
http://lib.ulg.ac.be http://matheo.ulg.ac.be

Master thesis : Design and development of a distributed, secure and resilient

vault management system

Auteur : Mathonet, Grégoire

Promoteur(s) : Leduc, Guy

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques, à finalité spécialisée en "computer systems and networks"

Année académique : 2016-2017

URI/URL : http://hdl.handle.net/2268.2/2602

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



3rd Party Interfacing for Whigi 

3rd Party Integration Guide for Whigi 
 

This guide aims at providing the suitable and necessary information for anyone to interface smoothly               
to Whigi. You will hear a bit about the data model, and Whigi restore as such an example. Then we                    
will introduce you to best practices and detailed explanation of interfacing. 

 

How Whigi is built 
Whigi is built with the idea in mind that users should regain control over their personal data. As such,                   
in the Whigi world, all encryptions and decryptions take place in the browser. We know, this can be                  
quite lengthy, but this is the ultimate proof we can give to end users. 

The Whigi server provides bare services for creating accounts, storing, retrieving and sharing pieces              
of data.  It ​expects​ this data to be encrypted, but it cannot even be sure about that. 

 

Encryption scheme 
All users have the following keys, stored as explained: 

- The password. The password is not really a key in itself, but the sha256(password + salt) is                 
used as key to encrypt using AES256 the master key. The password is never stored anywhere,                
except if a scheme involving Whigi restore is used, and the matching for authentication is               
done on sha256(sha256(password) + salt) to not have to store this; 

- The master key. Randomly generated AES256 key, this key is stored encrypted as explained              
above in the user table. A logged in user can retrieve it and decrypt it. It is used for                   
encrypting and decrypting the user’s own copy of a data, and for his private RSA key. 

- A public RSA key. 1024 bits to 4096 bits according to the Whigi implemntation, please. This                
key is used indirectly for encrypting the copy of a data shared with a remote user, called now                  
and later a “vault”. 

- A private RSA key. Encrypted with the master key so that Whigi does not know it, it allows to                   
decrypt shared data. Users can have several such keys if coming from merged accounts. 

This introduced, we must stress out the fact that vaults are not directly encrypted using the RSA key                  
pair, but a unique AES256 key is generated, encrypted using the RSA public key and shipped along.                 
This AES key is used to encrypt the plain data, for obvious performances reasons. 

 

Database 
The first figure introduces the database. We will explain in more detail all relevant fields so that it                  
becomes clear what developers had in mind while writing this. 
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User table 
The user table focuses on maintaining a small set of data associated to a user, all what is not                   
essential is considered as a regular data. 

- The _id is the unique identifier, the plain old username 
- Is_company is a field we update manually to a confidence level to display when 3​rd parties                

require grants. You should ask for validation of your account so that we improve your               
confidence level! 

- Company_info is all your public information. Please note that modifying it will reset your              
confidence level, so you should update it before asking for validation. 

- Puzzle is a mechanism used to make request to the server. It is explained later. 
- Encr_master_key is the master_key encrypted as explained above. Refer to “Decrypting keys            

and data” to know how to extract it. 
- Rsa_pub_key is the public key of the user, always sent along. It is stored as openssl public key                  

export format. 
- Rsa_pri_key is the private key, encrypted. Refer to “Decrypting keys and data” to know how               

to extract it. 
- Oauth is an array of tokens, id of the grantee and folder to which access is allowed. 
- Salt is the typical salt used for making rainbow tables less effective. 
- Password is actually sha256(shaa256(password) + salt), against which authentication is done. 
- Data in an object storing where an information can be found, and who it is shared with, refer                  

to “Path naming” to know how data_name is created. 
- Shared_with_me in an object indexed by the id of the sharer, then by data name, that points                 

to a vault id where this share can be found. 

More table 
The more table is actually stored within the user table. As Mongo documents are limited in size to 
16MB, assuming normal user with our ID’s, a user could have about 80K datas or shared datas before 
running out of space. This table allows to grow much more, by maintaining sub documents when a 
user reaches 50K shares. At that point, the shares are themselves split by trigrams, so all the shares 
coming from people whose username begins with aaa, aab, etc, will go into the same More. For 
10billion users, this still allows such a batch of people to once again share 50K data. 

When a user reaches such weight, it cannot anymore change his username (hum), nor retrieve the 
whole of its shares in one shot, it must specify which users it wishes to access. 

Token table 
The token table is used to store authentication tokens. These tokens are NOT OAuth tokens, are                
rather act as session cookies, can be cleared in any fashion by the user for logging out, and making                   
the browser not remember his password. 

 

Path naming 
In Whigi, all data are accessed using a path, often referred to as data_name. The paths have the                  
following naming conventions: the root folder is the empty string, and accessing a data at the root is                  
the name itself. If there are folders in between, they are prefixed and separated with a forward slash.                  
For instance, to access the data “name” from the folder “profile” of the folder “usual”, refer to it as                   
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“usual/profile/name”. When accessing shared data, vaults, you have access to a subset of the file               
system of the sharer,that can be slightly modifies for generic data that can exist in several instances.                 
Anyways, the filesystem is browsable in the same fashion.. 

 

Dated field conventions 
Fields can be dated or not in Whigi. A dated field stores new values from the time of change when                    
updated, rather than forgetting the past. The convention for discriminating them is the following: 

- A non-timed value is encrypted directly, and its is_dated field is set to false 
- A timed value has its is_dated field set to true, and the string encrypted is actually the                 

stringification of the following JSON object: an array of object that have two keys, a “from”                
field, which is an epoch since when this value is valid (an epoch is the time of milliseconds                  
since 1/1/1970,0:0AM) and a “value” field which is the typical associated string value. 

 

Decrypting keys and data 
It may seem easy to decrypt data once we know which algorithm has been used to encrypt it and                   
that we have the key. Sadly though, this is not true: algorithms expect some data type, and therefore                  
type conversions happen all the time. In this section, you will find the type conversions that the keys                  
and data undergo, so that you will be able to decrypt pulled data, or to push cleanly encrypted one. 

- The master key. It is actually a 32-byte array. It is encrypted directly using AES256 in CTR                 
mode from position 0, and stored as-is, as another 32-byte array. To decrypt it, instantiate an                
AES256 decrypter in CTR mode from 0, using as key toBytes(dk), where dk is              
sha256(password + salt) self hashed either 0 or 600+ times. You can test whether this was                
the correct number of times because of the sha_master element, which is            
sha256(sha256(str2arr(master_key))). Have a look at the codes afterwards to help yourself. 

- The RSA private key. It is actually a string representing the openssl export of the private key.                 
It is converted to a byte array using aes-js convertStringToBytes function, before being             
encrypted using AES256 CTR(0) with as key, the master key. 

- A personal piece of data is always considered a string, being dated or not. It is encrypted                 
using AES256 CTR(0) with the master key, but must undergo aes-js convertStringToBytes first             
to be processed. The result is then turned back to a string using our own arr2str that you will                   
find in the app/app.service module of the client. To decrypt a received personal data, you               
must thus turn it to an array of bytes using str2arr, decrypt it using AES256 CTR(0) with the                  
master key, and apply convertBytesToString on the result. 

- A data stored in a vault is encrypted using a temporary AES256 key that is shipped in the                  
vault. It is encrypted/decrypted the same way as a personal data. The temporary AES256 key               
is encrypted using the RSA public key of the user to be granted access. Because the RSA                 
implementation of JSEncrypt expects string to encrypt, the AES256 key, which is a 32-byte              
array, is turned to a string using arr2str, then encrypted and the result is shipped. To recover                 
the AES256 key, simply use your RSA private key then apply str2arr on the result. Note that                 
the 32 first bytes of what you recover/encrypt ought to be the SHA256 of the rest. This is                  
done to ensure the use of the good RSA key for merged accounts. Not all third parties need                  
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to support this if you know you will never use merge accounts, but this should be clearly                 
stated. 

Code samples 
This small paragraph gives an example of how to decrypt the several keys using different languages. 
The first picture shows the helper functions, whereas the second uses them to produce the master 
key and the main RSA private key. 

Javascript 
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PHP 
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Python 
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A 3​rd​ party example, Whigi restore 
Whigi restore is nothing but a 3​rd party which we fully trust. The frontend of Whigi has some special                   
functionalities reserved to be used with it, but these are few. 

Upon account creation, a user is asked whether he wants his account to be recoverable or not. If he                   
declines the feature, his password is never stored, and its lost means the termination of the account. 

However, if he accepts, some data fields are created for him:  

- The path “profile/email/restore” that contains the user’s email is created and granted to             
whigi restore 

- The path “profile/recup_id” that contains a trusted person’s id is created and granted to              
whigi restore if the safest method is chosen 

- The path “keys/pwd/mine1” is created, contains the first half of the user’s password, and is               
granted to whigi restore. 

- The path “keys/pwd/mine2” is created, contains the other part, and is granted either to              
whigi restore, or another person. 

If the user forgets his password, by entering his id, whigi restore will be able to browse his shared                   
directory for the user’s email, and send him a link with his password if it knows both parts.                  
Otherwise, it must browse the other user’s shared repo for his email, and send him a link asking the                   
user to inform whigi restore of his part temporarily. Whigi restore can then concatenate both parts                
and send the poor user a mail with his password. 

Actually the mail sent redirects him to a traditional password change page, and the frontend issues a                 
password change request to the server. As you should have understood, such an operation requires               
the frontend to send the new password against which to match, but the newer version of the                 
encrypted master key as well. 

 

Getting started 
You should first define what your goals for interfacing are: 

- If you want to create a full frontend, refer to the API endpoints definition, how to log in a                   
user, create him a token, and log him out. 

- If you want to use Whigi services as a plugin, or just as an authentication mechanism,                
continue right here. 

In both cases, you should note that we have been using AES256 from npm aes-js, and RSA from npm                   
node-rsa. Although those algorithms are supposed to be clearly defined standards which any library              
should define the same way, we encourage you to not deviate from those. 
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Using Whigi as 3​rd​ party 
Whigi can be used for several purposes: it ranges from the sole authentication, to the collection of                 
some user’s data if he accepts, to even full access in read mode. 

Whigi for authentication 
If you plan on relying on Whigi for authenticating people, you should first make them create a local                  
account, right? This local account will be minimized to their id, but still exist to remember them later,                  
and maybe have local knowledge of the user, such as orders, etc. 

Remember that on all those pages, your company public information is displayed. You may thus use                
them as a 3​rd party that is not even a company, but your confidence level from Whigi will be 0. You                     
should undergo some validation from Whigi to make it raise, and have users click OK! 

If you make the user browse to a request link (namely, account creation and grant request that he                  
has already allowed, the URL OK will be browsed directly, providing a seamless login experience,               
although this might be an account creation on your side). 

Account creation 
The first flow creates an account: make your dear nobody browse to            
https://[Whigi]/account/encodeURIComponent([your_id])/encodeURIComponent([return_url_ok])/ 
encodeURIComponent([return_url_deny])/true. You can include query parameters in your URL’s as          
they are encoded, but make sure to provide https, or Whigi will deny the action. The user will be                   
prompted with a screen asking him if he wants to create an account. If this is the case, your                   
return_url_ok will be browsed, and you will have access to keys/auth/[your_id] shared by the newly               
registered user. Please note that account is the only such endpoint that allows chaining requests,               
that is, if you provide as return URL a URL that contains another HTTPS one, it will re-encode the                   
contained one so that the request goes fine. This can be used for registration and logging in in a                   
single flow. By using the URL as described in “Request for grant”, you can in a single step create an                    
account and register vaults. If you want to always include the account creation by facility, just issue                 
“-” as data list to tell Whigi to not read any data. If you issue as last parameter to this URL the word                       
“flow”, the return URL ok is assumed to be hosted by Whigi and parsed accordingly, making the                 
transition even faster. The word “false” is used for granting without account, and any other word                
uses a regular return URL. 

Authentication 
Once again, it is as easy as sending your would-be user to            
https://[whigi]/remote/encodeURIComponent([your_id])/[challenge]/encodeURIComponent([return
_url]). Your challenge should be letters and digits, and you should record it on your server alongside                 
the user id. You should still use https URL, the user will log in to Whigi, then your return_url will be                     
browsed with additional query parameters than those you might have supplied: “user”, the id of the                
user that has logged in, and “r64”, your “challenge” encoded with the decrypted data of               
keys/auth/[your_id] according to this user, and obviously base64 encoded. The “response” is also             
available, which are the plain bytes values, ‘-’ separated along with “hidden_id”, the true user               
identity. To generate an AES256 key from this data, the toBytes function is applied to it. This can thus                   
be null if the user does not have an account at your side. To authenticate the user, decrypt the data                    
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from your vaults, you will retrieve a string, apply toBytes on it to have the AES key and decrypt the                    
base64-decoded response; if this matches your challenge, your user is who he claims to be. 

 

Request for grant 
You need a user’s data, such as his address for sending him his goods, but you do not have it because                     
you use Whigi? No troubles, just make him browse to          
https://[whigi]/account/encodeURIComponent([your_id])/encodeURIComponent([return_url_ok])/e
ncodeURIComponent([return_url_deny])/false/encodeURIComponent([::-separated-list-of-data])/ex
pire-epoch/encodeURIComponent([trigger_url]). You should browse the publicly available list of data          
maintained by Whigi admins to see where the data you want is located. If you want to request a                   
whole folder, request its name with the trailing slash, but doing so, you won’t be able to set where                   
the data will be saved. The expire_epoch parameter is a number representing until when you will                
need this data. Setting it low will usually provide the user more confidence. If you require some fields                  
that are standardized ones by Whigi, the user will be prompted to create them on the fly if he does                    
not possess them yet. You may require more than one data at once. One of the two URL’s given will                    
be browsed to depending on success or not. The trigger URL is defined for the vaults that will be                   
created, and is fetched when the vault contents are modified over HTTPS. You are not forced to give                  
a trigger URL. 

To register a data under a special name, you can specify the name under which you would like an                   
instantiable data to be registered (defaults to the name of the generic itself) by appending               
//full/path/to/shared to the requested generic. Using this, you can set some data as optional by               
prepending * to its name, and request several times the same data for instance for billing, shipping,                 
etc. You can also prepend a number and a pipe (|) to override more mandatory fields within the                  
shares, this number will behave as a binary mask for fields you’d like to add mandatory, indexed from                  
1 (0 will add no new mandatory fields, 1 the first, etc). Note that those can only guarantee client side                    
what is given, and you should always check what you have received. 

 

Whigi Smart services 
Whigi can now also be used on android. As such, you can interface with it inside your application                  
nearly the same way as you do with your website. Note that on mobile, grant and login flows are                   
separated, because they are already fast. The grant flow consists in creating the following code: 

Intent i = new Intent(“com.envict.whigi.GrantActivity”); 

i.putExtra(“...”, …); 

startActivityForResult(i, MyActivity.WHIGI_CALLBACK); 

The extras you must add are nearly the same as for the web: id_to is you ID, with_account is a                    
boolean to create an account, trigger is a URL you want to be triggered on vault change,                 
expire_epoch is the epoch when grant expires, data_list in an array of strings that represent the data                 
you need. This list can be formatted as with the website parameters, with save name and non                 
mandatory fields. Please note that on mobile devices, the user cannot create new data that has                
pre-requirements, and must therefore already have the data you require to complete the action. If               
you receive this error, you should use a webview. 
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Your activity that launches Whigi must override the onActivityResult method where it will receive a               
standard Activity.RESULT_CANCELED or Activity.RESULT_OK code. 

For authentication, the principle is the exact same but you only need to specify your ID, and the                  
challenge as extras to intent to the class RemoteActivity. 

 

Whigi WebView services 
Because you cannot be sure that your user has the Whigi application installed on his smartphone,                
and because Whigi does not provide native iOS app at the moment, you can have the support                 
required for your grant/login flows with WebViews. 

Please note that you should first try to use the native app, and fallback to WebView only if this failed,                    
for best user experience. 

● On Android, create a WebView as described here:        
https://developer.android.com/guide/webapps/webview.html and load it with a URL that        
looks like the ones web services use. Please note that the return URL’s will be browsed, so                 
you should probably set them to about:blank. You have to define three callback hooks in an                
injected object called “Android”: “deny” which is called if grant is not possible, “ok” which is                
called if grant is successful, and “remote” which is called with a string             
“response:user:hidden_id” which concatenates answers a web service might receive. 

● On iOS, create a WKWebView as described here:        
http://www.kinderas.com/technology/2014/6/15/wkwebview-and-javascript-in-ios-8-using-s
wift and do the same as for Android. You do not have to specify a name for the injected                   
global object, as you cannot do so. 

 

OAuth 
Whigi provides OAuth, but using OAuth gives you the user’s master key, thus making you as                
responsible as a full frontend writer. You can use OAuth without being registered in our services, but                 
for company security, you should first register at our side, to forbid creation of tickets on your behalf                  
without your server acknowledging, and we deeply restrict what can be done on behalf of the user,                 
as only reads and writes to prefixed folder are allowed. 

To use OAuth, you can register as OAuth client to your local Whigi authority. You must provide a                  
for_id, which can be your Whigi id, as well as a checkback URL while subscribing. This checkback URL                  
should allow the query parameter “token” and return a JSON response with a success field set to true                  
or false if this token is known. This would allow for greater security when issuing tickets. 

Send your user to https://[whigi]/     
oauth/[for_id]/encodeURIComponent([folder_name])/[token]/encodeURIComponent([return_url_ok
])/encodeURIComponent([return_url_deny]). The URL’s should be HTTPS, and you can require a           
folder, or a plain data. If the user grants use access, you ok URL is browsed with query parameters                   
“token”, the OAuth token, and “key_decryption”, sha256(password + salt). You can use it to decrypt               
the user’s master key, refer to “Decrypting keys and data” to see how. On deny, the other URL is                   
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visited with a “reason” query parameter. To use the OAuth token, as explained in the RFC, use The                  
Authorization HTTP header, with value “Bearer btoa(token)”. 

You can also directly create and remove tickets from the main client, in this case you will have to give                    
the ticket to another Whigi account, though. 

 

Synchronization 
Please refer to the author’s master thesis to know more about how synchronization and caching of 
user data can be done. 

 

Communicating with the API 
To communicate with the API, always prefer using DNS resolution, as the API is CDNized. You will find                  
below the precise documentation of all the endpoints. One of them is marked with “captcha”, but                
you cannot replicate the account creation, thus it is irrelevant for you. However, some of them are                 
marked with “puzzle”. This is important. 

Handling puzzles 
You want a smooth service, we want smooth users. To make everyone agree, the server responds to                 
long-lived commands only if the user has done some work for him before. This is known as puzzle.                  
Basically, when retrieving the user’s profile, you retrieve his puzzle as well. This is a small random                 
string. 

When you are about to call an API endpoint that requires the puzzle, send a query parameter                 
“puzzle” with a string. This string should be such that, when appended to the user’s puzzle, the first                  
three bytes of the sha256 hash are the ASCII character 0. You can try to find a suitable string by any                     
means, but iterating over the numbers is a good choice. 

If you give a faulty puzzle, or if the user’s puzzle has changed since your last change because he is for                     
instance connected to several frontends, don’t worry, the endpoints that require a puzzle issue it               
back upon error, with a 412 HTTP code. Just make sure to always record the newest puzzle whenever                  
you see one, then you can retry if you get a 412. 

 

Endpoints 
Below is a description of the endpoints callable from any third party. All posted data should be                 
posted in JSON format, and the responses are also JSON formatted. If puzzle is required, the                
response always also includes the user’s puzzle, and can be 412 if the puzzle check fails. The response                  
can also always be 418 if authentication is needed but is not successful (used so that the browser                  
does not display an auth popup). 

The responses contain an error field if the response is not 2XX that describes in the user’s browser                  
language the error. The documentation here provides the expected JSON format if the request is               
successful, and does not document the fact that requests may embed a “puzzle” field with the                
freshest user’s puzzle. 
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All endpoints begin with /api/v<any>/ for now, but maybe some features will require a specific               
version at a time. 

To authenticate, use HTTP basic auth, send the Authorization header with value “Basic b64encode(id              
+ ‘:’ + sha256(password))”, or “Basic b64encode(id + ‘:’ + sha256(arr2str(master_key)))”. When using             
a token, send “Bearer b64encode(token)”. The server only has doubled hashed versions of your              
password and master key, so it cannot impersonate you. 

 

generics.json, generics_paths.json, selects/<select>.json, schemas/<schema>.json,    
helps/<help>.json 
Retrieves the definitions. 

Method: GET, Auth: NO, Puzzle: NO 

Post data: - 

Response: 200 

JSON: Generics definition file, or selectable options, or transition schema. 

 

Other endpoints 
Please review the HTML documentation in the Whigi git repository, “doc” folder, “api.html” file. 

 

Typical login process on a frontend 
A typical login flow involves several API calls: the first one should be the creation of a token if                   
refused, the supplied credentials were invalid. This allows to use the token for the next commands                
and make the browser not remember the credentials. 

Then, you should get your profile to decrypt the user’s master key. The last step would often be to                   
get the data list of the user to be able to start processing own and shared data. 

The following diagram shows a typical login flow, using the combined facility of return URL to create                 
an account on the fly if none was there yet. The frontend and backend requests are clearly                 
separated, and the decryption algorithms used at each step are also underlined. 
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