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Abstract

This master thesis presents the development and application of neural networks for the recognition
of topological structures, specifically magnetic skyrmions and anti-skyrmions. Topological phases
of matter, characterized by their geometric properties rather than local order parameters, have
significant implications in spintronics as they have special transport properties. For example,
skyrmions can be moved by electrical currents and serve as potential information carriers. These
potential applications require a precise analysis of their dynamical properties. However, traditional
methods to locate and analyse topological structures dynamics are involving complex algorithm
and are only valid at 0 Kelvin. To overcome these limitations, this research leverages deep learning
techniques, including Feedforward Neural Networks, Convolutional Neural Networks, and UNet
architectures. Databases of synthetic magnetic structures were generated and labelled, serving
as the foundation for training these networks. The results demonstrate the effectiveness of these
models in accurately classifying topological structures with over 97% accuracy on unseen data.
Despite the success, challenges such as bias in the training datasets and model overfitting were
identified, suggesting the need for further refinement. This work lays the groundwork for future
research on the dynamic behaviour of skyrmions and their potential applications in next-generation
spintronic devices.
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Résumé

Cette thèse de master présente le développement et l’application de réseaux neuronaux pour la
reconnaissance de structures topologiques, en particulier les skyrmions et anti-skyrmions magné-
tiques. Les phases topologiques de la matière, caractérisées par leurs propriétés géométriques plutôt
que par des paramètres d’ordre locaux, ont des implications significatives en spintronique en raison
de leurs propriétés de transport particulières. Par exemple, les skyrmions peuvent être déplacés
par des courants électriques et servir de porteurs d’informations potentiels. Ces applications po-
tentielles nécessitent une analyse précise de leurs propriétés dynamiques. Cependant, les méthodes
traditionnelles pour localiser et analyser la dynamique des structures topologiques impliquent des
algorithmes complexes et ne sont valides qu’à 0 Kelvin. Pour surmonter ces limitations, cette
recherche exploite des techniques d’apprentissage profond, y compris les réseaux neuronaux Feed-
forward, les réseaux de neurones convolutionnels et les architectures UNet. Des bases de données de
structures magnétiques synthétiques ont été générées et étiquetées, servant de base à l’entraînement
de ces réseaux. Les résultats démontrent l’efficacité de ces modèles pour classifier avec précision
les structures topologiques avec une précision supérieure à 97% sur des données inédites. Malgré
ce succès, des défis tels que les biais dans les ensembles de données d’entraînement et le surap-
prentissage du modèle ont été identifiés, suggérant la nécessité d’affinements supplémentaires. Ce
travail jette les bases de futures recherches sur le comportement dynamique des skyrmions et leurs
applications potentielles dans les dispositifs spintroniques de nouvelle génération.
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Preamble

The manuscript is divided as follows: In Chapter 1, the reader will find the state of the art, an
example of topological structure recognition algorithm without artificial intelligence (AI) done in
TOM research unit and a brief summary of first research conducted in order to get acquainted with
AI for this interdisciplinary project. Chapter 2 is devoted to the topological structure generation
and the labelling. For this part, a script was created to automate those processes. In the next
chapters, NNs are constructed going from simpler to more complicated ones. Chapter 3 describes
how a regular deep NN works and the results obtained with the one created for the project. In
Chapter 4, a second NN is created in the form of a convolutional NN (CNN). A description is
given, then the results are analysed.

We will then conclude the report with a summary of the results and make an opening for further
research with the development of a UNet. This network does not show the same level of accuracy
as those in the previous chapters yet, but it is a significant step forward toward the analysis of
skyrmion dynamics.

I wish you a pleasant reading.
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Chapter 1

Introduction

1.1 Magnetic Skyrmions

Topological phases of matter are states of matter that cannot be described by a local order param-
eter [1]. Instead, they are characterised by their geometrical properties, i.e. topological integers,
-2,-1,1,2, etc. In magnetism, these phases are formed by magnetic moments. On a large scale,
magnetic moments can build a variety of structures, such as a ferromagnet (Fig. 1.1 (a)), domain
walls (Fig. 1.1 (b)), skyrmions (Fig. 1.1 (c)), or anti-skyrmions (Fig. 1.1 (d)). While the former
two are called topologically trivial, magnetic skyrmions are topologically protected, defined by the
non-zero topological charge Q that prevents them from spontaneously collapse into a trivial state.
Due to this property, they are particularly interesting for their potential applications in spintronics
[2, 3].

(a) Ferromagnet Domain wall Skyrmion Anti-skyrmion(b) (c) (d)

Figure 1.1: Examples of magnetic structures: (a) Ferromagnet: all spins (red cones) point in the
same direction - here, up. (b) Domain wall: two oppositely magnetised ferromagnetic domains
are separated by a region, where the direction of spins is gradually changing (here, from up -
red to down - blue) (c) Skyrmion: round shaped structure in which the spins tilt from up in the
ferromagnetic surrounding to down in the core. Note that for skyrmions, the sense of rotation for
all spins is equal. (d) Anti-skyrmion: Similar to the skyrmion structure in (c), but with two senses
of rotation. Figure adapted from [4].

One major application of skyrmions would be to use them as information carriers in spintronics,
i.e. as bits. Implementing spintronics based on skyrmions could lead to several breakthroughs. The
storage density would be greatly enhanced partly due to the fact that magnetic skyrmions can have
sizes under 10 nm, while domain walls reach a limit around 30 nm. Moreover, skyrmions can be
moved with very low current density, less than 106A/m2. By comparison, the current density
required to move domain walls is estimated to be above 1012A/m2 in racetrack memory [5]. These
improvements could counter the slowdown in Moore’s law and reduce the electrical consumption
of all electronic and spintronic devices.

One of the challenges arising with skyrmion-based spintronics devices is identifying the struc-
tures. Indeed, the topological charge is a non-local quantity. Two opposite topological structures
with different topological charges will cancel each other out when evaluating the topological charge
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of the sample. Thus, if a skyrmion and its opposite, an anti-skyrmion, are present on the same
sample, it is not straightforward to find an effective method to determine the number and the type
of structures. Such a method is a key for research on creation, destruction and topological protec-
tion of skyrmion as it would allow systematic detailed simulation analysis in complex environment
[6].

1.2 Topological structure recognition without AI

Figure 1.2: Figure from [7]. The contour is defined as the ensemble of magnetic moments which are
pointing in plane. Then the inner part is defined as the ensemble of magnetic moments pointing
down and the outter part as the ensemble of magnetic moments points up. However, this very
simple method is only effective for a single type of topological textures at 0 Kelvin.

Figure 1.3: Figure from [7]. Example of complex contours within another and corresponding tree-
like graph that is compared to a database to determine the structure type.

One possible method to recognise topological structure is to use an algorithm such as the one
developed by Maxime Mignolet [7]. This algorithm works in a few steps: It defines the contour
of structures based on the sign change of the magnetisation along the z-component as in Figure
1.2. Then it computes the topological charge of the region defined by the contour. After that,
it determines if structures are embedded into others. From this, it builds a tree-like graph which
is compared to a pre-generated database to identify the structure. An example of these steps is
shown in Figure 1.3

Although this algorithm is well designed, two requirements limit its use to advanced purposes:
First, it needs a ferromagnetic background (so no thermal disorder should be present). Second,
the magnetic state should be a local minimum of energy (a metastable state) at least. This last
requirement does not allow for the dynamical identification of skyrmions.

3



1.3 Purpose, goals and contents using AI

To counter the problems faced with the previous algorithm, a possible solution could be Artificial
Intelligence (AI) as it has rapidly evolved into a vast and dynamic field in different technologies
and applications. Recently, efforts have been made to use AI for the detection of different mag-
netic structures, ranging from simple supervised algorithms [8], over ML approaches to identify
structures in experimental measurements [9] to classifying magnetic textures based on Monte-Carlo
simulations [10]. Here, our goal is to specifically pay attention to creating a starting point of a deep
learning algorithm to lay the groundwork for future more complex magnetic structures recognition
and their respective researches.

Figure 1.4: Venn diagram showing relations between AI theories. The NNs created during the
project are placed in orange.

To begin with, a definition of AI is welcome. Peter Norvig and Stuart Russell define the field
of AI as what is concerned with not just understanding but also building intelligent entities —
machines that can compute how to act effectively and safely in a wide variety of novel situations
[11]. AI itself is more complex to define. There is a wide variety of intelligences. Hence, there is also
a wide variety of definitions. However, if we are satisfied with the definitions of the field, we have
a definition of the intent without looking at the means to achieve it. The means can be classified
(Figure 1.4) into two groups depending on whether the machine is end-to-end programmed or it
can learn. In the first case, the best known field is the internet of things (IoT) which is now almost
always coupled with scripts to improve the use of the objects. The second case is called machine
learning (ML). It is the domain in which the machine is able to become better to realise some tasks.
A wide variety of algorithms form the domain of ML (e.g. Random forest, decision trees, support
vector machines...). For the project which is skyrmion pattern recognition with AI, we decided
to focus on neural networks (NNs) to be able to learn directly on physical quantities (magnetic
moments1) instead of features computed by other methods. As those quantities are represented
by lots of components for a small sample surface, we created more advanced NNs which can be
classified in the deep learning field, a sub-part of the NN field. We successfully created two deep
NNs to classify single magnetic structures: a regular neural network (RNN) and a convolutional
neural network (CNN), then we started to take a step further with a so-called UNet.

1Local magnetic densities would also have been possible.
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To parameterise these NNs, we carried out several steps. First, a database containing skyrmions,
anti-skyrmions and empty examples must be created. Then, to do supervised learning, labels are
required for each corresponding example. Once the labelled database has been created, the next
step is to do the link between the simulations and the neural networks. From that point, the
project is focused on machine learning in the hope of good results on structure recognition with
the underlying idea of creating increasingly complex algorithms to move towards dynamics with
multiple magnetic structures.

From this first acquired knowledge, two main goals were defined:

• Create a first skeleton for the AI in the TOM research unit (RU)

• Create and use NN to recognise topological structures

We are using the program Matjes, which is an atomistic simulation tool developped in the TOM
group. Matjes is made to simulate topological textures in 1D, 2D and 3D based on the generalised
Heisenberg model [12]. Using Matjes, the first goal consists in automating the creation of databases
for AI. Then, this database is linked with the NNs in an efficient manner. The challenge is now
to recognise the different textures and to improve the level of recognition accuracy. This level of
recognition is unpredictable and the material resources needed are unknown.
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Chapter 2

Database generation and labelling

2.1 Topological structure generation

In spintronics and magnetism, topological textures are defined by the symmetry of solution of the
differential equation as given by Bogdanov et al [13, 14]:

E =

∫
1

2
A

(
∂m

∂x

)2

− 1

2
Km2

z − µ0m ·H− 1

2
m ·Hm +HDM + ϵDMdV (2.1)

where m is the unitary magnetic vector, A is the exchange energy density, K is the anisotropy,
Hm is the magnetostatic energy and ϵDM is the energy density of the Dzyaloshinskii-Moriya inter-
action. The general solution of this equation is a three-dimensional magnetic texture which can be
expressed in spherical coordinate [15] as:

m = (cosΦ (ϕ) sinΘ (r), sinΦ (ϕ) sinΘ (r), cosΘ (r)) (2.2)

where Θ and Φ are the polar angles and ϕ depends on the symmetry of the DM interaction.
Topological textures are then characterised, based on 3 order parameters. The first one is the
topological charge or skyrmion number

Q =
1

4π

∫
S

m (x, y) ·
(
∂m

∂x
× ∂m

∂y

)
dS (2.3)

where m (x, y) is the unitary magnetisation vector field and S is the integration surface. This
simple order parameter allows a simple identification of the topological texture. By convention,
Q = 1 is called a skyrmion (SK), Q = −1 is an antiskyrmion (ASK) and Q = 0.5 is a vortex or a
meron. However, this order parameter lacks the information on the chirality for example.

The chirality reveals the sense of rotation for the skyrmion. Both left and right rotating
skyrmions will have a charge of 1 although being of different symmetry. To evaluate this quantity,
the helicity is usually computed. The helicity can be identified by the Φ angle:

Φ = hϕ+ γ (2.4)

where m is the helicity and γ is a phase factor which corresponds to the direction of the reference
magnetisation. For example, (h = 1, γ = π,Q = 1) corresponds to the typical skyrmions that is
seen everywhere, as shown in Figure 2.1. Other simple topological textures are also represented in
Figure 2.1 for comparison.

In Matjes [12], the general solution of this equation was coded to obtain all possible magnetic
textures. It takes the form:
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m = (cosΦ (hxϕ+ γx) sinΘ (r), sinΦ (hyϕ+ γy) sinΘ (r), cosΘ (r)) (2.5)

where h and γ are defined for x and y separately.

Figure 2.1: "Skyrmion structures with varying h and γ. The arrows indicate the direction of the
in-plane spin component, and the brightness indicates the normal component to the plane, with
white denoting the up direction and black the down direction. All the structures of anti-skyrmions
(h = -1) are equivalent in rotation in the x− y plane" Figure and text adapted from [15].

2.2 Labelling

To generate the database, we considered a restriction of the above case. For simplicity, we have
taken γ = 0 and change helicity along the x and y directions. In the following, we will label all
the cases with (hx, hy). In order to get the labelled samples, the helicities are fixed. Then, the
other parameters are changed. Changing sizes and/or positions of the structures does not impact
the topological charge. However, it can greatly change the final representation if the skyrmion is
located at the edge of the supercell. Then the skyrmion will appear cut in half due to periodic
boundary conditions. Hence, computing once the topological charge for different helicities at fixed
size and position allows to predict the structure that will be generated for all the sizes and all the
positions. Restricting the labelling to first order SK and ASK, we obtain:

• (−1,−1) → SK

• (−1, 1) → ASK

• ( 1,−1) → SK

• ( 1, 1) → ASK

• Otherwise → None of the listed

To be able to generate as large as possible databases to allow the training with labelled samples,
a library was created. This library creates numbered directories corresponding to the ID of the
sample. It also generates and puts the input files in the directories. Then, it executes Matjes in
each folder and finally, saves the parameters and the structure label in a single file classified by
IDs. The structure types are encoded as numbers: 0 = none, 1 = SK, 2 = ASK. Proceeding
like this allows easy modifications in the future to add structures, change the labels and facilitates
data import to neural networks. However, this procedure generates around tens of Gb of data for
the recognition of only two topological textures.
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Chapter 3

Feedforward Neural Network

This chapter is devoted to feedforward Neural Networks which are fully connected. They are also
called multi-layer perceptrons (MLP). MLP are a generalisation of the perceptron invented by
Warren S. McCulloch and Walter Pitts [16]. This single perceptron model is only able to do binary
classification on linearly separable data. Hence, non-linear multi-class analyses for topological
structure recognition required a more advanced model.

This chapter will give the basics needed to understand how NNs work. Even if very complicated
NNs structures are now used in our every day life through GPTs, image search engines, automatic
pilots in cars and so on, a simple RNN is a powerful tool allowing good results for the task discussed
in this report. It will also allow to understand more complicated models discussed in the following
chapters.

3.1 Creation and operation of a deep NN

3.1.1 Neural Network Structure

The structure of a NN consists in interconnected layers. The first layer is the input layer. This
layer is the one that will receive the data and must be set accordingly. The last one is the output
layer. It is specifically designed for a purpose. Between those two layers there is a set of layers
called hidden layers (see Figure 3.1 (a)). That’s the place where the non-linearities can be dealt
with. In the case of a single hidden layer, the network is called a NN. If there are at least two
hidden layers, the network is called a deep neural network. The input and output layers contain
a number of neurons that is chosen to map the input and the desired output. The hidden layers
must contain enough neurons to fit a function representing the problem of interest.

The connections between layers are not random. In our case of a fully connected NN, the
layers follow one another and there is no direct connection from two non-adjacent layers. Let’s
take a neuron in the first hidden layer as in Figure 3.1 (b). This neuron, sometimes called a node,
is connected to all neurons in the previous layer. Each connection has a specific weight which
defines the impact of neurons from the first layer onto the one selected in the second layer. Some
connections may not play a role if the weight is 0. The connections going to the selected neuron
give the inputs from which an output is calculated (Figure 3.1 (b). Then, (Figure 3.1 (c)) this
output is given to every neuron in the next layer in the same manner. In repeating the described
connection process to all neurons in the network, we obtain a fully connected NN as represented
in Figure 3.1 (d).
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Figure 3.1: Construction of a fully connected NN. (a) The network is composed of layers. Each
layer contains a specific number of neurons. (b) Between two adjacent layers, each neuron is
connected. Each connection has a weight. (c) A neuron in a layer is connected to all neurons in
the previous layer as well as the ones in the next layer. The weights are omitted. (d) Connecting
all neurons in the same way as in (c), we obtain a fully connected NN.
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3.1.2 Forward propagation

As the general NN structure is now established, we will explain how the information is treated by
the network. The information contained in the input will go from the input layers, through the
hidden layers, to the output layer. This is called forward propagation. We will start by describing
the functioning of a neuron, then do the same for the different layers.

Neuron functioning

Figure 3.2: Functioning of a neuron j. Neurons K in the first layer give an output xk through a
weighted connection to neuron j. From all these inputs, neuron j gives an output to all the neurons
in the next layer.

To understand forward propagation, we first need to understand how a neuron calculates an
output. As we explained in the NN structure, a neuron receives data from the previous layer
through the weighted connections. From those inputs, the neuron will calculate a net weighted
input:

netj = zj =

n∑
k=1

(wkj · xk) + b (3.1)

In this equation, the net input for a neuron j is calculated by summing products and adding a bias
b. The products terms are the weight wKj of the connection from neuron K to j and the output
xK of neuron K. This product can be interpreted as the importance of the activation of a first
neuron onto the next one as it would be with two "real" neurons. Notations are represented in
Figure 3.2. Equation 3.1 is called the transfer function.
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After calculating the net input, the neuron will apply a function σ to it:

aj = σ(zj) = σ

(
n∑

k=1

(wkj · xk) + b

)
(3.2)

This sigma function is called the activation function. The scalar value calculated with the activation
function is the output of the neuron j. Through the connection to neurons in the next layer, it will
also be weighted in the same manner we just described here, this output is now a xK for neurons in
the next layer. Activation functions are mandatory for the network and must not be linear. As the
net input is linear, using linear activation functions would result in a linear NN. The non-linearity
of the NN comes from non-linear activation functions. These functions will help the algorithm to
represent more complex ones to map the input to the output.

Input layer

Figure 3.3: Input Layer working. The sample is made of 100 times 100 discrete points. At each
point, there are three components for the magnetic moment. These components are given to the
network point by point, line by line. A single neuron corresponds to a single magnetic moment
component.

The input layer (Figure 3.3) is the link between the data and the network. From our script
to generate databases, we can create samples with skyrmions, anti-skyrmions or with non-stable
structures. A sample is composed of discrete points forming a square. For this network, we use grids
of 100 per 100. At each point, Matjes gives three components1 ∈ [−1, 1] for the magnetic moment

1As a thumb rule, the data should be normalised or have values contained in [−1, 1]. This helps the network to
converge as all values start with the same weight.
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resulting in 30 000 input parameters for the network. For each parameter of data, there is a single
neuron. The order of parameters given to the neurons matter. This classification contains the
spatial relations of the magnetic moment components. As such, it enables to distinguish between
magnetic structures. The order must be the same for all the samples given to the network. For
convenience, we kept a simple classification consisting in giving the three components of the spin
along x, y and z line by line2. For the first layer, there is no activation function, the weights are
set to 1 and the biases to 0. The purpose of this layer is simply to load the information into the
network.

Hidden layers

The analysis of the information contained in the sample is done in the hidden layers. The more
hidden layers there are, the deeper the network is. However, the number of neurons in a layer,
i.e. the width, is also important. The wider and deeper the network is, the more parameters the
network has to map the data to the expected output.

We saw in Equation 3.2 that the net inputs of neurons get into an activation function and
explained the need of using non-linear ones to improve the network performances. The classical
activation functions for the hidden layers are the step, sigmoid, ReLU, leaky ReLU and tanh
functions [17]. Their definitions are the following:

• step function:

Step(x) =

{
0 if x < 0

1 if x ≥ 0
(3.3)

• sigmoid function:

Sigmoid(x) =
1

1 + e−x
(3.4)

• ReLU, the rectifier linear unit:
ReLU(x) = max(0, x) (3.5)

or equivalently by

ReLU(x) =

{
x if x ≥ 0

0 if x < 0
(3.6)

• leaky ReLU:

Leaky ReLU(x) =

{
αx if x < 0, α ∈ R+

x if x ≥ 0
(3.7)

• tanh:

tanh(x) =
ex − e−x

ex + e−x
(3.8)

They are all plotted in Figure 3.4. Two interesting applications using these functions are speech
recognition with the sigmoid [18] and image treatment with the ReLU function [19] with impressive
results. A comparison between ReLU function types showed better results for leaky ReLU [20]
on MINST dataset. For this project, we started with the ReLU activation function as it is the
recommended one in modern neural network [21] and we didn’t change it as our results were already
above our expectations.

2For this NN, the order of the parameters given to the NN should not matter as long as it stays the same. The
weights between the input layer and the first hidden layer should just be exchanged accordingly to have the same
net input for the neurons in the first hidden layer. However, this will not be possible for CNN as explained in the
next chapter.
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Figure 3.4: Mainly used activation functions. All the functions are non-linear. The step, ReLU and
leaky ReLU are not continuously differentiable functions, unlike the sigmoid and the hyperbolic
tangent.
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Output layer

The output layer has a specific purpose. This is where the overall function depending on the input
of the network will give a result. Hence, it needs to be set in accordance to the task. In our
case, for each sample, this result must be either one of the magnetic structures categorised in our
database or none of the labelled ones. This is not a binary classification. Indeed, we have three
different answers. Each answer will be given by a neuron. Therefore, the output layer is made of
three neurons as in Figure 3.5.

Figure 3.5: Output layer

The neurons in the output layer work in the same manner as described before. They follow
Equation 3.2, so they receive a weighted input and apply an activation function on it. Now, we
need to chose an activation function that corresponds to our purpose. This purpose applies to each
neuron. From the evaluation of our sample, the neuron will calculate an output. From this output,
the presence of the structure represented by the neuron must be deducible. Moreover, the answer
should offer a degree of certainty. The prediction should be converted between [0, 1] to represent
a probability. Considering this, the step, relu and tanh functions are not good candidates. In our
mainly used activation function the best one would be a sigmoid. Indeed, the sigmoid function
maps all real values giving an answer between 0 and 1. Our database has the specificity that the
3 categories (SK, ASK, None) are exclusive. Ideally, we would prefer an output normalised for the
different categories. Fortunately, there is a specific function for that purpose: a generalisation of
the sigmoid: The softmax funtion. The softmax function is defined by:

Softmax(xi) =
exi∑K
j=1 e

xj

(3.9)

The softmax function takes a vector x⃗ ∈ RK of components xi, applies the exponential function to
its components, then normalises the vector.
In the case K = 1, it is trivially found that the result is 1 whatever the value. In the case K = 2
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with one component xi = 0, let’s say x2 = 0, we have:

Softmax
(
x1

0

)
=

(
ex1

ex1+ex2

ex2

ex1+ex2

)
=

(
ex1

ex1+1
1

ex1+1

)
(3.10)

Then slightly modifying the last vector, we easily find:

Softmax(x1) =
ex1

ex1 + 1
=

1

1 + 1
ex1

=
1

1 + e−x1

which is Equation 3.4, the standard logistic function also called the sigmoid function, and

softmax(x2) = softmax(−x1)

Finally, let us take an example in the case of K = 3, which corresponds to the number of classes
we have to classify our magnetic structures:

Softmax

1

2

4

 =

0.0420

0.1142

0.8438


This example shows that the softmax puts all values in [0, 1], amplifies the larger values and
normalises the results. This last point allows to interpret the results as probabilities to have the
structure present in the sample or not. Indeed, the samples generated contain single structures -if
there is any. Hence, there is only one correct answer that can be chosen by taking the higher value
of the normalised predictions using the argmax function.

3.1.3 Metrics to evaluate NNs

Up to now, we have seen how neurons work, how to shape the input layer, we have a set of functions
to use as activation for the neurons in the hidden layers and we have shaped the output layer for
topological structure recognition regarding the database created during this project.
Let’s predict a few structures from samples of our database and put the results in Table 3.1. Each
sample generated is represented in the second column and has its own ID. With this ID, we can
look at the sample label in the label list. The labels are encoded with numbers (cf Chapter 2):
0 = none, 1 = SK, 2 = ASK. Finally, from sample data, the network return probabilities3. These
probabilities are reported in the last column.

Taking a look at Table 3.1, two problems can be observed. First, by choosing the higher values
for the prediction, all the predictions do not match their labels (cf red label boxes). This is a
fundamental problem as we want to be able to make correct predictions. Second, the probabilities
given for a sample may be close to one another. This means that the NN is not able to differentiate
between the structures. Ideally, we would like a probability of 1 for the correct label. This would
mean a perfect classification for the structures.

To resolve these two problems, we need to introduce some metrics. To begin with, there is an
easy metric to characterise the fact that the predictions match with the labels or not: the accuracy.
We simply have:

accuracy =
#correct prediction

#total prediction
(3.11)

To measure the discrepancy between the ideal probability and the one obtained by the network,
we will start with a function called Categorical Cross Entropy (CCE). This function is sometimes
called softmax loss because it is the commonly recommended to use with the softmax activation

3Examples at this stage.
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Sample ID Sample Label (yi) Predictions (Pi,j)

576 1 [0.10, 0.75, 0.15]

577 0 [0.80, 0.10, 0.10]

578 2 [0.10, 0.20, 0.70]

579 0 [0.20, 0.50, 0.30]

580 0 [0.60, 0.30, 0.10]

581 0 [0.20, 0.40, 0.40]

582 1 [0.40, 0.30, 0.30]

583 0 [0.30, 0.20, 0.50]

584 2 [0.25, 0.35, 0.40]

Table 3.1: Examples of predictions using forward propagation. Samples 577 and 583 show a
small discontinuity (white line). Therefore, they are not topologically protected. Predictions are a
probability for each category. We expect the NN to have a higher probability at the index of the
label.
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function in the last layer. The CCE loss function is defined by:

CCE = −
S∑

i=1

C∑
j=1

yij log(Pij) (3.12)

where:

• S is the number of samples

• C is the number of categories

• yij is the probability (one-hot encoded) for the sample i and category j

• Pij is the probability for the sample i given by the network for the category j

The one-hot encoding for the labels consists in giving a value of 1 to the correct category and value
0 for the others. For example if we have some images of cats and dogs, we can encode them as [1,
0] and [0, 1]. We can also go a bit further and give the ratio of each category in the sample. For
example, if we want to have a NN which finds the ratio of red, blue and green pixels turned on to
display picture i, we could have a label encoded as:

[Pi,red, Pi,blue, Pi,green] = [0.42, 0.21, 0, 37]

This is sometimes called continuous categorical [22]. This kind of encoding can be used in facial
expression recognition [23] where each face may have more than a single expression (e.g. Happiness
and surprise at the same time). However, in the case of topological structure recognition with single
structure in the sample, we have only one category at a time. Hence, there is only one yij ̸= 0

and this ylabel = 1. This leads to the possibility to use a simplification of the CCE: the sparse
categorical cross entropy (SCCE) defined as:

SCCE = −
S∑

i=1

log(Pi,label) (3.13)

where:

• S is the number of samples

• Pi,label is the probability for the sample i given by the network for the index given by the
label value.

This is the metric that is used for the networks in this project as it is easy to encode the labels,
it requires less memory and less computation time to convert or create the labels in one-hot. This
is in continuity with the idea of producing an efficient model that can be calculated on a small
computer.

Now that we have some metrics to evaluate our results, we can compute the SCCE of the
predictions given in Table 3.1. In details, we have:

• Sample 576: Label: 1, Prediction: [0.10, 0.75, 0.15] → L1 = − log(0.75) = 0.29

• Sample 577: Label: 0, Prediction: [0.80, 0.10, 0.10] → L2 = − log(0.80) = 0.22

• Sample 578: Label: 2, Prediction: [0.10, 0.20, 0.70] → L3 = − log(0.70) = 0.36

• Sample 579: Label: 0, Prediction: [0.20, 0.50, 0.30] → L4 = − log(0.20) = 1.61

• Sample 580: Label: 0, Prediction: [0.60, 0.30, 0.10] → L5 = − log(0.60) = 0.51

17



• Sample 581: Label: 0, Prediction: [0.20, 0.40, 0.40] → L6 = − log(0.20) = 1.61

• Sample 582: Label: 1, Prediction: [0.40, 0.30, 0.30] → L7 = − log(0.30) = 1.20

• Sample 583: Label: 0, Prediction: [0.30, 0.20, 0.50] → L8 = − log(0.30) = 1.20

• Sample 584: Label: 2, Prediction: [0.25, 0.35, 0.40] → L9 = − log(0.40) = 0.92

Summing all the individual costs, we have:

SCCE = 7.92

If we had always had the correct prediction with a probability of 1, the logarithms would have been
equal to 0. Hence, the loss would also have been 0. The question is then: How can we improve
these results? Our NN structure is defined, we know how forward propagation works in details.
Hence, we can make predictions but we haven’t learned how to train our NN yet. This will be the
object of the next section.

3.2 Training with gradient descent

This section is dedicated to the modifications needed in order to improve the results of our NN.
Previously, we fixed our NN structure through the layer sizes and activation functions regarding
our database. This allowed forward propagation for the samples in Table 3.1. We just changed
the inputs by using different samples and we obtained different probabilities to find a structure
depending on the sample. To calculate these probabilities, the NN calculates the activation aj
layer by layer for each neuron j:

aj = σ(zj) = σ

(
n∑

k=1

(wkj · xk) + b

)
(3.2)

where the weights and biases are fixed and the xk depends at first only on the input of the NN.
This leads to different predictions depending on the sample used.

Now, we need to introduce some modifications in our network. These modifications will not
take place in the structure of the NN. Otherwise, we would have different NNs. We would like to
keep the same structure but still do some modifications to obtain better predictions whatever the
sample. To apply these modifications, it will be the opposite of forward propagation procedure. We
will keep the sample fixed and modify the weights and biases in order to improve the predictions
regarding the labels. For this purpose, the outputs are also fixed.

As we saw in the previous section, having better results leads to a reduction in the loss function,
our metric which assesses the accuracy and certainty of responses from the NN. Let’s first neglect
the biases. To calculate this loss, we can use Equation 3.13. This equation depends on Pi,label.
This probability depends on the weights between the last layer L and the previous one (L−1), the
activation function aL and the xi through Equation 3.2. If we continue to make the terms explicit,
we obtain the loss expression as:

Loss
(
ylabel, a

L
(
WLaL−1

(
WL−1 ... a2

(
W 2a1

(
W 1x

))
...
)))

(3.14)

This equation highlights two specificities: First, if we keep the NN structure, the expected output
and the input x fixed, the only editable parameters are the weights. Second, a change in a weight
within the input layer or the hidden layer modifies the input values of all the next activation
functions. This leads to a lot of calculus each time we will modify a weight and we already know
that we have a lot of them as there are already 30.000 neurons in the first layer fully connected to
the next ones. From these observations, a more efficient way to modify the weights is needed to
avoid time consumption.
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3.2.1 Back-propagation

Figure 3.6: Back-propagation: (a) The errors δLj are calculated from the loss for each neuron in
the output layer. (b) The errors are propagated to the previous layer for a neuron. (c) The errors
in layer l − 1 are calculated from the errors of layer l.

To begin with, we have a well-known tool to properly change parameters instead of doing
random tries: the derivative. We will need to calculate the derivatives of the loss regarding the
weights. We just saw that a modification of a weight in the first layers leads to a lot of computation.
This will be the case if we calculate the derivative through the computation of ∂C

∂wi
= C(w+ϵ)−c(w)

ϵ .
To solve this problem, we will use an algorithm called back-propagation introduced in 1986 by
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams [24]. This algorithm consists in
calculating the derivatives of the loss regarding the weights using the chain rule for each neuron.
We have:

dC

daL
· da

L

dzL
· dzL

daL−1
· da

L−1

dzL−1
· dz

L−1

daL−2
· · · · · da

1

dz1
· dz

1

dx
(3.15)

where:

• C is the cost function

• aL is the activation function

• zL is the net input of a neuron depending on the weights

• x is the input

Using Equation 3.2, daL

dzL is simply the derivative of the activation function. In the case of the
ReLU, we take the derivative at 0 equal to 0. Using Equation 3.1, we see that dzL−1

daL−2 is the matrix
of weights. Let’s get deeper into the details with a brief summary of chapter 2 of Neural Network
and Deep Learning [25]:

Let’s define the error δlj of the neuron j in a layer l as:

δlj =
∂C

∂zlj
(3.16)

The error caused by the neurons in the last layer can be calculated using the chain rule (Figure
3.6(a)):

δLj =
∂C

∂aLj

∂aLj
∂zLj

=
∂C

∂aLj
σ′ (zLj ) (3.17)
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This error can be recursively propagated to a neuron in layer l (Figure 3.6(b)) if we express the
error δlj in terms of δl+1

k . Starting with the definition of δ (Equation 3.16), using the chain rule,
then the definition of δ again, we successively have:

δlj =
∂C

∂zlj
=
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=
∑
k

∂zl+1
k

∂zlj
δl+1
k (3.18)

Let’s develop ∂zl+1
k

∂zl
j

. We start with the expression of zl+1
k using Equation 3.2 then differentiate the

expression:
zl+1
k =

∑
j

wl+1
kj alj + bl+1

k =
∑
j

wl+1
kj σ(zlj) + bl+1

k (3.19)

∂zl+1
k

∂zlj
= wl+1

kj σ′(zlj) (3.20)

Putting this result in (3.18), we finally have:

δlj =
∑
k

wl+1
kj δl+1

k σ′(zlj) (3.21)

This last equation gives the relation to calculate the error in layer l in terms of the error in layer
l + 1, the weights between these layers and the derivative of the activation function. Rewriting
Equations 3.17 and 3.21 in terms of matrices, we find:

δL = ∇aC ⊙ σ′(zL) (3.22)

and
δl =

((
wl+1

)T
δl+1

)
⊙ σ′(zL) (3.23)

where ⊙ is the Hadamard product (Figure 3.6(c)). Using the chain rule as we did to obtain the
two equations above, we also find:

∂C

∂blj
= δlj (3.24)

and
∂C

∂wl
jk

= al−1
k δlj (3.25)

With these equations for the back-propagation algorithms, we can summarise the back-propagation
algorithm in a few steps:

1. For a fixed sample, do the forward propagation to calculate the predictions.

2. Calculate the loss function with the predictions and the labels using (3.13).

3. Calculate the error for the last layer using (3.17). Then propagate the error to every other
layer with Equation 3.21.

4. Calculate the derivatives of the loss with respect to the weights (3.25) and biases (3.24).

By using this procedure, the derivatives are computed in an efficient manner: First, the derivatives
are not calculated using the definition of a derivative. As we said, proceeding like this would require
propagating forward a small increment, which would require a lot of computations for every partial
derivative. Second, there is no duplicate calculation, only a single pass on the network backward.
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3.2.2 Optimiser

Doing back-propagation left us with the partial derivatives regarding the weights and the biases.
To modify these parameters, we now need to follow the opposite direction of the gradient to reduce
the loss. To choose the step length, we use an optimiser: Adam [26]. This optimiser showed the
best results in 2015 on the MNIST database as we can see on Figure 3.7 and is now one of the
most used optimiser for NNs.

Figure 3.7: Adam optimiser compared to other optimisers on the MNIST dataset. Adam shows
the best results on the MNIST dataset.

3.2.3 A word on hyper-parameters and data pre-treatment

Hyper-parameters are the parameters set before the training starts. There are the number of layers,
their size, the activation functions, and two other parameters we haven’t spoken about yet: Epochs
and batch size. An epoch is the number of time the NN will see each sample of the database during
training. The more epochs there are, the better the NN become on the training database. We saw
above that learning consists in updating the weights to allow the NNs to learn and become more
efficient on their tasks. This updating is time consuming. Still, it is mandatory. There are multiple
options defining the updating moment of the weights:

• batch: the weights are updated once after each epoch

• mini-batch: weights are updated after a specific number of samples

• stochastic gradient descent : the weights are updated after each sample

The batch uses a lot of memory due to all of the information cached before the weight update
and is slow but has a very stable gradient. The stochastic gradient descent causes a lot of noise
due to unstable gradients computed for each sample but is fast and doesn’t use a lot of memory.
A compromise is to use mini-batch updating the weights after a few samples. This mitigates the
advantages and disadvantages of the two other methods. This is the method used here.

The data pre-treatment was realised with TensorFlow. It consists in linking the output of
Matjes to TensorFlow and possibly to make operations to increase the size of the database. This
was done for the sake of convenience and efficiency. Proceeding like this allows using the NNs
directly onto Matjes outputs without a separated script to organise the data correctly. Moreover,
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the data was fed to the NNs by realising a pipeline. This technique consists in loading the data only
when they are needed. This allows less memory usage and bigger dataset to train on. To realise
and improve this pre-treatment with a pipeline, a great amount of time was spent. It resulted in
a time reduction of 80% for each loaded sample.

3.3 A deep NN for topological structure recognition

All of the explanations on the functioning about the created NN used in this chapter were given
in the previous sections. Now, a look at the training and capacity of the networks can be taken.

3.3.1 NN structure

The structure of the NN created consists in five layers. The input layer has a size of 30.000 to
match the size of generated samples (100 × 100 × 3). The three hidden layers are made of 1000,
256 and 64 neurons, all using the ReLU activation function. The final output is made of 3 neurons
using the softmax activation function. The batch size is set to 32 to accelerate computation.

3.3.2 Databases

To train and evaluate the network, multiple databases were generated. They differ by their size
and the parameters used. However, all the samples have a grid size of 100× 100× 3.

A first database (LDB) is made of 8000 labelled samples. The centers of the structures are
placed every 5 points along x and y, i.e. on 20 different positions along each direction. The size of
the structure is set to an element ∈ {6, 16, 26, 36, 46}. Then, the helicity along x and y are set to
-1 or 1. This results in a generation of 2 SK and 2 ASK at each position for each structure size.

After the first database, two other databases were generated (TDB), each containing a single
structure type. The positions are set every 20 points, the size of the structure are
∈ {6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46}. The helicities are set to (−1,−1) for the SK database and
(1, 1) for the ASK database. This results in 275 samples for each TDB with eight out of eleven
different sizes from the LDB.

3.3.3 Results of the training

At first, the weights are randomly set and the database is divided in two parts (80%−20%). Then,
the training begins using back-propagation and adam gradient descent optimiser.

The results of the training are plotted in Figure 3.8 for 250 epochs. The value of the loss at
the end of each epoch done with 80% of the database is reported in light orange: After the first
epoch, the loss is above 1.2. One epoch further, the loss decreases quickly around 0.25 showing the
efficiency of Adam optimiser. From there, the loss decreases almost linearly to 0.012. A linear fit
is done in orange. One can observe that sometimes, the loss can increase or some losses are way
above the general trend. This is interpreted as too high a learning rate applied by the optimiser.
This kind of noise is also observed in Figure 3.7 whatever the optimiser used. Around epoch 220,
the loss starts to get flatter, all values are under 0.020. This means the NN is stable, the weights
and biases don’t move much anymore.
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Figure 3.8: Plot of the losses during training over 250 epochs on LDB. The light orange dots are the
loss on the training subset and the light blue ones represent the loss of the validation subset. The
loss decreases almost linearly when the one on the validation sample decreases and then increases
again. A quadratic fit allows to find the minimum of the validation loss.

The question is to know when to stop the training. The two extremes are after one epoch and
when the weights and biases don’t move anymore. This last limit was observed during the multiple
training done during the project and fluctuates a lot4. A common habit is to keep a part of the
dataset to do validation. We use 20% of the dataset for this purpose. The NN does not learn on
this subset. It only evaluates the loss. This loss is reported in Figure 3.8 in light blue. At the
beginning, this validation loss (VL) is below the loss. Through epochs, it tends to decrease and
then moves on to increase. To evaluate the transition moment, a quadratic fit is realised. Using
the derivative, the minimum is found around the sixty-fourth epoch. From that point, the VL is
overall on the increase. When this happens, the NN starts to overfit the data. It is said that the
NN begins to lose in generalisation capability.

We just saw that the loss on unseen data can be an answer to define a point where we can stop
the training. We know that the loss function used is a metric to evaluate the difference between the
predictions of the NN and the real probability of the correct predictions. And, the purpose of the
loss is to have a metric on which the NN will be able to improve. But, this is not our ultimate goal.
The structures must be correctly classified and this is evaluated with the accuracy (c.f. Equation
3.11). The accuracy evaluated during learning on the training and validation subsets are plotted
in orange and in blue in Figure 3.9.

4Fluctuations were over 100 epochs.
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Figure 3.9: Plot of the accuracy evaluated during training over 250 epochs on LDB. The accuracy
of the training subset increases and becomes gradually smoother through epochs. The accuracy on
the validation subset is sparse and increases more slowly than the accuracy on the training subset.

Figure 3.9 shows an accuracy of 0.77 after a single epoch on the training subset and 0.90 on
the validation one. It stays around 0.90 before increasing a lot from epoch 90. At that stage,
the accuracy on the training subset starts to have smooth ups and downs each 10-20 epochs. A
zoomed plot (Figure 11) can be found in the appendix. This highlights the differences between the
two scatter plots. The general trend is an increase in the accuracy. However, the accuracy and
validation accuracy do not grow at the same rate. The accuracy is higher and finishes at 0.996.
The validation accuracy is always sparse and lower, as it finishes at 0.945. From epoch 120 to
250, the differences between the two accuracies are around 5%. Overall, the NN seems to classify
better after 140 epochs. At the end, the network almost perfectly classifies the structure of the
training subset. However, it does not on the validation one. Consequently, it is clear that a special
attention must be given to the accuracy on unseen data.
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Figure 3.10: Evaluation of the network accuracy on unseen data. The evaluation is done on the
two TDB containing either only SK or only ASK. At first, the data are scattered. From epoch 130,
the accuracies tend to be more consistent. An overall accuracy of 97% is obtained at epoch 250.

Figure 3.10 shows evaluations of the network on unseen data. The data in question are the two
databases TDB containing only SK or ASK. Each point on the figure corresponds to the accuracy
of structures found in a database. To calculate the points, the weights of the NN at a fixed epoch
are loaded. Then, the 275 samples of the database are propagated forward and the accuracy is
computed. After this, the other database is evaluated in the same way. Finally, the weights of the
next epoch are loaded. It is worth the computing time as this graph allows us to distinguish the
types of structures recognised by the NN.

On Figure 3.10, there seems to be two regimes. One from epoch 0 to ≈130 and one from
≈130 to 250. In the first regime, the recognition is almost always above 82% . This recognition
seems to be focused on one structure type to the detriment of the other. In the second regime,
the recognition levels are closer and more consistent. They are above 90%. Choosing the weights
carefully between epochs 200 and 230 seems to be the best choice regarding the results.

With this analysis, it appears that letting the NN overfit is not problematic. The ability of the
network to recognise structures continues to improve even if the validation loss is increasing. From
this observation, we conclude that great importance must be given to evaluating the model on
unseen data. Additional evaluations were conducted (Figure 3.10). These evaluations for the NN
created showed impressive results for the task at hand with an accuracy above 97% on the test
databases.

25



Chapter 4

Convolutional Neural Network

The first convolutional neural network (CNN) was created in 1989 by Yann LeCun et al [27].
The original paper describes the network called LeNet-5. This network was created to recognise
handwritten digit. It showed very low error rate and is now considered as pioneer work. Nowadays,
the methodology is a standard component in modern NN architecture for image recognition. Even
if our samples are not pictures and have negative values, the benefits of the assumptions of a
picture encoded as a 3D matrix (height x width x colour channel) can be transferred to topological
structure recognition.

4.1 Modifications of a RNN to obtain a CNN

Figure 4.1: Example of CNN functioning. The network can be divided in two parts. The first
part uses convolutional and pooling layers to reduce height and width while increasing the depth.
Depth corresponds to features extracted by the convolutions. From part one to two, the data is
flattened. In the second part, a RNN analyses the extracted features to classify the samples into
categories.

A CNN can be divided into two parts as represented in Figure 4.1. The first part contains new
layer types: convolution layer, pooling layer and possibly a flatten layer. The first two layers types
are presented with more details in the following subsections. The flatten layer is self-explaining:
it arranges all the data in one dimension. The overall purpose of these layers is to extract spatial
features. Doing so, the layers will reduce the height and width of the input while growing in the
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third direction, depth. To connect the first part of the network to the second one, the data may
need to be flattened. The second part is a small RNN. It is made of a few layers fully connected to
the features extracted by the convolutional and pooling layers on one side and to the ouput layer
on the other. The output layer is constructed as before: the layer has a size corresponding to the
class number and uses a softmax activation function to classify the samples. For the hidden layers,
the ReLU function is chosen as in Chapter 3.

4.1.1 Convolution layers

The features are extracted by the convolutional layers (Figure 4.2) with filters (e.g. in orange).
Let’s explain how it works. The convolutional layer is made of neurons. Each neuron has access
to a local 2D region formed by the results of the previous layer (e.g. in petrol blue) and a filter
which is a matrix. It will compute the dot product of the region and the filter and optionally apply
an activation function on the results. This will be the output of the neuron (e.g black frame).
The filters are moved on the sample for each local region, hence the name convolutional layer. By
applying multiple filters on the output of the previous layer, the depth is increased. Depending on
the application, filters may be customised or learned. For example, if we’re interested in diagonal
lines, we can use the unitary matrix as a filter. The dot product will be sensible to value along
the diagonal and therefore, the output of the neuron as well. For this CNN, we use the standard
initialisation of filters included in TensorFlow and change their values like the weights in a RNN.
This is standard. Using convolutional layers allows a drastic reduction of parameters. For example,
in the RNN, the input layer has a size of 30000 +1 to include the biases and the second layer has
1000 neurons. This results in 30,001,000 parameters. The number of parameters for a convolutional
layer is given by:

parameter # = (filter size × input depth + 1)× number of filter (4.1)

For the first convolutional layer, we used 32 filters of size 3x3 moved with a stride of 1. The input
depth is equal to 3, the number of magnetic components. This results in only 896 parameters.
Decreasing the number of parameters allows reduction of overfitting and computing time.

Figure 4.2: Representation of the functioning of a neuron in a convolutional layer. Neurons are in
pale olive green, the filters are in orange and a local region in petrol blue. To compute the output
of a neuron i, j, 1, the activation of the dot product of the local region i, j and filter 1 is evaluated.
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Figure 4.3: Functioning of MaxPooling layers. The figure comes from [28]. A filter of size 2x2 is
applied with a stride of 2 to the input slice. This results in four windows (i.e. sub-matrices). From
each window, the maximum value is taken as an output.

4.1.2 Pooling layers

The purpose of pooling layers is to reduce the width and height of their inputs. To do so, we use
MaxPooling layers (Figure 4.3). These layers reduce the size of an input by slicing along the depth
and dividing it in small windows (i.e in sub-matrices) along the height and width from which the
maximum value is extracted. To define a window, a filter is applied. The filter size gives the size
of the window and a stride defines how the filter is moved from one window to the next one. There
is no learnable parameter for these layers.

4.2 A CNN for topological structure recognition

4.2.1 Structure of the CNN

The structure of the CNN created is summarised in Table 4.2.1. The structure contains two
Maxpooling layers intercalled between Conv2D layers. Then, the resulting matrix is flattened
before going to 2 fully connected layers. The total number of parameters is 1,862,915. In the case
of the RNN, we had 30,273,899 parameters. This is an overall reduction from the previous network
with a factor 16. The number of parameters between the first two layers of the CNN is 896. At the
beginning of the RNN, it was equal to 30,001,000. From these numbers, we deduce that the main
reduction in the number of parameters is between these first two layers. However, in the CNN, the
first fully connected layer is in the end. Hence, more parameters are used in this part than in the
RNN.

Layer type (parameters) Output Shape Param #
Conv2D - (32, (3, 3)) (None, 98, 98, 32) 896
MaxPooling2D - (2, 2) (None, 49, 49, 32) 0
Conv2D - (64, (3, 3)) (None, 47, 47, 64) 18,496
MaxPooling2D - (2, 2) (None, 23, 23, 64) 0
Conv2D - (64, (3, 3) (None, 21, 21, 64) 36,928

Flatten (None, 28224) 0
Dense (64) (None, 64) 1,806,400
Dense (3) (None, 3) 195

Table 4.1: Structure of the CNN created for the project. The structure is different from the one in
Chapter 3: Convolutional layer with parameters as (Filter#, stride along (x, y)) and pooling layers
with parameters as downscale factors along (x, y) are additions.
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4.2.2 Databases

The databases used to train (LDB) and test (TDB) the CNN are the same as the ones used for
the RNN. They are described in Subsection 3.3.2. The LDB is divided using the same ratio: 80%
for training, 20% for the validation.

4.2.3 Results of the training

The hyper-parameters are set to 32 for the batch size and 250 for the number of epochs to be able
to compare with the RNN. The optimiser is also the same as before: Adam.

Losses
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Figure 4.4: Plot of the losses during training over 250 epochs on LDB. The orange dots are the loss
on the training subset and the blue ones represent the loss on the validation subset. Two drops are
present at epochs 151 and 168 allowing the validation loss to decrease lower than 10−5.

The losses (TL, in blue) and validation losses (VL, in orange) are reported in Figure 4.4. A
zoomed plot for the 20 firsts epochs is in Appendix 12. Let’s take a look at the first twenty epochs.
After the first epoch, the TL is already down to 0.19. To compare with the RNN, it was 1.2
after one epoch and 0.25 after the second one. The second epoch with the CNN leads to a TL of
0.005. To obtain such a low loss with the RNN, 241 epochs were needed. Figure 4.4 shows a small
instability in the loss for the first 7 epochs. Then, it becomes more stable and decreases down to
epoch 151. However, the VL finds a limit around 10−5 after epoch 30. This indicates a first limit
at which the CNN cannot generalise the data anymore. The weights have reached a minimum. We
could stop the training and explanation there but an interesting phenomenon appears from epoch
105: the TL becomes unstable. After epoch 151, a huge increase in the loss is observed. This is
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due to the optimiser. From that point, the TL and VL start decreasing again before dropping once
more at epoch 168. These drops allow the VL to decrease under the previous limit of 10−5. This
indicates that the previous minimum was a local one. The global minimum is not reached.

Accuracies on LDB
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Figure 4.5: Plot of the accuracies calculated during training. The blue dots are the accuracy of
the training subset and the orange dots correspond to the validation subset. After 12 epochs, both
accuracies are merged. The CNN perfectly classify the LDB.

Reaching the global minimum does not seem necessary when we look at the accuracies in Figures
4.5 and 4.6. At epoch 1, the TA (training accuracy) is already above 94%. One iteration later on
the LDB, it goes to 99%. At epoch 12, 100% of the structure are correctly classified. Hence, the
CNN is better after 12 epochs than the RNN after 240 epochs, which saturated at 94.5%. From
that point, the accuracies remain perfect except around the two loss drops at epoch 151 and 168.
The decrease from the first local minimum to a lower one does not affect the results on the LDB.
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Figure 4.6: Plot of the accuracies calculated during training. The blue dots are the accuracies on
the training subset and the orange dots on the validation subset. Accuracies are almost always
perfect except at the beginning of the training and near the drops at epochs 151 and 168.

Accuracies on TDB

Figure 4.7: Plot of the accuracy calculated for: (a) the SK TDB, (b) the ASK TDB. Both TDBs
are evaluated on 50 epochs. Both magnetic structures are almost perfectly recognise in the first
ten epochs. After that, the accuracies is equal to 1.

Figure 4.7 (a) and (b) report the accuracies through 50 epochs with the TDB of SK and ASK.
The skyrmions are perfectly classified after nine epochs. Ten are needed for the ASK. Unlike the
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accuracies of the RNN, the CNN perfectly classify the structures. Accuracies are not sparse and one
is not above the other. These tests support the idea that twelve epochs are sufficient to perfectly
classify the structures in the three databases generated.

With the CNN, a perfect classification of the structures generated is obtained after only twelve
epochs. The loss on the validation subset continues to decrease after two drops. This indicates some
improvement in generalisation can still be learned. To benefit and evaluate it, the databases should
be complexified. Doing so, we would already use the training done to classify the new structures.
Then, depending on the results, some diversity improvement of the LDB can be envisaged.

32



Conclusion

This master thesis explored the application of artificial intelligence, specifically deep learning mod-
els, for the recognition of topological structures, with a focus on magnetic skyrmions and anti-
skyrmions. The work aimed to address the challenges associated with identifying these structures
in dynamic conditions, which is crucial for advancing research in spintronics. By creating and train-
ing neural networks on synthetic magnetic data, this research demonstrated the potential of AI
to generalise its knowledge to identify single topological phase on unseen samples with impressive
accuracy and efficiency.

In the first chapter, the thesis provided an overview of the current state of magnetic topological
structure with a focus on skyrmion and anti-skyrmion. The stakes of recognition are established as
well as the limitations of traditional methods. It introduced the concepts of AI as a more adapted
method, draw a research plan and set the foundation for the subsequent chapters.

Chapter 2 detailed the process of database generation and labelling in order to realise supervised
learning. A library which automated both the generation and the labelling process is created.
Comprehensive databases of synthetic topological structures can therefore be created using the
generalised solution of the differential equation as given by Bogdanov et al [13, 14]. These databases
served as the primary resource for training the neural networks, ensuring a robust and diverse set
of examples for model learning.

Chapter 3 focused on the development and training of a Regular Feedforward Neural Network
(FNN/RNN) for topological structure recognition. The results showed that the RNN was capable of
classifying skyrmions, anti-skyrmions, and non-classified topological structures with a high degree
of accuracy. The training process highlighted the importance of choosing carefully hyperparameters
and applying systematic evaluation of the network. Even if the network overfitted the training data,
the accuracy of the network was up to 97% on unseen one after 250 epochs.

In Chapter 4, the thesis expanded on the initial model by developing a Convolutional Neural
Network (CNN). The CNN demonstrated superior performance in recognising topological struc-
tures due to its ability to extract spatial features from the data. The reduction in parameters
compared to the RNN also helped mitigate overfitting, making the CNN a more efficient model
for this task. In only 12 epochs, the CNN is able to perfectly classify the samples of the databases
generated without being at the minimum of the loss function.

In summary, this thesis successfully demonstrated the use of AI for topological structure recog-
nition, achieving impressive results with deep learning models. While challenges such as data bias
and model generalisation remain, the research opens new avenues for the application of AI in the
study of topological phases in matter, particularly in the rapidly evolving field of spintronics.

In light of the results obtained, several avenues for future research can be explored to build upon
the work initiated in this thesis. Firstly, generating databases that incorporate temperature effects
would be a significant advancement. This would allow for the simulation of more realistic conditions
and a better understanding of the impact of thermal fluctuations on the recognition of topological
structures. Additionally, increasing the number of classified topological structures, including more
complex or less-studied configurations, would broaden the applicability of the developed models,
making the neural networks more versatile and robust. Another important aspect to consider is
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the evaluation of the necessary number of samples required to effectively train the networks, which
could optimise resource usage and training efficiency. Furthermore, training the networks multiple
times to obtain error bars would provide a more reliable assessment of model performance and
variability.

Building on the successes of the CNN, the next logical research step is the exploration of more
advanced neural network architectures for segmenting topological structures. The UNet architec-
ture, introduced in the next part of this work, represents a significant shift from classification
to segmentation, offering a more detailed analysis for magnetic skyrmion dynamics. Although
the initial implementation of the UNet did not reach the same accuracy levels as the CNN, it
demonstrated the potential for capturing the spatial complexities of topological magnetic struc-
tures in greater detail. This advancement is not only crucial for the accurate mapping of magnetic
skyrmions but also holds promise for broader applications in the dynamic analysis of topological
phases. As such, the UNet architecture serves as a promising tool for future research, with the
potential to significantly impact the development of spintronic technologies.
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Perspective: UNet

This chapter describes the progress made through a UNet. It is not just an opening as a significant
amount of time was spent in order to advance on the development plan. Even if the network does
not show all the expected results yet, it is an achievement that will surely benefit the following
research.

In Chapter 4, the created CNN is able to classify with an accuracy of 100% both training
database and unseen data of the TDBs. Instead of pursuing in the way to classify more complex
single topological structures, another way is chosen in the direction of skyrmion dynamics. The
next goal is to develop an NN which would be able to convert moving magnetic structures into
images containing coloured areas depending on the structures and their parameters. To deal with
the moving property, a sequence of samples can be made. Hence, an NN capable of classification
and localisation of multiple structures is sufficient. Then, from the image sequence obtained,
post-treatment will be possible to analyse the dynamics.

To deal with the challenge of spatial separation of multiple structures in a sample, a network
must be able to do segmentation. Image segmentation is a process able to simplify an image into
meaningful regions. To do so, a UNet seems to be a good candidate. Unet was proposed in 2015
by Olaf Ronneberger, Philipp Fischer, and Thomas Brox [29] to deal with biomedical images. A
few key points of the UNet can be pointed out:

• it is a convolutional NN,

• it requires only a small labelled database as it uses a lot of image augmentation,

• it performs segmentation by working at pixel scale. Each pixel is assigned to a class.

The structure of the original UNet is represented in Figure 5.8. With this figure, the origin of
the UNet name is quite obvious. In this NN, the input image is a grey scale image. This image goes
through convolution layers and MaxPooling layers on the left part of the U, the downsampler. The
functioning of these layers are described in Chapter 4. On the right side of the U, the upsampler,
the pooling layers are replaced by upsampling operators. Combined with the features extracted by
the downsampler (the copy/crop represented in grey), the NN is able to reconstruct images with a
great precision.

5.3 The assembled UNet

To implement a UNet, the fine tuning technique is chosen with transfer learning. This technique
consists in taking parts of NN already trained on huge databases (millions of samples) and modify
the inputs/outputs to correspond to the task at hand. Doing so, the weights of the network can be
partly fixed. This reduces the computing time. For the downsampler, we take the MobileNetV2
[30] layers. These layers are trained for image sizes of multiples of 2, starting at 32. The weights
of these layers are fixed. We use an input layer followed by five layers to get down to a size of
4 × 4. For the upsampler, we take the pix2pix upsampler [31] and let the weights change. We
use five layers to go back to 128 × 128. There are connections between all the layers except for
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Figure 5.8: Structure of the original UNet [29]. The NN has a U shape. It consists in two parts:
a downsampler and an upsampler. Both parts are connected through the grey arrows and the
bottom of the U.

the input/output stage. Finally, the labels (which are represented for example by integers 0 for
nothing, 1 for skyrmions and 2 for anti-skyrmions) must be changed to allow training. The NN
works with the three labels for each pixel to compute the loss.

5.4 Modifications concerning the databases

The UNet needs two main changes in the database. First, the size of the samples must be a multiple
of two. From 100× 100, we change to 128× 128. Second, the labels for each pixel must be created.

To do this labelling, we generate magnetic textures with a single topological magnetic texture
and add masks. A mask is a matrix in which each value must be a label (so 0, 1 or 2 in our
example). Each of these values is related to a pixel in the representation of the magnetic texture.
After computing, we are left with a matrix of labels the position and values of which should
correspond to the position and the type of the magnetic textures.

In practice, the mask matrices are initialised with 0. The number of matrix depends on the
number of magnetic structures we want to classify. Then, depending on the structure size and
position, some zeros are changed in the matrix. These changes depend on the topology of magnetic
structure (here defined by the helicities along x and y). For example, if we have a sample of size
(4× 4) with an ASK in the position (3, 2), the mask will have the value 2 in (3, 2) and 0 elsewhere.
The masks for the SK and None remain unchanged at value 0.

To train the network, a new database is generated. The centres of the structures are placed
every 30 points along x and y, i.e. on 5 different positions along each direction. The size of the
structure is set to an element ∈ {6, 16, 26, 36, 46}. Then, the helicities along x and y are set to -1,
0 or 1. This results in a generation of 2 SK, 2 ASK and 5 None at each position for each structure
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size. In total, 967 samples are generated with corresponding masks.
After the generation of the databases, changes are also made in the pre-treatment to include

the masks. The masks are stacked as 3D matrices called tensors in the Tensorflow library. The
inclusion of these in the pre-treatment are requiring a lot of operations and are therefore optimised
via a procedure called pipeline, as explained in Subsection 3.2.3. The resulting procedure then
only takes around 100ms for 32 samples (magnetic textures + the masks).

5.5 The first outputs of the UNet

The network is initialised with the weights already calibrated for both the downsampler and the
upsampler. Hence, some predictions can already be made.

Figure 5.9 contains four samples with their predictions. The first column corresponds to the
re-normalised magnetic moments. The magnetic moments have values between [−1, 1] and will be
referred to as pixels in the following. To plot the structure in an efficient way with Tensorflow,
we re-normalise the values between [0, 1]. This allows easy representation and clear distinction
between the background and the structure. The next two columns correspond to the masks of SK
and ASK. The background masks always have 0 values. Thus, no representation is needed. The
last column is the prediction of the network before training.

Let’s start with panel (a), a texture that looks like a skyrmion, but is actually topologically
trivial, is placed in the top of the simulation supercell. The masks of a SK and an ASK are
containing only 0 (panel b and c, respectively). The predictions of Unet is then represented in
panel (d). The image shows a series of green and red vertical lines. The green colour corresponds
to label 1 (SK) and the red colour corresponds to label 2 (ASK). We would have expected only
labels 0 (None) as the magnetic texture is not topologically protected. The discrepancy between
the prediction and the input magnetic texture originates from the fact that we have not taught the
NN yet. Looking a little more carefully, one can catch a glimpse of a sketch of structure. Location
is indicated with the blue arrows on panel (d). However, the results should have been a black
square.

Let’s now look at the second sample. We increased the difficulty as we put a magnetic texture
that resembles a skyrmion at the edge of the supercell. Both SK and ASK masks are set to 0
(panel f and g). The prediction of the Unet is then similar to the previous example showing green
and red vertical lines. The prediction shows again features, this time in the corners of the image.
The corners are slightly denser in green, except for the lower bottom corner, which is a bit denser
in red.

The same kind of description can be made for the last two samples although they are showing
skyrmion for sample 3 and antiskyrmions for sample 4.

These four predictions show that the shapes of the structures are emerging, but the classification
is incorrect. This can simply be explained by the fact that the network has not been trained for
the chosen categories yet.

Predictions of four samples after training on 50 epochs are represented in Figure 5.10. The
figures shows only black pixels in the last columns (Predictions). Let’s start with sample 1 com-
prising panel a, b, c and d. As for Figure 5.9 panel a, the magnetic texture resembles a topologically
protected magnetic texture although it is trivial. In that case, both ASK and SK masks are set
to 0. The result of the prediction shown in panel (d) is correctly determined with ’none’ for each
pixel. Therefore, the prediction in that case is a success and we did not manage to fool the NN.

The same holds for sample 2. The texture is now placed in the centre and is topologically trivial
as shown panel (e). Both SK and ASK masks are set to 0 for none and the result of the prediction
is indeed a 0 for each pixel as shown in panel (h).

The third sample is different from the first two. In this one, a topologically protected structure
is placed on the top of the supercell and comes back due to periodic boundary conditions by the
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Figure 5.9: Pre-training UNet predictions - Representation of four samples: two without repertoried
structure, one with a SK and one with an ASK. The first columns correspond to the re-normalised
magnetic moments. The following two columns correspond to the masks of SK and ASK. The last
column is the prediction of the network before training.

38



bottom. The magnetic structure is a SK. Therefore, panel (j) shows the mask that the NN should
predict. And, as only one type of magnetic texture is present in a sample, panel (k) is black.
The expected result (j) is not entirely the same as (l), the one predicted by the network. The
ferromagnetic background of the structure is correctly predicted. Indeed, it is not a structure,
we expect from the network a classification of these pixels as None. However, the network is not
able to predict the pixels belonging to the SK. Overall, more than half of the pixels are correctly
predicted.

The last sample (4) presented, contrarily to the third one, contains an ASK. Hence, the SK
mask (n) is black and the ASK one (o) contains coloured pixels corresponding to the magnetic
texture (m). As for the third sample, the ferromagnetic background is correctly predicted but not
the pixels belonging to the topological structure. This time, the structure is smaller than the last
one. Therefore, a large majority of the pixels are correctly predicted.

The results presented are the same as after a single epoch. We observed that the network
correctly predicted the ferromagnetic background of all the samples. Unfortunately, the network
does not correctly classify the pixels belonging to classified topological texture yet. This should
not be the case. However, even if it may seem presumptuous, the network is quite good. Indeed,
the network is learning to classify as well as possible. In each sample containing a SK or an ASK,
the structure occupies a small area. Additionally, the database contains five-ninths of ’None’. By
proceeding in this manner, the network correctly classifies a large majority of pixels (around 80%):
all the samples without structures are perfectly classified, and those containing a SK or an ASK
are mostly well classified. From these initial results, we suspect a bias problem in the database.
The proportion of pixels in the LDB should be changed.

Throughout this chapter, we performed fine-tuning and transfer learning to create a UNet for the
recognition of topological structures. We adapted the database generation to the appropriate size
for MobileNetV2 layers and labelled all the pixels. Pre-training predictions had been made. These
predictions show that features are already extracted by the network. Then, a first training was
performed with the generated database. The results seem to indicate a bias in the LDB. Indeed,
the network is focusing on the background rather than on the SK and ASK. Further investigations
will be necessary. With an accuracy of 80% already reached, the development of this network is
promising for the analysis of dynamics of topological magnetic texture.
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Figure 5.10: Post-training UNet predictions: Representation of four samples: two without reper-
toried structure, one with a SK and one with an ASK. The first columns correspond to the re-
normalised magnetic moments. The following two columns correspond to the masks of SK and
ASK. The last column is the prediction of the network after training.
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Additional information

Regarding memory space

For your information, here are some values for the required space for the databases:

• The databases of size 100× 100:

– LDB, 8000 samples = 62.5GB

– TDB, 275 samples = 2.2GB

• The databases of size 128× 128 with masks:

– 960 samples = 12.5 GB

• The weights of a single training:

– RNN: weights of 500 epochs= 182GB

– CNN: weights of 250 epochs = 5.6GB

Regarding the computers

The generation of the databases were realised on a server of the RU dedicated for Matjes with GPU
acceleration. It was chosen to work with TensorFlow for its ability to use GPU acceleration as
well. However, the training sessions could not be conducted on the research unit workstation. We
recommend installing Anaconda on Ubuntu with caution. Instead, the trainings were performed
on a Lenovo ThinkBook 15 G2 ARE with AMD Ryzen 7 4700U. No GPU acceleration was possible
on this computer.
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Additional figures
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Figure 11: Zoom of Figure 3.9. The accuracy ends at 0.99. The validation accuracy is scattered
but similarities between the two scatter plots are visible. The validation accuracy stays around 5%
under the accuracy.
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Figure 12: Plot of the losses on training and validation subsets from epochs 0 to 20 during training
on the LDB. The orange dots are the loss on the training subset and the blue ones represent the
loss calculated on the validation subset. The network shows very low losses, sparse at first. After
epoch 8, the two losses continuously decrease.
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