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Exchange models for suspended-load in rivers and reservoirs 

 

 

Exchange models are one of the most important aspects for sediment transport models. Poor 

knowledge about this crucial aspect in sediment transport modeling causes uncertainty and 

reduces the predictive power of such models.  

The adaptation coefficient rules the solid transfer rate between the flow and the river bed. A good 

knowledge of such a parameter is crucial to model correctly non equilibrium sediment transport. 

This master thesis intends to bring a critical comparison of existing adaptation coefficient 

formulation. 

To this end, a literature review describes the theoretical framework of sediment transport. A 

particular attention is devoted to non-equilibrium exchange models with a focus on four laws 

describing adjustment process. The laws are described and compared through a sensitivity 

analysis. 

In order to reinforce this critical analysis, a 1D numerical model, using a finite volume approach, 

has been established to simulate non-equilibrium transport on erodible bed. The latter has been 

validated confronting it to a wide range of existing literature example including numerical 

simulations, analytical solutions and laboratory data. It has been demonstrated that the present 

fully developed model is accurate in modeling channel bed variation under both bed-load and 

suspended-load transport. 

Finally, this powerful tool has assisted the author when comparing the adaptation law along three 

experiments existing in the literature.  
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I. INTRODUCTION 

I.1 SEDIMENT ENGINEERING 

Events linked to sediments are not trivial. They orient the evolution of rivers, estuaries and 

coastlines. Above the landscape drawing and the consequences of its morphologic 

transformations, sediment transport affects the functioning of hydraulic constructions (channel, 

harbor ...) and reduces their lifetime (e.g. dam reservoirs). The engineer must go through all those 

events in order to dominate them. 

Sedimentation engineering embraces various aspects (planning, analysis ...) to avoid and/or 

mitigate problems cited above caused by sedimentation processes (erosion, entrainment, 

deposition ...).  

These fluvial processes pose great challenges for river scientists and engineers. Indeed the 

exposure of the fluvial systems to the natural environment adds to the complexity of 

understanding the process of sediment transport and the resulting morphological evolution of 

rivers.  

Laboratory experiments to predict sediment transport are generally very time-consuming, and 

costly. Hence, there is a need for mathematical models capable of predicting sediment transport. 

I.2 NUMERICAL MODELS 

The quality of the modeling is widely viewed as the key that could unlock the full potential of 

computational fluvial hydraulics.  

Despite the encouraging progress in its development during the last half a century, mathematical 

river modeling is still a complex but intriguing problem which one can only hope to solve one 

day. Indeed, predictive power of such models is far for being satisfactory in many situations. In 

their paper, Cao and Carling (2002) deal with three special issues of mathematical river models:  

 Turbulence closure models, 

 Calibration and verification/validation,  

 Bottom boundary conditions   

The latter is discussed as one of the main sources of model uncertainty. Also, it is directly related 

to modeling of sediment transfer between the bed and the water column, known as exchange 

processes. In other words, exchange models are intrinsically defined by the bottom boundary 

condition.  

Depending on the hypothesis made on the bottom boundary condition, the model uses the 

concepts of equilibrium or non-equilibrium transport which makes a huge difference in many 

applications. 
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I.3 SCOPE OF SUBSEQUENT CHAPTERS 

The ambition of this master thesis is to make a critical comparison of exchange models existing in 

the literature. Especially, a great attention is devoted to one of the parameters defining non-

equilibrium exchange models, known as the adaptation coefficient.  

Hence, a 1D numerical sediment transport model has been fully developed in order to provide a 

powerful tool to reinforce the critic.  

Chapter II introduces basic concepts relevant in modeling sedimentation processes while 

Chapter III proposes a literature review. In this latter chapter, existing models for suspended-load 

and exchange models are presented with a particular focus on the adaptation coefficient.  

Chapter IV presents the assumptions and structure of the model developed. In Chapter V, the 

model is confronted with existing knowledge for validating sediment transport model. 

Finally, the different formulations for the adaptation coefficient are compared in Chapter VI, 

using the fully developed model. 
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II. FUNDAMENTALS 

II.1 SEDIMENT PROPERTIES 

This section briefly defines fundamental parameters for sediment transport modeling such as: rock 

types, sediment particles size, distribution, density and fall velocity. 

II.1.1 ROCK TYPE 

The solid phase in sediment transport can be any granular substance. The property of the rock-

derived fragments (porosity, size distribution ...), known as “sediments”, all play a role in 

determining the transportability of the grains under fluid action.  

Sediments in the size range of silt or coarse gravel are generally produced by mechanical means, 

including fracture or abrasion. On the other hand, the clay minerals are produced by chemical 

actions. Because of their little size and nature, clays display cohesiveness, which makes them 

more resistant to erosion.  

This master thesis, involving suspension mode of sediment transport (see section II.2), deals with 

fine sediments. Nevertheless, cohesion becomes an issue when very fine sediments are concerned. 

Also these aspects have not been considered in this paper which is devoted to exchange models 

for non cohesive sediments. 

II.1.2 DENSITY AND SPECIFIC WEIGHT OF SEDIMENT 

Sediment density, ρs, is the mass of sediment per unit volume, often in kg.m-3. It depends on the 

material of sediment. A common value in sedimentation engineering is 2650 kg.m-3 and 

corresponds to quartz.  

The specific weight of sediment, , is the weight of sediment per unit volume, often in N m-3. It 

is related to the sediment density by  

  (Eq II-1) 

 

The specific gravity of sediment, G, is defined as the ratio between the sediment density ρs and the 

density of water ρw. For quartz particles, the specific gravity is  

  (Eq II-2) 
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II.1.3 SIZE 

The size of the particles is a very important notion as it appears in almost all sediment related 

formulas such as sediment settling velocity, entrainment rate, transport capacity... The notation d 

is used to denote it. The typical units are 

 Millimeters [mm]  : for sand and coarser material 

 Micrometers [μm] : for clay and silt 

Different sediment sizes have been suggested: nominal diameter, fall diameter and finally sieve 

diameter, the most readily available. Each sieve has a square mesh, the gap size of which 

corresponds to the diameter of the largest sphere that would fit through.  

One of the most popular “typical diameters” is d50, known as the median particle size defined in 

the next section. 

II.1.4 SIZE DISTRIBUTION 

Any sediment sample normally contains a range of sizes. An appropriate way to characterize these 

samples is in terms of a grain size distribution. Consider a large bulk sample of sediment of given 

weight. Let‟s define pf(d) as the fraction by weight of material that is finer than size d. The 

customary engineering representation of the grain size distribution consists of a plot of pf x 100 

(percent finer) versus log10 (d). In other words, a semi-logarithmic plot is employed (Figure II-1). 

 

 

Figure II-1: Particle size distribution (Wu, 2008, p. 15) 

Note that the median particle size introduced in the previous section is also represented. It can be 

now defined as the grain size for which 50% of the bed material is finer.  

  



·12 

 

II.1.5 POROSITY 

The porosity p quantifies the fraction of a given volume of sediments that is composed of void 

space: 

  (Eq II-3) 

If a given mass of sediments of known density is deposited, the volume of the deposit must be 

computed assuming that at least part of it will consist of voids. Consequently, this parameter is 

important when formulating the evolution of bed morphology.  

In the case of well-sorted sand, the porosity can often take values between 0.3 and 0.4. Let‟s note 

that in gravel-bed rivers, the finer particles can occupy the spaces between coarser particles, 

reducing the void ration as low as 0.2. 

II.1.6 SHAPE 

There are a number of ways to classify grain shape. A simple way to characterize it is in terms of 

lengths a, b, c of the major, intermediate, and minor axes, respectively. According to the relative 

importance of theses lengths, the grain can be characterized as a sphere, a rodlike or blade like. 

This parameter plays a fundamental role when defining the particle fall velocity. 

II.1.7 FALL VELOCITY 

A fundamental property of sediment particles is their fall velocity or settling velocity.  

Falling under action of gravity, a particle will reach a constant, terminal velocity once the fluid 

drag force on the particle is in equilibrium with the gravity force. The fall velocity of sediment 

grain in water is determined by its diameter, density, viscosity of the water and particle shape. 

Indeed, the well known expressions valid for a sphere cannot be applied for natural sediment 

particle because of the differences in shape. The terminal fall velocity of non spherical sediment 

particles can be determined from the following formula (van Rijn L. C., 1993, p. 3.13): 

 (Eq II-4) 

       (a) 

      (b) 

    (c) 

Where d is the sieve diameter; s is the specific gravity and ν is the kinematic viscosity of water. 

It is important to note that the fall velocity of a single particle is modified by the presence of other 

particles. Experiments with uniform suspension of sediments and fluid have shown that the fall 

velocity is strongly reduced with respect to that of a single particle (van Rijn L. C., 1993). 
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II.2 SEDIMENT TRANSPORT 

The term sediment transport covers a wide range of grain size transported by flowing water, 

ranging from fine clay particles to large boulders/rocks. They are often viewed in distinct size 

classes such as fine sand, coarse gravel and so on. 

Depending on the sediment- (grains size, density), fluid- (density, viscosity) and flow- (strength 

and turbulence) characteristics, sediment transport may occur in a variety of modes. In turn, these 

modes involve different size classes at the same time or the same classes at different times. 

In rivers and channels with moderate gradient, there are two systems of classifying transport 

modes, according to:  

1) the sediment size (or source) :  

a. Bed-material load: made up of moving sediment particles that are found in 

appreciable quantity in the channel bed. 

b. Wash-load: consists of the finer particles (silt and gray) in the suspended-load 

that are continuously maintained in suspension by the flow turbulence and that are 

not found in significant quantities in the bed.  
 

2) the mechanism of transport :  

a. Bed-load: the particles roll, slide or saltate along the bed, and never deviate too 

far from it. 

b. Suspended-load: these particles move in suspension and are the part of the load 

which is not bed-load. 

 

 

Figure II-2: sediment load (Wu, 2008, p. 18) 

Numerical models may deal with one or more components of total sediment transport. In general 

wash-load cannot be predicted by hydraulic-based relationship. Consequently, it is usually not 

modeled but determined by field measurements. 

Along this work, the second system is considered. Under this system, suspended-load consists of 

the finer sediment maintained in suspension by turbulence, whereas bed-load consists of the 
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coarser particles transported along the bed intermittently by rolling, sliding or salting (Figure 

II-3). 

The boundary between suspended-load and bed-load transport is not precise and may vary with 

the flow strength. Indeed, the higher the flow strength, the coarser are the sediment that can be 

suspended by turbulence. Whatever the flow strength or sediment characteristics, it must be 

noticed that suspension always occurs with bed-load, while the contrary is not true. Together, bed-

load and suspended-load compose the total sediment load. 

 

 

Figure II-3 : Conceptual sediment transport modes (Graf, p. 356) 

Some models predict bed-load only and are limited mainly to gravel and coarser sediments. 

Others predict total sediment load and are unable to account for exchange process between the 

two layers.  

As stated in the introduction, the objective of this master thesis is to study the exchange process 

between sediment transport and river bed. Consequently, a suspended-load model has been fully 

developed. As stated before, suspended-load transport is an extreme case of bed-load transport. 

On account of this, a bed-load model should naturally (yet not necessarily) be computed. 
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III. LITERATURE REVIEW 

III.1 EXISTING MODELS FOR SUSPENDED-LOAD 

III.1.1 EQUATION OF SOLID TRANSPORT 

The 3-D hydrodynamic set of equations consists of four equations (3 momentum and 1 continuity) 

and four unknowns (flow velocities and flow depth). The system is usually closed with a flow 

resistance relation and a turbulence closure model.  

In order to describe sediment transport process, a new fundamental variable appears: c which is 

the local suspended-load volumetric concentration. Thus, a new equation is required to close the 

model. This equation is called the sediment continuity equation.  

After many hypotheses (flow and particles speed equal in horizontal plane, low sediment 

concentration, Reynolds‟ averaging to include turbulence ...), the most widely accepted form of 

the sediment continuity equation is: 

    (Eq III-1) 

Where u, v, w are the components of mean velocity in the x-, y-, z- directions; ωs is the particle 

settling velocity; εs is the dispersion coefficient accounting for both molecular and turbulence 

diffusion. 

III.1.2 DEPTH-AVERAGED MODELS 

In this section, the derivation of depth-averaged equations from (Eq III-1) via depth-integrating is 

addressed. First, a conceptual description of flow and sediment transport is presented. Then, the 

boundary conditions related to sediment transport are introduced. Finally, the depth-averaged 

equations are obtained according to their domain of integration.  

Conceptual description of flow and sediment transport  

As stated in section II.2, bed-load and suspended-load transport behave differently. For this reason 

the water column is often divided into two zones:  

 Bed-load transport layer1  zb  < z < zb+δ  

 Suspended-load transport layer zb+δ  < z  < zs 

where zb is the bed-elevation2; zs is the water surface elevation and δ is the thickness of the bed-

load layer. 

                                                   
1
  Or bottom layer 

2
  Subscript b denotes that the parameter is considered at the bed level. 
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Figure III-1: (Wu, 2008) : Configuration of flow sediment transport 

Boundary conditions 

In order to perform the integration of (Eq III-1) over the suspended-load transport layer, both 

upper- (at ) and bottom- (at  ) boundary conditions are required. Indeed, the 

following expression3 must be known at both boundaries: 

  (Eq III-2) 

Similarly to the usual upper flow boundary condition, the net vertical sediment flux across the 

water surface should be zero4. Considering the water surface horizontal and according to (Eq 

III-2), the upper boundary condition is expressed as:  

     (Eq III-3) 

There are usually two approaches to specify the bottom boundary condition:  

 Concentration boundary condition  

 Gradient boundary condition 

The descriptions as well as the advantages/disadvantages of both conditions types are detailed in 

section III.2. For the following developments, the gradient boundary condition is assumed. The 

latter defines a net entrainment flux: 

  (Eq III-4) 

with Dδ the near-bed deposition flux and Eδ  the near-bed entrainment flux. 

  

                                                   
3
  (Eq III-2) is the integrant obtained by projection of (Eq III-1) on the vertical axis, after applying flow 

boundary condition. 
4
  The water free surface is considered horizontal. 
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Depth-averaged sediment transport equations 

The sediment continuity equation, (Eq III-1), could be integrated over both sediment transport 

layers (Figure III-1). Before performing the integral, let‟s define C, the most important sediment-

related fundamental unknown. The depth-averaged suspended-load concentration C is defined by 

   (Eq III-5) 

Where c is the local suspended-load concentration and (h-δ) is the thickness of the suspended-load 

transport layer (Figure III-1). 

Suspended-load layer integration 

The three-dimensional sediment transport equation (Eq III-1) is first integrated over the 

suspended-load zone: 

           

            (Eq III-6) 

Both flow- and sediment- boundary conditions are used to perform the integral. In addition the 

bed-load layer is assumed to be very thin (δ << h) and the lag between fluid- and sediment- 

particles is considered negligible. Using all preceding hypotheses and applying the Leibniz‟s rule 

results in:  

   

    (Eq III-7) 

where C the mean concentration defined by (Eq III-5);  and Dsi are the turbulent and 

dispersion sediment fluxes, respectively. 

The integral of the product of two functions is not equal to the product of the integrals. 

Accordingly, writing  

        (Eq III-8) 

is an additional hypothesis. In the model presented in Chapter IV, Γs is simply given by the 

average value along the vertical. Furthermore, for the sake of clarity, Γs is rewritten εs. 

Dsx and Dsy are the dispersion sediment fluxes and account for the dispersion effect due to the non-

uniform distribution of flow velocity and sediment concentration over the flow depth. These 

fluxes can be written as:  

  (Eq III-9) 

    (a) 

    (b) 
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These terms are sometimes combined with the turbulent diffusion fluxes5. Most of the time, they 

are simply neglected. In both cases the channel is assumed to be straight enough.  

According to the preceding hypotheses (Eq III-7) is rewritten as 

      (Eq III-10) 

Bed-load layer integration 

The same integration is made over the bed-load zone. The bed-load layer thickness is assumed to 

be constant. In that case, the bed-variation equation reads  

  (Eq III-11) 

where p is the porosity; zb the bed elevation; qb is the bed-load transport rate by volume per unit 

time and width (m²s-1) ; αbk and αby are the direction cosines of bed-load movement. 

Depth-averaged 1D model 

A section-average 1-D model would be obtained by integration of (Eq III-1) over the cross-

section. Nevertheless, the 1-D model studied in this work is simply obtained by neglecting 

transversal terms in (Eq III-10) and (Eq III-11). In that case, the fundamentals equations 

describing the sediment transport and evolution of bed morphology are: 

The bed variation equation: 

  (Eq III-12) 

The advection diffusion: 

  (Eq III-13) 

  

                                                   
5
  In that case, εs is replaced by a mixing coefficient to represent the diffusion and dispersion effects together. 
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III.1.3 EQUILIBRIUM AND NON-EQUILIBRIUM MODELS 

General aspect of equilibrium 

For a given situation characterized by sediment properties and flow conditions, the flow can carry 

a certain quantity of sediment without net deposition or deposition. This is called a dynamic 

equilibrium state and the flow has reached its sediment-carrying capacity. Net erosion and 

sedimentation rates are on balance. 

When the quantity of sediment supplied is less than the capacity and the riverbed is movable, net 

erosion may occur. The sediment concentration will then increase until the carrying capacity is 

reached again. The experiments studied in section V.2  illustrate that phenomenon of adjustment. 

In the opposite situation, for example in a reservoir (see section V.1.1), deposition is likely to 

occur.  

Relevance with respect to models 

Whatever the complexity of the sediment transport model (1-D, 2-D, or 3-D) described in the 

former section, two governing equations are necessary, namely  

 The suspended-load transport equation  f(c)   

 The bed variation equation   f(qb, ) 

That being so there are three fundamental sediment related unknowns:  

 The suspended-load concentration  c     

 The bed-load transport rate  qb     

 The bed change rate    

Two approaches exist to close the model, namely the equilibrium- and non-equilibrium sediment 

transport models.  

Equilibrium sediment transport model 

In equilibrium models, the flow is assumed to be at its sediment-carrying capacity. The latter is 

prescribed by a sediment transport functions involving local hydraulic parameters and sediment 

properties. For instance, for bed-load transport:  

    (Eq III-14) 

The actual bed-load transport rate (qb) equals the transport capacity under the equilibrium 

condition (qb*). One of the major sources of uncertainty with equilibrium models comes with the 

sediment transport function (qb*) that must be introduced to determine sediment transport rate or 

discharge.  

For suspended-load, a similar formulation could be used to express qs, the suspended-load 

transport rate, leading to the same uncertainty. 
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Non-equilibrium transport model 

“Because of variations in flow and channel properties, the sediment transport in natural rivers 

usually is not in states of equilibrium. (…) the assumption of local equilibrium is usually 

unrealistic and may have significant errors …” (Wu, 2008) 

This excerpt underlines the importance of non-equilibrium models. They are at least intuitively 

more advanced than equilibrium models.  

Indeed, they account for the limited availability of sediment under specific conditions. In addition, 

they account for the temporal and spatial lag between flow and sediment transport. In other words 

they consider the time and space required for sediment transport to adapt to its transport capacity 

in line with the local flow conditions. 

For only bed-load the commonly accepted formulation is: 

  (Eq III-15) 

where Lb is the adaptation length of bed-load. For only suspended-load transport, the bed change 

is attributed to the net sediment flux at the lower boundary of the mixing layer: 

  (Eq III-16) 

with α the adaptation coefficient; C* the equilibrium depth averaged concentration; C the depth-

averaged concentration. Let‟s note that the (Eq III-16) can also be written as: 

  (Eq III-17) 

With Ls the adaptation length for suspended-load transport defined as: 

  (Eq III-18) 

   

The adaptation lengths, Lb and Ls , are characteristic distances for sediment to adjust from non-

equilibrium to equilibrium transport. 

This master thesis studies the effect of α (or Ls) on suspended sediment transport. For this reason, 

(Eq III-16) is extensively used in this work. The theoretical framework of this formulation is 

exposed in detail in sections III.2 and III.3. 
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III.2 BOTTOM BOUNDARY CONDITION 

“Prescribing the near-bed boundary condition for suspended-sediment computation, i.e, defining 

the sediment-exchange processes, has proven to be one of the most challenging problems in 

mobile bed modeling.”(Spasojevic & Holly, 2008, p. 707) 

As stated in section III.1.2, the vertical sediment flux is zero at the free surface. In contrast, two 

kinds of bottom (or near-bed) boundary conditions exist: the concentration and the gradient 

boundary condition. Both of them are herein described and compared. 

III.2.1 CONCENTRATION BOUNDARY CONDITION 

In their paper, Galappatti and Vreugdenhil (1985) resume the different ways to consider the 

concentration boundary condition. The general approach consists in assuming an expression of the 

concentration near the bed:  

  (Eq III-19) 

The function could be for example an empirical formulation in terms of the local bed shear stress. 

The most commonly accepted approach is the assumption that  corresponds to the equilibrium 

concentration: 

  (Eq III-20) 

with being the equilibrium sediment concentration at δ over the bed (Figure III-1). Thus, near 

the bed, the concentration adjusts immediately to local equilibrium whereas higher along the 

depth, a slower adjustment occurs.  

III.2.2 GRADIENT BOUNDARY CONDITION 

The other approach defines a net entrainment flux (Eδ –Dδ). It is based on the relative value 

between two opposite fluxes:  

 Sediment deposition flux (downward)  Dδ  

 Sediment entrainment flux (upward)  Eδ 

 

By contrast with (Eq III-20) the near-bed concentration cδ remains the near-bed actual 

concentration and constitutes the deposition flux defined as: 

   (Eq III-21) 

in which cδ is the suspended-load concentration at the interface between the suspended-load and 

bed-load zone (z = zb + δ). 

The upward flux is widely defined as being the capacity of flow picking up sediment under the 

considered flow conditions and bed configuration: 

    (Eq III-22) 
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In equilibrium state, the erosion flux would equal the deposition flux, which yields: 

  (Eq III-23) 

Inserting (Eq III-21) and (Eq III-22) in (Eq III-23) gives: 

  (Eq III-24) 

Thus, in the gradient boundary condition, the upward flux Eδ is related to the equilibrium near-bed 

concentration. This relation is extended to the non-equilibrium situations to express the near-bed 

net entrainment flux as:  

    (Eq III-25) 

In this approach, the sediment exchange is defined as the difference between the upward sediment 

entrainment flux E and the downward sediment deposition flux D. The net entrainment flux has 

opposite signs in the governing equations for the bed-load (Eq III-11) and (Eq III-10) for 

suspended-load transport. 

III.2.3 COMPARISON 

Armanini & Di Silvio (1986) gave three arguments against the use of the concentration boundary 

condition.  

1) The downward flux should physically depend on the actual amount of sediment present in 

the water stream.  

2) When the stream is strongly overloaded, the concentration profile near the bed should 

display an unrealistic positive gradient in the upward direction.  

3) If the concentration boundary is used, depends on the actual concentration 

profile. However, the turbulent fluctuations, which control the entrainment of the 

particles, are basically unaffected by the actual transport of sediment (if the concentration 

is reasonably law).  

In addition, as stated in section III.1.2, the concentration boundary condition makes the strong 

assumption of equilibrium sediment transport at the interface of the two transport layer. This 

treatment is not adequate for non-equilibrium conditions.  

On the other hand, the gradient boundary condition leads to a consistent formulation of exchange 

processes which applies for both equilibrium and non-equilibrium sediment transport. Indeed the 

near-bed net entrainment flux is proportional to the difference between actual and equilibrium 

near-bed concentration. Consequently, in equilibrium state no exchange occurs and Eδ = Dδ. 

Therefore, the latter condition is more general than the concentration boundary condition and is 

used for the present developed model.  
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III.3 EXISTING EXCHANGE MODELS 

As stated in the introduction, the actual poor knowledge concerning the exchange models 

seriously limits the predictive power of sediment transport models.  

After a short overview of the different types of exchanges models (3D or depth-averaged), 

problematic parameters are isolated. A particular attention is devoted to the adaptation coefficient 

given this is the topic of most interest of the work. 

III.3.1 INTRODUCTION 

“Generic to any spatially dimensional mathematical river models, formulating the net flux of 

sediment exchange with bed material is of fundamental importance for fluvial sediment 

transport”.(Z.Cao, 2002) 

This excerpt expresses the importance of the present chapter, and more widely, of this work. 

Mathematically, the net entrainment flux is formulated by , which comes from the 

hypothesis made on the bottom boundary condition (see section III.2). 

Indeed, in section III.1.2, the gradient boundary condition, given its applicability for modeling 

equilibrium and non-equilibrium situation, is presented as the most general formulation to 

represent exchange processes between both bed-load and suspended-load layers. This choice 

results in  

  (Eq III-26) 

In the 3D models, this formulation is directly applicable provided a near-bed transport capacity 

law is used.  

However, in the depth-averaged (2-D or 1-D) models, the near-bed concentration, cδ , defining the 

deposition flux is not a dependent variable anymore. The following sections present the different 

ways to challenge this problem. 

III.3.2 DEPOSITION FLUX 

In order to avoid the determination of cδ , the deposition flux  is usually determined by relating 

cδ  to the depth-averaged suspended-load concentration C through 

  (Eq III-27) 

in which αc is the adaptation coefficient for deposition.  

III.3.3 ENTRAINMENT FLUX 

Specifying bed sediment entrainment flux is the key to determinate the net exchange flux. For 

modeling the entrainment flux Eb, two general approaches exist, namely models using: 

1) An near-bed capacity formula:  

2) An average capacity formula:  
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where cδ* is the equilibrium near-bed concentration; C* is equilibrium depth-averaged 

concentration and αc is the adaptation coefficient for entrainment, under equilibrium conditions. 

The former formulation assumes that Eδ can be determined directly using an empirical formula for 

cδ * while the latter uses a similar approach as for deposition flux. The fact remains that C* have to 

be determined using a depth-averaged empirical formula6.  

III.3.4 NET ENTRAINMENT FLUX 

Using the average capacity formula leads to the coherent relation: 

  (Eq III-28) 

Thus, the near-bed concentrations c and cδ* have been linked to the depth-averaged concentrations 

C and C* thanks to the adaptation coefficients αc* and αc. However the difference is often assumed 

to be negligible (Wu, 2008). Consequently, the net exchange flux is defined by:  

  (Eq III-29) 

Where α is a new general adaptation coefficient7. 

III.3.5 MAIN ISSUES ON MODELING THE ENTRAINMENT FLUX 

The net entrainment flux is formulated by (Eq III-29). That equation exposes all the parameters 

needed to implement exchange processes between the bed-load and suspended-load layers.  

The depth-averaged concentration C doesn‟t pose any problem as it is a model dependent 

variable.  

The particle settling velocity (see section II.1.7) can be approximated by the settling velocity of a 

single particle in many situations or be adapted, taking into account the sediment concentration. 

However the problem of determining C* and α has actually not been solved. Both could be 

described by many laws. It has to be noted that this master thesis focuses on α, the adaptation 

coefficient. Section III.4.2 lists different formulations for α, which are compared in Chapter VI 

using the developed model. 

 

  

                                                   
6
  Another way consists in integrating a suspended-load concentration profile using a near-bed capacity 

formula. This approach leads to another problem as δ remains to be defined as well as a Rous-Type number.  
7
  A brief development leads to the conclusion that α is usually less than the two coefficients αc and αc*. 
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III.4 ADAPTATION COEFFICIENT 

After introducing general aspects relevant to understand the complexity of the adaptation 

coefficient determination, some formulations are first presented. Based on this literature review, 

the relevant parameters are isolated and the formulations are compared. 

III.4.1 GENERAL ASPECTS 

Adaptation coefficient includes a wide range of definitions. Neither precise value nor expression 

is fully commonly accepted. It may cover erosion, deposition or both, according to the author 

hypotheses. It may refer to a single value (or a set of values) or be a semi-analytical expression.  

Complexity of the adaptation coefficient 

Theoretical value 

Theoretically, αc and αc* defined in section III.3.4 are used to link the near-bed concentration to 

the depth-averaged concentration: 

  (Eq III-30) 

As the concentration (in equilibrium state or not) is always higher near the bed, the resulting 

values of α should always be superior to 1. 

  (Eq III-31) 

As stated before, a single value is often used for simplicity. However, this theoretical definition 

doesn‟t always reflect the reality. Many factors herein summarized should be understood in order 

to correctly interpret some in situ or laboratory based determination of α. 

Settling velocity effects 

The settling velocity ωs is often set from prediction formulae valid for a single particle in still 

water. This is only valid for low sediment concentrations. However, the effects of sediments 

concentration on ωs should be considered in most situations. Furthermore, only the action of drag 

forces and submerged weight are usually considered. Other forces related to moving water also 

influence the settling velocity (e.g. turbulent stresses). 

These effects, if not considered when calculating ωs, should be lumped in the adaptation 

coefficient value. That correction may lead to a significant reduction of the value of α. 

Bedform effects 

Despite they are always present in natural rivers, little is known about the effects of bedforms on 

sediment transport. In some formulations, they affect the thickness of the bed-load layer, 

increasing its value. As shown in the sensitivity analysis conducted in section III.4.3, this effect 

also reduces the value of α. 

. 
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Cross-sectional shape 

Zhou and Lin (1998) demonstrated that in cross-sectional-averaged 1-D models, the value of α 

depends on the cross-sectional shape. However, in the case of the developed 1-D model where 

only streamwise effects are considered in rectangular flumes, this effect doesn‟t influence the 

value of α. 

Numerical value VS semi analytical formulation 

A method is still needed to determine α for the general purpose of sediment transport. In case of 

natural rivers, the adaptation coefficient can be treated as a coefficient of calibration. Han (1980) 

(cited by (Wu, 2008)), made tests in many rivers and reservoirs and suggested that α is about 1 for 

strong erosion, 0.5 for mild erosion and deposition, and 0.25 for strong deposition in 1-D models. 

It remains that theses values are mostly applicable for each situation considered. Thus, calibrating 

α using measurement data is preferable for each specific case study. 

In some typical situations, α could be expressed by a semi-analytical law. These laws mainly 

depend on the type of boundary conditions used to integrate the 3-D equations for sediment 

transport (see section III.2) and also on the hypothesis made concerning the bottom layer 

thickness. 
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III.4.2 FORMULATIONS AND CHARACTERISTICS 

Armanini & Di-Silvio (1988) 

By depth-averaging the 2-D equation for suspended transport, Di Silvio & Armanini (1981) 

obtained an expression for the characteristic length Ls by assuming a semi-empirical formulation 

for the vertical concentration profile. This expression is represented by curve 1 in Figure II-1 

where the non-dimensional length L*ω/Uh (or 1/α) is given as a function of the sediment number 

ω/u*. 

Galappatti and Vreugdenhil (1985) derived a function (curve 2) through an approximate analytical 

integration of the pure vertical 2-D advection-diffusion equation. They used the concentration 

boundary condition (see section III.2). 

The concentration profile used was based on the parabolic-constant distribution8 of the diffusion 

coefficient suggested by DHL (1980). The velocity distribution was based on a logarithmic 

profile: 

  (Eq III-32) 

With z0 the zero-velocity distance; 

 

Figure III-2: Characteristic length of particles transported in suspension,  

following different integration procedures along the vertical (Armanini & Di Silvio, 1988) 

Armanini and Di Silvio (1986) obtained curve 3 by the same integration except that a gradient 

boundary condition was used. Indeed, they argued that the concentration boundary condition may 

result in large errors for fine sediments (see section III.2). 

In addition they applied the procedure of Galappatti and Vreugdenhil directly to the transport (cu) 

instead of to the concentration (c). By prescribing again a gradient boundary condition, they 

obtained an expression represented by curve 4, practically identical to curve 3. 

 

  

                                                   
8
  The zero order profile for concentration has about the standard shape as originally derived by Rouse (1937) 
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An approximate equation that fits curve 4 is the following:  

  (Eq III-33) 

in which ωs  is the settling velocity (see section II.1.7),  is friction velocity, δ is the thickness of 

the bottom layer. 

Armanini and Di Silvio (1986) defined δ, the thickness of the bottom layer as the distance from 

the bed surface above which the assumed closure model for turbulence is fully valid. They 

assumed that this distance is equal to the Nikuradse‟s roughness of the bed (Di Sivio & Armanini, 

1981): 

  (Eq III-34) 

CChézy  is the Chézy resistance of the channel expressed by (Eq IV-6) 

Armanini and Di Silvio (1986) interpreted that equation stating that the thickness of the bottom 

layer has the order of magnitude of the grain diameter when the bed is flat, and the order of 

magnitude of the bed form height in the presence of bed forms. However, for flat bed, this value 

was considered too small. A minimum value of 0.05h was then advised. 

In Figure III-3, the curve represents the variation of α for a fixed value of . 

 

Figure III-3: Armanini and Di Silvio (1986)’s adaptation coefficient 

General observations: 

 The values increase as the ω/u* increases  

 The values are always larger than 1 
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Zhou & Lin (1995) 

A formula for α was also established by Zhou and Lin (1995) using the analytical solution of the 

pure vertical 2-D advection-diffusion equation.  

A steady, uniform flow was considered as well as a constant diffusivity. As stated in Zhou and 

Lin (1998), for 1-D rectangular channel, the adaptation coefficient may be taken as identical to 

that for the depth-averaged 2D cases. 

They used the concentration boundary condition for erosion case, and that with the gradient 

boundary condition for deposition case. The analytical solutions in both cases were expressed as 

series. These series were then approximated by only one term with small truncation errors. 

Replacing these approximated solutions into the advection-diffusion, the following solution is 

obtained: 

  (Eq III-35) 

with  (R is a Rouse-type number) and ζ1 is the first root of the following expression:  

 for erosion:    for deposition :   

Both erosion and deposition curves are computed in Figure III-4. 

 

Figure III-4: Zhou & Lin (1995)’s adaptation coefficient 

General observations:  

 The value of α is always larger than 1.  

 The value of α for erosion differs from that for deposition.  

 The deposition curve increases linearly while the erosion curve decrease non-linearly 

 This function does not depend directly on the bed-load layer thickness. 

 The difference between these two curves is significant for small ω/u*, but gradually 

decreases as ω/u*  increases. 
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Let‟s recall that the adaptation coefficient rules the length needed to reach equilibrium in non-

equilibrium situation. Thus, this shows that for small ωs/u* it takes a much shorter distance for 

concentration profiles to approach equilibrium in the case of erosion than in deposition. 

Lin & al. (1983) 

Lin and al. (1983) presented basic equations resulting from small concentration approximation for 

a rectangular channel with alluvial bed. That formulation used the basic definition of the 

adaptation coefficient (Eq III-31). 

For fine sediments with sediment number , C was considered equal to the 

concentration at the mid-depth. 

In order to calculate δ, the thickness of the bed-load layer, Einstein (1977)‟s suggestion was 

assumed. Consequently δ = 2d with d the grain diameter of sediment. In addition, C was supposed 

equal to the concentration at mid-depth. On account of these two hypotheses, α was expressed 

using (Eq III-38) for the concentration distribution, which gives: 

  (Eq III-36) 

with ZR is a Rouse-type number defined in section III.4.3. Figure III-5 represents the variation of α 

with respect to Zr for ηδ  = 0.002. This latter value represents a bed characterized by d = 1 mm 

under a flow with h = 1 m. It has to be noted that the domain computed respects the domain of 

validity of (Eq III-36). 

 

Figure III-5: Lin & al. (1983)’s adaptation coefficient 

General observations: 

 The values increase as ω/u* increases.  

 The values are always larger than 1 

 For  ZR = 0, α = 1 
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The adaptation increases far more quickly with respect to the Rouse-Type number than Armanini 

& Di-Silvio‟s law. This should be related to the reference depth chosen which is by far lower in 

this case, increasing the value of α as defined by (Eq III-31). 

Guo & Jin (1999) 

Similarly to Lin and al. (1983)‟s method, Guo and Jin (1999)  also used the definition of α to find 

an analytical solution. However, the depth-averaged concentration was calculated according to the 

following definition:  

  (Eq III-37) 

Where c and u are the local sediment concentration and flow velocity, respectively. The chosen 

concentration profile was derived by Rouse (1937): 

  (Eq III-38) 

where η is the relative flow depth; ηb is the reference relative flow depth; c and cδ  are the local 

concentrations which correspond to η and ηb respectively, and zR is the Rouse number. 

The chosen velocity distribution was derived from the Prandtl‟s mixing length theory (Simons & 

Senturk, 1992) and formulated as: 

  (Eq III-39) 

Both concentration and velocity profiles were established in equilibrium situations. In reality, 

under non-equilibrium conditions, they are different from those in the equilibrium state. However, 

for most alluvial rivers with fine sediments, the vertical distributions of suspended sediment 

concentrations in the two states are not significantly different ((Lin, Huang, & Li, 1983) cited by 

(Guo & Jin, 1999)).  

Hence, α can be considered to be approximately the same for both equilibrium and non-

equilibrium states and be evaluated assuming the system is in equilibrium. Inserting (Eq III-38) 

and (Eq III-39) in (Eq III-37), the following formulation for α was obtained: 

 (Eq III-40) 

  

For  , the values recommended were [0.005-0.01]. Figure III-6 shows the evolution of α with 

respect to the Rouse-type parameter ZR for the Chezy coefficient CChézy = 36.0 and  
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Figure III-6: Guo & Jin (1999)’s adaptation coefficient 

General observations: 

 The values increase as the ω/u* increases.  

 The values are always larger than 1 

 For ZR = 0, α =1 

These observations are the same as for Lin & al.‟s law. However, the field of application is not 

limited to small values of ZR.  

The expression can be used to approximately estimate the value of the adaptation coefficient for 

the case of fully developed flow with suspended sediment. This is the case when flow at the inlet 

is fully mixed with suspended sediment and the bed has enough sediment to be erodible. 

Summary 

The following Table III-1 summarizes the preceding considerations.  

 

  



 Formulation 
Rouse-type 

number 
Bottom layer thickness 

Armanini & 

Di-Silvio 

(1988) 

 

   

Zhou & Lin 

(1995) 

 

 with 

for erosion:  

for deposition:  

 --- 

Lin & al. 

(1983) 

 

   

Guo & Jin 

(1999) 

  

 
Value suggested:  

[0,005-0,01] 

Table III-1
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III.4.3 SENSITIVITY ANALYSIS 

The sensitive parameters are isolated in each one of the 4 laws described in the former section: 

 Armanini & Di-Silvio (1988)   f ( u* ,  ωs ,   (h,CChézy) )   

 Zhou & Lin (1995)  f ( u* ,  ωs )   

 Lin & al (1983) f ( u* ,   ωs,   (d) ) 

 Guo & Jin (1999) f ( u* ,   ωs, CChézy,  )  

The sediment representative diameter, d, is an essential parameter in sediment modeling and is the 

basis in any sediment related study (see section II.1.4).  

The Chézy coefficient can be determinate via (Eq IV-6). 

The ratio u*/ωs, also called sediment number, and ηδ, the relative bottom layer thickness are 

common to all formulations9. The sensibility of the adaptation laws to these parameters is studied 

in detail in the next paragraphs. 

Bottom layer thickness 

“The surface that separates suspension and bed-load transport is as much arbitrary as the same 

definition of the two modes of transport”. (Armanini & Di Silvio, 1988) 

As stated in section III.4.2 Zhou and Lin‟s law is totally independent of δ, the bottom layer 

thickness. On the contrary, the other three adaptation laws are highly dependent of that 

parameter. For these latter, the influence of δ (or ηδ =δ /h) on α is qualitatively the same. Figure 

III-7 illustrates the behavior of Guo & Jin‟s law, for CChézy = 36. 

 

Figure III-7: Sensitivity of Guo & Jin’s law to the relative reference depth ηδ 

                                                   
9
  Except ηδ for Zhou & Lin‟s law 
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When the value of ω/βκu* remains constant, α decreases quickly with an increase in reference 

depth, δb. This is in agreement with the general observations that sediment concentrations vary 

suddenly with a small depth from the bottom. The smaller the value of δ, the larger the ratio cδ/C 

which defines the adaptation coefficient. 

Sediment parameter 

In Armanini & Di-Silvio‟s law, the ratio u*/ωs appears “alone” while in the other laws, it is often 

linked to κ and β to form a Rouse-Type number:  

 Zhou & Lin (1995)   

 Lin & al  (1983) and Guo & Jin (1999)     

where β is a constant over the flow depth that describes the difference of diffusion between 

discrete sediment particle and a fluid particle.  

Since the exponent Zr is expressed in terms of an unknown parameter β, an additional equation is 

necessary for solving α. Van Rijn‟s (1984) formulated it as:  

   for   (Eq III-41) 

Guo & Gin (1999) used another definition for β by changing the domain of validity of van Rijn‟s 

formula: 

 (Eq III-42) 

   for    (a) 

    for   (b) 

    for   (c) 

Using (Eq III-42 b) yields: 

  (Eq III-43) 

Wu (2008, p. 47) computed and compared Armanini & Di-Silvio‟s law with Zhou & Lin‟s law. 

This analysis is widened to Guo & Jin and Lin & al‟s law. Figure III-8 contains the variation of 

the different adaptation coefficients with respect to the sediment number, considering ηδ = 0.017. 

From Figure III-8, and from all the previous observations (section III.4.2), it could be noticed that: 

1) The adaptation coefficient is always larger than one.  

2) Except for Zhou & Lin‟s erosion curve, the general behaviour is an increase of α with the 

sediment parameter.  

3) For small sediment parameter values, Armanini & Di-Silivio‟s function is very close to 

Zhou & Lin‟s law for deposition. The difference increases as the sediment parameter 

increases. 

4) The same observation is valid for Guo & Jin‟s function with respect to Lin & al‟s 

expression.  
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Figure III-8: Comparison of the adaptation laws 

The first observation is consistent with the definition of α as given in section III.4.1. Indeed, the 

near-bed concentration is always higher than the depth-averaged concentration.  

Furthermore, for a flow transporting coarser particles, i.e. higher ωs and higher sediment 

parameter, the near-bed concentration is larger with respect to the depth-averaged concentration. 

That leads to a larger value of α. 

Both Armanini & Di-Silivio‟s and Zhou & Lin‟s functions were derived for a pure vertical 2-D 

case. To perform that integration, the gradient boundary condition (see section III.2.2) was used in 

both integrations10 which explain the similarity between the green curve and the red one.  

On the contrary, a concentration boundary condition was used in Zhou & Lin‟s law for erosion. 

As a result, the curve for erosion may have large errors for fine sediment (i.e. small sediment 

parameter), as discussed by Armanini and Di Silvio (1986).  

Guo & Jin‟s and Lin & al‟s functions are derived from the definition of α itself. However, 

different hypothesis were assumed concerning the determination of the depth-averaged 

concentrations11. Lin & al.‟s hypothesis leads to a restriction of the domain of validity for α. That 

limitation is represented by both continuous and dashed black curves.  

. 

  

                                                   
10

  Only for erosion in  Zhou & Lin‟s integration 
11

  It must be noted than the bottom layer thickness is defined in Lin & al‟s law while in Guo & Jin‟s function δ  

(or ηδ ) must be estimated or calibrated. 
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IV. FLOW AND SEDIMENT TRANSPORT MODEL 

IV.1 CONCEPTUAL MODEL 

Along this work, a 1D numerical model has been developed in order to compute the transport of 

sediments and the evolution of the bed morphology caused by sediment transport (Figure III-1). 

The model is based on the Reynolds-averaged Navier-Stokes equations, subsequently depth-

integrated, on an advection-diffusion equation for the suspended sediments, and on the Exner 

equation for the bed-load transport.  

Bed-load and suspended-load sediment transport are coupled by the net entrainment sediment flux 

(E-D) across the borders between the two transport layers.  

In order to close the model, an equilibrium approach is used to determine the bed-load transport 

rate as well as the entrainment flux E. Thus, empirical laws are required to provide instantaneous 

value for bed-load transport capacity and suspended sediment carrying capacity.  

In addition, a non-equilibrium approach is used for exchange processes between bed-load and 

sediment-load transport layers. As a result, mass transfer is based on the net entrainment flux and 

on the adaptation coefficient which characterizes the rate at which the new carrying capacity is 

attained. 

The model is non-coupled which means that the model is preferably applied to long term 

simulations.  

The proposed model intends to be as predictive as possible in the sense that nearly only the basic 

hydrodynamic parameters (depth, current velocity) and the basic sediment- (ρ, d50, d90) and bed- 

(p) characteristics need to be known.  

Discretization of the equation relies on a finite volume scheme over a uniform one-dimensional 

grid. The numerical fluxes at each finite volume boundaries are determined by a flux vector 

splitting that exploits the physical characteristics of the flow.  

Finally, the mathematical model, its discretization and its implementation into a computational 

code are assessed by comparison with experimental, numerical and analytical data.  
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IV.2 MATHEMATICAL DESCRIPTION 

IV.2.1 GOVERNING EQUATION 

Mean-flow equations 

Using the Reynolds-averaged and depth-integrated flow equations, the 1-D partial differential 

equations for steady flow with hydrostatic pressure distribution in a rectangular channel can be 

written as: 

  (Eq IV-1) 

  (Eq IV-2) 

where B is the channel width; h is the flow depth; U is the depth-average velocity; g is the 

gravitational acceleration; S0 is the bed-slope term which expression is , with zb being 

the bed elevation and Sj is the channel flow resistance term determined by  with J the 

friction-slope. This hydrodynamic set of equation is closed using one of the flow resistance laws 

presented in section IV.2.2. 

Advection-diffusion equation for suspended sediment transport 

The 3D Reynolds-averaged sediment continuity equation is integrated over the flow-depth. The 

transversal terms are then neglected. This results in the 1D advection-diffusion formulation. The 

latter describes the transport of the depth-averaged concentration in suspended-load C. This 

equation in which the dispersion sediment fluxes12 are neglected reads: 

  (Eq IV-3) 

where εs is the dispersion coefficient. The first term of the right-hand side accounts for 

longitudinal diffusive transport while the second represents the net entrainment flux. The latter 

accounts for solid exchange between the bed-load and the suspended-load layers. 

Bed variation equation  

The 1-D bed variation equation results from the same integration over the bed-load transport layer 

(see section III.1.2), that is: 

  (Eq IV-4) 

where p is the porosity and qb is the bed-load transport rate by volume per unit time and width 

(m²s-1). The first term of the left-hand side represents the bed elevation changes caused by bed-

load transport gradient and exchanges processes.  

                                                   
12

  The dispersion fluxes account for the dispersion effect due to the non-uniform distribution of flow velocity 

and sediment concentration over the flow depth (see section III.1.2) 
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IV.2.2 ASSUMPTIONS 

Non coupled model 

The proposed model is non-coupled which means that time scale of bed evolution is low with 

respect to the response of the flow to the changing bed configuration. On account of this, the 

model is therefore preferably applied to long term simulations.  

The assumption implies two phases in the model calculation. The water surface curve and all 

related flow characteristics are first calculated. Next, constant flow parameters are used to 

evaluate the bed deformation.  

Flow resistance  

In order to close the hydrodynamic model, a flow resistance relation must be provided. In the 

model, both Manning‟s and Chézy‟s laws are implemented.  

Chézy‟s law is expressed as follows: 

  (Eq IV-5) 

where  is the bed slope and CChézy is the Chézy coefficient given by 

  (Eq IV-6) 

Manning‟s law is formulated as 

  (Eq IV-7) 

where n is the Manning‟s coefficient. 

Dispersion coefficient  

In order to close the set of equation constituting the model, a turbulent closure model is necessary. 

Many formulations using parabolic profile and/or involving additional differential equations exist. 

Betchler and Schrimpf (1988) found that the vertical distribution of the dispersion coefficient εs 

has no significant influence on the settling rates.  

It was then suggested to use a depth-averaged value of εs for the calculation of many practical 

sediment transport problems. Thus, εs is simply given by: 

  (Eq IV-8) 

where κ is the von Kármán constant which is assumed to be κ=0.41 and u* the shear velocity 

given by: 

  (Eq IV-9) 

  



·40 

 

Boundary conditions 

The upper boundary condition assumes that the net vertical sediment flux across the water surface 

is zero while a gradient approach (see section III.1.2) is used for the bottom boundary condition: 

  (Eq IV-10) 

with Eδ and Dδ being respectively the near-bed entrainment- and deposition fluxes; cδ* and cδ 

respectively correspond to the equilibrium- and calculated near-bed concentrations; ωs is the fall 

velocity as define by (Eq II-4). 

Further, as the near-bed concentrations are not averaged values, (Eq IV-10) is rewritten as:  

  (Eq IV-11) 

where C* and C respectively correspond to the equilibrium and depth-averaged concentration; α  

is the adaptation coefficient. In order to determine C*, a sediment carrying capacity must be 

provided. 

Sediment carrying capacity 

As stated in section III.3, many formulations exist to express the sediment carrying capacity. Yet 

none is fully satisfactory. Wuhan (1959)‟s formula expresses C* (kg/m³), the equilibrium averaged 

concentration (or sediment carrying capacity), as:  

  (Eq IV-12) 

where U is the mean flow velocity; ωs is the particle settling velocity; h is the flow depth; k and m 

are coefficients. This formulation is chosen for two reasons.  

First this law gives an equilibrium depth-averaged concentration. Many other laws provide 

equilibrium near-bed concentrations that are defined for different bed-load layer thickness. An 

assumed concentration profile must then be integrated in order to get the required mean value. 

Furthermore, in many cases, the concentration profile obtained from the near-bed value is 

calibrated with measured data. The Rouse-Type number is therefore used to obtain the desired 

profile. This procedure involving many assumptions is complex and can be source of error. 

Second, this formulation offers a good compromise between prediction and calibration. 

Originally, both coefficients k and m were used to calibrate the law. Guo & Jin (2001) established 

a relation for k using Bagnold (1966)‟s formula as: 

  (Eq IV-13) 

where  and are the specific weight of clear water and sediment; eb and es are the bed-load and 

suspended sediment transport efficiencies. Based on laboratory data, Bagnold (1966) suggested 

that (1-eb) es = 0.01, for straight channel13.  

Finally, m may be estimated from (Eq IV-12) if the equilibrium concentration is known. Given its 

predictive quality, this formulation is used in the model. 

  

                                                   
13

  For natural rivers, Rubey (1933) suggested a value of 0.025 for this coefficient. 
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IV.3 NUMERICAL DISCRETIZATION 

IV.3.1 FORMULATION 

For the purpose of discretizing the differential equations introduced in the former section, the 

finite volume method has been used. This method is indeed known to ensure a strict 

conservativity when applied to conservation laws. In this method, equations are integrated over a 

finite volume (Figure IV-1). The terms appearing in the integral form of the equations are 

converted to surface integrals by using the divergence theorem. These terms constitute fluxes f at 

the surfaces of each finite volume14.  

 

Figure IV-1 : Finite volume grid 

Because the flux entering in a given volume is identical to the one leaving the adjacent volume, 

this method is strictly conservative when applied to a conservative formulation:  

  (Eq IV-14) 

where s is the conservative unknown; f is the general flux and S represents the source term. For 

the sake of clarity, Table IV-1 gives the value of these various terms for the model of sediment 

transport. 

 

 Equation s f S 

0 Continuity for water 1  0 

1 Momentum for water 1   

2 
Advection-Diffusion 

for suspended sediment 
hC 

 

 
E-D 

3 
Bed-Load transport 

and Bed variation 
 qb -(E-D) 

Table IV-1: Conservative form of equations 

                                                   
14

  The subscript i designates the centre of the finite volume while denotes the finite volume boarder. 

i i+1 i-1 
i+1/2 i-1/2 

fi-1/2 fi+1/2 
si si-1 si+1 

http://en.wikipedia.org/wiki/Surface_integral
http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Conservation_law
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IV.3.2 PSEUDO-UNSTEADY FLOW 

Using a pseudo-time stepping method constitutes a good strategy to solve equation in the Table 

IV-1. Solution is obtained when a steady regime appears in the following equation:  

  (Eq IV-15) 

IV.3.3 TIME DISCRETIZATION 

In order to ensure a good convergence, the time-integration of the model is performed by a 

Runge-Kutta31B algorithm. This approach provides indeed an excellent compromise between 

considerable internal dissipation and a little restrictive stability condition. This scheme relies on 

the canonical form of (Eq IV-14):  

   (Eq IV-16) 

with L being the differential spatial operator for each equation of Table IV-1: Conservative form 

of equations 

 The Runge-Kutta method is given by the following equations: 

 (Eq IV-17) 

  (a) 

  (b) 

  (c) 

Where st and st+1 denote respectively the known value of s at time t and unknown value of s at 

time t+1; s(1) and s(2) are both sub-step of Runge-Kutta method characterized by a0 =0.15, a1 =0.45 

and a2 =0.4 for Runge-Kutta31B scheme. 

IV.3.4 TIME STEP  

Stability analysis provides restrictive conditions on the time step of the computational scheme. 

Indeed, Von Neuman method shows that the maximum time step directly depends on the 

maximum eigenvalue   of the discretized and linearized spatial operator. It must satisfy the 

following stability condition: 

  (Eq IV-18) 

where  is the biggest eigenvalue of the linearized spatial operator and R0=1.533 is the radius 

of Runge-Kutta31B scheme stability curve. Obviously, stability of each equation requires the 

knowledge of the eigenvalues of the system. This issue is treated in the next section.  

The bed elevation calculation time step requires more attention given that both bed-load and 

suspended-load rates are advected. To satisfy (Eq IV-18) the most restrictive condition must be 

chosen: 

  (Eq IV-19) 
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IV.3.5 SPACE DISCRETIZATION 

Space discretization relies on a classic finite volume method, which consists in two steps.  

The first step consists in reconstructing the values of unknowns at the boundaries of the finite 

volume. For this purpose, the values at the centre of the meshes are extrapolated up to the 

boundaries. Consequently, two values are attributed at each boundary.  

The second step consists in computing a numerical flux with these two values. In this thesis, the 

physical flux is applied to one of the two values, called the decentred value. The choice of this 

value is based on the sign of the celerity.  

To illustrate the method, the conservation equation is rewritten as a typical linear advection 

equation: 

  (Eq IV-20) 

where the celerity is defined as .  

Since source term S does not affect the sign of the characteristic velocity, it is neglected.  

If the celerity is positive, the information propagates from the left to the right. The left side is 

called upwind and right side downwind. On the opposite, the information propagates from the 

right to the left if the celerity is negative. The left side is called downwind and the right side 

upwind. 

Clearly, the decentred value must be chosen from where the information comes. The numerical 

flux is thus upwinded. It can be shown that this approach is stable. However, it requires 

determining the value of the celerity for each model.  

Pseudo-unsteady hydrodynamic model 

The only terms which are concerned by the linearization in order to determine the celerity are 

those that contains derivative of the basic unknown h. The linearization of the momentum 

equation yields:   

  (Eq IV-21) 

According to (Eq IV-20), the celerity of this equation is given by: 

  (Eq IV-22) 

With Fr the Froude number defined as  for rectangular channel. The sign of ch is 

discussed in Table IV-1 in relation with the value of the Froude number and the parameter . It 

shows that the sign of the celerity depends directly on the sign of . However, this parameter 

was introduced to simplify the shallow-water model. It is still necessary to fix its value.  

 Fr < 1 Fr > 1 

 > 0 ch > 0 ch < 0 

 < 0 ch < 0 ch > 0 

Table IV-1 
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The value of  must be determined. The 1D shallow-water model (see Table VI-1) has two 

different eigenvalues. Their signs determine two different regimes. If both celerities have the 

same sign, all the information propagates downstream. It is a super-critical regime characterized 

by a Froude number greater than one.  

On the opposite, information propagates both upstream and downstream in a sub-critical regime 

(Fr < 1). Eigenvalues have opposite signs. In order to keep the same direction of propagation of 

the information in the pseudo-unsteady model, the celerity must be positive for Fr > 1. 

Consequently, the parameter  must be negative. Further,  does not influence the scheme 

dispersive characteristics. Thus, according to Table IV-1, the value is simply = -1. 

Based on this choice of the value for the parameter , the numerical flux is computed with the 

upstream value of the water height h if the Froude number is greater than 1 and with the 

downstream value of the water height h if the Froude number is lower than 1.  

Unsteady bed variation equation 

The same procedure is applied to the bed variation equation. The celerity is then given by:  

  (Eq IV-23)  

where  is determined by derivation of the bed-load transport relation chosen. For given 

flow conditions, raising the flow-depth value involves decreasing the value of bed-load capacity. 

This means that  is always negative. As a result, the sign of cb only depends on the value 

of Fr as explained by Table IV-2 

 Fr < 1 Fr > 1 

Cb > 0 < 0 

Table IV-2 

As pointed out by Table IV-2, the information of topography zb propagates downstream if the 

Froude number is lower than one and upstream otherwise. Consequently, the decentred value of 

the bed-load flux qb is the upstream value in sub-critical regime and downstream in super-critical 

regime. It is the exact opposite of the previous equation.  

Unsteady advection-diffusion equation 

The only advective flux derivation leads to  

  (Eq IV-24) 

with U being the mean-flow velocity. (Eq IV-24) means that cs is positive whatever the flow 

regime. As a consequence of that, the decentred value is always the upstream reconstructed value. 

Note that the diffusive flux, , is not advected like bed-load and suspended-load 

fluxes. Consequently, this term is not linearized and thus doesn‟t influence the celerity values. 
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Summary and boundary conditions 

Table IV-3 summarizes the sign of the celerities in each model according to the value of the 

Froude number. As pointed above, these signs determine directly the value of the numerical flux. 

The latter one is indeed given by the physical flux computed from the upwinded value. 

 

 
Celerity Fr < 1 

Boundary 

condition 
Fr > 1 

Boundary 

condition 

Momentum for water ch < 0 Downstream > 0 Upstream 

Bed-Load transport and 

Bed variation 
cb > 0 Upstream < 0 Downstream 

Advection-Diffusion for 

suspended sediment 
cs > 0 Upstream > 0 Upstream 

Table IV-3 

The signs given in Table IV-3 also determine the nature of the required boundary conditions.  

In a super-critical flow (Fr > 1), one must impose both the water height and the suspended 

sediment concentration at the upstream boundary as well as the topography (or the bed-load 

sediment flux) at the downstream boundary.  

In a sub-critical flow, one must impose both the suspended sediment concentration and the 

topography (or the bed-load sediment flux) at the upstream boundary as well as the water height at 

the downstream boundary.  

Most of the time, sediment experiment and studies concern sub-critical flow. In the next section, 

detailing the algorithmic implementation, the flow is then considered sub-critical. 
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IV.4 ALGORITHMIC IMPLEMENTATION 

To start the computation, the initial conditions (  at t = 0) are given for all grid points. 

The boundary conditions (q, qb, C at inlet and the value of h at outlet) are given for all time steps. 

These stored values numerically represent the first-(inlet) and last-(outlet) grid limits. 

The algorithm is computed as follows: 

1) Water flow routine: hi  

hi is calculated iteratively till the convergent solutions for water flow is obtained. 

Both flow boundary conditions hout and qinl
15 are used16.  

2) Time step: Δt  

According to flow and sediment characteristics Δt, the time-step, is calculated17. 

3) Exchange model parameters : C*i and αi 

The components of exchange process term (E-D), that is C*i and αi, respectively 

the equilibrium averaged concentration and the adaptation coefficient are 

evaluated. 

4) Reconstruction: 2 value for  

hi and Ci are reconstructed in both finite volume edges : hi±1/2 and Ci±1/2 . From this 

values, the advective fluxes  ( = qb) and   (= hCU) are calculated.  

5) Upwinding: a single value for  

In each cell edge, a single value for each advective flux is chosen according to the 

related celerity sign (see Table IV-3). Note that a single value of the diffusion flux 

f2d can be obtained at each grid edge given that they don‟t depend on the sign of 

the characteristic speeds. 

6) Balance: zb
t+1  and Ct+1 

Values of zb and C are calculated for the next time step (or sub-step). 

  

 

  

                                                   
15

  Subscrit "out" in hout and "inl" in qinl denote respectively hN+1/2 and q1-1/2 
16

  Given that bed elevation is susceptible to be modified after each time step, the total elevation (bed + flow 

depth) is fixed by the boundary condition. Thus the boundary flow depth is adapted at each beginning of the 

routine. 
17

  This calculus only occurs in the first Rung-Kutta time step. 
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V. MODEL VERIFICATION 

The unsteady bed variation equation, including only bed-load transport, is first applied to 

theoretical reservoir case as well as to von Needham et Hey flume experiment. On both cases, the 

transport is considered to be at equilibrium. 

Then the unsteady advection-diffusion equation is widely validated. Each term (erosion, 

deposition, advection and diffusion) are tested separately. 

Finally, the full sediment transport model detailed in the former section is tested by application to 

the case the moving trench, which is a well-known standard benchmark test. 

V.1 UNSTEADY BED VARIATION EQUATION 

V.1.1 LONG TIME SCALE SIMULATION: RESERVOIR 

This part of the model has been tested in a typical case of reservoir. The dam created a backwater 

curve extending to a certain upstream distance. Thanks to the hydrodynamic model, the back 

water calculation enables the knowledge of the hydraulic parameters (average velocity, water 

depth ...). As explained in Chapter IV, these parameters are necessary to begin each bed variation 

calculation loop. 

In this experience, a sub-critical flow evolves over a movable bed river. The river bed is 

composed of quasi-uniform sediments (ρ = 2650 kg/m³) with an average grain size of d50 = 6 mm 

and a porosity of p = 0.3. The Manning coefficient is determined as being n = 0.032 [m-1/3s].  

In order to calculate the solid transport, the well known Meyer-Peter and Muller law is 

implemented:  

    (Eq V-1) 

where qb is the bed-load transport rate; s is the specific gravity (2.65); d is the representative 

particle size diameter (d50); Rh is the hydraulic radius and   is a roughness parameter (usually 

1 >  > 0.35), depending on the presence of bedforms. 

The unit fluid discharge is kept constant at q = 2.5 m²/s. The other two boundary conditions 

needed are given by the dam which keeps the water at 23.5 m and an equilibrium bed-load rate 

given by (Eq V-1) at the upstream end. According to hydraulics parameters, the latter is given by 

qb = 1.69 10-5 m²/s. 

The time simulation is 20 years and the domain length is 120 km with Dx = 600 m. 
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Figure V-1 : Reservoir simulation 

The deposition of the sediment, namely the delta formation, is shown in Figure V-1 after 20 years 

of simulation. The resulting height of the delta is hδ  = 1.2283 m. This value is compared with 

Minor et al. (1999) which found hδ = 1.23 m. This long time scale application demonstrates 

perfect agreement with numerical results from the literature. 

V.1.2 SHORT TIME SCALE SIMULATION 

This experience shows the consequences of a sudden change in bed-load transport rate. The 

experiment is described by Figure V-2. Flume experiments permitted to establish a simple bed-

load transport relation for this particular case:  

  (Eq V-2) 

with U being the mean flow velocity.  

Initially a uniform flow transports sediment at equilibrium. In other words neither deposition nor 

erosion processes appears. Then a sudden increase in solid transport supply at the upstream end is 

performed. This results in an immediate net sediment deposition. 

 

Figure V-2 : Von Needham and Hey experience (Fäh, 1997) 
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The simulation duration is 60 min and results are also given after 30 min. As can be seen on 

Figure V-3, the computed results are identical to Figure V-2. 

 

Figure V-3 : Von Needham and Hey : Computed results 

Both preceding simulations showed the ability of the model to represent bed variation and bed-

load transport for short and long time scale processes. Nevertheless, the transport is always 

considered to bed at equilibrium. Non equilibrium exchange process between bed-load and 

suspended-load layers are not taken into account yet.  
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V.2 UNSTEADY ADVECTION-DIFFUSION EQUATION 

This section is devoted to the suspended-load transport model, mathematically described by the 

advection-diffusion equation. The numerical model is confronted to three particular situations, 

where non equilibrium transport is underlined.  

V.2.1 PERFORATED BOTTOM EXPERIMENT 

Experimental configuration 

The first experiment was realized by Wang and Ribberink (1986). The flume experiment 

consisted in discharging sand into a flume with initially rigid bottom. The sediment concentrations 

were then measured in a steady, uniform flow. The experimental configuration is sketched on 

Figure V-4. 

 

Figure V-4 : Case with perforated bottom: Experimental configuration 

The rigid part of the channel allows the flow to develop both concentration and velocity 

equilibrium profiles. A perforated bottom was used to trap the sediment particles in contact with 

the bed. Indeed the sediments reaching the bottom could not be re-entrained. The upstream 

reference (x = 0) is set at the downstream end of the rigid bottom part of the channel. The full set 

of data necessary to run the simulation is given in Table V-1.  

 Characteristics Values Units 

Flow  Water depth h          = 0.215 m 

Flow velocity  U          = 0.56 m/s 

Sediments Size  D50          = 0.095   

D90       = 0.105 

mm 

mm 

Fall velocity ws             = 0.0065 m/s 

Density ρ           = 2650 kg/m³ 

Roughness height ks             = 0.0025 m 

Inlet 

concentration 

C0          = 125 mg/L 

Channel  

(sand bed) 
Length LChannel   = 30 m 

Width B           = 0.5 mm 

Table V-1 
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Considerations on equilibrium concentration 

The perforated bottom implies in principle that entrainment at the bed is impossible. Hence the 

entrainment flux  should be set to zero. The exchange process term ( ) would thus 

reduce to: 

  (Eq V-3) 

According to the bottom boundary condition used, namely the gradient-boundary condition (see 

section III.2.2),  depends on the equilibrium concentration C*. This term disappears as showed 

in (Eq V-3). However, the capacity of the experimental dispositive to prevent entrainment is only 

theoretical and must be verified. 

Understanding the utility of the rigid bottom part of the channel is a key aspect to interpret the 

behavior of the concentration profile obtained. As said in the former section, thanks to the rigid 

bottom, the flow develops both concentration and velocity equilibrium profile (vertically).  

Let‟s underline the fact that it doesn‟t mean that the concentration at the end of the rigid section is 

at equilibrium. Indeed the only source of sediment is the upstream supply and doesn‟t necessarily 

satisfy the sediment carrying capacity. In other words, C0 is not supposed to be equal to C*. C0 

only depends on the amount of sediment provided at the inlet while C* depends on a number of 

flow and sediment characteristics (Eq IV-12). 

The preceding remarks on equilibrium concentration are useful to understand and interpret 

correctly the present case study. 

Aims and assumptions 

As stated in the former sections, the entrainment process is theoretically stopped by the perforated 

bottom. Furthermore, the experiment does not intend to simulate bed-load transport nor bed 

variations. As a consequence of that, only the advection-diffusion equation (Eq IV-3) is required 

to describe the sediment transport: 

  (Eq V-4) 

Calculations for this test case have been reported by van Rijn (1986), Lin and Falconer (1996) and 

Wu, Rodi & Wenka (2000). Their objective was to analyze the concentration vertical profile over 

the depth. 

However, in the present work, the purpose is determining the mean concentration shape along the 

channel. Thus, the measured concentrations available in the literature (Wang & Ribberink, 1986) 

have been integrated to obtain a single mean value in each station. This procedure gives an 

approximation of the concentration distribution along the channel.  

Analytical solution 

In order to reinforce the validation, an analytical solution is implemented. (Eq V-4) leads to the 

following solution: 

  (Eq V-5) 

where the diffusion process have been neglected. This hypothesis must be verified after the 

simulation is performed. 
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Simulation process 

In order to get a uniform flow, the channel slope must balance the friction slope. From ks, the 

Chézy coefficient is calculated with (Eq IV-6) and injected in Chézy‟s law. The value obtained 

are Cchézy = 49.39 and     

The calculated bed shear velocity is determined via (Eq IV-9). The value obtained is u* = 0.034 

m/s. This is in good agreement with the values of 0.035 m/s calculated by Lin and Falconer 

(1996) and 0.033 m/s observed in the experiment.  

First, the simulation is realized using a constant value18 for α = 1 (α is here chosen to minimize the 

error between measured and computed value).  

 

Figure V-5: Comparison of the distribution along the channel 

As can be seen from Figure V-5, both computed and analytical solution are identical. That gives 

confidence in the performance of the model developed. However, no satisfactory results are 

obtained with respect to the measured concentration. Indeed both analytical and computed 

solution tends to the zero concentration expected while the measured results seem to stabilize after 

12 meters. The representative values of each term in (Eq V-4) are: 

 Advection  O (10-7) 

 Exchange   O (10-7) 

 Diffusion   O (10-13)  

The assumption made on the diffusion process in thus justified and does not generate significant 

errors. In addition, as stated at the beginning of this section, all the parameters related to the 

experiment have been successfully compared to those found in the literature.  

                                                   
18

  The use of a constant value is not trivial, as explained in section V.2.3 
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It appears clearly to the author that imposing a zero concentration value (C* = 0) is not valid in 

practice. In other words, entrainment is not fully prevented by the experimental dispositive. A 

residual suspended sediment transport is then assumed and (Eq V-4) is modified to take it into 

account.  

Results 

In Figure V-6, the black curve represents the computed concentration using α = 1.75 and 

C* = 30 mg/L. The latter corresponds to the measured concentration at the outlet. In order to 

underline the importance of considering a residual sediment concentration in the flow, the 

analytical solution (Eq V-5) is also computed with α = 1.75 (red curve). Despite the parameters 

are all the same, the two curves are clearly different.  

 

Figure V-6: Concentration along the channel: comparison 

The present developments prove that the parameters and hypotheses used to model the Wang and 

Ribberink‟s (1986) experiment are relevant with respect to the present non-equilibrium situation. 

Indeed, the only calibrated parameter in Figure V-6 is α. The model is thus ready for further 

investigations on α (see Chapter VI). 
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V.2.2 NET ENTRAINMENT AT THE BED 

Experimental configuration 

This experiment (van Rijn L. , 1981) consisted in a flume with initially clear water flowed over a 

sand bed. In other words, no sediments were supplied at the upstream end of the inflow section. 

The rigid part of the channel allowed the flow to develop a velocity equilibrium profiles. The 

sediment concentrations were measured in a steady, uniform flow over a porous bed.  

The sediments are entrained into suspension until the full transport capacity is reached. The 

situation is sketched in Figure V-7.  

 

Figure V-7: Net entrainment from loose bed : Experimental configuration (Lin & Falconer, 1996) 

Water samples were collected simultaneously at four locations downstream of the rigid bed to 

determine the spatial distribution of the sediment concentrations. At each location five water 

samples were taken over the depth. 

 

Figure V-8 : Longitudinal and vertical concentrations distribution (van Rijn L. , 1981) 
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Although the measuring period was made as short as possible, van Rijn (1981) reported that a 

small score hole was formed directly downstream of the rigid bed, thereby disturbing the flow 

conditions. 

The complete set of data necessary to run the simulation is given in Table V-2.  

 Characteristics Values Units 

Flow  Water depth h           = 0.25 m 

Flow velocity  U          = 0.67 m/s 

Sediments Size  D50           = 0.23   

D90        = 0.32 

mm 

mm 

Fall velocity ωs             = 0.022 m/s 

Density ρ          = 2650 kg/m³ 

Roughness height ks             = 0.01 m 

Inlet concentration C0          = 0 mg/L 

Channel  

(sand bed) 
Length LChannel   = 30 m 

Width B           = 0.5 mm 

Table V-2 

At the inlet boundary, a zero-concentration profile was specified to simulate the sediment free 

flow.  

Considerations on equilibrium concentration 

The knowledge of the equilibrium depth-averaged concentration, which the flow intends to reach 

(after an adaptation region), is a crucial step in the present case study. However, the prediction of 

C* is not the objective of the present simulation. For this reason, C* was set to the value measured 

at the end of the channel. This results in C* = 310 mg/L. 

Aims and assumptions 

As for the preceding case, the measured concentrations available in the literature (van Rijn L. , 

1981) have been integrated to obtain the depth-averaged concentrations which may result in some 

errors. 

The objective is to study the adjustment process of depth-averaged concentration. Thus, once 

more, bed-load transport and bed variation are not simulated. The process is then completely 

modeled by advection-diffusion equation. 
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Analytical solution 

Once more, an analytical solution is implemented in order to reinforce the validation. Solving 

equation (Eq IV-3), in which diffusion and unsteady effects are neglected, leads to the following 

expression: 

  (Eq V-6) 

where the diffusion process has been neglected. This hypothesis must be verified when 

performing the simulation. 

Simulation process 

Given the value of ks (see Table V-2) the Chézy coefficient and the bed slope are calculated to 

ensure a uniform flow. The value obtained are Cchézy = 39 and   2.34 10-3 %. 

Both computed and analytic solutions are compared with the laboratory results. In Figure V-9, a 

string disagreement is observed between the analytic solution and the computed one. It has to be 

noted that, in Figure V-9 the value of α has been calibrated in order to give satisfactory results for 

the computed solution. 

 

Figure V-9: Concentration along the channel: fit of the computed solution  

The difference may come from the diffusion process, which is not taken into account in the 

analytical solution. For this reason, a comparison of the representative values for each term of the 

advection-diffusion equation is required:  

 Advection  O (10-6) 

 Exchange   O (10-6) 

 Diffusion   O (10-11)  
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The figures obtained prove that once more, the diffusion process is not prominent. Therefore, its 

contribution is not responsible for the present problem. 

In Figure V-10, the chosen value of α is calibrated in order to bring satisfactory results for the 

analytical solution. 

 

Figure V-10: Concentration along the channel: fit of the analytical solution 

In section VI.3, both analytical and numerical solutions are compared quantitatively. 
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V.2.3 DREDGED TRENCH EXPERIMENT 

Experimental configuration 

The present experiment was carried out at the Delft Hydraulics Laboratory (1980). This 

experiment consisted of allowing a flow with fully developed sediment concentration profile flow 

over a gentle-sided trench. After 7.5 h, the bed level was measured. The data set of the experiment 

is reported in Table V-3: 

 Characteristics Values Units 

Flow  Water depth h           = 0.0.39 m 

Flow velocity  U          = 0.51 m/s 

Sediments Size  D50           = 0.16   

D90        = 0.2 

mm 

mm 

Fall velocity ws             = 0.013 m/s 

Density ρ           = 2650 kg/m³ 

Roughness height ks             = 0.0265 m 

Inlet concentration C0          = 150 mg/L 

Channel  

(sand bed) 
Length LChannel   = 30 m 

Width B           = 0.5 mm 

Trench Slope 10 % 

Depth 15 cm 

Table V-3 

Simulation process  

The Chézy coefficient corresponding to the experiment has been first calculated from ks : 

CChézy = 40. 

The water depth given in Table V-3 is measured at the inlet of the channel. Consequently, the 

water depth at the outlet, which is the downstream boundary condition of the hydrodynamics 

model, is set to 0.37 m.  

The equilibrium concentration as well as the adaptation coefficient must be evaluated for the 

present simulation. In the former cases, constant values were used for C* and α. That was justified 

given that the hydrodynamics conditions, the sediment parameters as well as the bed level were 

kept constant. These assumptions are not valid anymore. 

The inlet concentration, C0 is considered to be at equilibrium. Thus, the equilibrium concentration 

formula (Eq IV-12) can be calibrated  using (Eq IV-13). This results in k = 0.0098 and m = 0.835. 

Guo and Jin (2001) found k = 0.0097 and m = 0.84 which confirms the calculated values. 

Consequently, the equilibrium concentration can be calculated along the channel using (Eq IV-12). 
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However, the purpose of this section is to validate the sediment transport model. This model is 

used in Chapter VI to evaluate the formulations of the adaptation coefficient (see section III.4). 

Consequently, as for the preceding cases, the adaptation coefficient is once more imposed as a 

constant value. This value, α = 15, is chosen to fit the measured bed level. 

Results and validation 

Using these values in the developed model, the simulated bed variation is plotted against the 

measured data as shown in Figure V-11.  

 

Figure V-11 : Filling of a trench dredged across a channel 

Numerical results agree reasonably well with the experimental data. This last experience brings 

the conclusion that the suspended-load transport model can deal with bed variation. Further 

investigations on that experiment are held in section VI.4. 
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VI. EVALUATION OF EXCHANGE MODELS 

Section III.4 exposes the different formulation of the adaptation coefficient while chapter IV 

details the construction of a 1-D numerical model for suspended sediment transport. The model 

has been coded successfully and validated in Chapter V. Nevertheless, some doubts still exist 

about the net entrainment experiment (see V.2.2). This problem is studied in detail in section VI.3. 

In this chapter, the flow and sediment transport model is run with different adaptation laws (i.e. 

exchange models) for a number of documented benchmarks (detailed in Chapter V). The purpose 

is to compare the exchange model performances and then develop guidelines on which exchange 

model should be used or not depending on the case (according to hydraulic parameters and 

sediment properties).  

VI.1 VALIDITY OF THE STUDY 

In section III.4.3, five parameters are isolated to express the four adaptation laws:  

  (Eq VI-1) 

The procedure of validation performed in Chapter V leads to the conclusion that the key 

parameters in (Eq VI-1), are correctly calculated for each case study. Therefore, the adaptation 

laws computed in the following paragraphs don‟t suffer from major errors due to these 

parameters. Secondly, as the values of these parameters are fixed, the influence of α can be 

correctly isolated.  

VI.2 PERFORATED BOTTOM CASE 

VI.2.1 SENSITIVITY ANALYSIS 

In the perforated bottom case, detailed in section V.2.1, the value of α is fitted to minimize the 

error with respect to the measured concentration.  

 

Figure VI-1: Concentration along the channel: influence of the adaptation coefficient 
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In Figure VI-1, the sensitivity of the concentration distribution along the bed to α is shown.. A 

larger value of α accelerates the process of adjustment of the concentration while a smaller value 

leads to the opposite observation. 

The adaptation coefficient clearly rules the distance needed for the concentration to reach 

equilibrium. 

VI.2.2 EVALUATION AND OBSERVATION 

The four laws detailed in section III.4.2 have been tested for the present case study.  

Each law defines δ in a different way (see Table III-1). However, for Guo & Jin‟s law, δ must be 

estimated (1999). For this reason, the dependence of α with respect to η = δ /H is studied in the 

present particular situation (Figure VI-2). 

As stated in section V.2.1, a satisfactory value for α must be situated around 1.75. However, the 

minimum of the curve calculated doesn‟t approach much that ideal value, even for high η. 

Consequently, the value of ηδ is chosen in the range suggested by Guo & Lin (1999): ηδ = 0.01 

and ηδ = 0.1 (see Table III-1). 

 

Figure VI-2: Evolution of Guo & Jin’s α with respect to η 

 

The coming Figure VI-3 compares the different concentration curve obtained for each adaptation 

law. 
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Figure VI-3: Comparison of the adaptation laws for the perforated bottom experiment 

As can be seen from Figure VI-3, the results obtained are pleasingly different according to the law 

used. In order to quantify their accuracy, the error is calculated in three different ways (see annex 

p.78). The results are summarized in Table VI-1.  

 δ  [cm]  α Ls [m] BIAS [mg/L] AGD RMS [mg/L] 

Zhou and Lin / / 1.49 12.39 2.15 1.093 5.72 

Arm.-Di Silvio 0.41 0.019 1.68 11.02 -0.28 1.074 5.22 

Guo and Jin 0.215 0.010 6.35 2.92 -22.26 1.468 30.22 

Lin 0.019 8.8 e-4 24.90 0.74 -29.81 1.745 40.48 

Table VI-1 

From Table VI-1and Figure VI-3 it can be observed that: 

1) The calculated adaptation coefficient is always larger than 1. 

2) Armanini & Di-Silivio‟s and Zhou & Lin‟s curves are very close and give the best results.  

3) For those laws, the prediced adaptation lengths are well estimated compared with the 

measured profile. 

4) The difference between the two curves is constant along the channel 

These observations are interpreted in section VI.5. 
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VI.3 NET ENTRAINMENT AT THE BED 

This case is, to a certain extent, problematic in the present work. Indeed, in section V.2.2, it has 

been shown that computed and analytic solutions give different solutions for the same value of α. 

This problem is address in the next paragraphs. 

VI.3.1 SENSITIVITY ANALYSIS 

As for the preceding test, the sensitivity analysis illustrates one of the key aspects of the 

adaptation coefficient: its influence on the rate of adjustment in non equilibrium situation. 

 

Figure VI-4: Concentration along the channel: influence of the adaptation coefficient 

VI.3.2 COMPARISON OF BOTH NUMERICAL AND ANALYTICAL SOLUTION 

For the present case study, the problem remains to know which one is problematic: the analytical 

solution or the computed one? This problem couldn‟t be sorted out in the validation part of this 

work (section V.2.2). Indeed according to the value of α (chosen arbitrary) both formulations had 

the possibility to match or not the experimental data.  

This section deals with the presented formulations for α (see Table III-1). Consequently, the 

computed values of α are not subjective anymore. Therefore, the performances of the two 

solutions of the advection-diffusion equation can be evaluated.  

For the case studied, the sediment number , which invalidates Lin & al‟s 

law, as explained in section III.4.2. For Guo & Jin‟s law, ηδ = 0.01 as prescribed in Table III-1.19 

                                                   
19

  The dependence of α with respect to ηδ has the shape as for the preceding test. Even for an unrealistically 

large value of ηδ, α remains larger than 5. For this reason, it is set to the maximum value in the range 

prescribed by Guo & Lin (1999). 
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Qualitative comparison 

Both analytical and numerical solutions are sketch in Figure VI-5 and Figure VI-6 respectively  

 

Figure VI-5: Adaptation laws: comparison of the numerical model solutions 

In Figure VI-5, it can be qualitatively stated that none of the curves satisfy flume measurement. 

However, the analytical solution reveals that Zhou & Lin‟s solution as well as Armanini & Di 

Silvio‟s one perfom well. It seems obvious that the analytical solution gives better results than the 

other one. 

 

Figure VI-6: Adaptation laws: comparison of the analytical solutions 

  



·65 

 

Quantitative comparisons 

Some key values are contained in Table VI-2 and Table VI-3. In order to evaluate the goodness-

of-fit, three statistical parameters are used (see annex p.78). 

 δ  [cm]  α Ls [m] BIAS [mg/L] AGD RMS [mg/L] 

Zhou and Lin / / 2.73 2.78 63.24 1.43 73.09 

Arm.-Di Silvio 0.018 0.072 2.33 3.26 53.98 1.36 63.05 

Guo and Jin 0.250 0.010 19.9 0.38 115.64 1.778 140.64 

Table VI-2: Numerical key parameters and error calculation 

 δ  [cm]  α Ls [m] BIAS [mg/L] AGD RMS [mg/L] 

Zhou and Lin / / 2.73 2.78 15.83 1.11 27.07 

Arm.-Di Silvio 0.018 0.072 2.33 3.26 2.98 1.01 20.20 

Guo and Jin 0.250 0.010 19.9 0.38 110.65 1.74 13.29 

Table VI-3: Analytical key parameters and error calculation 

Conclusion 

The value contained in both herein tables reinforce the qualitative comparison of Figure VI-5 and 

Figure VI-6. The model is unable to reproduce faithfully (at least less than the analytical solution) 

the phenomenon of adjustments when strong entrainment is involved. However, the shapes of the 

curve are in agreement with the solution. In addition, extreme situations like the one studied are 

not present in all sediment transport processes. 

VI.3.3 COMPARISON OF THE ADAPTATION LAWS 

Whatever the way to reproduce the experiment, the following observations can be formulated: 

1) The calculated adaptation coefficient is always larger than one 

2) Armanini & Di-Silivio‟s and Zhou & Lin‟s curves are once more very close from each 

other and give the best results, espacially in the analytical solution (Table VI-3).  

3) For these two laws, the prediced adaptation lengths are well estimated with respect to the 

measured profile. 

The observation are the same as in the preceding test. That gives a guideline for the general 

interpetations (see section VI.5). 
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VI.4 MIGRATION OF A TRENCH 

VI.4.1 INTRODUCTION 

In the migration of the trench experiment detailed in section V.2.2, a value of α = 15 is used to 

validate the model. For that value, the initial and final computed bed as well as the measured bed 

elevation are sketched in Figure VI-7. Similarly, the corresponding initial and final sediment 

carrying-capacity as well as the computed final concentraion are compared. 

 

Figure VI-7: Migration of the trench: concentration and bed level evolution with α = 15 

In the first part of the trench, intense deposition occurs as the computed concentration is by far 

larger than the equilibrium concentration. Indeed, exceding deposition is observed in that area. 

On the contrary, the bed level of the right side of the trench perfectly corresponds to the 

laboratory results. The small difference between computed and equilibrium concentrations curves 

reflects this good agreement. Indeed, if the actual concentration is equal to the equilirium 

concentration, an equilibrium state is reached. 

In that simulaltion, α was calibrated and kept constant along the channel. However this shouldn‟t 

be the case for that type of experimental configuration. Indeed, α clearly depends on the actual 

flow conditions (see section III.4.3). These latter change significantly as the water passes over the 

trench. 

After a short analylisis of the influence of α on the present experiment results, benchmark 

adaptation coefficient are implemented to take into account the variability of the flow conditions 

over the dredged trench. 
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VI.4.2 SENSITIVITY ANALYSIS 

In Figure VI-8 the influence of α on the the computed concentrations and bed levels is illustrated.  

For a small value of the adaptation coefficient (α = 1), it is observed that the concentration 

longitudinal distribution is little affected in the region of the trench. That means that despite the 

great difference existing between C, the actual concentration and C*, the equilibrium 

concentration, the exchange process is slowered (or not accelerated) by the small value of α. For 

the same reasons, the bed level changes are not significant.  

 

Figure VI-8: Influence of α on concentration and bed elevation 

On the contrary, a large value of α accelerates the process of adjustment. However, it can be 

observed that in the present case, the sensitivity on the final results is smaller than that for the 

same reduction of α. 

VI.4.3 ADAPTATION LAWS: CONSIDERATIONS 

Once more, the adaptation laws are compared. The Lin & al.‟s coefficient is not studied given that 

its inherent limited domain of applicability (see section III.4.2) prevents from using it in the 

present case.  

In the experiment configuration, a new element must be considered. Indeed, as explained in the 

former paragraphs, contrary to the preceding cases study, the hydrodynamic conditions along the 

channel are not constant anymore. Thus the sensibility of the adaptation laws to changing flow 

condition can be studied. 

The top part of Figure VI-9 shows the evolution of the 3 adaptation coefficients when passing 

over the trench. The blue curve displays much larger values than the red one and the green one. 

The behavior of these curves is little influenced by the trench.  

The red and the green curves are very close. In order to compare the red and the green curve, a 

relevant zoom is also sketched.  
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Figure VI-9: Adaptation coefficient along the trench at simulation end 

In Figure III-8, it is shown that Armanini & Di Silvio‟s law behave similarly. However they tend 

to separates for high value of the Rouse number. 

When passing over the trench, the flow is slowed as the Chézy coefficient increases. These effects 

reduce the value of the friction velocity (Eq IV-9) which in turn increases the sediment number. 

That explains the increasing difference toward the middle of the trench. 

According to Figure VI-9, one can predict, thanks to Figure VI-8, that the value of α for the green 

and the red curve are too small to simulate exchange process correctly.  

However the Guo and Jin‟s formula displays values in the range of the constant value (α = 15) 

used to fit the experiment.  
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VI.4.4 ADAPTATION LAWS: COMPARISON 

Figure VI-10 shows the simulation results.  

 

Figure VI-10: Adaptation laws: comparison of bed elevation and concentration at simulation end 

 

From the preceding paragraphs the following observations can be formulated: 

1) The adaptation coefficients varies with respect to flow conditions, staying larger that one. 

2) In the present case study, that variation does not provocates significant changes on the 

final results. 

3) Armanini & Di-Silivio‟s and Zhou & Lin‟s curves are still identical. The small relative 

variations are caused by the changing flow conditions which affect the sediment number 

4) Zhou & Lin‟s law display different comportment for erosion and deposition, both active 

process in that simultaion. However, that difference is not highlighted by the present 

experimental dispositive.  

5) Guo and Lin‟s law shows very good agreement in the present simultation 
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VI.5 INTERPRETATION AND CONCLUSIONS 

In all the experiment described in this chapter, the adaptation coefficient is always larger than 1. 

The adaptation coefficient is intrinsically defined as the link between the near bed concentration 

and the depth-averaged concentration, both in equilibrium state or not. This relation  expressed  

by their ratio. Thus, as the near bed concentration is always larger than that in the flow, α > 1. 

The influence of α has been illustrated in many configurations. Its role in the adjustment process 

has been clearly highlighted by conducting a sensitivity analysis for all the cases considered, 

using a different spatially constant values. 

Using a constant value for α is a current practice in sediment transport modeling. This assumption 

is valid for the perforated bottom experiment as well as for the net entrainment one. Indeed, in 

these particular cases the flow conditions are constant. In section III.4.2, it was been shown that 

whatever the definition of α, the formulation always depends on these conditions. 

For this reason, the assumption of a spatially constant α is theoretically non valid in the moving 

trench experiment. The adaptation coefficient‟s sensitivity to these changes was thus examined at 

the trench level, where the flow conditions are mostly modified. No significant changes were 

observed with respect to the value of α nor the final bed elevation. It is thus concluded that the 

assumption of a constant value for α is justified when flow perturbations are not significant. 

The diffusion process, even crucial for suspended sediment transport was estimated negligible for 

all the case of study. 

Lin & al‟s law was unsuccessfully tested in all the simulations. Indeed, given its narrow domain 

of application, this efficiency of this law was not illustrated in this master thesis. 

Armanini & Di Silvio and Zhou & Lin‟s formulations have showed a similar behavior in most 

cases. When increasing the value of the Rouse-Type number, that is in changing flow conditions, 

their divergences was underlined and explained. 

These two laws were particularly accurate to simulate the two first experiment where the required 

value for α was quite low [0-3]. Their predictive power (no calibration) makes them very 

powerful for such situations. 

Guo & Lin‟s law has proved to perform well in the dredge trench experiment. This experiment 

considered a fully developed concentration and velocity profile at the level of the trench. These 

are typically the assumptions made to formulate Guo & Jin‟s  adaptation coefficient law, which 

explain their accuracy to model this case study. 

However the latter formulation, if compared with others, contains an important weakness. Indeed, 

because the reference level is not formulated, this parameter need to be calibrated which reduce 

substantially potential 
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VII. CONCLUSIONS 

Exchange models are one of the most important aspects for sediment transport models. Poor 

knowledge about sediment transport capacity and adaptation coefficient formulations, both 

components of most exchange models, causes uncertainty and reduces the predictive power of 

such models. This master thesis intends to bring a critical comparison of existing adaptation 

coefficient formulations. 

An intensive literature review was conducted to gather background information over this complex 

subject. Subsequently, the relevant parameters were isolated in these formulations and a 

sensitivity analysis has been carried on in order to dominate them. 

In order to reinforce this critical analysis, a 1D mathematical model to simulate non-equilibrium 

transport has been established. The latter has been validated confronting it to a wide range of 

existing literature example including numerical simulations, analytical solutions and laboratory 

data. It has been demonstrated that the present fully developed model is accurate in modeling 

channel bed variation under both bed-load and suspended-load transport. 

However, its applicability was limited by the net entrainment experiment which illustrates its 

weakness to modelize special sediment transport conditions. 

This still powerful tool has been used to provide a better understanding of non-equilibrium 

transport aspects. In addition, it has constituted the key to confront and to understand the different 

adaptation laws in a range of benchmark laboratory experiment. 

Lin & al.‟s efficiency was not illustrated in this master thesis as its domain of applicability 

prevented it from being used in many tests performed. 

Guo & Jin‟s formula was successfully used in an experiment in which sediment and velocity 

profiles were assumed. However, its unpredictability related to the definition of the bottom layer 

thickness constitutes a serious weakness for sediment transport modeling. 

Zhou & Lin‟s as well as Armanini & Di Silvio‟s formulation has shown good behaviour in 

modeling suspended sediment transport in steady uniform flow conditions where the range of 

variation of the adaptation coefficient was small. In addition their predictive power makes them 

highly attractive for sediment transport modeling. 

This master thesis has involved various aspects of specific scientific areas, such as hydrodynamic 

and numerical modeling to finally converge to interesting, and sometime surprising results. 
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VIII. NOTATIONS 

 = Turbulent sediment flux 

(h-δ)  = Thickness of the suspended-load transport layer 

 = Near-bed equilibrium sediment concentration at δ over the bed 

  = Near-bed concentration at δ over the bed 

  = Friction velocity 

 = Specific weight of sediment 

  = Biggest eigenvalue of the linearized spatial operator  

  = Roughness parameter 

  = Bed change rate 

B  = Channel width 

c = Local suspended-load volumetric concentration 

C = Depth-averaged suspended-load concentration  

C*  = Equilibrium depth-averaged concentration  

cb  = Calculated near-bed concentration 

cb*  = equilibrium near-bed concentration 

CChézy  = Chézy coefficient 

cδ*  = Equilibrium near-bed concentration 

d = Representative size of the particles or sieve diameter 

D  = Deposition flux 

d50 = Median particle size  

Dsi  = Dispersion sediment flux in i-direction 

Dδ = Sediment deposition flux (downward)  

E  = Entrainment flux 

eb  = Bed-load sediment transport efficiencies 

es  = Suspended sediment transport efficiencies 

Eδ = Sediment entrainment flux (upward)  

Fr  = Froude number 

G  = Specific gravity of sediment 

g  = Gravitational acceleration 

h  = Flow depth 

J  = Friction-slope 

k and m = Calibration coefficients of sediment carrying capacity formula 

L  = being the differential spatial operator 

Lb  = Adaptation length of bed-load 

Ls  = Adaptation length for suspended-load transport 

n  = Manning‟s coefficient 

p  = Porosity  

qb  = Bed-load transport rate  
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qb = Transport capacity under the equilibrium condition (qb*) 

qs = Suspended-load transport rate 

R  = Rouse-type number  

Rh  = Hydraulic radius  

s = Specific gravity 

s
(1)

 and s
(2)

  = Sub-step of Runge-Kutta method 

S0  = Bed-slope term  

Sj  = Channel flow resistance term  

s
t
 = Known value of s at time t  

s
t+1

  = Unknown value of s at time t+1 

u = Flow velocity 

U  = Depth-average velocity 

u*  = Shear velocity 

u, v, w = Components of mean velocity 

v = Kinematic viscosity of water 

x-, y- , z- = Directions 

z0  = Zero-velocity distance 

zb  = Bed elevation 

ZR  = Rouse-type number 

zs  = Water surface elevation  

α  = Adaptation coefficient 

αbk and αby  = Direction cosines of bed-load movement 

αc  = Adaptation coefficient for deposition 

αc  = Adaptation coefficient for entrainment 

δ  = Thickness of the bed-load layer  

δ  = Thickness of the bottom layer  

εs  = Dispersion coefficient (also written Γs) 

η  = Relative flow depth 

ηb  = Reference relative flow depth 

κ  = von Kármán constant 

ρs = Sediment density  

ρw. = Density of water 

ωs  = Particle settling velocity 

  = Bed slope  

  = Specific weight of clear water  
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X. ANNEX 

Evaluating goodness-of-fit (Chen, Acharya, & Stone, 2010) 

The goodness-of-fit between computed and measured bed elevations were evaluated by three 

statistical parameters include the Bias, the Average Geometric deviation (AGD), and the Root 

Mean Square (RMS). Each parameter provides a measure of the goodness-of-fit between the 

computed and the measured bed elevation from a slightly different perspective. They are 

described as follows: 

 

1) The Bias:  

 

Where Zc and Zm are the computed and measured bed elevation, respectively, and j is the data set 

number. The Bias with a unit of mg/L in the study represents the arithmetic mean of the difference 

between computed and experimental bed elevations. A positive value of Bias is produced when the 

calculated bed elevations are generally higher then the observed conditions. 

 

2) Average geometric deviation (AGD): 

 

The dimensionless parameter AGD represents the geometrical mean of the special discrepancy 

ration, RRj. 

 

3) Root mean square (RMS): 

 

The root mean square represents the quadric mean of the difference between the computed bed 

elevations and the measured values. RMS is especially useful when deviations are both positive 

and negative such as overestimation and underestimation of bed deformation in the current 

calculation. RMS has a unit of mg/L in this study.  

These three statistical parameters (Bias, AGD, RMS) provide a comprehensive evaluation of the 

goodness-of-fit between the computed and measured bed elevation. 

 


