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Abstract

Inverse methods are at the basis of the resolution of numerous applications, that notably
take place in the context of signal processing. In particular, these techniques appear to
be efficient for images-related problems, in which the analysed data are most of the time
incomplete or at least perturbed by unwanted external contributions. These situations are
commonly encountered when carrying out classical optical and remote sensing acquisitions,
and it is therefore primordial to develop tools that will bring relevant solutions to these
potential issues. On that purpose, series of numerical algorithms are currently tested and
make use of both the so-called images sparsity property and the wavelet theory to recover
the missing components of a broad variety of analysed images.

This master thesis focuses on the development of some of these numerical algorithms, that
are optimised in the present work through a succession of tests. First, an overall state of
the art is provided and covers all the concepts of interest, including images properties, the
selected inpainting technique that performs images completions, thanks to adequate images
sampling and threshold-based method that are described as well, and image deconvolution
involving a point spread function. An entire section is then dedicated to all the digital image
processing steps that mainly rely on images produced by a compressive sensing imager
designed at the Centre Spatial de Liège. The correlated methodologies, followed to produce
satisfactory images reconstructions, are finally applied to some damaged scenes produced
either in laboratory or during an existing space mission. The final selection of the mission of
interest has been inclined, thanks to a bibliographic study, towards the Landsat 7 mission, for
which one of its component’s malfunction led to the production of incomplete scientific data.

Keywords: image processing, inverse problem, inpainting, wavelet theory, iterative hard
thresholding, image deconvolution, satellite data.
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Chapter 1

Introduction

Image processing constitutes a non negligible part of scientific data analysis. Indeed, images
are omnipresent in lots of practical fields, including for example optical instruments calibra-
tion, photography, microscopy and many other domains of interest. One of these domains
concerns space applications, for which interest is constantly growing and will certainly
continue to evolve in this direction for many years. In this context, Earth monitoring
plays a significant role and deserves to be studied in depth. However, the related optical
devices embedded in observation satellites are generally submitted to a certain amount of
constraints that limit, in some extent, the interpretation and the readability of the acquired
data (in other terms, of the images). In addition, some unexpected events can also occur
in the course of space missions, leading in this case to the production of erroneous or
incomplete information that cannot be read properly without the use of appropriate tools.
To overcome these potential issues, a series of possible techniques exist and include notably
the resolution of inverse problems, the latter being considerably present in the context of
image reconstruction.

Contrary to the traditional so-called direct problems, in which a set of possible conse-
quences is deduced from a few initial conditions and causal effects, inverse problems work in
reverse and determine causes based on observations. The difficulties therefore lie in the way
in which the cause/consequence relationship is interpreted. Actually, an inverse problem
usually gathers many solutions, and it is thus mandatory to apply some restrictions in order
to find the result that fits the most with the specific studied context. On that purpose,
various types of optimisation algorithms exist and allow to operate converging reconstruction
processes. More precisely, the composition of these algorithms varies depending on the
type of inverse problem that need to be solved. One can then distinguish linear inverse
problems and non-linear ones. While linear problems involve usual functional analysis and
linear algebra developments, non-linear problems are constructed on the basis of differential
equations or partial derivatives and their resolution is consequently more complex [1].

In the framework of this thesis, the focus is on solving exclusively linear problems that
are directly linked to image processing and that can be subdivided in two main types. The
first one, on the one hand, is named inpainting and is applicable when the analysed images
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2 INTRODUCTION

are composed of missing parts or holes. These lost elements can be retrieved thanks to the
application of the wavelet theory, which consists of using primary oscillating functions that
will probe the observed signal and determine its main structural configurations. The second
one, on the other hand, concerns image deblurring and works on the basis of traditional
deconvolution techniques.

Being focused on the numerical aspect that directly follows images acquisitions, this
paper aims to explore the possibilities offered by the tested reconstruction algorithms and
to propose certain improvements in connection with the applications in which they are
involved. On that purpose, several parameters contained in the preliminary version of some
existing codes are tested and optimised. Additional techniques are also implemented to
overcome possible limitations encountered when solving the inverse problems of interest.

This master thesis is structured in this way. First, a state of the art related to the inverse
methods presented in this document is provided. This includes notably the mathematical
description of the different algorithms involved in the image reconstruction processes that
are studied in the present work, namely the Iterative Hard Thresholding (IHT) one and the
image deconvolution one. Then, all the methodology followed to realise the corresponding
image processing is exposed, and is accompanied by the main results obtained during the
different stages. The next part presents some applications linked to image inpainting, with
emphasis on observations simulated by an optical system developed at the Centre Spatial
de Liège (CSL) and actual measurements coming from the Landsat 7 space mission. Finally,
a conclusion gathers the main ideas developed in this paper and provides prospects on
possible results improvements.

The primary objective of this end-of-studies work is to bring relevant solutions for
image processing that could be re-implemented in further space missions data analyses,
especially in the case of satellite-based Earth observation and monitoring. Having been
carried out at the CSL, this project is in close collaboration with the master thesis of Émile
Ruwet, another student who designed the optical imaging device that generated part of the
images analysed here. The contributions of both works are intended to enhance the thesis
of Clément Thomas, a PhD student working at the CSL as well. His research explores
notably the possibilities offered by Compressive Sensing (CS), an image reconstruction
approach strongly connected to the one of inpainting, and which is also focused on Earth
observation applications.



Chapter 2

State of the art

This chapter is focused on the theoretical concepts and mathematical descriptions that
are behind the inverse methods applied in this master thesis. Before exploring the data
reconstruction processes, a section dedicated to images and their characterisitics is provided
in order to understand how they can be manipulated. This introductory section is directly
followed by an overview of inpainting and of the related inverse problem that needs to
be solved, and by a presentation of the concepts behind sparsity prior and atoms bases,
significant elements that constitute the main properties and tools that are introduced in
the reconstruction algorithms. These different algorithms, used either for image completion
or image deblurring, are then explained in details in order to understand each principles
they are based on, and how their converging optimisation process can lead to a solution.
More precisely, the cases of Iterative Hard Thresholding (IHT) and image deconvolution
using a Point Spread Function (PSF) are studied in depth.

In this part of the thesis, all that is designated as a dimension is a non-zero natural
number, and a writing convention is established such that vectors and matrices are written
in bold. Besides that, most of the information described in sections 2.2, 2.3, 2.4 and 2.5
come from references [2] and [3]. Extra explanations in sections 2.4.1 and 2.5.2 rely on [4]
and [5], and any other development inspired from literature is clearly indicated in the text.

2.1 Images properties

Before operating some processing steps on images, it is first of all mandatory to have an
idea of how they can be numerically interpreted. Each image as a specific format, and the
one selected for all the images processed in this work is the bitmap one. A bitmap image,
also called a raster graphic, is defined as a rectangular and regular grid of pixels having a
N x M dimension. In this configuration, N refers to the number of columns and M to the
number of lines constituting the bitmap [6]. Numerically speaking, images are therefore
no less than matrices for which each of the components can be assimilated to one of the
correlative image pixel having the same position and the same content. Images are thus
submitted to the same kind of operations than the ones related to classical matrices, which
appears to be considerably useful in terms of images manipulation.

3



4 STATE OF THE ART

Regarding the pixels content, each of the bitmap cells is filled with a specific value
called the colour depth. This information is representative of the light intensity gathered in
one single pixel. It directly depends on the number of coded bits, the latter determining
the capacity storage of the pixels. All the images selected for the reconstruction processes
explained further are monochromatic and have 8 coded bits, corresponding to 256 possible
states. Light intensity can this way be subdivided into 256 different shades, going from 0
for the darkest shade to 255 for the brightest one, in the case of a grayscale image [6].

For colour images, however, the composition is a little bit more complex. Usually, colour
images are the result of stacking several monochromatic images. This is notably true for
Red Green Blue (RGB) images in which three different channels are stacked, each of them
corresponding to a primary colour layer. Some numerical functions exist to split the original
layers and convert them into grayscale intensity ones. The latter can then be combined in
order to produce a global grayscale image that has the same patterns that the authentic
one and whose pixels contain one of the 256 possible information as explained just before.
Due to the segmentation into different channels, colour images contain obviously more data
than the grayscale ones and the resulting number of coded bits that is associated with them
is greater. Typically, the so-called true colour images have a colour depth of 24 bits, which
allows to separate them in three monochromatic sub-images being each coded in 8 bits (for
a RGB configuration for example) [7].

It is worth to notice that, depending on the application, some colour scientific images
are not limited to only three different information layers as it is the case in the RGB format,
and can harbour many components in accordance to the observed wavelength ranges.
Understanding how the different channels are organised in a colour image is therefore
primordial when manipulating multi-spectral images, which often happens when processing
scientific data.

2.2 Inpainting

As mentioned in the introduction, inpainting consists of filling in the missing elements of a
damaged image, or in other words to complete the holes corresponding to data losses. The
typical inpainting problem can be deduced from the general form of an inverse problem,
the latter being simply expressed as

y = A x + q (2.1)

where x (∈ RN ) is the vector form of the original complete image, A (∈ RM×N ) is a
measurement matrix and y (∈ RM ) is designed as the observation, or equivalently, as the
vector form of the incomplete image obtained on the basis of x. With regard to q, this
quantity represents the image noise. For the sake of simplicity, all the images submitted to
the reconstruction processes taking place in this work are assumed to be noiseless (i.e. q = 0).
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Two significant considerations can already be highlighted from equation 2.1. Firstly, it
is mandatory to impose that the dimension of y must be strictly smaller than the dimension
of x (in other words, the criterion M < N must be respected). Indeed, y being the damaged
measurement of x, it must necessarily contain fewer components and less information than
the initial image. Secondly, the measurement matrix A is the key element that allows to
make the link between y and x. The main objective when trying to solve problems as the
one discussed here is thus to look for a matrix A for which the properties are consistent
with the problem requirements and conditions.

An equivalent formulation of the initial problem, considering this time square images of
dimension n × n = N can be written as

f = Φ ◦ f0 (2.2)

with f0 (∈ Rn×n) the original undamaged image and f (∈ Rn×n) the observed damaged
image. In this situation, Φ (∈ Rn×n) can be interpreted as a mask, the latter being applied
on the initial image f0.

Here are some more details about the mask Φ. This object is in fact a binary matrix,
being exclusively composed of 0 and 1 elements by definition. These elements are distributed
in such a way that they form a given pattern, reproducing the one of the expected missing
elements appearing in the observation f . The application of Φ on f0 is implemented in
numerical codes as the same manner as a Hadamard product occurring between the two
matrices. This specific product differs from the usual matrix product and is an operation
between two matrices of same dimensions. Typically, the Hadamard product of a matrix
U = (uij)1≤i≤m,1≤j≤n (∈ Rm×n) with another matrix V = (vij)1≤i≤m,1≤j≤n (∈ Rm×n) is
defined as

(U ◦ V )ij = uijvij (2.3)

in which ◦ is the usual representation of the Hadamard product operator that also
appears in equation 2.2.

In consequence, the above expression 2.3 can be interpreted in this way. The Hadamard
product, also called element-wise product, is similar to a superposition of two matrix (or
images), resulting in a scalar multiplication of each of the superposed cells (or pixels) [8].
This operation is the expected one when masking an image. This way, the masking operator
Φ is somehow applied to the complete image f0. More precisely, binary components of Φ
affect the elements of f0 in the following way. While 1 elements keep the corresponding
f0 cells unchanged, 0 elements set them to zero, creating missing parts having the same
shapes than the mask pattern. An illustration of this is provided at figure 2.1.
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Figure 2.1: Visualisation of the image masking operation with a randomly generated mask.

A link between the two formulations of the initial problem, introduced in this section,
can be made and establishes a possible definition of the classical inpainting problem. This
new approach consists of preserving the vector form of equation 2.1 while keeping in
mind the characteristics of the mask defined in formula 2.2. In this configuration, the
measurement matrix A is built by taking into account two main assumptions. First, A is
defined as a matrix of dimensions M × N, M being in this case the number of pixels of Φ
for which the value is 1. Then, A must contain a single element of value 1 per line and
at most one element of value 1 per column. This second constrain imposed on A ensures
that the Ax product (∈ RM ) only conserves the pixels stemming from the lines of A. If
these criteria are respected when constructing A, then this matrix is suitable for the stud-
ied inpainting problem, which can therefore be reformulated in the same way as equation 2.1.

In reality, this overview of the inpainting problem only constitutes a minuscule part of
all the possible researches linked to the CS mentioned in the introduction. CS is actually a
method that makes use of two of the main signals properties, namely their ability to be
compressible and sparse (the latter being described in the next section). Thanks to these
two characteristics, the CS method is capable to recover signals by sampling them, with a
number of measurements that is quite small compared to the initial amount of information
gathered in the original analysed data. Its utility is therefore primordial for many scientific
and technological applications, encompassing among others the resolution of mathematical,
computer sciences and physics-related problems. Signals recoveries are then made possible
by involving reconstruction algorithms, that can be classified into various types including
notably the so-called thresholding-based methods [9]. In this work, the inpainting problem
is resolved with one of these threshold-based algorithms, that is described in section 2.4.

2.3 Sparsity and atoms bases

2.3.1 Image sampling and decomposition

In the general context of signal processing, the vector x defined in the previous section
is obtained by sampling N times a continuous initial signal. A discretisation is this way
operated, so that x contains N elements that are representative of the whole analysed data.
As a result, a reorganisation of all the information included in the primary signal is carried
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out, and is at the basis of the formation of the new vector-like object x, which is quite more
manageable compared to the original continuous set of information. In order to determine
if the non-discretised signal can be precisely retrieved from x, it is mandatory to refer to a
criterion stated by the Nyquist (or Nyquist-Shannon) theorem. According to this theorem,
the initial signal can be totally recovered if the sampling frequency fs (namely the number
of created samples per unit of time) is at least twice the Nyquist frequency fN (i.e. the
maximum possible frequency that is established in the signal). Nyquist theorem is then
simply formulated as

fs ≥ 2fN . (2.4)

For images, however, the discretisation step is immediately produced by the pixels
segmentation originating from the related optical or numerical image acquisition system.
As a consequence, the entire image content (or its vector equivalent x) can be adequately
recovered with a number of elements K being much lower than the total amount of pixels N
that initially forms the image. This affirmation can be established thanks to the knowledge
of an important property of images called the sparsity prior. In reality, this image attribute
offers the possibility to decompose the vector representation of the image as a series of K
fundamental functions called atoms. These elementary functions are gathered in a specific
basis and the quantity of available atoms involved in the image recuperation must verify
the condition K ≪ N. The expected decomposition is then expressed as

x =

K∑
k=1

αkψk = Ψα (2.5)

where α is a vector of dimension N containing the αk coefficients and having K ≪ N
non-zero elements. Ψ is a basis of atoms ψk.

As much of the coefficients composing the α vector presented in the previous relation
are equal to zero, α is said to be sparse. In opposition to so-called dense arrays, for which
most of the elements are non-zero, sparse matrices or vectors are mathematical objects that
have most of their elements equal to zero. In the present case, α only has K non-zero αk

coefficients and is for that reason called a K-sparse vector. This sparsity aspect of α is only
permitted in the case the Ψ basis and its relative collection of fundamental functions ψk are
chosen such that they are suitable for the linear combination of x, in agreement with the αk

coefficients. A small note regarding the expression 2.5 is that Ψ can be generalised to the
case of a dictionary which may harbour functions coming from multiple bases. The related
atoms allow then to approximate an image as illustrated in figure 2.2. As one can expect,
the greater the number of atoms, the more the approximation is similar to the initial image f.

Many types of atoms bases actually exist, the most known ones being probably those
associated to the Fourier Transforms (FTs), Hadamard Transforms (HTs) and Wavelet
Transforms (WTs). However, the problems involving these particular bases have a high
complexity of resolution that is caused by the huge variety of existing functions, from
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Figure 2.2: Image sparse approximation using a predefined dictionary that contains
two-dimensional atoms. Above: example of dictionary composed of fundamental functions. Below:

image approximation performed by considering the atoms present in the dictionary; From [2].

which numerous solutions can be determined. Bases that are discussed here are therefore
overcomplete in some way, and must be restricted to the functions that will serve to perform
images sparse approximations. This justifies the need of using optimisation algorithms
when manipulating such mathematical tools.

2.3.2 Wavelet Transforms

WTs are known to be efficient processing tools for data restoration and compression.
Particularly, their involvement appears to be primordial in the resolution of traditional
inpainting and CS inverse problems. This especially comes from their ability to transcribe
and represent signals on the basis of a number of parameters that is smaller than the
amount of samples derived from the analysed data.

The reconstruction algorithms developed in sections 2.4 and 2.5 make use of these
WTs to accomplish a regularisation method that is described later for IHT and image
deconvolution applications. Before explaining in details the mathematical backgrounds of
the studied algorithms, it is essential to explore the principal characteristics of WTs to
have a better comprehension of their utility. On that purpose, a general definition of WTs
and their main forms is first exposed to clarify on which theoretical considerations they are
built. Then, the specific case of images decomposition is introduced through the notion of
Discrete Wavelet Transforms (DWTs).

2.3.2.1 General definition

Even if they constitute a separate class of transforms, WTs are strongly correlated with
usual FTs. Widely used in physics-related topics, FTs are indispensable in the field of signal
processing and make the link between frequency and time domains of the signal of interest.
This connection is established by the following function which is an extension of classical
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Fourier series

F (ω) =

∫ +∞

−∞
f(t)e−iωtdt (2.6)

where ω is a frequency, f(t) is the probed signal that can be either a 1D one or a
multidimensional one (for instance, an image is perceived as a 2D signal), and t is the
time component. Expressed thanks to a complex exponential, the frequency information is
thus directly deduced from the temporal evolution of the signal. Depending on the needs,
it may however be interesting to probe both the frequency and temporal signal contents.
Purposely, a more complete version of the expression 2.6, designated as the Short-Time
Fourier Transform (STFT), is written

STFT{f(t)}(τ, ω) =
∫ +∞

−∞
f(t)w(t− τ)e−iωtdt. (2.7)

This time, f(t) is constrained by a window function w(t) that delimits the temporal
length of the signal around a time τ . Signal’s frequency and time information is this way
accessible for predetermined time intervals. Another option for the writing of equation 2.7,
that takes into account some basis functions kτ,ω(t), is

STFT{f(t)}(τ, ω) =
∫ +∞

−∞
f(t)kτ,ω(t)dt. (2.8)

By making appropriate changes of variables, in which a is a scale factor and b another
representation of τ for the time shift operated by the window function w,ω = 1

a

τ = b
(2.9)

kτ,ω(t) can be expressed hereunder with a more adequate shape

kb,a(t) =
1√
a
γ

(
t− b

a

)
(2.10)

in which γ(·) is called a wavelet, an oscillating function that brings together both time
and frequency dependencies. Furthermore, the typical evolution of a wavelet is marked by
a rapid decay. This evolving trend can be assimilated to the one of the exponential decay
present in FTs formulations, and, considering this resemblance, an expression similar to the
relation 2.6 can be found. This way, another type of transform, the WT, is formulated and
can be generally defined by the Continuous Wavelet Transform (CWT)

CWT{f(t)}(b, a) = 1√
a

∫ +∞

−∞
f(t)γ

(
t− b

a

)
dt. (2.11)

A discretised version of the CWT exists and is naturally called a Discretised Continuous
Wavelet Transform (DCWT). Contrarily to the CWT, the DCWT does not have the same
aspect than a FT but is rather viewed as the equivalent to a Fourier series in which the
notion of wavelet is included. The discretisation, indexed by an integer number m, takes
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place at the level of the time variable. The signal is then sampled over time, not continuously
as before but rather with a precise amount of different time values tm. Based on this new
temporal segmentation, a rewriting of equation 2.11 leads to

DCWT{f(tm)}(b, a) = 1

a

∑
m

f(tm)γ

(
tm − b

a

)
. (2.12)

2.3.2.2 Discrete Wavelet Transforms

In order to carry out images reconstructions, a series of operations is needed and implies
knowing the so-called wavelet coefficients, the latter being obtained by decomposing images
in a very specific way. To do so, a new sort of WT, the Discrete Wavelet Transform (DWT),
not to be confused with the DCWT, is introduced and is inspired by the general wavelet
theory exposed in the previous section. The ways an image decomposition by a DWT is
performed and the wavelet coefficients are determined are described hereafter.

Here are the initial conditions of the image decomposition problem. A square image f(x),
filled with N pixels and having

√
N ×

√
N dimensions, is spatially distributed in a 2D frame.

This frame is characterised by a set of directions x ≡ (x, y) (∈ R2) and by the image pixels
locations n ≡ (nx, ny) (∈ Z2). Apart from that, the image will be submitted to the action
of four restructuring functions, that will influence the image spatially speaking. Indeed,
image processing does not take into consideration any time evolution when manipulating
a single image and all the time variables, such as the ones mentioned in section 2.3.2.1,
must therefore be replaced by spatial elements. The first structure-related function, Φ(x),
is a scaling one that will affect the image in a bi-dimensional manner thanks to two 1D
sub-functions, ϕ(x) and ϕ(y), that will act singly in the corresponding preferential direction

Φ(x) = Φ(x, y) = ϕ(x)ϕ(y). (2.13)

The three other functions ψ(x) are mother wavelet functions that will have both a
shrinkage and a translation effect. These modifications can be of different natures, the
possibilities being either vertical (V), horizontal (H) or diagonal (D). The three configurations
results from combinations of the primary functions ϕ and ψ and represent vertical, horizontal
and diagonal frequencies contained into the image

ψV (x) = ψ(x)ϕ(y)

ψH(x) = ϕ(x)ψ(y)

ψD(x) = ψ(x)ψ(y)

. (2.14)

These primary functions can be developed asϕj,n(x) ≡
1
2j
ϕ
(

x−2jn
2j

)
ψr
j,n(x) ≡ 1

2j
ψr

(
x−2jn

2j

) (2.15)

where j ∈ [J0; J − 1] is a resolution of one of the image decomposition steps described



2.3. SPARSITY AND ATOMS BASES 11

later, and r ∈ {”H”, ”V ”, ”D”} transcribes the directional behaviour of the function. One
can notice than the function arguments in expression 2.15 have the same appearance
than the ones in γ

(
t−b
a

)
introduced at equation 2.10, with the exception that the time

t, as well as b and a coefficients, are respectively replaced by a spatial reference (x),
2jn and 2j . While 2jn indicates a position (translation effect of ψ(x)), 2j corresponds to
a scale factor (shrinkage effect of ψ(x)), which justifies the appellation of a in section 2.3.2.1.

Based on all these definitions, the sought DWT is designated as the following operation,
that establishes a transition between the original image f(x) and a matrix W

DWT : f(x) → W =

aJ0,n = ⟨f, ϕJ0,n⟩

drj,n = ⟨f, ψr
j,n⟩

. (2.16)

The created object W aims to collect all the wavelet coefficients and to store them in
distinct areas. Two types of coefficients actually exist and one can distinguish the approxi-
mation coefficients aJ0,n, being the result of an inner product between f and ϕ functions,
and the details coefficients, drj,n, deduced in the same way from the inner product between
f and ψ functions. The distinction between the two types of coefficients is manifested
by considering the frequency content of the signal. While approximation coefficients are
assimilated to low frequencies and provide a smoothed representation of the original signal,
details coefficients are by opposition related to high frequencies and symbolise the signal’s
details and edges, which justifies their denomination.

The steps leading to the distribution of a and d coefficients in W are illustrated at
figure 2.3. A first two-dimensional decomposition is operated on the primary image that
is composed of the primordial approximation coefficients having a resolution J . In order,
a vertical 1D WT decomposition and a horizontal one allow to distribute the coefficients
in four main quadrants. Approximation coefficients are gathered in the upper left quad-
rant while details coefficients are distributed in the three remaining quadrants. A second
decomposition can be obtained by realising the same type of operations in the upper left
corner of the first decomposition. It is possible to repeat the different steps m times, and
it corresponds then to a decomposition of order m. Thus, each decomposition level is
computed from the approximation coefficients of the precedent level. As the decompositions
progress, the resolution J linked to the coefficients decreases until reaching a threshold
value J0.

Regarding W, the final product of the image decomposition, this matrix has dimensions
(
√
N x

√
N) that are equal to the ones of the original image f. In terms of elements, W

contains N coefficients, compared to f that is composed of N pixels as a reminder. A
schematic view of the coefficient matrix is provided at figure 2.4.

Another interpretation of W can be made with regard to the resolution segmentation
occurring in the image decomposition process. Indeed, this matrix is a multi-resolution frame
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Figure 2.3: Storage of the wavelet coefficients in sub-zones produced by the DWT. From [3].

Figure 2.4: Matrix W obtained after storing the wavelet coefficients of an image. From [3].

gathering sub-images formed by the wavelet coefficients and the DWT-related computation.
This visual description of the image components is proposed at the figure 2.5. In this case,
the index m refers to the decomposition order as mentioned before, for which a specific
image resolution is associated to each value of its value. The most upper left corner of the
new representation contains the approximation image while other parts are composed of
image details. In summary, the further the sub-images are from the upper left corner, the
finer the resolution.

Figure 2.5: Multi-resolution representation inferred when performing a DWT. On the left:
equivalent repartition than the ones presented in figures 2.3 and 2.4 complemented by resolution

values. From [10]. On the right: visualisation of the image decomposition. From [3].
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2.4 IHT reconstruction algorithm - Mathematical description

The classical image inpainting problem can be solved by the IHT technique, the latter
involving in the present situation, among other existing possibilities, the wavelet theory
concepts summarised in the previous section. By choosing an appropriate wavelet basis,
a set of wavelet coefficients, determined in connection with the analysed damaged im-
age, is integrated into the reconstruction process and submitted to the action of a Hard
Thresholding operator. The threshold that defines this operator is then responsible for
the classification of the different wavelet coefficients. As a result, a selection is carried out
between the coefficients that are removed from the algorithm, because of their low values
that are assimilated to the holes and discontinuities found in the damaged images, and the
ones that are kept thanks to their relatively high values. These high value coefficients are
the ones that will therefore contribute to filling the missing parts that initially compose
the incomplete images. After sorting the wavelet coefficients, an iterative and converging
process, implemented in the algorithm responsible of the image reconstruction, is finally
performed in order to find a solution.

This part of the state of the art chapter aims to go through the steps followed by the
IHT reconstruction algorithm. A first theoretical view inspired by [11] exposes the concept
of regularisation and is complemented by a second more practical approach describing the
way the reconstruction process is numerically interpreted.

2.4.1 Theoretical approach

A rewriting of the inpainting problem, encompassing both elements established in equations
2.1 and 2.2, is

y = Φx + q (2.17)

with y the observation, Φ a measurement matrix that is comparable to the mathematical
object A described in section 2.2 and that is constructed on the basis of the mask applied
to the image, x the complete image and q an extra noise that is still chosen as being equal
to zero. The solution of this additional formulation is inferred from a regularisation method,
that minimises the norm of a signal approximating the one of interest. This regularisation
implies the use of a basis Ψ = (ψm)m (ψm are atoms as a reminder) that creates a sparse
set of coefficients (s∗m) and solves

s∗ ∈ argmin
s

1

2
||y −ΦΨs||2 + λJ(s) (2.18)

where s∗ is a wavelet coefficient vector conserving the atoms that are selected in the
regularisation process, Ψs is the signal that must be reconstructed for which the decom-
position is equivalent to equation 2.5 and λ is a threshold embedded in hard thresholding
calculations (see section 2.4.2).
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In the present case, Ψ is chosen as a basis containing Translation Invariant Wavelets
(TIWs) that seem to constitute a relevant choice for sparse regularisation. Indeed, the
translational invariance aspect of this particular type of base implies that the processed
signal is, by some means, independent of the time component which is generally associated
with it. Moreover, working in a such invariant frame favours the reduction of artifacts
usually found in the context of image restoration. The reason is that the thresholding
operator responsible for the image reconstruction (that will be exposed in the next section),
also becomes translation invariant [12].

Other possibilities actually exist for bases choices, such as orthogonal bases holding
orthogonal wavelets for instance. However, orthogonality properties offer poorer regularisa-
tion due to their absence of translation invariance, which justifies the selection of TIWs.

Regarding the quantity J(s), it is defined with the following reasoning. The objective is
here to find the sparsest vector x possible that verifies y = Φx (noiseless version of equation
2.17). As q = 0, the current problem can be compared to a l0 minimisation problem, the
latter taking the form

min||z||0 s.t. y = Φz (2.19)

where z is a K-sparse approximation that most closely matches x. However, there is no
single algorithm that is capable to find a solution to this problem for any combinations of
y and Φ. In order to work around this issue, the l1 minimisation replaces the l0 one and a
solution is now coming from

min||z||1 s.t. y = Φz. (2.20)

J(s), called the l1 sparsity prior, is then inspired by this l1 minimisation and normalises
the wavelet coefficients extracted from s, a K-sparse vector of dimension N ≫ K. The usual
definition of J(s) is

J(s) = ||sm||1 =
∑
m

|sm|. (2.21)

Once the regularisation problem is solved, the inverse of the corresponding DWT defined
in section 2.3.2.2 (DWT−1 → W : f), is applied to s∗ and the reconstructed image is thus
obtained.

2.4.2 Practical approach

In practice, the reconstruction algorithm successively performs a hard thresholding, with a
decaying value of the associated threshold, and a gradient descent step. The applied hard
thresholding function hT (x) is defined by
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hT (x) =

x if |x| > T

0 if |x| < T
(2.22)

where T is the threshold value. The schematic representation of this function is provided
at figure 2.6.

Figure 2.6: Hard thresholding function. Created on the basis of information found in [4].

An operator version of hT (x) is

HT (f) = hT (sf ) (2.23)

where sf is the vector gathering the wavelet coefficients that are linked to the decom-
position of the processed image f obtained from a DWT operation. In a wavelet basis
Ψ (the one made of TIWs as mentioned earlier), the hard thresholding operator can be
re-expressed as

HΨ
T (f) = DWT−1 ◦HT ◦DWT (2.24)

which justifies the last affirmation provided in the precedent section. A generation of a
series of images fl (sparse signals in the TIW basis) is made possible by proceeding to

fl+1 = HΨ
λl

(
fl + ρΦT (y −Φfl)

)
(2.25)

where an image fl+1 is formed thanks to the one that directly precedes it fl. In this
formulation, the argument of HΨ

λl
corresponds to the gradient descent step. A change of

variable is realised such that λl replaces the T variable defined above. As for the ρ factor,
this component aims to weight, and somehow adjust, the difference between the observation
and the signal that needs to be restored (that is to say, (y −Φfl)), in order to find which
combination is more likely to match the reconstruction.

Based on previous considerations, the parameter λl that is present in equation 2.25 is
the threshold connected to the hard thresholding operator. As one wants the signal s to
be as sparse as possible (i.e. a K-sparse signal, in the same manner as in equation 2.5),
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λl can be viewed as the Kth largest value in expression 2.25, at each iteration. Another
possibility is that the value of λl can be arbitrarily fixed, and this option will also be tested
in the images reconstructions exposed later in this work. Regarding the iterative process of
the algorithm, the initial threshold value λ0, corresponding to the largest threshold value
used during the different iterations, will make it possible to threshold the initial image f0.
Finally, by using decreasing threshold values (λl), for a determined number of iterations
(NOI), the algorithm converges towards a solution.

2.5 PSF implementation

Later in this work, reconstruction methods explained before will be applied on images
directly produced by an imager designed in laboratory. Such instrument always implies
some images imperfections, that can be caused by the noises found in the experimental
surroundings or by the instrumental components themselves (optical aberrations). In
order to correct the generated images as much as possible, different techniques exist and
one of them consists of carrying out an image deconvolution, on which this section is focused.

More accurately, the idea here is to study the deblurring of an image by knowing the
PSF of the optical instrument through which it was acquired. Unwanted noise coming from
the instrumental environment is this way subtracted from the image, increasing then the
data readability. The deconvolution algorithm involved in the image processing that is
discussed here is actually built on similar methods than the ones covered in the IHT, and
it notably uses sparse properties of images as previously.

In this section, an overview of what is a PSF and what are its properties is first introduced
and is based on information found in [13]. A theoretical approach of the deconvolution
problem is then developed and leads to a third part that justifies how the theory is adapted
to implement in practice the deconvolution method in numerical codes.

2.5.1 PSF basics

The PSF is a 2D distribution of light representing the way an optical system perceives the
transmission of a luminous point source. This distribution varies from one instrument to
another and depends on a series of factors that characterises the experimental environment
in which images are acquired. Indeed, the light propagating from the object plane (i.e. the
observed scene) to the image plane (also called the focal plane, i.e. the detector area) is
perturbed when passing through optical elements (lenses, mirrors,...) due to reflection and
refraction mainly.

Every optical device is submitted to a certain amount of aberrations that notably
manifest themselves in the PSF. Being of various natures ((mono)chromatic, spherical,
distorsion,...), aberrations effects actually produce some repercussions on the propagation
of light, and their combination induces in particular a deviation from the paraxial ray
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trace defined by the optics. Related variations are then more or less important according
to several parameters, the latter being for instance the optics shape and geometry, the
wavelength of light interacting with the surrounding medium, or even the aperture size and
the focal length of the optics.

As a result, the image of an observed point-shaped object is distorted, with a specific
pattern that is representative of the modifications of light encountered through the optical
elements that form the image. The PSF, which is a spatial arrangement of the light intensity,
is then also impacted by these changes. However, even if the PSF pattern can slightly
differ with the optics configuration, its usual shape fits with the classical Airy pattern. The
typical PSF spatial distribution is illustrated at figure 2.7.

Figure 2.7: Spatial distribution of a PSF. On the left: optical configuration. On the right: Airy
pattern and the corresponding Airy radius. From [13].

The Airy pattern has a diffractive configuration that comprises two main structures: a
bright disk and a set of external concentric rings whose centre is the one of the disk. These
patterns of light intensity maxima are all separated by intermediate dark rings, the latter
constituting by opposition regions of light intensity minima. Most of the light intensity is
in fact contained in the portion of space delimited by the central disk, having a radius

rAiry = 1.22
fλ

D
= 1.22 F#λ (2.26)

where f is the focal length and D the pupil diameter of the optical system, λ the
wavelength of the incoming light and F# = f

D is named the F-number, a quantity describing
the diffraction effect (Airy pattern) perceived on the focal plane.

The determination of the light intensity distribution deduced from the diffracting aspect
of the Airy pattern leads to the definition of the Rayleigh criterion, a useful indicator for
both spatial and angular resolutions. While the spatial resolution is expressed by 2.26
(∆l ≈ rAiry), the angular resolution θ is known as

sinθ ≈ θ ≈ 1.22
λ

D
. (2.27)
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In this context, the Rayleigh criterion states that two points present in an image, Q and
Q’, are said to be resolved if the predominant maximum in the light intensity distribution
of Q (respectively Q’) is not closer than the first minimum of Q’ (respectively Q). On the
contrary, the two points are unresolved if the condition is not respected. The minimum
distance at which Q and Q’ are just resolved is denoted σ. Figure 2.8 schematises the
different situations.

Figure 2.8: Rayleigh criterion. Adapted from [14].

As previously mentioned, another interest of knowing the PSF lies in the resolution of
the deconvolution problem. This problem takes place when the image obtained through an
optical device is not clear due to the convolution between the light intensity distribution of
the observed object and the associated PSF. A visual representation of the convolution is
provided at figure 2.9. The way in which image deconvolution is carried out in this work is
developed in the two next sections.

Figure 2.9: Blurred image resulting from the convolution of an original scene with a PSF. From
[13].

A last little note concerning the PSF is that it is generally accompanied by the notions
of Optical Transfer Function (OTF), a complex function designated as the FT of the PSF,
and the Modulation Transfer Function (MTF), which is the modulus of the OTF. This OTF
will be particularly useful in the numerical implementation of the deconvolution operation.

2.5.2 Theoretical approach

The configuration displayed at figure 2.9 can be mathematically interpreted as

f = h ∗ fpure = Hfpure (2.28)

with f the undeconvolved image, h the impulse response of the image acquisition system
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(that is to say, the PSF), ∗ the convolution operator, fpure the pure deconvolved image that
must be retrieved and H a matrix symbolising the application of h on fpure.

Solving the equation 2.28 relies thus on the determination of the above matrix H, which
is in reality a circulant matrix (CM). This uncommon type of matrix is defined as a square
matrix whose transition from one line to another is done by circular permutation of its
elements. As an example, if one considers a vector b that holds m components, the resulting
CM produced with these components has the same general form as the one of equation 2.30

b =


b1
...
bm

 (2.29)

H =


b1 bm · · · b2

b2 b1 · · · b3
...

. . . . . .
...

bm · · · b2 b1

 . (2.30)

With the intention of visualising the conventional form of a CM, the figure 2.10
exemplifies how an original random matrix can be turned into a CM one. In this example,
each of the initial matrix components was chosen to be unique compared to the other ones
with a view of differentiating them easily. An existing and online available Python function
allows to construct a CM based on a determined array [15]. The function selects first the
(1,1) matrix element in the upper right corner, and then goes in the opposite direction
to that of usual reading, from right to left starting from the last line to the first one as
illustrated. The first line of the CM is then composed of the signal’s elements in the precise
order they have been previously classified in a 1D array. The following lines are just circular
permutations of those which directly precede them. The final matrix has p2×p2 dimensions
if the original one presents p lines and p columns.

Figure 2.10: CM generation based on a 2D signal rearranged into a vector. On the left:
visualisation of the original matrix (of dimensions 3 x 3 in this case) corresponding to the initial
2D signal. In the centre: order in which the matrix elements are selected and stored in a 1D vector
by the generating numerical function in order to form the expected CM. On the right: resulting

CM of dimensions 9 x 9 obtained from the original matrix.
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2.5.3 Practical approach

In the previous section, H is constructed on the basis of a 1D signal, in which are stored
matrix elements that are reorganised in the produced CM. However, this approach is not
the one expected when processing 2D signals such as images, and the concept of CM
must be extended to the one of block-circulant matrix (BCM). To do this, the vector b of
expression 2.29 is replaced by a new vector r that is also composed of m elements, at the
exception that each of these elements (ri ; 1 ≤ i ≤ m) are now of length n, compared to
the previous ones (bi ; 1 ≤ i ≤ m) that were of length 1 (scalar matrix components). r is
thus a so-called block vector, that gathers m vectors of length n. Thanks to that, all pixels
contents included in an image having m lines and n columns can consequently be stored in
r. In practice, the m × n image is the PSF acquired from the optical device that aims to
observe the object of interest. Each components of r (ri) are this way interpreted as the
content linked to a precise PSF pixels line

r =


r1
...
rm

 . (2.31)

Thanks to this new formulation, the matrix H obtained hereafter (equation 2.32) is a
BCM. All of its components H(ri) are in consequence blocks which directly depends on the
elements found in r. As one can see, this is the arrangement of the different blocks that is
circulant, not the blocks themselves. Permutations of blocks follows the same rules as the
ones exposed in the preceding section

H =


H(r1) H(rm) · · · H(r2)

H(r2) H(r1) · · · H(r3)
...

. . . . . .
...

H(rm) · · · H(r2) H(r1)

 . (2.32)

The BCM presented here is, as a matter of fact, diagonalisable. In other terms, one can
write H = F∗DF, where F is a Fourier matrix (F∗ is its complex congugate form) and D
is a matrix that is circulant in diagonal blocks. They are respectively defined byF = FmFn

D = diag(Fr)
(2.33)

where Fm and Fn are Fourier matrices of order m and n. These objects are expressed
through the use of complex numbers ωn = e2iπ/n and are written

Fn =
1√
n


1 · · · · · · 1

1 ωn · · · ωn−1
n

...
. . . . . .

...

1 ωn−1
n · · · ω

(n−1)2

n

 . (2.34)

The diagonalisation of the BCM is then expanded as indicated in equation 2.35. This is
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this last shape of H that will be implemented in the numerical reconstruction codes.

H =


H(r1) · · · H(r2)

...
. . .

...
H(rm) · · · H(r1)

 =


F∗
nD1Fn · · · F∗

nD2Fn

...
. . .

...
F∗
nDmFn · · · F∗

nD1Fn

 = F∗DF (2.35)

The above development is inspired by explanations coming from [16] and leads to the
determination of the predicted shape of the BCM H. Nevertheless, a last problem persists
regarding the resolution of equation 2.28. Indeed, H is usually badly conditioned and/or
not invertible (i.e. HH−1 ≠ I, with I the identity matrix) and the relation 2.28 cannot
be directly inverted with classical matrix algebra. To overcome this difficulty, one must
perform the same kind of regularisation as the one presented in 2.4.1.

In this context, the image fpure (equation 2.28) is sparse in a wavelet basis Ψ such as

fpure = Ψs (2.36)

in which Ψ is a TIW basis as the one mentioned in section 2.4.1 and s is a vector
containing wavelet coefficients of the analysed image. Ψs is then the signal that must be
reconstructed. Hence, a possible deconvolution program is to take, among all the images
g = Ψs such as Hg is close to f (equation 2.28), the one which has a small sparsity. By
taking a positive threshold λ (i.e. λ > 0), an expression highly similar to equation 2.18 is
determined

s∗ ∈ argmin
s

1

2
||f − HΨs||2 + λJ(s), (2.37)

at the exception that the observation y is replaced by the undeconvolved image f, and
that the mask Φ is substituted by the BCM H. An analogous reasoning that the one
described in 2.4, involving a decaying value of λ, allows the algorithm to converge towards
a solution.



Chapter 3

Digital image processing

3.1 Introduction

Starting from scratch, with no knowledge of Python code, the very first challenging objective
was to learn how this programming language works, and particularly in terms of image
processing. On that purpose, a series of notebooks available online were consulted. These
notebooks are included in the Numerical tours, which consist of visual applications (image
manipulation, plots,..) of various images-related problems. The most used one was the
Inpainting using Sparse Regularization notebook [4], dedicated to the learning of image
reconstruction using the IHT algorithm exposed in section 2.4. A second one whose content
is originally coded in Matlab, the Image Deconvolution using Sparse Regularization note-
book [5], was adapted and re-written in Python in the framework of this master thesis to
perform images deconvolution for which the theoretical concepts are presented in section 2.5.

This chapter focuses on all the methodology and techniques that are followed and
involved in the digital image processing covered in this work. Results are then presented
and discussed for each of the correlated methodology sections. First, the contribution of
a technique called zero padding (ZP) is studied and aims to allow the reconstruction of
images of any dimensions. Some images restorations of a scene, acquired by an imager that
is described beforehand in this same chapter, are then performed to introduce some useful
information that will be used throughout the rest of the work, notably in the following
section for which the objective is to test and optimise the different parameters of the IHT
algorithm. How certain adjustments can be applied to the obtained results is also covered
and the chapter is then completed with an approach related to image deconvolution.

3.2 Laboratory-generated data

Most of the data processed in this work were obtained in the frame of the master thesis of
Émile Ruwet, dedicated to the improvement of a CS imager designed and tested in laboratory.
This section introduces how the different images that are needed for the reconstructions are
produced, and is focused on two main aspects. First, a brief presentation of the imaging
device is exposed in order to provide an overview of the optical setup and of its components.

22
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A second part develops then the process linked to the generation of binary masks. This
notion is then extended to the so-called eroded masks, the latter being formed thanks to a
morphological erosion operation. Almost all the explanations gathered in this section rely
on information derived from [17].

3.2.1 Description of the optical system

The imager that produces both the (un)damaged scenes reconstructed in this thesis and the
masks applied on these (in)complete images is especially designed for inpainting applications
and follows the same rules as classical CS optical systems. The structure of this imaging
device comprises four elements that allow to obtain the expected data by following a
succession of well-defined steps. First, a collecting lens gathers the light emanating from
the scene in front of which it is placed. The scene is typically a previously chosen image
that is printed on a piece of paper having adequate dimensions and which is maintained
by an adapted support. The light is then focused and propagates until reaching a Digital
Micromirror Device (DMD) that constitutes the second component.

A DMD is actually an array containing, as it name indicates, many micromirrors
that can be tilted in two different configurations with a corresponding tilt angle of ± 12°
(compared to the normal of the DMD surface). The first one, the ON configuration (tilt
angle of 12°), corresponds to the positioning of a mirror that is set as such manner that the
light reaching it is reflected towards the next optical elements. On the contrary, the OFF
configuration (tilt angle of -12°) consists of orienting a mirror in a position that sends part of
the overall perceived light outside the optical system and which will therefore not be taken
into account during data acquisitions. As a consequence, these two mirrors arrangements
offer the possibility to create either complete images of the observed scene (all micromirrors
set in the ON configuration) or fragmented images in the context of damaged scenes (with
this time part of the micromirrors set in the OFF configuration). In the present case, the
DMD model embedded in the setup harbours 1024 × 768 micromirrors, each of them being
remotely controlled by using an appropriate software generating the desired patterns. The
patterns are implemented in the DMD thanks to an external electronic controller directly
connected to DMD and that automatically switches the mirrors in ON or OFF directions,
with a frequency of about tens of thousands of Hertz.

Once the incoming light has encountered the DMD surface, the remaining contribution
reflected by the ON-state micromirrors is then directed towards a condensing lens, the third
component of the imager. This lens brings afterwards the modulated image to a camera
detector constituting the fourth and last element of the setup. The detector is a monochro-
matic CMOS (Complementary Metal Oxide Semiconductor) one, having a colour depth of 8,
a total amount of 1280 × 1024 pixels and operating in the visible part of the electromagnetic
spectrum. The particularity of CMOS devices is that each of their pixels is accompanied by
its own transistors and readout amplifier, which considerably increases the cadence of data
production and there is therefore no need to complement them with an additional shutter [6].
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In order to have a better understanding of how the different optical elements are arranged
in the final assembly, a visualisation of the latter is provided at figure 3.1. In reality, this
representation is not exactly the final version of the instrument. Indeed, the entire setup,
excepting the observed scene which is lit by an external lamp, was covered by using a black
housing, with a view of decreasing the surrounding noises that could affect the data quality.

Figure 3.1: Representation of the optical setup. On the left: picture of the optical components.
On the right: schematic view of the imager. Adapted from [17].

3.2.2 Production of binary and eroded masks

Thanks to the CS imager presented just before, series of mask patterns were created
depending on the requirements imposed when testing images reconstructions by inpainting.
The primary version of those masks, corresponding to the raw result directly seen through
the optical setup owing to the use of the DMD, has grayscale variations, which must be
corrected as much as possible. The reason behind this statement is that the mask structure
must be formed on the basis of a binary pattern, in order to obtain something that is
similar to what was illustrated at the figure 2.1.

A possible way to correct the non-uniformity of this initial mask version is to apply on
it an Otsu’s binarisation method. In a few words, this method probes the initial intensity
distribution contained in the analysed image, in order to find an appropriate threshold.
This threshold controls then each of the image’s pixels content and apply on it the expected
correction. Basically, the pixels values that are lower than the threshold one are set to 0
while larger values are set to 1, creating in this manner the binary mask of interest. An
example of the effect caused by this Otsu’s method is provided at figure 3.2.

Even if this binarisation operation considerably improves the quality of the produced
masks, some adjustments can still be made to optimise the inpainting restorations results.
Indeed, the binary mask constructed with the Otsu’s method creates, when applying it
on an observed damaged scene, gray edges that appear around the missing parts of the
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Figure 3.2: Comparison between a mask pattern seen from the optical setup (on the left) and the
same area submitted to the Otsu’s binarisation method. From [17].

incomplete image. The algorithm will therefore not reconstruct the gray parts as it is only
focused on the mask’s binary pattern, only composed of 0-value and 1-value pixels from
which the gray edges are excluded. This will then inevitably lead to some issues during
the reconstructions. To overcome this problem, the mask is submitted to a new technique
called morphological erosion aiming to remove the gray edges in the reconstruction process.
Morphological erosion involves the use of a matrix called a structuring element that will
interact with all of the non-eroded image pixels. More precisely, the structuring element
is here a 3 × 3 matrix as the gray edges a thickness of the order of one pixel on average.
Due to these considerations, the principle of the morphological erosion in the present case
is thus the following one. The centre of the structuring element goes through all of the
mask pixels, and analyses the 8 pixels that surround the current pixel that is matching the
structuring element centre at each iteration. The central pixel is then modified such that it
corresponds to the minimum value found in its neighbours. As the mask is a binary one, the
resulting value is therefore necessarily a 0 or a 1. The typical result of the morphological
erosion of a binary mask is exemplified at the figure 3.3.

Figure 3.3: Comparison between non-eroded (on the left) and eroded (ont the right) patterns for a
same mask portion. From [17].

One can observe that the erosion correction increases the mask’s filling ratio (FR), the
latter being defined by the percentage of white (1-value) and black (0-value) pixels filling
the whole image of interest. In the following parts of this work, a convention is established
such that all the FR associated to the masks involved in the different reconstructions are
chosen as being equal to the percentage of black areas, and thus to the percentage of pixels
having a zero intensity. As an example, the eroded mask illustrated in the previous figure



26 DIGITAL IMAGE PROCESSING

3.3 has a FR of 70% while the non-eroded mask has a FR of 50%. In order to estimate
the impact of the morphological erosion and of the corresponding change of FR on the
images reconstructions, a comparative study between non-eroded and eroded masks will be
developed later in section 4.1.1.

3.3 Methodology

3.3.1 Zero padding

The very first idea when trying to optimise the inpainting numerical code proposed in
[4] was to evaluate if the reconstructions methods were adapted for images having di-
mensions of any values. However, it appears that the original code is only suitable for
square images and it only partially reconstructs rectangular images, which can cause some
issues depending on the application. To overcome this potential blocking situation, a tech-
nique called zero padding (ZP) was implemented in the early stages of the images processing.

In reality, the ZP method consists of adding lines and/or columns of black pixels (i.e.
complete an image with an complementary part for which the pixel intensity is equal to
zero) at the edges of a pre-existing image, in order to correct its dimensions. Visually, it is
thus equivalent to annex lateral black bands to the preliminary image. The advantage of
this manipulation is that it does not affect in any way the content that is initially present
in the image that needs to be processed.

As a broad variety of pictures are usually composed of 2i × 2j pixels, where i and j

are natural numbers, a first possibility is to add enough zero value pixels so that the final
square image has its dimensions equal to 2i if i > j (respectively 2j if i < j). The value of
i (respectively j) is therefore adequately chosen to prevent 2i (respectively 2j) from being
strictly smaller than the height and/or width of the initial rectangular image. The image
completion is then performed accordingly. Nevertheless, even if this first approach leads
to the production of square images as expected, the addition of pixels can become quite
considerable, especially in the case none of the image dimensions is originally equal to a
power of 2. A consequence of the ZP operation is then an increase of the image data size,
the latter being quantified thanks to the following equation

Image size [KB] =
M ×N ×B

8× 1024
, (3.1)

where M and N are the dimensions of the image (M ×N is the corresponding total
amount of pixels) and B is the colour depth, introduced in section 2.1, that is expressed in
bits [6]. This data growth constitutes actually a drawback in terms of computation time.
Indeed, it is quite obvious that the more voluminous the image content, the longer the
computation time, as the image restoration algorithm has more information to process. In
order to reduce as much as possible this computation time, a second version of the ZP
method, hereafter referred as the improved ZP one, was created to minimise the amount
of extra pixels. This time, the numerical code compares the image dimensions, and the



3.3. METHODOLOGY 27

smallest one is adapted to match the largest one. A new square image is then obtained,
the length of one of its sides corresponding to the height or the width of the raw image,
depending on whether the latter has a vertical or a horizontal shape respectively.

A visual representation of the initial and the corrected versions of the ZP technique
is illustrated at figure 3.4, with the example of an original image of dimensions 297 ×
684. As one can see, the image produced with the primary ZP method has 1024 × 1024
dimensions while the improved ZP one has 684 × 684 dimensions. In this representation,
axes appearing to the left and bottom of the images directly provide an indication of the
number of pixels making up their height and width. All these axes, that are attached to
the images being either displayed in the text or in the appendix part of this work where
most of the results are gathered, have the same meaning.

Figure 3.4: Comparison between original image, image with ZP and image with improved ZP.

Another possibility to save time when realising the images restoration would have been
to rescale the images corrected by ZP, and limit in this manner the amount of processed
data. An image rescaling is notably introduced at the beginning of the code extracted
from the Numerical tours’ notebook [4] to adjust the data that needs to be reconstructed.
However, a rescaling operation inevitably leads to a loss of information, which should, of
course, be avoided as much as possible. In fact, rescaling an image means that all the pixels
content found in the unmodified image must be redistributed in a smaller grid of pixels,
which makes the appearance of the image obtained by rescaling more pixelated. In a way,
the rescaling step can thus be assimilated to a merging of pixels. The figure 3.5 shows how
a rescaling can actually affect the image quality, with image dimensions that are divided by
a factor 10 before carrying out the reverse operation to recover a image with the initial
dimensions. A quick look clearly indicates that the final image is blurred compared to the
primary one. Even if the scaling factor of 10 was here chosen to be large enough in order
to reinforce the effect demonstrated in the example, a smaller scaling factor would also
modify, to a lesser extent, the image content. The related loss of information justifies why
this method cannot be kept for reconstructions and rescaling is therefore not implemented
in the last version of the tested numerical algorithms for this reason.

With a view to test the two versions of the ZP technique and determine which one is
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Figure 3.5: Effect of rescaling on an image with improved ZP.

the most suitable for the images reconstructions, different steps were followed in a precise
order until obtaining pertinent results. This succession of manipulations is described in the
figure 3.6. First, the image is completed by using either the initial or the improved type of
ZP, and is after that masked by applying a randomly generated mask having the same FR
in both cases and having the same dimensions as the image with ZP. The masked image
is then submitted to the restoration algorithm and a corrected version of the ZP image is
acquired. Finally, the obtained result is cropped to retrieve an image having the same size
as the original one. A Peak Signal-to-Noise Ratio (PSNR) value can then be determined on
the basis of the original image and the restored one.

Figure 3.6: Main steps of images reconstructions involving the ZP technique, for both initial
(above) and improved (below) cases.

PSNR is a quantity that represents the ratio between the maximum value that can be
found in a signal and the noise that induces some perturbations on this same signal. As
the dynamic range of a signal, defined as the ratio between its maximum and minimum
values, can be broad, the PSNR is generally expressed through a logarithmic scale using
decibel units. A general mathematical expression for PSNR is



3.3. METHODOLOGY 29

PSNR = 20 log10

(
max(f)√
MSE

)
, (3.2)

where max(f) is the maximum value exisiting in the original image (or signal) f. The
Mean Squared Error (MSE) is another quantity that symbolises the noise introduced in the
PSNR definition and that can be developed as

MSE =
1

M

1

N

M−1∑
i=0

N−1∑
j=0

||fi,j − gi,j ||2. (3.3)

The MSE can therefore be interpreted as follows. For two images f and g having similar
dimensions, the MSE takes the square of the difference between every pixel f in f and the
corresponding pixel (that is to say, the one having the same location (i, j)) g in g, sums all
the possible values and divides it by the product between the number of rows of pixels of
the images M and the number of columns of pixels of the images N . Rows are indexed by
i while columns are indexed by j. Here, f plays the role of the original image and g is the
restored one [18].

In summary, the lower the MSE, the higher the PSNR value and so the better the image
reconstruction. Indeed, a low MSE means that on the whole, the difference between two
corresponding pixels is small too (it tends towards zero when the pixels contents are almost
identical), and thus that there are only slight variations between the two images. As the
PSNR value clearly indicates the relation between an original image and its reconstructed
version, it will be used through all this work as a reference in order to estimate the quality
of all the images restorations.

3.3.2 Reconstructions based on an observed scene

This section is focused on the very first reconstructions performed on an image acquired
by the imaging device presented in section 3.2.1. In this preliminary series of tests, the
observed image is initially complete, and masks are then numerically applied on it to hide
some of the image zones, creating this way missing information that will be reconstructed
by the IHT algorithm presented in the appendix section B.1. The idea is here to repeat
this restoration process for varying values of the NOI and determine which range of PSNR
values can be obtained by comparing the reconstructed images with the original image. In
the algorithm, a decaying value of the threshold λl described earlier in equation 2.25 is
selected. This threshold is hereafter called the λ parameter.

This primary approach of observed scene’s reconstructions has two main objectives.
Firstly, it aims to study the effect that the NOI value has on the quality of the image
restorations. Secondly, a comparison is made between the reconstructions results obtained
when masking the observed image either by a mask having a random pattern and being
digitally generated, or by another mask having also a random pattern (different from the
previous one) but that is this time created thanks to the micromirrors of the imager’s



30 DIGITAL IMAGE PROCESSING

DMD. To avoid any confusion between the two masks in the following, the mask that is
digitally obtained is hereafter referred as the random mask, while the second mask being
experimentally obtained with the imaging device is hereafter called the lab mask. The
figure 3.7 gathers the original image, sometimes also referred as the observed scene or the
ground truth (GT), and the two tested masks.

Figure 3.7: Original image of the well structured scene and its related random and lab masks.

As one can see, the observed scene was originally selected because of its regular patterns,
from which deviations produced by the algorithm during the reconstructions are easily
identifiable visually. This image was generated by the experimental setup on March 21
(21/03). This indication linked to the acquisition date will help to differentiate the scenes
throughout the work, and notably in the appendices where all the reconstructed images are
gathered. Regarding the masks, their FR were chosen to be equal (70%) so that they can
be adequately compared. Nevertheless, the distribution of the two masks’ patterns differ
from each other. This difference actually influences the results of the image restoration, as
it will be presented in section 3.4.2.

3.3.3 Optimisations

The primary objective of this section is to verify if it is possible to optimise the λ parameter
by fixing its value, by opposition to the previous section in which the algorithm performed
itself an iterative and decreasing resizing of the threshold. Here is the procedure allowing
to achieve this goal. Similarly to what was already done before, a random mask is applied
on the 21/03 scene. A series of reconstructions is then realised with a fixed value of λ
selected arbitrarily for each of the restorations, in an interval going from 0 to 1. All of
these operations are also carried out by using a fixed value of the NOI that does not vary
between each of the reconstructions. This way, and by computing the PSNR between the
initial undamaged image and each of the restored ones, a representation of the PSNR value
as a function of the λ parameter can be obtained with a view to check if a precise value of
λ maximises the PSNR and thus enhances the images processing results.

After that, this series of steps is also performed on a second scene that is less structured
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than the 21/03 one. This new GT (acquired on March 27 and therefore called the 27/03
scene) represents actually a satellite scene of the CSL that harbours many varying areas
(in terms of their shapes), compared to the first image where there are only straight and
redundant patterns. The interest is thus here to check if the regularity of a scene can
influence the fixed value of the threshold λ for which the reconstructions are the best. A
representation of the 27/03 GT and of the masking pattern involved in the image correction
process, that is actually an eroded mask, is provided at the figure 3.8.

Figure 3.8: Original image of the uneven scene and its related eroded mask.

Besides the determination of an optimised λ parameter, some adjustments and improve-
ments were also implemented in the IHT numerical code, as it was already the case for the
ZP technique described above. The first modification consisted in creating a loop that will
generate, in an automated way, a series of reconstructions based on the masked image of
interest and on various NOI values that are encoded beforehand by the user. Two arrays are
also introduced in this same loop, one aiming to store all the reconstructed images in order
to facilitate their manipulation in subsequent operations, and the other one gathering all
the generated PSNR values so that they can be directly integrated into a graph afterwards.
The IHT Python code is then completed by adding a part dedicated to the display of the
reconstructions results with their grayscale colorbars. This last improvement is explained
in more details in the next section.

3.3.4 Grayscale adjustment

Due to the numerous operations taking place inside the IHT algorithm, the restored images
obtained after the reconstructions usually appear clearer than the initial corresponding
GT. This can be understood by the fact that the manipulations of images that are carried
out by the WTs affect somehow the pixels intensities that are originally contained in the
GT. These initial intensities are, knowing that all the images processed in this work have a
colour depth equal to 8 bits, distributed according to 256 distinct values, in an interval
going from 0 to 255 (as it was already explained in section 2.1). However, the operations
realised by the WTs are not restricted to this particular interval and the resulting pixels
can thus have intensities that exceed the usual range. As a consequence, the global contrast
of the reconstructed image is modified, according to the following expression:
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C =
Imax − Imin

Imax + Imin
× 100 %, (3.4)

where C is the image contrast, and Imax and Imin are respectively the maximum and
the minimum value of all the pixels intensities present in the image [13].

Some possibilities exist to correct this change of contrast, so that the reconstructed im-
ages can be compared easily to their respective GT. The method followed here is composed
of two distinct steps. The first one consists of restricting all the pixels intensities values of
the reconstructed image in the expected range. In order to avoid having non-integer values,
the second one rounds all the obtained values to the nearest integer number. These two
corrections are directly performed by using two classical Python functions.

For the purpose of visualising to which of the grayscale level the images content
corresponds, a display added at the end of the IHT code, available at the appendix section
B.1, allows to accompany any type of 8-bits image with its grayscale in the form of a
colorbar. Every time it is needed, all the following images presented in this work, and
especially the ones gathered in the appendices, are complemented with their respective
colorbar.

3.3.5 Image deconvolution using PSF

As it was already mentioned in the state of the art chapter, image deconvolution is a process
aiming to remove from an image undesired contributions caused by the imperfections of the
optics, to make it sharper and smoother. This part of the master thesis actually explores
the methodology proposed by the numerical code found in [5] (from which an adapted
version is available in the appendix section B.2). The content of this part of the work is
thus quite different from what was already covered earlier as it does not include inpainting
and IHT reconstructions, and is focused on another kind of inverse problem. The goal is
now to carry out an image denoising (a denomination found in [5] that will be reused in the
current section) and deconvolution, by applying on an observed scene the FT of predefined
kernels, and by making use of the wavelet coefficients of the image of interest as it was
presented in section 2.5. Here, two types of initial kernels were tested, namely a gaussian
kernel (GK), and a PSF measured in laboratory demonstrating the possibilities offered by
real measurements. A third option would have been to test, in a more theoretical manner,
the effects caused by a classical Airy pattern, but this case is however not covered in the
present work.

The figure 3.9 below illustrates all the components that will play a significant role in the
image denoising and deconvolution. At the beginning of the process, one finds two different
types of kernels. The first one, that is digitally generated and is initially proposed in [5], is
a GK similar to a 2D Gaussian function and for which the spatial extension and general
shape were selected in order to mimic as much as possible the ones of measurable PSFs.
These PSFs constitute the second sort of analysed kernels, and one of them was especially
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acquired by the optical setup of section 3.2.1 for the purposes of these image deblurring
tests. The production of this PSF was performed by observing a uniformly white scene
through the imager with only one of the DMD micromirrors set in the ON configuration,
representing in this manner the original point source on the basis of which a PSF is defined.
From these two different objects, it is then possible to compute their respective FT, that
will in a certain manner replace the Fourier matrices developed in 2.5.3, and will then lead
to the production of an operator having the same resulting effect as the one of the BCM
H previously described. However, it is important to note that the FTs exposed in the
figure 3.9 are actually the real parts of the initial FTs, and can therefore be assimilated
to the OTF cited in section 2.5.1. These real parts are in fact taken in order to visualise
the FTs in a more conventional way, as these mathematical objects are usually made of
complex values. A last consideration about these FTs is that they are initially not shifted.
In other words, most of their high frequency components are all gathered in the corners of
the corresponding images. A shift operation is therefore needed and applied on the initial
FTs thanks to a dedicated function, so that all the frequency information is now centred.
This corresponds to the final form of the FTs that will be implemented in the denoising
operator.

Figure 3.9: Main objects used in the image deconvolution process, in the cases of a GK and of a
measured PSF. On the left: kernels. In the middle: not shifted FTs. On the right: FTs.

The original scene submitted to the denoising and deconvolution operations is the one
of figure 3.10. This version of the observed scene is slightly inclined due to the structural
configuration of the imager and notably to the tilt angle of the DMD’s micromirrors, as
it is schematised in the figure 3.1. Possible corrections of the visualisation of the scene,
leading to images similar to the one exposed at the figure 3.8, are obtained thanks to
post-processing techniques. After that, some preliminary tests are first realised with a view
to denoise the GT. To do so, the final versions of the FTs are completed with the same ZP
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Figure 3.10: Satellite view of the CSL serving as a reference scene (on the left) and its equivalent
image (GT) produced by the optical setup with all the DMD mirrors set to the ON-configuration

(on the right). Adapted from [17].

technique than the one of the IHT code, so that their dimensions match the ones of the
GT, while keeping high frequency information at the centre of the image. This technique is
applicable in this case because the pixels intensities found at the edges of the FTs images are
negligible (their values tend towards zero), as it can be seen once again in figure 3.9. Hence,
adding extra 0-value pixels in each sides of the FTs does not affect the operations significantly.

The results obtained for the GT denoising when applying on it the FTs are available at
the figure 3.11. The application of the FT related to the GK seems to properly denoise
the entire image. However, the outcome is clearly different for the measured PSF, even
if the followed procedure is exactly the same. A potential hypothesis for this unexpected
situation is that the FT of the measured PSF contains in reality two intensity peaks, that
are not resolved in the figure 3.9 due to optical limitations. This could explain why the
FT of the measured PSF seems a little bit stretched and why the resulting denoised image
looks like the superposition of two identical images, offset from each other.

Figure 3.11: Effect of the denoising operation on the GT, from a GK (on the left) and a measured
PSF (on the right).
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Here is the methodology followed to solve this problem. First, the GT is cropped with
arbitrarily chosen dimensions that are smaller than the ones of the complete GT (here,
square images were selected). In parallel, the FT of the measured PSF is completed by
ZP so it can be applied efficiently on the cropped GT. The position of this cropped GT,
compared to the original complete GT, is then adapted by cropping another image area with
the same dimensions as before, until the shifted images of figure 3.11 are superposed. This
step is therefore repeated several times and corresponds to a trial and error method. The
expected superposition is thus obtained by conserving the same FT completed by ZP all
along, while modifying the cropped GT. After that, a regularisation of the image’s wavelet
coefficients is performed, similarly to what was developed at the end of the section 2.5.3.
As this last step corresponds to the final image deconvolution and makes use of the sparsity
property of images, it is called a sparsity deconvolution. The figure 3.12 summarises all the
procedure that is discussed here.

Figure 3.12: Overview of the image sparsity deconvolution process.
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3.4 Results and discussion

3.4.1 Zero padding

In total, a series of four rectangular images were submitted to the methodology presented
in figure 3.6 in order to establish which of the two different ZP techniques is the most
advantageous and determine if some trends emerge from the main results. The table 3.1
gathers the PSNR values obtained for the different reconstructions, and all the corresponding
images are displayed in the appendix section A.1.

PSNR [dB]
Images ZP Improved ZP

Before cropping After cropping Before cropping After cropping
Ariane 40.56 28.32 34.21 28.25
CSL 39.28 31.40 34.98 31.42

PLATO 45.44 43.39 45.78 44.18
Spacesuit 37.41 30.50 33.22 30.59

Table 3.1: PSNR values obtained for reconstructions with ZP.

Two main information can be deduced from this table. Firstly, the values acquired
before cropping the corrected images are usually higher for the initial technique than for
the improved one. This is simply explained by the fact that the images modified by the first
version of ZP contain in general more extra zero value pixels added by completion. These
pixels conserve their value after the reconstructions, and consequently the MSE computed
between the images before and after the reconstructions decreases globally, leading to an
increase of the PSNR. Secondly, PSNR values are of the same order of magnitude for the
two methods once the reconstructed images are cropped. The slight variations come from
the randomly generated mask that is applied on the images with ZP. The mask was in
reality regenerated for each reconstruction and its distribution differs thus every time, even
if the FR remains always the same. As only one part of the image with ZP corresponds to
the initial image (the other part being the added data information coming from the ZP
itself), this part is, as a result, more or less masked depending on the mask pattern in this
precise area.

As the primary and the improved ZP techniques provide similar results when the
reconstructed cropped images are compared to the initial ones, the improved ZP was kept
in the final version of the IHT code as it can be seen in section B.1. The justification of this
choice is the gain of computation time offered by this second approach of the ZP technique,
as it was already mentioned before in section 3.3.1. Even if most of the images tested in
this work are originally square images and do not require any completion by ZP a priori,
the ZP technique is not removed from the main code as it can serve as a verification step
to check the images dimensions, and hence avoid size errors in further steps.
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3.4.2 Reconstructions based on an observed scene

The figure 3.13 and table 3.2 below present the results obtained on the basis of the
methodology described in section 3.3.2. All the correlated restored images are available in
the appendix section A.2.

PSNR [dB]
NOI Random Lab mask

mask (21/03)
2 8.12 6.39
10 25.71 10.69
20 29.28 18.04
50 31.11 25.41
100 31.85 26.19
500 32.12 27.10
1000 32.28 27.26
2000 32.33 27.31

Figure 3.13 & Table 3.2: NOI and PSNR values for the 21/03 reconstructions. Comparison
between random and lab masks results with a decaying value of λ.

Some interesting information can be deduced from these results. First, the quality of the
reconstructions has the same behaviour for the two types of mask, as the two plots displayed
in the figure 3.13 have the same trends with an increasing value of the NOI. More precisely,
a sharp increase of the PSNR values occurs for small NOI values and is followed by a nearly
constant evolution starting at about 500 iterations. This kind of plateau zone somehow
symbolises the limitations of the algorithm that cannot reach larger PSNR values with the
selected parameters. This particular evolution for large NOI values will be observed later
in similar types of graphs presented in figures 4.1, 4.2, 4.3, 4.4 and 4.5.

Moreover, it clearly appears that the random mask leads to the production of better
reconstructions results as the associated PSNR values are higher than the ones obtained
when using the lab mask. This can be explained by comparing the distribution of black
and white areas in the two masks. Indeed, a quick look at the figure 3.7 allows to directly
see the difference between the two masks. On average, the random mask contains thinner
patterns than the lab mask, due to a distribution of 0-value and 1-value pixels that is a
little bit more homogeneous (even if the FR is the same in both situations as a reminder).
As a consequence, the inpainting technique seems thus to be quite more efficient for images
having thin damaged zones.

3.4.3 Optimisations

This section exposes the results that are related to the optimisation of the arbitrarily
fixed threshold value playing a significant role in the IHT reconstruction algorithm. The
succession of steps listed in section 3.3.3 were first performed by using 10 different values for
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the fixed λ parameter, going from 0 to 1 in steps of 0.1. However, the corresponding plots of
the PSNR as a function of the λ parameter showed decreasing PSNR values for increasing
values of λ, without containing a maximum value as it was expected. To determine if this
peak value was located at a lower range of λ parameter values, and in order to refine the
determination of the threshold leading to the best reconstructions results, additional images
restorations were performed between λ = 0.01 and λ = 0.1, this time in steps of 0.01.

All the results of this optimisation process are gathered in figures 3.14, 3.15 and in
tables 3.4, 3.4. They were all obtained by choosing a NOI of 500. The justification of this
choice relies on the results mentioned in the previous section, where a NOI value of 500
iterations seemed to constitute a good compromise between satisfactory reconstructions
and a relatively low computation time. Obviously, the higher the NOI, the longer the
computation time.

Two possible interpretations can be developed regarding the optimisation results. The
first one is that the same value of λ = 0.09 allows to create the best reconstructions
(maximal PSNR values), whether in the case of a well structured scene (21/03 GT) or an
uneven one (27/03 GT). Even if it is impossible to affirm if this value would be applicable
to any type of observed scenes, one can already confirm that a suitable fixed threshold
value is neither too small (i.e. not too close to 0) nor to high (i.e. not too close to 1).
To understand why an intermediate value is obtained in both cases, a link can be made
with what was already mentioned in the introductory paragraph of section 2.4. As the
threshold of the Hard Thresholding operator is responsible for the classification of the
image’s wavelet coefficients, its fixed value directly impacts the quality of the reconstructions.

More exactly, a too low threshold value means that most of the wavelet coefficients are
kept during the reconstruction process. As the algorithm cannot select properly the right
coefficients, due to the fact that a too high diversity of possibilities exist, this situation
consequently leads to partial, or at least poor, reconstructions. This explains why PSNR
values drop for small λ parameter values, as it is illustrated in figures 3.14 and 3.15. On
the contrary, a too high threshold value means that not enough wavelet coefficients are
conserved in the IHT algorithm (most of them are set to zero). An image restoration is
therefore possible but is however suboptimal. This justifies why large λ parameter values
provide PSNR values that are relatively high, but that are not the maximal one though, as
it can be seen once again in figures 3.14 and 3.15.

A second interpretation concerns then the comparison of PSNR values acquired for the
well structured and uneven scenes. The maximum value derived from the first situation
reaches 35.6 dB, compared to 27.2 dB for the second situation, which is a quite large
variation taking into account that the PSNR is expressed using a logarithmic scale as a
reminder. As it was already justified in the last section, this difference may be explained
by the fact that the two scenes were masked by two distinct types of mask for which the
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patterns vary from each other. Also, results might slightly differ because the two original
undamaged images, and so their respective content, are intrinsically different at the start.

λ PSNR [dB]
parameter with random mask

0.01 7.8
0.02 7.9
0.03 8.3
0.04 9.0
0.05 10.6
0.06 13.9
0.07 20.5
0.08 31.3
0.09 35.6
0.1 35.4
0.2 32.7
0.3 31.0
0.4 29.7
0.5 28.4
0.6 27.4
0.7 26.4
0.8 25.7
0.9 25.2

Figure 3.14 & Table 3.3: Optimisation of the λ parameter value for a well structured scene
reconstruction with niter = 500 fixed.

λ PSNR [dB]
parameter with eroded mask

0.01 8.5
0.02 8.8
0.03 9.9
0.04 12.4
0.05 16.1
0.06 19.8
0.07 23.2
0.08 26.1
0.09 27.2
0.1 27.1
0.2 26.1
0.3 25.5
0.4 25.2
0.5 25.1
0.6 25.1
0.7 25.1
0.8 25.1
0.9 25.1

Figure 3.15 & Table 3.4: Optimisation of the λ parameter value for an uneven scene
reconstruction with niter = 500 fixed.
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3.4.4 Grayscale adjustment

On the basis of what was described in the section 3.3.4, the figure 3.16 below compares an
original image, one of its possible reconstructions and the correction of the latter.

Figure 3.16: Grayscale adjustment results.

It can be easily observed that the uncorrected image is much clearer than the GT, and
its colorbar represents an unrealistic range of pixel intensities including negative values.
The corrected image, however, is accompanied by a classical colorbar gathering the 256
expected values of gray. In addition, its global appearance is much more similar to the one
of the observed scene.

3.4.5 Image deconvolution using PSF

The main results that are linked to the image deconvolution process presented in section
3.3.5 are illustrated in this last part of the digital image processing chapter. First of all,
an unprocessed version of the cropped GT is provided at the figure 3.17 so that it can be
easily compared to the denoising and sparsity deconvolution results. The upper black band
located at the top of this cropped scene was kept on purpose and served, during preliminary
tests of the image deconvolution technique, as a reference for the image positioning, as it
was necessary to slightly modify the image cropping when carrying out the image denoising
step by a measured PSF.

Figure 3.17: Original cropped scene containing noise.

The figure 3.18 shows which kind of typical denoised images can be obtained with
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the methodology introduced earlier. As one can see, the obtained images appear to be
much smoother than the GT for both the GK and the measured PSF cases, which is the
modification that was expected when performing a denoising of the GT. In addition, the
two corrected scenes are a little bit clearer than the original image, which seems to indicate
that the global contribution of the noise that is initially present in the image content tends
to darken it. Besides that, the figure 3.19 gathers the sparsity deconvolution results showing
corrected images too.

Figure 3.18: Denoised cropped scene obtained by applying the FT of a GK (on the left) and of a
measured PSF (on the right) on the noisy cropped GT.

Figure 3.19: Results obtained for the sparsity deconvolution involving a GK (on the left) and a
measured PSF (on the right).

However, it is impossible, at this stage, to perform PSNR computations in order to
compare the quality of the image rectifications, and the explanations provided in this
section are thus purely qualitative. Indeed, the denoised / deconvolved images do not
correspond anymore to the GT, and determining PSNR values between corrected images
and the observed scene is therefore not relevant. Moreover, the original image that does not
contain any imperfection is not available as it is observed by the optical setup from which
the perturbations come from. As a consequence, PSNR values comparing the unperturbed
image and the deconvolution results cannot be obtained too. Nevertheless, it is still possible
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to affirm that the techniques involved in this section improve the quality of the GT, as they
remove the kind of grainy aspect that can be easily observed at the figure 3.17 and that is
not present in the initial image. Visual variations between the different results are however
barely perceptible.

It is also essential to remember that in the case of the measured PSF, certain approx-
imations could affect the obtained results. Firstly, the trial and error method tested for
the image denoising correction is certainly not optimal and it would be interesting to
find a more automated version. Secondly, the acquisition of the PSF, as it was already
mentioned before, relies on one micromirror of the DMD that is set in its ON configuration.
Nevertheless, the definition of the PSF is, as a reminder, based on the observation of a
point source having an infinitely small spatial distribution, which is of course not the case
of the DMD components. Improving as much as possible these two considerations could
probably lead to results that are even better than those obtained here.



Chapter 4

Applications

In consequence of everything that has been described before, it is possible to involve the
procedures followed through all this document in more practical situations, in order to test
their potential limitations and evaluate their efficiency regarding new types of simulations.
On that purpose, this chapter is dedicated to the description of two applications of
the inpainting reconstruction process, with emphasis on an adaptation of the methods
previously presented in this work. Firstly, observations of some damaged scenes will provide
the possibility of testing the quality of the images restorations, with a comparison of the
effects caused by non-eroded and eroded masks on the one hand, and an extension of
these masks’ FR on the other hand. Secondly, a more pragmatic problem, that is in direct
connection with corrupted data derived from the Landsat 7 space mission, is introduced
and accompanied by a description of the general related context. All the results obtained
in the framework of this master thesis for these two series of tests are presented in the
following sections.

4.1 Observations of damaged scenes

Contrary to what was already covered in the digital image processing chapter, where the
images generated by the CS imager designed in laboratory were completely observed and
were after that numerically masked thanks to a predefined binary pattern, this section
focuses on another type of reconstructions. Here, the objective is to carry out identical
images completions, at the difference that the observed scenes are already damaged when
observing them through the optical setup (presented in section 3.2.1 as a reminder), in
which the micromirrors of the DMD are adequately set to produce the missing parts of
the GT of interest. Purposely, different masks were also obtained using the same imaging
device so that their patterns exactly correspond to the lost areas of the images that need
to be corrected. These masks show variations when comparing them, and these changes are
intentionally implemented to see how these modifications actually affect, in a positive or
negative manner, the reconstructions results. Hereafter, an evaluation of the quality of the
images restorations, based on the masks properties, is provided.

43
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4.1.1 Comparison between non-eroded and eroded masks

As it was discussed in the section 3.2.2, the production of eroded masks by the morphological
erosion method is realised as a mean to rectify the reconstructions imperfections caused
when employing simple binary masks. As a result, it is therefore expected that the eroded
version of masks leads to better results than the non-eroded one.

Here is the methodology followed to determine if the last affirmation is effectively correct
or not. First, a series of reconstructions are performed for a damaged scene on which a
binary mask without erosion is applied. This series of acquisitions is realised by taking
different NOI values. Afterwards, another set of images reconstructions is carried out for
the same GT, involving this time an eroded mask and conserving identical values of the NOI
than in the previous case. PSNR values are then extracted to characterise and compare the
quality of the results.

Nevertheless, it is important to mention that the computation of PSNR values is,
throughout this entire section 4.1, performed in two distinct ways for each of the analysed
situations. The first one compares the reconstructions results with the damaged GT, which
causes a decreasing evolution of the PSNR as the NOI increases, due to the fact that
the image is more and more restored, and that pixels of damaged zones are progressively
refilled. Consequently, this type of PSNR values, denoted in this paragraph as PSNR1,
is hereafter the one that is related to the so-called image deterioration, the latter being
high when there are still most of the image’s missing parts after the reconstruction (small
NOI value), and low otherwise. All the reconstructed images of this current section 4.1
gathered in the appendices are accompanied by this specific PSNR1 value. In contrast, the
second kind of PSNR, called PSNR2, is the traditional one obtained when comparing a
complete scene with the corresponding restored images. This is made possible by acquiring
a second GT that represents the same image portion than the one delimited by the damaged
GT but with all of the micromirrors of the imager’s DMD tilted in the ON configuration.
This PSNR2 value is the same as the one presented in all the chapter 3 and will for this
reason be linked to the image restoration, for which the PSNR values increase as the NOI
increase too, as the image is less and less damaged. In summary, it is now possible to
produce simultaneously two series of PSNR values (PSNR1 and PSNR2) for a same set
of reconstructions, that represent either the image deterioration or the image restoration,
these last two systematically presenting an evolution that is opposed to the one of the
other.

All the results associated to the comparison of the effects of non-eroded and eroded
masks when they are introduced in the IHT process are illustrated in figures 4.1 and 4.2,
and listed in tables 4.1 and 4.2. They were obtained by selecting a fixed value of the IHT
threshold (i.e. of the λ parameter) equal to 0.09, as this value was determined as being the
optimised one for the scene of interest, which is in the present case the one already exposed
before at the figure 3.7. All the images allowing to visualise the results are available at the
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appendix sections A.3.1 and A.3.2. As expected, the image deterioration is accompanied by
a decreasing evolution while the image restoration shows an increasing evolution as the
NOI increases, for both the reconstructions involving a mask with and without erosion.
More precisely, PSNR values of the deterioration first decrease sharply, before stabilising at
high NOIs. Besides that, the increase of the PSNR values related to the image restoration
is more moderate at the beginning (low NOI values) until reaching a similar plateau zone
corresponding to the limitations of the reconstructions.

PSNR [dB]
NOI mask without erosion

Image Image
deterioration restoration

2 33.63 5.99
10 26.75 6.10
20 23.57 6.24
50 19.25 6.65
100 15.74 7.42
200 11.53 9.35
300 8.72 12.06
400 6.90 15.78
500 5.85 20.33
600 5.46 23.30
750 5.38 24.09
1000 5.37 24.15
1500 5.37 24.15
2000 5.37 24.15

Figure 4.1 & Table 4.1: NOI and PSNR values for the 21/03 reconstructions. Mask without
erosion, λ = 0.09.

PSNR [dB]
NOI mask with erosion

Image Image
deterioration restoration

2 33.76 5.25
10 27.07 5.37
20 23.61 5.51
50 18.83 5.94
100 15.04 6.73
200 11.15 8.61
300 8.76 10.96
400 7.10 13.98
500 5.99 17.95
600 5.42 22.28
750 5.21 25.19
1000 5.18 25.71
1500 5.18 25.80
2000 5.18 25.80

Figure 4.2 & Table 4.2: NOI and PSNR values for the 21/03 reconstructions. Mask with erosion,
λ = 0.09.

In order to visualise in a more efficient manner the effects of the two types of tested
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masks, the figure 4.3 displays the image restoration results of both figures 4.1 and 4.2. For
NOI values smaller than 750, the PSNR values for reconstructions involving an eroded mask
are lower than the ones of the non-eroded mask. However, which is interesting to notice
here is that the eroded mask’s PSNR values become greater than the non-eroded ones from
a NOI equal to 750. Even if the FR of the eroded mask is enlarged (which means that more
GT content is initially lost) compared to the one of the mask without erosion (as mentioned
in section 3.2.2), and produces therefore poorer restorations at small NOI values, the mask
that contains a pattern submitted to the erosion correction provides better reconstructions
results at high NOI values than the mask without erosion, which is in agreement with the
aforementioned expectations.

Figure 4.3: Comparison of the mask erosion effect on the PSNR values obtained for the 21/03
reconstructions, with λ = 0.09.

4.1.2 Extension of the mask filling ratio

This new application is focused on a methodology that is exactly the same than the one
described in the previous section 4.1.1. However, the main objective differs and consists, in
the present case, of comparing the effects produced by two masks having a different FR.
The motivation of this new series of tests is to evaluate how this FR can impact the quality
of the images reconstructions and to see which kind of limitations the IHT algorithm can
encounter for a considerable loss of information regarding the content of the damaged scene.

To meet the new reconstructions requirements, the observations of two eroded masks
and two scenes were carried out by using the optical setup described above, on two different
dates. The acquisitions performed on March 27 (27/03) correspond to a mask having a
FR equal to 70 %, while data obtained on May 14 (14/05) are linked to a mask having a
FR of 90%. The two observed scenes are derived from the same initial image and are thus
comparable.

Figures 4.4 and 4.5, as well as tables 4.3 and 4.4, collect the results obtained for the two
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series of PSNR computation, for the masks having a different FR. All the correlated restored
images are presented in appendix sections A.4.1 and A.4.2. Now, the NOI vary between 2
and 1000, as this maximal value showed satisfactory results in previous simulations. An
additional reconstruction was performed in the situation where the GT is masked at 90%,
with a NOI of 2000, with the aim to visually improve the image restoration. The associated
image is displayed in the appendix section A.4.2 but the related PSNR value is not dis-
played in the following graphs and tables. As for the λ parameter, it is kept equal to 0.09
as the undamaged version of the observed scenes is initially the same as the one of figure 3.8.

PSNR [dB]
NOI mask with erosion 70 %

Image Image
deterioration restoration

2 33.40 8.56
10 24.44 8.89
20 20.77 9.31
50 16.20 10.65
100 12.43 13.21
200 9.22 18.48
300 8.47 21.81
400 8.24 24.02
500 8.13 25.44
600 8.07 26.01
750 8.05 26.14
1000 8.05 26.14

Figure 4.4 & Table 4.3: NOI and PSNR values for the 27/03 reconstructions. Mask with erosion,
FR = 70 %, λ = 0.09.

PSNR [dB]
NOI mask with erosion 90 %

Image Image
deterioration restoration

2 35.65 9.19
10 26.96 9.45
20 23.34 9.76
50 18.81 10.67
100 15.31 12.12
200 12.29 14.79
300 10.99 17.13
400 10.31 19.02
500 9.95 20.41
600 9.76 21.43
750 9.59 22.53
1000 9.46 23.46

Figure 4.5 & Table 4.4: NOI and PSNR values for the 14/05 reconstructions. Mask with erosion,
FR = 90 %, λ = 0.09.

At first glance, the four plots show similar evolution than the ones illustrated in figures
4.1 and 4.2, for both the image restoration and the image deterioration results, even if
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slight variations may appear due to the change of GT between the two sections. As one
can expect, PSNR values are globally higher for the image restoration when damaging the
GT at 70%, while PSNR computations provide higher results for the image deterioration
when masking the scene at 90%. These two trends can be explained by the fact that more
information is obviously corrupted with a mask having a FR of 90% than with another mask
its FR equal to 70%. The algorithm is thus logically less efficient for images having a high
rate of missing data than in the opposite case. As a consequence of all this, reconstructions
images available in the appendix section A.4.2 are less sharp and contain less details than
the ones exposed in A.4.1. The figure 4.6 shows the difference between the 27/03 and the
14/05 final reconstructions.

Figure 4.6: Final results of the 27/03 (on the left) and the 14/05 (on the right) reconstructions.
PSNR values are the ones related to the images deterioration.

Despite that, most of the initial image areas are recognisable after the reconstructions
involving an eroded mask for which the FR is equal to 90% (right part of the figure 4.6),
which confirms that the inpainting algorithm is capable to provide acceptable results even
if most of the initial data is missing at the start.

4.2 Reconstructions based on space mission measurements

The second half of this chapter is dedicated to another type of application, based on the
past Landsat 7 space mission from which the data are managed by the United States
Geological Survey (USGS). First, an overview of the mission and of the context in which
it took place will be presented. After this presentation, a description of the production
of scientific data by the Landsat 7 satellite is provided, and complemented by additional
information concerning the available data types, with emphasis on which are the ones
effectively processed in the framework of this master thesis. The corresponding procedure
followed for the images reconstructions is then summarised and the quality of the results
obtained through this method is finally reviewed.
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4.2.1 Landsat 7 mission

Launched in California on April 15, 1999, the Landsat 7 mission is part of the NASA’s
Landsat missions, focused on satellite-based Earth observation and monitoring. The nom-
inal phase of the mission, that ended on April 6, 2022, was configured such that the
Landsat 7 spacecraft orbited the Earth in a classical sun-synchronous, near-polar orbit
having an inclination of 98.2 degrees and an altitude of 705 kilometres. These parameters
were chosen for two main reasons, namely to receive enough energy from the Sun, the
spacecraft being partially powered by a Sun-tracking solar array, but also in order to cover
all of the Earth’s regions of interest (with a worldwide coverage accomplished in 16 days).
Nevertheless, series of spacecraft manoeuvres, correcting its inclination, were needed to
maintain the mean local time of the acquisitions (as it slightly changed over the years), with
a view to conserve an adequate reference time for the data production. The last of these
operations was carried out on February 7, 2017 and the orbit began to progressively degrade.

However, new manoeuvres were performed on April 6, 2022, in order to lower the
initial orbit’s altitude by 8 kilometres, thanks to a succession of spacecraft burns, that are
illustrated at the figure 4.7. During these specific manoeuvres, the instruments embedded
inside the spacecraft were switched to a stand-by mode. The new satellite’s altitude allowed
to refuel the Landsat 7 spacecraft in the framework of another servicing NASA mission. In
this manner, the Landsat 7 acquisitions continued and the mission entered in its extended
phase [19].

Figure 4.7: Orbital manoeuvres of the Landsat 7 spacecraft. From [19].

During this extended mission phase, that started on May 5, 2022, the Landsat 7 scientific
devices produced no less than 450 multi-spectral images per day on average, for a total of
about 175,000 observed scenes. The figure 4.8 below provides a global view of the different
locations of these observed scenes, that are mainly gathered in continental areas. The whole
mission finally ended on January 19, 2024, due to some problems encountered in terms of
spacecraft’s batteries deterioration [20].
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Figure 4.8: World map - areas covered by the Landsat 7 satellite during the extended mission,
with the corresponding number of acquired scenes. From [20].

4.2.2 Data production, type and selection

All the data coming from the Landsat 7 mission were acquired by the Enhanced Thematic
Mapper Plus (ETM+) instrument, a multi-spectral sensor corresponding to an enhanced
version of previous scientific devices found aboard the spacecrafts of the preceding Landsat
4 and Landsat 5 missions. The ETM+ sensor allowed in fact to observe the regions of
interest in 8 different spectral bands, varying in terms of their wavelength range and of
their resolution, the latter being sometimes referred as the ground sampling interval. The
three first bands correspond to the traditional RGB decomposition on the basis of which
true colour images are formed. Three other bands are then included in the infrared domain
and comprise a Near Infrared (NIR) band, a Mid-Infrared (MIR) one and a Short-Wave
Infrared (SWIR) one. Two extra bands, composed of a thermal one and a panchromatic
one, complete the observation range [19]. Panchromatic images, for which the spectral
range is located in the visible / NIR domains, are less precise in terms of spectral resolution
but they offer a better spatial resolution. All the bands and their features are listed in the
table 4.5.

Data acquisitions were performed by using the whiskbroom satellite imaging technique,
schematised at the figure 4.9. This acquisition method, largely developed in the field of
remote sensing applications, consists of a rotating mirror scanning crosswise the satellite’s
path and reflecting the light towards the satellite’s optics, until reaching the related detector,
and creating each of the image pixels at a time. Thanks to this technique, the Landsat
7 ETM+ instrument observe elongated strips named swaths, that have a width of 185
kilometres in the case of the Landsat 7 mission and that correspond to the successive ground
projections of the imager’s angular FOV. This angular FOV is segmented into smaller
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Band Name Wavelength Ground sampling
number range [µm] interval (pixel size) [m]

1 Blue 0.45 - 0.52 30
2 Green 0.52 - 0.60 30
3 Red 0.63 - 0.69 30
4 NIR 0.77 - 0.90 30
5 SWIR 1.55 - 1.75 30
6 Thermal 10.40 - 12.50 60
7 MIR 2.08 - 2.35 30
8 Panchromatic 0.52 - 0.90 15

Table 4.5: Spectral bands of the ETM+ instrument. Based on information found in [19]

parts, each of them being called the instantaneous (or incremental) field of view (iFOV),
for which the projection is this time the ground area covered by a single image pixel. The
observed zone associated to this second type of projection is sometimes referred as a ground
resolution cell and has a width that is designated as the so-called ground sampling distance
[13] [21].

Figure 4.9: Whiskbroom satellite imaging technique. Adapted from [22]

One of the subsystems of the ETM+ instrument, the Scan Line Corrector (SLC), is
a mechanism composed of two parallel mirrors designed to compensate for the satellite’s
forward motion. Thanks to this correction, the series of scans obtained by the whiskbroom
method show a complete and rectilinear pattern, which is not the case otherwise. Scans
performed without the SLC contain therefore a zigzag pattern, as it can be seen in the
figure 4.10, comparing the two situations involving or not the use of the SLC mechanism.
However, this device broke down from May 31, 2003, and all the attempts to repair it since
this date were insufficient, making the failure permanent. All the produced images that
followed were formed of non-rectilinear patterns separated by gaps and were thus generated
in an incomplete way. This justifies why the Landsat 7 mission was selected to be studied
in the frame of this work, in order to test if the inpainting technique covered in this master
thesis can provide satisfactory results when correcting the damaged images.
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Figure 4.10: Impact of the SLC mechanism on the Landsat 7 images generation. In this
configuration, the satellite’s motion goes from top to bottom. Reconstructed on the basis of

information found in [19] and [23].

Available online, all the data selected for the images reconstructions were downloaded and
collected on the USGS database [24]. For the purpose of some pre-established requirements,
two different GT were chosen, namely a non-damaged one, acquired before the SLC failure,
and a second one showing the zigzag pattern produced after the SLC operating phase.
In this manner, it is possible to follow the same type of methodology to simulate the
reconstructions in the two situations and analyse this way the obtained results. The two
satellite scenes of interest are displayed at the figure 4.11 below and are actually true colour
images gathering the blue, green and red bands described in the table 4.5. However, due to
the huge amount of pixels (8111 × 7431) in these two images, the portions of the scenes
that were submitted to the reconstruction process were restricted to the areas delimited
by the white squares, so that the computation time related to the restorations remains
acceptable. The two portions were determined on the basis of their visible structures that
will facilitate the visual interpretation when comparing the reconstructions results.

Figure 4.11: Initial undamaged (on the left) and damaged (on the right) satellite scenes, with the
related regions of interest (white squares). Data downloaded on [24].
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Only one element is still missing to perform the planned reconstructions. It is in reality
the mask that will be applied on the two GT. The objective was therefore to find an identical
pattern than the one of the damaged scene’s missing information. On that purpose, a
raw scan of the acquired thermal band, for the same observation than the one analysed
here, was downloaded on the USGS website too. This particular image, having the same
dimensions thand the GT, presents black and white patterns that exactly match the loss
of data produced by the SLC dysfunction. As it is illustrated at the figure 4.12, the same
image portion than the one of the true colour scene of figure 4.11 was conserved and is this
time represented by a red square. Some preliminary operations were executed to check that
this part of the mask pattern was effectively a binary one.

Figure 4.12: Raw scan linked to the thermal band acquisitions (on the left). The red square
symbolises the mask’s region of interest that is displayed besides (on the right). Data downloaded

on [24].

4.2.3 Reconstruction procedure

The procedure followed to reconstruct the Landsat 7 images is quite similar to the dif-
ferent methodologies previously explored in this work. However, the true colour images
processed in the current section are different from all the grayscale images processed so
far. Consequently, the IHT code was partially adapted so that the new satellite scenes can
be adequately manipulated. The changes implemented in the original numerical code are
displayed in the appendix section B.3.

As it was already explained in the introductory section 2.1, true colour images have a
colour depth of 24 bits, and can be split into three sub-images. The new images obtained
with this decomposition are each associated to a precise colour (either red, green or blue)
and have a colour depth being equal to the third of the one linked to the initial true colour
representation (so, 8 bits in the present situation). Similarly, the three RGB images can
be assimilated to three independent colour channels, the latter being schematised in the
figure 4.13. As it can be seen, each of the colour channels is itself divided into three layers,
namely a colour one and two black ones. Depending on the colour channel, the correlated
colour layer is not distributed at the same position in the information content. Hence, the
example proposed at the figure 4.13 shows that the red layer is positioned at the first stage,
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while green and blue layers are located at the second and third stages, respectively. Thanks
to this configuration, the three RGB images can be recombined in order to reassemble the
first true colour image. This recombination is part of the whole process described in this
section, for which an overview is provided at the figure 4.14.

Figure 4.13: Illustration of the RGB colour channels and their layers. From [25]

Figure 4.14: Overview of the true colour images reconstruction process.

The selected procedure aiming to reconstruct the incomplete Landsat 7 data is thus the
following one. In order, the initial true colour GT is first split into its three RGB sub-images.
From the latter are then extracted the corresponding colour layers that are implemented
into the IHT reconstruction algorithm after having been masked by the pattern described
in the previous section. The parameters chosen for each of the images restorations are a
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NOI of 500 and a decreasing value of the λ parameter. Once the RGB layers are separately
restored, they are reintroduced in their associated channel. The three channels are finally
recombined to reconstitute the corrected true colour image. This series of steps is repeated
for both the initially damaged and undamaged scenes, and a computation of the PSNR
value between the original true colour image and its restoration completes the results in the
case of the complete GT (which is of course impossible in the case of the incomplete GT as
its undamaged version does not exist). More precisely, the different image manipulations
are first carried out in the case of the undamaged GT to determine if the methodology is
appropriate for such type of reconstructions. A similar process is then applied to the case
of the damaged GT.

4.2.4 Results and discussion

In this last section, the results obtained for the reconstructions of the Landsat 7 satellite
scenes are presented and interpreted. In order to visualise what kind of data is introduced in
the reconstruction algorithm, the figure 4.15 is composed of the three masked layers of the
scene that is initially undamaged. All the initial RGB layers, as well as their reconstructed
form, are available in the appendix sections A.5.1 and A.5.2, in which they are displayed
in their grayscale format. The figures 4.16 and 4.17 gather the original GTs and compare
them to their true colour restored version.

Regarding the figure 4.16, it clearly appears that the technique described in the previous
section is capable to provide satisfactory results for the Landsat 7 GT restorations. Some
inevitable modifications between the two images are nevertheless observed. They simply
come from the fact that some structures hidden by the mask pattern are smaller than the
width of one single mask’s black stripe, and the algorithm cannot reproduce them properly
as they are totally removed by the masking operation. In some extent, this contribute to a
certain loss of some of the image details that cannot be avoided. However, it seems that
the image colour content is quite well preserved by the inpainting technique. The PSNR
computed between the GT and its reconstruction has a value of 26.68 dB as it can be seen
in the appendix section A.5.1.

As for the figure 4.17, the reconstruction technique looks a little bit less efficient than
in the previous case in terms of the image colour content restoration, as zones harbouring
the initial lines of missing data are still easily identifiable, showing the limitations of the
process for scenes that are initially incomplete. Hypothetical improvements could be obtain
thanks to a higher NOI value than the one selected here or by refining the λ parameter.
The corresponding tests were however not covered in this work and it could be interesting
to carry out further investigations about possible results enhancements. Besides all that,
it is nevertheless interesting to notice that the algorithm allows to better distinguish the
edges of the dark areas contained in the restored true colour image, these obscure regions
undoubtedly corresponding to watering places.
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Figure 4.15: Masked RGB layers for an initially undamaged satellite scene.

Figure 4.16: Comparison between the GT (on the left) and the associated reconstructed image
(on the right) for an initially undamaged satellite scene.

Figure 4.17: Comparison between the GT (on the left) and the associated reconstructed image
(on the right) for an initially damaged satellite scene.
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A little note concerning the image on the right of the figure 4.17 is that a close-up view
of the reconstructed satellite scene shows the presence of two artifacts appearing in two
distinct reconstructed areas. However, their origin cannot be determined on the basis of
what was already discussed, and consequently it would be necessary to carry out additional
systematic reviews in order to find where they effectively come from. Precise knowledge of
their origin would then make it possible to remove them from the reconstructed image.



Chapter 5

Conclusion

5.1 Overall conclusion

This master thesis, focused on a digital approach of images reconstructions performed on
the basis of classical inverse methods, had a primary objective. The latter was to develop
relevant numerical algorithms, with a view of producing satisfactory results in the frame of
Earth observation applications. This objective was accomplished, even if some inevitable
limitations were encountered in terms of the selected algorithm’s performances. Moreover,
this document enters into the continuity of the thesis of Clément Thomas, one of the Centre
Spatial de Liège’s PhD students whose work is dedicated to the practical aspects of the
compressive sensing method in the context of signals recoveries.

Directly following the introductory part of this work, the state of the art chapter
described most of the theoretical concepts that necessarily need to be understood before
carrying out any image manipulation. On that purpose, the main images properties were
presented, and explanations of the typical inpainting inverse problem followed this presen-
tation, with emphasis on the wavelet theory and the iterative hard thresholding algorithm
on which the principal studied reconstruction method relies. The particular case of image
deconvolution involving a point spread function was also covered.

Starting with a learning phase of the Python programming language, the digital image
processing part of the thesis was devoted to the implementation of new techniques in
the tested digital codes, including notably the zero padding method and the correction
of the images’ colorbars. This chapter also showed the importance of selecting the right
parameters value within the tested algorithm, and particularly exposed the impacts of both
the number of iterations and of the threshold λ values on the reconstructions results. The
relevance of an appropriate selection of the mask hiding the original processed image was
explained too and associated to the imager previously developed in the CSL’s lab that
produced most of the data processed in the different series of tests. A qualitative review
of images deconvolution, performed by using either a gaussian distribution or a measured
point spread function, was additionally provided.

Subsequently, in a chapter dedicated to applications, the algorithms developed in the
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current work have been applied in two different cases. The first one consisted of processing
damaged scenes that were acquired beforehand with the CSL imaging device, the latter
being devoted to compressive sensing studies thanks to its capability to adequately mask the
observations with its DMD component. The importance of the mask’s eroded pattern, as well
as the influence of the NOI and FR parameters on the quality of the reconstructions results,
were therefore highlighted. The second application case was derived from a bibliographic
study that allowed to find real satellite data produced during the Landsat 7 space mission.
Indeed, this NASA mission, focused on Earth observation, generated incomplete scientific
data due to one of its satellite component’s failure occurring in the nominal phase of
the mission. The capability of the tested images reconstructions method to restore, to
some extent, true colour images coming from remote sensing acquisitions, were finally
demonstrated.

5.2 Perspectives

This very last section gathers some prospects that could constitute a possible starting point
for the realisation of future works in the context of images processing-related problems, on
the basis of what is covered in this master thesis.

First of all, additional modifications could be implemented into the IHT algorithm’s
digital code to complete its optimisation. As an example, it could be feasible to rewrite
the whole code so that the images reconstructions would not be limited to the precise
case of square images, avoiding this way to perform the zero padding technique developed
here and therefore reduce the computation time. This computation time could also be
shortened by inserting in the digital code the open source Python’s Numba compiler [26],
that aims to speed up the steps of coded functions or loops, and is especially designed
for scientific computing. This would however imply a global reorganisation of the code’s
functions. Another option to improve the algorithm would be to automate the production
of the images colorbars for each of the obtained results, so that additional manipulations
would not be necessary after images reconstructions.

After that, the trial and error method selected for the image deconvolution using a PSF
is clearly not optimised as well, and it would be appreciable to determine a more precise
technique that would allow, in addition, to completely deconvolve the initial rectangular GT
and not partially as it is the case in the present work. Besides that, it could be pertinent
to check what kind of results could be obtained when deconvolving images produced by an
optical setup before introducing them in the IHT reconstruction algorithm.

Finally, the study of the Landsat 7 mission’s data is limited to true colour images
reconstructions and it would therefore be interesting to test the followed procedure for other
available spectral bands. This master thesis however prepare the ground for forthcoming
works in the frame of space mission data analyses, notably in the domain of satellite-based
Earth observation and monitoring.
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Appendix A

Reconstruction images

A.1 Zero padding

All the reconstructions displayed in this section were performed by using randomly generated
masks (FR = 70%), a NOI of 500 and a decaying value of the λ parameter. Original images
are taken and adapted from [27], [28], [29] and [30].

A.1.1 Ariane
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A.1.2 CSL
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A.1.3 PLATO
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A.1.4 Spacesuit
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A.2 Reconstructions based on an observed scene
A.2.1 Random mask
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A.2.2 Lab mask 21/03
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A.3. COMPARISON BETWEEN NON-ERODED AND ERODED MASKS 71

A.3 Comparison between non-eroded and eroded masks
A.3.1 Mask without erosion
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A.3.2 Mask with erosion
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A.4 Extension of the mask filling ratio
A.4.1 Mask with erosion 70% 27/03
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A.4.2 Mask with erosion 90% 14/05
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A.5 Landsat 7 images
A.5.1 Undamaged scene
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A.5.2 Damaged scene
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Appendix B

Python codes

B.1 Iterative Hard Thresholding

Adapted from [4], this first numerical code, centred on the IHT image reconstruction
algorithm, is complemented using the methods of ZP and grayscale image adjustment
presented in chapter 3.
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B.2 Image deconvolution

This second code performs image deconvolution using a GK. Deconvolution of images
involving a measured PSF is achieved by replacing the initial GK with the PSF image
having the same dimensions. Adapted from [5] and entirely rewritten in Python.
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B.3 Landsat 7 images reconstructions

Dedicated to the reconstruction of reflective colour bands of USGS data, this third and last
code presents the way RGB images can be numerically processed. Here, the main RGB
images manipulations are inspired by information found in [25].
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Once an appropriate portion of the mask is selected, the red, green and blue variables
are introduced separately in the IHT code presented in section B.1. Three distinct recon-
structions are therefore carried out, and each of the colour layers is thus reconstructed
individually. The IHT code is consequently replicated three times but it is not displayed
here to avoid redundancy. Some operations are however needed to change the nature of
the objects (RGB layers), so that they can be introduced into the reconstruction process.
These changes take place after the ZP step and before the IHT reconstructions and are
exposed hereafter.
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