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Introduction

To this day, performing Internet-scale probing campaigns in order to obtain a "snapshot" of the Internet

topology remains a laborious task both in terms of time and accuracy. Indeed, probing substantial parts of

the IPv4 address space using classical Traceroute-based approaches can take up to several days. Moreover,

the Internet is quite poorly instrumented in terms of measurement mechanisms and Internet Service

Providers (ISP) usually tend to hide topology information [1].

Being able to obtain topological maps is of great importance as numerous network researchers and

administrators rely on these maps to prevent infrastructure problems from happening or even to develop

security policies for instance.

In 2016, Robert Beverly introduced YARRP [2]. YARRP stands for "Yelling At Random Routers

Progressively". It is a new way of probing that can considerably reduce the required probing time thanks

to stateless operations. This Master thesis heavily relies on the tool that was introduced by this paper.

By using it, we hope to address one of the major issue related to current large-scale probing techniques:

the speed. Indeed, as we will see in chapter 2, YARRP enables quite fast large-scale probing campaigns

owing to stateless operations.

However, YARRP is subject to a major flaw: its redundancy. Indeed, by re-implementing YARRP as

described in Dr. Berverly’s paper, we have found that even though it enables fast probing campaigns to be

made, it is a very aggressive probing method in terms of redundancy. For instance, measurements made

with the original version of YARRP have a mean uniqueness rate of roughly 8% meaning that over 100

responses received, there were only 8 different source IP addresses. That is why, in this Master thesis,

we first propose to re-implement YARRP from scratch in order to validate it (we will call it "the original

version [of YARRP]")1. Then, we will try to improve it in no less than three different ways. Obviously, we

will evaluate the impact of each of these improvements independently as well as discuss their advantages

and drawbacks. In order to evaluate them, we will use several metrics (e.g. the number of probes sent, the

response rate or the uniqueness rate). These metrics will be properly defined in chapter 3. Lastly, we will

carry out a larger measurement campaign using our improved version of YARRP in order to see how well

it performs compared to the original version.

In the end, we have been able to develop an improved version of YARRP that is stable as well as less

aggressive than the original one. For instance, we have doubled the uniqueness rate and increased the

response rate from 34% to more than 80%. Obviously, all the improvements have been made by keeping

in mind that the probing step should remain as fast as in the original version of YARRP.

1The full code is available for download here: http://tfe.bernst.be

5

http://tfe.bernst.be


This Master thesis in organised in four chapters.

1. The first one will set the scene by redefining the key concepts we will need such as the different

levels of a network topology or even Traceroute. It will also discuss the state-of-the-art of probing

techniques.

2. The second one will present the original version of YARRP as it was originally imagined by Robert

Beverly in his paper. Obviously we will base the presentation of the original version of YARRP on

our own re-implementation of the tool.

3. In the third chapter, we will discuss our three different improvements over the original version

of YARRP, namely: filtering input IP addresses, TTL window restriction and the sender/receiver

communication.

4. Last but not least, the fourth chapter will discuss a larger and certainly more realistic measurement

campaign on which we ran our improved version of YARRP.
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Chapter 1

Background

1.1 Topology

A network topology is a representation of the connections that exist between peers in a network [3]. It is

usually represented as a graph (in other words, a set of nodes and a set of edges). The semantic associated

with the nodes and the edges of the graph differ depending on which level the network is represented.

There are typically three different levels at which a network topology can be represented.

• The link layer topology is the level at which the nodes are considered to be interfaces of link layer

devices and end-hosts. The edges represent the different physical connections that exist between

them. Being aware of the link layer network topology is of great importance when it comes to

network management as, for instance, it can help with the diagnostic process in case of failure.

An application example would be the Microsoft Link Layer Topology Discovery Protocol (LLTD)

[4]. It is a protocol that is included in Windows since Windows Vista and that is used to display a

graphical representation of the Local Area Network to which the computer is connected.

• The network layer topology (also known as the Internet topology) is the level on which this Master

thesis is mostly focused on. It can itself be represented at four sub-levels.

– The IP interface level represents the IP interfaces of the routers and end-hosts as nodes and

the connections between them as edges.

– The router level represents, as its name indicates, the routers as nodes and the connections

between them as edges. It is in fact very similar to the IP interface level in which we would

have regrouped the interfaces belonging to a same router into one node. The process is called

alias resolution [5].

– The PoP level takes into account the geographical location of the routers and gather the ones

that are close to each other into one node. The nodes therefore represents what is called a

Point of Presence (PoP).

– The AS level represents the nodes as ASes and the edges between them as the relationships

that exists between the ASes. An Autonomous System (AS) is a set of Internet-connected

sub-networks that have a coherent routing policy and that are usually under the control of a

same organisation. [3] The relationships between ASes often are business relationships. For
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Figure 1.1: Three levels of the Internet topology

instance, in the case of an ISP and its client, we have a provider-to-customer relationship (or

p2c).

Figure 1.1 represents three levels of the Internet topology. The IP interface level is obtained when

only considering the black dots and the links between them. The router level is illustrated by

regrouping every interface belonging to a same router into one blue router icon. The AS level is

represented by the grey clouds and the links between them.

• The overlay topology refers to the level at which the nodes are peers and the edges are the logical

connections between them. An overlay network is a network that is built on top of another. For

instance, the Internet, at its origin, was built as an overlay of the telephone network. Typical appli-

cations that use an overlay network are Peer-to-Peer applications and Client-Server applications.

1.2 Probing and Traceroute

In this section, we will give definitions for two key concepts that are used in this work: probing and

Traceroute.

Probing a network is the process of acquiring data for the purpose of learning something about the

state of this network. There are two types of probing: passive and active. Passive probing refers to probing

without any interaction with the network being monitored. As an example of such a passive probing

technique, EXPOSURE [6] is a tool that was introduced in 2014 and that performs large-scale analysis

on DNS records in order to detect malicious domains. By opposition, active probing refers to probing

methods that send and receive packets (called probes) from and towards IP addresses from the network of

interest in order to perform measurements. When doing so, one must be aware that an abuse of an active

probing technique can result in a lot of packets being sent and received and could therefore be considered

as an attack by a remote network administrator.
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Figure 1.2: The different packets exchanged when using Traceroute

Traceroute [7,8] is a typical example of an active probing method that allows to discover the interfaces

along a path from a source to a destination. Figure 1.2 illustrates the way Traceroute works. Depending on

the implementation, Traceroute can rely on a variety of different protocols including ICMP, TCP and UDP.

For instance, by default, Windows "tracert" uses ICMP while both Mac OS X and Linux "traceroute"

commands rely on UDP. However, all versions of Traceroute use the ICMP Type 11 (Time Exceeded)

messages in order to discover the hops along the path. It sends packets from the source towards the

destination with increasing TTL values (the black straight arrows). Whenever a router receives a packet,

it decreases its TTL values. If this value reaches 0, the packet is considered to have consumed enough

resources on the network and is thus dropped. An ICMP Time Exceeded message is sent by the router

to notify the source that its packet has been dropped. Thanks to this ICMP message, the interface with

which it was sent is now known by the source. Eventually, when the probe reaches the destination (the last

black straight arrow), the destination will, if the probes relied on UDP, reply with an ICMP Destination

Unreachable message with the code Port Unreachable (the red arrow) due to the fact that the probe

specified a high and supposed unused port number. If on the other hand the probes were ICMP packets,

the destination should reply with an ICMP Echo Reply. Each time it sends a probe, the source activates

a timer. If the timer expires and there has been no response for that particular TTL, then the router is

considered as anonymous. It is also possible that the destination does not respond to probes (for instance

if it is behind a firewall that blocks ICMP packets). In such case, an upper bound is used on the number of

consecutive anonymous routers.

Traceroute has several variants, one of which is Paris Traceroute [9]. It has been developed because

Traceroute has a flaw when it comes to load balancers. These machines have the responsibility of balancing

the workload onto several computing resources (hence "load balancers"). They are typically used when

packets need to be balanced between different links in order to avoid congestion (thus assuring a certain

Quality of Service). Indeed, in the presence of load balancers along a path, Traceroute could output a path

that does not exist in reality. Figure 1.3 illustrates that flaw. Indeed, using classic Traceroute, each probe

will be sent from the source (S) to the destination (D) but it it not possible to predict whether the load

balancer (LB) will forward the packet to A or to B. In such circumstances, Traceroute could very well

output (LB, A, E, F, D) as a path (the probe with TTL = 2 being sent to A and the one with TTL = 3

9



Figure 1.3: Traceroute in the presence of a load balancer.

Figure 1.4: Paris Traceroute in the presence of a "per flow" load balancer.

to B). In order to solve that issue, Paris Traceroute manages the probe headers in such a way that all

probes belonging to a same trace will be "load balanced" the same way in the presence of a "per flow"

load balancer. Figure 1.4 gives the output of Paris Traceroute on the same topology as the one from figure

1.3 and supposes the load balancer to have a "per flow" policy. When a "per packet" load balancer is

present, the packets are still subject to being load balanced differently. Indeed, the only way to ensure that

every packet will be load balanced the same way is for them to have the same headers. However, it would

then be impossible to match the responses to the probes. Therefore, Paris Traceroute does not ensure that

packets will be treated the same way in the presence of a "per packet" load balancer. However, when it is

the case, Paris Traceroute is able to notify the user so that he can treat the output accordingly.

1.3 Techniques survey

In this section, we are going to discuss some existing techniques for Internet-scale topology discovery and

their efficiency.
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1.3.1 SNMP, DNS and broadcast ping based techniques

Siamwalla et al. [10] introduced several algorithms to discover IP layer topology. The first one we are

going to present is based on SNMP and is described in algorithm 1. SNMP (Simple Network Management

Protocol) is a protocol designed to allow network administrators to remotely manage, monitor and

diagnostic their networks. SNMP can be used to obtain information about link layer devices by querying

their Management Information Base (MIB). This first algorithm takes as input a "temporary set" which

consists of IP address(es) that may or may not correspond to actual host(s) and router(s). Then, for each

element of the temporary set, it determines whether it is alive (via ping) and if so, obtains the list of hosts

within its ARP table entries and the list of neighbouring routers from its ipRouteTable MIB entry. Address

Resolution Protocol (ARP) [11] is a protocol that is used to map interface IP addresses to their Ethernet

address. Although this algorithm is simple, efficient and accurate, it is based on the assumption that

SNMP is available everywhere. This assumption is not verified in practice and therefore this algorithm

can not be used when considering topologies at the scale of the Internet.

They also introduce a second algorithm based on DNS Transfer zone and broadcast ping. A broadcast

ping is a ping packet which destination is an entire subnet. That way, every host in the subnet will receive

that ping and will reply to the sender. The "transfer zone" command can be used to query a DNS server in

order to retrieve the list of every name in a domain. That list can be useful to find all hosts and routers

within the domain. The general idea behind this algorithm is to obtain the list of hosts and routers within

the domain and then to check the validity of the list using a broadcast ping. Just like the first algorithm,

this algorithm can not be used to compute an Internet-scale topology because not only is it slow but it

also heavily relies on the DNS Transfer Zone and the broadcast ping which might both be unavailable for

security reasons.

Algorithm 1 SNMP based topology discovery algorithm
temporarySet← getInputRouter()
permanentSet← ∅
for all router ∈ temporarySet do

ping(router)
if alive(router) then

permanentSet← permanentSet ∪ router
permanentSet← permanentSet ∪ SNMP_GetHostsFromARPTable(router)
routerList← SNMP_GetNeighbouringRoutersFromIPRouteTable(router)
permanentSet← permanentSet ∪ routerList
temporarySet← temporarySet ∪ routerList

end if
end for

1.3.2 Traceroute-based techniques

In this subsection, we will present a few techniques that are quite similar to Traceroute but that try to

improve upon it by reducing the number of probes sent while keeping the same quality of topology.
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Figure 1.5: Example of Mercator trying to limit the overhead generated by the probes

Mercator

Mercator [12] is a tool used to infer an Internet map and that uses a mechanism quite similar to Traceroute

(hop-limited probes). It also makes use of novel alias resolution techniques in order to identify interfaces

belonging to a same router. In other words the resulting Internet topology will be at the router level.

Mercator performs its measurements from a single point of the network only using hop-limited probes. It

also does not require an input list of destinations to probe as it makes use of a so-called informed random

address probing heuristic. This heuristic allows Mercator to probe different destinations in a more efficient

way as it exploits both the results from previous probes and common IP address allocation policies. In

order to reduce the overhead generated by the probes, Mercator uses two mechanisms:

• A probe is only sent if the previous one is done. In other words when a probe is sent, either the

previous one has received its response or it has timed out (waiting for a response that might never

arrive).

• Not every probe starts with a TTL of one. For each path, Mercator identifies the furthest router

in that path such that it is already present in the generated topology. It then estimates the TTL to

set the probe to such that this router will be the first one to respond. If the first received response

is indeed coming from the identified router, it continues to probe that path. Otherwise it simply

backtracks and starts over probing that path with a TTL of one. This is illustrated by figure 1.5. R1,

R2, R5 are already part of the Mercator map, therefore, it identifies R5 as the furthest router in that

path. It will therefore send the first probe with TTL = 3 such that if the probe takes the path (R1,

R2, R5), then R5 will be the first one to respond. Upon reception of such a response, Mercator will

carry on and send the next probe with TTL = 4 and thus discover R6. On the other hand, if the

first probe had taken the path (R1, R3, R4, R5) then (as TTL = 3), R4 would have been the one to

respond and therefore Mercator would have started from the beginning with TTL = 1.

RocketFuel

RocketFuel [13] is a tool that tries to discover the topology of a single ISP (generally at the center of the

network). It relies on three main principles.
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Figure 1.6: Illustration of the Internet tree-like structure that is assumed by DoubleTree.

• It performs measurement selection i.e. reduces the number of required probes by using two

heuristics: directed probing and path reduction. The first one is used to only perform traceroute

that go trough the ISP of interest while the second one limits the length of the paths to avoid intra

and inter monitor redundancy as much as possible.

• It also relies on alias resolution i.e. identifies interfaces belonging to the same router.

• Finally, it uses router identification techniques i.e. determines which router belongs to the ISP of

interest and retrieves information about the router’s geographical location and role in the topology

using some DNS and ISP naming conventions.

DoubleTree

DoubleTree [14] is a probing technique that takes advantage of the structure of the network based on the

assumption that it is a tree-like structure. This is illustrated in figure 1.6. Indeed, it assumes that routes

originating from multiple different monitors towards a single destination have a tree-like structure rooted

at this very destination (cf. figure 1.6 (a)). It also assumes this tree-like structure for routes originating

from a single monitor towards multiple different destinations (cf. figure 1.6 (b)).

In order to reduce the number of probes sent, DoubleTree will limit the length of the paths it will

probe so that once it re-discovers an interface (or in other words "touches the tree"), it stops. In order to

achieve that, it maintains information about the tree in two sets. The local stop set is, as its name indicates,

a set that is local to each monitor and that contains all the interfaces that the monitor has discovered. The

global stop set is global to all monitors and contains all the pairs (interface, destination).
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High frequency probing strategies

In 2010, Robert Berverly et al. [15] presented three probing strategies that aims at giving primitives

towards high-frequency active Internet measurements. To do so, they first quantified the unnecessary

probing made by several existing large topology measurement platforms and developed three probing

strategies that leverage prior knowledge about the network.

• Subnet Centring Probing is quite simple. Instead of randomly choosing which targets to probe in

a subnet (which often leads to wasted probing or missing information), it ensures that the probing is

done so that the targets probed in a same subnet are "as distant as possible" so that it gathers as

much information as possible.

For instance, to choose 4 probes to be sent to 192.168.0.0/16, it will pick 4 addresses from the

distinct prefixes 192.168.0.0/18, 192.168.64.0/18, 192.168.128.0/18 and 192.168.192.0/18.

Then, as the probing progress, it uses the edit distance (according to the definition of Levenshtein)

[16] in order to determine which prefixes are more worthy to be probed than others. In practice, that

translates simply by an empirically defined threshold under which a prefix is not probed anymore as

it is considered not to give any more useful information.

• Interface Set Cover is a probing strategy which goal is to leverage the previous probing cycles by

relying on its interface-level graph. Indeed, it selects paths such that the packets that will be sent

will probe interfaces that are not yet present in the graph.

Obviously, such a strategy requires a "bootstrap" step during which the Subnet Centring Probing

could be used.

• Vantage Point Spreading is the last probing strategy they presented. In it, the problem of dividing

the probing among several vantage points (VPs) is taken as an opportunity to reduce the probing

traffic.

This strategy suggests to use as many distinct VPs as possible for the destinations of a given prefix.

Each VP then applies the Subnet Centring Probing strategy and the potential new destinations that

emerge will be assigned by Vantage Point Spreading to (if possible) VPs that have not yet been

used to probe that particular prefix. Otherwise it simply distributes them uniformly among the set

of available VPs.

Figure 1.7: Example of IP alias resolution
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1.3.3 What’s next?

When using Traceroute (or one of its variants) in order to discover interfaces, we only reveal one interface

of each router on the path. Therefore, when running several traceroute instances, the next step would be to

identify interfaces belonging to a same router in order to obtain a router-level topology. This process is

called IP alias resolution and is illustrated in figure 1.7. Indeed, we can see in the figure that interfaces C1

and C2 are aliases (i.e. they belong to the same router). The alias resolution process therefore gather them

into a single node of the graph.
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Chapter 2

YARRP

2.1 Problematic behind existing traceroute-based approaches

In chapter 1, we have reviewed traceroute and traceroute-based probing techniques. In this section, we are

going to discuss the problematic behind those techniques and why we can not probe a substantial part of

the IPv4 address space quickly (i.e. in terms of minutes instead of hours or days) using one of those.

First of all, traceroute-based approaches have to maintain a state. Indeed, the prober has to be able to

establish a correspondence between any response received and the probe that triggered it. This is usually

done by having the prober wait for the response after having sent a probe. Either the corresponding

response arrives or a timeout threshold is reached and the target is considered unresponsive. This results in

slow probing in which most of the time is spent waiting especially when the probing is done sequentially.

Another problem linked to traceroute-based approaches is the fact that, by design, the paths towards

each target are probed sequentially (refer to figure 2.1). This implies a concentration of the load along

the paths that might trigger rate limitation or IDS alarms. These consequences are obviously not desired

and the only way to prevent them from happening is to limit the rate at which the prober operates. It then

results again in a slow probing technique.

Figure 2.1: Example that shows the sequential probing of traceroute-based techniques with a probe of
TTL = 4. It also shows the concentration of the load on the path from the prober to its target.
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Figure 2.2: Example that shows the random probing order used by YARRP over the set of couples
(IP, TTL).

2.2 YARRP design

Just like any traceroute-based approach, YARRP is a probing technique and stands for "Yelling At Random

Routers Progressively". It is a very recent technique that was introduced by Robert Beverly in 2016 [2]. Its

aim is to solve the slowness issue of other traceroute-based approaches by performing stateless operations

and the concentration of the load issue by randomising the probing order.

In the next three subsections, we will describe the different steps that are taken in order to have such a

fast probing technique. Throughout these sections we will consider a reference problem: probing each

hop of the paths towards each /16 of the IPv4 address space. Even though we will use that problem to

illustrate how YARRP works and give examples, the logic behind each of the following steps is still valid

for bigger parts of the IPv4 address space e.g. all /24.

2.2.1 Preprocessing step

As its name indicate, YARRP will probe the different paths in a pseudo-random order. The aim is to

uniformly randomise the probing order to avoid the load concentration issue that was discussed in section

2.2. For instance, a probe could be sent to IP address A with a TTL of 2, to address B with a TTL of 15

than to C with a TTL of 6 and so on until all the TTL for each address has been considered. Figure 2.2

illustrates the randomisation of the probing order and can be compared with the sequential probing shown

in figure 2.1.

Let us consider the reference problem i.e. probing a path towards each /16. There remain three

parameters to be set for this problem to be well defined:

• The minimum TTL: the lowest TTL from which we will probe. We will call it TTLMin and must

be an integer strictly superior to zero.

• The maximum TTL: the highest TTL to which we will probe. We call it TTLMax and must be an

integer strictly superior to TTLMin.

• The address in each /16: the methodology used to pick the target address in each /16 we will

probe. For instance, each address could be picked at random.
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When these three parameters are set, we can generate a list of couples (IP, TTL). There will be

one element in this list per probe to be sent. Algorithm 2 illustrates how such a list is generated (for

our reference problem) in which the addressPicker function corresponds to the third parameter we just

discussed.

Algorithm 2 IPListGenerator
ls← []
for all i ∈ {0, ..., 255} do

for all j ∈ {0, ..., 255} do
targetIP ← addressP icker(i, j)
for all k ∈ {TTLMin, ..., TTLMax} do

ls.add((targetIP, k))
end for

end for
end for

However, the generated list is not yet randomised. If we used it as such, it would be equivalent as a

traceroute-based approach. In order to shuffle it, we will use the common shuffle Python function [17]

that relies on the pseudo random number generator Mersenne Twister [18].

Each IP address in the list being actually represented as four unsigned char (i.e. 4 bytes) and each

TTL as one unsigned char as well (1 byte), each couple weights at least 5 bytes. When considering our

reference problem and setting TTLMin to 1 and TTLMax to 32 for instance, we have 216 ∗32 = 2, 097, 152

couples which represents roughly 10.5MB in memory. While this still fits into memory, it will quickly

become a problem e.g. if we had considered all /24, the list would already weight 2.7GB. We simply can

not feed the shuffle function with such a list. We therefore used a different approach.

Algorithm 3 inputs a list and outputs this exact same list shuffled based on the Mersenne Twister

pseudo-random number generator. Its memory usage is O(1) but it is O(n) in terms of time (where n

is the number of couples). Let N be the maximum number of couples that it is reasonable to have in

memory at all times. The algorithm cuts the input file (i.e. the file containing all the couples generated by

algorithm 2) into temporary files each containing at most N couples. Each temporary file is then shuffled

independently. Then, while there exists a temporary file that has not reached EOF , it generates a random

number between 0 and the number of remaining temporary file(s) in order to choose from which of these

files the next couple to be written in the final output file will be. When done, the output file contains the

same list as the input file but shuffled which is exactly what we needed.

Finally, the file mentioned above is converted into a binary file which format is described in figure 2.3.

This binary file contains every couple (IP, TTL) and represents the output of the preprocessing step as

well as the input of the probing step.

The preprocessing step as presented in this section can involve large files and substantial computing

times e.g. for the shuffling. The key is that all these operations can be performed offline and before the

probing campaign itself. Indeed, no matter how the binary file is generated, as far as it is compliant with

the binary format described in figure 2.3, next steps will work just as well.
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Algorithm 3 hugeShuffle
N ← "Number of couples that it is reasonable to put in memory"
inputF ile← openInputF ile()
ls← []
nbTempFiles← 0
while ! inputFile reached EOF do

ls← "N next couples from file"
shuffle(ls)
writeInNewTempFile(ls, nbTempFiles)
nbTempFiles← nbTempFiles+ 1

end while
close(inputF ile)
outputF ile← openOutputF ile()
ls← "List of temporary files"
while ! all temporary files reached EOF do

r ←MTRandom(0, size(ls)− 1)
c← getNextCouple(ls[r])
outputF ile.write(c)

end while
close(outputF ile)

... IP TTL ...

(4 bytes) (1 byte)

Figure 2.3: Format of the binary file that is the output of the preprocessing step.

2.2.2 Probing step

The probing step is the one in which the actual measurement will be performed. Let us first give a

high-level view of the step.

The input of this step will be the binary file containing the (IP, TTL) couples described in the

previous section. The goal will be to send one ICMP Echo Request per couple and receive the potential

corresponding response. The probes will be sent to the IP and with the TTL of its corresponding couple.

Each response received will be logged in a structured way into a file. This file will be the output of the

probing step as well as the input of the postprocessing step.

Now that we have given an overview of the whole step, let us dive into it in more details. The probing

step is actually a C program that inputs the binary files containing the couples and a packet rate. This

program is composed of two processes that run in parallel: the sender and the receiver.

• The sender reads the binary file and loops on the couples it contains. It sends one ICMP Echo

Request per couple, sleeping between each in order to comply with the packet rate chosen by the

user.

• The receiver listens on a socket for responses and outputs them in a structured way to the output

file every time it receives one.

As already stated in a previous section, we do not want the sender to wait for the corresponding

response of a probe (or a timeout) before sending the next one. To do so, we need the sender and
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Figure 2.4: A regular IPv4 packet header

the receiver to be stateless. In other words, all the pieces of information that will be required by the

postprocessing step (refer to section 2.2.3) should be present in the responses. In order to be able to

reconstruct the topology in that step, we need three pieces of information:

• The source IP of the response

• The original destination to which the probe that triggered that response was destined

• The original TTL that was set in the probe that trigger the response

Let us now consider the main two types of response we are going to get and see if all three items listed

above are contained in them. Many of the TTL we are going to set in the probes will not be high enough

for the probes to reach their destinations. Therefore, the first type of response we are going to have is

ICMP Time Exceeded (type 11) [19]. For this type of response, the two first items are already in it. Indeed,

the source IP address of the response is obviously in the corresponding IP header field and the original IP

address of the probe that triggered the response is contained in the quote of the ICMP packet. The original

TTL of the probe however is not contained in the response. In order for it to be, we will overwrite the

IPID IP header field with the original TTL in the probe. That way, when the response is received by the

receiver, it will interpret the IPID field of the quote of the ICMP packet as the original TTL of the probe.

Figures 2.4 and 2.5 illustrate the difference between the header of a classical IPv4 packet and the one of a

YARRP probe.

The second main type of responses we are going to get is ICMP Echo Reply. We will get this kind of

responses when the probe has been able to reach its destination and the destination is responsive to ICMP

Echo Request packets. In such a case, it is obvious that the two first pieces of information (the source

IP address of the response and the original destination) are the same and are contained in the response.

As there is no quote in ICMP Echo reply of the corresponding ICMP Echo Request, there is no way to

retrieve the original TTL from the response. When receiving such a response, we therefore only have the

information that we have been able at some point to reach this particular destination.

Experiments have shown us that the receiver catches a negligible minority of other kinds of packets

or even inconsistent packets. These packets are ignored by the receiver and therefore by the following

postprocessing step as well.
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Figure 2.5: The IP header of a YARRP probe

Source IP of the response Original TTL Original destination IP

X.X.X.X Y Z.Z.Z.Z
...

X.X.X.X Y Z.Z.Z.Z

Figure 2.6: Format of the probe records in the ASCII version of the probing step output file.

Every time it receives a response, the receiver will output a "probe record" into an output file. This

file will be the output of the probing step and the input of the next one i.e. the postprocessing step. It can

either be in binary or in ASCII format depending on a program argument. For instance, in ASCII, there

will be one probe record per line in the file and each of them has the format illustrated in figure 2.6. We

clearly see that the three pieces of information we have discussed are in each probe record. When the

response is an ICMP Echo Reply, the corresponding probe record will have its original TTL set to 0 and

the original destination IP will be undefined. Therefore, when the original TTL is 0, we know that all we

can rely on is the source IP it comes from.

2.2.3 Postprocessing step

The aim of this step is to compute the topology of the probed network based on the set of responses we

had during the previous step. The output file of the probing step is therefore the input file of this one. The

set of responses is composed of both ICMP Echo Reply (type 0) and ICMP Time Exceeded (type 11).

The format of this input file has been defined in figure 2.6.

The output of this last step (which will therefore also be the general output of YARRP) will be a

JSON formatted file representing the topology of the network that has been probed. The format of this

file is described in listing 1. As we can see, it is basically a list of objects. Each object represents a path

towards a target IP. It is composed of a "target" field that represents the IP address of the interface that has

been probed, it has a "hops" field which is itself an ordered list of IP addresses representing the hops in
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the path and lastly it has a "targetAnswered" field which is a boolean that tells us whether the target has

answered with an ICMP Echo Reply or not. Lastly, it is worth mentioning that missing hops on a path

will be represented by the IP address 0.0.0.0 in the "hops" list.

Listing 1 Example of JSON output file representing the topology
1 [
2 {
3 "target": "94.105.68.15",
4 "hops" : [
5 "165.47.82.3",
6 "54.23.98.74",
7 ...
8 "47.15.0.84"
9 ],

10 "targetAnswered" : true
11 },
12 ...
13 ]

For this original version of YARRP, the algorithm used to generate such a topology JSON file based

on the set of responses is quite similar to a brute force approach. It is described in algorithm 41. As it will

often be impossible to load the entire set of responses into memory, the algorithm will iterate in the input

file looking for not-yet-treated targets. Once it finds one, it will look again in the input file looking for

responses that had this very same target as original destination IP. All these responses will correspond to

the different "hops" on the path towards the target. Once it reaches the end of the file, it will output the

path into the JSON file. Once there is no more targets to be treated, it closes all opened files and returns.

The algorithm presented in this section is a brute force approach of the topology reconstruction

problem. Its complexity in time is O(n2) which gives quite long execution times when considering an

input file with millions of responses. However its complexity in terms of memory is constant (O(1)). Even

though the postprocessing step can be done entirely offline, we will see in section 3.3 that improvements

can be found to make it faster.

2.3 Limitations

The original version of YARRP as it is presented in this chapter has three main limitations. First of all, if

we consider our reference problem, YARRP will send probes to parts of the IPv4 address space that are

very likely not to respond (for some we even know for a fact that they will not). For instance, here is a list

of /8 address blocks in which the addresses are very likely not to respond to any ICMP Echo Request.

• 0.0.0.0/8 is reserved for self-identification [20]

• 10.0.0.0/8 is reserved for use in private networks [21]

• 127.0.0.0/8 is reserved for loopback addresses [22]

1Algorithm 4 disregards quite a lot of implementation details that makes it correct. This description of the algorithm is
mainly given for the overview it provides to the reader.
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Algorithm 4 Postprocessing algorithm
inputF ile← "File pointer to input file"
treatedTargets← ∅
while inputF ile 6= EOF do

P ← "Empty path"
r ← getNextResponse(inputF ile)
if r.target /∈ treatedTargets then

P.target← r.target
if isICMPEchoReply(r) then

P.targetAnswered← true
end if
while inputF ile 6= EOF do

r′ ← getNextResponse(inputF ile)
if r′.target == P.target then

P.addHop(r′.sourceIP )
end if

end while
end if
rewind(inputF ile)

end while

Figure 2.7: Illustration of intra-monitor redundancy.

• 224.0.0.0/8 – 239.0.0.0/8 are reserved for multicast [23]

• 240.0.0.0/8 – 255.0.0.0/8 are reserved for future use [24]

This issue is actually easy to solve as we can simply prevent the program that creates the list of couples

from adding IPs from those /8 in the file. This will be discussed in more details in section 3.1.1.

Another limitation of the original YARRP is that it chooses the IP address it will probe in each /16

randomly. We therefore can not be sure that the interface corresponding to this IP address can be reached

or whether it will respond to our probes. We could do better by only adding couples in the preprocessing

step file with IP addresses from each /16 that responds to ICMP Echo Request. That way the probing step

will only work with reachable and answering IP addresses. This will also be discussed in more details in

section 3.1.1.

One last limitation we are going to discuss is the fact that the original YARRP is subject to a very

high redundancy. This redundancy takes its source into two different issues.

• Intra-monitor redundancy
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Because of the tree-like structure of the traceroute measurements, interfaces that are close to the

vantage point will be re-discovered multiple times. This is illustrated by figure 2.7. Indeed, we can

see on the figure that when probing targets T1 until Tn, the router R will be rediscovered n times

by YARRP. A solution to the issue is to find the optimal TTL window and it will be discussed in

section 3.1.2.

• Too large TTLMax
When a target is too close to the vantage points (in terms of number of hops between them) compared

to what the TTLMax has been set to, then we will probe this particular target multiple times. If it

answers to ICMP Echo Request, we will receive multiple ICMP Echo Reply. As an example, let’s

suppose that a target T is 12 hops away from the vantage point and that we probe with a TTLMax

of 32. If T answers to ICMP Echo Request, it is very likely that the receiver will receive 11 times

the same ICMP Echo Reply from T .

This is the second source of the redundancy issue and it can be partially solved by making the

sender and the receiver processes of the probing step cooperate. This will be discussed in section

3.2.1.
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Chapter 3

Improving YARRP

In this chapter, we are going to present several improvements over the original YARRP presented in

chapter 2. Obviously, for each improvement, we will need to evaluate its impact. To do so, we will first

define a few metrics and then we are going to give the values of these metrics for our reference problem.

Finally, for each improvement that we are going to present, we will compute those metrics, compare them

with the ones of the reference problem and discuss the advantages and the drawbacks.

It is worth mentioning that every measurement campaign of this chapter as well as the one from chapter

4 have been done from the exact same vantage point1. We have made these measurements independently,

one after the other. Therefore the elapsed time between each is at most a few hours.

Here is the list of the five metrics we are going to use to evaluate the different improvements.

• The number of probes sent corresponds to the raw number of probes that is required to be sent

during the probing step in order to obtain the desired topology. It is an indication of the level of

"aggressiveness" of the probing technique. Indeed, the more probes sent, the more likely it is that

our measurement campaign will be considered as an attack.

• The response rate corresponds to the number of received responses divided by the total number

of probes sent during the probing step. It gives us a good indication of how responsive the probed

network is and thus how well-chosen were the targets.

• The uniqueness rate corresponds to the number of unique IP addresses discovered in the responses

divided by the total number of responses. It is a good indication of how redundant the probing

method is. For instance, a uniqueness rate of 10% tells us that on average we rediscovered 10 times

each interface.

• The completeness rate corresponds to the number of complete paths divided by the total number

of discovered paths. A path is said to be complete if there is no missing hop from TTLMin until

the last hop and if the target of the path answered with an ICMP Echo Reply. This metrics tells us

how well the goal of the measurement campaign was achieved. Indeed, if the goal is to find a path

towards every /16 and we have a completeness rate of 1, then not only did we find a path to each

/16 but every hop of each of these paths answered to our probes. That would mean that the resulting

topology will be quite accurate.

1In Strasbourg, France to be precise.
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Metric Value
Number of probes sent 216 × 32 = 2, 097, 152

Response rate 33.94%

Uniqueness rate 8.2%

Completeness rate 0.94%

Number of ASes 3, 878

Table 3.1: Mean of the values obtained on five instance of measurement for our reference problem.

Although very interesting, this metric has to be used with caution. Indeed, if for a given path every

hop from TTLMin but the very last one before the target answered, the path will be considered as

complete anyway.

• The number of ASes corresponds to the number of distinct Autonomous Systems (AS) from which

we have had a response during the probing step.

As a reminder, our reference problem consists in probing a path towards each /16 of the IPv4 address

space by picking one IP address in each at random with TTLMin = 1 and TTLMax = 32. Table 3.1

summaries the mean of the values we obtained for five measurement campaigns of this reference problem

from a same vantage point.

As we can see, YARRP without any improvements on our reference problem is quite aggressive: more

than two millions probes are sent for a response rate of only 33%. It is also very redundant: only 8.2% of

all the responses contained a unique IP address. Also, a vast majority of the paths are not complete. This

is due to the fact that we ran this campaign with a TTLMin of 1 and that some routers at TTL = 1 and

TTL = 2 were never responding to our ICMP probes. As most paths went through these same first hops,

most of them are considered incomplete. In the next sections, we will discuss different improvements that

will help to make these metrics better for our reference problem.

3.1 Improved preprocessing step

In this section, we will discuss two improvements that were made on the original preprocessing step. As a

reminder, the preprocessing step is the one during which we will generate a randomised list of couples

(IP, TTL) that the probing step will input. With the two improvements we will present, we are going to

address two of the main issues that were identified in section 2.3: the intra-monitor redundancy and the

too-large TTLMax issue.

3.1.1 Filtering input IP addresses

The original version of YARRP generated the list of couples (IP, TTL) simply by picking an IP address

at random in every /16. There are two issues related to that methodology.

• A non-negligible part of the addresses that are picked will never answer to any ICMP Echo Request.

This is due to the fact that some parts of the IPv4 address space are reserved for special uses e.g.

10.0.0.0/8 is reserved for private networks [21]. These addresses are not routable on the Internet

and it is therefore next to impossible to receive a response. A list of these reserved subnets was

already given in section 2.3.
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• Even when considering a routable /16, picking an address at random in it will likely give us an

unresponsive interface. That will result in paths that are not complete in our topology which we

obviously would like to avoid.

In order to solve these two issues, we will filter the targets IP addresses. Indeed, instead of having

one address for each /16 picked at random, we will have one responsive address2 for as much as possible

/16 omitting the ones that are not routable. The algorithm that was implemented to build such a list is

presented in algorithm 5 and 6 (respectively for the sender process and the receiver process).

Algorithm 5 AnsweringIPListGenerator - Sender process
state← "shared set with the receiver process"
while !state.hasOneAnsweringIPPerSubnet() do

for all subnets S do
if isRoutable(S) & S /∈ state then

target← pickRandomIP (S)
sendICMPEchoRequest(target)

end if
end for

end while

Algorithm 6 AnsweringIPListGenerator - Receiver process
state← "shared set with the sender process"
while !state.hasOneAnsweringIPPerSubnet() do

waitForICMPEchoReply()
response← getICMPEchoReply()
if isV alid(response) then

writeInOutputF ile(response.sourceIP )
state.add(response.subnet)

end if
end while

As we can see, the sender and the receiver process share a set-like data structure that is called "state".

This set will contain the subnets for which we already have an answering interface. It is therefore

initialised to the empty set.

The role of the sender process is to send an ICMP Echo Request to randomly picked IP addresses in

each subnet that is not yet present in the state. It will continue to loop until one address per subnet has

been found. The role of the receiver process is to receive the ICMP Echo Replies that have been triggered

by the sender process. While receiving those packets, it will produce the list of answering IP addresses

and inform the sender process through the shared state set (so that the sender will not send unnecessary

probes).

Now that we have discussed a new methodology to generate a list of couples (IP, TTL) containing

only interfaces that respond to ICMP Echo Request, it is time to evaluate the impact of this improvement.

To be able to compare the results with our reference problem, we tried to generate such a list with one

responsive IP address per /16. It is worth noting that there are 216 /16 subnets in the IPv4 address space.

The goal was therefore to find 216 responsive IP addresses. In practice and after a substantial time of

probing, we were only able to find around 53% of these responsive IP addresses.
2An interface is said to be responsive if it sends an ICMP Echo Reply upon reception of an ICMP Echo Request.
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Metric Value
Number of probes sent 1, 105, 150

Response rate 81.59%

Uniqueness rate 11.12%

Completeness rate 0.96%

Number of ASes 5, 949

Table 3.2: Metrics obtained for our reference problem improved only by filtering the input IP addresses.

Even though we did not find one responsive address per /16 subnet, we will see that such an IP filtering

has a great effect of the metrics we defined in section 3. Indeed, after having generated the list of couples

(IP, TTL) with only responding IP addresses and with TTLMin = 1 and TTLMax = 32, after having

done the probing step from the same vantage point as our reference problem and after having run the

different postprocessing scripts on the output of the probing step, we obtained the results presented in

table 3.2.

As we can see the total number of probes sent is almost divided by two. This is of course due to the

fact that we were able to find only 53% of the 216 IP addresses we wanted. However, the response rate

is way better than it was with the original version of YARRP. This is obviously due to the fact that all

interfaces we probed responded to the ICMP Echo Requests we sent them and are thus reachable. The

completeness rate on the other hand remains quite low. Indeed, we performed the probing from the same

vantage point as the one of the reference problem. Therefore the two first unresponsive hops are still

present and prevent a lot of paths from being complete. If we consider the paths only from the second

hops, more than 12% of them are complete. This will be discussed in more details in the next section.

Filtering the input IP addresses is therefore very efficient when it comes to improving the response rate

but has the drawback of not being able to probe a path to every /16 as it is not possible to find a responsive

address for each /16 in a reasonable amount of time. It also has next to no impact on the completeness and

the uniqueness rate.

3.1.2 TTL window restriction

As already explained in section 2.3, YARRP suffers from very high redundancy due to two main factors:

intra-monitor redundancy (i.e. rediscovering interfaces that are close to the vantage point multiple times)

and what we have called too large TTLMax (i.e. sending unnecessary probes and receiving multiple ICMP

Echo Reply from a same target).

Both of these issues can be resolved quite simply by respectively increasing TTLMin and decreasing

TTLMax. Obviously this represents a trade-off as increasing TTLMin will make YARRP miss some of

the interfaces that are close to the vantage point and decreasing TTLMax will make it miss the end of the

longest paths of the topology. However, we will show that the reduction of the level of redundancy will be

worth the trade-off.

We thus have to choose new values for TTLMin and TTLMax. Ideally, these values should be such

that YARRP will still be able to catch most of the internet paths and such that the level of redundancy

decreases significantly. With that in mind, we will set these values to respectively 12 and 27. This choice

of parameters is motivated in two ways.

• First, figure 3.1 from the CAIDA website [25] represents the complementary cumulative distribution
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Figure 3.1: Complementary cumulative distribution function (CCDF) of path lengths (in number of hops)
to a destination that responds to probing (taken from the CAIDA website [25]).

function of responsive IP path lengths. We can see that if we consider the TTLMax of 27 we just

chose, we will be able to reach more than 90% of the responsive IPs. Our choice for the TTLMax is

therefore relevant.

• Then, figure 3.2 represents the uniqueness rate as a function of the TTLMin and the TTLMax.

Each point in this figure represents the mean of the uniqueness rates of five measures with the

corresponding TTLMin and TTLMax. We can see that when it comes to reducing the redundancy

(and thus increasing the uniqueness rate), our choice of parameters is relevant as the zone of the

graph from TTLMin = 12 and TTLMax = 27 tends to stay away from the dark side.

Let us now evaluate the impact of this improvement. We performed a measurement similar to our

reference problem but in which the TTL window has been set with TTLMin = 12 and TTLMax = 27.

Table 3.3 illustrates the results. As we can see, the number of probes sent is divided by two while the

uniqueness rate increases from 8.2% to 21.5% and the completeness rate goes from 0.94% to 11.89%. In

other words, a little bit more than one response over five received gave us a not-yet-discovered IP address

while the number of probes sent is half less. However this improvement has a cost: we do not recover the

topology from the closest and the furthest hops to the vantage point and the response rate decreased a

little going from around 33% to 22%.

3.2 Improved probing step

3.2.1 Communication between the sender and the receiver

Let us remind that the probing step is composed of a sender which job is to send the probes to the different

targets and a receiver which job is to receive the corresponding responses and output them in a file. In
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Figure 3.2: Scatter plot of the uniqueness rate as a function of the TTLMin and the TTLMax on our
reference problem.

Metric Value
Number of probes sent 1, 048, 576

Response rate 22.31%

Uniqueness rate 21.5%

Completeness rate 11.89%

Number of ASes 3, 486

Table 3.3: Metrics obtained for our reference problem improved only by restricting the TTL window to
TTLMin = 12 and TTLMax = 27.

practice, both of these are implemented in separate processes.

Let us now consider the following scenario. As the sender sends the probes, one of them triggers an

ICMP Echo Reply from target T that is received by the receiver. Let us note TTTL the TTL with which

the probe that triggered this response. As we have received an ICMP Echo Reply from T , it means that

the probe with TTL TTTL was able to reach it. Therefore, the sender could skip any future probes to target

T for which the TTL is higher than TTTL. Indeed, not only will it be an unnecessary probe but it will also

trigger the exact same ICMP Echo Reply and thus increase the redundancy.

In order for this to work, the sender needs to maintain a little bit of state. Indeed, it should remember

what was the highest TTL of the probes sent to any target. That way, when the receiver notifies the sender3,

it knows the minimum TTL from which it can skip probes.

Let us now evaluate the impact of this improvement. Table 3.4 summaries the result of a measurement

similar to our reference problem but for which we have "turned on" the communication between the sender

and the receiver.

3In practice, this Inter-Process Communication (IPC) is implemented using message queues.
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Metric Value
Number of probes sent 2, 048, 365

Response rate 32.02%

Uniqueness rate 9.13%

Completeness rate 0.7%

Number of ASes 3, 709

Table 3.4: Metrics obtained for our reference problem improved only by enabling the communication
between the sender and the receiver.

The communication between the sender and the receiver allowed to avoid sending a little less than

50,000 probes. Is it clear that the impact of such improvement is quite limited: the response rate remained

quite stable while the uniqueness rate increased of roughly 1%. However, there is absolutely no reason

not to do it. Indeed, this improvement is not a trade-off as the probes that we skip are guaranteed to be

unnecessary as they will not bring any more new information. It is also interesting to note that as expected,

the completeness rate remains stable.

3.3 Improved postprocessing step

The aim of the postprocessing step is to rebuild the topology based on the set of responses obtained by the

probing step. Even though the algorithm presented in section 2.2.3 allowed to do it correctly, it is quite

slow as its time complexity is O(n2). In this section, we will present a way of making this step faster by

sorting beforehand.

3.3.1 Sorting beforehand

The problem with the algorithm presented in section 2.2.3 is that is contains a double loop. The first one

loops on each response to identify the list of targets. The second one loops on each responses for each

target to find the packets belonging to its trace. Therefore, its time complexity is O(n2).

However, if we sorted the list of responses beforehand according to the target IP, all the responses

concerning a particular target would be contiguous in the list. As the maximum number of responses

per target is 32, the second loop would execute at most 32 times and therefore would make the time

complexity of the whole process O(n).

Obviously, sorting the responses beforehand only makes sense if the sorting algorithm itself has a

time complexity that is inferior than O(n2). Some classic sorting algorithm (like heap-sort) can already

reach a time complexity of O(nlog(n)) but we will now consider a different approach that will be able to

sort the responses in a time complexity of O(n).

Let us consider our reference problem. The algorithm works as follows:

1. Allocate a bi-dimensional array where each dimension goes from 0 up to 255. Each element of

this array will serve as a "bin" for the responses a /16 e.g. responses from targets with IP ∈
123.85.0.0/16 will go to the bin of coordinate [123][85]4.

4If we where considering the problem in which we want to probe a path towards every /24, we would have taken a
3-dimensional array with the same dimensions.
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Figure 3.3: Illustration of the data structure that will help with the sorting of the list of responses.

2. Loop on the list of responses and put each of them in its corresponding bin. The bins could be

implemented as linked lists in which the responses are inserted at the beginning of the lists. Figure

3.3 illustrates the data structure we described.

3. Once every response has been treated, go through the array and output in in a file.

While this algorithm has a time complexity of O(n), it consumes a non-negligible amount of memory.

Indeed, if we still consider our reference problem, and if each "bin" of the array is a pointer of 8 bytes to

its linked list, then the empty array itself is already 2562 × 8 bytes. If we consider the worst case scenario

in which the response rate is 100%, then each linked list contains 32 elements of 17 bytes5. Therefore, the

total weight of this data structure would already be (2562 × 8) + (2562 × 32× 17) = 36.18MB. While

this might not represent a large amount of memory, it quickly increases with the size of the problem. Thus,

if we make the same calculations for the problem in which we probe a path towards every /24, we obtain

(2563 × 8) + (2563 × 32× 17) = 9.26GB. However, as the postprocessing step can be done offline and

on any machine, nothing prevents us from using machines like the NIC4 SEGI cluster from the University

of Liège which has 64GB of RAM per node [26].

5A response is composed of 2 IPs of 4 bytes each, a TTL of 1 byte and a pointer to the next element of 8 bytes.
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Chapter 4

Optimised YARRP

In this short chapter, we will run a complete YARRP measurement campaign that takes full advantage of

the improvements we have discussed in chapter 3. In the first part of this chapter we will describe the

problem, what we are trying to achieve as well as the preprocessing, probing and postprocessing steps.

Then, in the second part of the chapter, we will present the detailed results of the measurement campaign

and try to interpret them.

4.1 Large-Scale Measurement Campaign

In our reference problem, we wanted to find a path towards as much /16 as possible. For this measurement

campaign, we will do the exact same thing but instead of considering /16’s, we will consider /24’s. The

choice of this new problem was not made randomly. Indeed, there already exists several large Internet-

scale topology discovery experiments like Archipelago [27] or iPlane [28]. Large projects like these often

make assumptions regarding the Internet structure by probing only one randomly-chosen IP address per

sufficiently small subnetwork [15].

As the title of this subsection indicates, this is a bigger measurement campaign. Indeed, it increases

the size of the problem by a factor of 256 (there are 224 /24 in the IPv4 space while only 216/16). We will

now describe each of the three steps that were performed for the measurement.

• For the preprocessing step, no modification of the scripts and programs were required except for

the one that generates the list of responding IP addresses (refer to section 3.1.1 for more details).

Indeed, instead of randomly selecting one IP address to probe by /16, it now picks one per /24 and

probe it to see if it answers. As before, if it does, the receiving process will output it in the list. The

list of responding IP addresses was then extended as the corresponding list of couples (IP, TTL)

with TTLMin = 12 and TTLMax = 27 as recommended by section 3.1.2. Finally, the list of

couples was transformed into binary format (see figure 2.3) so that it can be fed to the probing step.

• For the probing step, almost no modification was required. Indeed, the sender is a program that

inputs a list of couples (IP, TTL) and sends the corresponding probes. It does not have much

"intelligence" as it absolutely pays no attention to the characteristics of the probes it sends. This

logic is also valid for the receiving program as it pays no attention whatsoever to the characteristics
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Figure 4.1: Illustration of state of the sender. For instance, we can see that the highest TTL of the probes
that were sent to the IP address picked for 1.3.0.0/16 is 27.

of the response it gets (as far as they correspond to a probe that was sent by the sender). For more

details about the sender and the receiver program, refer to section 2.2.2.

The communication between the two processes however had to be adapted. Indeed, as explained

in section 3.2.1, the sender needs to maintain a state so that it remembers the highest TTL of

the probe(s) sent to each target at any time. In order to save memory, this state was originally

implemented by taking advantage of the fact that we picked only one IP per /16. A two-dimensional

array of 256× 256 was allocated and zeroed. This array was the state of the sender as each element

[x][y] represented the highest TTL at which probes had been sent to x.y.0.0/16. This is illustrated

in figure 4.1. For instance, we see in this figure that the highest TTL of the probes sent to the IP

address picked for 1.3.0.0/16 is 27. Therefore, if later a couple (IP, TTL) is read by the sender

such that IP ∈ 1.3.0.0/16 and TTL > 27, then this probe will not be sent as it will not provide

any additional information.

That mechanism was easily adapted for our new problem by keeping the exact same mechanism on

a 3-dimensional array. Figure 4.2 illustrates that array. For instance, we see in this figure that the

highest TTL of the probes sent to the IP address picked for 113.1.2.0/24 is 19. Therefore, if later a

couple (IP, TTL) is read by the sender such that IP ∈ 113.1.2.0/24 and TTL > 19, then this

probe will not be sent.

• The postprocessing step remained exactly the same. Indeed, the number of probes sent, the

response rate, the uniqueness rate and the completeness rate can be computed without considering

the probing logic that was used in the first place. The aim of this step remains the same: rebuilding

the topology based of the set of responses and then compute the different metrics. For more details,

refer to section 2.2.3.

4.2 Results

In this section, we will present the results of the measurement campaign. We will proceed step by step to

see the different metrics along with the amount of time spent on each of them.
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Figure 4.2: Illustration of state of the sender for the /24 problem. For instance, we can see that the highest
TTL of the probes that were sent to the IP address picked for 113.1.2.0/24 is 19.

Preprocessing step

As discussed in the previous section, the first step is to generate the list of responding IP addresses. The

sender process was set to send 1000 probes per second and ran for two days without interruption. This

packet rate is quite low compared to what could have been chosen. However we really wanted to avoid

triggering any alarms for our measurements. In the two-days time frame, it was able to gather roughly

3.36 millions different responding IP addresses from different /24. That number might not seem very high

as it represents only 20% of the 224 theoretically possible addresses but there are two things to take into

account here:

• First of all, plenty of /8 of the IPv4 address space are reserved for special purposes (refer to section

2.3 for a list). Moreover, even though not reserved for special purposes like the ones in the list,

some other /8 are allocated to different institutions. For instance, no less than 13 different /8 are

allocated to the United States Department of Defense [29]. In practice, we have observed that these

/8 along with some others are not very talkative. Therefore, finding responsive IP addresses within

these subnets might not always be possible.

• After two days, the program was still running and the number of responding IP addresses was still

increasing. We stopped it because the 3.36 millions was considered as a reasonable amount of

responding IP addresses in order to demonstrate the optimised version of YARRP. If we had had the

time to run it for a longer period, we certainly would have covered a larger part of the IPv4 address

space. It is worth noting that our program that gathers huge lists of responding IP addresses could

be subject to some optimisations as well (e.g. parallelisation, focusing more on some part of the

IPv4 address space than others, ...).

The list of 3.36 millions IP addresses generated, we transformed it into another list of 53.76 millions

couples (IP, TTL). Indeed, each target IP will be probed between TTLMin = 12 and TTLMax = 27

which gives us 16 probes per IP. Thus, 16× 3.36× 106 = 53.76× 106 probes in total.
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Metric Value
Number of probes sent 47, 349, 496

Response rate 80.3%

Uniqueness rate 15.1%

Completeness rate 65.3%

Number of ASes 35, 415

Table 4.1: Metrics obtained when trying to probe the paths towards a list of 3.36 millions responding IP
addresses from different /24 using all the improvements discussed in chapter 3.

Probing step

Given the list of roughly 53 millions potential probes to be sent, the entire probing step took approximately

half a day to be completed. As the packet rate was fixed (1000 probes per second), we initially expected to

spend 53.76× 106/1000/60/60 ≈ 15h in the probing step. In practice, we spent two hours less thanks

to the communication between the sender and the receiver improvement.

Indeed, the sender/receiver communication improvement allowed us to not send 6.411.746 useless

probes. That corresponds to 12% of the probes in the list. If we compare this result with the one made

on our reference problem (see section 3.2.1), then we can emit the hypothesis that the impact of the

sender/receiver communication improvement grows with the size of the measurement campaign.

In the end, a little bit more than 38 million probes responses were received which corresponds to a

response rate of 83.3%. While not being the highest response rate we have had during our measurements,

this remains acceptable.

Postprocessing step

This step was the longest one: the postprocessing program ran for roughly a week without interruption

rebuilding the topology. Indeed, our lack of access to machines with large amount of RAM prevented us

from using the improved version of the postprocessing algorithm presented in section 3.3. We therefore

stuck with its slow original version.

Nevertheless, we were able to compute every single one of our metrics on this topology which are

summarised in table 4.1. While we have a quite high response rate, the uniqueness rate is a little bit low.

However it still is roughly twice the uniqueness rate obtained with the original version of YARRP. The

completeness rate on the other hand is the highest one we have obtained in this work.
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Conclusion

As we have seen in chapter 1, numerous different probing methods exist if one wants to obtain an Internet-

wide topology. However, to this day, even the fastest methods will require a substantial probing time

during which the underlying topology might change.

In this master thesis, we have presented, re-implemented and improved a very recent stateless probing

method: YARRP. Throughout our improvements, we have managed to make it both more efficient and

less aggressive (from the perspective of the probed network administrator).

That said, it is always possible to go further. For instance, the current version of YARRP only supports

IPv4 probes. Adding support for IPv6 probing would enable us to gather information about the IPv6

topology. However, we would need to find another IP header field than the IPID to encode the original

TTL of the probe in order for YARRP to keep its stateless property. Indeed, this field is not present

anymore in the IPv6 header.

Another future improvement would be related to security. Indeed, in the current version of YARRP,

nothing prevents a malicious user to mess with the measurements by forging fake replies to the probes

and sending them to the receiver process. A shared key between the sender and the receiver process

along with a hash function could be useful in the future in order to ensure the authenticity and integrity

of the probes. As the communication between the sender and the receiver process has already been

established in section 3.2.1, sharing a key should not be a problem: the sender generates a pseudo-random

key and send it using IPC to the receiver process. Then, before sending any probe, the sender com-

putes hash(K|H) (where K is the shared key and H are the probe headers) and put it in a field of

the packet headers. Upon reception of the quote of the probe, the receiver will be able to check both

the authenticity of the packet (i.e. check that it is indeed a response to a probe sent by the sender and

nobody else) and the integrity (i.e. check that the response was not modified in-flight). Once again, the

challenge for this improvement will be to find a suitable header field to put the result of the hash function in.

“The Internet is the first thing that humanity has built that humanity doesn’t understand, the largest

experiment in anarchy that we have ever had.”

— Eric Schmidt

Hopefully, with tools like YARRP and its future versions, we will be able to understand it a little

bit better.
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