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Introduction

Wave problems are often encountered in several fields of physics. Acoustic, electromagnetic,
seismology and mechanical waves in solids or fluids, inter alia. These problems can be solved
using their harmonic solutions that correspond to solutions subjected to harmonic excitations.
If equations are linear, these harmonic solutions constitute a basis for their corresponding
problem. Finding them is therefore, important to characterize the problem.

The finite element method is often used to solve these problems because it is possible to
deal with complex geometries and non-uniform material properties. To solve problems using
the finite element method, the domain need to be bounded. Nevertheless, some problems are
unbounded, for example, a radiation problem in the free-space. Therefore, a new boundaries
are added to truncate the domain in order to solve the problem using the finite element
method. New boundary conditions must be added to these new non-physical boundaries to
avoid reflection. Conditions such absorbing boundary conditions (ABC) and more recently
perfectly matched layers (PML) are used for this propose. Furthermore, a fairly fine mesh
needs to be used to properly represent the wave behavior. In a three-dimensional problem,
this can lead to a significant number of complex unknowns, especially at high frequencies.
Thus, using direct sparse solvers is not suitable for these kinds of problems, while iterative
solvers converge slowly or worse, diverge. Domain decomposition methods are used to over-
come this problem. The idea behind these methods is to subdivide the domain into smaller
subdomains to which a direct sparse solver can be applied to solve the global problem by an
iterating algorithm on subdomains.

The rate of convergence of domain decomposition methods is strongly linked to trans-
mission conditions (TC) imposed between adjacent subdomains. Therefore, it is crucial to
achieve a superior design of the TC.

If the implementation is parallel, there may also be another consequence of using a domain
decomposition method. Since the resolution is divided into subdomains, an efficiency parallel
implementation can be built. The use of a decomposition of domain is especially advantageous
for large problem (several million degrees of freedom), and may even be necessary.

The following work focuses the Helmholtz equation, which can be obtained, for instance in
acoustic, fluid or uncoupled solid mechanics. The solutions are expressed by scalar complex
values, while electromagnetic waves or coupled mechanical waves involve vector complex
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values. Moreover, the numerical implementation is based on the GetDDM1 package.

The work is divided in four chapters and some appendices that discuss or clarify some
points. The first chapter introduces the theoretical notions relating to the Schwarz domain
decomposition method. The second presents the mesh partitioning tool that is developed
in the framework of this work in order to automatically partition a mesh. This tool creates
the partitioned meshes files and an the topology structure. The third chapter examines the
numerical efficiency of such a method effects. The final chapter presents real examples of a
seismic problem.

1http://onelab.info/wiki/GetDDM
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Chapter 1

Schwarz methods

Hermann Schwarz (1843 - 1921) was a German mathematician who worked on an existence
and uniqueness proof of the Poisson problem applied to complex geometries. Currently,
the Lax-Milgram theorem exists that provides sufficient conditions for the existence and
uniqueness of a solution to a problem expressed in its weak formulation. However, this
theorem was not discovered until 1954, so the only mathematical tool available to Schwarz
was the Fourier transform, which can only be applied to simple geometries. Schwarz had the
idea to divide a complex geometry into simple subdomains to which the Fourier transform
could be applied.

This chapter reviews the history of the Schwarz algorithm to obtain the current formula-
tion that will be used in this work.

1.1 Sequential Schwarz algorithm

The first version of the Schwarz algorithm was sequential and applied to Poisson problems.
it is introduced here by considering the following problem:

−∆u = f in Ω (1.1)
u = 0 on ∂Ω,

where Ω = Ω1 ∪ Ω2 is the domain in Figure 1.1 and u is a function from Ω to R.

9



Ω1 Ω2

Figure 1.1: A complex geometry where the Schwarz algorithm is applied.

Once this problem is posed, the sequential Schwarz algorithm operates iteratively on un1
(resp. un2 ), which corresponds to the nth iteration of the local solution on Ω1 (resp. Ω2) and
can be expressed as:

−∆un+1
1 = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω (1.2)

un+1
1 = un2 on ∂Ω1 ∩ Ω2,

then,

−∆un+1
2 = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω (1.3)

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

This algorithm is interesting because it reduces the size of the finite elements matrix,
which subsequently a direct solver to be used. However, its weakness is its sequential nature;
at the (n + 1)th iteration the (n + 1)th solution on subdomain 1 is computed and then the
(n+1)th solution on subdomain 2 can be computed using the (n+1)th solution on subdomain
1, etc. To make it parallel, P.L. Lions proposed another version of the Schwarz algorithm in
1989.

1.2 Parallel Schwarz algorithm

The P.L. Lions parallel version of the Schwarz algorithm applied on N subdomains has the
following form:

−∆un+1
i = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω (1.4)

un+1
i = unN+1−i on ∂Ωi ∩ ΩN+1−i.

where ui is the local solution in subdomain i. This parallel algorithm is called the Jacobi
Schwarz method (JSM) because there is a link with the Block Jacobi method used to solve
linear systems (see [8] p.6).
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This is a parallel Schwarz algorithm because at each iteration, every local solution can
be computed simultaneously. The diagram (Figure 1.2) illustrates how such a method could
be implemented to solve a Poisson problem on two subdomains using two CPUs. An other
important remark is that solutions computed are local. Mathematically, two operators have
to be introduce to build the global solution.

CPU 1 CPU 2

Solve (1.4) in Ω1 without the in-
terface condition to compute u0

1

Solve (1.4) in Ω2 without the in-
terface condition to compute u0

2

Solve (1.4) in Ω1 to compute un1 Solve (1.4) in Ω2 to compute un2

Test the error and stop if it is small enough

Send un1 on ∂Ω1 ∩ Ω2 to node 2 Send un2 on ∂Ω2 ∩ Ω1 to node 1

Receive un2 from node 2 Receive un1 from node 1

n← n+ 1 n← n+ 1

n← 1 n← 1

Figure 1.2: Diagram of parallel Schwarz algorithm.

The first operator is called the extension operator Ei(ui) and is defined on every subdo-
main. It extends the solution ui in Ωi to Ω by zero outside Ωi. The second one is called the
partition of unity χi(x) defined in Ωi. It is equal to zero for x = ∂Ωi\∂Ω and it is positive
anywhere else. The value of the partition of unity is defined such that:

u =
2∑
i=1

Ei(χiui). (1.5)

This partition of unity allows that the global solution is a weighted average of local solutions
on every point of the domain. For example, in the domain represented in Figure 1.1, the
partition of unity would be equal to:

χ1(x) =


0 ∀x ∈ ∂Ω1\∂Ω
α ∀x ∈ Ω1 ∩ Ω2

1 otherwise
and, χ2(x) =


0 ∀x ∈ ∂Ω2\∂Ω
1− α ∀x ∈ Ω2 ∩ Ω1

1 otherwise
, (1.6)

where α is a real constant.
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The JSM solves the local solution ui at each iteration. Two others versions of this algo-
rithm exist which compute a local correction vi of the global solution u at each time step. The
first one is the Restricted Additive Schwarz method (RAM) and the second is the Additive
Schwarz method (ASM). In this section only the RAS method is discussed.1

The RAM starts by computing the local solution in the same way as JSM:

−∆u0
i = f in Ωi (1.7)
u0
i = 0 on ∂Ωi ∩ ∂Ω,

next, it forms the global solution u0 using (1.5). Subsequently, the iterative solver begins by
computing the residual:

rn := f + ∆un (1.8)

and uses it to compute the local correction vni ,

−∆vni = rn in Ωi, vni = 0 on ∂Ωi. (1.9)

Finally, the global solution is corrected using:

un+1 = un +
N∑
i=1

Ei(χiv
n
i ) (1.10)

where N is the number of subdomains.

To establish that the RAS and the JSM algorithms are equivalent, it is necessary to prove
that

un =
N∑
i=0

Ei(χiw
n
i ) (1.11)

where wi is the local solution given by the JSM algorithm and un is the global solution given
by the RAS algorithm. Because the two algorithms start by resolving the decoupled problem
on the subdomains, it can be assumed that:

u0 =
N∑
i=0

Ei(χiw
0
i ) (1.12)

Let us suppose that (1.11) is true for n and prove that it is also true for n+ 1. According to
(1.10) we have

un+1 =
N∑
k=1

Ei(χi(u
n + vni )) (1.13)

The goal now is to prove that un + vni satisfies (1.4) and is equal to wn+1
i ,

−∆(un + vni ) = −∆(un) + rn = −∆(un) + f + ∆(un) = f in Ωi (1.14)

un + vni = un on ∂Ωi ∩ ΩN+1−i.

1For more information about ASM, see [8], [6] and [24]
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Equation 1.14 matches perfectly with (1.2) if un = unN+1−i on ∂Ωi ∩ ΩN+1−i. This is the
case due to the definition of the partition of unity χi, which is null on ∂Ωi ∩ ΩN+1−i and
furthermore, χN+1−i is equal to one on this domain. It is therefore proved that un + vni is
equal to the solution of the JSM algorithm, wn+1

i .

1.3 Optimized Schwarz methods

1.3.1 First optimized Schwarz method

In practice, the parallel Schwarz methods discussed above have a disadvantage because to
observe a convergence, an overlap between the neighbor subdomains is necessary. For a
large problem with many subdomains, this overlap can introduce a non-negligible amount of
additional computation. For this reason, an optimized Schwarz version that can be applied to
non-overlapping subdomains was developed by P.L. Lions. This method replaces the Dirichlet
interface condition in (1.4) with a Robin condition:

−∆un+1
i = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω (1.15)(

∂

∂ni

+ α

)
un+1
i =

(
∂

∂ni

+ α

)
unN+1−i on ∂Ωi ∩ ΩN+1−i,

where ni is the outer normal on the boundary of the subdomain i and α is a positive constant.

1.3.2 Application to the Helmholtz problem

The Helmholtz equation represents the harmonic solutions of a wave equation. It is an
elliptic partial differential equation. This equation can easily be obtained from a general
wave equation, such as:

1

c2

∂2u(x, t)

∂t2
−∆u(x, t) = f(x, t) (1.16)

where c is the speed of the wave and u and f are a scalar function (although they can be
a vector function as well in the case of Maxwell or coupled elastic equations). Because we
are interesting by the harmonic solutions, it is assumed that the solution and the excitation
follow the general form:

u(x, t) = u(x)e−iωt and, f(x, t) = f(x)e−iωt (1.17)

where i2 = −1 and ω is the angular frequency. Note that the convention chosen uses a
time dependency e−iwt, while some authors have used eiwt. This choice affects subsequent
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developments. Substituting (1.17) for (1.16) results in:

− ω2

c2
u(x)e−iωt −∆u(x)e−iωt = f(x)e−iωt (1.18)

Using k2 = ω2/c2, ithe non-homogeneous Helmholtz equation is obtained:

(−∆− k2)u(x) = f(x). (1.19)

In a majority of the cases, f(x) = 0 in the wave equation leads to the homogenous
Helmholtz equation:

(−∆− k2)u(x) = (∆ + k2)u(x) = 0. (1.20)

The main difference between the optimized Schwarz method (1.15) applied to the Poisson
problem and the same algorithm applied to the Helmholtz problem is the sign of the operator.
In the Poisson problem, the operator is positive definite while for the Helmholtz problem it is
indefinite. This implies that the finite element stiffness matrix remains symmetric, but is not
longer positive definite. For example, in the case of a one-dimensional finite element method
with five nodes applied to the Helmholtz problem, one can compute the stiffness matrix as
follows:

K =


−4.3333 −8.1667 0 0 0
−8.1667 −8.6667 −8.1667 0 0

0 −8.1667 −8.6667 −8.1667 0
0 0 −8.1667 −8.6667 −8.1667
0 0 0 −8.1667 −4.3333

 , (1.21)

which has the following eigenvalues (−22.2289;−14.9492;−5.8379; 1.9492; 6.4002). As can be
observed, the eigenvalues are either positive or negative and thus, the matrix is indefinite.

Thus, it is necessary to determined whether the indefinite operator changes the con-
vergence of the method by computing the errors en1,2 = un1,2 − u induced by the Schwarz
method on a homogeneous Helmholtz equation. Because un1,2 and u verify the equation and
the operators are linear, the error verifies (1.15) as well. The domain is the plane Ω = R2

divided into two domains Ω1 = {R−,R} and Ω2 = {R+,R}. The non-overlapping interface
is Γ = {(x, y) ∈ R2 : x = 0}. To complete the problem definition, the incoming Sommerfeld
radiation condition is added:

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0 (1.22)

where r =
√
x2 + y2.

Due to the symmetry of the problem, one should the partial Fourier transform along y to
algorithm 1.15,

∂2ên+1
1,2

∂x2
+ (k2 − k̃2)ên+1

1,2 = 0, ∀(x, k̃) ∈ {Ω1,2,R} (1.23)(
± ∂

∂x
+ α

)
ên+1

1,2 (0, k̃) =

(
± ∂

∂x
+ α

)
ên2,1(0, k̃),
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where ê1,2(x, k̃) = (Fe1,2)(x, k̃). The plus sign in front of the derivative along x is applied
to compute the solution on the 1st subdomain and the minus sign is applied on the 2nd
subdomain. Equation 1.23 has the well-known solution:

ên+1
1,2 = C0e

λ(k̃)x + C1e
−λ(k̃)x (1.24)

where

λ(k̃) =

{ √
k̃2 − k2 ∀ |k̃| ≥ k,

i
√
k2 − k̃2 ∀ |k̃| < k.

(1.25)

Since the incoming Sommerfeld radiation condition excludes growing modes and outgoing
modes, it is as follows

ên+1
1 (x, k̃) =

{
en+1

1 (0, k̃)eλ(k̃)x ∀|k̃| ≥ k

en+1
1 (0, k̃)e−λ(k̃)x ∀|k̃| < k

(1.26)

ên+1
2 (x, k̃) =

{
ên+1

2 (0, k̃)e−λ(k̃)x ∀|k̃| ≥ k

ên+1
2 (0, k̃)eλ(k̃)x ∀|k̃| < k

A first important conclusion can be made from these results. The local error induced by
the Schwarz algorithm, and thus the global error, depends only on the error that is made at
the interfaces. Therefore, if the interface solutions converge, the global error also converges.
From an algorithmic perspective, it is possible to apply the stop criterion only at the interface
errors.

To determine the convergence of such a problem, on should compute the derivative of
(1.26) at the interface:

∂ên+1
1

∂x

∣∣∣∣
x=0

=

{
λ(k̃)ên+1

1 (0, k̃) ∀|k̃| ≥ k

−λ(k̃)ên+1
1 (0, k̃) ∀|k̃| < k

(1.27)

∂ên+1
2

∂x

∣∣∣∣
x=0

=

{
−λ(k̃)ên+1

2 (0, k̃) ∀|k̃| ≥ k

λ(k̃)ên+1
2 (0, k̃) ∀|k̃| < k

and plug (1.27) into the Robin condition of problem (1.23) to obtain:

(±λ(k̃) + α)ên+1
1 (0, k̃) = −(±λ(k̃)− α)ên2 (0, k̃) (1.28)

(±λ(k̃) + α)ên2 (0, k̃) = −(±λ(k̃)− α)ên−1
1 (0, k̃)

Thus, it is easy to verify that:

ên+1
1 (0, k̃) =

(±λ(k̃)− α)2

(±λ(k̃) + α)2
ên−1

1 (0, k̃) (1.29)

ên+1
2 (0, k̃) =

(±λ(k̃)− α)2

(±λ(k̃) + α)2
ên−1

2 (0, k̃),
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where the convergence factor appears,

ρ(k̃) =



∣∣∣∣∣λ(k̃)− α
λ(k̃) + α

∣∣∣∣∣ ∀|k̃| ≥ k∣∣∣∣∣λ(k̃) + α

λ(k̃)− α

∣∣∣∣∣ ∀|k̃| < k

(1.30)

Figure 1.3 displays the convergence factor in the function of the reduced Fourier number
(s = k̃/k). Therefore, the algorithm proposed by P.L. Lions, which use a real value for α, is
not useful for the Helmholtz problem. Indeed, the convergence factor is equal to one for the
propagative modes (see Appendix A) and thus, the solution will not converge.

To conclude, more sophisticated interface conditions need to be used when applying a
non-overlapping domain decomposition method to the Helmholtz problem.
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Figure 1.3: Convergence factor of the problem (1.15) for the Helmholtz equation applied on
two partitions dividing the plane (α = k).

1.3.3 Others interface conditions

Because a more complex operator is needed to solve the Helmholtz problem, the real number
α is replaced by a more general one. Using the same notation from paper[23], the new
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algorithm can be rewritten as follows:

−∆un+1
i = f in Ωi

un+1
i = 0 on ∂Ωi ∪ ∂Ω (1.31)(

∂

∂ni

+ S
)
un+1
i =

(
∂

∂ni

+ S
)
unN+1−i on ∂Ωi ∪ ΩN+1−i,

where S is the operator. Many operators have been proposed (see Appendix C) such as the
evanescent modes damping algorithm [4] that uses,

S = −ik + χ (1.32)

where i2 = −1, k is the wave number and χ is a real constant. The convergence factor
with this operator is presented in Figure 1.4. Using this kind of operator, an adequate
convergence factor appears for the propagative and evanescence modes, except for s = 1 where
the convergence factor is equal to one. Nevertheless, it can be concluded that this parallel
Schwarz algorithm converges for the Helmholtz problem when the appropriate transmission
condition is used.
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Figure 1.4: Convergence factor of the problem (1.31) using the transmission operator (1.32)
with S = −ik + k in the case of the Helmholtz equation applied on two partitions dividing
the real plane.
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1.4 Helmholtz equation using optimized Schwarz

1.4.1 Weak formulation

Using all previous discussions, the Helmholtz problem can be formulated. To remain general,
the Helmholtz problem is applied to a volume Ω partitioned in N subdomains called Ωi. The
boundaries of Ωi are divided into three types:

• Γi,d where Dirichlet conditions are applied;

• Γi,n where Neumann conditions are applied;

• Γi,Inf , the non-physical boundary used to truncate an infinite domain where absorbing
conditions are imposed (see Appendix B).

In addition, the boundary interfaces between subdomains i and j are called Σij, to which a
transmission condition is applied.

With this geometry in mind, the Helmholtz problem using an optimized Schwarz method
can be expressed as:

(∆ + k2)un+1
i (x) = 0 in, Ωi

un+1
i (x) = f(x) on, Γi,d

∂nu
n+1
i (x) = e(x) on, Γi,n (1.33)

∂ni
un+1
i (x) + Bun+1

i (x) = 0 on, Γi,Inf

∂ni
un+1
i (x) + Sun+1

i (x) = gnij on, Σij

where f(x) and e(x) are the Dirichlet and Neumann conditions and gnij is the interface
unknown on Σij, which can be updated according to:

gn+1
ji = −gnij + 2Sun+1

i (x) on, Σij. (1.34)

To implement problems (1.33) and (1.34) using a finite element method, their weak for-
mulations are needed. The weak formulations of the volume and the interface problems are
as follows:

• Find un+1
i (x) in H1

0 (Ωi) such that,∫
Ωi

∇un+1
i (x) · ∇vi(x)− k2un+1

i (x)vi(x) dΩi +

∫
Γi,Inf

Bun+1
i (x)vi(x) dΓi,Inf

−
∫

Γi,n

e(x)vi(x) dΓi,n +
∑
j

∫
Σij

Sun+1
i (x)vi(x) dΣij =

∑
j

∫
Σij

gnij(x)vi(x) dΣij

(1.35)
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for all vi in H1
0 (Ωi).

• Find gn+1
j,i (x) in H1

0 (Σij) such that,∫
Σij

gn+1
ji (x)hji(x) dΣij = −

∫
Σij

gnij(x)hji(x) dΣij −
∫

Σij

Sun+1
i (x)hji(x) dΣij (1.36)

for all hj,i in H1
0 (Σij).

It is important that the absorbing boundary condition and the transmission condition
possess the form presented in Equation 1.33, because it can be strongly enforced in the weak
formulation.

1.4.2 Schwarz method implementation

Following the same idea used to find the RAS algorithm (1.10), the solution to problem 1.33
can be decomposed in two terms un+1

i = vn+1
i + wn+1

i . This decomposition is allowed by the
superposition principle, which is a consequence of the linearity of the problem. The first term
is the solution in which the interface’s unknown is set to zero which leads to:

(∆ + k2)vn+1
i (x) = 0 in, Ωi

vn+1
i (x) = f(x) on, Γi,d

∂nv
n+1
i (x) = e(x) on, Γi,n (1.37)

∂ni
vn+1
i (x) + Bvn+1

i (x) = 0 on, Γi,Inf

∂ni
vn+1
i (x) + Svn+1

i (x) = 0 on, Σij.

This term is independent on the iteration and can be written as vi. The second term corre-
sponds to the problem without boundary conditions, except the interface’s unknown,

(∆ + k2)wn+1
i (x) = 0 in, Ωi

wn+1
i (x) = 0 on, Γi,d

∂nw
n+1
i (x) = 0 on, Γi,n (1.38)

∂ni
wn+1
i (x) + Bwn+1

i (x) = 0 on, Γi,Inf

∂ni
wn+1
i (x) + Swn+1

i (x) = gnij on, Σij.

According to Equation 1.34, the interface’s unknown is given by:

gn+1
ji = −gnij + 2Sun+1

i (x) (1.39)
= −gnij + 2Swn+1

i (x) + 2Svi(x),

which can be rewritten by introducing a new operator A:

gn+1
ji = Agnij + 2Svi(x). (1.40)
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This expression can be compared to the Jacobi method used to solve a linear system such
as Ax = b, where A is a square matrix of size m, x is the unknown vector of size m and b is
the right-hand-side of size m. First, the matrix A is decomposed by A = M −N , where M
is an easily inversed matrix (for example a diagonal matrix). Using this decomposition, the
linear problem can be written as:

Mx = Nx+ b (1.41)
x = M−1Nx+M−1b

The Jacobi method proposes to solve such a linear problem iteratively according to,{
x0 = 0
xn+1 = M−1Nxn +M−1b

, (1.42)

which converges if the spectral radius of the matrix M−1N is smaller than one.

Indeed, if A is such that its spectral radius is smaller than one, which in fact depends on
the choice of the transmission operator, Equation 1.40 is a one step of a Jacobi method that
corresponds to the linear system:

(I − A)g = 2Svi(x), (1.43)

where I is the identity operator. This kind of problem can be solved using every iterative
solver.

Finally, the Schwarz domain decomposition method, as implemented in the GetDDM
package, is formulated by:

i Compute the initial solution vi without the transition condition according to (1.37);

ii Iterate until the convergence is reached on the following problem:

1 Compute wn+1
i using Equation 1.38;

2 Use Equation 1.40 to compute gn+1, the set of interface unknowns.

iii Compute the final solution ui = vi + wn+1
i .
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Chapter 2

Mesh partitioning tool

To implement a parallel Schwarz algorithm on a domain Ω, the algorithm needs to be divided
into subdomains Ωi and the topology must to be known. For example, the boundary Γij
between subdomains i and j need to be identified. This is the purpose of the mesh partitioning
tool developed in this work. Thus, the partitioning tool performs:

• the decomposition of a global mesh file written in the Gmsh1 format into other mesh
files that contain the subdomain meshes;

• the creation of the new entities that correspond to the boundaries of the subdomains;

• the creation of a file that contains the topology of the problem to be used by the finite
element solver GetDP.2

This chapter presents several algorithms and uses a pseudo-code to clarify the lecture.
When actually implemented, the C++ language is used.

2.1 Global mesh partitioning

2.1.1 METIS partitioning

METIS is a set of functions used for partition a graph or a mesh[19]. It was developed in
1995 by the Karypis Lab at the University of Minnesota.

1Gmsh is a free 3D finite element grid generator developed by the C.Geuzaine and J.F. Remacle[12].
2GetDP is a free finite element solver developed by P. Dular and C. Geuzaine at the University of Liège[10].
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The partitioning algorithm, as described in [16], [17] and [18], works in three steps. The
first step uses an initial graph as input and creates iteratively smaller graphs by collapsing
the set of adjacent vertices into a single vertex. When the number of vertices reaches in
the hundreds, the next step begins. These hundreds of vertices are divided into N sets,
where N is the desired number of partitions. This step uses a heuristic method. Due to the
small number of vertices, the partitioning occurs quickly. The last step consists of iteratively
re-forming the graph by performing the inverse of the first phase. After each iteration,
an optimization process is conducted at the boundaries of the partitions to smooth them.
Figure 2.1 illustrates a schematic representation of this algorithm.

Figure 2.1: The METIS partitioning algorithm (image of George Karypis that comes from
[19]).

2.1.2 Implementation

The METIS library can directly partition a mesh. The format that it uses to represent a
mesh is composed by two arrays of integers, eptr and eind. The eptr has a length equal to
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the number of elements in the mesh plus one. For the element n, eind[eptr[n]] contains
the node’s tag of the first node of element n. The following integers of eind[] represent the
tag of the others nodes of element n until eind[eptr[n+1]] is reached, which corresponds to
the first node of the next element. Figure 2.2 displays an example of a mesh that corresponds
to the following arrays:

i n t eptr [ ] = {0 ,4 , 7} ;
i n t e ind [ ] = {1 , 2 , 3 , 4 , 2 , 3 , 4} ;

Listing 2.1: eptr and eind format.

1
•

2
•

3
•

4•5•

1 2

Figure 2.2: Example of mesh that corresponds to the METIS mesh structure in Listing 2.1.

In the present case, the mesh structure is included in a GModel class provided by the
Gmsh library. Therefore, the first step uses this class to build the pair of arrays necessary
to METIS. The function that accomplishes this is called GModelToGraph. The implemented
algorithm is presented in Listing 2.2.

First, a map that contains the correspondence between the tags of the elements and the
tags of their corresponding nodes is filled; we loop over all the geometrical entities that
are contained in the GModel class (regions, faces, edges and vertices). Inside an entity,
the function elementsToNodes is used to fill the map with a particular kind of element.
Finally, this map is used to create the METIS mesh structure. The eptr array is created by
counting the number of nodes possessed by element i and assign this value to eptr[i+1].
Subsequently, the eind array is filled by assigning all the node’s tags contained in the map.
void GModelToGraph(GModel gModel , i n t eptr [ ] , i n t e ind [ ] )
{

//multimap that s t o r e the a l l e lement ’ s tags with t h e i r cor re spond ing node
’ s tags
multimap<int , int> elementsToNodes ;

//Loop over r e g i on s
f o r reg overAl l r e g i on s in gModel
{

f i l lE lementsToNodes ( elementsToNodes , a l l t e t rahedra in reg ) ;
f i l lE lementsToNodes ( elementsToNodes , a l l hexahedra in reg ) ;
f i l lE lementsToNodes ( elementsToNodes , a l l pr isms in reg ) ;
f i l lE lementsToNodes ( elementsToNodes , a l l pyramids in reg )
f i l lE lementsToNodes ( elementsToNodes , a l l t r i h ed r a in reg )
f i l lE lementsToNodes ( elementsToNodes , a l l polyhedra in reg ) ;

}
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//Loop over f a c e s
f o r f a c overAl l f a c e s in gModel
{

f i l lE lementsToNodes ( elementsToNodes , a l l t r i a n g l e s in f a c ) ;
f i l lE lementsToNodes ( elementsToNodes , a l l quadrangles in f a c ) ) ;
f i l lE lementsToNodes ( elementsToNodes , a l l polygons in f a c ) ) ;

}

//Loop over edges
f o r edg overAl l edges in gModel
{

f i l lE lementsToNodes ( elementsToNodes , a l l l i n e s in edg ) ;
}

//Loop over v e r t i c e s
f o r ver overAl l v e r t i c i e s in gModel
{

f i l lE lementsToNodes ( elementsToNodes , a l l po in t s in ver ) ;
}

// c r e a t e mesh format f o r METIS
in t numVerticesByElm = 0 ;
i n t i = 0 ;
eptr [ 0 ] = 0 ;

f o r i t e r a t o r overAl l elementsToNodes
{

//Count the number o f nodes that have each elements
numVerticesByElm = ( count ( f i r s tVa l u e o f i t e r a t o r ) o f elementsToNodes ) ;
ept r [ i +1] = numVerticesByElm ;
i++;

}

i n t i = 0 ;
f o r i t e r a t o r overAl l elementsToNodes
{

e ind [ i ] = ( secondValue o f i t e r a t o r ) ;
i++;

}
}

void f i l lE lementsToNodes (multimap<int , int> elementsToNodes , setOf e lements )
{

f o r i t e r a t o r overAl l e lements
{

i n t tag = (getNum() o f i t e r a t o r ) ;

f o r j = 0 : 1 : ( getNumVertices ( ) o f i t e r a t o r )
{

MVertex ver tex = ( getVertex ( j ) o f i t e r a t o r ) ;
add (getNum( ) o f ver tex ) to elementsToNodes [ tag ] ;

}
}
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}

Listing 2.2: Creation of the pair of arrays for METIS partitioning.

The second step uses the function METIS_PartMeshDual to partition the mesh. The input
is:

• the number of elements contained in the global mesh;

• the number of nodes contained in the global mesh;

• the METIS mesh structure eptr and eind;

• two parameters used if all nodes are not equally important (this is not used);

• the number of nodes that two elements must have in common to create an edge between
them in the graph structure (this value is set equal to the dimension of the global mesh);

• the number of partitions to create;

• some other options.

The output of this function is an array that associates the element’s tags with its partition
number.

2.2 Creation of partitioned meshes

At this stage, the partitioned meshes can be built. The algorithm is quite simple. We loop
over all the elements of the global mesh and we assign this element to the correct partitioned
mesh according to the output array provided by the METIS function. The function performed
in this step is called createNewModels.

The function contains other processes to keep or create new physical entities. Although
they are not detailed here, it is important to note that a subdomain i is included in one of
the physical entities named _Omega_i.

2.3 Creation of partition boundaries

The last step creates the partition boundaries. First, it is necessary to illustrate a parti-
tion boundary using an example. If a two-dimensional mesh is cut into three subdomains,
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then the partitioned mesh has three mesh classes (GModel) that contain the elements corre-
sponding to their partition and boundaries that already existed in the global mesh. In this
context, the partition boundaries are the new boundaries that appear between each subdo-
main. These boundaries do not have physical meaning; they are only of significant to the
domain decomposition algorithm. Figure 2.3 illustrates this example.

•

••

Figure 2.3: Three subdomains where the thick blue lines are the physical existing boundaries
and the red ones are the partition boundaries.

The algorithm developed to create these new boundaries works in two steps. It has been
implement in function createPartitionBoundaries. The first one creates three maps that
contain element boundaries (one map for faces, another for edges and the last for vertices)
and adjacent elements. For example, using the same mesh as Figure 2.2, the edge map will
contain the edge between node 2 and node 4 and will associate to this edge the elements 1
and 2, because they are neighbors to this edge. Listing 2.3 explains how this algorithm is
coded for the edge map in this case. The algorithm is similar for the faces and the vertices
maps.
i n t c r ea t ePar t i t i onBoundar i e s (GModel model )
{

map<MEdge , vector<MElement> > edgeToElement ;

i f (meshDim == 3)
{
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//We loop over a l l r eg i on e n t i t i e s that i s conta ined in the model
cor re spond ing to the g l oba l mesh .

f o r i t ove rAl l r e g i on s in model
{

f i l l i t _ ( edgeToElement , a l l t e t rahedra in i t ) ;
f i l l i t _ ( edgeToElement , a l l hexahedra in i t ) ;
f i l l i t _ ( edgeToElement , a l l pr isms in i t ) ;
f i l l i t _ ( edgeToElement , a l l pyramids in i t ) ;
f i l l i t _ ( edgeToElement , a l l t r i h ed r a in i t ) ;
f i l l i t _ ( edgeToElement , a l l polyhedra in i t ) ;

}
}

i f (meshDim == 2)
{

f o r i t ove rAl l f a c e s in model
{

f i l l i t _ ( edgeToElement , a l l t r i a n g l e s in i t ) ;
f i l l i t _ ( edgeToElement , a l l quadrangles in i t ) ;
f i l l i t _ ( edgeToElement , a l l polygons in i t ) ;

}
}

}

void f i l l i t _ (map<MEdge , vector<MElement> > edgeToElement , setOf e lements )
{

f o r i t e r a t o r overAl l e lements
{

MElement theElement = i t e r a t o r ;

f o r j = 0 : 1 : ( getNumEdges ( ) o f theElement )
{

MEdge edge = ( getEdge ( j ) o f theElement ) ;
add ( theElement ) to edgeToElement [ edge ] ;

}
}

}

Listing 2.3: Creation of the edgeToElement map.

The second step loops over all boundaries of the elements (faces, then edges and finally
vertices) and calls the function assignPartitionBoundary that creates the new boundaries.

First, this function loops over all elements of a boundary type and verifies the partition
number of these elements. If all the elements belong to the same partition, the boundary of
the elements is not a boundary of the subdomain and therefore, the function stops. If not, the
function continues and creates a partition entity of a geometrical degree greater that of the
boundary we tried to create and determines if whether this partition entity has already been
created. If it exists, the function stops because this boundary is included in a subdomain
boundary of a higher degree. If none of them exist, the new partition entity can be created.
A new mesh element is created and is associated with the new or the existing partition entity.
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At this stage, particular attention is paid on the orientation of the boundaries. Their normals
are imposed externally and tangents are imposed in accordance with the normals. Listing 2.4
presents the algorithm of the assignPartitionBoundary for the edge boundaries.
void ass ignPart i t ionBoundary (GModel ∗model , MEdge currentEdge , set<

part i t ionEdge> pedges , vector<MElement> elements , set<par t i t i onFace> p fac e s
)

{
vector<int> e l ement sPar t i t i on ;
add ( g e tPa r t i t i o n ( ) o f e lements [ 0 ] ) to e l ement sPar t i t i on ;

f o r i =1 :1 : ( s i z e ( ) o f e lements )
{

bool found = f a l s e ;
f o r j =0 :1 : ( s i z e ( ) o f e l ement sPar t i t i on )
{

i f ( g e tPa r t i t i o n ( ) o f e lements [ i ] == e l ement sPar t i t i on [ j ] )
{

found = true ;
break ;

}
}

i f ( ! found )
{

add ( g e tPa r t i t i o n ( ) o f e lements [ i ] ) to e l ement sPar t i t i on ;
}

}

// I f the re i s l e s s than two p a r t i t i o n s touching the edge : stop
i f ( s i z e ( ) o f e l ement sPar t i t i on < 2)
{

return ;
}

//Creat ion o f a p a r t i t i o n f a c e having e l ement sPar t i t i on has p a r t i t i o n
numbers
pa r t i t i onFace pf (model , 1 , e l ement sPar t i t i on ) ;

// I f the edge i s in a pa r t i t i onFace ( p f a c e s conta in s a l l the p a r t i t i o n
f a c e s that have been created be f o r e )
i f ( f i nd ( pf ) in p f a c e s == true )
{

re turn ;
}

//Creat ion o f the p a r t i t i o n edge having e l ement sPar t i t i on has p a r t i t i o n
numbers
par t i t i onEdge pe (model , 1 , e l ement sPar t i t i on ) ;

par t i t i onEdge ppe ;
i f ( f i nd ( pe ) in pedges == f a l s e )
{

ppe = part i t i onEdge (model , −( i n t ) pedges . s i z e ( )−1, e l ement sPar t i t i on ) ;
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add ppe in pedges ;
add ppe in model ;

}
e l s e
{

ppe = pedges [ pe ] ;
}

// Creat ion o f a new mesh l i n e
MLine l i n e ( getVertex ( ) o f currentEdge ) ;
//and a s s i gn them to the new en t i t y i f pe i s not f i nd in pedges or to the
e x i s t i n g en t i t y i f i t i s .
add l i n e to ppe ;

}

Listing 2.4: Creation of a new edge boundary.

2.4 Creation of the topology structure file for GetDP

2.4.1 Structure of the GetDP code

The domain decomposition algorithm is coded using five GetDP .pro files:

SchwarzMacros.pro contains several useful macros, such as a macro to compute the artificial
source; namely, the interface condition terms.

Schwarz.pro implements the resolution using the Schwarz algorithm, as described in Chap-
ter 1.

Helmholtz.pro codes the weak formulation of the Helmholtz problem with the definition
of its function space and the post operations that are useful for this kind of prob-
lem. This file depends on the type of problem studied. Other files can be used like
Elasticity.pro for mechanical waves or Maxwell.pro for electromagnetic waves. List-
ing 2.5 displays an example of the formulation of the following Helmholtz problem in
the GetDP language.

(∆ + k2)u(x) = 0 in Ωi (2.1)
∂nu(x) = −iku(x) on ΓInf,i

u(x) = g(x) on ΓDir,i

∂nu(x) = −iku(x) on Σi.

partition.pro is the file that is created by the partitioning tool which contains the topology
description and the work distribution rules for each CPU.
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xxxxxx.pro (where xxxxxx can be replaced by any name) is the file that contains the specific
data relevant to our problem, like the Dirichlet of Neumann conditions, the domain con-
stants (the conductivity, the wave number, the permittivity, ...). This file is exceedingly
dependent on the geometry of the studied problem.

//Volume terms
Galerk in { [ Dof{Grad u~{ i }} , {Grad u~{ i }} ] ;

In Omega~{ i } ; Jacobian JVol ; I n t e g r a t i on I1 ; }
Galerk in { [ − k [ ] ^ 2 ∗ Dof{u~{ i }} , {u~{ i }} ] ;

In Omega~{ i } ; Jacobian JVol ; I n t e g r a t i on I1 ; }
//Sommerfeld r ad i a t i on cond i t i on s
Galerk in { [ − I [ ] ∗ k [ ] ∗ Dof{u~{ i }} , {u~{ i }} ] ;

In GammaInf~{ i } ; Jacobian JSur In t e g r a t i on I1 ; }
//Transmiss ion cond i t i on s
Galerk in { [ − I [ ] ∗ k [ ] ∗ Dof{u~{ i }} , {u~{ i }} ] ;

In Sigma~{ i } ; Jacobian JSur ; I n t e g r a t i on I1 ; }

Listing 2.5: Formulation of the Helmholtz problem in the GetDP language where u∼{i} is
the solution, k[] the wave number, I[] the imaginary number, Omega∼i the subdomain i,
GammaInf∼i the boundary of the subdomain i where the Sommerfeld condition holds and
Sigma∼i the boundaries of the subdomain i where the TC are applied.

2.4.2 The partition file

As previously noted, the partition file (partition.pro) contains the definition of the parti-
tioned topology (which is placed in a GetDP Group section) and the work distribution rules
(which are placed in a GetDP Function section). This file is automatically generated by the
partitioning tool.

The Group section

The Group section specifies the physical groups. There are eight kinds of physical groups
that must be defined:

Omega_i defines the subdomain volume i.

Sigma_i_j defines the boundary between subdomain i and j. Note that if Sigma_i_j is
defined, Sigma_j_i must also be defined even if it is the same.

Sigma_i defines all transmission boundaries of subdomain i.

BndSigma_i_j are boundaries of the transmission boundary between subdomain i and j.
For example, it is a line that separates two subdomains. The points at which the line
ends are the boundaries of sigma.
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BndGammaInf_i_j are boundaries of the transmission boundary between subdomain i and j
that coincide with the boundary GammaInf, where the Sommerfeld radiation conditions
hold.

BndGammaInf_i are sets of BndGammaInf_i_j for all j.

BndGammaD_i_j are boundaries of the transmission boundary between subdomain i and j
that coincide with the boundary GammaD, where the Dirichlet conditions hold.

BndGammaD_i are sets of BndGammaD_i_j for all j.

In addition to these physical groups, an array D() contains all subdomains, some arrays
D_i() contain all neighbor subdomains to subdomain i, and the number of subdomains N_DOM
refers to the size of the array textttD().

Listing 2.6 displays the Group section generated by the partitioning tool for the partition
in Figure 2.3. Numbers in the Region object are the tag of the physical regions defined in
the geometry.
Group{

Omega_1 = Region [ { 3 } ] ;
Omega_2 = Region [ { 2 } ] ;
Omega_0 = Region [ { 1 } ] ;

Sigma_1_2 = Region [ { 6 } ] ;
Sigma_2_1 = Region [ { 6 } ] ;
BndSigma_1_2 = Region [ { 7 } ] ;
BndSigma_2_1 = Region [ { 7 } ] ;
BndGammaInf_1_2 = Region [ { } ] ;
BndGammaInf_2_1 = Region [ { } ] ;
BndGammaD_1_2 = Region [ { } ] ;
BndGammaD_2_1 = Region [ { } ] ;
BndGammaInf_1 = Region [ { } ] ;
BndGammaInf_2 = Region [ { } ] ;
BndGammaD_1 = Region [ { } ] ;
BndGammaD_2 = Region [ { } ] ;
Sigma_1_0 = Region [ { 5 } ] ;
Sigma_0_1 = Region [ { 5 } ] ;
BndSigma_1_0 = Region [ { 7 } ] ;
BndSigma_0_1 = Region [ { 7 } ] ;
BndGammaInf_1_0 = Region [ { } ] ;
BndGammaInf_0_1 = Region [ { } ] ;
BndGammaD_1_0 = Region [ { } ] ;
BndGammaD_0_1 = Region [ { } ] ;
BndGammaInf_1 = Region [ { } ] ;
BndGammaInf_0 = Region [ { } ] ;
BndGammaD_1 = Region [ { } ] ;
BndGammaD_0 = Region [ { } ] ;
Sigma_2_0 = Region [ { 4 } ] ;
Sigma_0_2 = Region [ { 4 } ] ;
BndSigma_2_0 = Region [ { 7 } ] ;
BndSigma_0_2 = Region [ { 7 } ] ;
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BndGammaInf_2_0 = Region [ { } ] ;
BndGammaInf_0_2 = Region [ { } ] ;
BndGammaD_2_0 = Region [ { } ] ;
BndGammaD_0_2 = Region [ { } ] ;
BndGammaInf_2 = Region [ { } ] ;
BndGammaInf_0 = Region [ { } ] ;
BndGammaD_2 = Region [ { } ] ;
BndGammaD_0 = Region [ { } ] ;

Sigma_1 = Region [ {5 , 6 } ] ;
Sigma_2 = Region [ {4 , 6 } ] ;
Sigma_0 = Region [ {4 , 5 } ] ;

BndSigma_2 = Region [ { 7 } ] ;
BndSigma_1 = Region [ { 7 } ] ;
BndSigma_0 = Region [ { 7 } ] ;

D( ) = {0 , 1 , 2} ;
N_DOM = #D() ;
D_0 = {1 , 2} ;
D_2 = {1 , 0} ;
D_1 = {2 , 0} ;

}

Listing 2.6: Group section for the partition shown in Figure 2.3.

The Function section

This section defines three important arrays. The first one is called myD() and it con-
tains subdomains of which each CPU is in charge. The second and the last one are called
ListOfFields() and ListOfConnectedFields(), respectively and contain a list of tags that
correspond to a set of boundary transmissions; for example, if CPU i has a subdomain i
which is connected to another subdomain j owned by the CPU j. The boundary transmis-
sion Sigma_i_j is associated tag_g_i_j on CPU i and with tag_g_j_i, on CPU j. Using
these arrays, CPU i knows that it has to compute the artificial source on Sigma_i_j and
associated its to tag_g_i_j and retrieve the artificial source tag_g_i_j that comes from
CPU j. Equation uses to create the tag is (2.2). It is supposed that a subdomain can have
more than one 1,000 neighbor subdomains.

tag_g_i_j = 1000i+ j (2.2)

Listing 2.7 displays the Function section generated by the partitioning tool shown in
Figure 2.3.
Function {

myD = {} ; // the domains that I ’m in charge o f
myD_0 = {} ;
myD_1 = {} ;
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myD_2 = {} ;
L i s tO fF i e l d s = {} ;
L i s tOfConnectedFie lds = {} ;

For idom In {0 :N_DOM−1}
I f ( idom % MPI_Size == MPI_Rank)
myD( ) += D( idom) ;
myD~{idom} += D~{idom }() ;

EndIf
EndFor
For i i In {0:#myD( )−1}

i = myD( i i ) ;
I f (#myD~{ i } ( ) == 2)

Pr i n t f ( "We can do sweeping ! " ) ;
EndIf
For j j In {0:#myD~{ i } ( )−1}

j = myD~{ i }( j j ) ;

tag_g~{ i }~{ j } = i ∗ 1000 + j ;
tag_g~{ j }~{ i } = j ∗ 1000 + i ;

L i s tO fF i e l d s ( ) += tag_g~{ i }~{ j } ;
L i s tOfConnectedFie lds ( ) += 1 ;
Lis tOfConnectedFie lds ( ) += tag_g~{ j }~{ i } ;
I f (ANALYSIS == 0)

g_in~{ i }~{ j } [ Sigma~{ i }~{ j } ] = ComplexScalarFie ld [XYZ[ ] ] { tag_g~{ j }~{
i } } ;

EndIf
I f (ANALYSIS == 1)

g_in~{ i }~{ j } [ Sigma~{ i }~{ j } ] = ComplexVectorField [XYZ[ ] ] { tag_g~{ j }~{
i } } ;

EndIf
EndFor

EndFor
}

Listing 2.7: Function section for the partition shown in Figure 2.3.

2.5 Files structure of a domain decomposition problem

The file structure of a domain decomposition problem is presented in Figure 2.4. This
structure remains the same for every problem and is composed of three types of files:

• The blue one, which contains the structure of the Schwarz algorithm and the defi-
nition of the problem type. Depending on the problem, we have to choose between
Helmoltz.pro, Elasticity.pro and Maxwell.pro.

• The red one, which contains the files generated by the partitioning tool. The global
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mesh is the input file (created by the user) and the desired number of partitions. The
output is composed of a partition.pro file and partitioned meshes mesh_i.msh.

• The green one, which contains a file created by the user. It defines constants and regions
used in the problem, such as regions that represent the boundary of the infinity, the
Dirichlet sources, the wave number, etc. partition.pro and the problem definition
file must be included in it.

To run such a problem, the problem.pro file has to be given to the GetDP solver.

Main folder

problem.pro

SchwarzMacros.pro

Schwarz.pro

Helmoltz.pro
Elasticity.pro
Maxwell.pro

partition.pro

out

mesh_0.msh

mesh_1.msh

...

mesh_N.msh

Figure 2.4: File structure of a domain decomposition problem (the green file needs to be
created by the user; the blue one contains the ready to use files and the red one contains the
files generated by the partitioning tool).

2.6 Efficiency

Figure 2.5 exhibits the influence of the number of partitions on the execution time of the
partitioning tool. Measurements were conducted on a mesh made of 125,000 vertices. The
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Figure 2.5: Influence of the number of partitions on the execution time of the partitioning
tool.

curve appears linear. Thus, it can be concluded that the time complexity of the algorithm is
linear with the number of partitions. However, the slope is not high (about 0.025) and thus,
the number of partitions is not principally affecting execution time.

On the other hand, Figure 2.6 exhibits the influence of the number of nodes. It is also
linear.

It can be concluded that the time complexity of the partitioning algorithm is:

T = O(pn) (2.3)

where T is the execution time, n the number of nodes and p the number of partitions.

2.7 Parallel version

A parallel version was developed which uses parMETIS3 library (the parallel version of
METIS). Currently, only the partitioning step that uses parMETIS is parallelised. The
following steps such as the creation of the new entities or the writing of files are performed
sequentially. Thus, the parallel version is not especially interesting as the partitioning step
requires less than 5% of the total computing time.

3http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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Figure 2.6: Influence of the number of nodes on the execution time of the partitioning tool.

In future developments, all the code could be parallelize all the code. Nevertheless, the
algorithm, as presently developed, is difficult to parallelize.
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Chapter 3

Algorithm validation

In this chapter, the algorithm is validated on a real problem composed of two concentric
circles. The domain is the space between the two circles (see Figure 3.1). The small soft
circle is illuminated by a plane wave coming from the left, and the solution computed is the
scattering wave. Non-homogeneous Dirichlet conditions that equate the scattering wave to
the incident wave are applied to the soft circle. The large circle is not a physical boundary.
It appears because the domain needs to be truncated for the numerical computation. Thus,
the Sommerfeld radiation condition is applied to allow the wave to propagate to infinity.

uinc

R1

R0

ΓD

ΓInf

Ω

Figure 3.1: Problem composed by two concentric circles.

All computations were carried by computational resources provided by the Consortium
des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique
de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.

37



3.1 Two dimensional problem

3.1.1 Analytical solution

To compute the error of the numerical solution, the analytical solution must be found. The
analytical problem applied to the geometry defined in Figure 3.1 has the following form:

(∆ + k2)u(x, y) = 0 in, Ω

u(x, y) = −uinc(x, y) on, ΓD (3.1)

lim
r→∞

r1/2

(
∂

∂r
− ik

)
u(x, y) = 0 where, r =

√
x2 + y2.

and where u(x, y) is the scattering wave, k the wave number, i2 = −1 and uinc(x, y) = e−ikx

is a classical plane wave.

Due to the symmetry of the problem, it is natural to switch to polar coordinates (r, θ)
rather of the cartesian coordinates (x, y). Equation 3.1 becomes:(

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+ k2

)
u(r, θ) = 0 in, Ω

u(R0, θ) = −uinc(R0, θ) (3.2)

lim
r→∞

r1/2

(
∂

∂r
− ik

)
u(r, θ) = 0 where, r =

√
x2 + y2.

where uinc(r, θ) = e−ikr cos(θ).

Equation 3.2 is typically solved by decomposing the solution into two functions by sepa-
rating of variables,

u(r, θ) = R(r)Θ(θ) (3.3)

which leads to two ordinary differential equations,
∂2Θ

∂θ2
+ α2Θ = 0,

r2∂
2R

∂r2
+ r

∂R

∂r
+ (k2r2 − α2)R = 0,

(3.4)

where α = − 1

Θ

∂2Θ

∂θ2
is an a priori undefined number (real or complex) that links these two

equations.

The solution of the first equation of (3.4) has the form :

Θ(θ) = A cos(αθ) +B sin(αθ) (3.5)

where A and B are real constants. Two conditions must be imposed:
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• The solution needs to be periodic, Θ(θ) = Θ(θ+ 2π) which restricts α to only integers;

• The solution needs to be symmetric with respect to Ox, which imposes that B = 0.

Thus, the angular solution for a particular α is:

Θα(θ) = Aα cos(αθ) with, α ∈ Z. (3.6)

The second equation of (3.4) has the homogeneous solution:

R(r) = CJα(kr) +DYα(kr) (3.7)

where Jα(kr) and Yα(kr) are the first and the second Bessel functions. There is restriction
on C and D because (3.7) must verify the Sommerfeld radiation condition,

lim
r→∞

r1/2

(
∂

∂r
− ik

)
(CJα(kr) +DYα(kr)) = 0. (3.8)

Using recurrence relations that are satisfied by all Bessel functions,

dZα
dx

=
1

2
(Zα−1 − Zα+1) , (3.9)

where Zα can be Jα or Yα, and asymptotic forms (r � |α− 1/4|),
Jα(kr) =

√
2

kπr
cos
(
kr − (2α + 1)π

4

)
,

Yα(kr) =

√
2

kπr
sin
(
kr − (2α + 1)π

4

) (3.10)

Equation 3.8 becomes:

lim
r→∞

√
2

kπ

(
kC

2
cos
(
kr − (2α− 1)

π

4

)
+
kD

2
sin
(
kr − (2α− 1)

π

4

)
−kC

2
cos
(
kr − (2α + 3)

π

4

)
− kD

2
sin
(
kr − (2α + 3)

π

4

)
−ikC cos

(
kr − (2α + 1)

π

4

)
− ikD sin

(
kr − (2α + 1)

π

4

))
= 0, (3.11)

and after simplifying,

lim
r→∞

√
2

kπ

(
−kC sin

(
kr − (2α + 1)

π

4

)
+ kD cos

(
kr − (2α + 1)

π

4

)
−ikC cos

(
kr − (2α + 1)

π

4

)
− ikD sin

(
kr − (2α + 1)

π

4

))
= 0. (3.12)

This equation is verified if D = iC. Thus, the radial solution for a particular α is

Rα(r) = CαH
(1)
α (kr) with, α ∈ Z, (3.13)
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where H(1)
α (kr) = Jα(kr) + iYα(kr) is the Hankel function of the first kind.

Finally, combining (3.6) and (3.13) according to (3.3), the solution of the scattering wave
is

u(r, θ) =
∞∑
α=0

uα(r, θ) =
∞∑
α=0

EαH
(1)
α (kr) cos(αθ), (3.14)

where the constant Eα = AαCα can be determined using the non-homogeneous Dirichlet
conditions on Γd. For this purpose, the Dirichlet conditions need to be expressed by the sum
of the Bessel functions using the Jacobi–Anger expansion,

uinc(r, θ) = e−ikr cos(θ) = J0(kr) + 2
∞∑
α=1

(−i)αJα(kr) cos(αθ). (3.15)

This expression allows us to find:

Eα =


−J0(kR0)

H
(1)
0 (kR0)

if α = 0,

−2(−i)αJα(kR0)

H
(1)
α (kR0)

otherwise.
(3.16)

Figure 3.2 displays the analytical scattering wave and the total wave that corresponds to
the sum of the scattering and the incident wave. To compute the scattering wave, the sum
in (3.14) is evaluated until α = 100. Therefore, it is not the exact solution because the sum
is not evaluated until infinity, but according to Figure 3.3 the solution becomes more exact
as more and more terms are added.

Figure 3.2: Scattering wave (left) and total wave (right) corresponding to the sum of the
scattering wave and the incident wave (k = 2π).

Note that this solution is the solution of the unbounded problem. The solution studied in
the following numerical method is a bounded one (bounded by ΓInf ). To evaluate the error
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Figure 3.3: Error L2 of the scattering wave shown in Figure 3.14. The error compares the
solution when the number of considered modes increases. The reference solution use many
terms (here 200 terms).

induced by the domain decomposition method, the error induced by the absorbing boundary
should not be considered. Thus, the analytical solution compared to the numerical one is not
exactly (3.14). It corresponds to the solution of the same problem except for the Sommerfeld
condition, which is replaced by:

∂nu = iku on ΓInf . (3.17)

Using this equation, the previous mathematical reasoning remains the same except for
constants C and D which become:

D = −C
k
(
Jα−1(kR1)− α

kR1
Jα(kR1)

)
− ikJα(kR1)

k
(
Yα−1(kR1)− α

kR1
Yα(kR1)

)
− ikYα(kR1)

, (3.18)

where R1 is the radius of the infinite boundary ΓInf , and where the final constants Eα also
change.
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Thus, the interior solution becomes:

u(r, θ) =
∞∑
α=0

uα(r, θ)

=
∞∑
α=0

Eα
Yα−1(kR1)− α

kR1
Yα(kR1)− iYα(kR1)

[(
Yα−1(kR1)− α

kR1

Yα(kR1)− iYα(kR1)

)
Jα(kr)

−
(
Jα−1(kR1)− α

kR1

Jα(kR1)− iJα(kR1)

)
Yα(kr)

]
cos(αθ). (3.19)

Finally, we discover:

Eα =



−J0(kR0)

J0(kR0)−
J−1(kR1)− α

kR1

J0(kR1)− iJ0(kR1)

Y−1(kR1)− α

kR1

Y0(kR1)− iY0(kR1)
Y0(kR0)

if α = 0,

−2(−i)αJα(kR0)

Jα(kR0)−
Jα−1(kR1)− α

kR1

Jα(kR1)− iJα(kR1)

Yα−1(kR1)− α

kR1

Yα(kR1)− iYα(kR1)
Yα(kR0)

otherwise.
(3.20)

3.1.2 Convergence

The convergence analysis uses the following formulation:

(∆ + k2)ui = 0 in Ωi

ui = −uinc on ΓD

(∂n + B)ui = 0 on ΓInf

(∂n + S)ui = 0 on Σi

where k = 2π, B = −ik is the classical Sommerfeld radiation condition and S = −ik + 2π is
a simple zero order transmission condition.

The error committed by one, two or ten subdomains is displays in Figure 3.4. The error
is measured using L2 relative error according to the formula:

e =

√
‖uexact − ui‖2

‖ui‖2

(3.21)

where ‖v‖2 =
∫

Ω
v2dV . The tolerance applied to the transmission boundaries is set to 10−4.

It corresponds to the ratio between the residual and the first residual. The convergence does
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not depend on the number of subdomains. Furthermore, the observed convergence is classical
for the finite elements method, namely

e = O(h2), (3.22)

where e is the error and h the element size.
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log(Error) = 1.95*log(h) + 2.82

Figure 3.4: Convergence using one, two or ten subdomains, where h is the mesh size and the
error is the L2 relative error.

To avoid measuring the error due to the approximation of the integral over elements, the
initial mesh size is taking smaller enough and the number of Gauss points needed to evaluate
the integral are set to the maximal value allowed by GetDP.

3.1.3 Number of iterations

Figure 3.5 illustrates the influence of the number of partitions on the speed of convergence
of the optimized Schwarz algorithm applied to our test problem. As can be observed, the
convergence worsens when the number of partitions increases. As Figure 3.6 appears to
suggest, the number of iterations required to converge follows a linear law with respect to
the number of subdomains. Experimentally, it has therefore found that:

Iter = O(Nsub), (3.23)

where Iter is the number of iterations required to converge and Nsub the number of subdo-
mains.
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Figure 3.5: Relative residual norm in the function of the iteration for a different number of
partitions applied on the same mesh. blue:2 partitions; red:10 partitions; yellow:20 partitions
and purple:30 partitions.
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Figure 3.6: Number of iterations required to converge in function of the number of subdo-
mains in the two-dimensional problem.
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3.2 Three-dimensional problem

3.2.1 Analytical solution

The same calculations as those in the two-dimensional problem were performed, but applied
to a three-dimensional problem composed of two concentric spheres. Problem 3.1 remains the
same except for the Sommerfeld radiation condition, for which a three-dimensional version
was used. Instead of using polar coordinates, we used spherical ones (r, θ, ϕ),(

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin2 ϕ

∂2

∂θ2
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂

∂ϕ

)
+ k2

)
u(r, θ, ϕ) = 0 in, Ω

u(R0, θ, ϕ) = −uinc(R0, θ, ϕ)
(3.24)

lim
r→∞

r

(
∂

∂r
− ik

)
u(r, θ, ϕ) = 0.

where r =
√
x2 + y2 + z2 and uinc(r, θ, ϕ) = e−ikr cos(θ) sin(ϕ). This can be written as three

ordinary differential equations,

∂2Θ

∂θ2
+ β2Θ = 0,

∂2Φ

∂ϕ2
+

cosϕ

sinϕ

∂Φ

∂ϕ
+

(
α2 − β2

sin2 ϕ

)
Φ = 0,

r2∂
2R

∂r2
+ 2r

∂R

∂r
+ (k2r2 − α2)R = 0,

(3.25)

if the following variable separation is used:

u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) (3.26)

The solution for Θ is the same as in the two-dimensional problem (see (3.6)).

Let us change the variable ϕ by t = cosϕ in the equation of Φ to obtain,

∂

∂t

(
(1− t2)

∂Φ

∂t

)
+

(
α2 − β2

1− x2

)
Φ = 0, (3.27)

which, if we express α2 as γ(γ + 1) has the associated Legendre polynomials as the solution,

Φ(cosϕ) = P β
γ (cosϕ), (3.28)

where γ is an integer and −γ ≤ β ≤ γ.

Finally, the solution to our Helmholtz problem in spherical coordinates is presented in
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the following general form:

u(r, θ, ϕ) =
∞∑
γ=0

γ∑
β=−γ

Eγ,βh
(1)
γ (kr)P β

γ (cosϕ) cos(βθ), (3.29)

=
∞∑
γ=0

γ∑
β=−γ

Eγ,βh
(1)
γ (kr)Yβ

γ (θ, ϕ),

where Yβ
γ are spherical harmonics and h(1)

α is the first kind of spherical Hankel function that
is the solution to the radial problem. Subsequently, the Sommerfeld radiation condition was
applied.

To determine constants Eα,n, the incident plane wave can be expanded in spherical har-
monics as previously done,

uinc(r, θ, ϕ) = 4π
∞∑
γ=0

γ∑
β=−γ

iγjγ(kr)Y
β
γ (k̂)Yβ∗

γ (r̂), (3.30)

where i2 = −1, jγ is the first kind of spherical Bessel function, Yβ∗
γ is the complex conjugate

of Yβ
γ , k̂ is the unit vector pointing in the direction of the incident plane wave and r̂ is the

unit vector of the position. According to the sum over the 2γ + 1 orthonormal spherical:
γ∑

β=−γ

Yβ
γ (k̂)Yβ∗

γ (r̂) =
2γ + 1

4π
Pγ(cos θ), (3.31)

where Pγ is the Legendre polynomial, the incident wave becomes:

uinc(r, θ, ϕ) =
∞∑
γ=0

(2γ + 1)iγjγ(kr)Pγ(cos θ) (3.32)

This expression allows us to find,

Eγ,β =


−(2γ + 1)iγjγ(kR0)Pγ(cos θ)

h
(1)
γ (kR0)

if, β = 0

0 otherwise.
(3.33)

Note that, as previously said for the two-dimensional case, the solution compared to the
numerical solution is the one that considers the effect of the absorbing boundary condition.

3.2.2 Convergence

Figure 3.7 displays the convergence in function of the mesh size. As for the two-dimensional
case, the convergence is of the order two, which is common for the finite element method.
Nevertheless, it converges slower than in the two-dimensional problem.
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Figure 3.7: Convergence in function of the mesh size in the three-dimensional case.

3.2.3 Number of iterations

According to Figure 3.8, the influence of the number of subdomains on the Schwarz iteration
in a three-dimensional problem is the same as in a two-dimensional problem. However, points
higher than the straight line appear to prove that the three-dimensional case is more sensitive
to the shape and the position of the partitions.

3.3 Influence of transmission conditions

The mesh partitioning tool creates irregular boundaries between the subdomains. Thus, it
is necessary to determine whether this irregularity modifies the efficiency of the Schwarz
algorithm. In accomplish this, two situations where analyzed. In the first situation the
irregular partitioning is similar to the regular one; namely, the shape of the partitions is the
same. In the second situation, the mesh partitioning tool partitions the mesh differently than
does the manual partition. In all case the number of subdomains remains the same for the
regular partitioning and the irregular partitioning.
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Figure 3.8: Number of iterations required to converge in the function of the number of
subdomains in the three-dimensional problem.

3.3.1 Similar shape

Figures 3.9, 3.10 and 3.11 illustrate the convergence of the Schwarz iterative solver with both
regular and irregular boundaries, as shown in Figures 3.12. The manual partitioning is such
that a partition i, called Pi, is defined as:

Pi =

{
(r, θ) : R0 ≤ r ≤ R1,

2πi

n
≤ θ ≤ 2π(i+ 1)

n

}
, (3.34)

where n is the number of partitions.

When the boundaries are irregular, it can be experimentally seen that the number of
iterations needed to converge is always larger than when the boundaries are regular. Fur-
thermore, it can be seen that the transmission condition has more of an impact on a regular
boundary than on an irregular one. The only one which significantly reduced the number of
iterations is the second order transmission condition, shown in Figure 3.10. It is interesting
to note that the Padé transmission condition, which is very efficient for regular partitioning,
is inefficient in an irregular one.
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Figure 3.9: Convergence of the iterative
solver with regular boundaries (blue line)
and irregular ones (red line) and using the
0th order transmission condition.
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Figure 3.10: Convergence of the iterative
solver with regular boundaries (blue line)
and irregular ones (red line) and using the
2nd order transmission condition.
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Figure 3.11: Convergence of the iterative
solver with regular boundaries (blue line)
and irregular ones (red line) and using the
Padé transmission condition.

3.3.2 Not similar shape

Using the same geometry as in the previous case with a large number of partitions leads
to irregular partitions with different shapes than what would be achieved manually. This
is because the partitioning tool attempts to minimize the boundary between subdomains.
Thus, for example, a partition could not have a border touching the inner circle where the
Dirichlet boundary condition is applied. This can increase the number of iterations. The
difference between a regular partition and an irregular partition depends on the number of
partitions and the geometry of the problem. The only conclusion that we can assert is that
the number of iterations is larger with irregular boundaries than with regular boundaries.
Nevertheless, the difference is still acceptable.
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Figure 3.12: Regular and irregular partitioning.

3.4 Parallel scaling performance

We also examine the efficiency of the parallel implementation of the Schwarz algorithm. The
problem studied is the same as the two-dimensional case, but with a more refined mesh.
The time measured is the CPU time of the numerical Schwarz resolution. The analysis is
focused on the Schwarz algorithm and therefore, the time required to conduct a post- or
pre-processing was not taken into account.

Figure 3.13 displays the strong scaling associated with the two-dimensional problem with
a fixed degree of freedom equal to 399, 904 and the number of processes used increased 1 one
to 40.

We assume that the CPU time of execution using n processes is:

Tn = Ts + Tp (3.35)

where Ts is the time to compute the sequential part of the algorithm; namely, the part of the
algorithm that can be parallelized. Using p as the parallelizable fraction of the code,

Ts = (1− p)T1 (3.36)

Tp = p
T1

n

where n is the number of processes. Knowing that Sn = T1/Tn, where Sn is the speedup, we
can find Amdahl’s law,

Sn =
1

1− p+ p
n

. (3.37)

A fitting of the measured data allows us to determine that the parallelizable fraction p is
equal to roughly 97% which is a excellent parallelization.

Figure 3.14 displays the weak scaling. The work per process remains constant when the
number of processes increases. If the parallelization is perfect, this curve must be constant.
However, this is not the case because only almost 97% is parallelized.
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Figure 3.13: Strong scaling.
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Figure 3.14: Weak scaling.
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Chapter 4

Numerical simulation of p-wave in the
ground

In this chapter, a numerical application of the domain decomposition Schwarz method is
applied to geophysical (seismic) waves. First, this chapter reviews seismic measurement
as well as the physical phenomena involved in seismic waves. Finally, numerical solutions
obtained from domain decomposition are presented.

4.1 Seismic measurement

The goal of the seismic measurement and particularly, the reflective seismic measurement is
to identify geological layers present in the ground using wave reflection.

Similar to all waves, when a seismic wave arrives on a surface separating two layers,
a reflection occurs. This reflection depends on the physical properties of the layers. For
example, the reflection of acoustic waves depends on the acoustic impedance of the two
media defined as:

Zac = ρc, (4.1)

where ρ is the density and c is the speed of sound. One can find that the reflection of a
normal acoustic wave follows the linear relation,(

f2

g1

)
=

1

Z1 + Z2

(
Z2 − Z1 2Z1

2Z2 Z1 − Z2

)(
g2

f1

)
(4.2)

where f represents the waves moving toward the normal of the interface and g represents
the waves moving in the other direction; the subscripts 1 and 2 denote the first and second
media.
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Figure 4.1: Ground measurement.

Figure 4.1 exhibits how a seismic measurement is carried. A monochrome wave is emitted
at the point E on the ground surface. The wave propagates into the ground. At the interface
of media 1 and 2, a part of the emitted wave is reflected and reaches the sensor in R. Another
part is refracted into medium 2. As before, when this refracted wave reaches an interface it
is reflected and this can be measured by the sensor.

In practice, many sensors are placed on the ground to build a complete cartography of
the underground.

4.2 Physical phenomena

A seismic reflection measurement involves three types of waves:

• a wave that propagates into the underground;

• a wave that propagates in the air under the ground;

• and a wave that propagates on the ground (surface waves).

4.2.1 Underground waves

Since the present case is a three-dimensional, the particle motion has three components along
the three main axes. This results in three types of underground waves (Figure 4.2):

• A primary wave or longitudinal wave that corresponds to a particle motion in the same
direction as the wave.
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• Two secondary waves or tangential waves that correspond to particle motions in direc-
tions perpendicular to the direction of the wave.

Figure 4.2: P-wave, SV-wave and SH-wave.

These three types originate from the Navier equation,

(λ+ 2µ)~∇∇ · u− µ~∇× ~∇× u + f = ρ
∂2u

∂t2
, (4.3)

where u is the displacement field, λ, µ the Lamé parameters and f a volume force. Using
the Helmholtz theorem, u can be decomposed into the sum of the gradient of a scalar field
φ and the curl of a vector field ψ. The definition of ψ is not injective and thus, the Gauss
condition ~∇·ψ = 0 is added because it allows for a simplification. Using this decomposition,
(4.3) becomes:

~∇
(
ρ
∂2φ

∂t2
− (λ+ 2µ)∆φ

)
+ ~∇×

(
ρ
∂2ψ

∂t2
− µ~∆ψ

)
= f , (4.4)

where ~∆ is the vector Laplacian. This decomposition is valid if u is twice continuously
differentiable. In this hypothesis, if there is no volume source, the problem can be decoupled
as: 

∂2φ

∂t2
− λ+ 2µ

ρ
∆φ = 0,

∂2ψ

∂t2
− µ

ρ
∆ψ = 0,

(4.5)

where two characteristic speeds appear cp =
√

(λ+ 2µ)/ρ(the speed of the P-wave) and
cs =

√
µ/ρ (the speed of the S-wave). As can be observed, the S-wave is slower than the

P-wave.

4.2.2 Air wave

The air wave is a classical acoustic wave. Air wave are slower than solid waves; air waves
move at 340.29 m/s, while the speed of a solid wave is often larger than 1, 000 m/s.
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4.2.3 Surface waves

At the surface between two media (the air and the ground), two types of waves appear. The
first wave is referred to as the Rayleigh wave and the second is the Love wave. In the same
medium, these waves are always slower than the P- and S-waves. Figure 4.3 represents these
two waves in a basic manner.

Figure 4.3: Rayleigh and Love waves.

4.3 Numerical results

Numerical simulations were conducted on a ground of 13.52 km by 13.52 km and 4.2 km
deep. This ground is composed of different layers of material with different speeds of sound
which produce all phenomena observed in reflective seismic measurement, such as reflection,
refraction, scattering wave, stationary wave, etc. The mesh is made by regular quadrangles
(or hexahedra in three dimensions) with a 5m step.

The simulations imposed a wave of frequency equal to 50 Hz in the middle of the floor
(see Figure 4.4). The absorbing boundary condition was imposed on the bottom and the
borders of the domain and the Neumann condition was imposed on the top.

A mapping of speed of sound in the ground is used in this simulation. It comes from Jean
Virieux, a professor at Université Joseph Fourier, Grenoble. Speeds go from 1,500 m/s to
4,482 m/s.

In this chapter, only one simulation is presented (the others can be found in Appendix D).

4.3.1 Two-dimensional simulations

This section focuses on a slice at x = 5 km (other slices can be found in Appendix D). Fig-
ure 4.5 presents the speed of sound distribution used to compute the wave number, according
to:

k =
ω

c
(4.6)
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where c is the speed of sound, and ω = 2πf and f represents the frequency. The corre-
sponding particle speed distribution computed using 100 processes in 25 s is displayed in
Figure 4.6. The number of iterations needed to reach a tolerance equal to 10−4 is 150. The
mesh partitioning is illustrated in Figure 4.4.

On the top of the domain near the ground surface, reflections can be seen (as explained in
Figure4.1). They are caused by the line of higher speed that probably corresponds to a thin
layer of other material. Refractions in the highest speed pattern (shown in red in Figure 4.5)
can also be observed.

Figure 4.4: Mesh partition.

Figure 4.5: Speed of sound distribution at x = 5 km.

4.3.2 Three-dimensional simulation

Ideally, it would be interesting to compare the two-dimensional results with those obtained
using the same frequency and the same step in a three-dimensional case. However, several
problems occurred and made such a comparison impossible. We list all the issues that
occurred and, to compare with computational resources, Table4.11 summarizes the technical

1http://www.ceci-hpc.be/clusters.html
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Figure 4.6: Particle speed distribution at x = 5 km.

characteristics of the available clusters provided by the Consortium des Équipements de
Calcul Intensif (CÉCI).

Cluster’s name CPU(s) max/job RAM max/CPU suitable for MPI job
NIC4 265 4GB Yes
Vega 1024 16GB Yes

Hercules 48 16GB No
Dragon1 40 16GB No
Lemaitre2 1024 5GB Yes
HMEM 816 4GB No

Table 4.1: A summary of computational resources.

The first problem was the creation of the global mesh file. Using the same mesh size as
in the two-dimensional case led to the creation of a mesh composed of approximately 6.1
billion regular hexahedra and roughly the same number of nodes. Computing such a mesh
required a substantial amount of memory. Therefore, another approach was chosen. The
mesh was computed using a mesh size of 40m, which represents approximately 959 million
regular hexahedra and can be computed in ten minutes on a single core. Subsequently, this
mesh is partitioned into 256 partitions by our mesh partitioning tool. Finally, small mesh
files were refined using a splitting to obtain meshes of step 20m, 10m and ideally, 5m.

The second problem was the size of all mesh files using the 2.2 Gmsh mesh format. For
40m meshes, all files require 2GB, 33GB for 20m meshes and 500GB for 10m meshes. It is
therefore impossible to do computations using 10m meshes or smaller because files require
more place than the available on clusters.

Finally, even if the new Gmsh mesh format (which require less place to be store) is used,
data needs to be charge in memory. For example, 20m meshes launched on 256 CPUs of
NIC4 cluster is impossible because the 4GB/CPU is overtaken.

Thus, we decided to decrease the frequency of the study to 5Hz and compute the solution
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using a 40m spacial step fro two- and three-dimensional cases. In the worst case, this spacial
step involves seven points per wave length. The analysis focuses on the slice at x = 5 km.
Figure 4.7 depicts the particle speed distribution obtained in the two-dimensional case. To
prove that the spacial step is small enough, Figure 4.8 depicts the same problem size with
a spacial time step of 20m. As can be observed, particle speed distributions are nearly the
same in the two simulations. Thus, it can be assumed that a spacial step of 40m is enough
even in the three-dimensional case.

Figure 4.7: Particle speed distribution at x = 5 km using 5Hz and the 40 spacial step in the
two-dimensional simulation.

Figure 4.8: Particle speed distribution at x = 5 km using 5Hz and the 20 spacial step in the
two-dimensional simulation.

As expected, the three-dimensional simulation is quite different (Figure 4.9), which can
be explained by two simple ascertainments.

First, the problem is not exactly the extension of the two-dimensional case in three dimen-
sions, since the excitation is not imposed in the same place. In the two-dimensional problem,
it is imposed exactly at the same abscissa as the slice, while in the three-dimensional case it
is imposed at a different abscissa than the slice. The source is imposed at the middle of the
ground and therefore at x = 6.76 km, while the slice is at x = 5km.
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Figure 4.9: Particle speed distribution at x = 5 km using 5Hz and the 40 spacial step in the
three-dimensional simulation.

Second, the three-dimensional simulation allows reflection in the plan of the sheet which
can change the entire solution.

To conclude, two-dimensional simulations are not especially interesting in a seismic prob-
lem. The ground cannot be considered as a layer in a two-dimensional problem and therefore,
an efficiency three-dimensional simulation must be built. In this context, a domain decom-
position method is absolutely necessary and especially at high frequencies.
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Conclusion

Domain decomposition methods and especially the parallel Schwarz algorithm applied to the
Helmholtz problem were studied in this research. A parallelization of the algorithm pro-
posed by Hermann Schwarz was the first improvemente. To minimize computations, P.L.
Lions proposed another version that converges without creating overlap between the subdo-
mains. Nevertheless, in case of the Helmholtz problem, the operator is not positive definite.
This implies that the numerical implementation of such an operator is divergent if the al-
gorithm proposed by P.L. Lions was used without modification. Specific modifications for
the Helmholtz problem were presented, such as adapting the transmission condition between
subdomains by tuning the transmission operator. Many studies have been and still need to
be conducted to find other transmission operators and improve the convergence.

Once the mathematical problem was posed, its weak form used in the finite element
modeling was presented and the Schwarz algorithm was implemented using GetDP software
on a so-called GetDDM package. This package is already quite comprehensive and general.
However, changes still need to be made to use high-order elements.

A partitioning tool was developed in the framework of this work to automatically partition
a mesh and create a topology file used by the GetDDM package. With this tool, one does
not have to worry about topology between sub-domains. A user only has to worry about the
definition of his problem. A first parallel version of this tool was presented. Nevertheless,
only the sequential version was used in this work since a substantial amount of work still
needs to be done to make it useful and efficient. A complete redesign of the algorithm could
be envisaged to make the tool more suitable for future parallelization.

The algorithm was validated for a two- and three-dimensional academic problem. The
algorithm works quite well. We compared the convergence using regular partitions that
were built manually, as it was done by the ACE group, and the irregular partitions were
built using the partitioning tool. Irregular partitions slow down convergence without making
it a problem. Nevertheless, an interesting transmission condition that exhibits excellent
convergence with a regular partitioning is completely inefficient with an irregular one.

Then, a real seismic problem for which the domain decomposition method was studied
involves large domain (several kilometers) and possibly high frequencies. Modelling such
problems using a finite element method requires that the computations be performed on

60



an exceedingly refined mesh with many degrees of freedom. Thus, they are particularly
well-suited to the method of decomposition of the domain, since the problem is large. Never-
theless, the method of decomposition of the domain can reduce the computation time of large
problems, but not the memory used. Thus, solving large problems still requires a substantial
amount of memory, which represents a limitation.

Finally, it may be interesting to apply of this method to other scientific domains, particu-
larly biomedical applications such as the numerical simulation of different processes involved
in the human body. Applying the finite volume method used in the context of fluids could
lead to better simulation in fields such as meteorology or the study of oceanographic currents.
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Appendix A

Propagative and evanescent modes

The two wave numbers that appear when the convergence rate is computed in Section 1.3 are:
k, which is related to the wave solution and represents the traditional wave number of the
solution; and the Fourier number k̃, which is related to the error induced by the numerical
scheme. The behavior of the error is completely different if k̃ is greater or smaller than k.
Thus, it appears natural to devise a reduced Fourier number s = k̃/k.

According to equations 1.26 and 1.25, the error converges in the same way that the Fourier
transform of the solution, which leads to iteration n,

ûn1 (x, s) = ûn1 (0, s)eλ(s)x (A.1)

ûn2 (x, s) = ûn2 (0, s)e−λ(s)x,

where,

λ(s) =


k
√
s2 − 1 ∀ |s| > 1,

0 ∀ |s| = 1,

ik
√

1− s2 ∀ |s| < 1.

(A.2)

As previously noted, the error in the subdomain depends only on the error that is made at
the interface. The propagation of the error is expressed by the exponential term, which has
a different behavior in function of the parameter λ.

A.1 Evanescent modes

The first error transmission modes discussed are the evanescent modes. They appear when
the reduced Fourier number is greater than one. This leads to a real λ = k

√
s2 − 1 and the

exponential term becomes:
ek
√
s2−1x. (A.3)
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Therefore, the error propagates in the domain as a decreasing exponential equal to ûni (0, s)
at the interface. Far from the interface, these error modes become negligible. Note that the
exponential is purely real, hence this kind of error mode does not lead to a phase shift of the
solution.

A.2 Propagative modes

The second error transmission mode is the propagative modes. These modes appear when
the reduced Fourier number is smaller than one. This leads to a complex λ = ik

√
1− s2

where i is the imaginary number and the exponential term becomes:

eik
√

1−s2x. (A.4)

Therefore, the error propagates in the domain as the combination of a real cosine and an
imaginary sine. As for evanescent modes at the interface, the solution is equal to ûni (0, s),
However, far from the interface the error is a complex wave function that induces an error
in all the subdomains and a phase shift of the solution because the exponential term has
a complex part. These kinds of error transmission modes pollute the solution more in the
subdomains than in the evanescent modes.

A.3 Between propagative and evanescent modes

Between propagative and evanescent modes, when the reduced Fourier number is equal to
one, λ are null and thus, the exponential term is equal to one. With this kind of error
transmission mode, the error that is made at the interface is transmitted to the subdomain
without a phase shift and without attenuation.
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Appendix B

Absorbing boundary conditions

In this Appendix, absorbing boundary conditions (ABC) are examined. First, it is necessary
to explain why the absorbing boundary conditions are needed. The problem solved is a
wave propagation phenomena in a domain which extends to infinity, but numerically it is
only possible to compute the solution on a finite domain. Thus, the problem needs to be
truncated by adding a new boundary. This new boundary is not a physical boundary and
thus, should be transparent to avoid introducing reflections. Numerically, it is not possible
to completely suppress them but they can be strongly attenuated. This is the purpose of the
absorbing boundary conditions with the following form:

(∂n + B)u = 0, (B.1)

where ∂n is the derivative of u along the outer normal of the absorbing boundary and B is the
operator introduced to avoid reflection. As explained in Section 1.4, this form is particularly
interesting.

Another newer method called perfectly matched layer (PML) exists. This method does
not introduce a new boundary, but an external region where an absorbing condition is im-
posed. This method is less general than absorbing boundary condition because their efficiency
strongly depends on their parameters. This method is not be discussed here.

Numerically, to compare the different absorbing boundary conditions, the wave scattering
problem seen in Figure 3.1 of Chapter 3 is used. The error shown in all figures is the relative
error of norm one,

e =
‖uexact − u‖
‖uexact‖

. (B.2)

Analytically, the reflection coefficient Γ = ‖ur‖/‖ui‖ of an absorbing condition can be
computed by introducing the sum of the incident wave ui and the reflection wave ur into
the considered condition. To remain in the same geometry as the numerical example, it is
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necessary consider the same cylindrical geometry with an incident wave equal to:

ui(r, θ) = eir(kx cos(θ)+ky sin(θ)). (B.3)

Then we need to switch to a new frame attached to the absorbing boundary, with base
vectors equal to its normal and tangential direction. In this frame, kx = k cos(θ + φ) and
ky = k sin(θ+ φ) with φ is the angle between the normal of the absorbing boundary and the
direction of the wave. Figure B.1 presents this new frame.

Finally, the incident wave is:

ui(r, θ) = eirk(cos(θ) cos(θ+φ)+sin(θ) sin(θ+φ)) (B.4)

= eirk cos(φ),

and the reflective wave is:

ur(r, θ) = Γeirk(cos(θ) cos(θ+(π−φ))+sin(θ) sin(θ+(π−φ)))

= Γeirk(cos(θ) cos(θ−φ+π)+sin(θ) sin(θ−φ+π)), (B.5)

= Γe−irk(cos(θ) cos(θ−φ)+sin(θ) sin(θ−φ)),

= Γe−irk cos(φ).

To find the reflection coefficient Γ, the total wave ui + ur is introduced into the absorbing
condition and the Γ is ‖ur‖ = Γ‖ui‖.

n
t

ui

φ

ur

Figure B.1: New frame uses to compute the reflection coefficient.

B.1 Without ABC

To illustrate the importance of absorbing boundary conditions, let us observe what append if
B = 0 on the absorbing boundary. Figure B.2 displays the numerical solution obtained and
its relative error. As can be observed, the solution is completely wrong: the L2 error is 238%
and the maximal error is 620%. This is caused by the many reflections on the boundary
which perturb the solution.
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Figure B.2: Relative error without ABC.

B.2 Sommerfeld radiation condition

The simplest absorbing condition is the Sommerfeld radiation condition that was defined
in 1912 by Arnold Sommerfeld. He has stated that the infinite can induce reflected wave,
expressed as:

lim
r→∞

r
(d−1)

2 (∂ru− iku) = 0, (B.6)

where d is the dimension of the problem, i2 = −1 and k is the wave number.

A first naive choice is to impose B = −ik on the absorbing boundary. This condition
produces adequate if the incident wave is normal on the absorbing boundary. Otherwise, it
produces some reflected waves as shown in Figure B.3. As can be seen, this solution is better
than without the absorbing condition; the maximal relative error is reduced to 15% and the
L2 error is reduced to 7.45%. This condition was used most often before 1970.

To find the reflection coefficient:

ik cos(φ)eikr cos(φ) − Γik cos(φ)e−ikr cos(φ) = ikeikr cos(φ) + Γike−ikr cos(φ) (B.7)

Γ (cos(φ) + 1) e−ikr cos(φ) = (cos(φ)− 1) eikr cos(φ),

where the only possible choice to satisfy ‖ur‖ = Γ‖ui‖ is:

Γ =

∣∣∣∣cos(φ)− 1

cos(φ) + 1

∣∣∣∣ . (B.8)
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Figure B.4 illustrates the variation of this reflection coefficient with the incident angle. As
can be observed, the Sommerfeld condition is exact if the incident angle is normal to the
boundary.

Figure B.3: Relative error induced by Som-
merfeld ABC.
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Figure B.4: Reflection coefficient of Sommer-
feld ABC.

B.3 Bayliss–Turkel condition

The Bayliss–Turkel condition was commonly used between 1970 to 1980 and its second order
version is currently used. It can only be applied to a circular boundary. The general two-
dimensional form of this condition applied to the absorbing boundary is:(

J∏
j=1

(
∂n − ik +

4j − 3

2R

))
u = 0, (B.9)

where J is the order of the Bayliss–Turkel condition and R is the radius of the absorbing
boundary. Theoretically, the order of this method could be large, but numerically this is not
the case due to the higher derivative terms that appear in the absorbing condition. Only the
first and the second are used in the finite element method.
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B.3.1 First order

The first order Bayliss–Turkel condition imposes B = −ik+ 1
2R

As can be observed, the result
is the same as the one obtained using the Sommerfeld condition: the maximal relative error
is 15%, but the L2 error is smaller at 7.35%.

The reflection coefficient that can be seen in Figure B.6 is:

Γ =

∣∣∣∣∣∣∣
cos(φ)− 1 +

1

2ikR

cos(φ) + 1− 1

2ikR

∣∣∣∣∣∣∣ . (B.10)

If the product kR tends toward infinity, the first order Bayliss–Turkel becomes the same as
the Sommerfeld condition. If kR is finite, it decreases the reflection for an incident wave with
a larger incident angle, but creates some reflection for the normal incidence.

Figure B.5: Relative error induced by 1st order
Bayliss–Turkel ABC.

Incident angle
-3 -2 -1 0 1 2 3

R
e
fl
e
c
ti
o

n
 c

o
e
ff

ic
ie

n
t

0

2

4

6

8

10

12

Figure B.6: Reflection coefficient of 1st order
Bayliss–Turkel ABC (blue: kR = 1; red: kR =
2; yellow: kR = 3)

B.3.2 Second order

The main problem in the second order Bayliss–Turkel condition is expressed as:(
∂n − ik +

1

2R

)(
∂n − ik +

5

2R

)
u = 0 (B.11)
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in a form like Equation B.1. The following problem presents a formulation that satisfies the
desired form[23]

∂nu− iku+ αu+ β∂2
tu = 0, (B.12)

where t is the tangential direction of the boundary,

α =
1

2R
− i

8kR2
(
1 + i

kR

) (B.13)

and
β = − 1

2ik
(
1 + i

kR

) . (B.14)

Figure B.7: Relative error induced by 2nd or-
der Bayliss–Turkel ABC.
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Figure B.8: Relative error of 2nd order
Bayliss–Turkel ABC.

The reflection coefficient is:

Γ =

∣∣∣∣∣∣∣
cos(φ)− 1 +

αi

k
+ βR cos(φ)− βkR2i sin2(φ)

cos(φ) + 1− αi

k
− βR cos(φ) + βkR2i sin2(φ)

∣∣∣∣∣∣∣ . (B.15)

Figure B.8 presents the reflection coefficient using R = 5 and k = 2π for the numerical
simulation. The two spikes at approximately θ = ±0.4 explains the area in Figure B.7,
where the error is maximal.
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Appendix C

Transmission conditions

In this Appendix, several transmission conditions (TC) applied to the non-overlapping do-
main decomposition Helmholtz problem are examined. Transmission conditions play an im-
portant role on the convergence of the Schwarz algorithm. This chapter complete the analysis
conducted in Chapter 1 where the transmission operator S is defined as:

(∂ni
+ S)un+1

i = (∂ni
+ S)unj on, Σi,j. (C.1)

As for the ABC this formulation is interesting because it can be directly integrated in the
weak form (1.35).

C.1 Optimal transmission operator

It is possible to discover an optimal transmission operator that exactly converges in two
iterations. This operator can be used for any problem of the form,

L(en+1
i ) = 0 in Ωi

en+1
i = 0 on ∂Ωi ∪ ∂Ω (C.2)(

∂

∂ni

+ S
)
en+1
i =

(
∂

∂ni

+ S
)
enN+1−i on ∂Ωi ∪ ΩN+1−i,

where L can be any differential operator, eni = uni −u is the error on subdomain i at iteration
n and N is the number of subdomains. If an operator for which the Schwarz algorithm
converges in two iterations exists, it implies that e2

i = 0, which is the case if,(
∂

∂ni

+ S
)
e1
N+1−i = 0 (C.3)(

− ∂

∂nN+1−i
+ S

)
e1
N+1−i = 0 (C.4)
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This relation is fulfilled if S is a new operator called the DtN (Dirichlet to Neumann) map.
This operator is defined for any function u on a transmission boundary with real value by,

DtNi(u) =
∂v

∂n2

∣∣∣∣
∂ΩN+1−i∩Ωi

, (C.5)

with,

L(v) = 0 in, Ωi\ΩN+1−i,

v = 0 on, ∂Ωi ∩ ∂Ω (C.6)

v = u on, ∂ΩN+1−i ∩ Ωi.

This operator is interesting to find and compare to other transmission operators but it is
not used numerically because it is non-local and thus, computationally expensive.

C.2 Impedance transmission conditions

This family of operator is presented in Equation 1.32. This is the easier transmission condi-
tion; its general form is:

S = −ia+ b, (C.7)

where i2 = −1 and a and b are positive real numbers that can be tuned to minimize the
convergence factor.

The form of its convergence factor is:

ρ(k̃) =



∣∣∣∣∣λ(k̃) + ai− b
λ(k̃)− ai+ b

∣∣∣∣∣ ∀|k̃| ≥ k∣∣∣∣∣λ(k̃)− ai+ b

λ(k̃) + ai− b

∣∣∣∣∣ ∀|k̃| < k

(C.8)

where λ(k̃) is given by Equation 1.25. It can be seen that no matter what is chosen for a or
b, when the reduced Fourier number (s = k̃/k) is equal to one, the convergence factor will
always be equal to one.

C.3 Second order impedance transmission conditions

Another family of transmission conditions uses the second order condition. This family adds
a second order derivative on the tangential component of the interface, which leads to:

S = a+ b∂2
t , (C.9)
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where t denotes the tangent direction.

Using a Fourier analyses like in Chapter 1 one can find:

ρ(k̃) =



∣∣∣∣∣λ(k̃)− a− bk̃2

λ(k̃) + a+ bk̃2

∣∣∣∣∣ ∀|k̃| ≥ k∣∣∣∣∣λ(k̃) + a+ bk̃2

λ(k̃)− a− bk̃2

∣∣∣∣∣ ∀|k̃| < k

(C.10)

Figure C.1 illustrates the convergence factor. The evanescent modes behavior is a similar
manner to the one that uses the zero order impedance transmission conditions, although the
propagative modes are better. Nevertheless, the convergence factor remains equal to one
when k̃ = k.
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Figure C.1: Convergence factor of the problem (1.31) using the second order impedance
transmission conditions with a = −k and b = 1/k in the case of the Helmholtz equation
applied on two partitions dividing the plane.

72



Appendix D

Numerical simulations

D.1 Two dimensional

Figure D.1: Speed of sound distribution at x = 6 km.

Figure D.2: Particle speed distribution at x = 6 km.
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Figure D.3: Speed of sound distribution at x = 7 km.

Figure D.4: Particle speed distribution at x = 7 km.

Figure D.5: Speed of sound distribution at x = 8 km.
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Figure D.6: Particle speed distribution at x = 8 km.

Figure D.7: Speed of sound distribution at x = 9 km.

Figure D.8: Particle speed distribution at x = 9 km.
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Figure D.9: Speed of sound distribution at x = 10 km.

Figure D.10: Particle speed distribution at x = 10 km.
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