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Wind pressure field reconstruction from incomplete measurements by Andy
Fossion, Second Master’s Degree in Civil Engineering, University of Liège, academic year
2014-2015.

The purpose of this master’s thesis is to develop a method to reconstruct missing
data from multiple setup measurements in wind tunnel. It is obtained using the singular
value decomposition on the measured values. This mathematical tool extracts the main
direction of a rectangular matrix. With appropriate experimental setups, these directions
tend to be similar to the ones from the complete matrix with all measurements made
synchronously. This method is numerically applicable thanks to the background/resonant
decomposition, which reduces the amount of reconstruction steps needed. The method
developed is applied on a high-rise building in order to quantify its accuracy. Several
multiple setup schemes are presented and compared to the reference results.

Keywords: wind; wind tunnel; buildings; multiple setup measurements; stochastic;
background response; resonant response; singular value decomposition; reconstruction;
modal correlation.

Reconstruction de champ de pression de vent à partir de données man-
quantes par Andy Fossion, Deuxième année de Master Ingénieur civil des constructions,
Université de Liège, année académique 2014-2015.

L’objectif de cette thèse de master est de développer une méthode de reconstruction
de données manquantes provenant d’essais à configurations multiples réalisés en soufflerie.
La méthode est obtenue en appliquant la décomposition en valeurs singulières sur les
données mesurées. Cet outil mathématique permet d’extraire les directions principales
d’une matrice rectangulaire. En utilisant des configurations expérimentales appropriées,
ces directions tendent à être similaires à celles de la matrice complète obtenue avec les
mesures synchrones. Cette méthode est applicable numériquement grâce à la décomposi-
tion background/résonant qui permet de réduire le nombre nécessaire de reconstructions.
La méthode développée est appliquée à un building de grande hauteur dans le but de
quantifier sa précision. Plusieurs schéma de configurations expérimentales multiples sont
présentés et comparés aux résultats de référence.

Mots-clés: vent; soufflerie; buildings; mesures à configurations multiples; stochas-
tique; réponse background; réponse résonante; décomposition en valeurs singulières;
reconstruction; corrélation modale.
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Context and motivations
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Chapter 1

Introduction

Nowadays, buildings and civil works are getting taller, bigger and more sophisticated.
Beyond the increasing complexity of these structures, the consequences of a failure would
have a dramatic impact from a human and an economical point of view. This general
evolution leads civil engineers to develop new designing methods that consider dynamic
phenomena and estimate both the displacement and the internal forces due to these time
and space fluctuating loads.

Beside seismic solicitations, one of the main cause for dynamic phenomena is the
wind. The randomness and the dynamic nature of the wind make it difficult to approach
with simple methods. Different solutions exist to find the resulting wind pressure field on
a structure such as CFD analysis, wind tunnel experiment on a scaled model or on site
measurements. All of them have advantages and drawbacks. That is the reason why they
are usually done in a complementary manner.

This work focuses on the second one, wind tunnel experiment. This approach
consists in using a scaled model of the structure to design, which is placed in a small
scale atmospheric boundary layer. Different layers could be used such as logarithmic or
power law in order to take into account the roughness of the ground.

The objective of wind tunnel experiments is to measure the evolution over time of
some physical quantities. In the case of a rigid model, the main information is the
pressure on the structure induced by the wind.

To capture this information a certain amount of pressure sensors is needed. Considering
that the amount of sensors at our disposal is not limited, the best solution would be to
cover uniformly and densely enough all the structure with them. In that way, we would
have not only the information about the evolution of the pressure at each point but also
the correlation between all of them since they are measured synchronously.

Unfortunately, this situation is utopian and most of the time, experimental engineers
have a limited amount of sensors. It means that it is not possible to cover the whole
structure with enough density of sensors. In other words, a lot of information for the
design is not recorded.

The solution to face this issue is to use multiple setup measurements. The main
idea behind it is to set some reference sensors at strategic places on the structure and to
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CHAPTER 1. INTRODUCTION 3

move the other ones across the structure. After the test, the evolution of the pressure
over time of each sensors and partial information on the relation between them is known.

To illustrate the multiple setup measurements principle, we can consider a wind tunnel
experiment where the model would be a small rectangular plate with a perpendicular
wind flow. Two different situations are considered. In the first situation, three sensors
are available. It is enough to cover the plate densely enough with one sensor at the top,
at the middle and at the bottom. Then, in the second situation, only two sensors are
available, which is not enough to cover the whole plate and to capture all the information
needed to design this plate. A solution would be to fix a reference sensor in the middle
of the plate and to move the other one in the upper and the lower part so that two
experimental setups are conducted.

Eventually, the measurements can be done so that we have in the first situation the
evolution of the pressure over the same time series.

Sensors 
setup 

Time series 1

c p 1 [−
]

Time series 1

c p 2 [−
]

Time series 1

c p 3 [−
]

Figure I.1.1: Synchronous measurements.

In the second situation, we also have the evolution of the pressure but this time over
two different time series since they are not measured synchronously.



CHAPTER 1. INTRODUCTION 4

Sensors 
setup 2 

Sensors 
setup 1 

Time series 1

c p 1 [−
]

Time series 1

c p 2 [−
]

Time series 2

c p 3 [−
]

Time series 2

c p 2 [−
]

Figure I.1.2: Multiple setup measurements.

For each sensor, the mean, the standard deviation and the variance can be calculated
for the evolution of pressure. This information should be similar in both situations. Next
to these properties, it is also possible to compute their statistical relation, such as the
covariance or the correlation coefficient. One property of these values is that the
samples from which they are calculated must have the same time series. This point
highlights the main difference between the two situations presented, the covariance of
sensors that are not measured synchronously can not be calculated.

It means that after the two experiments, we have at our disposal two different
covariance matrices :
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The first one, from the synchronous measurements, which is full and the second one
from multiple setups, which is incomplete. Here is the starting point of this thesis. The
main goal is to find a way to guess the covariance between sensors 1 and 3. In that
purpose, it is assume that it exists a relation between the two covariances known, �2
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�2
23 and the covariance searched,�2

13. In the limit case of a perfect correlation between 1
and 2 and between 2 and 3, there is no other choice that sensors 1 and 3 are also fully
correlated.

This step is called the reconstruction of the missing information. In this work, we
develop a non-parametric method that could be applied in different situations. Indeed,
the usage of this approach is wide and appears in all the domain where multiple setup
measurements are done such as in aeronautic or in mechanics. It means that the
perspectives behind this thesis may be large.

To focus on the field of civil engineering, the chosen model to develop this method is a
prism building described in the following chapter. Firstly, we try to verify the reliability
of the chosen model and apply a standard analysis in order to get reference results. Then,
the analysis of the method is made and compared to the reference analysis to have an
estimation of its accuracy.

It is worth noticing that beyond the fundamental research interest, this work could
also have an important economical impact for companies that want to conduct wind
tunnel experiments on their own structural projects. Indeed, the main goal of this thesis
is to find a way to work accurately with a limited number of sensors but it could be
turned into reducing intentionally the number of sensors in order to reduce the price of
the experiment.

Two factors mainly govern the final cost of a wind tunnel campaign on a model : the
material used and the labour. In other words, either the number of the pressure taps or
the number of setups can be reduced. Of course these two variables are linked and it is
not possible to reduce both of them infinitely, keeping the accuracy constant.

To find a tradeoff, the relation between the two variables has to be found. It means the
number of setups needed for a certain amount of pressure taps to keep enough accuracy.
Then the cost need to be expressed as a function of the number of pressure taps and as a
function of the number of setups.

C
os

t

Number of Sensors / Setups

Sensors

Total

Setups

Minimum cost
point

Figure I.1.3: Minimisation of the cost as a function of the number of sensors and setups.
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For the first one, the price of one sensor is fixed. It means that the cost increases
linearly with the number of pressure taps. For the second one, an exponential curve is
used. The marginal cost decreases with the number of setups. Indeed, the increasing cost
from 1 to 2 setups is higher than from 10 to 11 setups.

Eventually, the total cost is calculated for each pair [N br setups,N br sensors] and a
minimum is found. This minimum is the economical optimum.

The purpose of this thesis is not to define the perfect economical multiple setup but
it is worth noticing that the interest of this method can also be economical. For that
reason, we did not plot the graph above with specific values on the axis to keep the
concept general.



Chapter 2

Considered case study

In 1997, Professors Kikuchi, Tamura, Ueda and Hibi from Japan conducted different
wind-tunnel experiments to investigate the properties of the wind pressure on tall building
using the Proper Orthogonal Decomposition (POD) technique as a post-processing tool.
This method is used to capture the most energetic terms in a general process [1]. In
wind engineering, it would allow us to express the whole pressure field with only a few
dominant modes.

In other words, the purpose of the analysis is to find a function that will correlate in
the best way all the elements of the fluctuating wind pressure field. The mathematical
expression of this problem is the maximisation of the projection from the fluctuating
pressure field p(x, y, t) into the deterministic function �(x, y):

Z Z
p(x, y, t)�(x, y)dxdy is maximum. (I.2.1)

Using a mean square method to solve this problem and considering the fluctuating
wind pressure as discretized, it can be written in the matrix form

Rp� = �� (I.2.2)

where R
p

is a spatial correlation matrix of the fluctuating wind pressure. Symbols �
and � denote an eigenvector and an eigenvalue of the spatial correlation matrix R

p

,
respectively [2].

Eventually, it can be shown that with only 65 modes, 90% of the original pressure field
can be obtained [3]. This observation highlights that the main part of the information
given by the 500 taps is redundant. Indeed, we do not need that much degrees of freedom
(pressure taps) to extract all the information contained in the wind. Reducing the number
of pressure taps takes on its full meaning.

2.1 Experimental Setup

These experiments were conducted in boundary layer wind tunnel with a cross section of
2.6 x 2.4 m. An approaching wind with a length scale of 1

400 for suburban terrain with a
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power-law was used. This law is defined as:

U(z) = U
ref

(
z

z
ref

)↵ (I.2.3)

where U
ref

is the reference velocity of the wind, z
ref

the height at which the boundary
condition has no more influence and ↵ a parameter of the law equal in our case to 1

6 .
The tall building model used is a rectangular prism with the following dimensions,

0.5 x 0.1 x 0.1 m. On the four faces were placed 125 pressure taps uniformly distributed
between 5 columns and 25 rows.

Figure I.2.1: Reference model.

All the pressures from the four faces were measured in a synchronous way. The
sampling interval of the fluctuating wind pressure was 1 ms and the 32768 samples were
obtained continuously [2].

Different angles of attack were used, from 0° to 45°. We will only focus on three of
them: 0°, 15° and 45°. In order to simplify the comprehension of this paper, we named
the faces as shown in the figure below.
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Figure I.2.2: Flow angles and faces names

2.2 Results

In order to have an idea of the resultant pressure field on the structure, it is worth looking
at its mean and its variance. These two quantities are represented by contour line on
each face.

Face 1 Face 2 Face 3Face 4

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure I.2.3: Mean pressure on the four faces for an angle of attack of 0°.



CHAPTER 2. CONSIDERED CASE STUDY 10

Face 1 Face 2 Face 3Face 4

 

 

0

0.05

0.1

0.15

Figure I.2.4: Variance of the pressure on the four faces for an angle of attack of 0°.

For an angle of attack of 0°, the wind pressure wind can be considered as symmetrical.
The mean pressure is positive on the first face and negative on the three others and the
magnitude is more important on the two lateral faces. Concerning the variance, it is
small on the two faces perpendicular to the wind flow and is more important on the two
laterals faces. This observations is explained by the vortex shedding phenomena that will
be discussed further afterwards.

The figures related to the other angles of attack are presented in the Appendix A.

2.3 Motivations

The motivation behind this choice is twofold. Firstly, the density of sensors used by the
experimenters is high. It means that we have of lot of information at our disposal. It
also means that when we will try to reduce manually the number of pressure taps, we
will have the chance to try different configurations.

Secondly, we want to develop a method that is as general as possible. Indeed, we want
to focus on the applied method and not on the specific results induced by the geometrical
particularities of the building. Moreover, the measurements made by Kikuchi & al. has
already been treated and studied many times since the experiments were conducted. We
can thus rely on them and focus again only on the process developed.

Despite this will of using a simple model to develop a general method, a lot of building
are directly concerned. Indeed, besides the fight of uniqueness between the architects, a
lot of new buildings are still parallelepipedic as shown in figure I.2.5.
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Figure I.2.5: Goldin Finance 117 in Tianjin (2015) on the left and the World Trade
Center 3 in Beijing on the right (2008)



Part II

Theoretical Aspects

This part summarises the main theoretical aspects and intro-

duces the notations that are used in the rest of the manuscript.

All the information presented are inspired from [4], [5] and [6].
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Chapter 1

The Finite Element Method

A common way to analyse structures is to use the finite element method. The real
structure is modeled by a certain amount of elements connected to each others at nodes.
Only the displacements of these nodes will be studied. Each node has six degrees of
freedom, three translations and three rotations. When studying a tall building, it is usual
to neglect the deformation along the axis of the element. Thus, five degrees of freedom
for each node are considered.

Chapter 1

Finite Element Method

Real structures are always continuous. It means that the structure is composed of
an infinite number of points close together. Unfortunately, nowadays technology
is limited and we need to find simplification in order to analyse any kind of struc-
tures. The first possibility is to develop a analytic model and to solve directly the
fundamental equations. This solution is really accurate but increases the complexity.

The second approach which is widely used in the design of buildings or civil
works is the Finite element Method (FEM). It consists on discretising the structure
in order to solve the problem numerically. In other words, we replace our continuous
structure by different points called nodes which are connected with elements. Each
node has six degrees of freedom, three translations and three rotations. In structural
dynamics, it is worth neglecting the deformation along the axis of the element. We
can thus consider five degrees of freedom for each node.

1
2
x1 y1 x2 y2

✓
x,1 ✓

x,2 ✓
y,1 ✓

y,2 ✓
z,1 ✓

z,2

The elements will have structural properties such as a mass, a stiffness and a
damping. To define these properties, we will assume that the element behave like a
continuous beam with uniform properties.
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Figure II.1.1: Degrees of freedom of an element.

The elements have structural properties such as mass, stiffness and damping that
need to be defined. Once it is done, the properties of these elements are combined in
order to get global matrices, which are related to the complete structure.

1.1 Resolution of the system

The general equation of the FEM is given by:

K
global

x = F
global

(II.1.1)

13



CHAPTER 1. THE FINITE ELEMENT METHOD 14

which is the relation between the forces applied on the system, F
global

, and its displace-
ments, x. These two are linked by a stiffness matrix K

global

. If we are looking at a
dynamic system, a mass and a damping matrice should also be considered in order to
find the displacements.

1.1.1 Stiffness and mass matrices

The local stiffness matrix of an element is defined in the following way:

K
element

= EI

0

BBBBBBBBBBBBBBBB@

12
L

3 0 0 0 6
L

2
�12
L

3 0 0 0 6
L

2

0 12
L

3 0 �6
L

2 0 0 �12
L

3 0 �6
L

2 0

0 0 GJ

EIL

0 0 0 0 �GJ

EIL

0 0

0 �6
L

2 0 4
L

0 0 6
L

2 0 2
L

0

6
L

2 0 0 0 4
L

�6
L

2 0 0 0 2
L

�12
L

3 0 0 0 �6
L

2
12
L

3 0 0 0 �6
L

2

0 �12
L

3 0 6
L

2 0 0 12
L

3 0 6
L

3 0

0 0 �GJ

EIL

0 0 0 0 GJ

EIL

0 0

0 �6
L

2 0 2
L

0 0 6
L

2 0 4
L

0

6
L

2 0 0 0 2
L

�6
L

2 0 0 0 4
L

1

CCCCCCCCCCCCCCCCA

=

 
kelement

1,1 kelement

1,2

kelement

2,1 kelement

2,2

!
.

Note that the dofs are ordered in the following way: (x1, y1, ✓z,1, ✓x,1, ✓y,1, x2, y2, ✓z,2, ✓x,2, ✓y,2).
For the mass, the Euler-Bernoulli matrix given as follow will be used:

M
element

= µL

420

0

BBBBBBBBBBB@

156 0 0 0 22L 54 0 0 0 �13L

0 156 0 �22L 0 0 54 0 13L 0

0 0 140It
A

0 0 0 0 70It
A

0 0

0 �22L 0 4L2 0 0 �13L 0 �3L2 0

22L 0 0 0 4L2 13L 0 0 0 �3L2

54 0 0 0 13L 156 0 0 0 �22L

0 54 0 �13L 0 0 156 0 22L 0

0 0 70It
A

0 0 0 0 140It
A

0 0

0 13L 0 �3L2 0 0 22L 0 4L2 0

�13L 0 0 0 �3L2 �22L 0 0 0 4L2

1

CCCCCCCCCCCA

.

These two matrices are related to one element. The damping matrix is defined
afterwards using the Rayleigh approximation and the modal decomposition.

1.1.2 Work-equivalent applied forces

The next step is to define the work-equivalent applied forces matrix. The main idea is to
integrate the load on the element in order to replace it by punctual forces applied on the
adjacent nodes. To illustrate this, an element uniformly loaded along one axis only is
considered.

This process is applicable along the x and y axis. Concerning the work equivalent
torsion, the process is similar and the assumption of a constant torsion along the element
is done. The integrated torsion is spread between the two adjacent nodes.
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The parameters used in this linear interpolation !1, !3 are the two first natural
pulsations both in the x et y direction because of the symmetry. They are determined
by calculating det(K � M!2) = 0 and finding the N roots of the N-polynomial
expression in !2 obtained. The values !

i

are positives, because M and K are positive
definite. They are ordered such that 0 < !2

1  !2
2  ...  !2

N

.
The damping matrix can be written,

C = ↵M + �K (1.1)

where the two coefficients ↵ and � are found with the following equations,

↵ =
2!1!3

!2
1 � !2

3

(!1⇠ � !3⇠) (1.2)

� =
2!1!3

!2
1 � !2

3

(
⇠

!1
� ⇠

!3
) (1.3)

Note that we keep the damping ratio ⇠ constant between the two first vibration
modes in each direction.

1.2 Loading

Once all the structural matrices are calculated, the last remaining step is to define
the load matrix. The main idea is to integrate the loads on the elements in order to
find the reactions applied on the degrees of freedom of the adjacent nodes. The latter
are called nodal forces. To illustrate this, we can consider an element uniformly
loaded only along one axis.
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Figure II.1.2: Work-equivalent applied forces
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1.2 Work-equivalent applied forces

Once all the structural matrices are calculated, the last remaining step is to define
the work-equivalent applied forces load matrix. The main idea is to integrate the
load on the element in order to replace it by punctual forces applied on the adjacents
nodes. To illustrate this, we can consider an element uniformly loaded only along
one axis.

Figure II.1.2: Work-equivalent applied forces

This process is applicable along the x et y axis. Concerning the work equivalent
torsion, we will proceed in a similar way and consider that torsion is constant along
the element and that the integrated torsion is spread between the two adjacent nodes.
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Figure II.1.3: Work-equivalent applied torsions

Again, the values are defined for an element. It is then necessary to build the complete
work equivalent force matrix by taking into account that most of the nodes are loaded by
two elements.

In a practice, an influence matrix will be defined in order to get the nodal forces from
the pressure at each point of the structure:

F(t) = Ap(t) (II.1.2)

where A is called the influence matrix, which is related to the position of the pressure
taps.



Chapter 2

Structural analysis

The general purpose of structural analysis is to determine both the displacements and
the internal forces of a structure in order to design it. When the structural response is
dynamic, inertial and damping terms must be considered in addition to of the stiffness
term. Eventually, the complete equation of movement is written,

Mẍ(t) +Cẋ(t) +Kx(t) = f(t). (II.2.1)

where M is the mass matrix, C the damping matrix and K the stiffness matrix. The
load f(t) and the displacement x(t) are given as an evolution over time of all the degrees
of freedom.

2.1 Modal decomposition

Instead of the solving the system with the nodal displacement as unknown, it is possible
to express the displacement as a combination of vibration modes. These modes are
defined by a shape and an amplitude. The unknowns are no longer the values of x(t) but
the modal amplitude q(t) so that:

x(t) = �q(t) = ⌃�
i

q
i

(II.2.2)

where �
i

represents the shape of the ith natural mode normalised as maximum unitary
and q

i

its magnitude. The matrices M,C and K must be projected in the modal basis
to get the generalised mass, stiffness and viscosity matrices related to the modal basis:

M⇤ = �TM� (II.2.3)
K⇤ = �TK� (II.2.4)
C⇤ = ↵M⇤ + �K⇤. (II.2.5)

These three matrices are diagonal. The generalised forces must also be calculated:

f⇤(t) = �T f(t). (II.2.6)
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The equation of movement (II.2.1) can be rewritten in the modal basis:

M⇤q̈(t) +C⇤q̇(t) +K⇤q(t) = f⇤(t). (II.2.7)

The modal approach appears to be useful for different reasons. Firstly, all the vibration
modes should not be used in the analysis. Indeed, the response takes place in only a few
dominant modes. Then, it allows to reduce the number of unknowns and to solve the
system only for these specifics modes. We will discuss further which modes should be
considered to keep on getting an accurate approximation of the response.

Secondly, the system is made of independent equations. Indeed, the structural matrices
are diagonal in the modal basis. In other words, it allows to solve each equation of the
system in the same manner as a singular degree of freedom structure.

Note that the modal basis is well adapted when the response is dynamic. On the
other hand, some discrepancy might appear when the response is quasi-static due to the
modal truncation.

2.1.1 Damping matrix

The Rayleigh approximation is used to determine the damping matrix. It consists of a
linear combination of the matrices M and K.

The parameters used in this linear interpolation !1, !3 are the two first natural
pulsations both in the x et y direction because of the symmetry. They are determined by
calculating det(K�M!2) = 0 and finding the N roots of the characteristic polynomial.
The values !

i

are positive, because M and K are positive definite. They are ordered in
such a way: 0 < !2

1  !2
2  ...  !2

N

.
The damping matrix can be written,

C = ↵M+ �K (II.2.8)

where the two coefficients ↵ and � are found with the following equations,

↵ =
2!1⇠

!1 + !3
(II.2.9)

� =
2!1!3⇠

!2
1 � !2

3

(
1

!1
� 1

!3
). (II.2.10)

Note that the damping ratio ⇠ is chosen constant between the two first vibration
modes in each direction.

2.2 Deterministic approach

A deterministic model is defined as "a mathematical representation of a system in which
relationships are fixed (i.e. taking no account of probability), so that any given input
invariably yields the same result" [7].
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In other words, all the results obtained in terms of displacements or internal forces
are fully determined by the system parameters and the initial conditions. This approach
is in opposition with the stochastic approach, which introduces the notion of probability.

To solve our problem in a deterministic way, we have two options. The first one
is to express the displacement as a function of time. The second one is to apply the
Fourier transform to our sample in order to get the results as a function of the frequency.
Both options are briefly discussed and are applied to the model in order to verify the
consistency of the results.

2.2.1 Time domain analysis

The time domain analysis consists in solving the fundamental equation as function of
time. The equations of the modal system are independent. Using a simple linear solver,
the fundamental equation can be written in the following way:

ż(t) = Az(t) +Bu(t) (II.2.11)

Since the analysis is done in the modal basis, q(t) is the modal displacements vector,

z(t) =

q(t)
q̇(t)

�
and u(t) is the modal forces vector. The two matrices A and B are defined

as:

A[2N⇥2N ] =


O

N

I
N

�M⇤�1K⇤ �M⇤�1C⇤

�
(II.2.12)

B[2N⇥N ] =


O

N

M⇤�1

�
(II.2.13)

where N is equal to the number of modes considered in the analysis, O
N

is a N ⇥ N
matrix full of zero and I

N

is a N ⇥ N identity matrix.
In order to limit the unsteady response at the beginning, the quasi-static displacement

is used as initial condition. It is defined as:

q
qs

(t) = K⇤�1f⇤(t). (II.2.14)

The initial velocity is supposed to be null.

2.2.2 Frequency domain analysis

The second possibility to solve the fundamental equation in a deterministic way is to use
the frequency domain analysis. This solution is really useful when working in the full
basis because it allows us to replace the convolution product by a simple multiplication.

The Fourier transform is applied directly on the fundamental equation and the
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resulting system is integrated by parts.
Z +1

�1
(M⇤q̈(t) +C⇤q̇(t) +K⇤q(t))e�i⌦tdt =

Z +1

�1
f⇤(t)e�i⌦tdt (II.2.15)

M⇤(�⌦2Q(⌦)) +C⇤(i⌦Q(⌦)) +K⇤Q(⌦) = F⇤(⌦) (II.2.16)

where

Q(⌦) =

Z +1

�1
q(t))e�i⌦tdt and F⇤(⌦) =

Z +1

�1
f⇤(t))e�i⌦tdt (II.2.17)

It is worth noticing that in the discrete version of the Fourier transform, the maximum
frequency that can be represented is defined as the Nyquist frequency. It is equal to half
of the frequency sample as shown on the figure II.2.1.
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Figure II.2.1: Representation of the Nyquist frequency

This property of the Fourier transform will have an involvement when using the modal
decomposition in the stochastic analysis. It is discussed more in detail afterwards.

The equation (II.2.16) can be rewritten in a simpler way using the fundamental
property of the system called the transfer function,

Q(⌦) = H⇤(⌦)F⇤(⌦) (II.2.18)

where

H⇤(⌦) = (�M⇤⌦2 +C⇤i⌦+K⇤)�1. (II.2.19)

Once the displacement as a function of the frequency is obtained, the displacement as
a function of time can be calculated using the inverse Fourier transform.

The result might be slightly different from the time domain analysis in the unsteady
state because of the initial conditions. Indeed, it is not possible to impose an initial
condition in the frequency analysis.
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2.3 Stochastic approach

Beside the deterministic approach, the whole structural analysis can be done in a stochastic
approach. However, the kind of results obtained from both analyses are slightly different
on the form. Indeed, the deterministic approach provides a specific evolution of the
displacement over time. The displacement is fully determined with the pressure field and
the structural properties.

On the other hand, the stochastic approach gives the probabilistic properties of the
structural response. In other words, the result of the analysis is not a specific evolution of
the displacement over time but properties from which it is possible to generate different
displacement fields with the same characteristics of the deterministic one.

2.3.1 Power spectral density

A stochastic process represents the evolution of random values over time. It can be
defined by its probability density function of order 1, p

f

(x, t)dx, which expresses the
probability that the function f takes a value between x and x+ dx at the time t.

The usual way of defining a stochastic process is to use the moments. The two first
are:

• Mean

µ
x

(t) = E[x(t)] =

Z �1

�1
xp

x

(x, t)dx (II.2.20)

• Autocorrelation

R
xx

(t1, t2) = E[x(t1),x(t2)] =

Z +1

�1

Z +1

�1
x1x2px

(x1, t1; x2, t2)dx1dx2. (II.2.21)

These moments are really important because in a Gaussian process, they are enough
to characterized it completely. Using directly these moments is difficult because the
probability density function needs to be defined.

Moreover, most of the time, we do not have at our disposal many processes. Hopefully,
the ergodicity theorem allows us to use only one sample that is long enough to represent
it in an accurate way.

The autocorrelation can be rewritten,

R
xx

(�t) = lim
T!1

Z +T/2

�T/2

x(t)x(t+�t)dt. (II.2.22)

This equation leads us to an important function, the power spectral density. The
PSD represents the frequency distribution of the energy from the stochastic process. It is
defined as the Fourier transform of the autocorrelation,

S
xx

(!) =
1

2⇡

Z +1

�1
R

xx

(⌧)e�j!⌧d⌧. (II.2.23)
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The PSD can also be express in the following way,

S
xx

(!) = lim
T!1

2⇡

T
E[|X

i

(!, T )|2] (II.2.24)

where X
i

(!, T ) = 1
2⇡

R +T/2

�T/2 x
i

(t)e�j!tdt is the Fourier transform of the truncated samples.
Again, only one sample can be used thanks to the ergodicity theorem:

S
xx

(!) = lim
T!1

2⇡

T
|X

i

(!, T )|2. (II.2.25)

The first fundamental property of the power spectral density is that its integral is
equal to the variance of the process. Indeed, the autocorrelation and the PSD form a
Fourier pair, the equation (II.2.23) and the inverse:

R
xx

(⌧) =

Z +1

�1
S
xx

(!)e�j!⌧d!. (II.2.26)

If ⌧ is replaced by 0, the equation becomes:

R
xx

(0) =

Z +1

�1
S
xx

(!)d! = �2
x

. (II.2.27)

In practice, several random processes have to be considered. The definition of the
PSD needs to be extended to the cross power spectral density:

S
xy

(!) = lim
T!1

2⇡

T
X(!)Y(!) (II.2.28)

which gives the covariance when integrated:
Z +1

�1
S
xy

(!)d! = ⇢
xy

�
x

�
y

. (II.2.29)

It is possible to go one step further and to define the power spectral density matrix
which contains all the PSD and cross-PSD of a whole set of random processes. Starting
from a vectorial process containing different random processes, its Fourier transform can
be computed:

x(t) =

0

BBBB@

x1(t)

x2(t)
...

x
n

(t)

1

CCCCA
(========)
Fourier transform

X(!) =

0

BBBB@

X1(!)

X2(!)
...

X
n

(!)

1

CCCCA
.

Using the definition given by the equation (II.2.28). The PSD matrix can be written:
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S
X

= lim
T!1

2⇡
T

XX
T

=

0

BBBBB@

S
x1(!) S

x12(!) . . . S
x1n(!)

S
x21(!) S

x2(!) . . . S
x2n(!)

...
... . . . ...

S
x

n1(!) S
x

n2(!) . . . S
x

n

(!)

1

CCCCCA
.

This important matrix contains a lot of information. By integration, the covariance
matrix is obtained:

R +1
�1 S

X

(!)d! =

0

BBBBB@

�2
x1

⇢12�x1�x2 . . . ⇢1n�x1�x

n

⇢12�x1�x2 �2
x2

. . . ⇢2n�x2�x

n

...
... . . . ...

⇢1n�x1�x

n

⇢2n�x2�x

n

. . . �2
x

n

1

CCCCCA
.

This matrix is the reference comparison point of this work. It could be expressed in
terms of nodal or modal displacement.

In order to use it to solve structural problems, a mathematical property of the PSD
needs to be defined.

Considering vectorial stochastic process x(t) with its corresponding PSD, S
x

(!). The
PSD of an other process y(t) defined by:

y(t)|{z}
m⇥1

= A|{z}
m⇥n

x(t)|{z}
n⇥1

. (II.2.30)

is written

S
y

(!)
| {z }
m⇥m

= A|{z}
m⇥n

S
x

(!)| {z }
n⇥n

AT

|{z}
n⇥m

. (II.2.31)

The same relation can be defined in the frequency domain.

2.3.2 Resolution of the system

The starting point of the analysis is always the evolution of pressure over time. The first
option is to compute directly the PSD of these pressure.

S
p

(!) = lim
T!1

2⇡

T
P(!)P(!)

T

. (II.2.32)

The equation (II.1.2) expresses the relation between the pressure and the nodal forces.
Using equation (II.2.31), it can be written:

S
F

(!) = AS
p

(!)AT . (II.2.33)
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which gives the power spectral density of the nodal forces. The modal decomposition is
applied to reduce the size of the system (equation (II.2.6)):

S
F

⇤(!) = �TS
F

(!)�. (II.2.34)

Once the modal forces are known, the modal displacement is calculated using the
function transfer as defined in equation II.2.35:

S
q

(!) = H⇤(!)S
F

⇤(!)H⇤T (!). (II.2.35)

This matrix contains the information needed to characterize the response of the
structure. Particularly, it is possible to integrate it to obtain the modal correlation
matrix.

The displacement in the modal basis can be projected the nodal one:

S
x

(!) = �S
q

(!)�T (II.2.36)

and eventually, it is possible to generate a displacement as a function of time from the
PSD, using the frequency decomposition:

X(!) =

r
2⇡N

�t
S
X

(!)ej�(!) (II.2.37)

where �(!) is a random phase shift. This value expresses the fact that the generated
process is not unique.

Alternative method

The main problem using this general method is numerical. Indeed, the computation of
the PSD matrix of the pressure is time and memory consuming.

The alternative way is to work with the pressure and the forces as a function of
time until the modal forces are calculated. At this point, the PSD of the modal forces
is evaluated. Depending on the number of modes kept, the size of the PSD matrix is
drastically reduced.

This method is used in this work.

2.3.3 Background/Resonant decomposition

The next theoretical aspect discussed is the decomposition of the modal displacement
PSD in two independent components, the background, which corresponds to the quasi
static response and the resonant.

The first statistical moment is written:

�2
q

=

Z +1

�1
|!|0S

q

(!)d!. (II.2.38)
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It can be shown by mathematical development that the moments can be expressed by
the sum of two terms:

�2
q

=

Z +1

�1

1

K2
S
f

⇤(!)d!

| {z }
m

B

+

Z +1

�1
(|H(!)|2 � 1

K2
)S

f

⇤(!)d!

| {z }
m

R

. (II.2.39)

The first term defines the background component, which is the moment of the modal
force divided by the stiffness. The second term can be approximated such that the
equation (II.2.39) is rewritten:

�2
q

=
�

f

⇤

K2
+

S
f

⇤(!
nat

)

K2

⇡!
nat

2⇠
. (II.2.40)

The interest of this expression is that the resonant component is calculated by knowing
the value of the PSD of the modal forces only at the natural frequencies. When we
are looking at partial measurements, a step of reconstruction of the missing data takes
place. Thanks to this simplification, the reconstruction is used only for a few natural
frequencies. Without this, it is unconceivable, regarding to time it takes, to apply this
method numerically.

Modal correlation

The development made above could be extended to the cross PSD in order to obtain an
expression of the modal cross correlation.

Considering two modes, m and n, their covariance can be written as a sum of a
background and a resonant term, C

q

mn

= B
mn

+ R
mn

. The mathematics behind this
formula is not discussed. Eventually, the complete equation is written:

C
q

mn

=
C

f

⇤
mn

K⇤
mm

K⇤
nn

+
⇡
p
!
m

!
n

2
p
⇠
m

⇠
n

p
S
f

⇤
mn

(!
m

)S
f

⇤
mn

(!
n

)

K⇤
mm

K⇤
nn

�(!
m

,!
n

, ⇠
m

, ⇠
n

) (II.2.41)

where

�(!
m

,!
n

, ⇠
m

, ⇠
n

) =
8(!

m

!
n

)3/2(⇠
m

!
m

+ ⇠
n

!
n

)
p
⇠
m

⇠
n

(!2
m

� !2
n

)2 + 4!
m

!
n

(⇠
m

!
m

+ ⇠
n

!
n

)(⇠
m

!
n

+ ⇠
n

!
m

)
(II.2.42)

is a natural frequency separation indicator because of the term (!2
m

� !2
n

)2 appearing in
the denominator.

This equation is consistent with the expression of the background/resonant variance
in equation II.2.40. Indeed, when m = n, both equations provide the same results.

Is it also possible to define the correlation coefficients. The development made consists
in expressing the correlation coefficients as a weighted combination of a background and
a resonant correlation:

⇢q
mn

= �
B

B
mnp

B
mm

B
nn

+ �
R

R
mnp

R
mm

R
nn

(II.2.43)
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where �
B

and �
R

are two weighting coefficients defined by the background-to-resonant
ratio in mode k, b

k

= B
kk

/R
kk

:

8
>><

>>:

�
B

=
1p

1 + b�1
m

p
1 + b�1

n

�
R

=
1p

1 + b
m

p
1 + b

n

.

(II.2.44)

Figure II.2.2: Background (�
B

) and resonant (�
R

) weighting coefficients, as a function of
the background-to-resonant ratios (b

m

b
n

)

To explain the meaning of equation II.2.43, it worth writing it in the following way:

⇢q
mn

= �
B

⇢f
⇤

mn

+ �
R

�
mn

�(!
m

,!
n

, ⇠
m

, ⇠
n

). (II.2.45)

Thus, the correlation coefficient is estimated by a weighted combination of the correla-
tion of the generalised forces ⇢f⇤

mn

and a dynamic correlation coefficient �
mn

�(!
m

,!
n

, ⇠
m

, ⇠
n

).
In the limit case of a background response in both modes, �

B

⇡ 1 and �
R

⇡ 0 so that
the response is quasi-static and the correlation of the modal responses is equal to that
of the generalised forces. On the other limit case, a resonant response in both modes,
�
B

⇡ 0 and �
R

⇡ 1 so that the correlation of the modal responses is defined by the
resonant term �

mn

�(!
m

,!
n

, ⇠
m

, ⇠
n

).



Chapter 3

Singular Value Decomposition

The Singular Value Decomposition is useful for the reconstruction of missing data. It is a
factorisation tool for real or complex rectangular matrix. The general form of the SVD is:

M|{z}
m⇥n

= U|{z}
m⇥m

⌃|{z}
m⇥n

V
T

|{z}
n⇥n

(II.3.1)

where U and V are unitary matrices and ⌃ is a diagonal matrix with non-negative
real numbers on the diagonal. The idea of this factorization is similar to the eigenvalue
decomposition, expressing the main directions of a matrix in terms of singular values and
vectors.

Figure II.3.1: Processus of the singular value decomposition

26
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It is worth illustrating the principle with a simple example where M is a [3⇥2] matrix:

0

B@
m11 m12

m21 m22

m31 m32

1

CA

| {z }
M

=

0

B@
| | |
u1 u2 u3

| | |

1

CA

| {z }
U

0

B@
�1 0

0 �2

0 0

1

CA

| {z }
⌃

 
�v1�
�v2�

!
T

| {z }
V

T

. (II.3.2)

The �
i

represents the singular values and the u
i

the singular vectors. Using the
properties of the eigenvalue decomposition, it is possible to generate a m⇥m matrix, M̂.
This matrix have as property that its n first principal directions are similar to the one of
M. The generation is made using the n singular values and vectors:

M̂|{z}
m⇥m

= eU|{z}
m⇥n

e⌃|{z}
n⇥n

eUT

|{z}
n⇥m

(II.3.3)

where eU is a m ⇥ n matrix extracted from U with the n first singular vectors in the
columns and e⌃ is a n ⇥ n matrix extracted from ⌃ with the n singular values on the
diagonal.



Part III

Reference Model Analysis
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Chapter 1

Model properties

The reference analysis consists in applying a standard approach on which we can rely on
in order to get results that could be compared afterwards. It is really important to be
confident in the method and on its results because the conclusion we will be based on
them.

The first step is to define the properties of the model that is used.

1.1 Experimental Data

The results from Kikuchi & al. experiment are given in terms of pressure coefficient,
c
p

(t). The pressures measured are divided by a factor K in such a way that the c
p

(t)
obtained are dimensionless:

c
p

(t) =
p(t)

K
ref

(III.1.1)

where K
ref

= 1
2 ⇢ U2

ref

.
In order to get results in terms of physical values, we work directly with pressures

(i.e. in N

m

2 ) instead of pressure coefficients. Moreover, as the reference wind speed used in
the experiment (21.2 m/s) was lower than traditional design wind speed, we will scale
the measured pressure to a wind speed of 30 m/s.

p(t) = c
p

(t) K
ref

U2
design

U2
ref

(III.1.2)

1.2 Finite element model

A straight-line model is used to represent the reference building. The model thus have
the behaviour of a free-fixed beam. This choice is reasonable for two reasons. Firstly, the
ratio between the height and the width, h

b

= 5, is large. Secondly, the pressure coefficients
from the experiment are independent of the structural properties of the building. It

29
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means that the mass, the stiffness and the damping ratio of our model need to be defined.
To stay focus on the motivation of this work, which must be as general as possible, we
did not try to calculate structural properties using a specific building. Indeed, using a
line model allows us to work with structural properties integrated over the area and thus
not related to a specific building configuration.

In order to be consistent with the available data, a model with 25 elements and 26
nodes is used. The resultant pressure is measured in the middle of each element. This
pressure will be considered as constant along the element.

: pressure taps 

: nodes 

: elements 

: support 

Legend :  
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Figure III.1.1: Finite element model

Since each nodes has 5 degrees of freedom, the total number of dof of the model is
130. The projection of the pressure into nodal forces is made by the intermediate of the
influence matrix, A. It integrates the pressure over the influence area and calculates the
work equivalent forces. Considering P

i

(t), the pressure on the face i, it can be written:

0

BBBBBB@

F
X

(t)

F
Y

(t)

M
Z

(t)

M
X

(t)

M
Y

(t)

1

CCCCCCA

| {z }
N

dof

⇥N

t

=

0

BBBBBB@

A
X

O �A
X

O

O A
Y

O �A
Y

A
M

Z

A
M

Z

A
M

Z

A
M

Z

O A
M

X

O �A
M

X

A
M

Y

O �A
M

Y

O

1

CCCCCCA

| {z }
N

dof

⇥N

taps

0

BBB@

P1(t)

P2(t)

P3(t)

P4(t)

1

CCCA

| {z }
N

taps

⇥N

t

(III.1.3)

where N
dof

is the number of degree of freedom of the system, N
t

the number time samples
and N

taps

the number of pressure taps on the model.
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The shape of the matrix is consistent with the physical behaviour, the crosswind
pressure (faces 2 and 4) has no influence on the along-wind forces (F

X

and M
Y

) and vice
versa.

To take into account the boundary conditions, the dofs connected to the ground needs
to be removed from the analysis. The foundation is not deformable so {x

ground

}(t) = 0.
Once all the other displacements are known, the boundary conditions are added back to
the results.

1.3 Structural properties

If the mass of a structure can be easily estimated, the stiffness is difficult to estimate in
a simple way. In that purpose, we chose to fix the natural frequency of the first bending
and torsional vibration modes. Indeed, with some experience and judgment it is easy to
estimate them for high-rise building.

We use in this paper a first natural frequency of 0.2 Hz in the first flexion mode and
of 2.5 Hz in the first torsional mode. To force the natural frequencies, we started from
their definition:

!
nat

=

r
K

M
. (III.1.4)

As we said, the easiest value to estimate is the mass. To define our mass matrix, we
make an hypothesis on the linear mass, µ = 10, 000kg

m

.
Knowing the natural frequency we want to obtain, the only unknown left is the

stiffness. As both the flexional and torsional stiffnesses are linear functions of a stiffness
modulus times an inertia, these stiffnesses can be written in the following way:

K
flex

= f(EI) (III.1.5)
K

tors

= f(GJ). (III.1.6)

The system is linear, starting with an unitary stiffness, we can therefore obtain the
targeted stiffness with a cross-multiplication. Eventually, the obtained stiffness are:

EI = 2.044.1012N.m2 (III.1.7)
GJ = 6.665.1013N.m2. (III.1.8)

As the structure is symmetric, the vibration modes along both the x and y axis are
exactly the same. The figure B.14 shows the mode shapes of the first seven modes.
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(a) 1st and 2nd modes
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(b) 3rd and 4th modes
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(c) 5th mode
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(d) 6th and 7th modes

Figure III.1.2: Mode shapes
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The natural pulsation of these modes are given in the following table:

Mode B1� x B1� y B2� x B2� y T1 B3� y B3� x
! [rad/s] 1.26 1.26 7.88 7.88 15.71 22.05 22.05

Table III.1.1: Natural pulsation of the main modes.

where B1� x is the bending mode in the x direction, T1 the first torsional mode, etc.
Concerning the damping matrix, the Rayleigh approximation is used. Since the mass

and the stiffness matrices are known the only unknown left is the damping ratio, ⇠. This
value is chosen equal to 0.003, which is a standard value for buildings [6].



Chapter 2

Deterministic approach

In this chapter, the two deterministic methods discussed in the theoretical part are
applied on the defined model. The objective of this is twofold. Firstly, to verify the
consistence of the system by comparing the displacements gotten from the frequency
domain and the time domain analysis. Secondly, to analyse the accuracy of the modal
decomposition and the discrepancy as a function of the number of modes kept.

2.1 Comparison of the time domain and the frequency
domain analysis

To illustrate the results, the displacements along x and y and the rotation at the top are
represented on figure III.2.1.

It can be seen that the displacements are similar and fit perfectly each other in the
stationary part. As expected, some discrepancy appears at the beginning in the unsteady
state. This difference is due to the initial condition imposed in the time domain analysis.

The response of the structure is resonant as further discussed next. The extreme
displacements for the different angles of attack are given in the following table.

Wind incidence
Displacement 0° 15° 45°

X direction [mm] 16.0 17.9 13.4
Y direction [mm] 40.5 23.3 13.4

Rotation [10�9rad/m] 3.63 2.31 1.42

Table III.2.1: Maximum displacement at the top for different angles of attack.

34
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Figure III.2.1: Displacements at the top for a 0° angle of attack.

The obtained maximum displacements are small compared to usual deflections but
they are related to the chosen properties of the model.

An interesting observation is that the displacement in the crosswind direction is more
important than the displacement in the along-wind direction. This phenomena is due to
the vortex shedding that solicits the structure laterally.
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Wind 

Crosswind force 

Crosswind force x 

y 

Figure III.2.2: Illustration of the vortex shedding phenomena on the building.

When the wind passes the building, the flow detaches itself from the structure and
creates vortices in the wake. These vortices detachments occur in a periodic way at each
side of the building, which means that crosswind forces appear and solicit the structure
in the other direction.

The vortex shedding frequency is characterised by the Strouhal number:

St =
f
v

D

U
wind

(III.2.1)

where f
v

is the frequency of vortex shedding, D is the characteristic length and U is the
wind velocity. To validate that the vortex shedding is the cause of this observation, the
frequency of the phenomena need to be found and compared to the PSD of the forces.

Several studies have been conducted to define the Strouhal number on square cylin-
ders [8] & [9]. The range of the values starts from 0.12 to 0.16. The characteristic length
is 40m, the width of the building and U

wind

is equal to 30 m/s. Finally, we obtain:

!
v

= 2⇡f
v

2 [0.61 0.84].

As it is discussed more in detail afterwards, the response in the Y-direction takes
place mainly in the corresponding first mode. The PSD of the modal force in this mode
can be computed:
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Figure III.2.3: PSD of the modal force in the first mode along y-axis.

It can be seen that most of the energy contained in the PSD of the modal forces is in
the range of the vortex shedding frequency. This allows us to validate the hypothesis that
the vortex shedding is the main reason of the crosswind forces applied on the building for
a 0° angle of attack.

The response of the structure is resonant. It is thus interesting to characterise the
intensity of the resonant phenomena by calculating the dynamic amplification factor.
The DAF expresses the value by which the quasi-static deflections should be multiplied
to obtain the deflections caused by a dynamic load. In other words it is the ratio between
the value in the table III.2.1 and the maximum quasi-static displacement:

DAF =
x
max

x
qs,max

. (III.2.2)
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The DAF related to the along-wind and crosswind displacements are given in the
following table:

Wind incidence 0° 15° 45°
Direction x y x y x y

Dynamic displacement [mm] 16.0 40.5 17.9 23.2 13.4 13.4
Quasi-static displacement [mm] 6.5 7.0 5.4 7.1 4.3 4.2

DAF 2.47 5.80 3.34 3.29 3.11 3.20

Table III.2.2: Dynamic amplification factor along-wind and crosswind displacements for
different angles of attack.

In the 0° angle of attack, the DAF is more important in the y-axis. It is the perfect
illustration of the vortex shedding phenomena described above.

2.2 Accuracy of the modal decomposition of the quasi-
static response.

As we said in the theoretical part, the modal decomposition is well adapted for resonant
response but it might be less accurate for the quasi-static component. In order to quantify
the discrepancy of the modal decomposition, we calculate the mean relative error of the
maximum displacement for each degree of freedom between the displacement in the nodal
basis and the displacement in modal basis using a different number of modes.

(
x
Nodal

(t) = K�1f(t)

x
Modal

(t) = �K⇤�1f⇤(t)
(III.2.3)
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The obtained errors are given in the following table:

Number 0° 15° 45°
of modes x y z x y z x y z

1 4.5 - - 5.2 - - 8.8 - -
2 4.5 6.7 - 5.2 8.4 - 8.8 7.4 -
3 1.3 6.7 - 1.3 8.4 - 2.5 7.4 -
4 1.3 6.7 - 1.3 0.9 - 2.5 2.3 -
5 1.3 6.7 5.1 1.3 0.9 5.6 2.5 2.3 20.3
...

...
...

...
...

...
...

...
...

...
7 0.1 0.1 5.1 0.6 0.5 5.6 0.9 1.1 20.3
...

...
...

...
...

...
...

...
...

...
50 10�4 10�3 10�3 10�3 10�3 10�2 10�3 10�3 10�2

...
...

...
...

...
...

...
...

...
...

125 10�10 10�10 10�12 10�10 10�10 10�12 10�10 10�10 10�12

Table III.2.3: Relative error [%] for the maximum displacement using the modal decom-
position with different number of modes

It can be seen in the table above that the relative errors decrease sharply when using
more than 5 modes. Thus, it is considered that with 5 modes or more, the quasi-static
response is well represented in the modal basis.



Chapter 3

Stochastic approach

This approach provides the reference results of our analysis. The path followed is explained
in the section 2.3.2.

Starting from the pressure field on the model, the work-equivalent forces are calculated
using the influence matrix defined in the section 1.2:

f(t) = Ap(t) (III.3.1)

where p(t) = [500⇥N
t

], A = [125⇥ 500] and f(t) = [125⇥N
t

].
The next step is to express these forces in a modal basis.

3.1 Modal decomposition

The PSD is expressed as a function of the pulsation from 0 to ⇡

dt

, the Nyqvist pulsation.
It means that higher frequencies can not be represented. Comparing this maximum
pulsation to the natural pulsation of our modes, we see that in only seven modes the
natural pulsation is below.

To stay consistent with this observation, these seven modes are kept in the modal
analysis. As it is shown in the deterministic approach, the error of the quasi static
response in the modal basis using seven modes is small. It is thus reasonable to use the
modal decomposition for the entire response.

The modal forces are calculated using the modal vectors:

f⇤(t) = �T f(t) (III.3.2)

where f(t) = [125⇥N
t

], � = [125⇥ 7] and f⇤(t) = [7⇥N
t

].
Following the alternative method described in the theoretical chapter in order to

improve the numerical efficiency in terms of time, the PSD of the modal forces is computed.

40
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3.2 Window function

As discussed in the theoretical chapter, a PSD can be compute from one sample using
the ergodicity theorem. Practically, if the signal is long enough, a window function is
used in order to get several smaller signals from the original one.

f ⇤k
ij

= F k

window

j

f ⇤
ij

(III.3.3)

where k is the number of the window, i the number of the modal force and j the time
abscissa. The window function used in this paper is a unitary rectangle that moves over
the signal as illustrated in the figure below.
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Figure III.3.1: Illustration of the window function principle.

For each windowed signal, a PSD is calculated. This technique has the advantage that
an average can be made so that the noise in the final result is reduced. The figure III.3.2
illustrates the influence of the number of windows on the PSD.
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Figure III.3.2: Influence of the number of windows on the PSD.

Eventually, a window length of 1024 points is chosen in order to have a good compro-
mise between the number of windows and the number of points in each window.

3.3 PSD and covariance matrices of the displacements

Using seven modes in the modal decomposition leads us to compute 7 PSD and 21
Cross-PSD (because of the symmetry) of the modal forces. The figure III.3.3 illustrates
the PSD of the modal forces for the first three modes.

0 2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

ω [rad/s]

S
f*(ω

)

 

 

Mode 1
Mode 2
Mode 3

Figure III.3.3: PSD of the modal forces in the first three modes for an angle of attack of
0°
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From this point, the PSD of the modal displacement can be calculated by post and
pre multiplying the PSD of the modal forces by the transfer function of the system:

S
q

(!) = H⇤(!)S
F

⇤(!)H⇤T (!) (III.3.4)

which gives the PSD of the modal displacement in the first three modes shown on
figure B.4,
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Figure III.3.4: PSD of the modal displacement in the first three modes for an angle of
attack of 0°

One of the main interests of these PSDs is their integral. Indeed, by integrating the
PSDs over the frequency, the covariance matrix is computed. To understand the meaning
of this information, the diagonal that contains the variance or the standard deviation of
the modal displacements is extracted and the complete matrix is normalised to a unitary
diagonal in order to get the modal correlation coefficients.

These two are the comparison points of our analysis. It means that at the end of
every approach, we compare the standard deviation and the modal correlation of the
modal displacements in order to estimate any deviation occurring between the different
processes.

The standard deviation of the modal displacements for each mode used in the analysis
are given on figure III.3.5.
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(b) Angle of attack of 15°.
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(c) Angle of attack of 45°.

Figure III.3.5: Standard deviation of the modal displacement in the first seven modes.

As it can be seen, the response takes place almost only in the first two modes for
each angle of attack. This first observation have an important impact on the second
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comparison point chosen. Indeed, as the variance is only important in the first two modes,
comparing the modal correlation only makes sens between these two modes. In other
words, from the matrix presented below, only one value is interesting to compare and
quantify the accuracy of the reconstruction.
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Figure III.3.6: Correlation coefficient of the modal displacement.

The figure above represent the full correlation coefficient matrix for the three angles
of attacks. It is presented for information since the only important value from this matrix
is the correlation between the first and the second mode.

The correlation is relatively small for each mode. The higher correlation that appears
is between the second and third modes both in the x and the y direction. It can also be
seen that generally, the correlations are more important in the case of the angle of attack
of 45°, which is explained by the symmetry of the loading between the two directions x
and y.



Chapter 4

Background/Resonant decomposition

In this chapter, we apply the background/resonant decomposition in order to quantify the
error made using this approach. The main idea of this method is to replace the response
of a structure by two independent components, the quasi-static one and the resonant one.

4.1 Illustration of the Background/Resonant decompo-
sition

The equation of the PSD using the background/resonant principle is written:

S
q

(!) =
S
f

⇤(!)

K2
| {z }

Background

+S
f

⇤(!
nat

)|H(!)|2
| {z }

Resonant

. (III.4.1)

To illustrate this decomposition, we apply it on the PSD of the modal displacement
in the first mode. The component of S

q

are plotted in order to compare them to the PSD
from the complete stochastic analysis. The figure III.4.1 represents the PSD of the modal
displacement in the first mode from the Background/Resonant decomposition. The curve
in red is simply the sum of the two others.

46
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Figure III.4.1: Background/Resonant decomposition of PSD of the modal displacement
in the first mode.

This curve is compared to the one obtained in the complete stochastic analysis and
represented on figure III.3.4.
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Figure III.4.2: Comparison of the PSD of the modal displacement in the first mode with
B/R and complete stochastic analysis.
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It can be seen that the curves are perfectly similar in the low frequency range and
near the peak. These observations are easily explained because in these two frequency
ranges, the response is mostly governed by one phenomenon, either the background or
the resonant.

On the other hand, in between these two zones, the response is influenced by both
components which means that the hypothesis of the independency between them is
no longer valid. Hopefully, the interesting value is the integral of these curves. On a
Cartesian plot, it can be seen that most of the energy is in the peak ( III.4.3). That
means that it is the part where the most accuracy is needed.
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Figure III.4.3: PSD in a cartesian plot and zoom on the resonant peak.

The right figure represents a zoom on the resonant peak. The two curves are extremely
close to each other.

This approach gives a good idea of the mechanism behind the background/resonant
decomposition. However, it is not possible to rely on visual observations. To definitely
validate this approach, these curves are integrated in order to have values to compare
with the complete stochastic analysis. This integration provides us with the covariance
matrix.

4.2 Covariance matrix of the modal displacements

The background/resonant decomposition is applied directly on the modal displacements:

q
BR

(t) = q
B

(t) + q
R

(t) (III.4.2)
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where q
B

(t) is the background response and q
R

(t) the resonant response.
To compare the results we work with the covariance matrices of the modal displace-

ments. The covariance of a sum is written in the following way:

C
q

BR

= C
q

B

+C
q

R

+C
q

B

,q

R

. (III.4.3)

where the term C
q

B

,q

R

is the cross-covariance. It can be neglected since the background
and the resonant component are supposed independent. Finally, the equation is written:

C
q

BR

= C
q

B

+C
q

R

. (III.4.4)

The matrix C
q

BR

will be compared to the one obtained by integration of the PSD of
the displacements.

4.2.1 Background component

The quasi-static response is easily estimated. Indeed, it is simply the resolution of the
fundamental equation of motion when there is no internal nor damping terms.

x
B

(t) = K�1f(t) (III.4.5)

This expression is extended to the covariance matrix:

C
x

B

= K�1C
F

K�T . (III.4.6)

To calculate the covariance of the forces, the covariance of the pressure are computed
directly from the experiment samples.
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Figure III.4.4: Covariance matrix of the pressure for an angle of attack of 0°.

Then, the covariance of the forces is computed:

C
F

= AC
p

AT . (III.4.7)

Eventually, as we want to work with the modal displacements, C
x

is projected in the
modal basis:

C
q

B

= �TC
x

B

�. (III.4.8)

It has been shown that seven modes are enough to represent in an accurate way the
quasi-static response in the modal basis.
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4.2.2 Resonant component

To represent the resonant component of the response, only the PSDs of the pressure
at the natural frequencies kept in the modal analysis need to be known. Thus, these
matrices can be extracted from the complete PSD matrix of the pressure:

CHAPTER 4. BACKGROUND/RESONANT DECOMPOSITION 48

terms.

x(t) = K�1F (t) (III.4.4)

This expression can extended to the covariance matrix using the Property 1
described in the theoretical part. We can written :

Cov
x

= K�1Cov
F

K�T (III.4.5)

To calculate the covariance of the forces, we first need to compute the covariance
of the pressure directly for the experiment samples. Then, we can use the Property
1 with the influence matrix :

Cov
F

= ACov
p

AT (III.4.6)

Eventually, as we want to work with the modal displacements we can project
Cov

x

in the modal basis :

Cov
q

= �T Cov
x

� (III.4.7)

It has been shown that seven modes are enough to represent in an accurate way
the quasi-static response in the modal basis.
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Figure III.4.5: Extraction of the PSD at the natural frequencies.

where S
p

(!
nat

i

) is the PSD at the natural frequency i. Finally, we have a matrix with
the dimensions [500⇥ 500⇥ 7] instead of [500⇥ 500⇥ 513]. This leads to a less time and
memory consuming implementation.

The PSDs at the natural frequencies are complex but they can be represented in
terms of absolute value and argument.
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Figure III.4.6: Absolute value of the PSD of the pressure at the first natural frequency
for an angle of attack of 0°.

Figure III.4.7: Argument of the PSD of the pressure at the first natural frequency for an
angle of attack of 0°.
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The matrices above are organised face by face. They will be the starting point of the
reconstruction step.

Once these matrices are extracted, the path followed is similar to what has been done
previously. First the calculation of the PSD of the forces at these natural frequencies:

S
F

(!
nat

) = AS
p

(!
nat

)AT . (III.4.9)

And then, the projection of these forces in the modal basis:

S⇤
F

(!
nat

) = �TS
F

(!
nat

)�. (III.4.10)

Eventually, the covariance matrix of the modal displacements can be calculated using
the equation II.2.41.

4.3 Comparison of the complete stochastic analysis and
the background/resonant decomposition.

In order to quantify the error made using the background/resonant decomposition, we
compare the standard deviation of the modal displacement and the correlation coefficient
matrix. As it was said in the previous chapter, these two are the metrics used to have an
estimation of the accuracy of a method.

The standard deviation can be compared for each mode used in the modal decompo-
sition. The other angles of attacks are presented in Appendix B.

         Mode 1         Mode 2         Mode 3         Mode 4         Mode 5         Mode 6         Mode 7
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Figure III.4.8: Standard deviation of the modal displacement for the complete analysis
and the B/R decomposition for an angle of attack of 0°.
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The figure above provides us with a first idea of the accuracy of the B/R decomposition.
Indeed, the values are closed to the reference ones. It is possible to quantify the relative
error.

�
q

- Ref [mm] �
q

- B/R [mm] Relative error [%]
Mode 1 6.102 6.084 0.297
Mode 2 12.677 12.634 0.335
Mode 3 3.31810�2 3.33110�2 0.404
Mode 4 4.69710�2 4.68210�2 0.317
Mode 5 1.00910�6 1.01510�6 0.593
Mode 6 3.32910�3 3.30910�3 0.594
Mode 7 2.25210�3 2.24510�3 0.369

Table III.4.1: Comparison of the standard deviation of the modal displacement for
an angle of attack of 0° between the reference analysis and the background/resonant
decomposition.

The relative error on the standard deviation of the modal displacement made using
the background/resonant decomposition is small. The response takes place mainly in
the first two modes. For that reason, the relative errors for the other angle of attack
are given only for these two modes. The obtained relative errors for the other angles of
attack are again really small.

�
q

- Ref [mm] �
q

- B/R [mm] Relative error [%]

15° Mode 1 5.090 5.079 0.214
Mode 2 8.542 8.492 0.591

45° Mode 1 5.015 5.002 0.260
Mode 2 5.289 5.287 0.028

Table III.4.2: Comparison of the standard deviation of the modal displacement for
different angle of attack between the reference analysis and the background/resonant
decomposition.

To definitely validate the method, we compare compare the correlation coefficient
matrices in order to quantify the accuracy of the B/R decomposition on the modal
correlation.
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(a) Complete stochastic analysis.
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(b) Background/Resonant decomposition.

Figure III.4.9: Correlation coefficient of the modal displacement for an angle of attack of
0°.

The obtained correlation coefficient matrix with the background/resonant decomposi-
tion is really close to the reference one. As the only meaningful value is the correlation
coefficient between the first and the second modes we calculate the error on this value for
the different angles of attack.

⇢12 - Ref [�] ⇢12 - B/R [�] Absolute Error [�]
0° 0.051 0.049 0.002
15° 0.177 0.154 0.023
45° 0.056 0.099 0.043

Table III.4.3: Comparison of the modal correlation coefficient of mode 1 and 2 for different
angle of attack.

In the case of the correlation, the important is not to reconstruct the value with a
small relative error. Indeed, since the standard deviation is accurate, it is only necessary
that the absolute difference between the correlation is as small as possible. Moreover as
we work with small numbers, it makes more sens to use this definition of the error.

As it can be seen, the difference between the modal correlation in the complete
stochastic analysis and the background/resonant decomposition is small. Theses different
results validate the use of the background/resonant decomposition.
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Chapter 1

Multiple setup measurements

The developments made in the first parts of this paper were conducted with all the
pressure taps used by Kikuchi & al. during their experiments. As discussed in the
introduction, most of the time a limited amount of available sensors leads experimenter
to use multiple setup measurements.

To illustrate the method developed, we define a reference experimental setup that
will be used to explain all the steps from the partial data measured to the reconstructed
displacement field. Alternative experimental setups are also defined.

1.1 Reference multiple setups

The main scheme of the multiple setups that are presented is to conduct several experi-
ments with some of the sensors that are fixed and some of them that are moving across
the structure.

The reference experimental multiple setup consists of 4 configurations where 104 taps
are fixed and 99 taps are moving. The fixed taps are placed in two columns, one row on
two on each face. The moving taps will fill each face one by one so that 4 configurations
are obtained.

The figure below illustrates the first configuration.
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Face 1 Face 2 Face 3 Face 4 

Moving sensors Fixed sensors Empty spaces 

Figure IV.1.1: First configuration of the reference experimental setups

The three other configurations consist simply in moving the blue taps on the three
other faces. It is worth noticing that we chose to put the same number of fixed taps on
each face. Indeed, as we are looking at different angles of attacks, we need to extract a
maximum of informations for each wind incidence.

Eventually, instead of getting from the experiments the full covariance and PSD
matrices of the pressure, we have a lack of information on the relation between some taps
since they are not measured synchronously. To illustrate this we look at the covariance
matrix of the pressure we got from complete measurements on figure III.4.4.

The missing information can be removed to get the matrix we have after the experiment
with a limited number of sensors (figure IV.1.2). The blank spaces are the unknown data
that we need to reconstruct.

The same process is applied on the PSD of the pressure at the natural frequencies.
These matrices will be the new starting point of the analysis so that a reconstruction
step is needed before the straight application of the background/resonant decomposition
described above.
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Figure IV.1.2: Covariance matrix of the pressure from the reference measurements setup

1.2 Alternative setups

It exists an huge number of multiple setup configurations. In order to have different
comparison points, two alternative setups are presented.

Alternative setup 1

The first alternative setup consists in 100 fixed taps and 100 moving taps. The fixed
ones, are placed as one column by face and 6 row that follow all the circumference of
the building. The moving taps will fill each face like what it was done in the reference
multiple setup.
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Face 1 Face 2 Face 3 Face 4 

Moving sensors Fixed sensors Empty spaces 

Figure IV.1.3: First configuration of the alternative setups

This configuration as the advantage that we also measure information about the
correlation across each face at a same level.

Alternative setup 2

In order to increase the importance of the measurement of this correlation between the
different faces, it is possible to change the way of using the moving sensors.

In this second alternative setup, the 100 fixed sensors stay the same. Concerning the
moving taps, they are placed on each face but only on a certain height of the building.
Then, they will go down in order to cover all the building with the different configurations.
As an example, with 128 sensors the entire building is covered with 3 setups.
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Face 1 Face 2 Face 3 Face 4 

Moving sensors Fixed sensors Empty spaces 

Figure IV.1.4: First configuration of the second alternative setups

Eventually, it possible to summarise the properties of the different setups.

Reference (SVD 1) Alternative 1 (SVD 2) Alternative 2 (SVD 3)
Setups 4 4 3

Fixed sensors 104 100 100
Moving sensors 99 100 128

Total 203 200 228

Table IV.1.1: Characteristics of the different multiple setups measurement studied.

As it can be seen, the two first multiple setups scheme are similar in terms of sensors
and setups. The last one need a bit more sensors but only 3 setups. The three schemes
are called SVD 1, SVD 2 and SVD 3.



Chapter 2

Reconstruction of incomplete
measurements

The experiment conducted with a limited number of sensors and different configurations
gives us partial information on the statistical properties of the pressure. It means that
we need to fill the gaps in our covariance and PSD matrices in order to design properly
our structure.

There are different ways to guess the missing information such as filling with random
value [3]. However, this approach is limited because the positive definite condition of the
matrices we want to approximate need to be fulfilled. Thus, it is important to think at
more appropriate method to apply.

One of them is to apply the Singular Value Decomposition on the know part of the
matrix in order to extract the principle directions of it and to use them to reconstruct a
complete matrix with the same properties.

2.1 Application of the Singular Value Decomposition

The reconstruction using the SVD is applied on the partial matrices. We work with the
covariance matrix of the pressure to illustrate the process but the method is similar for
the PSD of the pressure at each natural frequency.

The rectangular matrix in the red box, called Ĉ
p

, is known (figure IV.2.1). We apply
the SVD on it.
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Figure IV.2.1: Extraction of a rectangular matrix from the covariance of the pressure to
apply the SVD.

The SVD is written as described in the theoretical part:

Ĉ
p|{z}

500⇥104

= U|{z}
500⇥500

⌃|{z}
500⇥104

V
T

|{z}
104⇥104

(IV.2.1)

It is possible to extract the singular values and vectors from the U and ⌃ matrices in
order to generate a matrix with the same first directions:

C̃
p|{z}

500⇥500

= Û|{z}
500⇥104

⌃̂|{z}
104⇥104

ÛT

|{z}
104⇥500

(IV.2.2)

where ⌃̂ is a diagonal matrix with the singular values on it, Û a rectangular matrix
containing the singular vectors on its columns and C̃

p

the approximation of the real
covariance matrix of the pressure.

2.2 Scaling of the reconstructed matrix

One of the main issues using the SVD reconstruction is that we overwrite values we know
from the measurements. Especially the squares on the diagonal on the figure IV.2.1.
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The simplest way to avoid this problem would be to replace only the blank spaces
of the partial matrix with corresponding values obtained with the SVD reconstruction.
However, the positive definite condition would no longer be fulfilled, which means that
this first option is not applicable.

The other solution would be to scale the matrices from SVD reconstruction in order
to get a better approximation of the value measured in the multiple setups. The scaling
consists in pre and post multiplying the reconstructed matrix, C̃

p

, by a scaling matrix,
D in such way to keep the symmetry:

˜̃C
p

= D0.5C̃
p

DT

0.5 (IV.2.3)

where the values in the scaling matrix need to be defined on criteria that will be discussed
below in such way that:

˜̃C
p

⇡ C
p

. (IV.2.4)

2.2.1 Diagonal elements

Two different ways of scaling are presented. The first option consists in scaling the
matrix from SVD reconstruction in order to obtain the same diagonal as the partial
measurements matrices. In the case of the covariance matrix, it means having a perfect
estimation of the variances.

The scaling matrix will be a diagonal matrix with the values on its diagonal defined
as:

D
i

=
C

p

i

C̃
p

i

. (IV.2.5)

With this approach, the scaling matrix is easy to define because all the values
needed are known. Eventually we obtain covariance matrix of the pressure presented on
figure IV.2.2.

This simple but accurate approach is used to calculate the error made using the SVD
reconstruction.
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(a) Organised fixed taps - moving taps.

(b) Organised face by face.

Figure IV.2.2: Covariance matrix of the pressure from the reference measurements setup
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2.2.2 Full measurements data

The scaling described above has the advantage to be easy to implement. Unfortunately,
we still overwrite a lot of values known from the measurements. To avoid that, an option
would be to use a different scaling matrix in order to get a reconstructed matrix in which
all the values known from the measurements would be as close as possible from the real
ones.

The main idea is to use a mathematical criteria to express the "as close as possible"
condition. One possibility is to use the absolute difference between the scaled and the
measured values and to minimise its norm:

! min(||c
p

� ˜̃c
p

||) (IV.2.6)

where c
p

is a vector containing all the values measured and ˜̃c
p

is a vector containing the
corresponding values obtained with the SVD reconstruction and scaled with a scaling
matrix D.

As the values measured and the values from the SVD reconstruction are fixed, the
only variables of this optimisation problem are in the scaling matrix. This matrix must
be [500⇥ 500] which means that we have at our disposal 250000 degrees of freedom to
find the minimum.

Using a matrix full of variables is numerically problematic reading to the time.
Alternative shape can be defined such as a diagonal, a band or a triangular matrix.

Figure IV.2.3: Alternative shapes for the scaling matrix.

The blank spaces are filled with zero and the hatched spaces are the kept variables.
This approach has been implemented for some extracted parts of the C

p

matrix. Even
if the results are promising, the calculation time is already important, which means that
it is still not possible to use it on the full C

p

matrix.
To reduce the complexity on this optimisation, a solution could be to find an analytical

expression of the problem in order to solve it directly.



Chapter 3

Results

The last step of our work is to analyse the results and to quantify their accuracy. For
that, we use the metric defined above,that is to say the relative error on the standard
deviation and the absolute error on the correlation of the modal displacements. These
quantities are calculated with the different multiple setups defined above and compared
to the reference results from the complete stochastic analysis with all the sensors.

3.1 Standard deviation

The first comparison point chosen is the standard deviation of the modal displacements.
As it was shown previously, the response takes place in the two first modes for each wind
incidence. Thus, only the standard deviation in these modes is compared.
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Figure IV.3.1: Standard deviation of the modal displacements in the first and the second
modes with an wind incidence of 0°.
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Figure IV.3.2: Standard deviation of the modal displacements in the first and the second
modes with an wind incidence of 15°.
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Figure IV.3.3: Standard deviation of the modal displacements in the first and the second
modes with an wind incidence of 45°.

The figures above represent the standard deviations calculated with the different
methods. The general observation is that all the results are close to the reference ones.
It is difficult to define the best approach only with these bar graphs. In order to have a
better idea of the accuracy of the reconstruction, it is interesting to calculate the relative
error between the multiple setups and the complete analysis.
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0° 15° 45°
Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

�
q

- Reference [mm] 6.102 12.677 5.090 8.543 5.015 5.289

�
q

- Svd 1 [mm] 6.174 12.637 5.137 8.660 5.053 5.375
Relative error [%] 1.18 0.31 0.93 1.38 0.76 1.63
�
q

- Svd 2 [mm] 6.130 12.733 5.052 8.525 5.038 5.300
Relative error [%] 0.46 0.44 0.73 0.21 0.44 0.22
�
q

- Svd 3 [mm] 6.130 12.733 5.052 8.525 5.038 5.300
Relative error[%] 0.46 0.44 0.73 0.21 0.44 0.22

Table IV.3.1: Comparison of the standard deviation of the modal displacement for
different angle of attack.

The obtained relative errors on the standard deviation are smalls. The general
observation that can be made from this table is that the two alternative setups (Svd 2 &
Svd 3) are as accurate as each other but are both more accurate than the Svd 1.

This leads us to a first outcome. The fixed sensors used in both Svd 2 and Svd 3 are
the same, the setups differ only by the moving taps and their accuracy is similar. On the
other hand, the moving sensors in Svd 1 and Svd 2 are exactly the same. The difference
between them is the reference fixed sensors used and the accuracy is better when using
Svd 2.

This would mean that the choice of the moving setups has less importance. The
most important feature of the multiple setup measurements would be to chose strategic
location to place the fixed sensors.

3.2 Modal correlation

The second metric used is the absolute error on the modal correlation. As it was done
when studying the background/resonant decomposition, only the correlation between the
two modes in which the response takes place will be compared to the reference one.
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(a) Complete stochastic analysis.
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(b) Reconstructed correlation coefficient ma-
trix (Svd 1).

Figure IV.3.4: Correlation coefficient of the modal displacement for an angle of attack of
0°.

0° 15° 45°
⇢12 - Reference [�] 0.049 0.177 0.056

⇢12 - Svd 1 [�] 0.056 0.161 0.114
Absolute error [-] 0.007 0.016 0.058

⇢12 - Svd 2 [�] 0.057 0.125 0.099
Absolute error [-] 0.008 0.052 0.043

⇢12 - Svd 3 [�] 0.058 0.125 0.099
Absolute error[-] 0.009 0.052 0.043

Table IV.3.2: Comparison of the correlation coefficients of the modal displacement for
different angle of attack .

The absolute errors presented in the table above are again really smalls. The maximum
difference between the reference correlation and a reconstructed one is 0.058. The only
relevant observation that can be made is that the reconstructed coefficients of Svd 2 and
Svd 3 are the same, which shows the implication of the fixed sensors. It is not possible
to draw a general conclusion on the most accurate setup to reconstruct the correlation
coefficients.

Theses results are encouraging and foreshadow a robust and accurate method. However,
it is important be careful. Indeed, such small errors on the modal correlation and the
standard deviation need to be validated by testing the method on other models in order
to have several comparison points.
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Conclusion

This master’s thesis aimed to develop a method to reconstruct wind pressure field
from incomplete measurements. Using multiple setup measurements in a wind tunnel
experiment provides only a partial information on the correlation and the coherence
between the different places of a structure.

This problem is formulated in a statistical framework using a stochastic approach.
The background/resonant decomposition is applied. The quasi-static part is represented
by the correlation matrix of the pressure at different locations of the structure and the
resonant part by the PSD matrix of these pressures. The partial measurements lead to
missing information in these matrices.

We have proposed the use of a singular value decomposition method for the recon-
struction of the missing data. This non parametric method is shown to be a robust
interpolation tools. It allows to extract the main directions of a set of data, in our case
the measured correlation and coherence. These principle directions are used to generate
a complete set of data with the same properties.

This method works perfectly when the information extracted from the partial mea-
surements represents the main direction of the complete data. In other words, the key
feature of this method lies in the choice of strategic places for the reference sensors used
in the multiple setup measurements.

The concept has been illustrated with the pressure field over a rectangular prism. We
show that with 4 setups and 200 sensors, we are able to reproduce a response that is
close to the one obtained with 500 sensors. The maximum relative error on the standard
deviation of the modal displacement is 0.73 %. We also show that an alternative scheme
with 3 setups and 238 sensors provides the same results.

These results are encouraging and highlight the accuracy of the method if an appro-
priate multiple setup measurements experiment is conducted. Moreover the accuracy
remains similar for different wind angles of attack.

Although we have focused on a simple rectangular prism, the concept may be extended
to more complex structures. Indeed, as the method developed is non parametric, the
same scheme of fixed and moving sensors could be applied on other civil works such as
stadium roof or bridges. And eventually, beside the interest in the civil engineering field,
this method could also find its place in the other engineer fields such as mechanics and
aeronautic.
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Figure A.1: Mean pressure on the four faces for an angle of attack of 15°.
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Figure A.2: Variance of the pressure on the four faces for an angle of attack of 15°.

78



Face 1 Face 2 Face 3Face 4

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure A.3: Mean pressure on the four faces for an angle of attack of 45°.
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Figure A.4: Variance of the pressure on the four faces for an angle of attack of 45°.
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Figure B.1: PSD of the modal forces in the first three modes for an angle of attack of 15°
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Figure B.2: PSD of the modal displacement in the first three modes for an angle of attack
of 15°
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Figure B.3: PSD of the modal forces in the first three modes for an angle of attack of 45°
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Figure B.4: PSD of the modal displacement in the first three modes for an angle of attack
of 45°
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Figure B.5: Covariance matrix of the pressure for an angle of attack of 15°.

Figure B.6: Covariance matrix of the pressure for an angle of attack of 45°.
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Figure B.7: Absolute value of the PSD of the pressure at the first natural frequency for
an angle of attack of 15°.

Figure B.8: Argument of the PSD of the pressure at the first natural frequency for an
angle of attack of 15°.
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Figure B.9: Absolute value of the PSD of the pressure at the first natural frequency for
an angle of attack of 45°.

Figure B.10: Argument of the PSD of the pressure at the first natural frequency for an
angle of attack of 45°.
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Figure B.11: Standard deviation of the modal displacement for the complete analysis
and the B/R decomposition for an angle of attack of 15°.
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Figure B.12: Standard deviation of the modal displacement for the complete analysis
and the B/R decomposition for an angle of attack of 45°.
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(a) Complete stochastic analysis.
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(b) Background/Resonant decomposition.

Figure B.13: Correlation coefficient of the modal displacement for an angle of attack of
15°.
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(a) Complete stochastic analysis.
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(b) Background/Resonant decomposition.

Figure B.14: Correlation coefficient of the modal displacement for an angle of attack of
45°.
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