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Abstract

This thesis investigates the modelling of pollutant transport in flooded ur-
ban environments using a two-dimensional shallow water advection-diffusion
framework. The numerical model is based on a finite-volume discretization and
incorporates both isotropic and anisotropic diffusion tensors. A particular focus
is placed on distinguishing between longitudinal and transverse diffusion, and
evaluating their respective influence on the simulated pollutant spreading.

The advection term is discretized using various numerical schemes, including
a first-order upwind method and a second-order flux-limited scheme. Their im-
pact on accuracy and numerical diffusion is assessed through benchmark tests
involving analytical solutions. The model is then applied to replicate experi-
mental scenarios from the M.U.R.I. platform at INRAE Lyon, using both time-
averaged and fully unsteady hydrodynamic fields generated by the Wolf 2D
model.

A sensitivity analysis is performed across a wide range of anisotropic diffusion
coefficients. Results show that the longitudinal coefficient DL has a predominant
influence on the downstream elongation of the pollutant plume, while the trans-
verse component DT contributes to lateral diffusion. The spatial structure of
the concentration field results from the combined effect of both coefficients, de-
pending on the flow configuration and injection point. Although no universal
relationship is observed, the anisotropy ratio DL/DT provides a useful metric to
compare different configurations. For each test case, a ratio between 2.5 and 3.5
is typically associated with the best agreement with experimental data, reflect-
ing the directional nature of pollutant transport in urban environments.

The study highlights the importance of both anisotropic calibration and
the use of time-resolved hydrodynamics for accurately capturing pollutant
dynamics in complex urban flows. It also underscores the trade-offs between
numerical cost and physical realism, motivating future developments aimed at
accelerating simulations and extending validation to additional configurations
and injection points.

Keywords: Anisotropic diffusion, advection-diffusion, shallow water equations,
pollutant transport, urban flooding, finite-volume method, numerical schemes,
M.U.R.I. experiment, Wolf 2D
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Chapter 1

Introduction

1.1 Motivations

Urban floods are complex hydrological phenomena that pose significant threats to infras-
tructure, ecosystems, and human health. In addition to their physical and economic impact,
floodwaters can mobilize a wide variety of pollutants, including heavy metals, hydrocarbons,
pesticides, and pathogens, which originate from roads, industrial zones, sewage networks, and
built surfaces. Once in motion, these pollutants are transported through urban environments,
potentially contaminating rivers, groundwater, and residential areas [Stevens et al., 2010]. Un-
derstanding and predicting the transport of such contaminants is therefore essential for effec-
tive environmental protection and risk management.

This need has become even more pressing in recent years, as the frequency and severity of
flood events increase due to climate change. Long-term observational data confirm this trend:
as illustrated in Figure 1.1, the number of heavy rainfall days recorded during summer in
Belgium has significantly increased over the past century. This intensification of precipitation,
combined with urbanization and soil sealing, has made cities particularly vulnerable to surface
flooding.

In July 2021, Belgium experienced some of the most devastating floods in its history. The
region of Liège was particularly affected, with significant human, material, and environmental
consequences. Figure 1.2 shows the extent of the flooding in urban streets during this event.
Beyond the damage caused by water itself, concerns were raised about the spread of pollutants
in industrial zones and wastewater overflows, especially in densely constructed and low-lying
areas [Dekenne et al., 2022]. These events highlighted the urgent need for reliable tools capable
of anticipating not only water depths but also the pathways and concentrations of transported
contaminants.

More recently, in May 2024, the region of Valencia in eastern Spain experienced severe flash
floods following intense rainfall. These floods caused extensive damage, led to evacuations,
and disrupted infrastructure. Figure 1.3 illustrates the extent of the flooding in urban streets.
Similarly to the events in Belgium, concerns were again raised regarding the transport of pollu-
tants and public health risks after such extreme events. These successive events, which occur
in different parts of Europe, illustrate the increasing frequency and geographical spread of
extreme floods, highlighting a wider climatic trend.

1
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Figure 1.1: Trend in the number of heavy rainfall days during summer in Uccle from 1892 to
2022. The number of extreme rainfall days has increased significantly in recent decades. Image
adapted from IRM [2022].

Figure 1.2: Urban flooding in Liège during the July 2021 flood event. This image illustrates
the severity of the event and the extent of water intrusion in dense urban areas. Image from
Brajkovic et al. [2025].

Numerical models are indispensable tools in this context. They provide a means to simu-
late complex physical processes, test different scenarios, and support decision making in both
emergency situations and long-term planning. In the case of pollutant transport during floods,
numerical models typically couple hydrodynamic solvers, such as the 2D shallow water equa-
tions, with advection-diffusion equations to predict how contaminants are carried by flow and
spread over time. These models can inform mitigation strategies, such as locating pollution
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Figure 1.3: Flash flooding in Valencia, Spain, in October 2024. The image shows the rapid
inundation of urban streets, illustrating the destructive power of sudden heavy rainfall events.
Image from Newsweek [2024].

barriers, designing retention areas, or planning evacuation routes. More generally, they offer a
predictive framework to reduce exposure risks, protect ecosystems, and comply with environ-
mental regulations.

However, despite their utility, existing numerical models often rely on simplified assump-
tions that may limit their accuracy in complex urban settings. One of the most common simpli-
fications is the assumption of isotropic diffusion, where pollutant diffusion is considered equal
in all directions. Although this assumption may be valid in some natural flows, it is generally
inadequate for urban environments, where the geometry of streets, the presence of obstacles,
and local flow structures create directional dependencies in mixing and transport. Experimen-
tal studies, including those conducted at INRAE (Lyon) on reduced-scale physical models of
flooded urban areas, have clearly shown that pollutant plumes are frequently elongated along
flow directions and that transverse mixing can be delayed [Fagour, 2025]. These observations
suggest that anisotropic diffusion, where longitudinal and transverse coefficients differ, is a
more appropriate representation to model pollutant transport in such environments.

Nevertheless, anisotropic diffusion remains underexplored in many operational and aca-
demic pollutant transport models. One reason is the difficulty of calibrating the longitudinal
and transverse diffusion coefficients. Another challenge is the numerical implementation itself:
standard discretization schemes may not correctly capture the effects of anisotropy [Morales-
Hernández et al., 2019; Kim et al., 2023]. As a result, many existing studies continue to use
isotropic formulations, potentially misrepresenting the extent and directionality of pollutant
spreading and thus underestimating or overestimating environmental risks. Addressing this
gap requires both theoretical insight and validation against experimental data, which consti-
tutes the core motivation of the present study.
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1.2 Methodology and Overview

The first part of the study consists of a literature review, which provides an overview of ex-
isting knowledge on pollutant transport during floods. This includes the main physical mech-
anisms involved, the influence of urban geometry on flow and mixing, and the current mod-
elling approaches. The review covers theoretical, experimental, and numerical contributions,
with a particular emphasis on the treatment of diffusion, and more specifically, the question of
anisotropy in urban contexts.

The second part focuses on the theoretical formulation of the problem. A depth-averaged
advection-diffusion framework is adopted to describe the transport of contaminants in shal-
low water flows. Special attention is given to the mathematical representation of anisotropic
diffusion, where distinct longitudinal and transverse coefficients are considered, as well as po-
tential cross-diffusion effects. The goal of this section is to provide a clear foundation for the
subsequent numerical developments.

The third part is dedicated to the development of a numerical model based on the equations
introduced earlier. The solver is implemented within a finite-volume framework on a struc-
tured grid, and several numerical schemes are evaluated for the discretization of advective and
diffusive fluxes. Benchmark test cases are used to validate the implementation and analyse the
sensitivity of the model.

The final stage of the study consists of a detailed analysis of the simulation results. Both
qualitative and quantitative assessments are performed to evaluate the ability of the model
to reproduce expected diffusion behaviours. In particular, the role of anisotropic diffusion is
examined by comparing different scenarios and identifying the impact of directional diffusion
on pollutant plume development. The simulation results are systematically compared with
experimental data.

Overall, this methodology aims to offer a contribution that goes from theoretical understand-
ing to practical application, while addressing one of the limitations of current models: the lack
of rigorous integration of anisotropic diffusion in pollutant transport simulations.



Chapter 2

Literature Review

2.1 Introduction

Pollutant transport has been the subject of extensive research due to its relevance in en-
vironmental engineering, water quality management, and risk assessment. A wide range of
scenarios has motivated the development of both experimental studies and numerical models
to characterize the underlying processes and predict contaminant transport in complex envi-
ronments.

This chapter provides an overview of the literature on pollutant transport in shallow water
flows. The review is organized into three main parts: experimental investigations that pro-
vide insight into real-world transport behaviour; numerical modelling strategies based on the
advection-diffusion equation; and recent advances in the representation of anisotropic diffu-
sion. Particular attention is given to the limitations of conventional approaches and the specific
challenges posed by the modelling of direction-dependent diffusion in urban environments,
which motivates the development of improved simulation methods.

2.2 Experimental Studies

Experimental investigations help to understand pollutant transport under real-world flow
conditions. Several laboratory and field experiments have been conducted to analyse pollutant
transport in flooded urban street networks, rivers, and shallow water systems.

A contribution in this field comes from the experimental work of Mejía-Morales et al. [2023],
which investigated the impact of urban block porosity on flood risk and pollutant transport.
Conducted at INRAE (Lyon), these experiments focused on flow exchanges between porous ur-
ban blocks and adjacent streets during flooding events. The study demonstrated how lateral
flow exchanges through openings (such as doors and gates) alter pollutant transport mecha-
nisms, affecting both local flow velocity and dispersion patterns. These findings established
an experimental framework for subsequent research on pollutant transport in urban environ-
ments.

Building on this work, Fagour [2025] extended these experimental studies by examining pol-
lutant transport in flooded street networks. This study, also conducted at INRAE, reused and
refined the urban geometry originally developed by Mejía-Morales et al. [2023], while incorpo-
rating additional variables such as pollutant injection locations and different flow regimes. The

5
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experimental setup consisted of controlled pollutant injections in a scaled urban street network
subjected to varying hydraulic conditions. The results demonstrated variability in pollutant re-
tention and mixing patterns, emphasizing the role of street configurations and flow anisotropy
in pollutant transport.

Additionally, the work of Velickovic et al. [2017] explored different formulations of pollutant
transport equations based on laboratory-scale experiments in controlled hydraulic channels.
Their findings provided insight into how turbulence, sediment interactions, and anisotropic
flow patterns influence diffusion coefficients.

In contrast to these controlled laboratory experiments, Kim et al. [2023] conducted field
investigations in natural streams to assess solute retention and storage effects. The study high-
lighted the influence of transient storage zones and local flow structures on pollutant retention
time, showing how turbulence intensity and morphological variability affect transport effi-
ciency in natural environments.

Collectively, these experimental studies provide valuable data for validating pollutant trans-
port models and improving diffusion parameterizations in numerical simulations.

2.3 Numerical Modelling Approaches

The transition from experimental observations to numerical simulations is essential to de-
velop predictive models of pollutant transport. Numerical models typically rely on solving
advection-diffusion equations coupled with hydrodynamic solvers to simulate the transport of
contaminants under various flow conditions.

Hydrodynamic conditions in urban floods are typically simulated using depth-averaged two-
dimensional shallow water equations, which are widely used due to their computational ef-
ficiency and ability to capture flow dynamics in complex urban geometries. These models
generate time-dependent velocity and water depth fields that can be coupled with advection-
diffusion equations to simulate pollutant transport. Several studies have applied such ap-
proaches to urban flood scenarios, showing their relevance for modelling overland flow and
transport processes [Camnasio et al., 2014; Dewals et al., 2006; Erpicum et al., 2009]. In par-
ticular, the work of Dewals et al. [2023] focused on hydrodynamic modelling using 2D shallow
water equations to reproduce urban flood dynamics. While their study does not address pol-
lutant transport directly, it provides validation of the hydrodynamic solver, which is essential
for coupling with transport models.

While the modelling of advective transport is generally well established, the same cannot be
said for diffusion and dispersion processes. There is no universal consensus on how to repre-
sent the spatial variability of diffusion in realistic flow conditions, especially when turbulence
and complex geometries come into play. In particular, traditional isotropic diffusion models,
assuming equal spreading in all directions, often fail to capture the directional nature of dis-
persion observed in experiments.

Further developments in numerical modelling have focused on overcoming the limitations of
isotropic diffusion by incorporating anisotropic diffusion formulations. Studies such as Mignot
et al. [2023] have reviewed various formulations of the 2D advection-diffusion equation, high-
lighting the diversity of approaches for representing the diffusion tensor. This diversity in
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formulation reflects the absence of a unified theoretical framework and constitutes a first chal-
lenge for modellers.

A second, equally important, challenge lies in the calibration and validation of these formu-
lations. While many models propose alternative expressions for anisotropic diffusion, very few
provide proper comparison with experimental data. As emphasized by Mignot et al. [2023],
the lack of consensus on diffusivity tensor calibration and the limited availability of benchmark
datasets remain major obstacles to improving the reliability of pollutant transport models.

Figure 2.1 presents a synthetic overview of the most common diffusivity tensor formulations
found in the literature. The lower panel illustrates the conceptual distinction between isotropic
diffusion (equal spreading in all directions) and anisotropic diffusion. The top part summarizes
eight representative types of diffusivity tensors, ranging from simple isotropic cases to rotated
or empirically-derived anisotropic forms.

Overall, these numerical studies confirm the need for refined diffusion models that go be-
yond classical and commonplace isotropic assumptions. The integration of anisotropic diffu-
sion tensors, as suggested by Mignot et al. [2023], provides a promising direction for improv-
ing the accuracy of pollutant transport simulations. This study builds on these advances by
developing an anisotropic advection-diffusion model, which is calibrated and validated using
experimental datasets.

2.4 Challenges and Limitations of Existing Models

Despite some advances in the modelling of pollutant transport in shallow water and urban
environments, several persistent challenges limit the accuracy and generalizability of current
approaches. A primary issue lies in the widespread assumption of isotropic diffusion, which
implies uniform spreading of pollutants in all directions. However, experimental evidence
from Fagour [2025] has demonstrated that real-world transport is anisotropic, shaped by flow
direction, turbulence structures, and obstacle-induced heterogeneity.

A second limitation is the lack of standardization in the selection and calibration of diffusion
tensors. As highlighted by Mignot et al. [2023], the literature contains at least seven mathemat-
ical formulations of the depth-averaged advection-diffusion equation and eight distinct types
of diffusivity tensor parameterizations. These include scalar (isotropic), axis-aligned, rotated,
and empirically derived tensors. However, few studies provide rigorous validation of these for-
mulations against experimental data. Reported values of longitudinal and transverse diffusion
coefficients vary by up to three orders of magnitude between studies.

These concerns are explained in earlier work such as Pathirana et al. [2011], where diffusion
coefficients were assumed rather than calibrated, undermining the predictive accuracy of the
models. Similarly, Morales-Hernández et al. [2019] demonstrated that calibration based on lo-
cal flow shear and anisotropic considerations yields more realistic concentration fields, while
uncalibrated models tend to over or under diffuse pollutants. Recent comparative studies fur-
ther reinforce this view. Fang et al. [2022] showed that simulations using anisotropic diffusion
better matched observed transport patterns than those using isotropic diffusion.
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Moreover, the need for robust model validation is not consistently addressed. As noted by
Mignot et al. [2023], proper model development requires both calibration on controlled data
and validation on independent datasets. In practice, many studies skip one or both steps.
Fontaine [2023] addressed this gap by calibrating diffusion parameters using data from Fagour
[2025], identifying optimal diffusivity values that minimized error in simulated concentration
fields. Without such calibration, numerical simulations can produce outputs that deviate sig-
nificantly from observed pollutant distributions.

Finally, numerical discretization itself poses challenges. Low order schemes such as first-
order upwind are prone to excessive numerical diffusion, which can mask or distort physically
meaningful concentration gradients. Morales-Hernández et al. [2019] and others have shown
that high-resolution schemes or flux-limited methods are necessary to preserve sharp pollutant
fronts and maintain mass conservation, especially when modelling anisotropic diffusion.

Taken together, these findings highlight the necessity for replacing isotropic assumptions
with physically informed anisotropic diffusion formulations, calibrating diffusion coefficients
against experimental datasets rather than assuming generic values, applying structured calibration-
validation workflows to ensure model robustness, employing numerical schemes that limit ar-
tificial diffusion and preserve key transport features.

2.5 Research Objectives

In response to the challenges outlined above, this study seeks to improve the numerical
modelling of pollutant transport by integrating an anisotropic diffusion model within a vali-
dated hydrodynamic framework. This approach is guided by the recommendations of Mignot
et al. [2023], who calls for a systematic calibration and validation methodology when applying
diffusivity tensors in shallow water models.

By leveraging the controlled experimental data from Fagour [2025], this research provides
a basis for the calibration of longitudinal and transverse diffusion coefficients. This study
specifically aims to:

• Develop and implement a numerical framework capable of representing anisotropic dif-
fusion, allowing for independent control of directional diffusivities.

• Evaluate the performance of different numerical advection schemes, with particular at-
tention to their ability to limit numerical diffusion.

• Compare numerical predictions with experimental measurements from controlled labo-
ratory setups, applying a calibration-validation approach to ensure model reliability.

• Explore the interactions between hydrodynamics, diffusion anisotropy, and numerical
discretization, and assess their combined impact on pollutant transport under flood-like
conditions.
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Figure 2.1: Top: Classification of eight representative diffusion tensor configurations. This
table is adapted graphically from Mignot et al. [2023] and Fagour [2025]. Bottom: Concep-
tual comparison between isotropic (left) and anisotropic (right) diffusion. Isotropic diffusion
assumes DL = DT , resulting in uniform radial spreading. Anisotropic diffusion allows inde-
pendent control of longitudinal and transverse diffusion, leading to elongation aligned with
the main flow direction.
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Chapter 3

Theoretical Background

This chapter presents the theoretical foundations underlying the numerical modelling of
hydrodynamics and pollutant transport in shallow water flows. The first part of the chap-
ter outlines the governing equations of two-dimensional shallow water flows, derived from
depth-averaging the Navier-Stokes equations. The second part is dedicated to the modelling
of pollutant transport using the advection-diffusion equation in a depth-averaged framework.
The derivation and interpretation of the different terms in the equation are presented. The
section also discusses the treatment of anisotropic diffusion through the use of a tensorial rep-
resentation and the transformation of the coordinate system to align with the principal flow
direction.

Together, these theoretical elements form the basis of the numerical implementation de-
scribed in Chapter 5, and provide the necessary framework to interpret the results of both
idealized test cases and real experimental validations.

3.1 Hydrodynamic Modelling Using 2D Shallow Water Equations

3.1.1 Governing Equations

The hydrodynamics of the system are governed by the two-dimensional shallow water equa-
tions (SWE), expressed in conservative form as follows [Dewals et al., 2023]

∂h
∂t

+
∂(hu)
∂x

+
∂(hv)
∂y

= 0, (3.1)

∂(hu)
∂t

+
∂

∂x

(
hu2 +

1
2
gh2

)
+
∂(huv)
∂y

=
τbx
ρ

+
1
ρ

(
∂hτxx
∂x

+
∂hτxy
∂y

)
, (3.2)

∂(hv)
∂t

+
∂(huv)
∂x

+
∂

∂y

(
hv2 +

1
2
gh2

)
=
τby
ρ

+
1
ρ

(
∂hτxy
∂x

+
∂hτyy
∂y

)
, (3.3)

where h is the water depth, u and v are the depth-averaged velocities in the x and y directions,
respectively, g is the gravitational acceleration, τxx, τyy , and τxy are the depth-averaged turbu-
lent stresses comprising both the Reynolds and molecular stresses [Erpicum et al., 2009], and
τbx and τby are the bed shear stresses.

11
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The bed shear stresses are computed using the Darcy-Weisbach formulation [Dewals et al.,
2023]

τbx
ρ

= −f u
√
u2 + v2

8
, (3.4)

τby
ρ

= −f v
√
u2 + v2

8
, (3.5)

where f is the Darcy-Weisbach friction coefficient, estimated using the Colebrook-White for-
mula

1√
f

= −2log10

 ks
14.8h

+
2.51

Re
√
f

 , (3.6)

where ks is the roughness height and Re is the Reynolds number, given by

Re =
4h
√
u2 + v2

ν
, (3.7)

with ν being the kinematic viscosity of water.

The turbulence closure models vary between numerical approaches. The Elder model ap-
proximates eddy viscosity as [Mejía-Morales et al., 2020]

νt = λhu∗, (3.8)

where u∗ is the friction velocity, and λ is an empirical parameter.

In Wolf 2D, the depth-averaged k − ε model is used for turbulence closure [Erpicum et al.,
2009; Camnasio et al., 2014; Dewals et al., 2023] where k is the turbulent kinetic energy, and ε
is the turbulent dissipation rate.

3.1.2 Boundary and Initial Conditions

The computational domain involves three main types of boundaries: sidewalls, inlets, and
outlets. Each type requires specific treatment to ensure realistic hydrodynamic conditions
[Dewals et al., 2023]:

• Sidewalls: The normal component of the specific discharge is set to zero to impose no-
flow conditions.

• Inlets: The specific discharge in the streamwise direction is prescribed based on mea-
sured inflows, while the normal component is set to zero.

• Outlets: The outflow discharge is computed based on a weir formulation [Dewals et al.,
2023]

Q0 = LCD

√
2g(h−w)3

3
, (3.9)

where L is the weir length, CD is the discharge coefficient, and w is the weir height.
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The initial conditions are defined such that the water depth is set to a value close to exper-
imental measurements [Dewals et al., 2023]. The initial flow velocities are either taken from
a previously converged steady-state solution or simply prescribed as zero to represent a calm
water start. In Dewals et al. [2023], the authors opted for the latter approach, assuming the
flow is initially at rest.

3.2 Advection-Diffusion Equation for Pollutant Transport

3.2.1 Governing Equations

The depth-averaged advection-diffusion equation governs the transport of a solute in shallow
water flows. It is derived by integrating the three-dimensional advection-diffusion equation
over the water depth [Mignot et al., 2023]

∂

∂t
(hC) +∇ · (hUC) +∇ · [h⟨(u−U)(c −C)⟩]︸                     ︷︷                     ︸

T3

+∇ · (−hεm⟨∇c⟩)︸           ︷︷           ︸
T1

+∇ · (h⟨−Dt∇c⟩)︸            ︷︷            ︸
T2

= S, (3.10)

where:

• h is the water depth,

• C is the depth-averaged pollutant concentration,

• U = (U,V )T is the depth-averaged velocity vector in the horizontal x-y plane,

• u = (u,v)T and c represent the local velocity and pollutant concentration in the horizontal
x-y plane,

• εm is the molecular diffusivity coefficient [m2/s],

• Dt is the turbulent diffusivity tensor [m2/s],

• S is the depth-integrated source or sink term,

• ⟨·⟩ denotes a depth-averaged quantity.

The last three terms in Equation (3.10) represent three key processes responsible for pollu-
tant mixing:

1. Molecular diffusion (T1 term),

2. Turbulent diffusion (T2 term),

3. Dispersion caused by vertical non-uniformities in flow velocity and concentration, in-
cluding velocity shear and secondary currents (T3 term).

Resorting to a closure assumption similar to Boussinesq’s approach in Reynolds-averaged
turbulence models, these terms are commonly grouped under a single term, leading to the
depth-averaged advection-diffusion equation in conservative form [Mignot et al., 2023]

∂

∂t
(hC) +∇ · (hUC − hD∇C) = S, (3.11)



14 CHAPTER 3. THEORETICAL BACKGROUND

where D is the diffusivity tensor, a (2×2) matrix that accounts for anisotropic diffusion effects,
given by

D =
[
Dxx Dxy

Dyx Dyy

]
. (3.12)

Expanding Equation (3.11) in full form gives

∂

∂t
(hC)+

∂

∂x
(hUC)+

∂

∂y
(hVC) =

∂

∂x

[
h

(
Dxx

∂C
∂x

+Dxy
∂C
∂y

)]
+

∂

∂y

[
h

(
Dyx

∂C
∂x

+Dyy
∂C
∂y

)]
+S. (3.13)

The terms Dxx and Dyy correspond to gradient-diffusion terms, also known as “Fickian tur-
bulent diffusion” [Fischer et al., 1979], whereas Dxy and Dyx represent cross-dispersion terms
that account for direction-dependent mixing effects [Lee & Kim, 2012].

This equation is conservative since it is directly derived from mass conservation principles,
making it suitable for numerical resolution using shock-capturing schemes. However, deter-
mining the appropriate values of the diffusivity tensor D in real-world applications remains
a challenge due to the complexity of turbulence and dispersion mechanisms [Mignot et al.,
2023].

3.2.2 Change of Reference Frame

In order to better represent diffusion in the principal directions of flow, the advection-
diffusion equation can be rewritten in a local coordinate system (s,n) aligned with the main
flow direction (as mentioned by Mignot et al. [2023] and represented in Figure 2.1). Here, s
represents the streamwise (longitudinal) direction and n the transverse direction. The diffusion
tensor in these coordinates is given by

Ds,n =
[
DL 0
0 DT

]
, (3.14)

where:

• DL is the longitudinal diffusion coefficient,

• DT is the transverse diffusion coefficient.

The transformation from local (s,n) coordinates to global (x,y) coordinates is performed us-
ing a rotation matrix R such that

Dx,y = R−1Ds,nR, (3.15)

where

R =
[
cosθ −sinθ
sinθ cosθ

]
, (3.16)

with θ being the local flow direction. This transformation aligns the diffusion tensor with
the main flow direction, simplifying numerical implementations and improving accuracy in
anisotropic environments [Cheng, 1984; Alavian, 1986].



Chapter 4

Experimental Environment

This chapter presents the physical experimental setup and measurement techniques used to
investigate solute transport mechanisms within a controlled urban flood model. The experi-
mental campaign was carried out at INRAE (Lyon) using the M.U.R.I. platform, a large-scale
physical model, replicating urban street geometries under scaled hydraulic conditions.

The main objectives of the experiments were to characterize flow patterns, assess pollutant
retention and transport, and provide benchmark data for validating numerical simulations.
Specific attention was given to the influence of urban block porosity, pollutant injection lo-
cation, and hydrodynamic conditions on solute transport. The results obtained from these
controlled experiments form the basis for evaluating the accuracy and robustness of numerical
advection-diffusion models, particularly in complex geometries representative of real-world
flooding scenarios.

This chapter describes the experimental setup, including the physical layout and boundary
conditions. Then, it details the instrumentation and measurement techniques employed to
quantify water depth, flow velocities, and pollutant concentration fields. Subsequent sections
present the pollutant injection strategies and provide an overview of the accessible experimen-
tal datasets used for model validation.

4.1 Experimental Setup

The experimental setup used in this study is based on the large-scale physical model M.U.R.I.
(“Modèle Urbain pour l’étude du Risque d’Inondation”), developed at INRAE, Villeurbanne,
France. This model, shown in Figure 4.1, is designed to reproduce pollutant transport in an
idealized urban street network under controlled hydraulic conditions. The experiments were
conducted to evaluate solute transport mechanisms in flooded urban environments, providing
benchmark data for validating numerical models.

The platform consists of a network of intersecting streets representing an urban district at a
reduced scale. It is a tilting platform measuring 5.4 [m] in length and 3.8 [m] in width, with a
horizontal scaling factor of 1:50 and a vertical scaling factor of 1:10, both defined with respect
to real-world urban geometries. The setup allows control over water depth, flow velocity, and
pollutant injection conditions, enabling a comprehensive analysis of pollutant transport under
various flooding scenarios.

15
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Outlet 4 Outlet 3

Outlet 2

Outlet 1

Inlet 2

Inlet 1

x

y

0
5.40 [m]

0.96 [m]
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Figure 4.1: Experimental setup of the M.U.R.I. platform used at INRAE for studying pollutant
transport in flooded urban environments. The setup consists of a physical model representing
an urban district at reduced scale (5.40 [m] × 3.80 [m]), with controlled inflows (Inlet 1 and
Inlet 2) and four outlets regulated by weirs. This setup serves as the benchmark for numerical
model validation. Representation of the set-up inspired by Fagour [2024].

The experimental configuration includes a simplified flooded street network with intersec-
tions and urban blocks, designed to study the influence of street geometry and flow condi-
tions on pollutant transport. Water is introduced into the network through controlled inlet
discharges, while outflow conditions are regulated using adjustable tail weirs. The pollutant
injection system ensures control locations, allowing for the study of retention and transport
dynamics in various flow regimes.

The experimental study also considers the influence of urban block porosity on pollutant
transport, simulating real-world urban flood conditions. As shown in Figure 4.2, the experi-
mental setup includes a porous urban block with controlled openings, allowing for water and
solute exchange between the inner block and adjacent streets. The urban block is positioned
at the intersection of the main flow paths, with multiple configurations of openings to analyse
pollutant retention and transport effects:

• Configuration C0: The block has no opening.

• Configuration C1: The block has two openings, allowing for minimal exchange with the
surrounding flow.
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C1

C2 C3

C0

Figure 4.2: Configurations of the studied urban blocks and number of openings. (C0) No
opening, (C1) Two openings, (C2) Four openings, (C3) Six openings. The red triangles indicate
the direction of pollutant release.

• Configuration C2: The block has four openings, increasing connectivity and potential
pollutant dilution.

• Configuration C3: The block has six openings, maximizing exchange and reducing re-
tention effects.

The pollutant is injected at a fixed point in the right street, at coordinates X = 3.28 [m],Y =
0.14 [m]. The red markers in Figure 4.2 indicate the injection point and the direction of pol-
lutant release. The injection is designed to simulate localized pollutant spills occurring in
real-world urban flooding scenarios.

By varying the number of openings in the urban block, the study investigates the role of
block porosity on pollutant transport and retention. Results from this setup will be used to
compare experimental findings with numerical simulations, helping to refine diffusion param-
eterizations in complex urban environments.

4.2 Measurement Techniques

Several measurement techniques were employed to characterize flow hydrodynamics and
pollutant transport. Water depth was measured using ultrasonic distance sensors (BAUMER
UNDK 20I6914/S35A) with a precision of 0.3 [mm]. These sensors were mounted on a me-
chanical gantry system, enabling precise water level measurements across the experimental
domain.

Flow velocities were captured using acoustic Doppler velocimetry (ADV) and large-scale
particle image velocimetry (LSPIV). The ADV system provided high-resolution measurements
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of three-dimensional velocity components. The LSPIV technique was used to track surface
velocity fields by analysing the motion of floating tracers, with image processing performed
using the Fudaa-LSPIV software [Le Coz et al., 2014] developed by EDF and INRAE.

Pollutant concentrations were measured using two complementary techniques: conductime-
try and colorimetry. Conductivity sensors (Endress Hauser CLS82D) recorded local solute con-
centrations at multiple locations within the urban network. In addition, a colorimetric analysis
was performed using a high-resolution imaging system, allowing for a spatially resolved esti-
mation of the pollutant distribution.

4.3 Pollutant Injection

Outlet 4 Outlet 3

Outlet 2

Outlet 1

Inlet 2

Inlet 1

x

y

0

Urban block

lu′
cu′

ru′
iu′

cr3

cr4

cr1

cr2
cr5

y = 1.250 [m]
y = 1.185 [m]
y = 0.010 [m]

y = 0.140 [m]
y = 0.075 [m]
y = 0.010 [m]

x = 1.84 [m]
x = 0.92 [m]

x = 0.44 [m]

x = 3.015 [m]

lu
cu
ru

iu
lm
cm
rm

ld
cd
rd

S1 S2

S5
S3

S4
S6

x = 2.84 [m] x = 4.44 [m]

y = 1.01 [m]

x = 3.33 [m]x = 2.44 [m]

Figure 4.3: Schematic representation of pollutant injection locations within the experimen-
tal urban flood network. The injection points are categorized into upstream, midstream, and
downstream locations in both the Left and Right Streets, with additional injection sites at key
intersections (cr1 - cr5). The triangles indicate the direction of pollutant release relative to the
flow. The coordinate system is referenced to the global domain (x,y). This diagram is inspired
by Fagour [2025].

The pollutant was introduced into the experimental setup using a controlled injection sys-
tem. The following injection configurations were tested:

• A localized injection at a single point, simulating a spill in a flooded street.

• A homogeneous release across the water column to investigate vertical mixing effects.

• A time-limited injection scenario to analyse pollutant over time.
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The experimental setup includes nineteen pollutant injection points distributed across the
flooded urban street network as shown in Figure 4.3. These locations are categorized as follows,
based on their longitudinal x and transverse y positioning [Fagour, 2025]:

• Right street injections:

– Upstream injections (iu, lu, cu, ru): located near the entrance of the Right Street.

– Middle injections (lm, cm, rm): placed further along the Right street, at an interme-
diate position.

– Downstream injections (ld, cd, rd): positioned further downstream in the Right
Street, before reaching the main intersection.

• Left Street injections (iu’, lu’, cu’, ru’): located near the entrance of the Left Street.

• Intersection injections (cr1, cr2, cr3, cr4, cr5): placed at different locations within the
central intersection, where flow interactions and pollutant mixing are expected to be
significant.

Each pollutant injection is pointwise and vertically uniform along the water depth, ensur-
ing homogeneous pollutant release across the water column. The injection system used a dye
tracer with a known concentration, allowing precise monitoring of pollutant transport. The
effect of injection location and timing on pollutant transport was analysed using concentra-
tion measurements at various monitoring sections within the network. The red dashed lines
in Figure 4.3 denote the monitoring sections S1 to S6, which serve as reference locations for
comparing pollutant transport patterns.

4.4 Accessible Experimental Data for Urban Blocks

This section presents the experimental data collected by Fagour [2024] regarding pollutant
transport in flooded urban blocks. The experimental setup was designed to investigate pollu-
tant retention and transport under controlled flow conditions:

• Flow Inlet Conditions:

– Inlet 1: Qi1 = 4.5 [L/s].

– Inlet 2: Qi2 = 2.0 [L/s].

• Pollutant Injection:

– A uniform release was ensured along the water column.

– The injected pollutant was a red dye with a concentration of Crejet = 0.625 [g/L].

– The injection flow rate was Qrejet = 35.5 [L/h].

• Measurement Duration:

– Two injection scenarios were considered:

∗ Long-duration injection: trejet ≥ 2500 [s], ensuring pollutant accumulation and
reaching a steady-state concentration.
∗ Limited-duration injection: injection was stopped before reaching steady state,

allowing for an analysis of pollutant depletion over time.
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The experimental study focused on several key parameters:

• Hydrodynamics:

– Time-averaged velocity fields at various sections.

– Water depth measurements at multiple locations.

– Flow exchange dynamics between urban streets and the porous block.

• Pollutant Transport:

– Pollutant concentration measurements at different locations inside the urban block
and at street outlets.

– Analysis of pollutant retention and mixing efficiency at various sections.

In summary, the experimental environment provides a robust and well-documented frame-
work for investigating solute transport under realistic urban flooding conditions. The carefully
designed measurement protocols, pollutant injection strategies, and multiple urban block con-
figurations offer a comprehensive dataset. These experimental results serve as a reference for
validating the numerical models developed in this study, particularly in assessing their ability
to reproduce pollutant retention, transport, and mass exchange in complex urban geometries.
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Numerical Environment

5.1 Introduction

This chapter presents the numerical framework used to solve the governing equations de-
scribing flow hydrodynamics and pollutant transport. The focus is on the discretization of the
2D shallow water equations (SWE) and the advection-diffusion equation using Finite Volume
Method (FVM) for spatial discretization and Explicit Euler scheme for time integration.

The hydrodynamic flow fields are provided by the Wolf 2D model [Erpicum et al., 2009],
which serves as input for the pollutant transport simulation. The velocity and water depth
fields are computed by solving the 2D shallow water equations, detailed in Section 3.1, using
a FVM with a second-order type scheme for flux calculations and an explicit time-stepping
approach [Dewals et al., 2023]. The numerical methodology used in Wolf 2D, including the
discretization of the hydrodynamic equations and the treatment of boundary conditions, is
detailed in Erpicum et al. [2009]. The advection-diffusion equation is then solved on a Carte-
sian grid that follows the same discretization strategy as the shallow water equations to ensure
consistency between the hydrodynamic and pollutant transport models.

5.2 Spatial Discretization with Finite Volume Method

The Finite Volume Method (FVM) is employed for spatial discretization to ensure consistency
between the input hydrodynamic results and the advection-diffusion equations, maintaining
coherence in mass, momentum, and pollutant concentration conservation.

5.2.1 Discretized Computational Domain

The computational domain is divided into a structured Cartesian grid consisting of con-
trol volumes (cells) indexed by (i, j). Each cell has dimensions (∆x ×∆y) with ∆x = ∆y, and
variables are stored at cell centers, while fluxes are computed at cell interfaces. A schematic
representation of the discretized domain is shown in Figure 5.1.

Applying the FVM [Nakayama, 2018] to a control volume V centered at (i, j), Equation (3.13)
is integrated

∂

∂t

∫
V

(hC)dV +
∫
V
∇ · (hUC)dV −

∫
V
∇ · (hD∇C)dV =

∫
V
SdV . (5.1)

21
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Control Volume

∆x

∆y = ∆x
Ci ,j Ci ,j+1

j = x
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Ci,j−1/2 Ci,j+1/2

Figure 5.1: Illustration of the discretized computational domain with control volumes and flux
locations, adapted from Nakayama [2018].

Using the divergence theorem (Gauss) [Kalinski, 2018], some volume integrals are converted
into surface integrals ∫

V

∂

∂t
(hC)dV +

∮
S

(hUC − hD∇C) · dS =
∫
V
SdV . (5.2)

Approximating over the control volume V = ∆x ×∆y, it gives

∂

∂t
(hC)i,j∆x∆y +∆y

[
(hUC)i,j+1/2 − (hUC)i,j−1/2

]
+∆x

[
(hVC)i+1/2,j − (hVC)i−1/2,j

]
−∆y

[(
hDxx

∂C
∂x

)
i,j+1/2

−
(
hDxx

∂C
∂x

)
i,j−1/2

]
−∆x

(hDyy
∂C
∂y

)
i+1/2,j

−
(
hDyy

∂C
∂y

)
i−1/2,j


−∆y

(hDxy
∂C
∂y

)
i,j+1/2

−
(
hDxy

∂C
∂y

)
i,j−1/2

−∆x

[(
hDyx

∂C
∂x

)
i+1/2,j

−
(
hDyx

∂C
∂x

)
i−1/2,j

]
= Si,j∆x∆y.

5.2.2 Discretization of Advective Terms

In this work, several discretization schemes are implemented and compared, ranging from
the classical first-order upwind scheme to more advanced second-order methods. Each scheme
offers a balance between numerical diffusion, accuracy, and stability. In addition, the fluxes
are evaluated at the cell interfaces using various finite volume approximations described in
Ferziger & Perić [2002].
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First-Order Upwind Scheme

The upwind scheme uses the value from the upstream cell as detailed in Ferziger & Perić
[2002]. The two terms for advective part in x−direction are approximated as

(hUC)i,j+1/2 ≈

(hUC)i,j if U ≥ 0,

(hUC)i,j+1 if U < 0,
(5.3)

(hUC)i,j−1/2 ≈

(hUC)i,j−1 if U ≥ 0,

(hUC)i,j if U < 0,
(5.4)

and give

(hUC)i,j+1/2 − (hUC)i,j−1/2 ≈

(hUC)i,j − (hUC)i,j−1 if U ≥ 0,

(hUC)i,j+1 − (hUC)i,j if U < 0.
(5.5)

The two terms for advective part in y−direction are approximated as

(hVC)i+1/2,j ≈

(hVC)i,j if V ≥ 0,

(hVC)i+1,j if V < 0,
(5.6)

(hVC)i−1/2,j ≈

(hVC)i−1,j if V ≥ 0,

(hVC)i,j if V < 0,
(5.7)

and give

(hVC)i+1/2,j − (hVC)i−1/2,j ≈

(hVC)i,j − (hUC)i−1,j if V ≥ 0,

(hVC)i+1,j − (hVC)i,j if V < 0.
(5.8)

This scheme is stable and robust but introduces numerical diffusion.

Second-Order Upwind Scheme

A second-order upwind scheme can be used. This method uses a biased stencil depending
on the sign of the velocity, relying on two upstream cells to approximate the quantity hC at the
interface. This version may thus generate non-physical oscillations in non-smooth regions as
detailed in Ferziger & Perić [2002] and CFD Direct [2025].

In the x-direction it gives

(hUC)i,j+1/2 =

3
2 (hUC)i,j − 1

2 (hUC)i,j−1 if U ≥ 0,
3
2 (hUC)i,j+1 − 1

2 (hUC)i,j+2 if U < 0,
(5.9)

and similarly for the interface at j − 1/2

(hUC)i,j−1/2 =

3
2 (hUC)i,j−1 − 1

2 (hUC)i,j−2 if U ≥ 0,
3
2 (hUC)i,j − 1

2 (hUC)i,j+1 if U < 0.
(5.10)
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A similar procedure is used for the y-direction. The interface values are

(hVC)i+1/2,j =

3
2 (hVC)i,j − 1

2 (hVC)i−1,j if V ≥ 0,
3
2 (hVC)i+1,j − 1

2 (hVC)i+2,j if V < 0,
(5.11)

(hVC)i−1/2,j =

3
2 (hVC)i−1,j − 1

2 (hVC)i−2,j if V ≥ 0,
3
2 (hVC)i,j − 1

2 (hVC)i+1,j if V < 0.
(5.12)

Second-Order Central Scheme

The central difference scheme offers a simple and symmetric second-order approximation of
the advective fluxes. It computes the value of the advected quantity at the interface using an
average between the left and right cells as explained in Ferziger & Perić [2002].

For the x-direction, the flux at the interface is approximated as

(hUC)i,j+1/2 =
1
2

[
(hUC)i,j + (hUC)i,j+1

]
, (5.13)

and similarly

(hUC)i,j−1/2 =
1
2

[
(hUC)i,j + (hUC)i,j−1

]
. (5.14)

Thus, the divergence of the flux is

(hUC)i,j+1/2 − (hUC)i,j−1/2 =
1
2

[
(hUC)i,j+1 − (hUC)i,j−1

]
. (5.15)

The same formulation applies in the y-direction

(hVC)i+1/2,j =
1
2

[
(hVC)i,j + (hVC)i+1,j

]
, (5.16)

(hVC)i−1/2,j =
1
2

[
(hVC)i,j + (hVC)i−1,j

]
. (5.17)

Second-Order Scheme Alternative

In the x-direction, the flux at the right face j + 1/2 is discretized as

(hUC)i,j+1/2 ≈

(hUC)i,j + 1
4

[
(hUC)i,j+1 − (hUC)i,j−1

]
if U ≥ 0,

(hUC)i,j+1 + 1
4

[
(hUC)i,j − (hUC)i,j+2

]
if U < 0,

(5.18)

and similarly, the left face j − 1/2 is approximated by

(hUC)i,j−1/2 ≈

(hUC)i,j−1 + 1
4

[
(hUC)i,j − (hUC)i,j−2

]
if U ≥ 0,

(hUC)i,j + 1
4

[
(hUC)i,j−1 − (hUC)i,j+1

]
if U < 0.

(5.19)

The same logic applies in the y-direction. The face i − 1/2 and face i + 1/2 fluxes are given by

(hVC)i+1/2,j ≈

(hVC)i,j + 1
4

[
(hVC)i+1,j − (hVC)i−1,j

]
if V ≥ 0,

(hVC)i+1,j + 1
4

[
(hVC)i,j − (hVC)i+2,j

]
if V < 0,

(5.20)

(hVC)i−1/2,j ≈

(hVC)i−1,j + 1
4

[
(hVC)i,j − (hVC)i−2,j

]
if V ≥ 0,

(hVC)i,j + 1
4

[
(hVC)i−1,j − (hVC)i+1,j

]
if V < 0.

(5.21)
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Limited Second-Order Upwind Scheme

hUC

UU U D

Face (F)Flow direction

Figure 5.2: Stencil used in the limited second-order upwind scheme. The face value (hUC)F
is reconstructed using the upwind value U and a linear extrapolation involving the upstream
values UU and U . The black triangle on the left illustrates the variation of the quantity be-
tween the distant upstream cell UU and the downwind cell D, while the gray triangle shows
the variation between the immediate upstream U and D. These variations are combined in a
specific expression r used to control the limiter coefficient β(r), which governs the interpola-
tion. Representation adapted from CFD Direct [2025].

In order to reduce the numerical diffusion of the first-order upwind scheme, a limited second-
order upwind scheme can be used. This approach blends the robustness of the upwind method
with the accuracy of a second-order linear scheme by applying a flux limiter as explained in
CFD Direct [2025].

The flux at a face (hUC)F is interpolated using a combination between the first-order upwind
value and the second-order extrapolated value. The general form is

(hUC)F = (1− β)(hUC)U + β(hUC)L, (5.22)

where:

• (hUC)U is the value at the upwind cell,

• (hUC)L is the linear extrapolated value using the two upstream points,

• β ∈ [0,2] is a flux limiter.

The extrapolated value (hUC)L is typically constructed using a central difference

(hUC)L =
(hUC)U + (hUC)D

2
, (5.23)

where (hUC)D denotes the value at the downwind cell.

The limiter coefficient β(r) is computed from a nonlinear expression involving variations of
the advected quantity between several neighbouring cells as shown in Figure 5.2. It is defined
as

r = max
[
2

(hUC)D − (hUC)UU

2((hUC)D − (hUC)U )
− 1,0

]
, (5.24)

where(hUC)UU is the value at the second upstream cell.



26 CHAPTER 5. NUMERICAL ENVIRONMENT

To compute the coefficient β(r), various flux limiter functions based on the Total Variation
Diminishing (TVD) principle can be employed. These limiters are designed to combine the ac-
curacy of higher-order schemes with the stability of first-order methods by preventing spurious
oscillations near steep gradients. In this work, several limiters are evaluated, including Min-
mod, limited linear, van Leer, Superbee, and van Albada, following the formulations presented
in CFD Direct [2025] and LeVeque [2002]. Each of these schemes has specific characteristics in
terms of numerical diffusion, preservation of symmetry, and smoothness of the reconstructed
profile. The limiter selected for the final simulations is specified in a subsequent section.

5.2.3 Discretization of Diffusive Terms

The diffusive terms are approximated using midpoint method as detailed in Riflet [2023].
For the sake of simplicity, the gradient terms are discretized using directly the gradient of
the conservative unknown hC. The influence of this simplification remains limited as long as
gradient in water depth are also limited, which is the case in all scenarios considered in this
thesis.

Discretization Along x-Direction

The two first terms for diffusive part in x-direction are approximated as(
h∂C
∂x

)
i,j+1/2

≈
(hC)i,j+1 − (hC)i,j

∆x
, (5.25)(

h∂C
∂x

)
i,j−1/2

≈
(hC)i,j − (hC)i,j−1

∆x
, (5.26)

and give(
Dxx

h∂C
∂x

)
i,j+1/2

−
(
Dxx

h∂C
∂x

)
i,j−1/2

≈
[
Dxx, i,j+1/2

(hC)i,j+1 − (hC)i,j
∆x

−Dxx, i,j−1/2
(hC)i,j − (hC)i,j−1

∆x

]
.

(5.27)

Discretization Along y-Direction

Following the same methodology as for x−direction, it gives(
Dyy

h∂C
∂y

)
i+1/2,j

−
(
Dyy

h∂C
∂y

)
i−1/2,j

≈
[
Dyy, i+1/2,j

(hC)i+1,j − (hC)i,j
∆y

−Dyy, i−1/2,j
(hC)i,j − (hC)i−1,j

∆y

]
.

(5.28)

Discretization Along xy-Direction

In the presence of anisotropic diffusion, cross-diffusion terms must be considered. These
terms account for directional mixing effects and are discretized following the same methodol-
ogy as for the simple x,y diffusion terms(

h∂C
∂x

)
i−1/2,j

≈
(hC)i−1/2,j+1 − (hC)i−1/2,j−1

2∆x
, (5.29)(

h∂C
∂x

)
i+1/2,j

≈
(hC)i+1/2,j+1 − (hC)i+1/2,j−1

2∆x
, (5.30)
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and (
Dxy

h∂C
∂x

)
i+1/2,j

−
(
Dxy

h∂C
∂x

)
i−1/2,j

≈ 1
2∆x

[
Dxy, i+1/2,j

(
(hC)i+1/2,j+1 − (hC)i+1/2,j−1

)
(5.31)

−Dxy, i−1/2,j

(
(hC)i−1/2,j+1 − (hC)i−1/2,j−1

)]
. (5.32)

However, the terms in the numerator of this equation are not known, a central method
approximation is needed

(hC)i−1/2,j+1 ≈
(hC)i−1,j+1 + (hC)i,j+1

2
, (5.33)

(hC)i−1/2,j−1 ≈
(hC)i−1,j−1 + (hC)i,j−1

2
, (5.34)

(hC)i+1/2,j+1 ≈
(hC)i+1,j+1 + (hC)i,j+1

2
, (5.35)

(hC)i+1/2,j−1 ≈
(hC)i+1,j−1 + (hC)i,j−1

2
. (5.36)

Discretization Along yx-Direction

Similarly to the xy-direction, the anisotropic diffusion in the yx-direction must be discretized
to account for cross-diffusion effects. These terms are approximated using the same methodol-
ogy as for the standard diffusion terms

(
h∂C
∂y

)
i,j−1/2

≈
(hC)i+1,j−1/2 − (hC)i−1,j−1/2

2∆y
, (5.37)(

h∂C
∂y

)
i,j+1/2

≈
(hC)i+1,j+1/2 − (hC)i−1,j+1/2

2∆y
, (5.38)

which leads to the discrete approximation of the diffusion term

(
Dyx

h∂C
∂y

)
i,j+1/2

−
(
Dyx

h∂C
∂y

)
i,j−1/2

≈ 1
2∆y

[
Dyx, i,j+1/2

(
(hC)i+1,j+1/2 − (hC)i−1,j+1/2

)
(5.39)

−Dyx, i,j−1/2

(
(hC)i+1,j−1/2 − (hC)i−1,j−1/2

)]
. (5.40)

However, the values at the numerator are unknown, requiring further approximations

(hC)i+1,j−1/2 ≈
(hC)i+1,j−1 + (hC)i+1,j

2
, (5.41)

(hC)i−1,j−1/2 ≈
(hC)i−1,j−1 + (hC)i−1,j

2
, (5.42)

(hC)i+1,j+1/2 ≈
(hC)i+1,j+1 + (hC)i+1,j

2
, (5.43)

(hC)i−1,j+1/2 ≈
(hC)i−1,j+1 + (hC)i−1,j

2
. (5.44)
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Finally, by considering all the cross diffusive terms, it gives

−∆x

(Dxy
h∂C
∂y

)
i,j+1/2

−
(
Dxy

h∂C
∂y

)
i,j−1/2

−∆y

(Dyx
h∂C
∂x

)
i+1/2,j

−
(
Dyx

h∂C
∂x

)
i−1/2,j

 = (5.45)

− ∆x
4∆y

[
Dxy, i,j+1/2(hC)i+1,j+1 −Dxy, i,j+1/2(hC)i−1,j+1 −Dxy, i,j−1/2(hC)i+1,j−1 +Dxy, i,j−1/2(hC)i−1,j−1

]
(5.46)

−
∆y

4∆x

[
Dyx, i+1/2,j(hC)i+1,j+1 −Dyx, i+1/2,j(hC)i+1,j−1 −Dyx, i−1/2,j(hC)i−1,j+1 +Dyx, i−1/2,j(hC)i−1,j−1

]
.

(5.47)

These formulations ensure an accurate representation of diffusion in both isotropic and
anisotropic environments.

5.2.4 Boundary Conditions

To ensure pollutant evacuation at the outlet and prevent accumulation within the network,
advective terms are applied. No specific condition is imposed at the inlet. However, if a mixed
pollutant is introduced, it can be incorporated as a source term.

The formulation of the pollutant transport at the outlet follows a zero-gradient boundary
condition. This ensures that the pollutant concentration at the outlet remains equal to the last
computed value inside the domain, preventing artificial reflections and preserving the natural
advective transport

∂(hUC)
∂x

∣∣∣∣∣
outlet

= 0, if the outlet is along the y-direction,

∂(hVC)
∂y

∣∣∣∣∣
outlet

= 0, if the outlet is along the x-direction.
(5.48)

At the inlet, no explicit concentration condition is imposed unless a pollutant source is in-
troduced. In such a case, the pollutant is treated as a source term, directly influencing the local
concentration through

Sn
i,j = QpCp, (5.49)

where:

• Qp represents the pollutant injection rate,

• Cp is the concentration of the injected pollutant.

This ensures that the inflow of pollutants is incorporated into the numerical scheme, while
regions without explicit sources remain governed by the natural evolution of the flow field.

5.3 Time Discretization

The temporal discretization of the advection-diffusion equation is performed using an ex-
plicit Euler scheme, as presented in the fully discretized formulation of Equation (5.58). In
this study, a first-order explicit Euler scheme is used to advance the concentration field based
only on information available at the current time step.
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5.3.1 Explicit Euler Method

The explicit Euler method is a first-order time-stepping scheme that approximates the time
derivative using a forward difference [Ferziger & Perić, 2002; LeVeque, 2002]

(hC)n+1
i,j − (hC)ni,j
∆t

= L((hC)ni,j ), (5.50)

where L((hC)) represents the discrete spatial operator applied to hC, including advection and
diffusion terms. The explicit Euler update is then given by

(hC)n+1
i,j = (hC)ni,j +∆tL((hC)ni,j ). (5.51)

5.3.2 Numerical Stability Condition

While computationally efficient, the explicit scheme is subject to stability constraints to en-
sure numerical accuracy and prevent divergence. The Courant-Friedrichs-Lewy (CFL) con-
dition [Courant et al., 1928] governs the stability of the advection term, while an analogous
constraint applies to the diffusion term.

The CFL condition, initially proposed by Courant, Friedrichs, and Lewy [Courant et al.,
1928], ensures that the numerical advection term remains stable by limiting the time step ∆t
according to the maximum velocity magnitude in the domain. The Courant number Co is
defined as

Co = max
i,j


√

(U )2
i,j + (V )2

i,j

∆x

∆t. (5.52)

For numerical stability, the CFL condition imposes

Co ≤ 1 ⇒ ∆t ≤ ∆x

maxi,j
√

(U )2
i,j + (V )2

i,j

. (5.53)

A commonly used choice to balance stability and minimize numerical diffusion is Co = 0.5.

In the presence of anisotropic diffusion, an additional stability constraint must be satisfied to
ensure that numerical diffusion remains stable. The stability of numerical diffusion is governed
by the Péclet number P e, which accounts for the anisotropic diffusion effects. Following the
approach presented in Liu [2019] and Fang et al. [2022], the Péclet number is defined as

P e = max
i,j


∣∣∣(Dxx +Dxy)nx + (Dxy +Dyy)ny

∣∣∣
∆x2

∆t, (5.54)

where n = (nx,ny) is the normal unit vector at the grid point (i, j). To maintain numerical
stability, the condition P e ≤ 1 must be enforced, leading to

∆t ≤ ∆x2

maxi,j
∣∣∣(Dxx +Dxy)nx + (Dxy +Dyy)ny

∣∣∣ . (5.55)

To ensure stability under the most conservative scenario, the direction vector components nx
and ny are chosen to maximize the contribution of all tensor terms. Therefore, nx = ny = 1,
corresponding to the worst-case alignment where all diffusion terms add constructively.



30 CHAPTER 5. NUMERICAL ENVIRONMENT

Finally, both advection and diffusion constraints must be satisfied simultaneously. The final
stability criterion, as proposed in Liu [2019] and Fang et al. [2022], is given by

Co+ P e ≤ 1. (5.56)

To ensure sufficient time step refinement, one can define a constant α ≤ 1 such that the sum of
the Courant and Péclet numbers remains bounded

Co+ P e ≤ α, (5.57)

where α is set to 0.5 in this study to guarantee numerical accuracy.

5.4 Fully Discretized Advection-Diffusion Equation

The numerical resolution of the pollutant transport problem is based on the depth-averaged
advection-diffusion equation, previously introduced in Equation (3.13). Spatial discretizations
have been presented in the previous sections for both advection and diffusion, using first and
second order upwind schemes for the former and centered schemes for the latter.

All simulations in this work employ explicit Euler time integration, where the update from
time step n to n+ 1 follows

(hC)n+1
i,j − (hC)ni,j
∆t

+
1
∆x

Fn
i,j +

1
∆y

Gn
i,j = Dn

W +Dn
S +Dn

E +Dn
N + Sn

i,j , (5.58)

where:

• Fn
i,j , G

n
i,j : advective fluxes in x- and y-directions at time tn, depend on the numerical

schemes that is used,

• Dn
E ,D

n
W ,Dn

N ,D
n
S : directional diffusive contributions centered on cell (i, j) at time tn,

• Sn
i,j : source term at time tn.

The grouped diffusive fluxes are defined as follows:

Dn
E =

Dn
x, i,j+1/2

2∆x2

[
(hC)ni,j+1 − (hC)ni,j

]
−
Dn
xy, i−1/2,j

4∆x∆y

[
(hC)ni−1,j+1 − (hC)ni−1,j−1

]
−

Dn
xy, i,j

4∆x∆y

[
(hC)ni,j+1 − (hC)ni,j−1

]
,

(5.59)

Dn
W =

Dn
x, i,j−1/2

2∆x2

[
(hC)ni,j−1 − (hC)ni,j

]
+
Dn
xy, i+1/2,j

4∆x∆y

[
(hC)ni+1,j+1 − (hC)ni+1,j−1

]
+

Dn
xy, i,j

4∆x∆y

[
(hC)ni,j+1 − (hC)ni,j−1

]
,

(5.60)

Dn
N =

Dn
y, i+1/2,j

2∆y2

[
(hC)ni+1,j − (hC)ni,j

]
+
Dn
yx, i,j+1/2

4∆x∆y

[
(hC)ni+1,j+1 − (hC)ni−1,j+1

]
+

Dn
yx, i,j

4∆x∆y

[
(hC)ni+1,j − (hC)ni−1,j

]
,

(5.61)

Dn
S =

Dn
y, i−1/2,j

2∆y2

[
(hC)ni−1,j − (hC)ni,j

]
−
Dn
yx, i,j−1/2

4∆x∆y

[
(hC)ni+1,j−1 − (hC)ni−1,j−1

]
−

Dn
yx, i,j

4∆x∆y

[
(hC)ni+1,j − (hC)ni−1,j

]
.

(5.62)
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5.5 Numerical Implementation

This section describes the numerical implementation of the pollutant transport model in
a steady and unsteady framework. The model solves the two-dimensional depth-averaged
advection-diffusion equation using a FVM. The numerical solver is implemented in Python
[2022].

5.5.1 Code Structure

The numerical model follows a structured workflow to solve the two-dimensional advection-
diffusion equation using the FVM with an explicit Euler time-stepping scheme as detailed in
previous sections. The overall code workflow is illustrated in Figure 5.3 and consists of the
following steps:

1. Reading input data: The model reads hydrodynamic data (specific discharges hU,hV
and water depth h) from the Wolf 2D model outputs and sets computational parameters.

2. Grid and variable initialization: The computational domain is discretized using a struc-
tured Cartesian grid, with pollutant concentration variables hC assigned to each cell.

3. Numerical operators setup: Advection is discretized using different schemes with op-
tional flux limiting, while diffusion uses centered differences.

4. Sparse matrix assembly: A sparse matrix formulation is used to store and solve the
system efficiently.

5. Time integration loop: The explicit Euler method iterates over time, updating hC in each
step.

6. Result storage and visualization: Simulation outputs are stored at predefined time steps
and visualized through concentration maps and animations.

A distinction between the steady and unsteady cases lies in the treatment of hydrodynamic
inputs and the frequency of matrix assembly. In the steady-state configuration, the discharge
and water depth fields extracted from Wolf 2D are time-averaged over the entire simulation
duration, and a single advection-diffusion matrix is constructed and applied uniformly at each
time step. In contrast, the unsteady configuration relies on time-resolved hydrodynamic data,
requiring a new matrix to be assembled at each hydrodynamic time frame to reflect the in-
stantaneous flow field. This bifurcation is visually summarized in Figure 5.3. A more detailed
explanation of how the hydrodynamic fields are processed and coupled with the transport
solver is provided in the following sections.

5.5.2 Sparse Matrix Formulation

The pollutant transport model is implemented using a sparse matrix formulation to effi-
ciently solve the advection-diffusion equation. This approach reduces memory usage and com-
putational cost, particularly for large-scale simulations. The governing equation, resulting in a
system of equations, can be expressed in matrix form. The sparse matrix A is assembled by iter-
ating over all valid computational cells and filling in the appropriate coefficients for advection
and diffusion.
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Read Wolf 2D outputs
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Figure 5.3: Flowchart illustrating the simulation workflow for solving the two-dimensional
advection-diffusion equation. The procedure begins with reading hydrodynamic outputs from
the Wolf 2D model and proceeds with a bifurcation between steady (time-averaged) and un-
steady configurations. For the time-averaged case, a single advection-diffusion matrix is con-
structed and reused throughout the simulation. In the unsteady case, a new matrix is built at
each hydrodynamic time step. In both cases, the pollutant concentration field is updated over
time using an explicit Euler scheme with matrix-vector operations, source term addition, and
periodic result storage.

The explicit Euler scheme updates the pollutant concentration at each cell using

(hC)n+1 = (hC)n +∆t (A(hC)n + b) , (5.63)

where:

• A is the sparse coefficient matrix, containing advection and diffusion terms,
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• hC is the vector of unknown pollutant mass per unit area at each computational cell,
resulting from the product of water depth h and depth-averaged concentration C,

• b represents source terms and external forcing.

The matrix A assembly is organized direction by direction, by systematically looping over all
internal cells and computing flux interactions with their neighbours as showed in Figure 5.4.
For each direction, the stencil is applied from two perspectives once from the current cell, and
once from one of its neighbour ensuring both conservation and symmetry. The following logic
is used:

• East-West direction (x-axis): For a given cell (i, j), the horizontal flux across the vertical
face between (i, j − 1) and (i, j) is computed. The resulting contributions, both diffusive
and advective, are distributed into the matrix rows corresponding to each cell. Depend-
ing on the numerical scheme, the stencil may involve not only these two adjacent cells
but also additional upstream or diagonal neighbours.

• North-South direction (y-axis): Similarly, the vertical flux across the horizontal face
between cells (i − 1, j) and (i, j) is computed. The resulting contributions are assembled
into the matrix rows of both cells. As in the horizontal case, the stencil may involve
additional neighbouring cells depending on the numerical scheme, such as second-order
reconstructions or anisotropic cross-diffusion.

• Cross-diffusion (diagonal fluxes): For anisotropic diffusion, diagonal interactions are
included. These are handled in two steps:

1. The stencil is centered at the current cell (i, j), to compute South and West cross-
fluxes.

2. The stencil is shifted to the western neighbour (i, j − 1), to compute North and East
cross-fluxes.

j

i

i, j

i − 1, j

i, j − 1 i, ji, j − 1
+

Figure 5.4: Visualization of the diffusion matrix assembly for cell (i, j), including both direc-
tional and anisotropic cross-diffusion. The stencil is applied at (i, j) and shifted to (i, j − 1) to
compute all flux contributions as described in the diffusion part of the assembly procedure.
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The global matrix is sparse, with each row corresponding to a computational cell and con-
taining non-zero entries only for that cell and a limited number of neighbours, as determined
by the numerical discretization scheme. To further accelerate performance, the matrix assem-
bly routine is fully JIT-compiled using the @njit decorator from the Numba library [Lam et
al., 2015]. This reduces the overhead of Python loops during the stencil evaluation. Once as-
sembled, the CSR matrix is converted to a PyTorch sparse tensor format [Paszke et al., 2019],
enabling GPU acceleration or efficient sparse matrix operations on CPU.

5.5.3 Time-Stepping and Hydrodynamic Updates

The pollutant transport model uses an explicit Euler time integration scheme to solve the
advection-diffusion equation. However, the hydrodynamic inputs, such as discharge and wa-
ter depth fields, are only available at discrete time intervals from the Wolf 2D simulation.
To resolve pollutant transport more finely within each hydrodynamic frame, a smaller com-
putational time step is imposed based on the Courant-Friedrichs-Lewy (CFL) condition, as
described in Section 5.3.1.

The simulation is structured around two nested time loops:

• Outer loop: Advances through hydrodynamic frames, updating the velocity and depth
fields at fixed time intervals.

• Inner loop: Performs advection-diffusion updates at finer time steps within each hydro-
dynamic interval.

At each computational time step, the model checks whether the current time t still lies within
the bounds of the active hydrodynamic frame. If this is no longer the case, the hydrodynamic
fields are updated to the next frame. Since the computational time steps do not exactly align
with the frame boundaries, the switch to the next hydrodynamic state may occur just after
the defined frame time. This nested approach ensures that pollutant transport is resolved at
a sufficiently high temporal resolution, while remaining synchronized with the coarser hydro-
dynamic inputs. A schematic overview of this time-stepping strategy is shown in Figure 5.5.

∆t

Hydrodynamic

∆t
Advection-diffusion

t = 0 [s]

Figure 5.5: Schematic representation of the time-stepping procedure. The hydrodynamic fields
are updated at fixed intervals, while the advection-diffusion solver advances with smaller time
steps to ensure numerical stability and accuracy. In this idealized case, the update frequencies
are synchronized such that the pollutant transport time steps align exactly with the hydrody-
namic output intervals.
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5.6 Hydrodynamic and Frame Treatment

Two distinct modelling strategies are employed depending on whether the hydrodynamic
forcing is treated as steady or unsteady. These strategies directly affect the way advection-
diffusion operators are constructed and used during the simulation.

5.6.1 Steady Hydrodynamics

In the steady case, the hydrodynamic fields are averaged over the entire duration of the Wolf
simulation. This results in a single velocity and depth field that is used throughout the pollu-
tant transport simulation. This approach reduces computational cost, as only one advection-
diffusion matrix needs to be assembled and reused at every time step.

5.6.2 Unsteady Hydrodynamics

In contrast, the unsteady case uses the full time-resolved output from Wolf 2D, where each
frame corresponds to a specific snapshot of the velocity and depth fields. A new sparse matrix
must be assembled for each of these frames, and the simulation alternates between them as it
evolves in time.

The number of sparse matrices to be constructed grows proportionally with the number
of hydrodynamic frames. A large number of frames increases memory usage, as each frame
requires storing a large sparse matrix. It also raises the computational cost, since solving mul-
tiple sparse linear systems remains expensive, even when using optimized solvers. To mitigate
this, the periodicity of the velocity field is exploited: the smallest representative sequence is
identified and repeated over time.

Frame Selection

The hydrodynamic velocity field u(x,y, t) used in the advection-diffusion simulation is ex-
tracted from the Wolf 2D model at predefined spatial locations. For the present study, the
focus is on the configuration C1, where the velocity is sampled at a specific observation point
located in the middle of the block, in front of one of the openings. This location is chosen to
capture the characteristic oscillatory behavior of the flow field driven by periodic forcing.

The goal is to identify the dominant period of oscillation in the velocity signal u(t) at this
point and use it to extract a representative periodic sequence of hydrodynamic frames. This
representative segment will then be repeated during the pollutant transport simulation to
reduce computational cost, while maintaining fidelity to the underlying flow dynamics. A
schematic representation of the velocity capture process for the three configurations is pro-
vided in Figure 5.6, illustrating the spatial location of the sampled velocity for each case. In
the present study, only block C1 is used.

To identify the periodic behavior of the velocity, Welch method [Welch, 1967] is used to
estimate the power spectral density (PSD) of u(t). The PSD allows us to identify the dominant
frequency component fd of the velocity fluctuations, corresponding to the most prominent
oscillation in the system. The characteristic period Td is then estimated as

Td =
1
fd
. (5.64)
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C1 C2 C3

Figure 5.6: Schematic representation of velocity capture in the hydrodynamic model for the
three grid configurations. The velocity u(x,y, t) is sampled at predefined locations in front of
the openings to extract representative time-dependent signals u(t), which are then analysed
for periodicity.

This initial estimate provides an approximation of the periodicity but may be affected by noise
or variations in the velocity signal.

To refine the period estimation, the temporal structure of the signal is analysed by detecting
the peaks of u(t). The function scipy.signal.find_peaks is used to identify local maxima,
with a constraint on the minimum distance between peaks to avoid detecting spurious fluc-
tuations. This minimum distance is imposed as 90% of the period Td previously estimated
via Welch method, ensuring that closely spaced local oscillations are filtered out. The time
intervals Ti between successive peaks (ti+1, ti) define the instantaneous periods

Ti = ti+1 − ti . (5.65)

The median value of the detected periods is then used to obtain a more accurate estimate of
the actual best period

Tbest = median(Ti). (5.66)

This refined period ensures that the extracted sequence captures the true oscillatory behavior
of the velocity field.

The final selection of the frame count is determined by considering the largest detected pe-
riod among all the opening configurations. The number of frames per period is then computed
as

Nframes =
Tbest

∆t
, (5.67)

where ∆t [s] is the time step of the velocity data.

Once the best period Tbest is determined, a sliding search is performed to select the opti-
mal sequence of Nframes consecutive frames that best represents one full oscillation. For this,
several candidate sub-sequences of length Tbest are extracted at different positions along the
signal. Each candidate is repeated periodically to reconstruct the full signal over the simula-
tion duration, and the resulting reconstructed signal is compared to the original using a mean
squared error criterion. The sub-sequence that minimizes this error is then retained as the op-
timal periodic pattern. The reconstruction error is quantified using the relative mean squared



CHAPTER 5. NUMERICAL ENVIRONMENT 37

error

Errorrel =
∑N

i=1(uorig(ti)−urec(ti))2∑N
i=1(uorig(ti))2

× 100, (5.68)

where uorig(ti) is the original velocity signal and urec(ti) is the reconstructed one. The segment
that minimizes this error is selected as the best representative period.

Configuration C1: Frame Selection
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Original signal Reconstructed signal with T = 7.70 [s] Frames 116 to 193

Figure 5.7: Comparison of the original and reconstructed velocity signal at the observation
point for configuration C1. The original signal (grey line) is obtained from the Wolf 2D output,
while the reconstructed signal (black crosses) is generated by repeating the optimal segment
of duration T = 7.70[s]. The red curve highlights the portion of the original signal that was
selected for reconstruction. This reconstruction assumes an ideal scenario where the velocity
period is perfectly periodic and matches the selected frame interval. The low reconstruction
error (1.61 [%]) confirms the effectiveness of the periodic frame reduction approach.

For the C1 configuration, the velocity measurement at its designated observation point is
analysed for a simulation of 40.4 [s] and 405 frames, yielding the following results

Tbest,1 = 7.70 [s]. (5.69)

Thus, the number of frames per period is

Nframes,1 =
Tbest,1

∆t
= 77, (5.70)

considering a sampling frequency of fs = 10 [Hz] with ∆t = 0.1 [s]. Figure 5.7 shows the
comparison between the original and reconstructed velocity signal.
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The reconstruction yields a best period of Tbest,1 = 7.70[s], corresponding to 77 frames at a
sampling frequency of 10 [Hz]. The optimal sequence used for reconstruction starts at frame
116 and ends at frame 193, following a shift-based minimization of the reconstruction error.
The resulting relative error is only 1.61[%], indicating that the extracted segment reproduces
the overall oscillatory structure of the signal with good fidelity. This confirms that the velocity
field can be effectively approximated using a limited number of frames, without significant
loss of temporal accuracy. This reconstructed unsteady hydrodynamic forcing is therefore used
consistently throughout all the unsteady simulations presented in Chapter 7.



Chapter 6

Numerical Validation

This chapter presents a series of test cases designed to assess the accuracy, robustness, and
numerical behaviour of the implemented advection-diffusion solver. The selected test cases
include comparisons with analytical solutions, directional advection tests, and simulations in-
volving anisotropic diffusion with cross-terms. Each scenario is used to isolate and verify spe-
cific components of the numerical implementation, such as the advection discretization and
the diffusion tensor treatment.

6.1 Solute Transport Simulation

To validate the implemented code and numerical discretization, a reference test case from
Fang et al. [2022] is reproduced. The chosen case corresponds to a pollutant release in a 2D
rectangular domain under uniform flow conditions. The configuration is particularly suitable
for comparison with the analytical solution of the 2D advection-diffusion equation. The goal
is to simulate a pollutant injection and compare the numerical solution with the analytical
expression at a fixed time, using the same velocity field and physical diffusion parameters.
This comparison enables both a verification of the numerical implementation and an initial
evaluation of the errors induced by the numerical scheme.

The computational domain is a rectangle of size 800[m] × 200[m], with wall boundaries
on the north and south, an inflow on the west, and an outflow on the east. The bed is flat
and horizontal, and bottom friction is neglected. The flow is steady, with a uniform depth
h = 1.0[m], and a constant horizontal velocity in the x-direction u = 1.0[m/s] (v = 0.0[m/s]).

A Gaussian-shaped pollutant is initially introduced at the location (x0, y0) = (0,100)[m], with
a total mass C0 = 233.06[kg]. The analytical solution for the depth-averaged concentration
C(t,x,y) at time t is given by

C(t,x,y) =
C0/h

4πt
√
DxxDyy

exp
(
− (x − x0 −ut)2

4Dxxt
−

(y − y0)2

4Dyyt

)
, (6.1)

where the diffusion coefficients are set to Dxx = 1.02[m2/s] and Dyy = 0.094[m2/s], resulting in
an anisotropic spreading of the pollutant (without cross diffusion).

In the simulation, the initial condition at t = 0 [s] is directly the analytical solution given
in Equation (6.1) evaluated at t = 60[s]. The simulation runs for 600[s], using a time step ∆t
that satisfies the CFL and Péclet constraints given in Equation (5.57). The simulations are first

39
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Figure 6.1: Comparison between the numerical (solid lines) and analytical (dashed lines) so-
lutions of the pollutant concentration along the x-axis at different times. The profiles are ex-
tracted at y = 100[m], corresponding to the injection location. The simulation is performed
with a spatial resolution of ∆x = ∆y = 2[m], using a first-order upwind advection scheme. The
initial condition corresponds to the analytical solution at t = 60[s].

conducted with an arbitrarily spatial discretization of ∆x = ∆y = 2[m]. Figure 6.1 shows the
evolution of the numerical and analytical solutions at successive time steps, using the first-
order upwind scheme as detailed in Section 5.2.2. The profiles are extracted at y = 100[m],
corresponding to the injection location. Initially, the numerical profile matches the analytical
one. However, as time progresses, the numerical solution becomes increasingly spread, reveal-
ing the presence of numerical diffusion.

To quantify this effect, a convergence study is conducted by varying the spatial resolution
∆x = ∆y from 5 [m] to 1 [m]. The temporal step ∆t is fixed according to the condition ex-
plained in Equation (5.57) for each grid. The root-mean-square error (RMSE) is computed at
a fixed time t = 500 [s], which corresponds to a sufficiently advanced stage of the simulation
where the pollutant has significantly spread but remains within the computational domain.
This choice ensures a clear comparison between the analytical and numerical solutions, as it
allows the differences induced by numerical diffusion to be clearly observed. The root-mean-
square error (RMSE) is computed as

RMSE(t) =

√√√
1
N

N∑
i=1

[
Cnum
i (t)−Cana

i (t)
]2
, (6.2)

where N is the number of points along x at y = 100 [m].

In addition to the first-order upwind scheme, four other advection discretization methods in-
troduced in Section 5.2.2 are tested: the second-order upwind scheme and another alternative
second-order scheme, the central differencing scheme, and the limited second-order upwind
scheme with Minmod limiter. The motivation behind testing multiple methods lies in the need
to identify the most appropriate trade-off between numerical accuracy and stability.
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In a log-log plot of the numerical error versus the spatial resolution ∆x, the slope of each
curve provides an estimate of the convergence order of the scheme. For a numerical method
of order p, the error is expected to scale as O(∆xp) as explained by CFD Direct [2025] and
LeVeque [2002]. Therefore, a first-order scheme such as the upwind method should exhibit a
slope close to 1, while second-order methods (e.g. central differencing or second-order upwind)
are expected to produce slopes close to 2. In practice, deviations from the theoretical slopes
may arise due to oscillations, boundary effects, or insufficient temporal resolution, but the
general trend remains a strong indicator of the method spatial accuracy.

Figure 6.2 shows the evolution of the RMSE error between the numerical and analytical
solutions at a fixed time t = 500[s], as a function of the grid spacing ∆x, in log-log scale.
The five numerical schemes exhibit distinct behaviours in terms of accuracy and convergence.
The central differencing and second-order upwind schemes exhibit slopes around 1.8 − 1.85,
in good agreement with the theoretical second-order behaviour. The limited scheme, which
combines a high-order base scheme with a non-linear flux limiter, results in a convergence rate
between first and second order (slope ≈ 1.24). This is consistent with the role of the limiter:
it prevents non-physical oscillations near steep gradients, while still allowing for higher-order
accuracy in smooth regions. Finally, the classical first-order upwind method shows the lowest
slope (≈ 0.59), confirming its limited accuracy and the strong effect of numerical diffusion. For
the alternative second-order scheme, only one point could be retained due to its instability at
coarser resolutions, preventing any meaningful slope estimation.
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Figure 6.2: RMSE between numerical and analytical concentrations along x at y = 100[m] and
t = 500[s], for various values of ∆x. Each curve corresponds to a different advection scheme.
Dashed lines represent the fitted convergence slopes.

As described in Section 5.2.2, the use of a limited advection scheme requires the definition of
a flux limiter function β(r), which controls the interpolation between high and low order fluxes
depending on the local smoothness of the solution. The smoothness indicator r is defined in
Equation (5.2.2). The choice of this limiter function of r has an impact on the balance between
numerical accuracy and stability.
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Limiter RMSE ×103 [kg/m3] Relative error [%]

Minmod 1.397 4.384
Superbee 1.681 5.274
van Leer 1.535 4.815
van Albada 1.528 4.796
Limited linear 1.525 4.786
Linear (no limiter) 3.775 11.844

Table 6.1: RMSE and relative error at t = 500[s] for different flux limiters, using ∆x = 1[m].

To determine the most appropriate limiter for the current test case, several classical expres-
sions of β(r) are tested and compared. These include the Minmod, Superbee, van Leer, van
Albada, and a linear reconstruction without limiting. Based on CFD Direct [2025] and LeV-
eque [2002], the different limiter functions β(r) are defined as follows:

• Minmod limiter:

βMinmod(r) = min(r,1), (6.3)

• Limited linear limiter:

βlinear(r) = min(2r,1), (6.4)

• Superbee limiter:

βSuperbee(r) = max[0,min(2r,1),min(r,2)] , (6.5)

• van Leer limiter:

βvan Leer(r) =
r + |r |
1 + |r |

, (6.6)

• van Albada limiter:

βvan Albada(r) =
r2 + r

r2 + 1
, (6.7)

• Linear (no limiter):

βlinear(r) = 1. (6.8)

All simulations are conducted using the same configuration and numerical setup, with a
spatial resolution of ∆x = 1[m]. The RMSE error is computed at t = 500[s] to quantify the
deviation from the analytical reference solution. In addition to the absolute RMSE values, a
relative error is computed by normalizing the RMSE by the L2-norm of the analytical solution,

defined as ∥Cana∥2 =
√

1
N

∑
i(C

ana
i )2. This provides a dimensionless metric to assess the relative

magnitude of the error, expressed as a percentage.

The resulting errors for each limiter are presented in Table 6.1, showing that the Minmod
limiter gives the lowest error. This confirms that, the Minmod limiter offers the best com-
promise between suppressing non-physical oscillations and maintaining acceptable accuracy.
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Figure 6.3: Left: RMSE between the numerical and analytical solutions over time for the
five tested advection schemes. Right: Comparison of the numerical (coloured) and analyti-
cal (black dashed) concentration profiles along y = 100 [m] and t = 69 [s] with ∆x = 1. The
inset highlights the concentration peak resolution. The limited scheme with Minmod limiter
provides the best compromise between numerical diffusion and stability.

To further motivate the choice of the scheme, Figure 6.3 compares the accuracy of the five
tested advection schemes in terms of RMSE evolution over time (left panel) and profiles of the
numerical vs analytical solution at t = 69[s] (right panel). The plot confirms the improved
agreement of the limited scheme with the analytical reference, especially in the region of the
concentration peak. The inset on the right highlights the improved resolution of the Gaussian
shape for the limited scheme compared to the more diffusive alternatives.
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Figure 6.4: Concentration profile along x at y = 100[m] and different times, using the corrected
scheme with the Minmod limiter and ∆x = 2[m].
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Finally, to visually assess the impact of the flux limiter correction, Figure 6.4 compares the
numerical concentration profiles obtained using the classical first-order upwind scheme and
the second-order upwind scheme corrected with the Minmod limiter. Both simulations are
conducted with a resolution of ∆x = 2[m], and the results are extracted at different times
along the centreline y = 100[m]. The corrected scheme provides a more accurate match with
the analytical solution, exhibiting reduced numerical diffusion while avoiding oscillations.
This confirms the effectiveness of the Minmod limiter in improving the solution quality for
advection-dominated problems, while maintaining numerical stability.

To quantify the additional computational cost and accuracy improvement introduced by the
flux limiter, simulations are performed for both the classical upwind and limited (Minmod)
schemes at various spatial resolutions ∆x = 1,2,3,4[m]. For each configuration, the total sim-
ulation time required to reach t = 600[s] is recorded, and the relative L2 error with respect to
the analytical Gaussian solution is computed.

Figure 6.5 presents a comparison between the simulation times and the numerical errors for
both schemes. The left panel shows the computational time, which increases for finer resolu-
tions, with the Minmod-limited scheme being significantly slower than the classical upwind
scheme. On average, the limited scheme is found to be 3.45 times more expensive, due to the
additional operations required to compute the non-linear flux correction at each time step.

The right panel illustrates the relative L2 error, measured at t = 500[s], consistent with
the analysis previously discussed in Figure 6.2, which compared all implemented advection
schemes. Here, the focus is only on the upwind and Minmod schemes to highlight the accu-
racy vs. cost trade-off. These results confirm that the limited scheme achieves higher accuracy
with mesh refinement, at the price of increased computational cost.
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Figure 6.5: Comparison between the upwind and Minmod-limited schemes for different spa-
tial resolutions ∆x. Left: simulation time required to reach t = 600[s]. Right: relative L2 error
with respect to the analytical solution.
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6.2 Directional Advection Verification

To further verify the robustness of the implemented scheme, the same test configuration as in
the previous validation case is reused. The computational grid, initial pollutant concentration,
diffusion coefficients, and time discretization remain unchanged. The only modification lies in
the velocity field, which is varied in direction. Specifically, the velocity field is varied in both
x and y directions with u = ±1[m/s] and v = ±1[m/s], while keeping the diffusion anisotropic
and the spatial resolution fixed at ∆x = ∆y = 1[m]. The corrected scheme using the Minmod
flux limiter is used in all simulations.
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Figure 6.6: Time evolution of the solute cloud using the corrected scheme (Minmod limiter)
with horizontal advection: u = ±1[m/s], v = 0 [m/s]. The concentration is shown at t = 0, 300
and 600 [s].

Figure 6.6 shows the evolution of the solute cloud for positive and negative advection in the
x-direction (u = ±1[m/s]), at three different times. The initial condition is the same Gaussian-
shaped pollutant used in the previous validation case. As expected, the concentration cloud is
symmetrically advected along the x-axis depending on the sign of u.

Similarly, the vertical transport is assessed in Figure 6.7, with v = ±1[m/s] and u = 0 [m/s].
As expected, the pollutant moves in the vertical direction depending on the sign of v, while
keeping the symmetric diffusion around the centre of the cloud. The simulation confirms the
consistency and isotropy of the corrected scheme with respect to the advection direction.

To quantitatively assess the directional consistency of the scheme, the solution obtained for
the case u = 1 [m/s], v = 0 [m/s] is rotated by 90 [◦] and compared to the corresponding
simulation with v = 1 [m/s], u = 0 [m/s]. The two concentration fields are evaluated at t =
100 [s], and the difference between them is analysed after transposition. A maximum absolute
error of approximately 5.96× 10−8 [kg/m3] is observed. This discrepancy, although not at the
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Figure 6.7: Time evolution of the solute cloud using the corrected scheme (Minmod limiter)
with vertical advection: v = ±1[m/s], u = 0 [m/s]. The concentration is shown at t = 0, 300, and
600 [s].

level of machine precision, remains several orders of magnitude below the peak concentration
values. It confirms that the numerical solver preserves directional symmetry with a high degree
of accuracy.

6.3 Effect of Anisotropic Diffusion with Cross-terms

In order to validate the correct implementation of the anisotropic diffusion tensor, a set of
simulations are performed in the absence of advection, focusing exclusively on the effect of
diffusion, including cross-terms Dxy and Dyx. The goal is to assess whether the numerical
model reproduces the expected physical behaviour in terms of spreading direction, symmetry,
and orientation of the diffusion front.

The numerical simulation is carried out in a square domain of size 100×100[m2], discretized
using a uniform Cartesian grid with spatial resolution ∆x = ∆y = 1[m]. The initial condition
consists of a narrow Gaussian pulse centred at (x0, y0) = (50,50) [m], representing a localized
injection. The total injected mass is controlled by a source discharge value of Qs = 1[m3/s], an
initial concentration of Cs = 1[kg/m3], and the water depth is assumed constant at h = 1[m].
The simulation is performed under purely diffusive conditions by imposing a zero velocity
field. The total simulation time is set to 100[s], with a time step automatically adapted based
on Equation (5.57). The diffusion coefficients are varied across cases.

Figure 6.8 presents the evolution of the pollutant concentration at three different time steps,
corresponding respectively to 10%, 50%, and 100% of the total simulation time. This allows a
clear visualization of the transient diffusion behaviour from the early stages to the final trans-
port. Each row corresponds to a different configuration of the diffusion tensor. The first
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row illustrates the reference case of isotropic diffusion with Dxx = Dyy = 1.0 and Dxy = 0.0.
The second and third rows correspond to anisotropic diffusion without cross-terms: first with
Dxx = 4.0, Dyy = 1.0, and then with the axes swapped, i.e., Dxx = 1.0, Dyy = 4.0. The last two
rows represent anisotropic diffusion with non-zero cross-diffusion terms: Dxx = Dyy = 1.0 with
Dxy = −0.1 and Dxy = +0.1, respectively.

The observed orientations and shapes of the isoconcentration contours can be justified math-
ematically by analysing the structure of the diffusion tensor D. In the isotropic case, the diffu-
sion tensor is a multiple of the identity matrix

Dxx = Dyy = 1.0, Dxy = 0.0, (6.9)

which leads to uniform diffusion in all directions. The resulting isoconcentration contours are
circular and centred at the release location.

In the anisotropic configurations without cross-diffusion, the tensor remains diagonal but
the components differ. For instance, when

Dxx = 4.0, Dyy = 1.0, (6.10)

the diffusion is enhanced along the x-axis, resulting in ellipsoidal spreading oriented horizon-
tally. Conversely, if

Dxx = 1.0, Dyy = 4.0, (6.11)

the spread occurs more rapidly along the y-axis, producing vertical elongation of the contours.

When cross-diffusion terms are introduced, with

Dxx = Dyy = 1.0, Dxy , 0.0, (6.12)

the diffusion tensor becomes non-diagonal and must be diagonalized to identify the principal
axes of diffusion as explained by Strang [1993]. Since the tensor is symmetric, it admits an
orthonormal basis of eigenvectors. The diagonalization of the symmetric matrix D is given by

D = QΛQ⊤, (6.13)

where Λ is the diagonal matrix of eigenvalues

Λ =
[
λ1 0
0 λ2

]
, (6.14)

and the matrix Q ∈ R2×2 is orthogonal (i.e., Q⊤ = Q−1) and contains the eigenvectors of D as
columns. In two dimensions, this matrix Q can be interpreted as a rotation matrix

Q =
[
cosθ −sinθ
sinθ cosθ

]
, (6.15)

where θ is the angle between the Cartesian x-axis and the principal diffusion direction (i.e., the
direction of the first eigenvector).
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Figure 6.8: Concentration snapshots at three time steps for isotropic diffusion, anisotropic
diffusion without cross-terms, and anisotropic diffusion with cross-terms.



CHAPTER 6. NUMERICAL VALIDATION 49

To determine this angle θ, the condition that diagonalizes D is considered. Setting the off-
diagonal elements of Q⊤DQ to zero leads to the classical identity

tan(2θ) =
2Dxy

Dyy −Dxx
, (6.16)

which gives the orientation of the principal axes relative to the original Cartesian frame. In our
specific case, since Dxx = Dyy , the denominator vanishes, yielding

tan(2θ)→±∞ ⇒ 2θ→±π
2
⇒ θ→±π

4
. (6.17)

Thus, when Dxy = +0.1, the diffusion is preferentially oriented along the +45◦ axis (northeast-
southwest direction), whereas for Dxy = −0.1, it aligns with the −45◦ axis (northwest-southeast
direction). This theoretical analysis is consistent with the observed rotation and elongation of
the pollutant concentration contours in Figure 6.8, and highlights the key role of the eigen-
structure of the diffusion tensor in shaping anisotropic transport behaviour.
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Chapter 7

Results and Discussion

This chapter presents and analyses the results obtained from the numerical simulations of
pollutant transport in flooded urban environments. The simulations are based on the experi-
mental configurations described in Chapter 4, and rely on the numerical framework introduced
in Chapter 5.

The objectives of this chapter are fourfold. First, to assess the influence of the numerical
discretization scheme on the accuracy and stability of the simulated concentration fields. Sec-
ond, to investigate the role of anisotropic diffusion by varying the longitudinal and transverse
coefficients of the diffusion tensor. Third, to analyse the impact of hydrodynamic variability
by comparing steady and unsteady flow conditions on pollutant transport. Fourth, to validate
the hydrodynamic fields used in both steady and unsteady configurations by comparing their
capacity to reproduce key experimental features. Throughout the chapter, numerical results
are compared to experimental data provided at INRAE, in particular those from the M.U.R.I.
experimental platform described in Fagour [2025].

In all the simulations involving anisotropic diffusion, the formulation adopted for the lon-
gitudinal and transverse diffusion coefficients (DL, DT ) is based on the theoretical framework
presented in Section 3.2.2. This formulation is derived from the work Mignot et al. [2023],
which relates the components of the diffusion tensor as explained in Figure 2.1.

7.1 Effect of the Numerical Scheme

Before investigating the influence of physical parameters such as anisotropic diffusion or hy-
drodynamic variability, it is interesting to evaluate how the choice of numerical discretization
for the advection term affects the predicted pollutant concentration fields. The simulations
presented in this section are based on the C1 configuration introduced in Chapter 4 and shown
in Figure 4.2. This configuration consists of two clear-water inlets and one pollutant injection
point. It is characterized by moderate mixing and long residence time, as explained by Fagour
[2025]. The velocity fields used in the advection-diffusion simulations are provided by the
Wolf 2D shallow-water model [Erpicum et al., 2009], following the methodology detailed in
Section 5.6.2.

All simulations are conducted over a total time of T = 3000[s], using time steps adapted to
satisfy the CFL condition discussed in Section 5.3.1. The computational mesh and domain are
consistent with the hydrodynamic model. An isotropic diffusion tensor is used throughout this

51
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section, with
DL = DT = 1.6× 10−4 [m2/s], (7.1)

following the calibration proposed by Fontaine [2023].
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Figure 7.1: Time evolution of the normalized average concentration ⟨C(t)⟩/Cm in the urban
block (configuration C1) for two numerical schemes: the first-order upwind scheme and the
second-order limited scheme with Minmod limiter. The dashed black line indicates the exper-
imental plateau 9.98Cm, while the black curve corresponds to experimental data. The final
simulated values reach 9.27Cm with the limiter and 8.87Cm with the upwind scheme.

The pollutant is injected with a concentration Cinjection = 0.625[kg/m3] and a discharge
Qinjection = 35.5[L/h]. The perfectly mixed concentration Cm is defined, following Fagour
[2025], as

Cm =
CinjectionQinjection

Qinjection +Qi1 +Qi2
, (7.2)

where Qi1 +Qi2 = 6.5[L/s] represents the total inflow from the clear-water channels.

According to the experimental results of Fagour [2024], the mean concentration measured
in the urban block after reaching quasi-steady conditions is approximately

⟨Cs⟩ ≈ 9.98Cm. (7.3)

This value serves as a reference to assess the accuracy of the numerical predictions.

To support this analysis, Figure 7.1 provides a visual comparison of the pollutant transport
dynamics obtained with the upwind and limiter schemes, in parallel with the experimental
observations. It shows the temporal evolution of the normalized average concentration in the
urban block. This figure is not intended to re-evaluate the choice of advection scheme already
justified in Section 6.1 but rather to qualitatively visualize how the choice of numerical scheme
affects both the rate and spatial extent of pollutant accumulation within the domain.
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Although the differences observed between the numerical curves and the experimental data
are partly attributable to numerical diffusion, particularly for the upwind scheme, they also
reflect the complexity of pollutant transport through the urban geometry. In such a configura-
tion, the pollutant follows intricate pathways shaped by street layouts, obstacles, and flow re-
circulation zones, making it difficult to attribute discrepancies to the numerical scheme alone.
Nonetheless, this initial comparison provides a useful qualitative benchmark. It serves as a
foundation for the next section, where the physical diffusion parameters DL and DT will be
varied to evaluate their influence on the concentration dynamics and assess whether improved
agreement with the experimental data can be achieved through parameter calibration.

7.2 Effect of Anisotropic Diffusion

This section aims to evaluate the impact of the anisotropic diffusion tensor on the predicted
pollutant concentrations and to calibrate appropriate values for the longitudinal and trans-
verse diffusion coefficients, DL and DT . The goal is to assess whether tuning these physical
parameters can improve the agreement between the numerical predictions and experimental
data in the urban configuration C1 discussed in Section 7.1.

Given the high computational cost of the limited second-order scheme with Minmod limiter
as explained in Figure 6.5, the parameter sweep is first conducted using the classical first-order
upwind scheme. Although more diffusive, this scheme offers faster computations, enabling a
broad exploration of the (DL,DT ) space. It is assumed that the general trends observed, such
as the location of the optimal region, will remain valid for the limiter scheme. This upwind
based analysis thus serves as a computationally efficient first step to guide the calibration of
the anisotropic diffusion tensor.
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Figure 7.2: Comparison of simulation results in the (DL,DT ) parameter space using the upwind
advection scheme. Left: interpolated relative error [%] between the simulated and experimen-
tal concentrations. Right: stability map showing completed (white circles). Diagonal bands
indicate anisotropy ratios DL/DT in logarithmic scale.
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For each pair (DL,DT ), an advection-diffusion simulation is carried out using the same un-
steady hydrodynamic fields and pollutant injection parameters as defined in Section 7.1. The
simulation runs until a final time of t = 3000[s], and the resulting concentration field is spa-
tially averaged over the urban block. The mean concentration is then normalized by the theo-
retical perfectly mixed value Cm, and the relative error is computed with respect to the exper-
imental reference plateau ⟨Cs⟩ = 9.98Cm, as reported by Fagour [2025].

Figure 7.2 presents the results of the parametric study. The left panel shows an interpo-
lated map of the relative error [%] between the simulated and experimental concentrations as a
function of the diffusion coefficients. Each white circle represents a completed simulation, and
darker colours indicate lower errors. The isotropic reference case (DL = DT = 1.6× 10−4 [m2/s])
is marked, along with the configuration yielding the minimal error.

The right panel displays the same simulation set in the (DL,DT ) space. Successful simula-
tions are shown as white circles. Shaded diagonal bands highlight regions corresponding to
different anisotropy regimes: yellow for 0.1 ≤ DL/DT < 1, blue for 1 ≤ DL/DT < 10, and green
for 10 ≤ DL/DT < 100. These regions provide a visual guide to the nature of the anisotropy in
each configuration.

The results confirm that the predicted concentration is sensitive to both diffusion coeffi-
cients. Among the simulated cases, the lowest relative error, approximately 0.52 [%], is ob-
tained for

DL = 2.5× 10−4 [m2/s], DT = 1× 10−4 [m2/s], (7.4)

corresponding to an anisotropy ratio of DL/DT = 2.5.

To further assess the quality of the simulations under unsteady flow conditions, the time
evolution of the numerically predicted concentration is compared against the experimental
reference curve from the measurements reported by Fagour [2024]. Figure 7.1 presents the
experimental dataset used for comparison with the numerical results. The comparison is made
over the entire simulation duration using the Nash-Sutcliffe Efficiency (NSE) coefficient, an
indicator for evaluating the accuracy of time-dependent numerical predictions [Permetrics,
2025].

The NSE is defined as

NSE = 1−
∑T

t=1

(
Cexp(t)−Cnum(t)

)2

∑T
t=1

(
Cexp(t)−Cexp

)2 , (7.5)

where Cexp(t) and Cnum(t) denote the experimental and numerical concentrations at time t, re-
spectively, and Cexp is the time-averaged experimental concentration. An NSE of 1 indicates a
perfect match, while values greater than 0.5 generally reflect good predictive skill. Values be-
tween 0 and 0.5 indicate limited predictive ability, and negative values suggest that the model
performs worse than simply using the mean of the observations.

The numerical simulations are carried out over a duration of 3000 [s]. Concentration outputs
are stored every 10 [s]. For each combination of anisotropic diffusion coefficients (DL,DT ), the
simulated concentration time series is compared to the experimental time points, and the NSE
is computed following Equation (7.5).
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Figure 7.3 illustrates the quality of the time-evolving numerical predictions for configura-
tion C1 under unsteady conditions using the upwind advection scheme. Figure 7.3a compares
the best simulated concentration curve with the experimental data, while Figure 7.3b shows a
colour map of the NSE scores obtained for different combinations of longitudinal and trans-
verse diffusion coefficients. This visualization highlights the parameter region leading to op-
timal agreement in terms of temporal evolution, thereby complementing the previous spatial
error analysis.
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Figure 7.3: Comparison between the numerical and experimental results for configuration C1
under unsteady conditions with upwind advection scheme.

Several configurations achieve high NSE scores above 0.9, indicating good agreement with
the experimental time series. However, when either DL or DT deviates significantly from the
optimal range, particularly for overly large or overly small values, the model performance
drops sharply, with NSE values falling below 0.5 or even becoming negative. These results
confirm the importance of adequately tuning the diffusion tensor to realistically simulate pol-
lutant dispersion in unsteady urban flood flows.

Interestingly, the best-performing configuration identified through this temporal analysis,
namely DL = 2.5 × 10−4 [m2/s] and DT = 1.0 × 10−4 [m2/s], is consistent with the optimal point
previously obtained in Equation (7.4). This pair yields an anisotropy ratio DL/DT = 2.5. This
value lies within the range typically reported in the literature. For instance, Cheng [1984] and
Lee & Seo [2007] suggest values around 10 for open-channel flows, while Lee & Kim [2012]
and Alavian [1986] report ratios between 1 and 10 depending on flow conditions. The review
by Mignot et al. [2023] further supports a range from 0.1 to 100 for urban and shallow water
applications. The fact that the optimal ratio observed here falls within this established interval
reinforces the credibility of the anisotropic diffusion model used in this study.

The results of this section provide a basis for refining the diffusion tensor under more accu-
rate advection schemes. The next section investigates whether the improved limiter scheme,
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combined with the diffusion values identified here, can reproduce the experimental reference
with higher fidelity.

7.3 Anisotropic Diffusion Calibration

Following the identification of optimal diffusion coefficients DL and DT in the unsteady
configuration C1 using the upwind scheme at Equation (7.4), the next objective is to assess
the robustness and generality of this calibration. The key idea is to verify whether the same
anisotropic ratio DL/DT , or the same values, lead to similarly accurate results in other numeri-
cal conditions and experimental setups.

The initial analysis in Section 7.2 revealed that the minimal error is obtained for values of
DL and DT lying within a specific region of the parameter space. It is now assumed that this
region is relevant regardless of the numerical scheme or hydrodynamic mode used. Therefore,
the goal of the present section is:

1. To test whether this optimal zone remains valid for other numerical conditions, particu-
larly when using a second-order flux-limited advection scheme.

2. To determine whether these coefficients remain optimal under different flow regimes:
unsteady flow and steady flow based on time-averaged hydrodynamics.

To perform this evaluation, simulations are conducted for a set of DL and DT values around
the previously identified optimal region. These simulations are carried out for different con-
figurations. To cover the various scenarios, four combinations of hydrodynamic conditions and
configurations can theoretically be considered: each of the two urban layouts (C0 and C1) can
be simulated under either steady (time-averaged) or unsteady (fully transient) flow conditions.
Among these four possible cases, three are included in this analysis as detailed in Table 7.1:
configuration C1 is tested under both steady and unsteady conditions, while configuration C0
is examined under steady conditions only.

The unsteady simulation for C0 is not included here, as this configuration exhibits a nearly
time-invariant hydrodynamic regime in the Wolf 2D reference simulations. The velocity field
in C0 remains essentially steady throughout the transient simulation period. As a result, per-
forming an additional unsteady simulation would not provide significant new insights and
would be computationally redundant.

Configuration Steady flow Unsteady flow

C0 ✓ —

C1 ✓ ✓

Table 7.1: Summary of the validation strategy. The diffusion calibration is tested across three
of the four possible combinations of flow condition and configuration.

7.3.1 Calibration under Unsteady Flow Conditions

The objective of this section is not to reassess the entire parameter space, but rather to refine
the search for the optimal anisotropic diffusion coefficients in the vicinity of the region previ-
ously identified using the upwind advection scheme. This strategy reduces computational cost
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by focusing on a promising subset of parameters. The analysis is now carried out under un-
steady flow conditions for configuration C1, using the more accurate second-order flux-limited
scheme with the Minmod limiter, in order to find the minimum error location with higher nu-
merical precision.

The analysis follows the same methodology as in Section 7.2, where a sweep of the anisotropic
diffusion tensor is performed. Here, the focus is on the parameter sweep around the previously
identified optimal region, corresponding to longitudinal and transverse coefficients on the or-
der of 10−4 as detailed in Equation (7.4).
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Figure 7.4: Left: Map of the relative concentration error [%] as a function of longitudinal and
transverse diffusion coefficients DL and DT , respectively, for configuration C1 under unsteady
flow. The results are obtained using the second-order flux-limited scheme. The darker region
indicates lower error and identifies the optimal anisotropic diffusion configuration. Right: Sta-
bility map showing completed (white circles) simulations. Diagonal bands indicate anisotropy
ratios DL/DT in logarithmic scale.

Figure 7.4 presents the spatial distribution of the relative concentration error obtained for
each combination of DL and DT under unsteady flow conditions using the flux-limited scheme.
The results confirm the existence of a minimum error within the same anisotropy region as
previously identified. The lowest error is achieved for

DL = 3.5× 10−4 [m2/s] and DT = 1.0× 10−4 [m2/s], (7.6)

corresponding to an anisotropy ratio DL/DT = 3.5, and yielding a relative deviation from the
reference concentration of approximately 0.01 [%]. This value is consistent with the optimal
ratio previously identified using the first order upwind scheme. Although the precise values
may vary slightly due to the increased accuracy of the limiter approach, the overall optimal
region remains unchanged. This reinforces the robustness of the anisotropic calibration proce-
dure across different numerical schemes.

For each combination of anisotropic diffusion coefficients (DL,DT ), the simulated concentra-
tion time series is compared to the experimental data, and the NSE is computed according to
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Figure 7.5: Comparison between the numerical and experimental results for configuration C1
under unsteady conditions using the flux-limited second order scheme.

Equation (7.5). The resulting scores help identify the best-performing configurations in terms
of temporal agreement with the observed concentration. Figure 7.5 presents the results ob-
tained under unsteady flow conditions using the flux-limited scheme. Figure 7.5a shows the
best simulated curve compared to the experiment. Figure 7.5b displays a heatmap of NSE
values across the (DL,DT ) parameter space.

Notably, the highest NSE score is obtained for the same diffusion coefficients identified pre-
viously via the convergence error analysis in Equation (7.6) confirming the consistency between
both evaluation criteria. This reinforces the robustness of the anisotropic calibration, as both
spatial and temporal performance metrics converge toward the same optimal configuration.

Interestingly, the optimal anisotropy ratio of DL/DT = 3.5 obtained using the second-order
limited scheme is slightly higher than the one previously identified using the first-order up-
wind method in Equation (7.4). This discrepancy is expected and can be attributed to the
higher level of numerical diffusion inherently present in the upwind scheme. In that case, part
of the physical transport is artificially compensated by the scheme numerical diffusion, lead-
ing to an underestimated need for longitudinal diffusion. In contrast, the flux-limited scheme
reduces numerical diffusion, thereby requiring a more realistic and higher value of DL to accu-
rately model the anisotropic transport.

It is possible to examine the spatial and temporal evolution of the pollutant plume under
unsteady conditions. Figure 7.6 illustrates the normalized concentration field and associated
velocity vectors at various times during the simulation, using the calibrated anisotropic diffu-
sion coefficients DL = 3.5 × 10−4 [m2/s] and DT = 1.0 × 10−4 [m2/s]. The snapshots reveal how
the pollutant is progressively transported and diffused throughout the urban layout.
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Figure 7.6: Spatio-temporal evolution of the pollutant plume in configuration C1 under un-
steady flow conditions. Each panel shows the normalized concentration field C/⟨Cs⟩ at time
t, with local flow velocity vectors overlaid as black arrows. The arrow lengths indicate the
relative magnitude of the velocity field, and highlight the preferential transport directions.
The simulation uses the optimal anisotropic diffusion coefficients DL = 3.5 × 10−4 [m2/s] and
DT = 1.0× 10−4 [m2/s].

All simulated concentration fields are normalized by the average inflow concentration ⟨Cs⟩
to allow consistent comparisons across different configurations. This choice reflects the as-
sumption that the inflow concentration corresponds to the established steady-state value of
the pollutant at the inlet. Such an assumption is physically justified and experimentally veri-
fied in Fagour [2025], where the following relation is confirmed

⟨Cs⟩ =
∑

iQiCi

Qtot
, (7.7)

where Qi and Ci respectively denote the volumetric inflow rate and pollutant concentration at
inlet i, and Qtot =

∑
iQi is the total inflow discharge, such that ⟨Cs⟩ represents the discharge-

weighted average concentration at the domain entry.
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(a) Simulated pollutant concentration field (C⟨Cs⟩)
using the best anisotropic diffusion coefficients
(DL = 3.5× 10−4,DT = 1.0× 10−4).

(b) Experimental concentration field for configu-
ration C1.

Figure 7.7: Visual comparison between the simulated and experimental pollutant concentra-
tion fields for configuration C1 under unsteady flow conditions.

Beyond the overall transport dynamics, specific flow structures can be identified in the con-
centration and velocity fields. In particular, zones of recirculation emerge clearly in several
snapshots of Figure 7.6. These regions, typically located behind obstacles and along the lateral
cavities of the domain, are characterized by low-magnitude velocity vectors forming closed or
circular patterns.
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Interestingly, the pollutant plume appears to initially bypass these recirculation zones, re-
maining mostly confined to the main advective paths during the early stages of the simulation.
This behaviour is physically consistent with the experimental observations reported by Fagour
[2025]. As the simulation progresses, the distinction between advective pathways and recircu-
lation zones becomes less pronounced. The pollutant gradually diffuses into the side cavities,
leading to a more homogenized concentration field over time. This temporal smoothing is vis-
ible in the later frames of Figure 7.6, where the pollutant distribution becomes less contrasted
and the influence of initial recirculation structures diminishes.

Figure 7.7 provides a side-by-side comparison of the simulated and experimental concen-
tration fields for configuration C1. Both maps exhibit consistent spatial patterns, with peak
concentrations observed in similar regions. This qualitative agreement reinforces the validity
of the anisotropic parameter calibration and confirms that the model successfully captures the
dominant transport dynamics observed in the experiment.

7.3.2 Calibration under Steady Flow Conditions

As introduced in Table 7.1, this section focuses on the simulation of pollutant transport
under steady hydrodynamic conditions. The velocity fields used in the simulations are ob-
tained by time-averaging the outputs of the Wolf 2D model, as described in Section 5.6.1. This
approach allows us to simplify the hydrodynamic forcing while preserving the main spatial
structures of the flow.

The goal is twofold: first, to assess whether a steady representation of the flow can rea-
sonably reproduce the observed pollutant dynamics in urban configurations; and second, to
determine the optimal set of anisotropic diffusion coefficients (DL,DT ) that best match exper-
imental measurements under these simplified hydrodynamic conditions. Two configurations
are considered in this context: configuration C0, which is inherently steady, and configuration
C1, which is originally unsteady but here approximated using a time-averaged velocity field.

Configuration C0

The objective of this section is to validate the numerical simulation under steady hydrody-
namic conditions (configuration C0) by comparing the model results to the experimental mea-
surements described in Chapter 4. Specifically, the comparison focuses on the mass discharge
of pollutant across key sections of the domain.

The experimental study conducted on the M.U.R.I. platform provides detailed measure-
ments of pollutant concentrations and flow rates at five internal cross-sections within the urban
geometry, as well as at the four outlet boundaries of the domain. These measurement locations
are illustrated in Figure 4.3. For each of these nine locations (S1,S2,S3,S4,S5, and the four
outlets O1,O2,O3,O4), the experimental discharge of pollutant is obtained by multiplying the
measured velocity and concentration profiles. The corresponding numerical discharges are
computed from the steady-state concentration field extracted at the end of the simulation, us-
ing the time-averaged hydrodynamic field. In this configuration, the pollutant is continuously
injected at the upstream-left location, denoted as cu in the experimental setup (see Figure 4.3).

Before comparing simulated concentrations to experimental discharge measurements, it is
essential to ensure that the pollutant transport simulation has reached a quasi-steady state. In
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the case of configuration C0, where the hydrodynamic field is steady (time-averaged), the sim-
ulation is run over a sufficiently long period to allow the pollutant to fully propagate through
the domain and reach the outlet zones.

To justify the choice of simulation time, the concentration is monitored at all outlets through-
out the simulation. In particular, both the individual concentrations Coutlet,k(t) at each outlet
k = 1, . . . ,4, and the overall mean outlet concentration Cmix, outlet(t), defined as

Cmix, outlet(t) =
1

Nout

∑
(i,j)∈outlets

Ci,j(t), (7.8)

are tracked over time to evaluate convergence.

Figure 7.8 displays the time evolution of these outlet concentrations under steady hydrody-
namic conditions. Each coloured curve corresponds to one outlet, while the dashed black line
shows the mean outlet concentration. A plateau is reached for all outlet curves after approx-
imately t = 120[s], indicating that the system has reached a quasi-steady state. Convergence
is considered achieved when the temporal variation of the mean outlet concentration becomes
lower than 1 [%] over a defined time window.
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Figure 7.8: Time evolution of the outlet concentrations Coutlet,k(t) for configuration C0 un-
der steady hydrodynamic conditions. The mean outlet concentration Cmix,outlet is shown as a
dashed black line. A quasi-steady state is reached after approximately 120 [s].

Based on this analysis, a final simulation time of T = 150[s] is selected to ensure that the
pollutant transport has stabilized before performing any comparison with experimental mea-
surements. Monitoring all outlet segments individually also provides insight into the temporal
dynamics and potential spatial variability of pollutant release at the domain boundary.

After justifying the total simulation time required to reach a quasi-steady state, the method-
ology proceeds with the calibration of the anisotropic diffusion tensor under steady hydrody-
namic conditions. The longitudinal and transverse diffusion coefficients DL and DT are varied
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across a range of values consistent with the anisotropy ratios previously investigated in the
unsteady case.

For each pair (DL,DT ), a simulation is conducted using the time-averaged velocity field cor-
responding to configuration C0. Once the simulation reaches T = 150[s], the resulting concen-
tration field is post-processed to compute the pollutant mass discharges across the five internal
cross-sections and the four outlet segments.
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Figure 7.9: Left: Interpolated RMSE map for configuration C0 under steady hydrodynamic
conditions. Each point corresponds to a tested pair (DL,DT ), with the colour indicating the
RMSE compared to experimental discharges. The red dot marks the best-performing configu-
ration, and the black dot denotes the isotropic reference. Right: Distribution of tested config-
urations across anisotropy ratio regimes.

To quantitatively evaluate the match between simulated and experimental discharges, a
RMSE is computed across the nine available measurement sections. For each location, the
simulated mass discharge is expressed as a percentage of the total incoming pollutant flux.
The RMSE is then defined as follows

RMSE =

√√√
1
N

N∑
k=1

(
Q

(k)
m,sim −Q

(k)
m,exp

)2
, (7.9)

where N = 9 is the number of measurement sections, Q(k)
m,sim and Q

(k)
m,exp are respectively the

simulated and experimental pollutant mass discharges at section k, both expressed in percent-
age of the total inflow discharge.

Using this metric, a sweep is performed by varying the longitudinal and transverse diffusion
coefficients DL and DT . For each pair, the RMSE is computed and plotted over a logarithmic
parameter space. Figure 7.9 shows the resulting RMSE map, interpolated over the tested con-
figurations.
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Figure 7.10: Final pollutant concentration field normalized by the injection value (C/Cin ×
100) for configuration C0, under steady hydrodynamic conditions using the optimal diffusion
coefficients DL = 7.0 × 10−4[m2/s] and DT = 2 × 10−4[m2/s]. Red labels indicate the simulated
(solid) and experimental (dashed) pollutant mass discharge percentages. Blue labels show the
corresponding water discharge percentages.

The optimal values for C0 under steady flow conditions are found to be

DL = 7.0× 10−4 [m2/s], DT = 2.0× 10−4 [m2/s], (7.10)

yielding a RMSE of approximately 3.8 [%] across the nine measurement sections. This cor-
responds to an anisotropy ratio of DL/DT = 3.5 which falls within the same intermediate
anisotropy class (1 ≤ DL/DT < 10) identified in the previous unsteady configuration analy-
sis. This further supports the idea that, regardless of the flow regime, an anisotropic diffusion
model with a moderate longitudinal-to-transverse ratio provides consistent and robust results
across different transport scenarios.

To conclude this analysis, Figures 7.10 and 7.11 provide a visual summary of the pollu-
tant transport and discharge results for the best-performing diffusion configuration identified
under steady flow conditions. Figure 7.10 shows the final pollutant concentration field, nor-
malized by the inlet value, along with simulated and experimental discharge percentages for
both water (in blue) and pollutant (in red) at each outlet and section. Figure 7.11 complements
this view by presenting the absolute errors, in percentage points, between the simulated and
measured pollutant discharges, thus quantifying the local discrepancies across the domain.

Overall, the absolute errors between simulated and experimental pollutant discharges re-
main reasonably low, with most values falling below 5 [%]. The highest discrepancy, observed
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Figure 7.11: Absolute error (in percentage points) between simulated and experimental pol-
lutant discharges at each outlet and section for the best-performing diffusion pair DL =
7.0× 10−4[m2/s], DT = 2.0× 10−4[m2/s].

at outlet O1, reaches 7.84 [%], while several other sections show errors under 2 [%]. Such a
level of agreement confirms the ability of the model to reproduce the spatial distribution of
pollutant transport with good accuracy under steady-state hydrodynamic conditions.

Configuration C1

In this section, the objective is to evaluate whether the pollutant dynamics observed in con-
figuration C1 under unsteady flow conditions can be reasonably reproduced using a simplified
steady representation of the hydrodynamics. To isolate the effect of the velocity field while
avoiding additional complexity related to diffusion calibration, the simulations are performed
using a basic isotropic diffusion tensor, defined as, DL = DT = 1.6 × 10−4 [m2/s] which corre-
sponds to the reference value previously used in Section 7.1.

A time-averaged velocity field is extracted from the Wolf 2D simulation of configuration C1
and used as a stationary input to the advection-diffusion model. A simulation is then per-
formed over a total duration of 3000 [s], consistent with the unsteady case, in order to observe
how the pollutant spreads and gradually homogenizes within the domain. The resulting trans-
port patterns are compared to those obtained under fully unsteady hydrodynamic conditions,
using the same isotropic diffusion coefficients.

Figure 7.12 shows the evolution of the pollutant plume using the time-averaged velocity
field. While the pollutant is gradually transported and accumulates within the domain, the
resulting concentration field appears significantly smoother and more symmetric than in the
unsteady case. The complex temporal structures induced by velocity oscillations are entirely
absent. As a result, the plume evolution lacks the fluctuating behaviour observed under un-
steady flow conditions. Moreover, the pollutant does not fully homogenize within the domain,
indicating that certain mixing mechanisms associated with transient hydrodynamics are not
captured in this steady approximation.
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Figure 7.12: Spatio-temporal evolution of the pollutant concentration in configuration C1 un-
der steady hydrodynamic conditions. The velocity field used is the time-averaged result from
the unsteady Wolf 2D simulation. The concentration is normalized by the reference plateau
value ⟨Cs⟩, and local flow vectors are overlaid.

As shown in Figure 7.13, the simulation using a time-averaged (steady) velocity field fails
to reproduce key transport dynamics observed under unsteady conditions. First, the concen-
tration field in the steady case evolves without any temporal oscillations, in contrast to the
unsteady simulation where the plume exhibits visible fluctuations and asymmetries over time.
Second, the pollutant spreads more rapidly in the steady case, reaching a broad coverage of the
domain much earlier. However, this faster propagation does not lead to a homogeneous distri-
bution; instead, the steady simulation yields a final concentration field that is both uneven and
significantly overestimated in magnitude. In contrast, the unsteady simulation produces more
realistic concentration levels and spatial structures, closely matching the experimental obser-
vations. These differences highlight that the steady approximation not only fails to capture
transient effects, but also misrepresents the overall mixing and accumulation process within
the domain.
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Figure 7.13: Comparison of final pollutant concentration fields in configuration C1. All nu-
merical simulations use the same isotropic diffusion coefficients. Left: simulation with steady,
time-averaged velocity field. Middle: simulation with unsteady, time-resolved velocity. Right:
experimental reference map.

To further support this observation, Figure 7.14 presents the time evolution of the aver-
age pollutant concentration in the block for the steady simulation. The numerical result is
compared to the experimental dataset as well as the reference plateau concentration 9.98Cm.
While the simulation follows a similar initial trend, the early-phase dynamics are not perfectly
aligned with the experimental curve, and the growth rate is slightly underestimated from the
beginning. More importantly, the simulation continues to rise after t = 3000[s], suggesting that
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convergence has not been fully achieved by the end of the simulation. This is consistent with
the spatial distribution observed in the final concentration maps, where the steady simulation
still exhibits localized high concentrations and lacks the homogenization seen in the unsteady
and experimental cases. These discrepancies confirm that the absence of temporal fluctuations
in the velocity field leads to an overly efficient and unrealistic accumulation of pollutant.
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Figure 7.14: Time evolution of the normalized average concentration in the block for configu-
ration C1 under steady flow conditions. The numerical result (red curve) is obtained using the
limiter scheme and isotropic diffusion. The black curve shows the experimental reference, and
the dashed red line indicates the expected plateau value 9.98Cm.

To mitigate the limitations of steady-state simulations in capturing transient flow structures,
one possible approach is to adjust the diffusion tensor through calibration. In particular, in-
creasing the transverse diffusion coefficient DT can enhance lateral spreading of the pollutant,
thereby reducing the over-concentration observed along the primary transport direction. This
calibration acts as a numerical compensation for the absence of transient recirculation zones,
which are naturally captured in unsteady simulations. However, it constitutes an artificial cor-
rection rather than a physically grounded representation, and should therefore be considered
as a limitation of the steady approximation.

7.3.3 Synthesis and Discussion

This section addressed two key questions regarding the calibration of anisotropic diffusion
models. First, it examined whether the optimal diffusion coefficients DL and DT , initially iden-
tified in the unsteady configuration C1 using a first-order upwind scheme, remain valid when
applied across different numerical discretizations and flow regimes. Second, it assessed the
relevance of using time-averaged hydrodynamic fields instead of fully unsteady flows, partic-
ularly for configuration C1.

Regarding the first objective, the results demonstrate that the previously identified optimal
region in the (DL,DT ) parameter space remains consistent when employing a higher-order flux-
limited advection scheme. Furthermore, the same anisotropic regime leads to accurate results
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in configuration C0 under steady-state flow conditions. These findings confirm the robustness
and transferability of the anisotropic calibration procedure across both numerical schemes and
hydrodynamic regimes. In all tested cases, optimal performance is observed for moderate
anisotropy ratios, typically within the range 2.5 ≤ DL/DT ≤ 3.5. Notably, the most accurate
calibrations, obtained using the flux-limited scheme, consistently yield an optimal ratio of
DL/DT = 3.5 for both configurations C0 and C1.

Concerning the second objective, the use of time-averaged hydrodynamics appears to be a
valid approximation for configuration C0, whose dynamics are inherently steady. In contrast,
configuration C1, which features temporal variability, cannot be accurately reproduced with
steady hydrodynamic. The absence of transient structures results in artificial pollutant ac-
cumulation and overestimated concentrations, highlighting the role of time-dependent flow
patterns in driving dispersion and lateral mixing. While increasing the transverse diffusion
coefficient DT can partially offset the lack of recirculation by enhancing cross-flow spreading,
such tuning effectively introduces artificial diffusion to compensate for missing physical pro-
cesses. This strategy may reduce certain errors but lacks a strong physical foundation. There-
fore, for realistic representation of pollutant dynamics in configuration C1, the use of fully
unsteady hydrodynamic fields is not only preferable but essential.

7.4 Hydrodynamic Validation

This section aims to validate the hydrodynamic inputs used in the pollutant transport sim-
ulations, distinguishing between two types of representations: steady (time-averaged) and un-
steady. Given the high computational cost associated with reading and processing large hy-
drodynamic datasets from the Wolf 2D model, simplified strategies were adopted to reduce
simulation time. These strategies must be justified to ensure they do not compromise the ac-
curacy of the results.

7.4.1 Time-averaged Hydrodynamic

In all pollutant transport simulations performed under steady-flow conditions, a short-duration
hydrodynamic simulation was systematically used to generate a time-averaged velocity field,
which was then applied over a much longer transport period. This approach significantly
reduces computational cost by avoiding the need to process long-duration hydrodynamic out-
puts. However, it implicitly assumes that the flow stabilizes rapidly and that a short time
window is sufficient to capture the essential structures of the steady-state regime. The pur-
pose of this section is to validate this assumption by comparing the results of two transport
simulations, both lasting 100 [s], driven respectively by a 10 [s] and a 100 [s] time-averaged ve-
locity field. This comparison allows us to assess whether the short averaging window provides
a reliable representation of the hydrodynamics for longer transport simulations.

These simulations are performed using an isotropic diffusion configuration, with constant
and equal diffusion coefficients in both directions. This setup provides a neutral reference
case, ensuring that the results are not influenced by directional bias in the diffusion tensor.

As shown in Table 7.2, the resulting pollutant distributions and outlet discharges are nearly
identical. This confirms that the hydrodynamic field stabilizes rapidly and that averaging over
a short 10 [s] simulation is sufficient to represent steady-state flow for longer transport simula-
tions. This approach offers a reduction in computational cost without compromising accuracy.
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Figure 7.15: Absolute error between 10 [s] and
100 [s] averaged simulations, for both pollutant
mass (red plot) and water discharges (blue plot).

Pollutant [%] 10 [s] 100 [s]
Qout,1 37.99 37.99
Qout,2 41.48 41.49
Qout,3 20.52 20.51
Qout,4 0.01 0.01
QS,1 100.24 100.24
QS,2 92.55 92.56
QS,3 54.62 54.63
QS,4 7.62 7.61
QS,5 7.57 7.55
Water [%]
Qout,1 29.42 29.42
Qout,2 24.33 24.33
Qout,3 23.96 23.96
Qout,4 22.29 22.29
QS,1 69.23 69.23
QS,2 62.18 62.18
QS,3 32.76 32.76
QS,4 7.05 7.05
QS,5 15.53 15.53

Table 7.2: Comparison of pollutant and
water discharges [%] at each outlet and
section using 10 [s] and 100 [s] averaged
hydrodynamics.

The comparison of pollutant and water discharges between the two hydrodynamic inputs
is further illustrated in Figure 7.15, which presents the absolute error between the 10 [s] and
100 [s] averaged cases at each outlet and internal section. The observed differences are system-
atically below 2.5×10−4 [%] for water discharges and remain under 1.3×10−2 [%] for pollutant
mass discharges. Therefore, the 10 [s] time-averaged hydrodynamic field can be considered as
a valid approximation of the full 100 [s] simulation, offering a reduction in computational time
while preserving the accuracy of the resulting pollutant transport predictions.

Overall, this analysis validates the strategy of using a short 10 [s] time-averaged hydrody-
namic simulation to drive longer pollutant transport simulations in steady-state configura-
tions. Despite the reduced duration, the averaged velocity field captures all essential flow
structure. This result justifies the approach adopted throughout this work. The ability to sim-
ulate long-term transport using minimal hydrodynamic input represents an advantage in the
context of large-scale scenario testing and parameter calibration.

7.4.2 Unsteady Hydrodynamic

In all pollutant transport simulations performed under unsteady flow conditions, the hydro-
dynamic forcing was reconstructed by repeating a periodic sequence of 77 frames extracted
from a 40.2 [s] Wolf 2D simulation, as presented in Section 5.6.2. This strategy was adopted
to reduce computational costs. However, this approach relies on the assumption that the ex-
tracted sequence captures the essential temporal dynamics of the flow and remains represen-
tative when extended over longer durations. The objective of this section is to validate this as-
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sumption by comparing the reconstructed velocity signal, obtained by repeating the 77-frames
segment, with a longer 100 [s] reference signal. This analysis allows us to assess the robust-
ness of the periodic approximation and justify its systematic use in the unsteady transport
simulations.

To this end, the same peak-based period identification and frame selection methodology is
applied to a longer velocity signal of 100 [s], recorded at the same sampling frequency (10 [Hz])
at the observation point defined for configuration C1. The reconstructed velocity signal is
obtained by repeating the 77-frames segment initially selected in Section 5.6.2, and compared
to the full 100 [s] reference signal.
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Figure 7.16: Comparison between the original velocity signal (grey line) and the reconstructed
signal obtained by repeating the 77-frame sequence extracted from the 40.2 [s] simulation
(black crosses). The reconstruction over 100 [s] yields a relative RMSE of 6.91 [%], confirming
the validity of the periodic approximation.

Figure 7.16 shows the comparison between the original velocity signal and its reconstruc-
tion using the repeated-frame approach. The reconstructed signal successfully captures the
global periodic behaviour of the original flow. The relative root-mean-square error (RMSE) be-
tween the two signals is 6.91 [%], which confirms that the 77-frame sequence extracted from
the 40.2 [s] dataset remains representative when extended over a longer simulation window.
Although the error remains below 10 [%], and thus acceptable for practical purposes, it must
still be taken into account when interpreting the results of the simulations based on this re-
construction. In particular, small-scale temporal fluctuations that are not captured by the
repeated-frame method may slightly influence pollutant transport and mixing dynamics in
sensitive configurations.

In addition, repeating the period detection algorithm on the full 100 [s] signal yields the
same dominant period of Tbest = 7.70[s], confirming the temporal consistency of the hydro-
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dynamic oscillations. Although the exact frame sequence minimizing the reconstruction error
differs slightly, owing to variations in signal shape over time, the persistence of the dominant
frequency validates the use of a fixed frame count for time extrapolation.

Ideally, this validation procedure should be applied to the full 3000 [s] hydrodynamic simu-
lation to ensure that the selected periodic segment remains representative over the entire dura-
tion. Such an analysis would allow for a more accurate quantification of long-term deviations
and offer a stronger justification of the frame-repetition strategy. However, a major bottleneck
lies in the reading and processing of the Wolf 2D hydrodynamic outputs. In the current setup,
each hydrodynamic frame takes approximately 1 minute and 30 seconds to load, due to the
size and structure of the simulation data. Extending this procedure to the full 3000 [s] simu-
lation at a temporal resolution of 0.1 [s] would involve over 30 000 frames, resulting in long
preprocessing times.

A possible alternative would be to re-run the Wolf 2D simulation with a reduced output
frequency, thereby limiting the number of exported frames. However, this would inevitably
degrade the temporal resolution of the reconstructed velocity field and reduce the accuracy of
pollutant transport simulations, particularly in configurations where transient flow features
play a role. Given these constraints, the 100 [s] test used here offers a good compromise: it
captures several oscillation cycles while keeping data processing and simulation time manage-
able. While it does not cover the entire simulation period, it is sufficient to validate the use of
repeated velocity frames within the current modelling approach.

These results confirm that the periodic approximation based on the selected 77 frames re-
mains valid for extended time windows, at least over the tested 100 [s] duration. This supports
the use of a frame-repetition strategy in the advection-diffusion simulations, as it provides a
reliable yet computationally efficient way to represent unsteady hydrodynamic forcing without
requiring the full resolution of long-duration flow simulations.
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Conclusions and Perspectives

8.1 Conclusions

This thesis has explored the modelling of pollutant transport in flooded urban environments
through the development and validation of a two-dimensional advection-diffusion solver. The
numerical framework was implemented in Python, with a modular structure allowing for
anisotropic diffusion, multiple advection schemes, and both steady and unsteady hydrody-
namic forcing.

The first part of this study focused on evaluating the impact of numerical discretization
on the accuracy and stability of pollutant transport simulations. Several advection schemes
were implemented and tested on synthetic benchmark cases, including the first-order upwind
scheme and a second-order limited scheme based on Total Variation Diminishing (TVD) flux
limiters. The results showed that the first-order upwind scheme provides a robust and sta-
ble solution with low computational cost, but introduces significant numerical diffusion that
tends to smear sharp concentration fronts. In contrast, the second-order limited scheme, in-
corporating limiters such as Minmod, substantially improves the accuracy of the concentration
profiles by reducing numerical diffusion, but requires more computational resources due to its
increased complexity. This trade-off between computational efficiency and numerical accuracy
highlights the importance of selecting an appropriate discretization strategy depending on the
objectives and constraints of the simulation.

The impact of anisotropic diffusion was then analysed in detail. By varying the longitudinal
and transverse components of the diffusion tensor, it was shown that introducing anisotropy
significantly improves the representation of pollutant dispersion in elongated and directionally
constrained urban geometries. A parametric study revealed that an optimal ratio between
longitudinal and transverse diffusivities enhances agreement with experimental observations,
reflecting the directional bias of transport mechanisms in such environments.

A third focus was placed on hydrodynamic variability. The comparison between steady
(time-averaged) and unsteady flow conditions revealed that configuration C0, characterized by
quasi-steady dynamics, can be reasonably approximated using a time-averaged velocity field.
In contrast, configuration C1 exhibited strong temporal fluctuations, making unsteady hydro-
dynamics essential for accurate pollutant transport modelling. Simplified frame-repetition
strategies were proposed and validated to represent unsteady forcing at reduced computa-
tional cost.

73
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Finally, simulation results were compared to experimental data collected on the M.U.R.I.
platform developed by INRAE. The numerical model successfully reproduced several key pat-
terns observed in the laboratory, including preferential pathways and pollutant accumulation
near stagnation zones. However, discrepancies remained in certain cases, suggesting that fur-
ther refinement of the diffusion calibration and hydrodynamic representation is needed.

Overall, the modelling approach presented in this work provides a flexible and efficient
tool to simulate pollutant transport under realistic flood conditions. This framework lays the
groundwork for future studies aiming to improve urban water quality predictions under ex-
treme weather scenarios.

8.2 Perspectives

While the present work offers a solid foundation for modelling pollutant transport in flooded
urban environments, several directions remain open for future exploration and improvement.

A first direction concerns the optimization of the numerical solver. Despite its robust-
ness and modularity, the current implementation suffers from high computational costs, par-
ticularly in configurations involving time-resolved hydrodynamics or flux-limited advection
schemes. These limitations have constrained the number of simulations that could be car-
ried out, especially in the context of large parametric sweeps. Improving code performance,
through more efficient memory management, would reduce computation times and enable
broader sensitivity analyses across a wider range of model parameters.

Secondly, the analysis conducted in this study focused primarily on a single urban block
and injection point. However, experimental data are available for several other configurations,
involving different street layouts and injection locations. Extending the simulations to these
additional scenarios would make it possible to assess the generalizability of the conclusions,
particularly regarding the role of anisotropic diffusion. Such validation across multiple flow
patterns and transport paths would strengthen the confidence in the identified diffusion pa-
rameters and help determine whether the same anisotropic ratios remain valid beyond the
current case study.

In addition, while an initial calibration of the longitudinal and transverse diffusion coef-
ficients was carried out, this approach remained limited to a predefined and discretized set
of values due to computational constraints. Consequently, the resolution of the parameter
space may not have been sufficient to fully capture the optimal anisotropic ratio. To overcome
this limitation, more advanced optimization techniques could be considered. Gradient-based
methods offer a systematic way to converge toward local minima of the error metric, while
heuristic approaches such as genetic algorithms allow for global exploration of the parame-
ter space without requiring gradient information. Integrating such optimization algorithms
into the calibration framework could enhance the accuracy and efficiency of the identification
process for the diffusion tensor parameters.

Beyond the explicit calibration of longitudinal and transverse diffusivities, alternative ap-
proaches exist for representing the diffusion tensor in a more general and potentially scal-
able manner. As reviewed in Mignot et al. [2023], several studies have proposed to express
anisotropic diffusion through dimensionless relationships, notably using the Schmidt num-
ber or empirical formulations such as the one introduced by Elder. These approaches define
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the diffusion coefficients as functions of local flow variables (e.g., velocity, depth), offering the
advantage of adapting the tensor to varying hydrodynamic conditions without the need for
manual calibration in each configuration. Such parameterizations may enhance the transfer-
ability of the model to different spatial scales or flow regimes, and could provide a more unified
theoretical framework. Implementing and testing these tensor representations in the present
simulation framework would constitute a promising direction to improve both physical con-
sistency and predictive capabilities across a wider range of scenarios.

Another important perspective lies in the dimensionality of the model. The present work
relies on a depth-averaged two-dimensional formulation, which neglects vertical variability in
both velocity and concentration. While such simplification offers computational advantages,
it may fail to capture essential transport mechanisms. Extending the model to a fully three-
dimensional framework would allow for a more complete representation of physical processes,
particularly in complex urban topographies where vertical gradients are non-negligible. In
parallel, validating the numerical predictions against real-world datasets, beyond laboratory-
scale experiments, would be interesting to assess the model predictive capacity under field
conditions. This would require access to measurements of flow and pollutant concentrations
in real flood scenarios.

Finally, the present work relied exclusively on an explicit Euler time integration scheme due
to its simplicity and ease of implementation. Nonetheless, more advanced time discretization
methods such as Runge-Kutta schemes offer potential advantages in terms of stability and ac-
curacy, particularly when dealing with stiff problems or variable flow regimes. Unfortunately,
these schemes could not be tested within the timeframe of this study due to their higher com-
putational demands. Investigating the impact of alternative time integration methods repre-
sents a valuable next step to further enhance the robustness and efficiency of the solver.

Overall, these perspectives point toward a broader and deeper exploration of pollutant trans-
port modelling in complex hydrodynamic settings. By addressing the current computational
limitations and expanding the range of tested configurations and numerical methods, future
studies can consolidate the reliability of the proposed approach and extend its applicability to
real-world risk management scenarios.
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Nomenclature

Acronyms

CFL Courant–Friedrichs–Lewy Condition

Co Courant Number

FEM Finite Element Method

FVM Finite Volume Method

INRAE Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement

M.U.R.I. Maquette Urbaine Réaliste à l’échelle Inondation

NSE Nash–Sutcliffe Efficiency coefficient

Pe Péclet Number

RMSE Root Mean Square Error

SWE Shallow Water Equations

TVD Total Variation Diminishing

Physical quantities

h Water depth m

C Depth-averaged pollutant concentration kgm−3

U Velocity vector (U,V ) ms−1

U,V Depth-averaged velocities in x and y ms−1

D Diffusion tensor m2 s−1

Dxx,Dyy Main diagonal components of D m2 s−1

Dxy ,Dyx Cross-diffusion components m2 s−1

DL Longitudinal diffusion coefficient m2 s−1

DT Transverse diffusion coefficient m2 s−1

∆x,∆y Grid resolution in y and x m

∆t Time step s
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T Total simulation time s

Qinjection Injection flow rate Lh−1

Cinjection Pollutant injection concentration gL−1

Cm Ideal mixed concentration kgm−3

⟨Cs⟩ Spatially averaged concentration in the urban block at the end of the simulation kgm−3

⟨C(t)⟩ Time-averaged concentration kgm−3

Cmix, outlet Mean outlet concentration kgm−3

i, j Spatial indices (grid cells in y, x)

n Time step index

θ Flow direction rad

S Source term in advection-diffusion kgm−3 s−1

A Sparse matrix of the linear system

b Source vector

Cn Pollutant concentration at time step n

Fi,j ,Gi,j Numerical fluxes in x and y directions

qx,qy Discharges in x and y directions m2 s−1

umax Maximum flow velocity ms−1
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