However, it has been proven that machine learning methods 

provide better results. 

1.2 Objective of the thesis 

The focus of my master's thesis is to enhance the performance of a machine learning algorithm utilised 

for statistical matching purposes by the Belgian government. A team from the University of Liège 

collaborates with the state with the objective to develop algorithms capable of effectively merging 

multiple databases to fulfil the government's requirements. For instance, if the government aims at 

assessing the impact of rising petrol prices on the population, it necessitates linking a database 

containing information on living conditions with another database focusing on mobility patterns. This 

integration process, known as statistical matching, relies on the application of algorithms. 

The team has already developed machine learning techniques for this purpose, but further analyses 

are required for certain hyperparameters, including the bandwidths and the dimensions of latent 

spaces in the Kernel Canonical Correlation Analysis (KCCA) and the Autoencoder and Canonical 

Correlation Analysis (A-CCA) methods. Consequently, this master's thesis aims at optimising these 

hyperparameters to improve the algorithm's ability to match databases accurately and predict non-

common variables more effectively. By achieving this objective, the project team will be able to verify 

the quality and coherence of their work by analysing performance as these hyperparameters vary, thus 

ensuring robust and reliable results. Moreover, the Belgian government will gain enhanced capabilities 

to analyse various relationships and make informed decisions based on comprehensive data analysis.  

Therefore, the objective of this thesis is to answer to following question:  

“How to optimise the bandwidths and the dimension of latent spaces in the KCCA and A-CCA 

machine learning algorithms for statistical matching purposes?” 

To address this research question, we generated a database in R and followed a Grid Search strategy to 

optimise the hyperparameters. The performance of the different models was evaluated using the 

Cramer-Von Mises statistic and the Root standardised Mean Squared Error (RsMSE). The results show 
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that optimising the bandwidth hyperparameters and the dimension of the latent spaces has an impact 

on the two-performance metrics of the KCCA and A-CCA algorithms. The relationships between the 

values of the hyperparameters and the evolution of the two metrics can be established; however, the 

direction of these relationships differs between the two approaches. Furthermore, the results vary 

depending on whether we seek to optimise the Cramer-Von Mises statistic or the RsMSE, suggesting 

that a compromise is necessary. These findings make a significant contribution to the field of machine 

learning, offering new perspectives for the optimisation of statistical matching algorithms. 

This thesis will be structured as follow: in chapter 2, the literature review section will delve into the 

concept of statistical matching from various perspectives, exploring different techniques before 

transitioning to the discussion on machine learning techniques. Subsequently, the chapter 3 on the 

methodology used will outline the approaches employed in this study, focusing on the two specific 

techniques under examination and their hyperparameters to be optimised. Then, the results will be 

presented in chapter 4 and discussed, analysed, and interpreted in chapter 5. Finally, the chapter 6, 

“Conclusions”, will provide a summary of the research, mention its limitations, and suggest some 

avenues for future research in the field. 
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2 Literature review 
In this literature review, we will begin with a presentation of statistical matching, briefly covering its 

historical development, applications, and the advantages and challenges. We will then go into more 

detail on this concept, also known as data fusion, providing a detailed explanation of how it works, and 

outlining some of the techniques associated with this field. Next, we will introduce the concept of 

machine learning by discussing a few key concepts and highlighting the link between machine learning 

and statistical matching. Finally, we will detail the machine learning techniques used for data fusion, 

two of which will have some hyperparameters optimised in order to meet the objectives of this thesis. 

2.1 Introduction to statistical matching  

As already explained in the introduction, the volume of data has been increasing exponentially and it 

becomes increasingly important to have the knowledge to handle them and to take use of them in a 

beneficial way, for companies, states, organisations or whatever. However, the topic to analyse requires 

sometimes (or better said, almost always) data from different sources (Radner et al., 1980). Indeed, not 

only is the number of available data growing exponentially, but the number of sources is rising even as 

well (Van Der Putten et al., 2002).  

A variety of potential solutions may be put forth to address this issue. One potential solution would be 

to create a new survey in order to construct a database comprising all the requisite variables for the 

study. A second potential solution would be to employ a variety of imputation techniques to estimate 

the missing values. Ultimately, an alternative solution, which will be adopted for this study, is the 

combination of the disparate data sources, a process referred to as data fusion, statistical matching, or 

synthetic matching (Radner et al., 1980). 

In this literature, the term statistical matching will be defined by addressing various points such as its 

history and benefits. Next, several traditional statistical matching techniques will be presented. We will 

then briefly describe what machine learning is before going on describing the related statistical 

matching methods. 

2.1.1 Difference between statistical and exact matching 

Before anything else, it is crucial to distinguish between statistical and exact matching. On the one 

hand, exact matching is defined by Radner et al. (1980) as "a match in which the linkage of data for the 

same unit (e.g., person) from the different files is sought". This implies that the units in the sources are 

identical (Eurostat, 2013). On the other hand, statistical matching does not aim to identify an exact 

match between the two sources, given the inherent difficulty in doing so (Eurostat, 2013; Radner et al., 

1980). This is because the data sets may contain similar but not identical observations. The primary 

distinction lies in the degree of overlap between the two populations (Eurostat, 2013). 

The implementation of exact matching or record linkage is a highly complex process, largely due to the 

inherent unlikeliness of two databases containing an identical population. This is particularly true when 

the sources of the data are comprised of very large populations, where the information has been 

collected independently (Annoye et al., 2024). Furthermore, record linkage necessitates the presence 

of variables that serve to identify the units within the population, including national identifiers, names, 
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and addresses (Annoye et al., 2024; Radner et al., 1980). However, this is not always feasible when the 

data must remain anonymous and private (Data Fusion, 2023) and comply with GDPR regulations. 

2.1.2 History  

2.1.2.1 The emergence of statistical matching  

Obviously, exact matching existed before statistical matching, as it required less statistical effort and 

almost only had to rely on the variable used for identification in the sources. Statistical matching came 

about in response to the shortcomings and limitations of record linkage.  

In the mid-1960s, the Bureau of Economic Analysis of the United States Department of Commerce 

wanted to conduct a study of the characteristics of individuals in its population in relation to the taxes 

levied on them (D'Orazio et al., 2006). Their aim was to obtain a database with socio-demographic 

information. However, there was no database containing all the necessary information. Meanwhile, 

the variables were present in two diverse sources. Therefore, they decided to merge the United States 

Tax File dating from 1966 with the Survey of Economic Opportunities carried out in 1967 (Eurostat, 

2013). At the same time, statistical matching was also used by the Brookings Institution to obtain a 

database of all taxpayers (Radner et al., 1980). During the 1970s, other applications were made 

concerning income and other socio-demographic subjects (Ruggles & Ruggles, 1974). 

Subsequently, statistical matching became increasingly visible within the media industry (Rässler, 

2002). In fact, this technique played a key role in media targeting during that era and continues to be 

influential today. Through the analysis and consolidation of survey data on consumption, household 

preferences, and behaviour, various advertising strategies could be formulated and implemented. 

Statistical matching facilitated the optimisation of advertising budgets by directing efforts towards the 

most profitable consumers and delivering tailored content to them (O'Brien, 1991; Rässler, 2004; Van 

Der Putten et al., 2002). 

Thus, statistical matching has seen significant development in the spheres of politics and economics, 

as well as playing a crucial role in the media (Van Der Putten et al., 2002). This technique has also paved 

the way for numerous studies. Following extensive research in the areas mentioned above, a wide 

range of socio-demographic and psychological studies using data fusion have been undertaken (Ruggles 

& Ruggles, 1974). For example, Gavin (1985) found correlations between socio-demographic 

characteristics and individual health. 

2.1.2.2 Current use of statistical matching in various fields 

As time progresses, this technique is gaining increasing popularity across all sectors. As the quantity of 

information gathered with the advent of the internet continues to grow, organisations are seeking 

methods of utilising this data for a variety of purposes, including commercial, scientific, and other 

applications. In addition, technologies are developing very rapidly and the emergence of the Internet 

of things (Chen et al., 2014) reinforces this rapid growth in information and its sources (Van Der Putten 

et al., 2002). 

Since its inception, statistical matching has been used mainly in research, in economics and politics. 

Indeed, this method makes it possible to explore various scenarios, a requirement which is increasingly 

demanding in today's context (Eurostat, 2013). Many European countries are working to understand 
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the relationship between household expenditure and income, but this information is usually derived 

from two separate databases that need to be merged (Annoye et al., 2024). Other examples of recent 

studies on quality of life and the labour market are developed in the Eurostat report (2013). 

With the advent of rapid technological advances, statistical matching is set to become increasingly 

important in a variety of sectors, including automotive, healthcare, and smart cities. The field of 

autonomous vehicles provides an illustrative example of the importance of data fusion from a range of 

sensors in determining the optimal trajectory and ensuring safe and efficient navigation. Furthermore, 

in healthcare, the comprehensive analysis of large patient datasets promises to elucidate the complex 

underlying factors contributing to various diseases, potentially revolutionising methods of diagnosis 

and treatment. Such advances underline the transformative potential of statistical matching as a 

fundamental tool for driving innovation and addressing complex challenges in multifaceted industries 

(Data Fusion, 2023). 

As can be observed, the utilisation of statistical matching techniques is becoming an increasingly crucial 

aspect, with applications across a range of sectors. This underscores the value of conducting a 

comprehensive examination of this technique to enhance its efficacy. 

2.1.3 Benefits and challenges of the statistical matching  

Statistical matching techniques offer a wide array of advantages, ranging from their ability to integrate 

disparate datasets and enhance data completeness to facilitating robust analyses and enabling 

informed decision-making. However, alongside these benefits, they also introduce a host of 

complexities and obstacles that must be navigated. 

2.1.3.1 Challenges of the statistical matching  

A first challenge linked to the growing amount of data is the management of gigantic volumes of 

information (Data Fusion, 2023). It is evident that the undertaking of such an extensive data analysis 

requires a combination of necessary skills and sufficiently powerful software. To illustrate, a sample of 

the Belgian population may comprise up to 10,000 individuals and encompass twenty or more 

variables. It should be noted that this database must be merged with another of potentially similar 

dimensions. In the absence of expertise in data management, the processing of data becomes 

challenging. In such instances, the utilisation of software assumes considerable importance, 

particularly for the purpose of conducting in-depth analysis. 

Linked to this, another significant challenge arises in managing the intricate calculations inherent in 

statistical matching techniques (Data Fusion, 2023). As elucidated above, data fusion methods are 

frequently applied to vast databases, necessitating the utilisation of rather sophisticated calculations. 

Consequently, it becomes imperative to effectively handle this complexity and utilise software robust 

enough to seamlessly support the entirety of the matching process. 

Moreover, in the context of statistical matching, it is crucial to uphold data confidentiality (Data Fusion, 

2023; Radner et al., 1980) and adhere to GDPR regulations (Gessendorfer et al., 2018). Consequently, 

meticulous attention must be paid to these regulations to ensure compliance. It is imperative to verify 

that data and information are anonymised, safeguarding private information and preserving 

anonymity, particularly pertinent when analysing sensitive datasets such as financial or medical data. 
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Ultimately, statistical matching can be vulnerable to biases throughout the data alignment procedure. 

A significant illustration of this is the risk posed by discrepancies in demographic characteristics among 

population subsets within the source datasets, which has the potential to introduce bias into the 

outcomes of statistical matching. These biases typically arise from inconsistencies (Gessendorfer et al., 

2018). This challenge is intricately linked with the task of ensuring the quality of the amalgamated data, 

which entails managing missing, inconsistent, or erroneous data, all of which could significantly impact 

the matching outcomes (Data Fusion, 2023). Addressing the issue of heterogeneity between sources 

becomes imperative, encompassing considerations of data format, structure, and content (Ruggles & 

Ruggles, 1974). Consequently, robust methodologies are required to identify, quantify, and mitigate 

biases, ensuring the reliability and validity of the matched data. 

2.1.3.2 Benefits of data fusion 

Data fusion presents a plethora of notable benefits, among which is the invaluable capacity of statistical 

matching to merge two distinct data sources into a unified, comprehensive database, encompassing all 

pertinent information for the study (Rässler, 2004; Van Der Putten et al., 2002). This consolidation 

streamlines the execution of thorough analyses using pre-existing data, thereby maximising the 

utilisation of collected information (Eurostat, 2013). With access to a comprehensive database, 

information becomes readily accessible and decision-making processes are enhanced (Data Fusion, 

2023). This seamless integration of data not only facilitates more efficient decision-making but also 

fosters a deeper understanding of complex phenomena through comprehensive data exploration and 

analysis. 

Moreover, merging several sources circumvents the necessity of conducting a new survey to gather 

requisite information for the desired study, even if said information is dispersed across different 

sources. Executing a new survey entails significant investments of time and resources, which can be 

conserved through the application of statistical matching techniques (D'Orazio et al., 2006; Radner et 

al., 1980). Data fusion facilitates the reduction of the number of questions and respondents in a 

questionnaire, thereby enhancing data quality (Van Der Putten, 2002). Longer surveys often result in 

increased data incompleteness and decreased respondent accuracy (D'Orazio et al., 2006). Thus, by 

leveraging data fusion methods, researchers can effectively optimise resource allocation and improve 

the overall efficiency of data collection processes, while simultaneously enhancing the quality and 

reliability of collected data. 

Another notable advantage of statistical matching is and will be its utility as a 'what-if' measure, 

allowing researchers to explore diverse hypothetical scenarios. Through this approach, researchers can 

simulate alternative outcomes by manipulating input data within the matching model. This affords 

significant flexibility in evaluating the potential ramifications of various interventions, policies, or 

decisions based on existing data (Rässler, 2004). It is precisely due to this advantageous capability that 

Belgian authorities are endeavouring to optimise this algorithm. By harnessing the power of statistical 

matching for scenario analysis, policymakers and decision-makers can make more informed choices, 

anticipate potential outcomes, and devise strategies that align with desired objectives. 
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2.2 What is the statistical matching? 

Statistical matching, alternatively referred to as data fusion or synthetic matching, stands as a data 

integration technique (D'Orazio et al., 2006) characterised by the amalgamation of data originating 

from disparate sources that may not inherently share identical variables (Rässler, 2004). The 

overarching objective of this methodology is to construct a more comprehensive and insightful dataset 

by aggregating information from diverse origins. This process enables analysts to synthesise a unified 

dataset that encapsulates a broader spectrum of information, thereby enhancing the richness and 

utility of the resultant data for subsequent analyses and decision-making endeavours. 

In statistical matching, a crucial differentiation exists between the micro and macro approaches. At the 

micro level, the primary objective revolves around constructing a synthetic database derived from the 

available sources. This involves matching and comparing individual and complete data for each unit, 

thereby facilitating the exploration of relationships between individual units (D'Orazio et al., 2006). The 

micro approach is centred on analysing the specific characteristics of each unit (Eurostat, 2013) and 

investigating the interactions between them. By delving into the intricacies of individual units and their 

interplay, analysts can gain valuable insights into the nuanced dynamics within the dataset, allowing 

for detailed examinations of various phenomena at a granular level. 

In the macro approach, the traditional merging of databases characteristic of statistical matching may 

not necessarily occur. Instead, this approach centres on utilising the data in its original form to estimate 

global characteristics of the variables of interest that are not observed together in each dataset 

(D'Orazio et al., 2006). This may entail leveraging the source files to estimate joint distribution 

functions, marginal functions, or correlation matrices of the variables of interest (Eurostat, 2013). 

In order to illustrate the concept more clearly, it is helpful to consider two databases, 𝐴 and 𝐵. Both 

databases share common variables, referred to as 𝑋, but also contain distinct variables. Variables 

present in database 𝐴 but not in 𝐵 are denoted as 𝑌, while variables found in database 𝐵 but not in 𝐴 

are labelled as 𝑍. The objective of statistical matching is to merge these two datasets to create a single 

comprehensive database containing variables 𝑋, 𝑌, and 𝑍, which is called a "synthetical data set" 

(Annoye et al., 2024; D'Orazio et al., 2006; Eurostat, 2013; Gessendorfer et al., 2018). 

Obtaining the synthetic dataset is not a straightforward task due to the necessity to estimate the non-

common variables, presenting a challenge akin to dealing with missing data. The aim of statistical 

matching is to solve the problem of missing data in one source by using another data source. Several 

imputation techniques exist for missing data, such as replacement by the mean or median, imputation 

by model using regressions (Kim & Shao, 2013; Van Buuren, 2018), or imputation of data using the 

maximum likelihood method (Anderson, 1974). However, a difference between the two notions lies in 

the fact that for missing data, the objective is to fill gaps caused by non-responses in surveys and to 

allow statistical analyses to be performed, whereas for statistical matching, the objective is to find 

credible data for each observation in the recipient dataset using information from the donor dataset. 

Before initiating the statistical matching process, D'Orazio et al. (2006) detail several steps to be 

followed in order to assess the coherence between the two databases and to examine the feasibility of 

statistical matching for the two sources to be matched. They suggest analysing the degree of 
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harmonisation and reconciliation between the two sources by addressing eight key points, also cited 

in the Eurostat report (2013): 

1. Harmonisation on the definition of units 

2. Harmonisation of reference period 

3. Completion of population 

4. Harmonisation of variables 

5. Harmonisation of classification 

6. Adjustment for measurement errors  

7. Adjustment for missing data 

8. Derivation variables  

For further elaboration on the specific points to be examined, readers can refer to the comprehensive 

analysis provided by D'Orazio et al. (2006) and the Eurostat report (2013). Another critical 

consideration lies in evaluating the effectiveness and influence of common variables in predicting or 

amalgamating outcomes. This involves assessing the explanatory power of shared variables, which play 

a pivotal role in statistical matching processes. By examining the correlation and predictive capability 

of these common variables, researchers can gauge their contribution to the accuracy and reliability of 

outcome predictions or data integration (D'Orazio et al., 2006; Eurostat, 2013). 

In the case of statistical matching, if the aim is to incorporate all variables from dataset 𝐴 and augment 

it with attributes 𝑍 from dataset 𝐵, 𝐴 acts as the "recipient" while 𝐵 serves as the "donor." This can be 

explained by the fact that the information required to estimate variables 𝑍̂ in 𝐴 is derived from 𝐵 

(D'Orazio et al., 2006; Gessendorfer et al., 2018; Van Der Putten et al., 2002). To mitigate bias during 

statistical matching processes, it is crucial for the individuals or observations in the donor dataset to 

align with those in the recipient dataset (Van Der Putten et al., 2002). This principle is illustrated 

graphically below, employing socio-demographic and mobility surveys as examples: 

As Radner et al. (1980) emphasise in their report, "in a statistical match, the linkage of data for similar 

units rather than for the same unit is acceptable and expected." This assertion underscores the 

objective of finding similar or matched observations in disparate data sources, rather than striving for 

exact matches for each individual observation, as such overlap is typically non-existent (Eurostat, 2013). 

Figure 1: Illustration of the statistical matching principle 
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By adopting this approach, the utilisation of available data is maximised, thereby furnishing researchers 

with richer and more accurate information about the phenomenon under study. 

2.2.1 Traditional statistical matching techniques 

Since statistical matching was introduced, various methods have been developed to estimate the 𝑍̂ 

variables in the recipient. In this section, only the three best-known traditional approaches will be 

discussed, before moving on to machine learning techniques in the next section. Other techniques such 

as Bayesian and multiple imputations methods have been proposed and details about them are given 

in D’Orazio et al. (2006), Rässler (2002), Rubin (1987). 

Traditional statistical matching methods include well-known approaches such as regression, the use of 

parametric multivariate distributions and the hot-deck method, as discussed by Aluja-Banet and co-

authors in their 2007 paper. These techniques are widely used to harmonise data from diverse sources, 

allowing appropriate comparison and combination of the variables of interest. Obviously, other 

methods exist and so do combinations of several techniques (Annoye et al., 2024). 

2.2.1.1.1 Regressions 

In the context of statistical matching, the regression method is used to establish the relationship 

between the variables 𝑋 and 𝑍 from the donor group (𝐵). This step is crucial because it enables this 

relationship to be modelled so that the values of the 𝑍̂ variables in the recipient group can be inferred. 

In this way, the regression model 𝑓(𝑍|𝑋) is constructed from the data present in the donor in order to 

predict the missing variables (𝑍̂) in the recipient (Aluja-Banet et al., 2007). In this case, the 𝑋 variables 

are the independent variables, and the 𝑍 variables are the dependent variables (Ruggles and Ruggles, 

1974). This regression model is defined as follows: 

𝑓(𝑍|𝑋) = 𝑟(𝑋) +  𝜀 

Where 𝑟(𝑋) represents the modelled relationship between the variables 𝑋 and 𝑍 and 𝜀 is a random 

error term capturing the residual differences between the actual values for variables 𝑍 and predictions 

of variables 𝑍̂. 

Then, once the relationship between 𝑋 and 𝑍 has been established, this regression model is applied to 

the data in the recipient group (𝐴) in order to predict the values of 𝑍̂ (Aluja-Banet et al., 2007). In other 

words, for each observation in the recipient dataset, the values of the 𝑋 variables are used as inputs to 

the regression model to predict the values of the 𝑍̂ variables. 

As Ruggles and Ruggles (1974) point out in their book, the reliability of this method depends essentially 

on the robustness of the relationship between the 𝑋 and 𝑍 variables. It is crucial to note that in order 

to obtain accurate results, the variable to be imputed must be strongly associated with and strongly 

explained by the common 𝑋 variables. In other words, the strength of the relationship between 𝑋 and 

𝑍 is crucial to the accuracy of the predictions. 

In addition, it is worth highlighting the diversity of regression approaches available, each adapted to 

specific situations depending on the context as well as the underlying assumptions. Among these 

methods are linear or non-linear, parametric, or non-parametric regressions, as and other specific 

models that vary according to analytical needs. Examples include logistic to predict an outcome with 
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values 1 or 0 or linear regression for predicting continuous variables (Van Der Putten et al., 2002), 

polynomial regression and Lasso regression. 

2.2.1.1.2 Parametric multivariate distribution 

The objective of the parametric multivariate distribution is to estimate the missing 𝑍 variables in 

dataset 𝐴 using the information provided by dataset 𝐵 (Annoye et al., 2024). This approach is based on 

the joint modelling of the distributions of (𝑋, 𝑍) where 𝑋 are the common variables taken in the survey 

𝐵, the donor dataset.  

The initial step involves modelling the multivariate distribution to jointly represent the common 

variables 𝑋 sourced from dataset 𝐵, as well as the specific variables 𝑍 originating also from the donor. 

This approach assumed that these variables follow a common distribution, parameterised by 𝜃. In 

essence, the observed and missing variables are postulated to be sampled from the same underlying 

distribution (Aluja-Banet et al., 2007). The parameters of this distribution are subsequently estimated 

using the data available in dataset 𝐵, employing techniques such as the maximum likelihood method 

or other parametric estimation methods (D’Orazio et al., 2006). Finally, information from dataset 𝐵 

about the 𝑍 variables is used to impute missing values in dataset 𝐴. This obviously requires the use of 

the estimated parametric distribution. 

Mathematically, the parametric distribution is described as follows:  

𝑓(𝑋, 𝑍|𝜃) 

Where 𝑋 represents the common variables in 𝐵, 𝑍 represents the variables specific to survey 𝐵 that 

should be imputed in set 𝐴, and 𝜃 are the parameters of the multivariate distribution. 

This distribution can be decomposed based on the fundamental assumption of conditional 

independence (D’Orazio et al., 2006) between the random variables 𝑋 and 𝑍, conditional on the 

parameter 𝜃 (Aluja-Banet et al., 2007):  

𝑓(𝑋, 𝑍|𝜃) =  𝑓(𝑍|𝑋,  𝜃𝑍|𝑋)𝑓(𝑋,  𝜃𝑋) 

This decomposition of the distribution allows the parameters  𝜃𝑍|𝑋 and marginal  𝜃𝑋  to be estimated 

from the data that is already available in both sets. Finally, these parameters can be used to impute 

missing values of 𝑍̂ in set 𝐴 (Aluja-Banet et al., 2007). 

2.2.1.1.3 Hot deck  

The hot-deck method is widely regarded as the most popular technique, as noted by various experts 

(Aluja-Banet et al., 2007; Eurostat (2013); Gessendorfer et al., 2018). The objective of this non-

parametric method is to identify, for each observation in dataset 𝐴, a corresponding observation in 

dataset 𝐵 that is similar in terms of their common variables 𝑋. Subsequently, the variables 𝑍 from the 

matched observation in 𝐵 are transferred to the recipient dataset 𝐴 (Eurostat, 2013). Thus, one notable 

advantage of this approach is its independence from assumptions regarding the distribution or the 

relationship between the 𝑋 and 𝑍 data because, as Aluja-Banet et al. (2007) state, hot-deck is a « data-

based method ». 
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However, in their study, Gessendorfer et al. (2018) shed light on a drawback of the hot-deck method, 

specifically emphasising the significance of the size of the donor se𝑡 (𝐵). Indeed, they underscore that 

a larger donor database enhances the probability of identifying robust similarities between the 

common variables 𝑋 of dataset 𝐴 and dataset 𝐵. Consequently, the values borrowed from dataset 𝐵 

to fill in the values of the 𝑍̂ variables in dataset 𝐴 for the variables 𝑍 are more likely to be accurate. 

Each of these approaches can be constrained or unconstrained, depending on whether an observation 

from the donor dataset can be used several times to impute values (unconstrained) or only once 

(constrained). There are several types of hot-deck techniques used for statistical matching, such as the 

random hot-deck and the distance hot-deck, or also known as the nearest neighbour donor in the 

constrained case (Aluja-Banet et al., 2007). 

On the one hand, the random hot deck simply consists of choosing the donor observation at random 

from a subset of observations which share similar characteristics to the observation to be imputed in 

data set 𝐴, all by comparing the common variables 𝑋. Although this method is relatively simple, it can 

cause numerous biases due to its randomness. On the other hand, the distance hot-deck or nearest 

neighbour donor, involves calculating a distance function between the common variables of the two 

databases in order to determine the donor more accurately (Spaziani et al., 2019). Thus, the 

observation which minimises this distance will be chosen to associate these values in the recipient. The 

distance function can be calculated in diverse ways, e.g., Manhattan distance, Euclidean distance 

(Eurostat, 2013). 

Finally, other methods combining the parametric and non-parametric approaches explained above 

exist and are also widely used for statistical matching purposes (Annoye et al., 2024; Eurostat, 2013). 

2.3 Machine learning techniques  

2.3.1 Introduction to machine learning 

2.3.1.1 Definitions and link with statistical matching 

According to Rebala et al. (2019) in their book "An introduction to Machine Learning", machine learning 

is defined as "a field of computer science that studies algorithms and techniques for automating 

solutions to complex problems that are hard to program using conventional programming methods". 

Meanwhile, Bi et al. (2019) see the concept as "a branch of computer science that is largely concerned 

with enabling computers to 'learn' without being directly programmed". Finally, as stated by D'Orazio 

et al. (2019), the concept of machine learning "involves a broad set of techniques based on algorithms 

that learn from data". 

While machine learning has been present since the early days of computing in the 1950s and 1960s, 

its progress has significantly accelerated since the onset of the 21st century. This surge in advancement 

can be attributed to the remarkable growth in computing power and the widespread availability of the 

internet. These factors have played a pivotal role in facilitating the development and proliferation of 

machine learning techniques (Rebela et al., 2019). Currently, machine learning methods have become 

ubiquitous across numerous sectors, notably in marketing, economics, and finance, as they offer 

numerous advantages (Spaziani et al., 2019). 
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The concept of machine learning is often confused with that of artificial intelligence (AI) aims to imbue 

machines with intelligence through a range of approaches. In reality, machine learning is just one of 

the techniques included in the field of AI (Rebela et al., 2019). 

Hence, it is feasible to identify the connection between statistical matching and machine learning, as 

both have to do with data analysis and prediction. Machine learning offers powerful functions that 

could be leveraged for data fusion and will improve statistical matching techniques. Algorithms, for 

example, streamline the process and enable learning directly from the data. 

Thus, as defined by these different authors, machine learning makes it possible to take into account 

more complex relationships than the statistical techniques set out previously in this work (Spaziani et 

al., 2019). Indeed, machine learning has the power to learn from data by proposing more complex 

models which are therefore more representative of the situation, which is a major advantage. This also 

means that accuracy is even higher when the database is large (Rebala et al., 2019). In addition, 

machine learning makes it possible to manage large volumes of data, which is becoming essential in 

the age of Big Data and the exponential growth of available data (Bi et al., 2019). Furthermore, this 

technique does not rely on any hypothesis concerning the distribution of the data or the relationships 

between variables, but is based directly on the data, which avoids a fairly significant source of bias 

when these hypotheses are not verified. In this way, machine learning can adapt more easily to the 

data without any a priori specification. 

The advantages outlined above show the importance of including machine learning techniques in the 

statistical matching process and are the reasons why they will be applied in this work. 

2.3.1.2 Fundamentals concepts of machine learning  

First and foremost, it is imperative to specify a few fundamental concepts which are essential to a 

proper understanding of machine learning. The initial distinction can be made between two types of 

data: labelled data and unlabelled data. Labelled data refers to data for which the target value to be 

predicted or identified is known, whereas unlabelled data lacks such provided target value (Bi et al., 

2019; Rebala et al., 2019). 

Next, there are distinct categories of machine learning techniques, four of which will be briefly 

explained. Firstly, supervised learning consists of receiving a database made up of labelled data and 

learning from this data using algorithms to define a model. The aim is that when the algorithm receives 

a new observation that does not exist in the initial database, a relatively accurate prediction can be 

made based on the characteristics of the previously studied data and the model established (Bi et al., 

2019; Rebala et al., 2019). Regression techniques (linear and logistic) and decision trees are examples 

of methods belonging to supervised learning (Bi et al., 2019). 

In unsupervised learning, the second category, the algorithm is provided with an unlabelled dataset. 

Its objective is to discern underlying patterns or similarities within the data, typically to form clusters 

or groups based on inherent structures (Bi et al., 2019; Rebala et al., 2019). 

Between the two categories mentioned above lies semi-supervised learning, which receives a database 

composed of a mix of labelled and unlabelled data. Thus, initially, the aim will be to create clusters (link 

with unsupervised learning) before predicting the label of the unlabelled data (link with supervised 
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learning) thanks to the labelled data present in the subgroup (Bi et al., 2019; Rebala et al., 2019). The 

advantage of semi-supervised learning is that it saves time because there is no need to label each 

observation, but it is still very demanding (Bi et al., 2019). 

Finally, reinforcement learning is a machine learning technique in which systems gradually learn to 

improve at a given task by experimenting with different actions and adjusting their behaviour according 

to the results obtained and the environment. By exploiting the knowledge gained from these initial 

attempts, reinforcement learning algorithms gradually optimise their strategies to achieve predefined 

goals (Bi et al., 2019; Rebala et al., 2019). This category is incredibly useful in dynamic environments 

where the number of possibilities is immense, as in the game of chess (Rebela et al., 2019). 

Moreover, when optimising the hyperparameters in machine learning algorithms, it is crucial to 

understand the concepts of underfitting and overfitting. These phenomena are directly linked to the 

bias-variance trade-off, which represents the balance between two sources of error: bias (the error due 

to oversimplified assumptions in the model) and variance (the sensitivity of the model to fluctuations 

in the training data). 

On the one hand, underfitting occurs when the model is too simple to capture the underlying trends in 

the training data (in this case, the donor, survey 𝐵). This results in inferior performance on both the 

training data and the test data (survey 𝐴), indicating that the model has not learned the essential 

relationships in the data well. In other words, a model with a high bias and low variance is likely to 

underlearn and this concept is represented on the left of the figure below. On the other hand, 

overfitting occurs when the model is too complex and learns not only the underlying trends but also 

the noise and specific anomalies in the training data. Such a model performs excellently on the training 

data but fails to generalise to new data. This means that it has low bias, but high variance and the 

situation is represented on the right below (Jabbar & Khan, 2014).  

 

 

 

 

 

 

 

To avoid these problems, it is essential to properly optimise the bandwidth hyperparameters and the 

dimension of the latent spaces. A good balance between the complexity of the model and its ability to 

generalise results in a minimisation of the Root standardised Mean Square Error (RsMSE) on the test 

dataset, ensuring that the model is both accurate and generalisable. The balance is represented by the 

following graph: 

Figure 2: Illustration of the concepts of underfitting, good fit and overfitting (Bhande, 2018) 
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In conclusion, the best fit is at the point where the RsMSE is at its minimum, just before rising. On the 

left side of this point, the model would be underfitted, whereas to the right, it would be overfitted. 

2.3.1.3 Well-known machine learning techniques 

Briefly, the best-known machine learning techniques are regressions (logistic or linear), decision trees 

(random forests) and Artificial Neural Networks (ANNs). As explained above, regressions are used to 

model the relationships between variables on the basis of historical values in order to predict the 

independent variable. The use of machine learning makes it possible to model more complex 

relationships than traditional regression techniques.  

Next, in the realm of machine learning, a decision tree algorithm operates by posing sequential 

questions based on available data to make decisions, effectively segmenting it into more homogenous 

subsets. Constructed recursively, the process stops when the data is suitably classified or upon meeting 

predefined stopping criteria to prevent overfitting (Rebela et al., 2019). Once established, the decision 

tree can predict outcomes for new data by applying its series of questions. This methodology is valued 

for its interpretability, facilitating the identification of significant variables in prediction or classification 

tasks (Bi et al., 2019; Rebela et al., 2019). Random forests, which consist of ensembles of decision trees, 

enhance prediction accuracy by aggregating the outputs of multiple trees (Rebela et al., 2019). 

Finally, the Artificial Neural Network (ANN), inspired by the human brain's functioning, comprises 

multiple layers of interconnected neurons. The "input" layer represents independent variables, while 

the "hidden" layers and the "output" layer represent dependent variables (Bi et al., 2019). Information 

is transmitted between layers through synaptic weights, initially set randomly and then adjusted via 

back-propagation to minimise the disparity between predictions and actual values (Bi et al., 2019; 

Rebela et al., 2019). This adaptive approach enables the network to handle complex models and make 

predictions on new data after training. However, neural networks lack interpretability, making it 

challenging to understand the significance of individual variables (Bi et al., 2019). 

2.3.2 Machine learning techniques with data fusion purposes  

In this section, various machine learning techniques will be discussed in the context of data fusion. An 

initial approach by Spaziani et al. (2019) will be presented before continuing with the techniques 

developed in the article by Annoye et al. (2024), which will serve as a basis for this thesis. 

Figure 3: Illustration of the bias-variance trade-off showing 
underfitting, best fit and overfitting (Saxena, 2023) 
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2.3.2.1 A two-stage approach 

In their paper "Integration of Survey Data in R Based on Machine Learning," Spaziani et al. (2019) 

present a two-step approach using machine learning techniques to combine two databases. The first 

step involves using machine learning methods to predict missing variables in each of the surveys. Thus, 

to predict the 𝑌 data from survey 𝐴, a model (regression or decision tree or another technique) needs 

to be developed based on the available data 𝑋. Then, this model is applied to database 𝐵 to predict 

and impute the values of the 𝑌 variables. The same process is applied to predict and impute the values 

of the 𝑍 variables from 𝐵 into 𝐴 (Spaziani et al., 2019).  

In the second phase, the traditional hot-deck technique, explained earlier, is employed to impute the 

𝑍 variables in 𝐴. The predictions of 𝑌̂ and 𝑍̂ generated via machine learning techniques are used as 

matching criteria for the hot-deck method (Spaziani et al., 2019). 

Although this approach has several advantages over traditional statistical matching techniques, Annoye 

et al. (2024) point out two limitations. The first one concerns the survey weights, which are not included 

in the approach outlined (Annoye et al., 2024). Survey weights are used to best represent the 

population studied and to give more or less importance to certain data. For example, if responses are 

missing for one unit, it will be given a lower weight. Survey weights therefore play a key role in limiting 

the presence of bias (Dever & Valliant, 2017). Secondly, this approach does not model an exhaustive 

relationship between common and non-common variables from 𝐴 and 𝐵 (Annoye et al., 2024). This 

shortcoming implies that the method may not fully capture the complex relationships between these 

variables, potentially leading to flawed or erroneous imputations. 

For the reasons presented above and based on extensions of machine learning techniques, Annoye et 

al. (2024) have developed other statistical matching techniques. These techniques are the following: 

Kernel Canonical Correlation Analysis (KCCA), Autoencoder and Canonical Correlation Analysis (A-CCA) 

and Super-Organising Map (Super-OM). Super-OM will not be detailed in this work, but information is 

available in the article written by Annoye et al. (2024). It should be pointed out that the KCCA and A-

CCA methods are derived from the Canonical Correlation Analysis (CCA) technique. In this literature 

review section, each of them will simply be introduced and the explanations of calculations for the CCA, 

KCCA and A-CCA approaches will be developed in the methodology section. 

2.3.2.2 The Canonical Correlation Analysis method 

The Canonical Correlation Analysis technique was developed in the 1930s by Harold Hotelling (1936) 

and involves analysing the relationships between two data sets. The objective of this approach is to 

maximise the correlation between variables from two databases using linear combinations known as 

"canonical variables". In this way, the CCA technique seeks to reduce the dimensionality of the two 

databases (Hotelling, 1936). However, as Asendorf (2015) points out in his thesis, the CCA approach is 

not a statistical matching algorithm. In fact, this technique provides transformations and correlations 

that highlight the common structure between the datasets, which can then be used for data fusion 

purposes (Asendorf, 2015). 

The performance of the CCA approach is highly dependent on the volume of data available to train the 

model compared with the complexity (dimension) of the data. When there is a large amount of data 

and their complexity is lower, the CCA technique performs relatively well. On the contrary, when there 
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are few training samples, this approach may yield improbable and false results (Asendorf, 2015). To 

address this limitation, a number of extensions to CCA have been developed, such as KCCA, Sparse CCA, 

Regularised CCA and A-CCA (Annoye et al., 2024; Asendorf, 2015). 

The Canonical Correlation Analysis method is an approach used in a wide variety of fields. Applications 

in the medical sector concerning, for example, genetic connections are detailed in Asendorf's thesis 

(2015). This method is also present in the fields of finance, marketing, music, and climatology, and is 

mainly known for its ability to find relationships between texts and images (Asendorf, 2015). 

2.3.2.3 The Kernel Canonical Correlation Analysis approach 

In the early 2000s, the Kernel Canonical Correlation Analysis (KCCA) approach was developed first by 

Lai and Fyfe (2000) and a later by Akaho (2006). As they explain in their article, the KCCA technique is 

an extension of the CCA technique that addresses one of its greatest limitations. Indeed, the KCCA 

approach is a machine learning method which makes it possible to model non-linear and therefore 

even more complex relationships using the kernel trick (Akaho, 2006; Lai and Fyfe, 2000). The kernel 

trick allows data to be implicitly transformed into a higher-dimensional (potentially infinite) feature 

space without having to calculate the coordinates of the points in this space. This allows algorithms to 

deal efficiently with non-linear problems by transforming them into linear problems in a higher 

dimensional space and applying the CCA method (Annoye et al., 2024; Lai and Fyfe, 2000) in this space. 

Thanks to its many advantages, the KCCA method is a technique which is employed in a diverse range 

of fields. In cross-domain matching, Akaho (2006) talks about using the KCCA approach to link images 

to speech and vice versa. Indeed, given the high dimensionality of images and speeches, it is necessary 

to use higher-dimensional spaces to model non-linear relationships. Similarly, Shimodaira (2014) 

demonstrates in his paper the importance of the KCCA technique for matching images with text. It was 

only in 2020 that the KCCA approach made its appearance in the field of statistical matching thanks to 

Mitsuhiro and Hoshino (2020). However, the KCCA technique, which will be applied in this thesis, is 

derived from the article by Annoye et al. (2024). This method allows for the inclusion of both 

continuous and categorical variables, avoids incompatibilities with these categorical data, and takes 

survey weights into account, as specified by the authors. 

2.3.2.4 The Autoencoder and Canonical Correlation Analysis method 

The Autoencoder and Canonical Correlation Analysis technique is also an extension of the CCA 

approach and incorporates autoencoders. Although the term "autoencoder" is not explicitly 

mentioned, the underlying approach was developed by Rumelhart et al. (1986) in their article 

"Learning representations by back-propagating errors". The authors describe a neural network capable 

of compressing input data into an internal representation of reduced dimension, then reconstructing 

it from this representation, which corresponds to the functionality of an autoencoder. This is why, 

although the term itself is not used, the article is often associated with the introduction of 

autoencoders in the field of machine learning (Rumelhart et al., 1986). This approach is formalised in 

the definition proposed by Annoye et al. (2024): 

"An autoencoder is an unsupervised neural network consisting of an encoder that compresses data 

efficiently by utilising the underlying structure therein, and a decoder, which decompresses the data 

into a representation that resembles the original version as closely as possible." 
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Thus, an autoencoder is composed of an encoder, a latent space, and a decoder. The encoders and 

decoders are defined to minimise the error between the original data and the reconstructed data 

(Annoye et al., 2024). The encoder and decoder are functions that are mostly in the form of neural 

networks (Michelucci, 2022). As Michelucci proves in his article, autoencoders are applied in various 

domains such as dimension reduction, data generation and image denoising. 

In the specific framework of statistical matching, Luo et al. (2018) are the first to have made use of 

autoencoders. Indeed, they introduced a model based on autoencoders to improve the semantic 

consistency of responses in dialogue systems. By incorporating autoencoders, the model uses a 

statistical matching approach to learn and to evaluate the semantic dependency between utterances, 

thus generating more relevant and consistent responses in dialogues. 

Finally, Annoye et al. (2024) developed the A-CCA method which involves using the autoencoder to 

compress the data and to represent them in a lower dimension in the latent space. Next, the CCA 

technique is applied to the compressed data in order to identify existing relationships between these 

variables and to maximise the correlation. Finally, the decoder is applied to the compressed data and 

attempts to reconstruct the original data (Annoye et al., 2024). The objective of the autoencoder is to 

minimise the difference between the input data and the reconstructed output data, while learning a 

useful and compact representation of the data. 

2.3.2.5 Opening up the literature 

In a recent publication, Annoye et al. (2024) presented the development of two novel techniques, KCCA 

and A-CCA, for statistical matching. Nevertheless, despite these notable advancements, further 

investigation is required to fully elucidate the potential of these two algorithms, particularly with regard 

to the optimisation of their hyperparameters. In particular, the dimensions of latent spaces and the 

bandwidth hyperparameters have yet to be fully explored with a view to obtaining optimal 

performance. 

Specific details on bandwidths and the dimensions of latent spaces will be developed in the 

methodology section. These hyperparameters are of crucial importance for several reasons: they 

influence model flexibility, the ability to capture underlying patterns without overlearning, and robust 

generalisation to new data. Their optimisation is therefore essential to guarantee the effectiveness of 

the KCCA and A-CCA techniques in modelling relationships between complex data sets. 
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3 Methodology 
This chapter will present the methodology that has been employed in the course of this study. Firstly, 

we will introduce the database that we have developed and that we will be working with. Next, we will 

explain the calculations related to the CCA, KCCA and A-CCA methods, as well as the management of 

categorical variables. Finally, we will discuss the measures that will be relevant for evaluating the 

performance of the predictions. It is also important to stress that all of this work will be carried out 

using RStudio software. 

The approach adopted is mainly quantitative, relying on statistical analysis and machine learning 

algorithms to optimise hyperparameters and assess performance. 

3.1 Presentation of the database 

The data presented in this thesis was extracted from a database that was specifically constructed for 

the purpose of this study. This was necessary because access to information related to mobility and 

other domains is typically restricted due to the confidential nature of the personal data involved. The 

database was constructed within the R environment and comprises 5,000 rows and 30 columns, upon 

which dependency relationships were established. 

To represent a variety of survey characteristics, both categorical and continuous data were included. 

The categorical data was generated using the "rbinom" function, which generates samples of random 

numbers following a binomial distribution. This function requires as parameters the number of 

observations to be generated, the number of trials in each Bernoulli trial, and the probability of success. 

On the other hand, continuous data was produced using the "rnorm" function, which generates 

samples of random numbers according to a normal distribution. It requires as parameters the number 

of observations to be generated, the mean and the standard deviation. The code implemented for the 

creation of the database is presented in Appendix A. A table showing the different variables, and their 

types is provided below: 

 

 

 

 

 

 

 

 

 

 
Table 1: Type of the common and non-common variables 
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For the purposes of this study, the database will be sub-sampled to allow the prediction of certain data 

from survey 𝐴. With this in mind, it was decided to hide the first 1,000 rows of the last 15 columns, 

corresponding to the top right-hand corner of the database. A visual representation of this operation 

is provided below:  

 

 

 

 

 

 

 

 

The database is therefore made up of two surveys, 𝐴 (upper part of the figure – test sample) and 𝐵 

(lower part – training sample). Variables common to both surveys are represented by 𝑋, while variables 

specific to each survey are designated by 𝑌. The number of rows in survey 𝐴 are defined by 𝑛𝐴 and 𝑛𝐵 

respectively, while the number of columns is denoted by 𝐶. In this context, the total number of rows, 

representing the number of individuals in each survey, is 1,000 for the survey 𝐴 and 4,000 for the 

survey 𝐵. The number of variables (columns) of 𝑋 and 𝑌 is 15 for both. Subsequently, it is normally 

necessary to use weight vectors for each observation in surveys 𝐴 and 𝐵, defined respectively by 𝑤𝐴 

and 𝑤𝐵, whose associated diagonal matrices will be represented by 𝑊𝐴 and 𝑊𝐵. However, since the 

variables are independent and identically distributed, weights are not needed in this case and will not 

be mentioned anymore. The values to be estimated are those in the "hidden part", denoted 𝑌𝐴. In the 

code in the Appendix A, the data frames for 𝑋𝐴, 𝑌𝐴, 𝑋𝐵  𝑎𝑛𝑑 𝑌𝐵 are also defined.  

Thus, thanks to the KCCA and A-CCA methods, a database comprising the sets of variables (𝑋𝐴, 𝑌𝐴), 

referred to in the literature as a "synthetic dataset", will be created. In this context, survey 𝐴 will serve 

as the recipient, while survey 𝐵 will be the donor. Then, the objective will be to optimise some 

hyperparameters of these two approaches in order to build the most accurate synthetical dataset 

possible, as close as possible to reality. 

3.2 Explanations of both approaches based on the CCA method 

In this section, we will begin by explaining the CCA method, which is necessary for the KCCA and A-CCA 

approaches. We will then develop the two-step procedure to impute the missing values in 𝑌𝐴 by 

handling categorical and continuous variables and detailing the two methods that will be implemented: 

KCCA and A-CCA. To do this, we will base ourselves on the article by Annoye et al (2024) in which they 

detail the calculations for this procedure. We will explain them in a literary manner to show our 

understanding.  

Figure 4: Illustration of the database and the hidden part to be predicted 
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3.2.1 Canonical Correlation Analysis (CCA) 

Before going into more detail about the KCCA and A-CCA methods, it is necessary to focus first on the 

Canonical Correlation Analysis technique. As KCCA and A-CCA are extensions of the CCA approach, it is 

essential to firstly master the latter method. 

As explained in the literature review, the main idea behind the CCA method is to maximise the 

correlation between linear combinations of 𝑋𝐵 and 𝑌𝐵 variables. This is achieved by finding vectors 𝑎 

and 𝑏, known as canonical vectors, such that when 𝑋𝐵 and 𝑌𝐵 are transformed by these vectors, the 

correlation between 𝑋𝐵𝑎 and 𝑌𝐵𝑏 (the canonical variables) is maximised.  

The constraints ensure that the solution is unique by controlling the variance of the transformed 

variables. Specifically, the constraints require that the variance of 𝑋𝐵𝑎 and 𝑌𝐵𝑏, after transformation, 

is equal to one. 

Once the canonical vectors, 𝑎 and 𝑏, are derived from the CCA method, it is possible to process 

statistical matching by imputing the 𝑌̂𝐴. First, 𝑋𝐴, 𝑋𝐵  and 𝑌𝐵 need to be centred and then, a kernel 

function, such as the Gaussian kernel, is applied to compute the pairwise distance among all elements 

of 𝑋𝐵𝑎 and 𝑋𝐴𝑎. One of the hyperparameters to be optimised in this thesis is the bandwidth 

hyperparameter used in the kernel.  

Finally, the imputed values 𝑌̂𝐴 are obtained as a weighted mean of the variables in 𝑌𝐵, where the 

weights are determined based on the distances between the transformed variables 𝑋𝐵𝑎 and 𝑋𝐴𝑎. 

These weights ensure that closer variables in the transformed space have a higher influence on the 

imputed values. 

3.2.2 A two-step procedure 

Normally, the two approaches consist of two stages. In the first stage, the categorical variables are 

imputed, thereby avoiding incompatibility errors between several variables. Indeed, in surveys 

concerning mobility and living conditions, variables relating to the place of residence and the 

municipality are included. Consequently, an individual residing in Alleur is incompatible with Liège as 

their municipality. In the second stage, the continuous variables are imputed with the KCCA or A-CCA 

techniques.  

However, for the purposes of this thesis, the first phase will simply be described, but will not be studied 

or analysed. We will only focus on the second step, which solely consists of estimating the variables as 

if they were all continuous. 

3.2.2.1 Handling categorical variables  

In order to impute the categorical variables from 𝑌̂𝐴, it is necessary to construct the compatibility 

matrix Ɵ taking into account all the common variables, both 𝑋𝐴 and 𝑋𝐵. For each row 𝑖 (e.g. individual) 

in dataset 𝐴, its categorical variables are examined to find a similar row 𝑗 (e.g. individual) in dataset 𝐵. 

If the 𝑖𝑡ℎ row in 𝐴 has as counterpart the 𝑗𝑡ℎ row in 𝐵, Ɵ𝑖𝑗  is set to one or zero otherwise. If no 

counterpart is identified, the matching criteria are adjusted, and fewer variables are considered until a 

compatible counterpart is found. Finally, for each row in 𝐴, a row in 𝐵 is randomly selected as the data 

source for imputation, considering a probability. This probability is defined considering compatibility, 
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the distance (similarity) calculated using the kernel between observations the 𝑖𝑡ℎ and 𝑗𝑡ℎ rows and the 

weight of observation 𝑗 in 𝐵.  

3.2.2.2 Two methods for handling continuous variables  

The purpose of the second step is to impute the continuous variables (in our case, all the 15 variables 

to be imputed are considered continuous) using two different techniques. If the first step had taken 

place, the categorical variables imputed in this step would have had to be regarded as part of the 

common variables.  

We will first describe the KCCA method in detail before turning to the A-CCA approach. To do this, we 

need to run the algorithms for the different methods on 𝑋𝐵 and 𝑌𝐵. These algorithms were supplied 

to us by my supervisor and developed by the project team. 

3.2.2.2.1 The Kernel Canonical Correlation Analysis (KCCA) method 

The KCCA approach differs from the CCA technique in being non-linear, which enables it to capture 

more precise relationships between the data. For the matrix 𝑋𝐵, each observation 𝑥𝑖
𝐵 is transformed 

to obtain a new vector Φ𝑥
𝐵(𝑋𝐵) = (ϕ(x1), … , ϕ(xn)) which belongs to the Hilbert space 𝐻𝑥

𝐵. Similarly, 

for the matrix 𝑌𝐵, each observation 𝑦𝑖
𝐵 is transformed to obtain a new vector Φ𝑦

𝐵(𝑌𝐵) =

(ϕ(y1), … , ϕ(yn)) which belongs to the Hilbert space 𝐻𝑦
𝐵. A Hilbert space is a vector space with a scalar 

product and complete with respect to the norm induced by this scalar product. 

Then, the inner products ⟨𝑎|Φ𝑥
𝐵(𝑋𝐵) ⟩ and ⟨𝑏|Φ𝑦

𝐵(𝑌𝐵)⟩  are calculated in Hilbert spaces and the 

correlation between these two products must be maximised while respecting the variance constraints 

and finding the vectors 𝑎 ∈ 𝐻𝑥
𝐵 and 𝑏 ∈ 𝐻𝑦

𝐵. The latter can be expressed as linear combinations of the 

transformed data. Thus, the correlation between  ∑ 𝛼𝑖⟨𝜙𝑥
𝐵(𝑥𝑖

𝐵)|Φ𝑥
𝐵(𝑋𝐵)⟩𝑛

𝑖=1  and 

∑ 𝛽𝑖⟨𝜙𝑦
𝐵(𝑦𝑖

𝐵)|Φ𝑦
𝐵(𝑌𝐵)⟩𝑛

𝑖=1  must be maximised, given that 𝛼𝑖 and 𝛽𝑖 are scalars. 

Furthermore, Mercer's theorem allows inner products to be expressed in terms of positive definite 

symmetric kernels. These kernels are often expressed as Gramian matrices 𝐾𝑥
𝐵 and 𝐾𝑦

𝐵, where the 

elements (𝐾𝑥
𝐵)𝑖𝑗 and (𝐾𝑦

𝐵)𝑖𝑗 correspond respectively to the kernel values 𝐾ℎ𝑥

𝐵 (𝑥𝑖
𝐵, 𝑥𝑗

𝐵) and 

𝐾ℎ𝑦

𝐵 (𝑦𝑖
𝐵, 𝑦𝑗

𝐵), with ℎ being the bandwidth hyperparameter. 

The optimisation problem consists of finding 𝛼 and 𝛽 via a spectral decomposition problem. In order 

to prevent singularities and maintain the solution’s uniqueness, a regularisation parameter 𝛾 is 

introduced.  

Finally, to carry out the statistical matching, once 𝛼 has been calculated, it is necessary to measure the 

distance between 𝐾ℎ𝑥

𝐵 (𝑥𝑖
𝐵, 𝑥𝑗

𝐵) × 𝛼  and 𝐾ℎ𝑥

𝐴 (𝑥𝑖
𝐴, 𝑥𝑗

𝐵) × 𝛼, then impute the values of 𝑌̂𝐴 by taking a 

weighted average of the variables in in 𝑌𝐵, as was done in the CCA approach. 

Therefore, the KCCA approach is distinguished by its capacity to discern complex dependencies 

between variables, a capability that stems from its non-linear nature. The utilisation of kernel functions 

facilitates the transformation of the original data into an infinite-dimensional Hilbert space, thereby 

enabling the more efficient detection of complex, non-linear relationships. Furthermore, the KCCA loss 

function is designed to optimise the correlation between projections of the data into this Hilbert space. 
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This direct maximisation of correlative relationships reveals more subtle underlying dependencies 

between data sets. 

3.2.2.2.2 The Autoencoder and Canonical Correlation Analysis (A-CCA) approach 

The ACCA approach relies on autoencoders, as discussed in the literature review. Autoencoders are 

designed to compress data using an encoder, reducing them to a lower-dimensional latent space. Then, 

a decoder reconstructs the data, aiming to closely match the original input. The goal is to minimise the 

mean-squared error between the original and reconstructed data, achieved by training both the 

encoder and decoder accordingly. 

In this method, the first step involves the application of different autoencoders on the datasets 𝑋𝐵 and 

𝑌𝐵 in order to compress them into their respective latent spaces, denoted 𝜑𝑋
𝐵 and 𝜑𝑌

𝐵, which represent 

a reduced-dimensional version of the original data. Next, the CCA procedure is applied to these latent 

spaces to maximise the correlation between the canonical variables 𝜑𝑋
𝐵𝑎 and 𝜑𝑌

𝐵𝑏 (𝑎 and 𝑏 are still the 

canonical vectors), while respecting variance constraints. 

To perform statistical matching, a kernel function is again applied to calculate the distance between 

𝜑𝑋
𝐵𝑎 and 𝜑𝑋

𝐴𝑎. The values of 𝑌̂𝐴 are imputed as the weighted mean of the variables in 𝑌𝐵, computed 

like in the CCA method. 

The A-CCA approach is focused on the accurate reproduction of individual data using autoencoders 

whose loss function is designed to minimise the reconstruction error, which is to say, the difference 

between the original data and the reconstructed data. This results in a compact and accurate 

representation of the data, which is particularly useful for the replication of individual data sets. 

Nevertheless, although this approach can capture some non-linearities during compression, the 

canonical correlation applied in latent space remains linear. This may, therefore, limit the ability of the 

A-CCA technique to capture more complex dependencies between variables. The primary objective of 

this method is, therefore, to provide an accurate and compact representation of the original data set, 

rather than to optimise the correlative relationships between data sets. 

3.2.3 Specification of the hyperparameters to be optimised  

The objective of this work is to optimise the bandwidth hyperparameters and the dimension of latent 

spaces for both, the KCCA and A-CCA approaches, in order to provide more accurate imputations of 

𝑌̂𝐴.  

All bandwidth hyperparameters will be denoted by "𝑝2 … " (2 for the second phase). 

3.2.3.1 Specifications of the hyperparameters to be optimised for the KCCA method 

The first hyperparameters to be optimised in the KCCA approach come into play when Mercer's 

theorem is applied. They represent the bandwidths of the kernels used in the KCCA, which replace the 

scalar products in Hilbert space. These hyperparameters must be adjusted for both 𝑋𝐵 and 𝑌𝐵, giving 

a total of two hyperparameters to optimise:  𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦. More specifically, the bandwidth 

hyperparameter is used to determine the shape and width of the Gaussian kernels (or other types of 

kernels) used to measure the similarity between pairs of points in Hilbert spaces. A poorly chosen 

bandwidth can lead to overfitting or underfitting of the data. 
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Then, in the KCCA approach, the latent space is a subspace of the Hilbert space 𝐻𝑥
𝐵 (or 𝐻𝑦

𝐵) where 𝑋𝐵 

(or 𝑌𝐵) is projected. In one dimension, there is only one component, the vector 𝐾𝑥
𝐵𝛼 (or 𝐾𝑦

𝐵𝛽). 

However, it is possible to choose different 𝛼 and 𝛽 when spectrally decomposing the KCCA. For 

example, for a dimension three, there are three different 𝛼 and 𝛽, giving 𝐾𝑥
𝐵𝛼1, 𝐾𝑥

𝐵𝛼2, 𝐾𝑥
𝐵𝛼3 and 

𝐾𝑦
𝐵𝛽1, 𝐾𝑦

𝐵𝛽2, 𝐾𝑦
𝐵𝛽3. This represents the latent space and its dimension to be optimised is defined by 𝑑. 

It determines the complexity of the KCCA model by specifying the number of dimensions in which the 

relationships between the 𝑋𝐵 and 𝑌𝐵 data sets are captured. A higher number of latent dimensions 

allows a richer and more detailed representation of the relationships between the data but can also 

increase the risk of overfitting if the model is too complex for the amount of data available. 

Finally, during the statistical matching phase at the end of the algorithm, a kernel function is again used 

to calculate the similarity between 𝐾ℎ𝑥

𝐵 (𝑥𝑖
𝐵, 𝑥𝑗

𝐵) × 𝛼 and 𝐾ℎ𝑥

𝐴 (𝑥𝑖
𝐴, 𝑥𝑗

𝐵) × 𝛼. This function requires a 

bandwidth hyperparameter to be set: 𝑝2ℎ. 

3.2.3.2 Specification of the hyperparameters to be optimised in the A-CCA approach 

Firstly, the initial step in the A-CCA method is to apply a separate encoder to 𝑋𝐵 and 𝑌𝐵 to project them 

into their respective latent spaces, 𝜑𝑋
𝐵 and 𝜑𝑌

𝐵. The dimension of these latent spaces must be defined: 

𝑝2𝑙𝑎𝑡𝑥 , 𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦. The choice of latent space dimension can have an impact on the performance of 

the A-CCA approach in terms of the ability to discover correlations between datasets and the quality 

of the representation of compressed data. A higher latent space dimension can capture finer 

information about the data, but it can also increase the complexity of the model and lead to 

overlearning. On the other hand, a lower dimension can lead to a loss of essential information, but it 

can also simplify the model and improve its generalisation. 

Moreover, when the CCA technique is applied to the data within the latent space, it is possible to have 

multiple vectors 𝑎 and 𝑏 in order to maximise the correlation between 𝜑𝑋
𝐵𝑎 and 𝜑𝑌

𝐵𝑏. This is also 

recognised as a latent space, denoted as 𝑑, which is constrained to have a dimensionality that is either 

less than or equivalent to that of 𝜑𝑋
𝐵𝑎 and 𝜑𝑌

𝐵𝑏. 

Finally, in the data fusion stage, a kernel function is required to measure the distance between 𝜑𝑋
𝐵𝑎 

and 𝜑𝑋
𝐴𝑎, which involves optimising its bandwidth. This hyperparameter needs to be specified: 𝑝2ℎ. 

3.3 Procedure to optimise these hyperparameters 

In this section, the practical aspect of this work, focusing on the optimisation of the bandwidth 

hyperparameters and the dimension of latent spaces in the KCCA and A-CCA machine learning 

algorithms is discussed in the context of statistical matching. As already specified, the analyse will focus 

on the second step of the procedure concerning the continuous variable. The objective is to 

demonstrate the strategy used to adjust these crucial hyperparameters in order to obtain optimum 

performance during statistical matching. 

The initial step involves naming the columns in the database. The first 15 variables, being common, are 

called "𝑋1, 𝑋2, . . . , 𝑋15" and the last 15, being non-common, are called "𝑌1, 𝑌2, . . . , 𝑌15". Additionally, 

distinct data frames have been created to compartmentalise the dataset into its constituent 

parts: 𝑋𝐴, 𝑋𝐵, 𝑌𝐴, 𝑎𝑛𝑑 𝑌𝐵, where "𝑋" corresponds to the common variables, "𝑌" to the non-common 
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variables, "𝐴" to survey 𝐴 data, and "𝐵" to survey 𝐵 data. Then, it becomes necessary to define the 

recipient and donor data frames, referred to as “𝑑𝑓. 𝑟𝑒𝑐” = 𝑋𝐴 and “𝑑𝑓. 𝑑𝑜𝑛” = 𝑋𝐵 +  𝑌𝐵 in the code. 

3.3.1 Kernel Canonical Correlation Analysis  

As detailed above, the hyperparameters to optimise concerning the Kernel Canonical Correlation 

analysis are the following: the bandwidth of the kernels (𝑝2ℎ𝑥 , 𝑝2ℎ𝑦), the dimension of latent space 

(𝑑), and the bandwidth hyperparameter in the kernel function used for the statistical matching (𝑝2ℎ). 

These hyperparameters were optimised in two stages: first, the hyperparameters 𝑑 and 𝑝2ℎ, then the 

hyperparameters 𝑝2ℎ𝑥 , 𝑝2ℎ𝑦. 

Other hyperparameters are considered in the KCCA approach but are not studied in this thesis. We 

have therefore decided to leave the default values. The hyperparameters not studied are listed in the 

table below, to ensure the reproducibility of the study: 

In order to optimise 𝑑 and 𝑝2ℎ, we chose to follow the Grid Search strategy. This hyperparameter 

optimisation technique involves specifying a grid of possible values for each model hyperparameter 

and then systematically evaluating the model for each combination of these values. This approach 

allows for determining the combination of hyperparameters that yields the best model performance 

according to one (or more) predefined metric(s), which will be explained later in this work. 

Initially, we specified the following range of possible values for 𝑑: 1, 2, 3, 4, 5 and for

𝑝2ℎ: 0.01, 0.11, 0.21, 0.31, 0.41, 0.51. For each pair of hyperparameters (𝑑, 𝑝2ℎ), we evaluated the 

model using the metrics that will be defined later, primarily focusing on the Root standardised Mean 

Squared Error (RsMSE). The objective was to minimise the RsMSE, indicating smaller errors in 𝑌̂𝐴 

predictions. We subsequently extended the range for 𝑑 to 7 and added 0.00051, 0.00076, 0.61,

0.71, 0.81 as possible values for 𝑝2ℎ. This allowed for observing a rise in the RsMSE and ensuring 

optimisation. The hyperparameters 𝑝2ℎ𝑥 , 𝑝2ℎ𝑦 were chosen through cross-validation to minimise the 

RsMSE among the following values: 0.01, 0.36, 0.71, 1.06, which will later provide an indication of the 

optimum values for this hyperparameter. 

Once 𝑑 and 𝑝2ℎ have been optimised, we still need to find the optimum values for 𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦. To 

do this, we selected the three pairs that minimise the RsMSE and the three pairs that minimise the 

𝐶𝑉𝑀_𝐶_𝑁𝐶 (Cramer-Von Mises statistics, which will be defined in section 3.3.3) from the previous 

phase and provided several possible values based on those retained. First, we searched for the optimal 

Table 2: Value of unstudied hyperparameters in the KCCA approach 
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value for 𝑝2ℎ𝑦, again aiming to minimise the RsMSE and the 𝐶𝑉𝑀_𝐶_𝑁𝐶 respectively and continued 

testing values until this metric started to increase. Then, we applied the same principle to 𝑝2ℎ𝑥. 

3.3.2 Autoencoder and Canonical Correlation Analysis  

In the A-CCA method, the hyperparameters to be optimised are the followings: the dimension of the 

latent spaces 𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦 in which the data are projected after the encoder, the dimension of 

latent space when applying the CCA (𝑑), and the bandwidth hyperparameter in the kernel function 

used for the statistical matching (𝑝2ℎ).  

As with the KCCA method, other hyperparameters need to be defined for the A-CCA approach and will 

not be studied in this work. To ensure reproducibility of the results, the default values for the various 

hyperparameters not studied are given in the table below: 

In addition, as the algorithm also uses the Python language, it was necessary to create a virtual 

environment to run the code.  

For this method, we first optimised the dimensions of the various latent spaces, as they have a greater 

impact than the bandwidths derived from scalar products in the KCCA approach. Again, we followed 

the Grid Search strategy. We chose identical values for 𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦, ranging from 

1 𝑡𝑜 15 inclusive, with 15 being the maximum since there are 15 common and 15 non-common 

variables. For 𝑑, the range of possible values was set from 1 𝑡𝑜 5. Once again, each pair model 

(𝑑, 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦) was run and two performance metrics were calculated, with the main objective of 

observing an increase in RsMSE. Regarding the bandwidth hyperparameter 𝑝2ℎ, it was optimised 

through cross-validation to obtain an initial estimate of its optimal value among the following options: 

0.1, 0.3 𝑎𝑛𝑑 0.7. 

Secondly, the hyperparameter 𝑝2ℎ also needs to be optimised. To do this, we took again the three pairs 

(𝑑, 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦), which minimise the RsMSE and the three which minimise the 𝐶𝑉𝑀_𝐶_𝑁𝐶. Then, 

we kept the value of 𝑝2ℎ obtained by cross-validation and tried slightly higher and lower values. We 

continued until the RsMSE and the 𝐶𝑉𝑀_𝐶_𝑁𝐶, respectively, stopped decreasing and started 

increasing again. 

Table 3: Value of unstudied hyperparameters in the A-CCA approach 
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3.3.3 Performance analysis  

The final stage of the analysis consists of studying the performance of the imputations of 𝑌̂𝐴 in survey 

𝐴 using the methods described above. To do this, several performance measures have been used to 

analyse the quality of the estimates of 𝑌̂𝐴 by comparing them with the original data, 𝑌𝐴.  

3.3.3.1 Root standardised Mean Squared Error (RsMSE) 

The Root standardised Mean Square Error (RsMSE) is a measure of the performance of a predictive 

model which considers both the accuracy of the predictions and the dispersion of the data. This 

measure is obtained by standardising the prediction errors in relation to the variance of the observed 

data, then taking the square root of this standardised value. It provides an indication of the 

standardised mean error, which makes it possible to compare the model's performance on different 

scales of data. The aim is to keep the values as low as possible. The formula is as follows:  

𝑅𝑠𝑀𝑆𝐸 = √∑ (
𝑦𝑖

𝐴 − 𝑦̂𝑖
𝐴

(𝜎𝐴)²
)

2𝑛

𝑖=1
 

Where 𝑛 represents the number of observations, 𝑦𝑖
𝐴 denotes the original data, 𝑦̂𝑖

𝐴 is the prediction 

imputed in survey 𝐴 and sigma is computed as follows: (𝜎𝐴)² = ∑ [𝑦𝑖
𝐴 − (𝑛

𝑖=1 ∑ 𝑦𝑖
𝐴)]²𝑛

𝑖=1  

3.3.3.2 Cramer-Von Mises: bivariate and multivariate 

The Cramer-Von Mises statistic represents the difference between the bivariate cumulative distribution 

function of two variables from the predictions and the bivariate cumulative distribution function of the 

same two variables in the original data. In the prediction dataset, the common and non-common 

variables are included. The outcome is a matrix containing all the statistics for each variable pair, where 

smaller values indicate better predictions. To obtain a single value from the output matrix, we took the 

average of these values. The result of this performance calculation is a single value, which should be as 

close to zero as possible. This suggests that the distribution of these variables in the predictions and in 

the original database is highly similar. In other words, a low value indicates that the empirical 

distribution is similar to the hypothetical distribution. The Cramer-Von Mises criterion is defined as: 

𝐶𝑉𝑀 = ∫ ∫ [𝐹̂𝑛𝐴
(𝑥, 𝑦) − 𝐺𝑛𝐵

(𝑥, 𝑦)
⬚

ℝ

⬚

ℝ

]² 𝑑𝐻𝑛𝐴+𝑛𝐵
(𝑥, 𝑦) 

Where 𝐹̂𝑛𝐴
(𝑥, 𝑦), 𝐺𝑛𝐵

(𝑥, 𝑦) and 𝐻𝑛𝐴+𝑛𝐵
(𝑥, 𝑦) represent the bivariate empirical distributions of two 

variables 𝑋 and 𝑌 in data sets 𝐴, 𝐵 and 𝐴 + 𝐵 respectively. 

For this thesis, we calculated two Cramer-Von Mises statistics. The first consists of taking as variables, 

one from the non-common variables and one from the common variables. In this way, we studied the 

bivariate cumulative distribution function of a variable that did not have to be estimated (the common 

one "𝑋. . . ") with one that went through statistical matching (the non-common one "𝑌. . . "). The second 

statistics studied therefore the bivariate distribution of two non-common variables ("𝑌. . . ") which will 

have gone through the statistical matching procedure. The first statistics is denoted "CVM_C_NC " 

whereas the second one is named "𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶".  
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Finally, the CVM statistic for multivariate case follows the same principle as the one above but 

calculates the difference between the multivariate distribution of all the predicted and original 

variables, between 𝑋𝐴𝑌𝐴 and 𝑋𝐴𝑌̂𝐴, and no longer the bivariate distribution. The result of this 

performance calculation (“𝐶𝑉𝑀_𝑎𝑙𝑙”) therefore has only one value, which must be as close to zero as 

possible. As we did for the bivariate case, we also computed the statistic between only the non-

common variables, between 𝑌𝐴 and 𝑌̂𝐴 (“𝐶𝑉𝑀_𝑎𝑙𝑙2”).   
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4 Results  
This chapter presents the results obtained by following the methodology described above and aims to 

address the research question: “How to optimise the dimensions of latent spaces and bandwidth 

hyperparameters for two machine learning techniques?” 

The optimisation of these hyperparameters is crucial as it directly impacts the performance and 

accuracy of the KCCA and A-CCA algorithms in statistical matching tasks. Proper tuning of the 

bandwidth hyperparameters and the dimension of latent spaces can significantly enhance the 

algorithms' ability to estimate more accurately the non-common variables (𝑌̂𝐴). 

We will begin by analysing the results for the KCCA approach, detailing the impact of varying bandwidth 

hyperparameters and the dimension of latent spaces on the algorithm's performance. Subsequently, 

we will focus on the A-CCA approach, highlighting how these hyperparameters influence its efficacy. 

The experiments were conducted using the database created by us, the algorithms provided by our 

supervisor and the R software. Tables and graphs will facilitate a clearer understanding of the results 

and will relate the various hyperparameters studied to determine which are optimal. This 

comprehensive analysis will help identify the configurations that maximise the performance of both 

algorithms under different conditions. 

4.1 Results of the KCCA approach 

For the KCCA approach, we first analysed the results obtained for optimising the hyperparameters 𝑑 

and 𝑝2ℎ before looking at the results for optimising 𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦. For each of these two steps, the 

performance metrics of RsMSE and the Cramer-Von Mises criteria will be analysed in relation to the 

hyperparameters to be optimised. All the results are presented in the table in the Appendix B.  

First of all, we would like to briefly analyse the two Cramer-Von Mises statistics introduced in the 

methodology: 𝐶𝑉𝑀_𝐶_𝑁𝐶 and 𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶. At first glance, their values appeared to evolve in a 

similar manner. Consequently, we decided to create graphs illustrating their relationship as a function 

of the value of 𝑝2ℎ for each value of 𝑑. Additionally, we produced graphs showing their relationship as 

a function of the dimension 𝑑 for each value of 𝑝2ℎ. These graphs are presented in Appendices C and 

D respectively, with 𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶 on the left axis (in blue) and 𝐶𝑉𝑀_𝐶_𝑁𝐶 on the right (in green). 

Looking at the graphs, it is clear that they confirm our initial thoughts. In fact, the lines are 

superimposed and follow exactly the same trends, with the only difference being the scale of their 

values. Specifically, 𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶 values are approximately twice as much as those of 𝐶𝑉𝑀_𝐶_𝑁𝐶. 

Although different, this scale difference is logical because the error in the distributions is greater when 

the statistic is calculated on two non-common variables 𝑌 estimated via the statistical matching 

technique, compared to when it is calculated with one common 𝑋 (and therefore, non-estimated 

variable) and one non-common 𝑌 variable. 

Given that these two metrics evolve in the same way, it is unnecessary to retain both for subsequent 

analyses. Thus, we have made the arbitrary choice to keep the 𝐶𝑉𝑀_𝐶_𝑁𝐶 statistic. 
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Moreover, we computed two multivariate Cramer-von Mises statistics to examine the similarity of the 

distributions of all common and non-common variables in the first stage (𝐶𝑉𝑀_𝑎𝑙𝑙) and only the non-

common variables in the second stage (𝐶𝑉𝑀_𝑎𝑙𝑙2). As this metric is not yet algorithmically complete 

and is too complex to calculate, it will not be further analysed in this thesis. However, for informational 

purposes, we have included the graphs in the Appendices E and F, respectively. These graphs illustrate 

the evolution of these two metrics as a function of 𝑝2ℎ for each value of 𝑑. Then, they depict the 

relationship between these two metrics and the dimension 𝑑 for each value of 𝑝2ℎ. 

4.1.1 Step 1: results of the optimisation of 𝑑 𝑎𝑛𝑑 𝑝2ℎ 

As explained in the methodology, the first hyperparameters to be optimised were the dimension of the 

latent space 𝑑 during the spectral decomposition of the KCCA, and the bandwidth hyperparameter 𝑝2ℎ 

in the statistical matching phase. The graphs below will demonstrate which values optimise these 

hyperparameters and how the RsMSE and the Cramer-Von Mises criteria fluctuate in relation to them.  

First, we studied the relationship between the bandwidth hyperparameter 𝑝2ℎ, the RsMSE and the 

Cramer-Von Mises statistics for each value of 𝑑.  

 

 

Figure 5: Relationship between the bandwidth hyperparameter (𝑝2ℎ =  0.0051, 0.0076, 0.01, 0.11, 0.21, 0.31, 0.41,
0.51, 0.61), the 𝐶𝑉𝑀_𝐶_𝑁𝐶 and the RsMSE for 𝑑 =  1, 2, 3 
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The graphs illustrate the relationship between the bandwidth 𝑝2ℎ, the Root squared Mean Squared 

Error (RsMSE) (blue curve), and the Cramer-Von Mises statistic (𝐶𝑉𝑀𝐶𝑁𝐶
) (green curve) for different 

dimensions of the latent space 𝑑. Each red dot represents the pair (𝑝2ℎ ; 𝑅𝑠𝑀𝑆𝐸) for which the RsMSE 

is the lowest. Here is an integrated analysis of both the RsMSE and 𝐶𝑉𝑀_𝐶_𝑁𝐶 results for the 

dimensions 𝑑 = 1 𝑡𝑜 𝑑 = 7. 

For 𝑑 = 1, the RsMSE increases almost linearly with increasing bandwidth 𝑝2ℎ, which suggests 

overfitting. Lower values of 𝑝2ℎ minimise the RsMSE, with its optimum value remarkably close to zero. 

The 𝐶𝑉𝑀_𝐶_𝑁𝐶 also increases with 𝑝2ℎ, suggesting that higher 𝑝2ℎ leads to higher values of this 

statistic, meaning bigger difference between the empirical and the estimating distributions. The green 

curve is more convex, indicating a smoother increase compared to RsMSE. 

Figure 6: Relationship between the bandwidth hyperparameter (𝑝2ℎ =  0.0051, 0.0076, 0.01, 0.11, 0.21, 0.31, 0.41,
0.51, 0.61), the 𝐶𝑉𝑀_𝐶_𝑁𝐶 and the RsMSE for 𝑑 =  4, 5, 6, 7 
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When 𝑑 = 2, the RsMSE initially decreases as 𝑝2ℎ increases (underfitting), reaches a minimum and 

then, starts to increase slightly again (overfitting). The optimum point is observed when 𝑝2ℎ is 

approximately 0.1, with an RsMSE of 0.9372, representing the minimum reached. The 𝐶𝑉𝑀_𝐶_𝑁𝐶 

increases sharply at the beginning and then, stabilises as 𝑝2ℎ increases, indicating better performance 

in terms of the Cramer-von Mises statistic at really lower values and stabilisation at higher values. 

In the cases of 𝑑 = 3 and 𝑑 = 4, the RsMSE falls rapidly for initial values of 𝑝2ℎ and remains virtually 

constant after a certain value. For both dimensions, a value of 𝑝2ℎ around 0.2 seems optimal. This 

stability after the initial drop indicates that the choice of 𝑝2ℎ is less critical beyond this value and shows 

a stable trend for higher dimensions. The 𝐶𝑉𝑀_𝐶_𝑁𝐶 increases sharply between 𝑝2ℎ =  0.01 and 

𝑝2ℎ =  0.1 for 𝑑 = 3 and 𝑝2ℎ =  0.2 for 𝑑 = 4. Then, it continues to increase with 𝑝2ℎ, but in a more 

stable and slight way, showing a divergent trend of RsMSE, indicating that the Cramer-Von Mises 

statistic becomes less favourable as 𝑝2ℎ increases. 

When 𝑑 = 5, the RsMSE decreases sharply for the first values of 𝑝2ℎ (underfitting) and then stabilises. 

The optimum value for 𝑝2ℎ is around 0.3, with the RsMSE stabilising thereafter. The 𝐶𝑉𝑀_𝐶_𝑁𝐶 

increases steadily with 𝑝2ℎ, showing a clear trade-off with RsMSE. Higher 𝑝2ℎ leads to better RsMSE 

but worse 𝐶𝑉𝑀_𝐶_𝑁𝐶. 

For 𝑑 = 6 and 𝑑 = 7, the RsMSE decreases progressively with increasing 𝑝2ℎ until reaching a stable 

value around 0.5. The curve shows a continuous improvement up to this value, followed by 

stabilisation. Again, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 increases steadily, similar to lower dimensions, with the best 

RsMSE performance around 𝑝2ℎ = 0.5 leading to higher 𝐶𝑉𝑀_𝐶_𝑁𝐶 values. 

In conclusion, the RsMSE shows an increasing trend with the bandwidth hyperparameter 𝑝2ℎ, with 

different optimal values for different dimensions of the latent space 𝑑. Lower dimensions favor lower 

𝑝2ℎ values, while higher dimensions show better stability at higher 𝑝2ℎ values. Regarding the Cramer-

von Mises statistic, it generally increases with 𝑝2ℎ, suggesting a trade-off between minimising the 

RsMSE and maintaining lower 𝐶𝑉𝑀_𝐶_𝑁𝐶 values. 

So, for each value of 𝑑, the table on the left shows the values of 𝑝2ℎ that minimise the RsMSE and the 

corresponding 𝐶𝑉𝑀_𝐶_𝑁𝐶. On the right, the table represents the values 𝑝2ℎ which minimise the 

𝐶𝑉𝑀_𝐶_𝑁𝐶 and the corresponding RsMSE.  

 

Table 5: 𝑝2ℎ values minimising the RsMSE for each 𝑑 and the 
corresponding 𝐶𝑉𝑀_𝐶_𝑁𝐶 in the KCCA method 

Table 4: 𝑝2ℎ values minimising the 𝐶𝑉𝑀_𝐶_𝑁𝐶 for each 𝑑 
and the corresponding RsMSE in the KCCA method 
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On the one hand, the three best pairs (𝑑 ; 𝑝2ℎ) which minimise the RsMSE are (𝑑 = 5 ; 𝑝2ℎ = 0.31),

(𝑑 = 6 ; 𝑝2ℎ = 0.61), (𝑑 = 7 ; 𝑝2ℎ = 0.61). On the other hand, the pairs (𝑑 = 5 ; 𝑝2ℎ = 0.01), (𝑑 =

6 ; 𝑝2ℎ = 0.01), (𝑑 = 7 ; 𝑝2ℎ = 0.01) are the most effective in minimising the 𝐶𝑉𝑀_𝐶_𝑁𝐶. 

Then, we studied the relationship between 𝑑, the RsMSE and the Cramer-Von Mises statistics 

(𝐶𝑉𝑀_𝐶_𝑁𝐶) for each value of 𝑝2ℎ. 

Figure 7: Relationship between the dimension of the latent space (𝑑 =  1, 2, 3, 4, 5, 6, 7), CVM_C_NC and the RsMSE for 
𝑝_2ℎ =  0.01, 0.11, 0.21, 0.31, 0.41 
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The graphs illustrate the relationship between the dimension of the latent space 𝑑 and the Root 

standardised Mean Squared Error (RsMSE) (blue curve), as well as the Cramer-von Mises statistic 

(𝐶𝑉𝑀_𝐶_𝑁𝐶) (green curve) for different values of the bandwidth 𝑝2ℎ. Each red dot represents the 

minimum RsMSE value for a given pair (𝑑 ; 𝑅𝑠𝑀𝑆𝐸). Here is an integrated analysis of both the RsMSE 

and 𝐶𝑉𝑀_𝐶_𝑁𝐶 results for the bandwidths 𝑝2ℎ = 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61. 

For 𝑝2ℎ = 0.01, the RsMSE varies non-linearly with the dimension of 𝑑. There is an increase in RsMSE 

for the first few dimensions, followed by a decrease. The optimum value of the RsMSE is reached for 

𝑑 = 1 with an RsMSE 0.9764, which is the lowest. After that, the RsMSE increases and then decreases 

again, suggesting variability in performance efficiency with very small values of 𝑝2ℎ. The green curve 

shows a variable pattern with 𝑑, initially decreasing, then stabilising before decreasing again and finally 

increasing. The lowest value is at 𝑑 = 5. 

Figure 8: Relationship between the dimension of the latent space (𝑑 =  1, 2, 3, 4, 5, 6, 7), CVM_C_NC and the RsMSE for 
𝑝_2ℎ =  0.41, 0.51, 0.61, 0.71, 0.81 
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When 𝑝2ℎ = 0.11, the RsMSE shows a U-shaped curve, with an initial decrease (underfitting situation), 

reaching a minimum (the optimum point), then a gradual increase (overfitting situation). The optimum 

value of RsMSE is reached for 𝑑 = 3 with an RsMSE of 0.9752, suggesting that for this value of 𝑝2ℎ, a 

higher dimension is beneficial. The 𝐶𝑉𝐶_𝐶_𝑁𝐶 decreases consistently with 𝑑, suggesting better 

performance in terms of 𝐶𝑉𝐶_𝐶_𝑁𝐶 as dimension increases, diverging from the RsMSE trend. 

The RsMSE for 𝑝2ℎ = 0.21, 0.31, 0.41, 0.51, 0.61, 0.71 𝑎𝑛𝑑 0.81 follow a similar trend and take on a 

U-shaped form. In fact, an initial decrease in RsMSE is observed for the first values of 𝑑 (underfitting 

case) before stabilising and finally increasing slightly (overfitting situation). For 𝑝2ℎ =  0.21 and 𝑝2ℎ =

 0.31, the optimum dimension is 𝑑 =  5 while for 𝑝2ℎ = 0.41, 0.51, 0.61, 0.71 𝑎𝑛𝑑 0.81, the 

optimum dimension is found at 𝑑 =  6. This confirms that for higher values of 𝑝2ℎ, the dimensions of 

the latent space must be larger to minimise the RsMSE.  

Regarding the 𝐶𝑉𝑀_𝐶_𝑁𝐶 for 𝑝2ℎ = 0.21, 0.31 𝑎𝑛𝑑 0.41, the green curve shows a consistent 

decrease with 𝑑. For 𝑝2ℎ = 0.51, 0.61, 0.71 𝑎𝑛𝑑 0.81, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 decreases with 𝑑 as well and 

show a slight stabilisation for higher dimensions of the latent space 𝑑. 

In conclusion, for 𝑝2ℎ = 0.1, the RsMSE shows non-linearity with varying dimensions 𝑑, but for higher 

𝑝2ℎ  values, the RsMSE demonstrates a convex, U-shaped pattern, stabilising after certain dimensions. 

Concerning the 𝐶𝑉𝑀_𝐶_𝑁𝐶, it generally decreases with increasing 𝑑, showing better alignment with 

RsMSE at higher dimensions for larger 𝑝2ℎ values. 

In order to effectively optimise the performance of the KCCA algorithm in statistical matching tasks, it 

is essential to simultaneously adjust the hyperparameters 𝑝2ℎ and 𝑑. This integrated approach makes 

it possible to find the optimal combinations that maximise the accuracy and efficiency of the matching, 

underlining the importance of considering these hyperparameters synergistically for optimal results. 

The following table on the left shows the dimensions of the latent space 𝑑 that minimises the RsMSE 

for each value of the bandwidth hyperparameter 𝑝2ℎ and the corresponding 𝐶𝑉𝑀_𝐶_𝑁𝐶. On the right, 

the table demonstrates the dimensions of the latent space 𝑑, which minimise the 𝐶𝑉𝑀_𝐶_𝑁𝐶 and the 

corresponding RsMSE.  

 

 

 

 

 

 

 

 

From this table, the three pairs (𝑑 ; 𝑝2ℎ) which minimise the RsMSE are the followings: 

(𝑑 = 6 ; 𝑝2ℎ = 0.51), (𝑑 = 6 ; 𝑝2ℎ = 0.61), (𝑑 = 6 ; 𝑝2ℎ = 0.71). Concerning the 𝐶𝑉𝑀_𝐶_𝑁𝐶, the 

Table 7: 𝑑imension d minimising the RsMSE for each 𝑝2ℎ 
values and the corresponding CVM_C_NC for the KCCA 
method 

Table 6: dimension d minimising the CVM_C_NC for each 𝑝2ℎ 
values and the corresponding RsMSE for the KCCA method 
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pairs (𝑑 = 5 ; 𝑝2ℎ = 0.01), (𝑑 = 7 ; 𝑝2ℎ = 0.11), (𝑑 = 7 ; 𝑝2ℎ = 0.21) are the most effective to 

minimise the Cramer-Von Mises statistics. 

4.1.2 Step 2: results of the optimisation of 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 

Having found the values of 𝑑 and 𝑝2ℎ that optimise the performance of the algorithm for the KCCA 

method, we still need to find the optimal values of the dimensions of the bandwidth hyperparameters 

𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦. As a reminder, they represent the bandwidths of the kernels used in the KCCA method, 

which replace the scalar products in the Hilbert space. To do this, we selected the three pairs (𝑑 ;  𝑝2ℎ) 

which minimise the RsMSE and the three pairs which minimise the 𝐶𝑉𝑀_𝐶_𝑁𝐶. Then, we used the 

best values of 𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦 which had been defined by the cross-validation strategy.  

Moreover, to ensure that the application of the cross-validation technique was consistent and accurate, 

we repeated the procedure outlined below using pairs of (𝑑 ; 𝑝2ℎ) that resulted in higher RsMSEs, 

indicating lower performance. The results of these tests are presented in tables in the Appendix G. For 

these pairs, adjusting the 𝑝2ℎ𝑥 and 𝑝2ℎ𝑦 hyperparameters to optimise them did not result in RsMSE 

values lower than the best RsMSEs previously obtained. Consequently, this analysis confirms that the 

cross-validation technique is appropriate and effective for these hyperparameters. This conclusion is 

further supported by the fact that, despite attempts to optimise the hyperparameters, the 

performance metrics did not surpass those achieved earlier. 

4.1.2.1 Results of the optimisation by minimising the Root standardised Mean Squared Error 

The results of the initial step were analysed, and the three most successful couples, in terms of 

minimising RsMSE, are presented in the following table. 

 

 

 

 

The 3D graphs below visualise the relationship between the performance metric RsMSE (represented 

on the blue axis), and the bandwidth hyperparameters 𝑝2ℎ𝑥 (on the red axis) and  𝑝2ℎ𝑦 (on the green 

axis) in the Kernel Canonical Correlation Analysis (KCCA). The results are presented in the Appendix H. 

Table 8: The three pairs with the lowest RsMSE in the KCCA approach 

Figure 9: Relationship between 𝑝2ℎ𝑥, 𝑝2ℎ𝑦 and the RsMSE for 𝑑 = 6 𝑎𝑛𝑑 𝑝2ℎ = 0.51 on the left and for 𝑑 = 6 𝑎𝑛𝑑 𝑝2ℎ =

0.61 on the right 
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Upon analysing these three graphs, it becomes apparent that the bandwidth hyperparameters 

𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 affect the RsMSE, and thus the performance of the algorithm. Certain combinations of 

these two hyperparameters result in a lower RsMSE, although these differences are very slight. For 

𝑝2ℎ = 0.51, none of the hyperparameter values found through cross-validation improves the model's 

performance by reducing the RsMSE. On the contrary, all other combinations increase this performance 

metric. 

For 𝑝2ℎ = 0.61 𝑎𝑛𝑑 𝑝2ℎ = 0.71, the data points show a similar general trend: the RsMSE decreases, 

and therefore performance increases, as 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 decrease. However, their minimum points 

have different values, and the sensitivity of the RsMSE is slightly more pronounced for 𝑝2ℎ = 0.71. This 

means that for this value of𝑝2ℎ, small variations in the hyperparameters 𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦 can lead to 

more significant differences in the model's performance. 

In summary, optimising the bandwidth hyperparameters 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 is crucial for minimising the 

RsMSE and improving the algorithm's performance. Variations in 𝑝2ℎ show different sensitivities, with 

optimal performance achieved for specific values of 𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦. The table below demonstrates for 

each of these three pairs the optimal values of both hyperparameters and their RsMSE. 

 

 

 

 

 

 

4.1.2.2 Results of the optimisation by minimising the Cramer-Von Mises statistic 

In this section, we will analyse the results concerning the optimisation of the 𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦 from the 

Cramer-Von Mises perspective. The three pairs that minimised this metric are presented in the table 

below with the values determined through cross-validation for 𝑝2ℎ𝑥  𝑎𝑛𝑑 𝑝2ℎ𝑦. The results of the 

optimisation are presented in the table in the Appendix I. 

Table 9: Optimal values of the hyperparameters minimising the RsMSE and the corresponding 
CVM_C_NC in the KCCA method 

Figure 10: Relationship between 𝑝2ℎ𝑥, 𝑝2ℎ𝑦 and the RsMSE for 

𝑑 = 6 𝑎𝑛𝑑 𝑝2ℎ = 0.71 
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The 3D graphs below illustrate the relationship between the Cramer-Von Mises statistic (𝐶𝑉𝑀_𝐶_𝑁𝐶, 

represented on the blue axis), the bandwidth hyperparameters 𝑝2ℎ𝑥 (on the red axis) and  𝑝2ℎ𝑦 (on 

the green axis) in the KCCA method for each pair listed above. 

 

 

 

 

 

 

 

 

Upon analysing these graphs, we observe that the Cramer-von Mises statistic is influenced by variations 

in 𝑝2ℎ𝑥 and 𝑝2ℎ𝑦. Each graph reveals a combination that minimises this statistic, thereby enhancing 

the algorithm's performance in maintaining dependencies between variables. 

For the cases where 𝑑 = 5 𝑎𝑛𝑑 𝑑 = 7, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 decreases as 𝑝2ℎ𝑦 increases and 𝑝2ℎ𝑥 

decreases, reaching their minimal points at (0.0001 ;  1.2) and (0.001 ;  0.05) respectively, beyond 

which the 𝐶𝑉𝑀_𝐶_𝑁𝐶 rises again. Conversely, when 𝑑 = 6, the Cramer-von Mises statistic decreases 

as both 𝑝2ℎ𝑥 and 𝑝2ℎ𝑦 decrease. Once the minimum value is achieved, this metric begins to increase. 

In conclusion, the analysis of these graphs demonstrates that the optimal performance of the KCCA 

algorithm, as measured by the Cramer-Von Mises statistic, is achieved by carefully selecting the 

Table 10: The three pairs with the lowest CVM_C_NC in the KCCA approach 

Figure 11: Relationship between 𝑝2ℎ𝑥, 𝑝2ℎ𝑦 and the CVM_C_NC for 𝑑 = 5 𝑎𝑛𝑑 𝑝2ℎ = 0.01 on the left and for 𝑑 =

6 𝑎𝑛𝑑 𝑝2ℎ = 0.01 on the right 

Figure 12: Relationship between 𝑝2ℎ𝑥, 𝑝2ℎ𝑦 and the CVM_C_NC 

for 𝑑 = 7 𝑎𝑛𝑑 𝑝2ℎ = 0.01 
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bandwidth hyperparameters 𝑝2ℎ𝑥 and 𝑝2ℎ𝑦. Beyond these optimal points, the performance metric 

worsens. The table below presents the optimal points for each graph:  

 

 

 

 

4.2 Results of the A-CCA approach 

The results of the optimising hyperparameters for the A-CCA method (presented in the Appendix J) will 

be analysed in two stages. First, we will analyse the optimal values for the dimension of the latent space 

when the CCA technique is applied (𝑑), as well as the dimensions of the latent spaces (𝜑𝑋
𝐵 and 𝜑𝑌

𝐵) 

when the encoder is applied for the common (𝑋𝐵) and non-common (𝑌𝐵) variables, denoted as 

𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦, respectively. Next, we will perform an analysis to optimise the bandwidth 

hyperparameter involved in the statistical matching phase, 𝑝2ℎ. Similar to the KCCA technique, the 

RsMSE and the Cramer-Von Mises criteria will be used as performance metrics. 

As was the case with the KCCA approach, the two metrics, 𝐶𝑉𝑀_𝐶_𝑁𝐶 and 𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶, appear to 

be very similar. Therefore, we conducted the same analysis as before, creating graphs showing these 

two metrics, once as a function of 𝑑 and again as a function of 𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦. These graphs are 

included in the Appendices K and L, respectively. The conclusions are identical: the two metrics follow 

the same trend and evolve together, with the only difference being their scale, explained in the same 

way as for the KCCA approach. To remain consistent, we decided to only keep the 𝐶𝑉𝑀_𝐶_𝑁𝐶 metric 

for the rest of the analyses. 

In addition, we also calculated the two multivariate Cramer-von Mises statistics for the A-CCA 

approach. For the same reasons explained for the KCCA method, these two metrics will not be further 

discussed, and the graphs are provided in the Appendices M and N for information. 

4.2.1 Step 1: results of the optimisation of 𝑑 and 𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦 

In this section, we will analyse the results obtained from the algorithms when optimising the 

hyperparameters 𝑑 and 𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦. They demonstrate the relationships between the different 

hyperparameters and allow us to find the values that optimise the performance of the algorithm and 

the A-CCA technique used.  

Firstly, we studied the relationship between the dimension of the latent spaces for  𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦, 

the RsMSE (the blue curve) and the 𝐶𝑉𝑀_𝐶_𝑁𝐶 (the green curve) for each value of 𝑑. Each red dot 

represents the pair (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 ; 𝑅𝑠𝑀𝑆𝐸) for which the RsMSE is the lowest. Here is an integrated 

analysis of both the RsMSE and 𝐶𝑉𝑀_𝐶_𝑁𝐶 results for the dimensions 𝑑 = 1 𝑡𝑜 𝑑 = 5. 

Table 11: Optimal values of the hyperparameters minimising the 𝐶𝑉𝑀_𝐶_𝑁𝐶 and the 
corresponding RsMSE in the KCCA approach 
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For 𝑑 = 1, the RsMSE varies significantly without any discernible trend, fluctuating between 

0.976 𝑎𝑛𝑑 0.982. Although these values show slight differences, it is not possible to observe a clear 

relationship between these hyperparameters. The optimum point is identified when the RsMSE is at its 

lowest, which occurs at 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  = 6. A similar pattern is observed with the Cramer-Von-Mises 

statistic, which also fluctuates but exhibits a slight upward trend. Again, the range of values remains 

very narrow. 

Figure 13: Relationship between the dimension of the latent spaces 𝑝2𝑙𝑎𝑡𝑥, 𝑝2𝑙𝑎𝑡𝑦, the RsMSE and the CVM_C_NC for 

𝑑 = 1, 2, 3, 4 𝑎𝑛𝑑 5 
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When 𝑑 is set to a value of two, the RsMSE initially shows a very downward trend, followed by a slight 

decrease with a few upturns. For its part, 𝐶𝑉𝑀_𝐶_𝑁𝐶 has no definite trend and fluctuates between 

0.045 𝑎𝑛𝑑 0.055.  

For 𝑑 =  3, the RsMSE shows a clear downward trend and is slightly U-shaped, with its minimum point 

at 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  = 14. The 𝐶𝑉𝑀_𝐶_𝑁𝐶 first increases before stabilising at around 0.045. 

In the case where 𝑑 =  4, the RsMSE fluctuates with a rather decreasing trend before stabilising and 

fluctuating more slightly to reach a minimum RsMSE when 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  = 14. Once again, 

𝐶𝑉𝑀_𝐶_𝑁𝐶 fluctuates with no real trend, with lower values as the dimension of 𝑝2𝑙𝑎𝑡𝑥 𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦 

increases.  

Finally, when 𝑑 =  5, the RsMSE fluctuates quite strongly for low dimension of 𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦 

before stabilising somewhat as the dimensions of the latent spaces 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  = 14 and finding 

an optimum value of 14. As for 𝐶𝑉𝑀_𝐶_𝑁𝐶, it fluctuates significantly, with no decipherable trend.  

In conclusion, the analysis of the graphs suggests that the optimisation of the hyperparameters 

𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦  = 14 must be carried out by balancing the values of RsMSE and 𝐶𝑉𝑀_𝐶_𝑁𝐶 to 

obtain efficient dimension reduction while preserving the structure of the data, with a preference for  

𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  = 14 for the 𝑑 values studied. 

The following table on the right shows the optimal values for the dimensions of the latent spaces 

𝑝2𝑙𝑎𝑡𝑥  𝑎𝑛𝑑 𝑝2𝑙𝑎𝑡𝑦 which minimise the RsMSE and the corresponding 𝐶𝑉𝑀_𝐶_𝑁𝐶 for each value of 𝑑. 

The table on the left presents the optimal values for the same hyperparameters which minimise the 

𝐶𝑉𝑀_𝐶_𝑁𝐶 and the corresponding RsMSE. 

 

The three pairs (𝑑 ;  𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦) with the lowest RsMSE are the following: (𝑑 =  3 ;  𝑝2𝑙𝑎𝑡𝑥/

𝑝2𝑙𝑎𝑡𝑦 = 14), (𝑑 =  4 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 14) 𝑎𝑛𝑑 (𝑑 =  5 ;  𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 14) whereas the 

three pairs which minimise the 𝐶𝑉𝑀_𝐶_𝑁𝐶 are (𝑑 =  1 ;  𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 8), (𝑑 =  2 ;  𝑝2𝑙𝑎𝑡𝑥/

𝑝2𝑙𝑎𝑡𝑦 = 6) 𝑎𝑛𝑑 (𝑑 =  5 ;  𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 8). 

Secondly, we analysed the relationship between the dimension of the latent space 𝑑, RsMSE and 

Cramer-Von Mises statistic for each dimension of latent spaces 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦, ranging from 5 to 15. 

Again, the red dots represent the pair (𝑑 ;  𝑅𝑠𝑀𝑆𝐸) with the lowest RsMSE. The results are plotted 

below. 

 

Table 13: Dimension of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 minimising the 

CVM_C_NC for each value of d and the corresponding 
RsMSE in the A-CCA approach 

Table 12: Dimension of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 minimising the 

RsMSE for each value of d and the corresponding 
CVM_C_NC in the A-CCA approach 



44 
 

 

Figure 14: Relationship between the dimension of the latent spaces 𝑑, the RsMSE and the CVM_C_NC for 𝑝2𝑙𝑎𝑡𝑥, 𝑝2𝑙𝑎𝑡𝑦 =

5, 6, 7, 8, 9, 10, 11, 12, 13,14 𝑎𝑛𝑑 15 
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The graphs presented above illustrate remarkably similar trends, particularly in relation to the RsMSE 

curve. This curve exhibits a consistent trajectory for each dimension of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦, except for 

𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  = 5, which deviates slightly with an additional decline at the end of the trajectory. For 

all other dimensions of the latent spaces 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦, the RsMSE initially decreases as 𝑑 increases 

(underfitting), before rising (overfitting) again after a certain point. This inflection point, highlighted in 

red on the graphs, signifies the minimum value of the RsMSE, thereby determining the optimal 

dimension 𝑑. The curves exhibit a convex shape. 

The Cramer-von Mises curve (𝐶𝑉𝑀_𝐶_𝑁𝐶), however, does not follow a uniform pattern. For 

𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 5, the curve demonstrates fluctuations without a clear trend. Conversely, for 

𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 6 and 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  = 8, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 rises sharply before falling more gently. 

For the other values of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 shows an overall downward trend with 

increasing 𝑑, without reaching a minimum. This suggests that increasing the dimension of the latent 

space enhances the alignment of the distributions of the latent variables, as measured by the Cramer-

Von Mises statistic. 

In conclusion, there is a clear trade-off between RsMSE and 𝐶𝑉𝑀_𝐶_𝑁𝐶. Generally, when the RsMSE 

reaches its minimum value, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 tends to be relatively high, and thus not at its minimum. 

It is noteworthy that, despite variations, the range of fluctuations remains relatively small. The graphs 

suggest that a 𝑑 dimension between 3 and 5 often proves to be the most optimal. This range offers a 

favourable compromise between minimising reconstruction error and maintaining statistical quality.  

The values of 𝑑 that minimise the RsMSE for each value of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 and the 𝐶𝑉𝑀_𝐶_𝑁𝐶 are 

shown in the right table whereas those which minimise the 𝐶𝑉𝑀_𝐶_𝑁𝐶 and the corresponding RsMSE 

are presented in the left table. 

 

Thus, the three pairs (𝑑 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦) with the lowest RsMSE are the following: (𝑑 =

4 ;  𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 12), (𝑑 = 3 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 14) and (𝑑 = 3 ;  𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 15). The 

three pairs, which minimise the 𝐶𝑉𝑀_𝐶_𝑁𝐶 are (𝑑 = 1; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 6), (𝑑 = 1 ; 𝑝2𝑙𝑎𝑡𝑥/

𝑝2𝑙𝑎𝑡𝑦 = 8) and (𝑑 = 5 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 13). 

Table 15: Dimension of d minimising the CVM_C_NC for each 
value of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 and the corresponding RsMSE in the 

A-CCA approach 

Table 14: Dimension of d minimising the RsMSE for each 
value of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 and the corresponding CVM_C_NC in 

the A-CCA approach 
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4.2.2 Step 2: results of the optimisation of 𝑝2ℎ  

Now that the optimal dimensions of the various latent spaces have been defined, we need to analyse 

the results for the optimisation of the bandwidth used in the statistical matching phase. To achieve this, 

we selected the three pairs (𝑑 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦) that minimised the RsMSE and the three pairs that 

minimised the Cramer-Von-Mises statistic in the first step and focused on optimising the bandwidth 

hyperparameter for each of these six pairs. 

Moreover, as with the KCCA approach, we tested the cross-validation technique by optimising the 𝑝2ℎ 

hyperparameter for pairs (𝑑 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 ) with lower RsMSE to see if they could obtain better 

RsMSE than the other pairs. By analysing the tables with the results found in the Appendix O, it is 

possible to conclude that the cross-validation technique is consistent since none of these "less good" 

couples managed to obtain better RsMSE. 

4.2.2.1 Results of the optimisation by minimising the Root standardised Mean Squared Error 

We first analysed the results focusing on the RsMSE. Therefore, we decided to optimise the 

hyperparameter 𝑝2ℎ for these three pairs, which minimise the RsMSE: 

 

 

 

Using the cross-validation technique results for hyperparameter 𝑝2ℎ obtained in the first step and 

noted in the table above, we explored additional upper and lower values to determine if the RsMSE 

could be further reduced. We continued this iterative process until an increase in the RsMSE was 

observed for the three selected points. Tables in the Appendix P show all the results of this process. 

This systematic approach ensures that the bandwidth hyperparameter is fine-tuned for optimal 

performance, leveraging the most promising dimensions identified earlier. By iterating until the RsMSE 

no longer decreases, we can confidently identify the best settings for the bandwidth, thus enhancing 

the overall accuracy and reliability of the statistical matching phase. The results are shown in the graph 

below, which illustrates the relationship between the bandwidth hyperparameter and the RsMSE. 

 

 

 

 

 

 

 

 

Table 16: The three pairs with the lowest RsMSE in the A-CCA method 

Figure 15: Relationship between 𝑝2ℎ and the RsMSE for 𝑑 =  3 ;  𝑝2𝑙𝑎𝑡𝑥 = 𝑝2𝑙𝑎𝑡𝑦 =  14 in the top 

graph, 𝑑 =  3, 𝑝2𝑙𝑎𝑡𝑥 = 𝑝2𝑙𝑎𝑡𝑦  =  15 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑔𝑟𝑎𝑝ℎ 𝑎𝑛𝑑 𝑑 =  4 



47 
 

 

 

 

 

 

 

The subsequent three pairs ((𝑑 =  3 ; 𝑝2𝑙𝑎𝑡𝑥 = 𝑝2𝑙𝑎𝑡𝑦 =  14); (𝑑 =  3 ;  𝑝2𝑙𝑎𝑡𝑥 = 𝑝2𝑙𝑎𝑡𝑦  =

 15); (𝑑 =  4 ;   𝑝2𝑙𝑎𝑡𝑥 = 𝑝2𝑙𝑎𝑡𝑦  =  14)) exhibit a comparable trend. Specifically, the RsMSE initially 

decreases as the 𝑝2ℎ hyperparameter increases (underfitting situation), reaching a minimum at values 

of 0.55, 0.60, 𝑎𝑛𝑑 0.65 respectively. Following this minimum point, the RsMSE begins to rise again 

(overfitting case), indicating that the optimal bandwidth hyperparameters correspond to the points 

where the minimum RsMSE is reached. 

From the graphs, it is evident that the optimal bandwidth hyperparameter (𝑝2ℎ) varies depending on 

the specific dimensions of the latent spaces. The identified optimal values (0.55, 0.60, 𝑎𝑛𝑑 0.65 for the 

respective pairs) provide the lowest RsMSE, indicating the best fit for the model. These results are 

crucial for fine-tuning the bandwidth hyperparameter to ensure minimal reconstruction error and 

enhance the model's accuracy and reliability in the statistical matching phase.  

 

 

 

 

4.2.2.2 Results of the optimisation by minimising the Cramer-Von Mises statistic  

Then, we analysed the results obtained for 𝑝2ℎ after minimising the 𝐶𝑉𝑀_𝐶_𝑁𝐶. Therefore, we have 

identified and optimised the three pairs which yield the lowest values for this metric, as follows:   

 

 

 

 

To optimise the bandwidth hyperparameter, we used the results obtained by cross-validation in the 

first step and varied it to minimise the 𝐶𝑉𝑀_𝐶_𝑁𝐶. The results of this analysis are shown below in 

graphs illustrating the relationship between the Cramer-Von Mises statistic and the 𝑝2ℎ value. The 

results are presented in the Appendix Q. 

Table 17: Optimal values of the hyperparameters minimising the RsMSE and the 
corresponding CVM_C_NC for the A-CCA approach 

Table 18: The three pairs with the lowest CVM_C_NC in the A-CCA method 

Figure 16: Relationship between 𝑝2ℎ and the RsMSE for 𝑑 =  4 ;   𝑝2𝑙𝑎𝑡𝑥 = 𝑝2𝑙𝑎𝑡𝑦  =  14  
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Upon analysing these graphs, we observe that the Cramer-von Mises statistic is dependent on the 

bandwidth hyperparameter 𝑝2ℎ. For the pair (𝑑 = 1 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 6), the 𝐶𝑉𝑀_𝐶_𝑁𝐶 decreases 

until it reaches the optimal point at 𝑝2ℎ = 0.65, after which it increases again. This suggests that 

maximum performance is achieved at this point, where the 𝐶𝑉𝑀_𝐶_𝑁𝐶 is at its minimum. 

For the other two graphs, the behaviour of the Cramer-von Mises statistic is less linear and more 

complex compared to the first graph. We observe more fluctuations in 𝐶𝑉𝑀_𝐶_𝑁𝐶 as 𝑝2ℎ varies, with 

several local minima and maxima. Nevertheless, both graphs still exhibit a 𝑝2ℎ value that minimises 

the 𝐶𝑉𝑀_𝐶_𝑁𝐶. The best performance is observed at 𝑝2ℎ = 0.7 for both. 

In conclusion, the optimal values of the bandwidth hyperparameter 𝑝2ℎ vary with the dimension of 

the latent spaces, highlighting the importance of carefully tuning these hyperparameters to achieve 

optimal performance of the algorithm from the perspective of the Cramer-von Mises statistic. 

 

 

 

 

  

Table 19: Optimal values of the hyperparameters minimising the CVM_C_NC 
and the corresponding RsMSE for the A-CCA method 

Figure 17: Relationship between 𝑝2ℎ and the CVM_C_NC for 𝑑 = 1 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 6 in the top graph, 𝑑 =  2, 𝑝2𝑙𝑎𝑡𝑥 =

𝑝2𝑙𝑎𝑡𝑦  =  6 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 graph and 𝑑 = 1 ; 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 = 8 in the bottom graph 
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5 Discussion  
Thanks to the results obtained in the previous section, it is possible to draw conclusions and attempt 

to answer the research question which, as a reminder, was: "How to optimise bandwidth 

hyperparameters and the dimensions of the latent spaces in machine learning algorithms for the KCCA 

and A-CCA methods".  

This discussion is divided into two parts, the first for the KCCA approach and the next for the A-CCA 

method. For each of these techniques, the answer to the question will be set out, explaining the choice, 

and developing the ideas from different points of view, in particular depending on which performance 

metric we are considering: the Root standardised Mean Squared Error or the Cramer-Von Mises 

statistic.  

It should first be noted that the RsMSE metric is designed to evaluate the precision of predictive 

outcomes. Accordingly, optimising RsMSE performance entails minimising the discrepancies between 

the predicted values 𝑌𝐴̂ and the actual values 𝑌𝐴. This is a highly sensitive metric, particularly in the 

presence of outliers. In contrast, the Cramer-Von Mises statistical metric (𝐶𝑉𝑀_𝐶_𝑁𝐶) compares the 

cumulative distribution functions of predicted and actual values. Its objective is to minimise the 

difference/distance between the two distributions, thereby ensuring similarity and, in part, preserving 

the dependencies between the variables. 

5.1 Kernel Canonical Correlation Analysis  

This section will examine the values of the various hyperparameters that enable the optimisation of 

algorithm performance in the context of the KCCA approach. The initial focus will be on the Root 

standardised Mean Squared Error metric, after which the Cramer-Von Mises statistic will be discussed 

and the differences in the results explained. Ultimately, conclusions can be drawn regarding the optimal 

hyperparameters. 

Firstly, as a reminder of point 4.1.2.1, the values of the hyperparameters that maximise performance 

according to the RsMSE among the three possibilities are highlighted in the following table. 

 

 

 

 

From this table, it can be inferred that in order to optimise the performance of the Kernel Canonical 

Correlation Analysis machine learning algorithm from the RsMSE perspective, the latent space 

dimension 𝑑 during spectral decomposition must be set to 6. The bandwidth hyperparameters of the 

kernel 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦, employed in the KCCA to replace the scalar products in Hilbert space, should 

be set to 0.003 and 0.007, respectively. Lastly, the bandwidth 𝑝2ℎ used during the statistical matching 

phase should be 0.71. In this case, the minimum RsMSE value was found to be 0.96933382. Given that 

the value is less than one, it can be inferred that the prediction error is less than the standard deviation 

of the data, which serves to demonstrate that the model in question is an accurate fit for the data set. 

Table 20: Hyperparameter values maximising performance of the KCCA approach 
according to RsMSE (best values highlighted in red) 
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In this context, it is pertinent to highlight the value of the Cramer-Von Mises statistic, which is 

equivalent to 0.04463136. 

Next, the table above from section 4.1.2.2 shows the optimum values for the various hyperparameters 

in order to minimise the Cramer-Von Mises statistic (𝐶𝑉𝑀_𝐶_𝑁𝐶), the optimal values of which are 

highlighted in red. 

 

 

 

 

From this analysis, we can conclude that to optimise the KCCA algorithm from the perspective of the 

Cramer-von Mises statistic, the dimension of the latent space 𝑑 should be set to 7 and the bandwidth 

hyperparameter 𝑝2ℎ during the statistical matching phase should be 0.001. The bandwidth 

hyperparameters 𝑝2ℎ𝑥 and 𝑝2ℎ𝑦 should be 0.001 and 0.05, respectively. In these circumstances, the 

value of 𝐶𝑉𝑀_𝐶_𝑁𝐶 will reach a minimum of 0.035999, which indicates that the cumulative 

distribution functions of the model's predicted outcomes and the actual data are markedly similar. The 

model thus demonstrates an aptitude for preserving the global dependencies between the variables 

and performs well from the perspective of the Cramer-Von Mises statistic. Furthermore, it is important 

to note that the RsMSE value in this case is 1.03139704. 

A review of the results as a function of the two-performance metrics previously mentioned reveals that 

the hyperparameters are not identical and exhibit opposing trends. It was observed that for each 

dimension of the latent space 𝑑, the RsMSE exhibited a convex shape and decreased as the bandwidth 

𝑝2ℎ increased. Conversely, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 was low for low values of 𝑝2ℎ and then increased sharply. 

Similarly, for each value of 𝑝2ℎ, the RsMSE metric exhibited a convex shape, initially decreasing as 𝑑 

increased before reaching a minimum and rising again. In contrast, the 𝐶𝑉𝑀_𝐶_𝑁𝐶 continued to 

decrease as the dimension of 𝑑 increased.  

Thus, we see that when the RsMSE is optimised, the Cramer-Von Mises statistic is relatively high (value 

0.04463136 and its minima 0.03599899). These values show that the model performs well from the 

RsMSE point of view, whereas from the 𝐶𝑉𝑀_𝐶_𝑁𝐶 point of view, the distance between the empirical 

and original cumulative distribution functions is higher, indicating worse performance. Similarly, when 

we optimise according to this statistic, the RsMSE reaches almost its maximum (worth 1.03139704, 

while its minimum is equivalent to 0.96933382). In this case, this means that the dispersion of the 

predicted data is greater than that of the original data, indicating a worse performance of the model in 

terms of RsMSE. 

This behaviour and this difference can mainly be explained by the different objectives of the two 

measures. The RsMSE focuses on the accuracy of predictions, while the Cramer-Von Mises statistic 

focuses on the distribution of predicted data compared to actual data. This divergence makes it more 

difficult to align the two objectives simultaneously.  

Table 21: Hyperparameter values maximising performance of the KCCA approach 
according to CVM_C_NC (best values highlighted in red) 
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In addition, a higher latent space dimension 𝑑 better captures the dependencies between variables, 

preserves more structural features of the data and more accurately represents complex relationships, 

thus reducing the Cramer-Von Mises statistic. However, this can also lead to overfitting as the model 

tends to capture the noise present in the training data, increasing the RsMSE and computational 

complexity. In fact, by capturing the finest details, the model may lose generalisation and produce 

larger prediction errors.  

In contrast, a lower dimension 𝑑 simplifies the model by reducing the number of hyperparameters and 

allows better generalisation of the new data, thus avoiding overfitting. As a result, the RsMSE tends to 

be lower because the model makes more robust predictions. However, a lower dimension 𝑑 only 

captures the principal components and may miss more complex relationships between variables, which 

will increase the value of the Cramer-Von Mises statistic. 

Subsequently, the bandwidth hyperparameter 𝑝2ℎ determines the degree to which data points in close 

proximity exert an influence on the calculations performed by the Gaussian kernel function. A low 𝑝2ℎ 

value is more effective at capturing local dependencies and slight variations, as 𝑝2ℎ increases the 

sensitivity of the kernel function to minor discrepancies between 𝑈𝑎 𝑎𝑛𝑑 𝑈𝑏. Consequently, the 

Cramer-Von Mises statistic is diminished due to the increased similarity between the distributions of 

the real and imputed data, as well as the enhanced representation of local dependencies. Nevertheless, 

a low value may result in overfitting, as the capture of minute details may also encompass the capture 

of noise. This phenomenon can elevate the value of the RsMSE, as the model demonstrates suboptimal 

performance on the data to be imputed. 

Conversely, a high value for the bandwidth 𝑝2ℎ results in a considerable reduction in the impact of 

variations, thereby rendering the kernel function less sensitive to minor differences. Consequently, the 

smoothed function results in a loss of detail and an increase in the Cramer-Von Mises statistic due to 

the increased distance between the cumulative distributions. With regard to the RsMSE point, a higher 

bandwidth permits generalisation through the smoothing of the smallest variations, thereby reducing 

the risk of overfitting. Consequently, the RsMSE is reduced, as the predictions are more robust and less 

susceptible to significant errors.  

Finally, it is difficult to draw conclusions regarding the relationship between 𝑝2ℎ𝑥 , 𝑝2ℎ𝑦 and the 

algorithm's performance, given the complexities associated with these two variables. Indeed, our 

findings indicate that these values exert an influence on the evaluation metrics (RsMSE and 

𝐶𝑉𝑀_𝐶_𝑁𝐶). However, no discernible trend could be identified. The optimisation of these 

hyperparameters was conducted on an individual basis, and thus, no comprehensive analysis can be 

presented. 

In conclusion, in order to optimise the performance of the algorithm for the Kernel Canonical 

Correlation Analysis approach, it is necessary to either choose between optimising the Root 

standardised Mean Squared Error and the Cramer-Von Mises statistic, or to find a balance. As 

previously stated, the RsMSE and 𝐶𝑉𝑀_𝐶_𝑁𝐶 metrics assess disparate aspects of a prediction model's 

performance, rendering simultaneous optimisation of these two metrics challenging, if not impossible. 

Therefore, if the primary objective is to optimise RsMSE, the values of the hyperparameters that 

optimise the algorithm are as follows: 𝑑 = 6 ; 𝑝2ℎ = 0.71 ; 𝑝2ℎ𝑥 = 0.003 ; 𝑝2ℎ𝑦 = 0.007. In 
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contrast, if the primary objective is to optimise the Cramer-Von Mises statistic while maintaining the 

data structure, the optimal values are: 𝑑 = 7 ; 𝑝2ℎ = 0.01 ; 𝑝2ℎ𝑥 = 0.001 ; 𝑝2ℎ𝑦 = 0.05. 

Ultimately, in order to enhance the efficacy of the algorithm by considering both metrics concurrently, 

it is essential to strike a balance between the precision of the predictions (minimisation of errors) and 

the preservation of the dependencies between the variables (minimisation of the distance between 

the empirical and predicted cumulative distribution functions). In order to determine the optimal value 

for the dimension of the latent space 𝑑, it is necessary to identify a value that is sufficiently high to 

capture as many dependencies between the variables as possible, while simultaneously ensuring that 

it is low enough to minimise prediction errors. Similarly, a compromise must be reached regarding the 

value of the bandwidth, whereby global dependencies are preserved while accurate and robust 

predictions are offered. 

5.2 Autoencoder and Canonical Correlation Analysis 

This section will delineate the requisite values of the various hyperparameters for optimising the 

algorithm for the Autoencoder and Canonical Correlation Analysis approach. It should be noted that 

the dimension of the latent spaces for each of the 𝑋𝐵 and 𝑌𝐵 variables after the application of the 

encoders (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦), the dimension of the latent space during the application of the CCA (𝑑), 

and the bandwidth (𝑝2ℎ) during the statistical matching phase need to be optimised. This analysis will 

begin with the optimal values from an RsMSE perspective and then from a Cramer-Von Mises statistical 

point of view, before elucidating the differences between the two. 

Primarily, the values of the hyperparameters which optimise the algorithm's performance from the 

Root standardised Mean Squared Error perspective are illustrated in the aforementioned table, 

extracted from section 4.2.2.1. The optimal hyperparameter values are highlighted in red. 

 

 

 

 

The data in this table allows us to conclude that in order to optimise the performance of the machine 

learning algorithm for the A-CCA approach in the RsMSE perspective, the dimension of the latent 

spaces (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦) after applying the encoders should be 14, the dimension of the latent space 

𝑑 when applying the CCA should be 3, and the bandwidth hyperparameter (𝑝2ℎ) required during the 

statistical matching phase should be 0.55. In this instance, the minimum value of the RsMSE is 

0.96855524, which is less than one. A value less than one indicates a prediction error that is less than 

the standard deviation of the data, which demonstrates a good fit of the model to the data. In this 

instance, the objective of minimising RsMSE should be noted, along with the value of the Cramer-Von 

Mises statistic, which is equivalent to 0.04453943.  

Furthermore, the values that optimise the performance of the A-CCA algorithm from the perspective 

of the Cramer-Von Mises statistic are presented in the table below, as detailed in section 4.2.2.1. The 

optimal combination of values from the three presented is highlighted in red.  

Table 22: Hyperparameter values maximising performance of the A-CCA 
method according to RsMSE (best values highlighted in red) 
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An examination of the table indicates that in order to optimise the performance of the machine 

learning algorithm for the A-CCA approach from the perspective of the Cramer-Von Mises statistic, the 

dimension of the latent space 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 after the application of the encoders should be 6, the 

dimension of the latent space 𝑑 after the application of the CCA should be 1, and the bandwidth 

hyperparameter 𝑝2ℎ required during the statistical matching phase should be 0.65. In accordance with 

the aforementioned conditions, the minimum value of the Cramer-Von Mises statistic is 0.04347295. 

The value of 𝐶𝑉𝑀_𝐶_𝑁𝐶 indicates that the data structure and the dependencies between variables 

have been effectively preserved. The empirical and real cumulative distribution functions exhibit a high 

degree of similarity, and the model demonstrates a satisfactory performance in terms of the Cramer-

Von Mises statistic. In this instance, the RsMSE is 0.97644962. 

These results show a difference in the value of the hyperparameters depending on what we are trying 

to minimise. In fact, we find that the dimension of the different latent spaces (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 𝑎𝑛𝑑 𝑑) 

must be higher when minimising the RsMSE than when trying to optimise from the point of view of the 

Cramer-Von Mises statistic. 

First, it makes sense to have larger dimensions of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 when we are trying to minimise the 

RsMSE than when we are trying to minimise the Cramer-Von Mises statistic. This is because when the 

autoencoder is used, the chosen dimensions do not help to describe the dependencies. Therefore, 

minimising the Cramer-Von Mises statistic does not imply obtaining large dimensions. However, for the 

RsMSE, larger dimensions chosen by the autoencoder allow a better reproduction of 𝑋𝐵 𝑎𝑛𝑑 𝑌𝐵 

individually, because the larger the dimension, the closer it is to the number of variables to be predicted 

(15 in this case). Therefore, increasing the dimension of  𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 will not affect the 𝐶𝑉𝑀_𝐶_𝑁𝐶, 

but will favour the RsMSE. 

A second explanation can be provided concerning the relationship between the dimension of the latent 

spaces after the application of the encoders (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦) and the latent space 𝑑 in the context of 

the CCA approach. In the case of a large representation space for both 𝑋𝐵 𝑎𝑛𝑑 𝑌𝐵  after the application 

of encoders 𝜑𝑋
𝐵 and 𝜑𝑌

𝐵, this implies that the resulting representations are of a high dimensionality. In 

order for CCA to be effective in such cases, the dimension of the latent space 𝑑, must be sufficiently 

large to capture the nuances and variations present in the high-dimensional representations. If the 

latent space is insufficiently large, it may be unable to capture the full complexity of the data after 

encoding, thereby limiting the effectiveness of the CCA technique in maximising correlations between 

representations of 𝑋𝐵  𝑎𝑛𝑑 𝑌𝐵. A larger latent space provides sufficient capacity to model and 

maximise canonical correlations between information-rich representations of the data, thereby 

ensuring better model performance. 

Table 23: Hyperparameter values maximising performance of the A-CCA method 
according to CVM_C_NC (best values highlighted in red) 
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Subsequently, with regard to the bandwidth 𝑝2ℎ, the value of this hyperparameter must be lower when 

the objective is to minimise the RsMSE than when the objective is to minimise the Cramer-Von Mises 

statistic. Indeed, given that the A-CCA approach is primarily concerned with individual reproduction of 

𝑋𝐵 𝑎𝑛𝑑 𝑌𝐵, a reduction in 𝑝2ℎ is an effective means of minimising the RsMSE. Conversely, a greater 

value of this hyperparameter is necessary to minimise the Cramer-Von Mises statistic in order to 

reproduce the dependencies as accurately as possible, although this is not the actual outcome.  

Nevertheless, it can be seen that the RsMSE and 𝐶𝑉𝑀_𝐶_𝑁𝐶 values exhibit only slight differences 

between the two cases. Indeed, the RsMSE reaches its minimum value of 0.9686 and is 0.9764 when 

the 𝐶𝑉𝑀_𝐶_𝑁𝐶 is optimised (a difference of 0.0078). In both cases, the metric is less than one, which 

demonstrates that the models perform well, as the prediction errors are less than the standard 

deviation of the real data. Similarly, the minimum value of 𝐶𝑉𝑀_𝐶_𝑁𝐶 is 0.04347, while its value when 

the RsMSE is optimised is 0.04454 (a difference of 0.00107), demonstrating that the two variables 

exhibit an almost identical level of performance. 

Next, we identified a noteworthy point in our analysis of the relationship between the dimensions of 

the latent spaces, (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦), and the two-performance metrics for each dimension of the latent 

space 𝑑. Indeed, an examination of these graphs (see figure 13) reveals a greater degree of fluctuations, 

although the scale is limited, the oscillatory patterns are discernible. These fluctuations may be 

attributed to the random selection of certain hyperparameters, including the learning rate and the 

number of units in the hidden layers of the neural network in the A-CCA approach. Consequently, these 

randomly selected values may not represent the optimal solution. One potential solution to this 

limitation would be to increase the number of random searches, that is, to test a greater number of 

hyperparameter combinations, thereby increasing the range of possibilities and the probability of 

identifying the optimal values. 

A greater number of hyperparameter configurations can be assessed, thus increasing the coverage of 

the hyperparameter space, and enabling more effective exploration of potential model architectures. 

This reduces the probability of failing to identify hyperparameter combinations that could yield optimal 

performance. Consequently, this could result in a reduction in the fluctuations observed in the 

performance metrics and an overall enhancement in the stability and performance of the model. 

In conclusion, in order to optimise the performance of the algorithm for the Autoencoder and 

Canonical Correlation Analysis approach, it is necessary either to prioritise the optimisation of one of 

the two performance metrics, or to identify a balance between the two metrics. As previously stated, 

the RsMSE and Cramer-Von Mises metrics evaluate disparate aspects of a prediction model's 

performance. 

Therefore, if the primary objective is to optimise the RsMSE, the values of the hyperparameters that 

optimise the algorithm are as follows: 𝑑 = 3 ; 𝑝2ℎ = 0.55 ; (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦)  = 14. Should the 

primary objective be the optimisation of the Cramer-von Mises statistic whilst maintaining the data 

structure, the optimal values are as follows: 𝑑 = 1 ; 𝑝2ℎ = 0.65 ; (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦)  = 6. 

Ultimately, in an effort to enhance the algorithm's performance by considering both metrics 

concurrently, it is essential to strike a balance between the precision of predictions (minimising errors) 
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and the preservation of inter-variable dependencies (minimising the discrepancy between empirical 

and predicted distributions). 

A final observation regarding the two methods reveals that the KCCA approach is able to produce lower 

values for the Cramer-Von Mises statistic than the A-CCA method, while the A-CCA technique produces 

a slightly lower RsMSE than the KCCA approach. This phenomenon can be explained by the different 

objectives of these two approaches. As previously stated, the KCCA approach is more efficacious in 

identifying the dependencies between variables due to its non-linear nature and capacity for high-

dimensional analysis. In contrast, the A-CCA method is primarily concerned with the individual 

reproduction of the values of 𝑋𝐵  𝑎𝑛𝑑 𝑌𝐵, whereby the reproduction error is minimised.  
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6 Conclusion  
The objective of this chapter is to present a synthesis of the principal findings of this study, to delineate 

the constraints encountered, and to propose avenues for future research. Firstly, we will present a 

summary of the research carried out and the main findings. Subsequently, we will examine the 

constraints of our research endeavour, offering a critical analysis and identifying avenues for 

enhancement. In conclusion, we will propose avenues for future research, indicating areas and 

questions that could benefit from further investigation. 

6.1 Summary of the study 

The objective of this thesis was to optimise the bandwidths, and the dimension of latent spaces present 

in machine learning algorithms for the Kernel Canonical Correlation Analysis and Autoencoder and 

Canonical Correlation Analysis methods. Both approaches are statistical matching techniques, a crucial 

area in modern data analysis. In light of the growing volume of data from a multitude of sources, the 

necessity for statistical matching is paramount to enable the coherent and meaningful study of 

disparate subjects. This technique is particularly useful for combining and comparing heterogeneous 

data sets, thereby facilitating the drawing of more robust and relevant conclusions. 

In this thesis, we initially conducted a review of the existing literature on the subject matter, after which 

we proceeded to propose a methodology for addressing the research question. This outlined the 

calculations of the various methods and identified the hyperparameters to be optimised. Furthermore, 

the database was constructed in R software and divided into a training set comprising 4,000 rows and 

a validation set consisting of 1,000 rows. Both sets contained 30 variables (columns), including 15 

common and 15 non-common. The hyperparameters of the two methods were studied using the Grid 

Search strategy, and the performance of the different models was evaluated using two performance 

metrics: the Cramer-Von Mises statistic and the Root standardised Mean Squared Error (RsMSE). 

On the one hand, the Kernel Canonical Correlation Analysis (KCCA) approach entails the utilisation of 

kernel techniques for the transformation of data into higher-dimensional Hilbert spaces. Subsequently, 

the CCA technique is employed in these spaces to identify the data projections where their canonical 

correlation is maximised. On the other hand, the Autoencoder and Canonical Correlation Analysis (A-

CCA) method seeks to utilise a distinct encoder for each dataset 𝑋𝐵 𝑎𝑛𝑑 𝑌𝐵, prior to the application of 

the CCA technique. The primary distinction between the two methods lies in their respective 

objectives. The KCCA approach is more effective at identifying dependencies between data, whereas 

the A-CCA method is primarily concerned with enhancing the individual reproduction of 𝑋𝐵 𝑎𝑛𝑑 𝑌𝐵. It 

can be seen that the KCCA loss function is designed to maximise the relations between 𝑋𝐵 𝑎𝑛𝑑 𝑌𝐵, 

whereas the A-CCA loss function is intended to minimise the reproduction error. 

In this study, two performance metrics were employed: the RsMSE and the Cramer-Von Mises statistic. 

The Root standardised Mean Squared Error (RsMSE) is a metric that gauges the precision of prediction 

errors. Accordingly, optimising performance in accordance with the RsMSE entails reducing the 

deviations between the predicted values (𝑌𝐴̂) and the actual values (𝑌𝐴). Conversely, the Cramer-Von 

Mises statistic (𝐶𝑉𝑀_𝐶_𝑁𝐶) compares the cumulative distribution of the predicted and actual values, 

with the objective of minimising the distance between the two distributions. This approach preserves 
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the dependencies between variables and ensures that the overall distributions of predicted and actual 

values are similar. The primary distinction between these two metrics is that the RsMSE emphasises 

the precision of individual predictions, whereas the Cramer-Von Mises statistic evaluates the overall 

concordance of the distributions. 

The findings of the KCCA approach demonstrate that the value of the hyperparameters has a significant 

influence on both performance metrics, although the manner in which this occurs differs. Indeed, for 

this approach, a low value for the bandwidth 𝑝2ℎ minimises the Cramer-Von Mises statistic, whereas a 

higher value of this hyperparameter optimises the RsMSE. With respect to the dimension of the latent 

space 𝑑, a higher dimension is associated with a favourable outcome for the Cramer-Von Mises statistic, 

while the RsMSE initially exhibits a decline as 𝑑 increases, followed by an ascent. The discrepancy in 

the evolution of the two metrics can be attributed to a divergence in their underlying objectives. The 

RsMSE prioritises the accuracy of predictions, whereas the Cramer-Von Mises statistic emphasises the 

conservation of dependencies. 

Furthermore, a higher latent space 𝑑 enables more effective capture of the dependencies between the 

data, as the neighbourhood is more accurately selected, thereby enhancing the Cramer-Von Mises 

statistic. Conversely, a lower dimension 𝑑 facilitates the model's generalisation, which in turn reduces 

the RsMSE. Finally, a lower value of 𝑝2ℎ minimises the Cramer-Von Mises statistic due to the increased 

sensitivity of the kernel function, which facilitates the capture of dependencies and thus enables the 

identification of similarities between the actual and predicted distributions of data. Conversely, a higher 

value results in a smoothing out of the variations, increasing the Cramer-Von Mises statistic but 

decreasing the RsMSE due to the enabling of generalisation and avoidance of overfitting. 

In consideration of the aforementioned behaviours and relationships, it becomes evident that 

achieving optimal performance in both metrics simultaneously represents a challenging undertaking. 

In order to optimise the algorithm's performance, it is necessary to prioritise either the RsMSE or the 

Cramer-Von Mises statistic, or alternatively, to identify a compromise. If the objective is to minimise 

the RsMSE, a lower dimension of 𝑑 and a higher 𝑝2ℎ are required. The optimal values are as follows: 

𝑑 = 6 ; 𝑝2ℎ = 0.71 ; 𝑝2ℎ𝑥 = 0.003 ; 𝑝2ℎ𝑦 = 0.007. In order to minimise the Cramer-Von Mises 

statistic, it is necessary to employ a higher dimension 𝑑 and a lower 𝑝2ℎ. Thus, the optimal values are 

as follows: = 7 ; 𝑝2ℎ = 0.01 ;  𝑝2ℎ𝑥 = 0.001 ; 𝑝2ℎ𝑦 = 0.05. Ultimately, in order to optimise the 

algorithm in a manner that considers both metrics, it is essential to identify a balance between the 

precision of predictions and the maintenance of data dependencies. 

In relation to the A-CCA approach, the findings also demonstrate that the hyperparameters have an 

impact on the performance of the models. It can be observed that larger dimensions of the latent 

spaces (𝑝2𝑙𝑎𝑡𝑥 , 𝑝2𝑙𝑎𝑡𝑦 𝑎𝑛𝑑 𝑑) tend to favour the RsMSE, whereas smaller dimensions favour the 

Cramer-Von Mises statistic. Consequently, a reduction in the value of 𝑝2ℎ is favourable for the RsMSE 

and has an adverse effect on the Cramer-Von Mises statistic. Once more, the two metrics do not exhibit 

a similar trend, which can be attributed to the distinct objectives of each. 

It can be observed that larger dimensions of latent spaces (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦) result in a reduction of the 

RsMSE, due to the fact that the loss function of the autoencoder is defined in terms of the reproduction 

error. Thus, it becomes evident that the larger the dimension of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦, the smaller the error 
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and the lower the RsMSE. In contrast, the A-CCA approach is ineffective in capturing the dependencies 

between variables, which eliminates the necessity for a large dimension of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦. Moreover, 

there is a relationship between the dimensions of 𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦 and the dimension of 𝑑. Indeed, if 

𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦  are large, 𝑑 must also be large in order to capture all the variations included in these 

different latent spaces, which will therefore minimise the RsMSE. Ultimately, a low value of 𝑝2ℎ is 

beneficial for the RsMSE, as the A-CCA approach prioritises the independent reproduction of 

𝑋𝐵 𝑎𝑛𝑑 𝑌𝐵. Therefore, this hyperparameter should not be excessively large. Conversely, to minimise 

the statistic, 𝑝2ℎ should be increased to better reproduce the dependencies. 

In light of these considerations, it becomes evident that there is no straightforward approach to 

optimising the A-CCA algorithm by simultaneously minimising both metrics. However, our analysis 

revealed that the values of RsMSE and the Cramer-Von Mises statistic were strikingly similar when 

attempting to minimise one metric or the other. Thus, it would seem that there is merit in favouring 

either the RsMSE or the Cramer-von Mises statistic, without unduly compromising performance in the 

other metric. If the objective is to minimise the RsMSE, the latent space dimensions are higher, and the 

bandwidth is lower 𝑑 = 3 ; 𝑝2ℎ = 0.55 ; (𝑝2𝑙𝑎𝑡𝑥/𝑝2𝑙𝑎𝑡𝑦)  = 14. Conversely, if the objective is to 

optimise the statistics, the dimensions are lower and the 𝑝2ℎ is higher 𝑑 = 1 ; 𝑝2ℎ = 0.65 ; (𝑝2𝑙𝑎𝑡𝑥/

𝑝2𝑙𝑎𝑡𝑦)  = 6. A final solution is to identify a compromise between prediction accuracy (RsMSE) and 

dependency conservation (Cramer-Von Mises statistic). 

From a practical standpoint, this thesis proposes a hyperparameter optimisation method that can be 

transposed to different databases and analytical contexts. The flexibility of this method allows 

practitioners to apply it to a variety of datasets and algorithms, thereby providing a tool for enhancing 

the performance of the two methods under investigation in the context of statistical matching.  

From a managerial standpoint, this research facilitates more nuanced examination of intricate 

interconnections between disparate data sources. This can assist managers in making more informed 

decisions based on more precise insights and significant correlations between key variables. A more 

nuanced comprehension of the interconnections between data can enhance business strategy, 

resource planning and market analysis, thereby facilitating more strategic and informed decision-

making. 

Finally, this work will facilitate more comprehensive data collection for the team developing these two 

algorithms, enabling them to gain deeper insights into their work, its quality, and consistency. The 

thesis will facilitate a more nuanced comprehension of the relationships between the diverse 

hyperparameters and the two-performance metrics under investigation. 

6.2 Limitations et future research 

This section will address the challenges and limitations encountered throughout the course of this 

research, examining their potential impact on the results. Additionally, suggestions will be put forth 

regarding avenues for future research. 

Firstly, the optimisation of hyperparameters for the Kernel Canonical Correlation Analysis and 

Autoencoder and Canonical Correlation Analysis approaches is a computationally expensive process, 

necessitating significant execution times. To accelerate the process, which spanned approximately two 
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months, the codes were executed on six computers. The mean execution time for the KCCA method is 

between 16 and 24 hours, while the mean execution time for the A-CCA approach is between 10 and 

18 hours (depending on the computers and their processing power). Furthermore, the aforementioned 

costs are amplified when larger databases are under study. 

Secondly, the size of the database had to be reduced from the 30,000 rows initially planned to 5,000 

rows for time reasons. In fact, execution took more than three days. With a reduced database, the 

predictions and results can be less accurate and less stable because they depend on the size of the 

sample, among other things.  

In order to overcome these limitations, it may be beneficial to explore approaches to reduce the 

computational cost associated with hyperparameter optimisation for Kernel Canonical Correlation 

Analysis (KCCA) and Autoencoder and Canonical Correlation Analysis (A-CCA) methods. This would 

result in a reduction in the time required for performance optimisation and would facilitate the 

utilisation of larger databases, thereby enhancing the stability and robustness of the results. 

Moreover, the hyperparameters optimised in this thesis are specific to the database under 

consideration and cannot be directly transferred to other contexts or datasets without undergoing the 

same optimisation process. Consequently, the optimisation process must be repeated for each new 

application, which is a time-consuming process. 

Furthermore, this thesis has concentrated on specific hyperparameters of the second phase of the 

algorithms, leaving the remaining hyperparameters at their default values and neglecting phase one. It 

would therefore be beneficial for future research to explore the optimisation of unstudied 

hyperparameters in order to further improve model performance. It would also be beneficial to 

consider the integration of phase one, which deals with categorical variables, in order to ascertain its 

effect on the overall results. These steps would permit a more profound analysis, and the optimisation 

of the methodologies employed, as well as the discovery of the impact of these hyperparameters on 

the results. 

As previously stated in the discussion section, a limitation of the A-CCA approach has been identified, 

specifically in relation to the utilisation of the random search method. The method in question employs 

a random selection process for hyperparameters, which may impede the ability to reach optimal values 

and, consequently, impact the quality of the resulting outcomes. One avenue for future research would 

be to increase the number of hyperparameter combinations tested by random search. By investigating 

a more expansive search space, it would be feasible to ascertain whether a notable expansion in the 

number of trials would result in enhanced performance and more resilient outcomes, through the 

more expedient identification of the optimal values of the hyperparameters.  
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7 Appendices  

Appendix A: Code for building the database 
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Appendix B: Results of the KCCA approach 
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Appendix C: Relationship between 𝐶𝑉𝑀_𝐶_𝑁𝐶 and 𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶 as a function 

of the value of 𝑝2ℎ for each value of 𝑑 for the KCCA approach 
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Appendix D: Relationship between 𝐶𝑉𝑀_𝐶_𝑁𝐶 and 𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶 as a function 

of the dimension 𝑑 for each value of 𝑝2ℎ for the KCCA approach 
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Appendix E: Relationship between 𝐶𝑉𝑀all, 𝐶𝑉𝑀all2, 𝑝2ℎ for each dimension 𝑑 

for the KCCA approach 
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Appendix F: Relationship between 𝐶𝑉𝑀all, 𝐶𝑉𝑀all2, 𝑑 for each value of 𝑝2ℎ for 

the KCCA approach 
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Appendix G: Results of the evaluation of the cross-validation technique 

performance for the KCCA approach 

The initial values taken from the table in Appendix B are highlighted in blue, while yellow shows the 

optimum values after minimisation of the RsMSE by modifying the hyperparameters 𝑝2ℎ𝑥 and 𝑝2ℎ𝑦. 

   

 

 

 

 

 

 

 

   

p_2hx / 

p_2hy
RsMSE CVM_C_NC

0,01/0,36 0.9783367 0.0463578

0,01/0,3 0.9783831 0.0463594

0,01/0,4 0.9783031 0.0463594

0,01/0,45 0.9782734 0.0463638

0,01/0,5 0.9782580 0.0463646

0,01/0,55 0.9782576 0.0463652

0,01/0,6 0.9782721 0.0463711

0,01/0,65 0.9783004 0.0463715

0,0011/0,55 0.9783835 0.0463663

0,009/0,55 0.9782310 0.0463645

0,006/0,55 0.9781495 0.0463657

0,005/0,55 0.9781235 0.0463663

0,004/0,55 0.9781002 0.0463662

0,003/0,55 0.9780837 0.0463655

0,002/0,55 0.9780896 0.0463687

0,001/0,55 0.9788219 0.0463685

0,0005/0,55 0.9785962 0.0463997

d = 2 &  p_2h = 0,51

p_2hx / p_2hy RsMSE CVM_C_NC

0,01/1,06 0.97959853 0.04652169

0,01/1,2 0.97939601 0.04647650

0,01/1,25 0.97936528 0.04646764

0,01/1,3 0.97934960 0.04646267

0,01/1,35 0.97934638 0.04645988

0,01/1,4 0.97935373 0.04645758

0,015/1,35 0.97945957 0.04640783

0,0095/1,35 0.97934995 0.04646613

d = 1 & p_2h = 0,21

p_2hx / p_2hy RsMSE CVM_C_NC

0,01/0,71 0.97492802 0.04573680

0,01/0,5 0.97564616 0.04573617

0,01/0,8 0.97476290 0.04574746

0,01/0,85 0.97472058 0.04575631

0,01/0,90 0.97471250 0.04576805

0,01/0,95 0.97473012 0.04577443

0,01/1 0.97685425 0.04573831

0,009/0,90 0.97792948 0.04582932

0,0095/0,9 0.97468741 0.04576587

0,015/0,9 0.97497639 0.04578141

0,02/0,90 0.97523786 0.04580894

0,025/0,9 0.97547736 0.04583957

0,03/0,9 0.97570289 0.04585215

d = 2 & p_2h = 0,21
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Appendix H: Results of the optimisation of 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 by minimising the 

RsMSE 

The initial values taken from the table in Appendix B are highlighted in blue, while yellow shows the 

optimum values after minimisation of the RsMSE by modifying the hyperparameters 𝑝2ℎ𝑥 and 𝑝2ℎ𝑦. 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p_2hx / 

p_2hy
RsMSE CVM_C_NC

0.01/0.01 0.96952296 0.04447152

0.01/0.02 0.96953468 0.044491655

0.01/0.0095 0.96952521 0.044466678

0.01/0.009 0.96952883 0.04445931

0.011/0.01 0.96954639 0.044469715

0.0095/0.01 0.96952830 0.044470447

0.009/0.01 0.96953570 0.044468374

0.0085/0.01 0.96953693 0.044467759

d = 6 & p_2h = 0.51

p_2hx /     

p_2hy
RsMSE CVM_C_NC

0.01/0.01 0.9694925 0.04477321

0.01/0.02 0.9696207 0.04477645

0.01/0.0095 0.9694829 0.04477215

0.01/0.009 0.9694733 0.04476961

0.01/0.0085 0.9694664 0.04476595

0.01/0.008 0.9694561 0.04476149

0.01/0.0075 0.9694495 0.04475377

0.01/0.007 0.9694450 0.04476145

0.01/0.0065 0.9694432 0.04473399

0.01/0.006 0.9694447 0.0447228

0.01/0.0055 0.9694491 0.04471146

0.011/0.0065 0.9694553 0.04473687

0.0095/0.0065 0.96944154 0.0447336

0.009/0.0065 0.96944223 0.04473209

0.0085/0.0065 0.96944447 0.04473111

d = 6 & p_2h = 0.61
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Appendix I: Results of the optimisation of 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 by minimising the 

CVM_C_NC 

The initial values taken from the table in Appendix B are highlighted in blue, while yellow shows the 

optimum values after minimisation of the RsMSE by modifying the hyperparameters 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦. 

 

 

  

p_2hx / 

p_2hy
RsMSE CVM_C_NC

0.01/1.06 1.01458959 0.03745322

0.01/1 1.013464 0.0376273

0.01/1.1 1.015984 0.03737201

0.01/1.2 1.017373 0.03730212

0.01/1.3 1.015592 0.03733792

0.01/1.4 1.016199 0.03744223

0.015/1.2 1.015001 0.0376052

0.005/1.2 1.0197658 0.03713663

0.001/1.2 1.02665592 0.03684649

0.0005/1.2 1.01500103 0.03636047

0.0001/1.2 1.04417036 0.0362753

0.00005/1.2 1.04287332 0.03635654

0.00001/1.2 1.04212864 0.03641817

0.000005/1.2 1.0426509 0.03641845

d = 5 & p_2h = 0.01

p_2hx / 

p_2hy
RsMSE CVM

0.01/0.01 1.002077 0.03862195

0.01/0.005 1.005693 0.03842162

0.01/0.015 1.004633 0.03848353

0.01/0.001 1.014210 0.03790229

0.01/0.0005 1.010243 0.03793978

0.01/0.0001 1.014210 0.03817364

0.015/0.001 1.013287 0.03792488

0.005/0.001 1.01237558 0.03766417

0.001/0.001 1.03230632 0.0362205

0.0005/0.001 1.02902628 0.03640745

0.0001/0.001 1.02851476 0.03660472

d = 6 & p_2h = 0.01

p_2hx / 

p_2hy
RsMSE CVM

0.01/0.01 0.994880 0.03969673

0.01/0.015 0.994595 0.03950836

0.01/0.005 0.993971 0.0395663

0.01/0.02 0.994827 0.03926257

0.01/0.03 0.997585 0.03935461

0.01/0.05 0.997995 0.03918215

0.01/0.04 0.997748 0.0392403

0.01/0.06 0.99624944 0.0392494

0.01/0.07 0.99685197 0.03937746

0.015/0.05 0.99320916 0.039775

0.005/0.05 1.00427506 0.03862049

0.001/0.05 1.03139704 0.03599899

0.0005/0.05 0.99320916 0.03604268

0.0001/0.05 1.01028588 0.03800668

0.00005/0.05 1.0065414 0.03834638

0.00001/0.05 0.99635132 0.03920846

d = 7 &  p_2h = 0.01
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Appendix J: Results of the A-CCA approach  
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Appendix K: Relationship between 𝐶𝑉𝑀_𝐶_𝑁𝐶 and 𝐶𝑉𝑀_𝑁𝐶_𝑁𝐶 as a function 

of the value of 𝑝2ℎ for each value of 𝑑 for the A-CCA approach 
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Appendix L: Relationship between CVM_C_NC and CVM_NC_NC as a function of 

the dimension 𝑑 for each value of 𝑝2ℎ for the A-CCA approach 
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Appendix M: Relationship between 𝐶𝑉𝑀all, 𝐶𝑉𝑀all2, 𝑝2ℎ for each dimension 𝑑 

for the KCCA approach 
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Appendix N: Relationship between 𝐶𝑉𝑀all, 𝐶𝑉𝑀all2, 𝑑 for each value of 𝑝2ℎ for 

the A-CCA approach 
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Appendix O: Results of the evaluation of the cross-validation technique 

performance for the A-CCA approach 

 The initial values taken from the table in Appendix J are highlighted in blue, while yellow shows the 

optimum values after minimisation of the RsMSE by modifying the hyperparameters 𝑝2ℎ. 

  

 

 

 

 

 

   

p2_h RsMSE CVM_C_NC

0.04 0.98299779 0.04381125

0.06 0.9842191 0.04423100

0.08 0.98194388 0.04459942

0.1 0.98192264 0.04481107

0.15 0.98255344 0.04519911

 d = 1 & P_2latx/y = 4

p2_h RsMSE CVM_C_NC

0.55 0.98074157 0.04392865

0.6 0.98006529 0.04435778

0.65 0.97644962 0.04347295

0.7 0.97545452 0.04380102

0.75 0.97473398 0.04410539

0.8 0.97421409 0.04439618

0.85 0.97389000 0.04466684

0.9 0.97374570 0.04491710

0.95 0.97376482 0.04515006

1 0.97392359 0.04537136

1.05 0.97419682 0.04557825

d = 1 & P_2latx/y  = 6

p2_h RsMSE CVM_C_NC

0.45 0.97340719 0.045001

0.4 0.97309284 0.04484595

0.35 0.97214214 0.04502965

0.3 0.97212167 0.04425717

0.25 0.97205778 0.04452327

0.2 0.97239129 0.04406406

0.15 0.97367864 0.04333538

0.1 0.97949489 0.04163615

d = 2 & P_2latx/y  = 9
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Appendix P: Results of the optimisation of 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 by minimising the 

RsMSE 

The initial values taken from the table in Appendix J are highlighted in blue, while yellow shows the 

optimum values after minimisation of the RsMSE by modifying the hyperparameters 𝑝2ℎ. 

  

 

  

 

 

 

 

 

 

 

 

   

p2_h RsMSE CVM_C_NC

0.4 0.97215184 0.04408377

0.45 0.96936866 0.04414127

0.5 0.96917261 0.04435862

0.55 0.96855524 0.04453943

0.6 0.96904765 0.04470924

0.65 0.97011591 0.04484708

0.7 0.96901617 0.04503044

0.75 0.96901992 0.04518795

0.8 0.96928819 0.04533609

0.85 0.9695609 0.04549422

d = 3 & P_2latx/y  = 14

p2_h RsMSE CVM_C_NC

0.55 0.96898534 0.04389996

0.6 0.96871128 0.04413113

0.65 0.96865352 0.04433593

0.7 0.96906588 0.04448076

0.75 0.96870197 0.04472202

0.8 0.96884357 0.04490496

0.85 0.96906854 0.04509798

d = 4 & P_2latx/y  = 14

p2_h RsMSE CVM_C_NC

0.45 0.969743458 0.04417913

0.5 0.969068414 0.044349961

0.55 0.968780590 0.044521692

0.6 0.968676083 0.044660197

0.65 0.968967595 0.044772532

0.7 0.969376012 0.044988510

0.75 0.969413757 0.045124365

0.8 0.969679015 0.045296969

d = 3 & P_2latx/y  = 15
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Appendix Q: Results of the optimisation of 𝑝2ℎ𝑥 𝑎𝑛𝑑 𝑝2ℎ𝑦 by minimising the 

CVM_C_NC 

The initial values taken from the table in Appendix J are highlighted in blue, while yellow shows the 

optimum values after minimisation of the RsMSE by modifying the hyperparameters 𝑝2ℎ. 

 

 

 

 

 

 

 

 

 

 

 

 

  

p2_h RsMSE CVM_C_NC

0.55 0.980741566 0.0449286538

0.6 0.980065294 0.0443577785

0.65 0.976449616 0.0434729501

0.7 0.975454521 0.0438010183

0.75 0.974733981 0.0441053918

0.8 0.974214091 0.0443961813

d = 1 & P_2latx/y  = 6

p2_h RsMSE CVM_C_NC

0.55 0.975837924 0.0453630772

0.6 0.980065294 0.0443577785

0.65 0.976096518 0.0455310122

0.7 0.97550459 0.0438025079

0.75 0.974722033 0.0444104759

0.85 0.973986074 0.0446720796

d = 2 & P_2latx/y  = 6

p2_h RsMSE CVM_C_NC

0.5 0.976991742 0.0461439251

0.55 0.977658382 0.0439437598

0.6 0.97550459 0.0438025079

0.65 0.978265787 0.0445739955

0.7 0.975895028 0.0436290944

0.75 0.979099901 0.0450570292

0.8 0.978429068 0.0447684347

0.85 0.976754376 0.0439322150

0.9 0.976029069 0.0442761608

0.95 0.975536366 0.0445815392

1 0.974989049 0.0449124789

1.05 0.974993698 0.0450950166

d = 1 & P_2latx/y  = 8
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Executive summary 
 

In the contemporary era, characterised by the proliferation of digital data, a substantial quantity of 

information is accumulated from a plethora of sources and activities. Nevertheless, the effective 

utilisation of this data for commercial, scientific, or other purposes remains a challenging and 

constrained endeavour, due to the fact that the information required is seldom derived from a single 

source, but rather from a multitude of disparate sources. To address this challenge, two statistical 

matching techniques, namely kernel canonical correlation analysis (KCCA) and auto-encoder canonical 

correlation analysis (A-CCA), have been developed. These techniques employ machine learning 

algorithms with the objective of merging the necessary information from multiple sources into a single 

database. 

In this context, the objective of this thesis is to optimise the dimensions of the various latent spaces 

and the bandwidths of the KCCA and A-CCA algorithms. To this end, a database was constructed, and 

the Grid Search strategy was employed to ascertain the optimal values for the aforementioned 

hyperparameters. The Root Standardised Mean Squared Error (RsMSE) metric and the Cramer-Von 

Mises statistic were employed for the evaluation of the performance of the various models. 

The results demonstrate the influence of hyperparameter values on model performance. Moreover, 

the optimal values of these hyperparameters differ when minimising the RsMSE or the Cramer-Von 

Mises statistic. The discussion section elucidates the relationship between the values of the 

hyperparameters and their impact on the performance of the algorithms for each of them. 

The findings indicate that a compromise between the preservation of the dependencies between 

variables and the structural characteristics of the data (minimising the Cramer-Von Mises statistic) and 

the prediction accuracy (minimising the RsMSE) may be necessary, or alternatively, that one of these 

performance metrics may be favoured.  

This thesis makes a contribution to a deeper comprehension of the influence exerted by the values of 

the various hyperparameters on the performance of the algorithms. The findings of this research will 

assist the project team in evaluating the quality and consistency of their work, and in implementing 

any necessary modifications. 
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