
http://lib.uliege.ac.be http://matheo.uliege.be

Master thesis : Amanote - A modern note-taking application

Auteur : Fery, Adrien

Promoteur(s) : Boigelot, Bernard

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques

Année académique : 2016-2017

URI/URL : http://hdl.handle.net/2268.2/2612

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

MASTER THESIS

Amanote: A modern note-taking
application

Author:
Adrien FERY

Supervisor:
Prof. Bernard BOIGELOT

A thesis submitted in fulfillment of the requirements
for the degree of Master in Computer Science by Adrien FERY

in the

Faculty of Applied Sciences
Department of Electrical Engineering & Computer Science

Academic Year 2016-2017

http://adrien-fery.com
http://www.montefiore.ulg.ac.be/~boigelot/
http://www.facsa.ulg.ac.be

iii

Declaration of Authorship

I, Adrien FERY, declare that this thesis titled, “Amanote: A modern note-
taking application” and the work presented in it are my own. I confirm that:

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

“Build your own dreams, or someone else will hire you to build theirs.”

Farrah Gray

vii

University of Liège

Abstract

Faculty of Applied Sciences

Department of Electrical Engineering & Computer Science

Master in Computer Science

Amanote: A modern note-taking application

by Adrien FERY

This thesis discusses the reasoning - in terms of technological choices, method-
ologies, and workflow - behind the construction of a scalable and modern
application intended for a large number of users.

The work takes the development of Amanote, a note-taking application for
slides and syllabuses, as the main thread. Firstly, it covers the development,
the deployment, and the testing of the client-side, favouring low-cost and
open-source technologies. It then explains the construction of a serverless
architecture for the server-side, enabling high scalability and availability.

The results tend to show that the technologies used were well suited and in
accordance with the requirements. Two years after the start of development,
the application is still maintainable and acquired more than 20,000 users in 7
months.

http://www.ulg.ac.be
http://www.facsa.ulg.ac.be

ix

Acknowledgements

I wish to express my gratitude to Professor Bernard BOIGELOT for his super-
vision as well as to Thomas FRANÇOIS, Patrick FERY, and Matthias HURDE-
BISE for their proofreading.

I sincerely thank Olivier DE WASSEIGE and Vincent KEUNEN for their pre-
cious advice in both Management and Computer Science.

I also want to thank Laurine ROSSION, Nathan SORET, Etienne GERKENS,
Baudouin DE HEMPTINNE, Remi COMTE-OFFENBACH, François RIGO, Noé
DELÉPINE, Yoric PETITFRÈRE, and all those not mentioned for their support
in Testing, Marketing and Management.

x

Contents
Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Why Amanote . 1

1.1.1 The growth of digital communication supports 1
1.1.2 Handwritten versus computer-based note-taking 1
1.1.3 Note-taking solutions before Amanote 3

Text editor . 3
PDF Viewer . 3

1.2 The birth of Amanote . 4
1.2.1 Basic features . 4
1.2.2 Advanced features . 5

Cloud storage . 5
Audio recorder . 5
Statistics about the slides 6

1.3 Work overview . 6

2 Client-side 7
2.1 Introduction . 7
2.2 Requirements . 7

Targeted platforms . 7
User-centered design . 8
Continuous delivery . 8
Cost . 8
Copyright . 9

2.3 Technology . 9
2.3.1 Native versus cross-platform comparison 10

Native . 10
Cross-platform . 10

2.3.2 Selection criteria for a cross-platform framework 11
Open source with a large community 11

xi

A popular programming language 12
Fulfilled requirements 12
Quality of existing applications and documentation . . 12

2.3.3 Description of some popular cross-platform frameworks 12
JavaFX . 13
Haxe . 14
Electron . 16
Mono . 18
Others . 18

2.3.4 Motivation for choosing Electron 19
Electron versus JavaFX 19

2.3.5 More detail about Electron 21
Basic Electron app example 23
Auto-updater . 24

2.3.6 JavaScript framework 25
2.4 Working environment . 25

2.4.1 Directory structure . 25
2.4.2 Automated workflow . 27
2.4.3 Version control system 27

Technologies . 28
2.5 Bug handling . 29

2.5.1 Knowing the technologies 29
2.5.2 Code review . 29
2.5.3 Tests . 30

Unit testing . 30
Integration and validation testing 30

2.5.4 Reporting . 32
2.5.5 Crash resilience . 32

2.6 Build, release and deliver . 33
2.6.1 Build . 33
2.6.2 Protection and defend 33

Technology . 34
Obfuscation example . 34

2.6.3 Release . 35
2.6.4 Certificate and Authentication 35
2.6.5 Delivery . 36

Mac App Store . 36
Windows Store . 36
Update . 37

xii

3 Server-side 39
3.1 Introduction . 39
3.2 Requirements . 39

3.2.1 Scalability . 39
3.2.2 Availability . 40
3.2.3 Programming language 40
3.2.4 Serverless architecture 40

3.3 Technology . 41
3.3.1 Cloud provider . 41
3.3.2 Choice of a cloud provider 42
3.3.3 More details about Amazon Web Services 44

Computing platform - AWS Lambda 44
Storage - Amazon Simple Storage Service (S3) 45
NoSQL database - AWS DynamoDB 46
User management - Amazon Cognito 46

3.4 Working environment . 47
3.4.1 Development versus Production 47
3.4.2 Apex . 47

3.5 Analytics . 48
3.5.1 Requirement . 48

Event tracking . 48
User profiles . 48
Triggered campaigns . 48
A/B Testing . 48
Compatibility . 49

3.5.2 Metrics to track . 49
Churn rate . 49

3.5.3 Technology . 50
3.6 Tests . 50

3.6.1 Automated tests . 50

4 Results 53
4.1 Introduction . 53
4.2 Overview . 53

4.2.1 Compatibility . 53
4.2.2 Download . 54
4.2.3 Installation . 55
4.2.4 User interface . 55
4.2.5 First use . 55
4.2.6 Open a document . 56

xiii

4.2.7 Highlighting . 57
4.2.8 Note-taking . 57
4.2.9 Save the notes . 58
4.2.10 Cloud storage (Premium) 59
4.2.11 Exportation . 59
4.2.12 Audio recorder (Premium) 60
4.2.13 Statistics (Premium) . 61
4.2.14 Summary mode . 61
4.2.15 Focus mode . 62

4.3 The launch and growth . 62
4.3.1 Timeline . 63

4.4 Feedback . 64
4.5 Reported bugs . 65

5 Conclusion and future work 67
5.1 Conclusion . 67
5.2 Future work . 68

List of Figures

1.1 Basic schema of the application. 5
1.2 Audio recorder synchronised with the slides. 6

2.1 Desktop OS market share. 7
2.2 JavaFX characteristics. 13
2.3 Haxe characteristics. 14
2.4 Contributions to development of Haxe on GitHub (excluding

merge commits) . 15
2.5 Electron characteristics. 16
2.6 Contributions to development of Electron on GitHub (exclud-

ing merge commits) . 16
2.7 Mono characteristics. 18
2.8 Front end most popular technologies according to Stack Over-

flow’s 2016 Developer Survey Results. 19
2.9 JavaFX versus Cordova on Google Trends. 20
2.10 Electron’s main components. 21
2.11 Electron’s processes mechanism. 22

https://insights.stackoverflow.com/survey/2016

xiv

2.12 Electron Hello World app screen. 24
2.13 JavaScript Frameworks on Google Trends. 25
2.14 "Type-based" directory structure. 26
2.15 "Component-based" directory structure. 26
2.16 Example of a version management tree. 28
2.17 Popularity of VCS. Google Web Searches Worldwide from 2004

to 2017. 28
2.18 Device Farm illustration. 31

3.1 Cloud providers usage statistics. 43
3.2 Amazon Web Service, Microsoft Azure, and Google Cloud Plat-

form on Google Trends. 43
3.3 AWS Regions and Availability Zones. 44
3.4 AWS Cognito illustration. 46
3.5 Google A/B Testing link colours. 49
3.6 Example of test results using Mocha. 51

4.1 User interface of Amanote (version 2, May 2017). 54
4.2 Account creation view. 55
4.3 First use guide. 56
4.4 Navigation. 56
4.5 Highlighting feature. 57
4.6 Linking a specific area of the slide with the notes. 57
4.7 Math input dialogue box. 58
4.8 Virtual File System (VFS) UI. 59
4.9 Exportation choice. 60
4.10 Audio recorder. 61
4.11 Statistics system. 61
4.12 Summary view. 62
4.13 Number of users registered to Amanote over the time. 63

5.1 Prototype of the Questions/Answers feature. 69

1

Chapter 1

Introduction

1.1 Why Amanote

1.1.1 The growth of digital communication supports

Since the invention of PowerPoint in the 90s1 and the democratisation of
computers in the 2000s, digital presentation slides have widely replaced over-
head projectors. Nowadays, several millions of slides are created daily2 for
educational and corporate presentations. The advantages of digital slides
are numerous: they are modifiable, persistent, easily shareable worldwide,
ecological, and economical.

In the educational domain at the university level, at the beginning of the
semester, professors usually provide slides to students and use them as a
visual aid during the course. Syllabuses are also increasingly distributed to
students in digital format leaving them the choice to study on a computer or
paper.

Nonetheless, this does not prevent the students from having to take notes
since slides are only a visual aid and are not intended to be complete. More-
over, note-taking helps, in addition to store information, clarify and to struc-
ture the topic.

1.1.2 Handwritten versus computer-based note-taking

Although a study has shown that taking notes by hand may improve short-
term memorisation and allows to synthesise better3, other factors have also

1Microsoft PowerPoint - Wikipedia. https://en.wikipedia.org/wiki/Microsoft_
PowerPoint. (Accessed on 05/25/2017).

2PowerPoint usage and Marketshare - Infogram, charts & infographics. https://infogr.
am/PowerPoint-usage-and-Marketshare. (Accessed on 05/25/2017).

3Daniel M. Oppenheimer Pam A. Mueller. “The Pen Is Mightier Than the Keyboard”.
In: (2014)

https://en.wikipedia.org/wiki/Microsoft_PowerPoint
https://en.wikipedia.org/wiki/Microsoft_PowerPoint
https://infogr.am/PowerPoint-usage-and-Marketshare
https://infogr.am/PowerPoint-usage-and-Marketshare

2 Chapter 1. Introduction

to be taken into consideration when choosing between paper or digital note-
taking. This section compares handwritten versus computer-based note-taking.

The advantages of handwritten note-taking:

Memorisation
As mentioned above, information can be better memorised.3.

Relevancy
As taking notes by hand ordinarily does not allow to be fast enough
to record everything, handwritten notes are usually more selective and
thus more synthesised.3

Flexibility
Handwriting usually brings more flexibility, especially for complex schema,
formulas, or charts.

Fewer distractions
For some students, taking notes by hand can be less distractive than on
a computer with an internet connection.

The advantages of computer-based note-taking:

Rapidity
For many students, it is faster to type and to structure text on a com-
puter than with a pen.

Modifiability
One major advantage of computer-based note-taking is that it allows
editing, restructuring, and reorganising notes easily afterwards.

Searchability
It is unquestionably faster to search in digital notes.

Space and order
All the notes can fit on a laptop, while handwritten note-taking pro-
duces several stacks of paper that have to be stored and carried for each
lesson.

Shareability
Digital notes can be shared easily with others.

1.1. Why Amanote 3

Persistence
It is possible to make backups which avoid notes to be lost or stolen.

Readability
Digital notes are cleaner and easier to read.

Economical
Computer-based note-taking is cheaper compared to the cost of print-
ing all the slides and writing on them with a pen.

Ecological
Finally, it is also more ecological (if the student already has a computer).

Given the advantages of the two approaches, handwritten note-taking may
seem more efficient for courses which do not require reworking the notes
later and which contain few cross-references. However, computer-based note-
taking has many advantages than can be more beneficial in the long term and
for courses that require more work at home.

1.1.3 Note-taking solutions before Amanote

Text editor

A traditional way to take notes on a computer is using a text editor such as
Microsoft Word or Open Office. Theses editors usually offer an extensive
range of functionalities. However, they did not allow to link notes to slides,
which makes them less adequate when slides are used as a course support.

In fact, being able to link notes to the source can be very helpful. It allows
writing faster since the context does not have to be explained. It improves
comprehension by gathering all information in the same place. And it allows
better organisation of the information.

PDF Viewer

An alternative is to use a PDF viewer such as Preview or Adobe Reader. In
fact, they allow viewing slides while adding annotations. This is very useful
when one needs to write only a few comments. However, to make a real
note taking, it quickly becomes disorganised, and it is not possible to format

4 Chapter 1. Introduction

the text in a similar fashion to a text editor, neither to include mathematical
formulas for instance.

1.2 The birth of Amanote

Given the lack of adequate solution and the frequent usage of slides in the
context of education, it was essential to create a note-taking application ap-
propriated to this technology. It is the reason why, the Amanote project was
born in September 2015 with the main goal of allowing to follow courses and
presentations while being able to take clear and structured notes at the same
time, and to link them properly to the right slides.

This section gives an overview of what was originally expected, starting first
with the basic features and then with the more advanced features. The results
obtained are presented at the end of this work in Section 4.2.

1.2.1 Basic features

Basically, Amanote aims to combine a slide viewer with a rich text editor
(Figure 1.1). As slides are often provided in PDF format, the slide viewer can
be extended as a PDF viewer, thus allowing to take notes with any kind of
PDF documents.

Each page of the PDF document has to be distinctly linkable with the text
editor, enabling to write different notes for each of them. Naturally, the
corresponding notes must appear when the pages of the document change.
Thereby, when a page change occurs, the notes for the current page are stored,
and the text editor is refreshed with the notes corresponding to the next page,
if any were already produced, and blank otherwise.

Regarding the text editor, it should provide all the features required to struc-
ture and allow a rich note-taking. It should thus be possible to format the
text, to include mathematical formulas, drawings, charts, images, and so on.
Furthermore, it should be possible to refer to a specific area of the slides di-
rectly in the notes.

Finally, it must also be possible to save the notes to edit them later, as well as
to print the PDF with the corresponding notes below each page.

1.2. The birth of Amanote 5

FIGURE 1.1: Basic schema of the application.

1.2.2 Advanced features

Amanote is intended to be free and accessible to all students. However, for
development to be sustainable thereafter as well as to offset the costs of web
services, the app should, somehow, generate profits. Thus, Premium ac-
counts4 should be developed to allow the users to access to more advanced
features. Those are detailed in the following sections.

Cloud storage

As it is critical for a student not to lose his notes, a cloud storage system
allowing to automatically backup the notes online and to synchronise them
between all his devices should be available. This feature can also be a good
way to share and collaborate on notes with other users.

Audio recorder

It is sometimes difficult to take note of all useful explanations during a course.
In this respect, having an audio recorder synchronised with the slides allow-
ing to matches the audio to the right slides, as illustrated in Figure 1.2, can
be helpful. Students would no longer have to listen to the whole recording,
but could instead focus on the explanations related to the slides they did not
understand, which would save them considerable time.

4Note that there is no restriction on the usage of the basic features without Premium
subscription.

6 Chapter 1. Introduction

Note: As with any recorder system, the students must, of course, have to get
an authorisation before recording the speaker.

FIGURE 1.2: Audio recorder synchronised with the slides.

Statistics about the slides

All slides do not have the same importance: some may be skipped whereas
others require long explanations. To reflect this, the app should record the
time spent on each slide during the class and indicate it afterwards to the
user.

1.3 Work overview

The goal of this work is to explain the reasoning behind the creation of mod-
ern and scalable application intended for a broad public using Amanote as
the main thread. As we will see in chapter 2 and 3, respectively dedicated to
the client-side and server-side, this includes the choices and motivations for
the use of different technologies as well as the description of the methodolo-
gies applied to the development and the delivery of the application.

Chapter 3 reports the results obtained regarding both the developed applica-
tion and the feedback received from users. Finally, chapter 4 concludes the
work and considers some improvements of Amanote.

Note: The terms "front end" and "client-side" as well as "back end" and "server-
side" will be used interchangeably in the rest of this work.

7

Chapter 2

Client-side

2.1 Introduction

As previously stated, the goal of this chapter is not to explain in detail how
Amanote’s client-side was designed but rather to give a general overview
of front end development in terms of technological choices, workflow, and
methodologies used to build a scalable and cross-platform application.

2.2 Requirements

The client-side is the most important part of Amanote. Its goal is, primarily,
to allow students to take comprehensive notes, in a fast and structured way,
while linking them to their course support (i.e., PDF documents).

Targeted platforms

As it is faster to type on a computer rather than on a mobile device and that,
according to Pearson, 73% of college students already use a laptop during
typical school days, and 24% use the tablets1, the application should at least
be compatible with Windows and macOS. Indeed, as it can be seen from
Figure 2.1, Windows and macOS are by far the most popular operating sys-
tems.

Platforms Market share
Windows 84.22%
macOS 11.63%
Others 2.48%
Linux 1.67%

FIGURE 2.1: Desktop OS market share.
StatCounter Global Stats. Desktop Operating System Market Share Worldwide.

http://gs.statcounter.com. Apr. 2017

1Pearson, ed. Student Mobile Device Survey 2015. Pearson, 2015.

http://gs.statcounter.com

8 Chapter 2. Client-side

Given the growing use of tablets by college students2, it should also be pos-
sible to target iOS and Android tablets later, if needed, without having to
re-engineer all the code.

User-centered design

As the application is intended for a wide and heterogeneous public, it has to
be especially easy to use and possess an attractive and clean user interface.

The interactions of the users with the application have to be traceable for
analytic purposes. As it will be seen in section 3.5, this will allow getting
direct feedback on how the users use the app, and it will help to better un-
derstand what has to be improved to increase retention.

Continuous delivery

Amanote is meant to evolve quickly, so it should be easily maintainable on
the long term. The application should then be modular with smooth cou-
pling between modules, which will make easy modifying some parts of the
code without having to change the others. Furthermore, modularity facili-
tates collaboration with other developers.

In the same spirit, the front end has to be able to update automatically and
silently to allow the users to be always up to date without bothering them
by having to install each update which can come in short intervals of time.
Moreover, it reduces the number of versions to deal with. But, on the other
hand, it requires more vigilance during the tests phase to avoid introducing
a buggy version to all users.

Cost

The cost of development has to be as low as possible while using the most
appropriate technologies. Paid libraries can be used if they are open source
and modifiable or if they are used for unessential features. The danger is to
be stuck with a discontinued or buggy technology that cannot be modified.

2+11% from 2013 to 2015; (Pearson, ed. Student Mobile Device Survey 2015. Pearson, 2015)

2.3. Technology 9

Copyright

The application has to be proprietary, protected by copyright, and closed
source for commercial use. It is, therefore, necessary to choose the technolo-
gies carefully in order to respect the terms of the licences.

2.3 Technology

When developing an application, one has usually to choose between a native,
cross-platform or hybrid development. In this section, we will first compare
native and cross-platform solutions, and then we will discuss the choice of a
cross-platform framework.

Native. By definition, a code is said to be native when its compiled version
is a code composed of instructions directly recognised by a processor. In the
case of an application, it is said native when it is developed for a specific
platform, and able to interact directly with the operating system interface.
These are typically applications developed in C# or VB.NET for Windows
and Objective-C or Swift for macOS.

Cross-platform. The cross-platform applications, on the other hand, are de-
signed to run on several platforms with the same source code. These are in-
terpreted languages, such as JavaScript or Java3 for instance, or systems that
convert the code to make it compatible with each targeted platform, such as
Haxe4.

Hybrid. Hybrid applications are cross-platform applications but with the
particularity of being hosted inside a native application and executed in a
Web view using Web technologies. We will not make a difference between
cross-platform and hybrid in the rest of this work since hybrid applications
are just a kind of cross-platform app and these terms are commonly used
interchangeably.

3When compiled into Bytecode and interpreted by the Java virtual machine (JVM).
4We will see how Haxe works later in Section 2.3.3.

10 Chapter 2. Client-side

2.3.1 Native versus cross-platform comparison

Native

The main benefits of a native application are:

• Execution may be faster, and the user interface more responsive.

• Possibility to use all the native features of the platform directly com-
pared to cross-platform frameworks that provide only a subset.

• User interface may be more user-friendly as it uses the standard com-
ponents of the operating system.

The main disadvantages are:

• Depending on the language used, the whole code or at least some parts
of it have to be rewritten for each platform; this increases the develop-
ment time as well as complexity, and therefore the cost.

• It is harder to maintain since it requires a different version of the code
for each platform.

• It more difficult to find developers that master the programming lan-
guages related to each platform.

Cross-platform

The main benefits of a cross-platform application are:

• It saves a lot of time since the source code is directly compatible with
other platforms.

• It is much easier to maintain since there is only one version to manage.

• The result is the same whatever the platform.

The main disadvantages are:

2.3. Technology 11

• It is less responsive than a native app.

• Depending on the technology, it can be too slow for graphically or CPU
intensive applications. However, if only some secondary tasks are in-
tensive, it’s generally possible to implement native plugins that per-
form the intensive tasks.

• Frameworks generally do not provide all the native features of the op-
erating system (such as the possibility to use the Touch Bar on the new
Macbook Pro for instance).

• It may take some time before the framework is compatible with new
OS versions.

In view of the pros and cons of native compared to cross-platform devel-
opment, as Amanote targets several platforms and that the front end is not
intended to be intensive or to use special platform specific features, a cross-
platform development is more advantageous from a cost, time, and main-
tainability point of view.

2.3.2 Selection criteria for a cross-platform framework

Open source with a large community

An important criterion is to choose a free open-source framework and with a
large community. This will reduce the development costs and the risks that
the framework will be discontinued later. Moreover, the fact of being open
source, according to the licence, will allow the addition of missing features
oneself if needed. Finally, having a large community also makes it easier to
find plugins, tools, resources, or help.

The popularity of technologies can be estimated with different tools such
as the number of Web searches (Google Trends), the number of dependent
repositories, the number of followers on GitHub, or with survey results.

One thing to look at carefully when choosing an open-source framework or
library is the licence that goes with it. In the case of Amanote, as the front
end has to be closed source the licence must be non-copyleft and authorise
commercial distribution. It is the case of the MIT License, LGPL, or Apache
License but not of the GNU GPL for instance.

https://img.macg.co/2016/11/macgpic-1480002452-24058400701048-sc-jpt.jpg

12 Chapter 2. Client-side

A popular programming language

A popular programming language can greatly facilitate the development of
the application by allowing to find reusable code faster and in greater quan-
tity. In addition, when the team grows up, it will be easier to find developers
who master this programming language.

Fulfilled requirements

The requirements have, of course, to be fulfillable with the chosen frame-
work. If the application needs to access specific native features, these should
be available in the framework, and if not, it should be possible to add them
without too much work.

Quality of existing applications and documentation

The quality of applications developed with the framework as well as the
quality of the documentation can also help to make a choice. Indeed, a com-
prehensive documentation allows a faster development and avoids wasting
time to understand how some features of the framework work.

2.3.3 Description of some popular cross-platform frameworks

In this section, we will review some popular open-source cross-platform desk-
top frameworks and technologies that can be used to develop the front end
of Amanote.

2.3. Technology 13

JavaFX

Name JavaFX
Developer Sun Microsystems (Oracle Corporation)
Technologies Java, CSS
License Oracle Binary Code License, open source included in

OpenJDK which is licensed under GPL v2 with Class-
path Exception

Platforms Windows Vista, Windows 7, Windows 8, Windows 10,
macOS and Linux

GitHub 9,594 JavaFX public repositories, 682,000 Java public
repositories (May 2017)

Example SkedPal, Atlas Trader

FIGURE 2.2: JavaFX characteristics.

Java is an object-oriented programming language whose reputation is firmly
established and which has the particularity of being portable on several plat-
forms including Windows, macOS, and Linux. It is one of the oldest ap-
proaches to cross-platform applications.

JavaFX is a set of Java packages included with the standard JDK 8 that fa-
cilitates the development of graphical user interfaces, thanks to Cascading
Style Sheets, as well as the deployment of Java cross-platform desktop appli-
cations.

The Java community is pretty broad, and with more than 682,000 Java public
repositories on GitHub we can expect that many libraries can be reused to
save time during the development. Successful software has been developed
in Java (without necessarily using JavaFX), as is the case, for example, of
IntelliJ or Eclipse.

The pros of JavaFX

• Java is a popular programming language with a large community.

• Cascading Style Sheets can be used for the GUI which is a big advan-
tage compared to implement it in the code like with Swing.

• Possibility to embed Web pages within the application.

http://www.oracle.com/technetwork/java/javase/terms/license/index.html
http://openjdk.java.net
http://openjdk.java.net/legal/gplv2+ce.html
http://openjdk.java.net/legal/gplv2+ce.html
https://www.skedpal.com/#sthash.KAAGej0u.dpbs
http://www.investorseurope.net/en/atlas-trader
www.java.com
www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
https://www.jetbrains.com/idea/
https://eclipse.org

14 Chapter 2. Client-side

• The application can benefit from the hardware-accelerated graphics pipeline
(Prism).

• It allows deploying a self-contained application package embedding
the application resources as well as the Java runtimes.

• JavaFXPorts allows to port JavaFX application to iOS and Android.

The cons of JavaFX

• It is only partially open source; The JavaFX UI controls is part of the
OpenJDK project licensed under GPL v2 with Classpath Exception and
the runtime is licensed under Oracle Binary Code License (as Java)
which prevents any modification and indicates that some Commercial
Features may be chargeable.

• The JavaFX CSS parser is not a fully compliant CSS parser and is less
powerful than Web CSS.

Haxe

Name Haxe
Developer Nicolas Cannasse
Technologies Haxe
License Haxe Licenses: GNU GPL and Licence MIT
Platforms Windows, Linux, macOS, Android and iOS
GitHub 2,000 Haxe public repositories, 1,879 followers (May

2017)
Example CastleDB

FIGURE 2.3: Haxe characteristics.

Haxe is an open-source toolkit under MIT Licence and developed originally
since 2005 by an independent developer. The platforms are compatible with
Windows, macOS, Linux but also Android and iOS.

It consists of a high-level object-oriented programming language influenced
by Java, a cross-compiler that translates code written in Haxe into native code

http://gluonhq.com/products/mobile/javafxports/
http://openjdk.java.net/legal/gplv2+ce.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://github.com/HaxeFoundation/haxe/blob/development/extra/LICENSE.txt
https://www.gnu.org/licenses/old-licenses/gpl-2.0.fr.html
https://opensource.org/licenses/MIT
http://castledb.org
http://haxe.org

2.3. Technology 15

FIGURE 2.4: Contributions to development of Haxe on GitHub
(excluding merge commits)

for each targeted platform, and a library implementing access to APIs for
different platforms such as access to files or native dialogue boxes.

Although the community is small, it is active. However, there is no very
popular desktop application that has been developed with Haxe until now.
On its official website, Haxe lists only one desktop app called CastleDB. In
contrast, several games are listed.5

The pros of Haxe

• Compatibility with Android and iOS.

• Better performance since the source code is compiled to native code.

The cons of Haxe

• Small community.

• Haxe is not a standard programming language.

• It is not yet widely used to develop desktop front end apps.

• There are not many resources (only 2,000 public repositories on GitHub).
5https://haxe.org/use-cases/

http://castledb.org
https://haxe.org/use-cases/

16 Chapter 2. Client-side

Electron

Name Electron
Developer Github
Technologies JavaScript, HTML, CSS, Node.js
License Licence MIT, open source
Platforms Windows 7, Windows 8, Windows 10, macOS and

Linux
GitHub 17,518 Electron public repositories, 715,000 JavaScript

public repositories, 45,740 followers (May 2017)
Example Atom, Slack, Visual Studio, Wordpress Desk-

top, MeisterTask, More examples are listed at
https://electron.atom.io/apps/

FIGURE 2.5: Electron characteristics.

Electron is an open-source Node.js framework licensed under MIT licence
and developed since 2013 by Github. It allows developing applications for
Windows, macOS and Linux platforms using Web technologies (JavaScript,
HTML and CSS). Nevertheless, it can be well integrated into the operating
system and allows, for example, to use native menus, notifications or dia-
logues. Furthermore, the module C / C ++ Addons of Node.js allows creat-
ing some part in native code for intensive tasks.

FIGURE 2.6: Contributions to development of Electron on
GitHub (excluding merge commits)

With more than 45,740 followers on GitHub, the community is large and ac-
tive. Electron is developed by a reputable company and has been used to
develop popular modern applications such as Atom from GitHub, Visual
Studio from Microsft, Wordpress Desktop or Slack.

https://opensource.org/licenses/MIT
https://atom.io
https://slack.com
https://code.visualstudio.com
https://desktop.wordpress.com
https://desktop.wordpress.com
https://www.meistertask.com
https://electron.atom.io/apps/
https://electron.atom.io
https://atom.io
https://code.visualstudio.com
https://code.visualstudio.com
https://desktop.wordpress.com
https://slack.com

2.3. Technology 17

The pros of Electron

• Many popular modern applications have been developed with this frame-
work in recent years6 and several are open source7. That allows looking
at the source code to understand the way certain tasks are managed.

• Portable without too much work to mobile devices using a mobile frame-
work that is based on the same mechanism such as Cordova, for in-
stance.

• Web technologies are simple and with plenty of reusable code.

• According to Stack Overflow’s 2016 Developer Survey Results, more
developers use JavaScript than any other programming language.8

• HTML & CSS frameworks such as Bootstrap can be used to easily create
an attractive user interface.

• Electron applications are simple to deploy and include an automatic
update system provided directly by the framework.

The cons of Electron

• Execution of JavaScript is slower than compiled languages.

• Native addons have to be coded in C/C++, which are more compli-
cated languages.

6More than 335 apps are listed on the Electron’s official Website.
7134 are listed as open source.
8Stack Overflow Developer Survey 2016 Results. https://insights.stackoverflow.

com/survey/2016.

https://cordova.apache.org
https://insights.stackoverflow.com/survey/2016
http://getbootstrap.com
https://insights.stackoverflow.com/survey/2016
https://insights.stackoverflow.com/survey/2016

18 Chapter 2. Client-side

Mono

Name Mono
Developers Xamarin and Microsoft
Technologies C#, .NET
License Class libraries licensed under Licence MIT and the

runtime under GNU LGPL, open source
Platforms Windows 7, Windows 8, Windows 10, macOS, Linux,

Android and iOS
GitHub 3,000 Mono public repositories, 178,000 C# public

repositories, 5,514 followers (May 2017)
Example Unity3d, Sims3

FIGURE 2.7: Mono characteristics.

Mono is a .NET development platform developed since 2004 and acquired
by Xamarin in 2011. Its functioning is similar to Java in the sense that the
source code is compiled into an intermediate language (bytecode) and con-
verted just-in-time into machine instructions by the Microsoft’s .NET virtual
machine called the Common Language Runtime (CLR).

The pros of Mono

• Compatible with a large range of platforms.

• Comparable to Java.

The cons of Mono

• Mono seems to be used more for games than for applications.

• GUI is more complex to implement since it has to be coded in C# with
a GUI toolkit.

Others

Of course, other desktop cross-platform frameworks such as Qt or Kivy ex-
ists, but they are less appropriate for Amanote’s client-side. In fact, Qt is a

https://opensource.org/licenses/MIT
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
https://unity3d.com
http://www.thesims3.com
www.mono-project.com
https://www.qt.io
Kivy.org

2.3. Technology 19

C++ library rather used in embedded devices or intensive applications, while
Kivy is highly multi-touch oriented which is not the case of Amanote.

2.3.4 Motivation for choosing Electron

At the end of this review step, it appears that the choice has to be made
mainly between Electron and JavaFX. Indeed, Haxe has an interesting func-
tioning, but it is a technology that remains a little immature, and that has
not been much used yet for the development of desktop applications. Its
community is small and its functioning complex, so there are more risks of
being discontinued in the future. Moreover, as it is a particular technology,
the code would be hardly portable to another framework. Haxe is therefore
not suitable for the development of Amanote.

Regarding Mono, its main advantage is that it targets a greater number of
platforms. However, the graphical user interface is more complicated to im-
plement since it has to be coded with a GUI toolkit like GTK# what can be
noticed when looking at the showcase of applications developed with Mono.

Electron versus JavaFX

First, as the front end is not intended to be graphically or CPU intensive, Elec-
tron is well suited for this kind of application and the better performances of
Java are therefore not a real advantage in this case.

FIGURE 2.8: Front end most popular technologies according to
Stack Overflow’s 2016 Developer Survey Results.

Then, as shown in Figure 2.8, JavaScript is considered as the most commonly

http://www.mono-project.com/docs/about-mono/showcase/software/
https://insights.stackoverflow.com/survey/2016

20 Chapter 2. Client-side

used programming language in front end technologies. We can then expect
that there are more JavaScript’s resources, helps, plugins, and developers.
Moreover, npm (the package manager for JavaScript) is the world’s largest
software registry9,10 allowing to quickly find many modules and reusable
code.

One downside of JavaScript compared to Java is the maintainability. In fact,
JavaScript allows more flexibility, as it is untyped for instance, and thus one
must be careful not to use bad design. However, TypeScript11 and JavaScript
frameworks solve many of the problems of the code quality linked to JavaScript
and allow to significantly increase its maintainability.

The fact that Electron uses Web technologies and the simplicity of its func-
tioning (Web browser + Node.js) allow to not be too strongly bound to a par-
ticular technology. Thus, if one day Electron would be discontinued, most of
the code could be reused with another framework using the same technolo-
gies, which is the case of nwjs12 for instance. In the case of JavaFX, a large
part of the user interface would have to be rewritten.

FIGURE 2.9: JavaFX versus Cordova on Google Trends.

Both can be ported to mobile platforms without too much work. However,
as it can be seen in Figure 2.9, Cordova, a cross-platform framework with a
similar functioning than Electron but for mobile, is much more popular than
JavaFX.

9npm now the largest module repository. http://alexandros.resin.io/npm-now-
the-largest-module-repository/.

10npm. https://www.npmjs.com/.
11TypeScript is a popular superset of JavaScript that adds static typing and class-based

object-oriented programming.
12nwjs was not introduced before because it is in beta stage

https://www.npmjs.com
https://www.typescriptlang.org
https://nwjs.io
http://alexandros.resin.io/npm-now-the-largest-module-repository/
http://alexandros.resin.io/npm-now-the-largest-module-repository/
https://www.npmjs.com/

2.3. Technology 21

Documentation of Electron and JavaFX are both comprehensive. However,
contrary to JavaFX, the Electron website cannot be easily searched in, but that
can be solved using a documentation browser such as Dash.

Regarding the licences, Electron is fully open source and licensed under the
MIT License which is one of the most permissive licences while JavaFX is
bound to Oracle.

Finally, Electron is used by big modern companies such as Facebook, Slack or
Wordpress. The quality of application made with Electron is perfect, and the
web technologies allow to achieve an appealing user interface more easily
than with JavaFX thanks to CSS & HTML framework.

Remark: Electron only supports Windows 7 and higher. This is not a prob-
lem for an application like Amanote, but it is necessary to be aware that there
are companies still using earlier versions (7% of the market share13), and this
can be problematic for some B2B applications.

2.3.5 More detail about Electron

As it can be seen in Figure 2.10, Electron works by combining a variant
of Node.js, an open-source cross-platform JavaScript run-time environment,
and the Chromium rendering library, an open-source web browser which is
used as the basis of the popular Google Chrome browser. It also includes a
per-platform native API for auto-update, dialogue, notifications, and so on.

FIGURE 2.10: Electron’s main components.

Essential Electron. http://jlord.us/essential-electron/.

13Desktop windows versions market share Worldwide | StatCounter Global Stats. http://gs.
statcounter.com/os-version-market-share/windows/desktop/worldwide.

https://kapeli.com/dash
http://jlord.us/essential-electron/
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide

22 Chapter 2. Client-side

Node.js is slightly modified to be adapted for desktop applications instead
of web servers, but its API remains the same. It is used mainly for low-level
tasks such as file system access, networks, cryptography, process handling,
etc. Its C/C ++ Addon and Child process API allow executing native code or
starting another software if necessary.

Electron handles multiple processes. The first process executed is called the
MainProcess and does not contain any graphical user interface. It is the entry
point of the application from which different RenderProcess can be created via
BrowserWindow and it is responsible for handling them as well as intensive
or blocking tasks that should not be run in the RenderProcess. Figure 2.11
summarises the mechanism of the different processes.

FIGURE 2.11: Electron’s processes mechanism.

RenderProcess are responsible for rendering the GUI using Chromium. They
are isolated from each other, but they can communicate with the MainProcess
and vice versa via Electron’s ipcRender, ipcMain, or remote modules. Electron
does not include all the Chromium code, but only its rendering library.

2.3. Technology 23

Compared to a web page in a traditional browser that is in a sandbox, Node.js
is also accessible directly on the RenderProcess side.

Basic Electron app example

Here is a basic example of an Electron app displaying Hello World and the
node version. It is a simplified version of the code provided in Electron’s
Quick Start guide14.

1 const {app, BrowserWindow} = require(’electron’);

2
3 const path = require(’path’);

4 const url = require(’url’);

5
6 let mainWindow = null;

7
8 // Create the main window when the app is ready

9 // (i.e., Electron has finished initializing).

10 app.on(’ready’, function ()

11 {

12 mainWindow = new BrowserWindow({width: 800, height: 600});

13
14 // Load the index.html using the platform specific separator.

15 mainWindow.loadURL(url.format({

16 pathname: path.join(__dirname, ’index.html’),

17 protocol: ’file:’,

18 slashes: true

19 }));

20 });

21
22 // Close the app when all the window are closed.

23 app.on(’window-all-closed’, () => {

24 app.quit();

25 });

LISTING 2.1: main.js

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="UTF-8">

5 <title>Hello World!</title>

6 </head>

7 <body>

8 <h1>Hello World!</h1>

14Quick Start | Electron. https://electron.atom.io/docs/tutorial/quick-
start/.

https://electron.atom.io/docs/tutorial/quick-start/
https://electron.atom.io/docs/tutorial/quick-start/

24 Chapter 2. Client-side

9 <!-- All of the Node.js APIs are available in this renderer

process. -->

10 We are using Node.js <script>document.write(process.versions.

node)</script>,

11 </body>

12
13 <script>

14 // You can also require other files to run in this process

15 require(’./renderer.js’)

16 </script>

17 </html>

LISTING 2.2: index.html

FIGURE 2.12: Electron Hello World app screen.

Auto-updater

Electron makes it easy to implement an automatic update system thanks to
its autoUpdater module and the Squirrel framework.

Squirrel is a set of tools that manages the installation and updating of desk-
top applications. For the Windows and macOS platforms, there are Squir-
rel.Windows and Squirrel.Mac.

2.4. Working environment 25

It just requires a back-end endpoint URL to be registered to check if an up-
date is available and to update the application. The endpoint takes two ar-
guments, the platform name, and the architecture and returns an URL indi-
cating where the update, if any, can be downloaded.

Remark: Apple prevents automatic updates through the autoUpdater module
when the application is published on the App Store.

2.3.6 JavaScript framework

FIGURE 2.13: JavaScript Frameworks on Google Trends.

A JavaScript framework is also recommended in order to structure and facili-
tate the development. They are many possibilities: Ember, Vue.js, AngularJS
from Google, or ReactJS from Facebook. However, the two most popular
are AngularJS and ReactJS. They all have advantages and disadvantages, but
AngularJS is richer for this kind of application. ReactJS is lighter and maybe
more suited for Web apps requiring better Web performances.

2.4 Working environment

2.4.1 Directory structure

It is important to set up a development directory structure that allows to
find and move from one file to another as quickly as possible even when the
number of files increases dramatically.

https://www.emberjs.com
https://vuejs.org
https://angularjs.org
https://facebook.github.io/react/

26 Chapter 2. Client-side

That is why it seems interesting to adopt a different structure than the pop-
ular "type-based" approach that can be found in many projects. The latter
consists of dividing the files into folders corresponding to their type: the
controllers go in a controllers folder, the views in a views folder and so on, as
illustrated in Figure 2.14.

app/
controllers/

homeController.js
profileController.js

views/
homeView.html
profileView.html

FIGURE 2.14: "Type-based" directory structure.

This approach works well with a limited number of files but when the num-
ber grows up, it ends up with lots of files in these folders, and it becomes
difficult to quickly find a given file. In this case, a more scalable approach is
to use a "component-based" structure in which files are divided into folders
by feature. In this architecture, the controllers and the views corresponding
to a specific feature are located in the same folder. This structure is illustrated
in Figure 2.15.

app/
home/

controller.js
view.html

profile/
controller.js
view.html

FIGURE 2.15: "Component-based" directory structure.

This type of structure allows working on a feature without switching be-
tween folders. Moreover, if a feature has to be renamed or deleted, it makes
simpler to rename/delete a single folder instead of renaming/deleting each
file in different folders.

2.4. Working environment 27

2.4.2 Automated workflow

Some tasks can be automated with automation tools such as Gulp or Grunt.
The community of these tools already provides a lot of plugins that allow to
easily implement scripts that run silently in the background in order to, for
example:

• Compile files (such as SASS 15 files to CSS files).

• Automatically refresh the page when there is a change in the code.

• Scan the source code to detect errors.

• Replace patterns in the source code.

• Perform automatic tests.

• Commit changes every hour to a specific branch.

• And so on.

In the long term, the implementation of these scripts allows saving consider-
able time.

2.4.3 Version control system

Version control system (VCS) are tools that keep track of the source code
modifications under all its different versions. It is essential for any significant
project to set up a version control system for both front end and back end.
The benefits are numerous.

First, it allows to have a backup and to keep a history of the changes in the
source code. This way, it is possible to easily return to an earlier version
in order to restore some part of the code, in case of a bug or code quality
degradation.

Then, it significantly eases the collaboration with other developers. Indeed,
it allows developers to work simultaneously and to merge their code. It also
allows working individually on multiple computers.

15SASS is a stylesheet language that extends CSS.

http://gulpjs.com
https://gruntjs.com
http://sass-lang.com

28 Chapter 2. Client-side

FIGURE 2.16: Example of a version management tree.

Version Control Systems: Git, SVN, Mercurial, Bazaar.

https://webinerds.com/version-control-systems-keep-your-code-

in-order/.

Moreover, it is possible to create branches; this allows working on several
different features at the same time in an entirely separate way and then to
merge when it is finished.

Technologies

There exists many version control systems such as, for example, Apache Sub-
version (SVN), Mercurial, Perforce Helix, but as we can see in Figure 2.17
showing the number of web searches on Google for different VCS, the most
popular in recent years is far ahead Git initiated by Linus TORVALDS and
developed since 2005.

FIGURE 2.17: Popularity of VCS. Google Web Searches World-
wide from 2004 to 2017.

There are many services for hosting Git repositories. The main one is GitHub
which also provides issues, tasks and milestone management tools. How-
ever, it is not free for private repositories. An open source alternative is Git-
Lab Community Edition which provides almost the same tools as GitHub for
free and is well suited for small teams.

https://webinerds.com/version-control-systems-keep-your-code-in-order/
https://webinerds.com/version-control-systems-keep-your-code-in-order/
htts://github.com
https://about.gitlab.com
https://about.gitlab.com

2.5. Bug handling 29

An interesting tool that can be used with this technology is Git-flow. In fact,
this tool allows saving time by automating some parts of the Git workflow.

2.5 Bug handling

Bug management is a critical step in application development. Most bugs can
be detected before the application is released but, in 2009, it was estimated
that, in average, 15%16 of bugs introduced during design and development
are not caught before the release.

Some bugs are without real consequence, but others can cause far more se-
vere issues preventing the proper use of the application which can, among
others, seriously degrade its reputation.

In this section, we will see some techniques to reduce as much as possible
the bug rate in front end side. Besides, most of these techniques can also be
applied to the back end.

2.5.1 Knowing the technologies

Even if this may seem obvious, understanding the technologies used and the
specificities of the targeted platforms (such as the Apple’s App Sandboxing,
which takes effect only after the application is packed and limit its capabil-
ities), before coding helps to reduce the number of bugs introduced during
the development.

2.5.2 Code review

Code review consists in a careful examination of the application’s source
code after the development. It allows detecting bugs and security vulner-
abilities but also bad designs that could decrease the maintainability of the
application.

It can be performed manually or automatically with code review tools such

16Jim Bird. Building Real Software: Bugs and Numbers: How many bugs do you have in your
code? http://swreflections.blogspot.be/2011/08/bugs-and-numbers-how-
many-bugs-do-you.html. (Accessed on 05/21/2017).

https://github.com/nvie/gitflow
https://developer.apple.com/app-sandboxing/
http://swreflections.blogspot.be/2011/08/bugs-and-numbers-how-many-bugs-do-you.html
http://swreflections.blogspot.be/2011/08/bugs-and-numbers-how-many-bugs-do-you.html

30 Chapter 2. Client-side

as JSHint, Codacy or Codebeat, but the best is to combine these two ap-
proaches by performing first an automated analysis and then the second pas-
sage manually by the code author and another developer if possible.

2.5.3 Tests

Unit testing

Unit tests are tests performed on a specific feature or part of the application.
It is important to test the features incrementally during its development. In
fact, this allows locating bugs more quickly and earlier. Tests can be carried
out automatically or manually.

The advantage of automated tests is that as they are all run at the same time,
they allow detecting bugs that could occur in a feature while developing an-
other feature.

However, contrary to the back-end for which automated tests are well suited,
the front end involves a lot of GUI. Thus, effective automated tests can thus
be more complicated to set up, so that it can be faster and more efficient
with manual tests. Moreover, by relying too much on automated tests, it is
possible to miss out bugs that would not be taken into account in the test
scripts.

That is why Amanote’s unit tests are mainly performed manually. However,
it does not prevent from having some scripts for trivial tasks such as filling
forms automatically. We will see in Section 3.6 some technologies that can be
used to automate unit tests in both back end and front end.

Integration and validation testing

Unlike unit tests where each module is tested independently, in the integra-
tion tests, modules are assembled and tested together on each platform. In-
tegration tests are generally performed after the unit pass all tests.

As for the unit tests, the first things to do is to carefully set up test procedures
to be sure to test as many relevant cases as possible.

One particular difficulty for the applications intended for a broad public is

http://jshint.com/about/
https://www.codacy.com
https://codebeat.co

2.5. Bug handling 31

that even if it can work correctly on some devices, bugs can occur on other
devices due to their different operating system versions or configurations.
Thus, virtual machines simulating different devices and configurations (with
the various configurations of permissions) can be used to run integration
tests.

FIGURE 2.18: Device Farm illustration.

AWS Device Farm: A service to test mobile apps on real devices | TO THE NEW Blog.

http://www.tothenew.com/blog/aws-device-farm-a-service-to-

test-mobile-apps-on-real-devices/.

There also exist app testing services such as AWS Device Farm for mobile ap-
plications or SauceLabs that allow testing the application on many different
real devices at once. It works by allowing remote access to one device and
by mimicking interactions on the others or by launching automated tests.
Unfortunately, on this day of May 2017, it is not yet available for desktop
applications, but that will certainly be the case soon.

In the same spirit, some services such as Applause or UserTesting provide
both integration and validation testing with tests done by real users. How-
ever, those are expensive techniques, and, if possible, it is cheaper to create a
relatively large set of beta users oneself.

Here are the main steps of Amanote’s integration and validation testing:

1. The application is first tested on different virtual machines.

2. Afterwards, it is tested by around twenty beta testers.

http://www.tothenew.com/blog/aws-device-farm-a-service-to-test-mobile-apps-on-real-devices/
http://www.tothenew.com/blog/aws-device-farm-a-service-to-test-mobile-apps-on-real-devices/
https://aws.amazon.com/device-farm/
https://saucelabs.com
https://www.applause.com/fr/
https://www.usertesting.com

32 Chapter 2. Client-side

3. If all goes well, it is then released only for the new users during one
week or more (there are on average 700 new users weekly).

4. If no significant bug report has been received, the release is delivered
to all the users via an auto-update.

2.5.4 Reporting

Despite the bug reduction techniques seen, it is likely that some bugs will
not be detected. However, they can be reported using bugs reporting tools,
in order to be corrected in the next release.

Bug reporting tools such as HockeyApp allow gathering bug reported by
users via a form available in the application, as well as errors reported auto-
matically by the exception handler17 and crash reporter.

Crashes are more complicated to report because after a crash the application
is no longer running, so it is the role of the operating system to send the
crash details. Fortunately, Electron contains a module called crashReporter
which allows indicating easily to the OS the URL to which the crash report
should be sent.

2.5.5 Crash resilience

It seems essential to develop a system that allows the application to restore
to its previous state after a crash occurred.

A simple algorithm is to set a value quitExpectedly to false in a persistent
storage when the application is starting, and then sets this value to true when
the application is closing normally (i.e initiated by the user). If the value of
quitExpectedly is false when the app is starting and before it was set to false,
it asks if the user wants to restore to the previous session.

To allow this, the state of the application should be saved in background
each time a modification occurs or for a defined time interval which should
be determined in order to not slow down the application. In Amanote, this
interval has been fixed experimentally to 4 minutes. Another possibility is to
define the time interval according to the user’s device performances.

17Error caught with try catch or redirected on the onerror global event handler.

https://hockeyapp.net/#s

2.6. Build, release and deliver 33

2.6 Build, release and deliver

Once the application is ready to be tested and delivered, it has to be built and
packed with the Electron’s runtime. Then, as we will see, other important
tasks have also to be performed to protect the application.

2.6.1 Build

The build is a step that consists in gathering the necessary files, compiling
the code that needs to be compiled, etc. in order to make the application
executable and testable. It should be performed on each targeted platform
(32bits and 64bits).

This operation depends on the technologies used, but in the case of Amanote,
this operation is automated with Gulp and does the following tasks:

• The SASS files are compiled into CSS files.

• All the necessary files are copied into a build folder (some files, such as
SASS files, are not needed for the release and are not copied).

• The JavaScript and HTML files are minified.

• The native modules are rebuilt for the current platform.

The build folder is then ready to be packed with the Electron’s runtime.

2.6.2 Protection and defend

One major problem with JavaScript application is that all the source files are
delivered to the client without being compiled. They can thus be modified
freely by the user, and they are easily readable. It can be critical since it allows
other companies to copy the work accomplished (intellectual property) and
hackers to crack the application in an instant.

One solution to make the code harder to read and to modify is to obfuscate
the source code with an obfuscator and to use an anti-tempering18 system.

18An anti-tempering tool makes the code hard to modify. It can be done with trap func-
tions and by computing the checksum of the files, for instances.

34 Chapter 2. Client-side

It will make the source code as hard to read and to modify as a compiled
executable.

Of course, as in all client-side applications in which the code is given to the
users, it can be cracked. Even big game companies that spent a fortune in
protection see their games cracked a few weeks after their release. That is
why the paid features should be mostly backend related features like the
multiplayer mode in games or the cloud storage in Amanote. Nevertheless,
obfuscating the source code is still a better solution than delivering it as plain
text, as long as it does not slow down the application in a disruptive way.

Technology

Javascript-obfuscator is an open-source obfuscator available on Github that
allows obfuscating the source code with many different options allowing
to find the best compromise between obfuscation and performance. It also
comes with anti-tempering and anti-debugging capabilities.

Obfuscation example

Here is an example of an obfuscated code. The Listing 2.3 shows an obfus-
cated part of the code shown in Listing 2.1.

1 ...

2 {var N=’’,a=decodeURI("_H4-vXQR%22?9EUX6%7F0MYA%22%25&T%1EL%2586VL

%089=9%5BXC9/$%06VI8%3C9%5CNZd&1LDN4-vZUG.(&T%1Ed8%3E/%5BUT%1

D86L_Q4-vXQR%22/$%06%5CI+5%0Dz%7CX6%7F%3EA%5CCp/$%06AS#%25&T%1

EO$5=P%1EN%3E%3C4VL%08?#4VL%08:#7%5C_E%25=&T%1EQ#?%3CGG%0B+=4%05

SJ%25%22=LNZd0(XNZd44MSR8%3E6");for(var O=0,x=0;O<a.length;O++,x

++){if(x===Z.length){x=0;}N+=String.fromCharCode(a.charCodeAt(O)

^Z.charCodeAt(x));}N=N.split(’~|.’);return function(C){return N[

C];};}(’0&JQX(’)};}();function o6llll(){}o6llll.O=function (){

return typeof C=K.charCodeAt(I)&0xff|(K.charCodeAt(I+1)&0xff)

<<8|(K.charCodeAt(I+2)&0xff)<<16|(K.charCodeAt(I+3)&0xff)<<24;C=

N(C,b);C=(C&0x1ffff)<<15|C>>>17;C=N(C,M);y^=C;y=(y&0x7ffff)<<13|

y>>>19;y=y*5+0xe6546b64|0;}C=0;switch(P%4){case 3:C=(K.

charCodeAt(r+2)&0xff)<<16;case 2:C|=(K.charCodeAt(r+1)&0xff)<<8;

case 1:C|=K.charCodeAt(r)&0xff;C=N(C,b);C=(C&0x1ffff)<<15|C

>>>17;C=N(C,M);y^=C;}y^=P;y^=y>>>16;y=N(y,0x85ebca6b);y^=y>>>13;

y=N(y,0xc2b2ae35);y^=y>>>16;return y;};return{o:x};}();o6llll.a=

function (){return typeof

3 ...

LISTING 2.3: Obfuscated code example.

https://github.com/javascript-obfuscator/javascript-obfuscator

2.6. Build, release and deliver 35

2.6.3 Release

The build has to be packed with Electron’s runtime and installers have to be
generated to make the application deliverable to the users.

Electron-builder is an open-source tool that allows creating the release easily
and that supports auto-update, code signing, installer, file association, etc.
This has to be done on each targeted platform as well.

First, the build folder is archived in an Asar file (Electron archive format) file
which concatenates all files together without compression and supports ran-
dom access. The runtime reads the files directly in the Asar. It significantly
speeds up the loading time and solves the Windows’ 256 character limit on
file paths.

Then, the Asar file is packed with the Electron’s runtime and platform spe-
cific files such as Info.plist containing permissions, icons, file associations
and so on.

Finally, the installer and the update package are generated.

2.6.4 Certificate and Authentication

It is necessary to sign the release with a code signing certificate issued by
an authority trusted by Windows and Apple to prove that the application is
from an authenticated source and has not been tempered in the meantime. It
allows operating systems to warn the user if the application is not authenti-
cated or has been tampered in order to prevent him/her from running mali-
cious software.

It is therefore compulsory to obtain a code signing certificate, for example
via DigiCert, which can be used to sign Windows and macOS applications.
The price of the certificate varies between EUR 150 and 350 per year, but this
operation is of absolute necessity

Electron-builder can automatically sign the releases and the installers if the
environment variable containing the certificate path is set. Otherwise, the
codesign command on macOS and SignTool on Windows can also be used to
sign the release manually or to verify that the application is correctly signed.

https://github.com/electron-userland/electron-builder
https://www.digicert.com/code-signing/

36 Chapter 2. Client-side

2.6.5 Delivery

Once the release is ready and signed, it has to be delivered to the users and
therefore be downloadable worldwide. It can be either published on the plat-
form’s stores, or hosted online with a file hosting system.

Mac App Store

The advantage of publishing the application on the Mac App Store is that
people that never heard about it can discover19 it and they can download it
with more confidence. Moreover, the hosting fees are free, while it can cost a
certain price with a file hosting service such as AWS S320.

However, if the application is not free or has in-app purchases, Apple charges
around 30% commission on each transaction. Moreover, some features such
as auto-update or crash report must be disabled for publishing on the Mac
App Store.

Before being uploaded to the Mac App Store, the application has to meet the
requirements presented in the Apple’s Submitting Your App guide. Then, a
mas has to be generated with electron-builder and signed with a certificate
obtained from Apple by registering as developer or company for $99/year.
Finally, the mas can be submitted for review on the iTunes Connect platform.
The Apple review team will accept or reject the application after analysing it
within some weeks.

Windows Store

The same advantages and disadvantages also apply for the Windows Store
except that, if the revenue generated by the application exceeds USD 25,000,
they only charge 20% of the transactions instead of 30%.

An appx can be generated with electron-builder and uploaded on the Mi-
crosoft Developer platform after being registered as developer or company
for USD 19 or USD 99, respectively.

19According to Forrester, on iOS 63% of apps are discovered through searches on the App
Store.

20$0.090 par Go transferred outside S3.

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/SubmittingYourApp/SubmittingYourApp.html
https://developer.microsoft.com/en-us/store/publish-apps
https://developer.microsoft.com/en-us/store/publish-apps

2.6. Build, release and deliver 37

Update

If the application is published on the stores, the update will be handled au-
tomatically. Otherwise, update package should also be hosted.

39

Chapter 3

Server-side

3.1 Introduction

Similarly to the previous chapter, the goal here is to give a general overview
of the server-side in terms of technology choices, workflow, and methodolo-
gies used to build a highly-scalable back-end architecture.

3.2 Requirements

The server-side of Amanote is mainly responsible for managing the user ac-
counts and profiles as well as the storage, synchronisation, and sharing of the
users’ notes in the cloud.

Some requirements of the front end, presented in Section 2.2, are also valid
for the back end. It is the case for the cost that should stay low for this part
as well, and it should still follow the continuous delivery approach. Other
requirements more specific to the back end are presented in what follows.

3.2.1 Scalability

The market targeted by Amanote is quite broad. There are more than 183
million of college students in the world1, and besides, it can also be used in
business presentations. Therefore, it is possible that after a particular event,
thousands of people download the application and decides to use it. Further-
more, as the courses usually begin at the same hours, it will often be used at
the same time. It is, thus, required for the back-end related features to be as
scalable as possible and to scale up/down automatically.

1how many students in the world - Wolfram|Alpha. http://www.wolframalpha.com/
input/?i=how+many+students+in+the+world. (Accessed on 06/01/2017).

http://www.wolframalpha.com/input/?i=how+many+students+in+the+world
http://www.wolframalpha.com/input/?i=how+many+students+in+the+world

40 Chapter 3. Server-side

3.2.2 Availability

Availability is a critical requirement for this kind of application. In fact, it
is inconceivable that student could not access their notes, especially during
an exam period. A high rate of availability implies the back end to be fault
tolerant and to restore from crashes automatically.

Moreover, as the application is intended for a worldwide public, the latency
in countries located on other continents must be reasonable2.

3.2.3 Programming language

Using the same programming language in both the front end and back end
has several benefits. It allows the use of some parts of the code on both sides,
better mastery of the language (it is easier to master one language than two),
and it helps all the developers to understand each part of the application.

3.2.4 Serverless architecture

A serverless architecture allows code to be executed in the cloud without
having to purchase and to manage servers. It is the cloud provider (see Sec-
tion 3.3.1) that is responsible for executing the code in its infrastructure. This
concept is also known as "function as a service" (FaaS) because the code is
commonly divided into functions that can be called independently of each
other.

Serverless architecture has many advantages which help fulfil these other
requirements:

Scalability
It is an highly-scalable architecture since the functions are executed by
the cloud provider, which, most often, has a massive infrastructure and
performs load balancing itself.

Cost
Instead of having to pay for a server that runs all the time, even when
there is no activity, serverless architectures allow paying only for what

2Relatively of the number of users concerned.

3.3. Technology 41

is used. The price requested by the cloud provider is typically com-
puted according to the number of function calls and the execution times
(see Section 3.3.3).

Maintainability and security
As the cloud provider manages the infrastructure, it is secured by pro-
fessionals. The servers are patched on a regular basis, making them less
vulnerable. It is nevertheless necessary to control the authorisations of
the functions with the other services (unauthorised by default) as well
as to secure the code.

Availability
The cloud provider is also responsible for the availability. This latter
has multiple servers with redundancy; consequently, if a server crashes,
the functions will be executed on another server.

Low latency
The functions can usually be replicated and called in different regions,
allowing latency to be reduced in these areas.

The main disadvantages of this kind of architecture are:

Performance
Serverless architectures are usually not suited for high-performance
needs. As an illustration, with Amazon Web Services, the executed
functions have resource limitations, such as not using more than 300
seconds of execution time, not exceeding 1500MB of memory usage, or
not writing more than 512 MB onto the ephemeral disk.

Flexibility
Although some providers enable the execution of binaries, commonly,
the environment executing the code cannot be modified.

3.3 Technology

3.3.1 Cloud provider

A cloud provider is an organisation that provides Web services and IT infras-
tructures for other organisations. Nowadays, it is less and less common for

42 Chapter 3. Server-side

startups to purchase hardware and to create their own data centre. Even big
companies such as Airbnb, Spotify, and Netflix3 use cloud providers4.

It is all the more attractive for small businesses with low budgets and no
validated business models. In fact, many providers propose free tiers, which
allow organisations to cover almost all of their costs during the development
and launch phases. They work with a Pay As You Grow policy thereafter.
This reduces the prices considerably compared to the investments needed
to purchase servers. Furthermore, certain providers also offer promotional
credits for startups. Amazon Web Services provides up to USD $15,000 in
credits with its Portfolio Package, and Microsoft Azure’s BizSpark Plus offers
up to USD $120,000 in credits5. Finally, the maintenance is simpler since the
provider manages a major part of the servers.

3.3.2 Choice of a cloud provider

In recent years, three main cloud providers are dominating the world market.
These are Amazon Web Services (AWS) launch by Amazon, Azure from Mi-
crosoft, and Google Cloud Platform by Google6. Even though AWS is slightly
ahead of its competitors in term of service diversification, the features it of-
fers tend to become more and more uniform amongst themselves. When one
offers a new feature, the others often follow. Their differences lie more and
more in the prices of their services.

Nevertheless, when choosing a provider for Amanote in September 2015,
AWS was the only one of the three to allow serverless architecture thanks to
AWS Lambda. Now, Microsoft Azure has Azure Functions, which is similar
to AWS Lambda, and Google has Cloud Functions but it is still in beta stage.
Therefore, as it was required to use a serverless architecture, Amazon Web
Services has been chosen as the cloud provider for Amanote. This choice
was also motivated by the popularity of AWS, as shown in Figure 3.1 and
3.2.

3After a failure in its own data center, Netflix moves to Amazon Web Service.
4Case Studies & Customer Success - Amazon Web Services. https://aws.amazon.com/

solutions/case-studies/all/. (Accessed on 05/28/2017).
5These two offers were granted to Amanote.
6Cloud Computing Trends: 2017 State of the Cloud Survey. http://www.rightscale.

com / blog / cloud - industry - insights / cloud - computing - trends - 2017 -
state-cloud-survey. (Accessed on 05/29/2017).

https://aws.amazon.com/activate/
https://azure.microsoft.com/en-us/pricing/member-offers/bizspark-startups/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://aws.amazon.com/solutions/case-studies/all/
https://aws.amazon.com/solutions/case-studies/all/
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey

3.3. Technology 43

FIGURE 3.1: Cloud providers usage statistics.
Cloud Computing Trends: 2017 State of the Cloud Survey.

http://www.rightscale.com/blog/cloud-industry-insights/cloud-

computing-trends-2017-state-cloud-survey. (Accessed on 05/29/2017).

FIGURE 3.2: Amazon Web Service, Microsoft Azure, and
Google Cloud Platform on Google Trends.

One major risk when using a cloud provider is that if it goes bankrupt, the
government shuts it down, or the provider increases its prices. However, if
this happened, many companies would be concerned, and it would certainly
be possible to migrate to another provider. For more safety, backups of the
system can also be stored elsewhere (if the budget allows it).

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey

44 Chapter 3. Server-side

3.3.3 More details about Amazon Web Services

Amazon Web Services was launched by Amazon in March 2006. At that time,
it provided only one service, namely a file storage system called Amazon
Simple Storage Service (S3)7. Currently, they have more than 70 services and
infrastructures available in multiple areas of the world (Figure 3.3). This sec-
tion describes the services that are the most useful for the back end of modern
applications. It also indicates, for each service, how the price is computed as
well as the alternative on the Microsoft Azure and Google Cloud Platform
sides.

FIGURE 3.3: AWS Regions and Availability Zones.
Global Infrastructure.

https://aws.amazon.com/about-aws/global-infrastructure/.

Computing platform - AWS Lambda

AWS Lambda is Amazon’s computing platform, which enables creating scal-
able serverless back-end architectures. The code to be executed has to be
divided into functions. This can include libraries as well as executable bina-
ries if needed. Currently, AWS Lambda supports Node.js, Python, Java, and
C. Code written in other languages such as Ruby, PHP, or Go can also be exe-
cuted by including their runtime binary or compiled version in the package8.

7Timeline of Amazon Web Services - Wikipedia. https://en.wikipedia.org/wiki/
Timeline_of_Amazon_Web_Services. (Accessed on 05/29/2017).

8Scripting Languages for AWS Lambda: Running PHP, Ruby, and Go | AWS Compute Blog.
https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-
lambda-running-php-ruby-and-go/. (Accessed on 06/07/2017).

https://aws.amazon.com/about-aws/global-infrastructure/
https://en.wikipedia.org/wiki/Timeline_of_Amazon_Web_Services
https://en.wikipedia.org/wiki/Timeline_of_Amazon_Web_Services
https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/
https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/

3.3. Technology 45

To deploy a function, the code has to be packed into a ZIP file and uploaded
to AWS Lambda. Amazon is then responsible for executing it on its own
server fleet in response to events9 or an HTTP request through AWS API
Gateway. It takes care automatically of the scalability and availability.

Approximate price10: The first 400,000 GB-seconds (memory usage) and 1
million requests per month are free; then, there is a fee of USD 0.20 per 1
million requests plus USD 0.00001667 per GB-second used.

Alternative: As previously stated, the equivalent service on Azure is Azure
Functions, and on Cloud Platform, it is Cloud Functions.

Storage - Amazon Simple Storage Service (S3)

Amazon Simple Storage Service (S3) is a secure and scalable object storage
service. It guarantees 99.999999999% of durability11 and can scale up to sev-
eral trillions of objects. It supports data transfer over SSL as well as automatic
AES encryption and decryption. Moreover, the repositories (called buckets)
can be located and replicated in different regions in the world (see Figure
3.3).

Regarding the access to the objects, S3 has configurable policies to control
them. Likewise, it also supports pre-signed URLs for both download and
upload. Finally, it integrates well with the other services, and the data stored
in S3 can be accessed from AWS Lambda functions ,for instance.

Approximate price: For the first year, there is 5GB of free storage. Then, it
costs USD 0.023 per GB and USD 0.090 per GB transferred out to the Internet
(transfers in S3 are free) plus USD 0.005 per 1,000 requests.

Alternative: The corresponding service on Azure is Azure Storage, and on
Cloud Platform, it is Cloud Storage.

9Events refer to something that happens on other services; a new user register or a file is
uploaded on S3 for instances.

10The cost depends on the region as well as the level of use (the price is often decreasing
according to the amount used).

11The data are backed up across multiple AWS facilities in separate regions to avoid lost
due to disaster.

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/storage/
https://cloud.google.com/storage/

46 Chapter 3. Server-side

NoSQL database - AWS DynamoDB

Amazon provides several types of database services (Amazon RDS, Aurora,
ElastiCache), but the most popular one is its fully managed NoSQL database
called DynamoDB. It supports document and key-value models. Its main
force is its ability to scale easily and without downtime. However, the cost for
that is that the database is spread over several servers, which may complicate
atomic operations and slow down consistent reads.

Approximate price: The first 25 GB of storage and 25 read/write capacities
(200 million requests) per month are free; then, it costs USD 0.25 per GB-
month and USD 0.0065 per hour for every 50/10 read/write capacities.

Alternative: The similar service in Azure is Azure Cosmos DB, and for Cloud
Platform, it is Cloud Datastore.

User management - Amazon Cognito

Amazon Cognito enables users to be managed in a secure, scalable, and sim-
ple way. It is responsible for account creation, authentication, storing user
information and passwords12, and data synchronisation between the user’s
devices. It supports authentication through Facebook, Twitter, Amazon, or
SAML identity solutions, as well as multi-factor authentication (MFA). Ac-
cess tokens are generated automatically for authenticated users, allowing,
for instance, the API calls to be restricted to legitimate users only or to allow
the client-side to upload a file in S3.

FIGURE 3.4: AWS Cognito illustration.
AWS User Authentication & Mobile Data Service | Amazon Cognito.

https://aws.amazon.com/cognito/. (Accessed on 05/29/2017).

12The passwords are managed by AWS and the hash is not accessible to the customer.

https://azure.microsoft.com/fr-fr/services/cosmos-db/
https://cloud.google.com/datastore/
https://aws.amazon.com/cognito/

3.4. Working environment 47

Approximate price: Cognito is free for each of the first 50,000 monthly active
users (MAU); then it costs USD 0.00550 per MAU.

Alternative: The corresponding service on Azure is Azure AD, and on Cloud
Platform, it is Firebase.

3.4 Working environment

Regarding the working environment, the back-end shares similarities with
the front end, detailed in Section 2.4, such as the directory structure, automa-
tised workflow, and version control system. In addition, the server-side has
to deal with a sensitive production environment as well as the deployment
of the code to AWS Lambda.

3.4.1 Development versus Production

A drawback of Amazon Web Services is that it does not allow users to clearly
separate development and production environments. As these two environ-
ments should be isolated so that the production environment is not modified
during development, one AWS account for production, and another for de-
velopment, can be created. In the code, two interchangeable configuration
files containing the AWS account’s specific keys and ID can also be created
for each account. This will enable to use the same code for both development
and production.

3.4.2 Apex

Apex is an AWS Lambda framework for managing, deploying, and testing
AWS Lambda functions. The code for each function must be packed into a
ZIP file and uploaded to AWS Lambda with the correct configuration files.
This can be tedious if it must be done manually for each modification. With
Apex, it is possible to pack and deploy each function automatically and inde-
pendently. Moreover, it also supports multiple AWS credentials and allows
users to switch between them easily. This can be useful to handle handling
production and development.

Alternatively, Serverless is a framework that is comparable to Apex but that
supports also Google Cloud Functions and Microsoft Azure Functions.

https://azure.microsoft.com/fr-fr/services/active-directory/
https://firebase.google.com
http://apex.run
https://github.com/serverless/serverless

48 Chapter 3. Server-side

3.5 Analytics

Setting up an analytics system is an important part of application develop-
ment. In fact, it greatly helps to understand how the users use the applica-
tion. It enables improvement of the user experience based on the analytics
results. For example, it is possible to determine if a feature is not sufficiently
visible or not correctly used by the users. Moreover, it can also improve the
marketing campaign and to better understand the user segmentation.

3.5.1 Requirement

Event tracking

Event tracking is a basic feature of analytics. It enables tracking of events,
such as a click on a certain button, the log in and out of a user, or the activa-
tion of a coupon.

User profiles

Being able to link the user profiles with the analytics system helps to under-
stand better the kind of user profiles that uses the application the most. It
allows redefining later the targeted market more precisely.

Triggered campaigns

Triggered campaigns can be useful to increase retention and revenue. In fact,
it allows reaching a user automatically based on his behaviour. For example,
an email summarising the Premium features can be sent to a user who has
started the process of purchasing the subscription but did not finalise it.

A/B Testing

A/B Testing consists in showing to a group A and a group B of users two
different versions of a feature or a user interface to determine which one
works the best. Although it may require a significant number of users to
conclude well, it is a good approach for optimisation.

A famous example of A/B Testing is the one performed by Google in 2009
which allowed the company to make an extra $200 million per year in ad

3.5. Analytics 49

revenues13. Google displayed two slightly modified blues (see Figure 3.5) to
two groups of users, and the result was that there were significantly more
clicks on ads with the first shade of blue.

FIGURE 3.5: Google A/B Testing link colours.

Compatibility

The analytic system should, of course, be compatible with the technologies
being used. Almost all provide a web API that allows developers to use them
in any language, but it is better if a software development kit (SDK) is made
available.

3.5.2 Metrics to track

Churn rate

The churn rate allows one to determine the ratio of users who stop using the
application. This metric measurement is important to follow because if the
rate is too high, either the target market is not the right one or the application
should be improved.

The crunch rate between two given time t1 < t2 can be computed with the
following formula:

Churn Rate =
users active at t1 − # same users active at t2

users active at t1
(3.1)

A good approach to improve this rate is to automatically send a targeted sur-
vey after a user has not logged in for a certain period of time, asking why the
user stopped using the application. This will make it possible to understand
the reasons for the high rate and take action to correct the problem.

13Why Google has 200m reasons to put engineers over designers | Technology | The Guardian.
https://www.theguardian.com/technology/2014/feb/05/why- google-
engineers-designers. (Accessed on 06/07/2017).

https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers

50 Chapter 3. Server-side

Profiles of users who have stopped using the application can also be com-
pared with those of users who are continuing to use the application. Indeed,
it may not be suitable for a specific market and, depending on the company’s
goals, the marketing campaign may need to be redefined. Hence, there is an
interest in linking analytics to user profiles and gathering as much informa-
tion as possible.

3.5.3 Technology

Many analytics systems are available on the market. However, since they
have to handle large amounts of data, most of them are paid from a certain
level. In fact, Google Analytics or Piwik are free, but they do not fulfil the
requirements since they do not enable to link events to a particular user or
to use triggered campaigns. Likewise, Amazon Mobile Analytics has some
drawbacks and does not allow data to be freely analysed.

Regarding the other solutions, there are, for example, Mixpannel, Kissmet-
rics, and Woopra which are quite complete but also very expensive. A com-
promise is CleverTap, which is free under 10 million events per month (it is
more than enough to start) and then costs USD 1500 per month. That may
seem very expensive, but it is the average market cost.

3.6 Tests

All that was said in Section 2.5.3 concerning the client-side tests is also valid
for the server-side. However, as it will be explained in the next section, the
tests are easier to automate on this side.

3.6.1 Automated tests

The server-side does not have a graphical user interface making automated
tests easier to set up compared to the client-side. There exist many frame-
works to automate the tests, but in JavaScript, two of the most popular are
Mocha and Jasmine. It is difficult to say which of them is the best. In fact, as
shown in Listing 3.1, their APIs are very similar each other and, in terms of
popularity, the both have 12k followers on GitHub. Nevertheless, Mocha is
may be more flexible since it allows the choice of the assertion library. Listing
3.1 also shows how these frameworks can be used to test the API.

https://analytics.google.com
https://piwik.org
https://aws.amazon.com/mobileanalytics/
https://mixpanel.com
https://www.kissmetrics.com
https://www.kissmetrics.com
https://www.woopra.com
https://clevertap.com

3.6. Tests 51

1 // Jasmine

2 describe("Basic API tests", function() {

3 it("Test /hello", function() {

4 request.get("https//api-endpoint.com/hello", (error,

response, body) => {

5
6 expect(error).toEqual(null);

7 expect(response.statusCode).toEquall(200);

8 expect(body).toEqual(’hello’);

9
10 done();

11 });

12 });

13 });

14 // Mocha (with Chai)

15 describe("Basic API tests", function() {

16 it("Test /hello", function() {

17 request.get("https//api-endpoint.com/hello", (error,

response, body) => {

18
19 expect(error).to.equal(null);

20 expect(response.statusCode).to.equal(200);

21 expect(body).to.equal(’hello’);

22
23 done();

24 });

25 });

26 });

LISTING 3.1: Example of automated test scripts using Jasmine
and Mocha.

FIGURE 3.6: Example of test results using Mocha.

As it can be seen in Figure 3.6, Mocha indicates the tests that pass with a
performance indicator (i.e., slow tests in yellow and red). For the tests that
failed, it also shows the reason for the failure.

53

Chapter 4

Results

4.1 Introduction

In September 2016, after one year of development, the first version of Aman-
ote was released to the public who has given him a warm welcome. With
more than 20 000 users in a few months, much feedback was received. Eight
months later, in May 2017, a more advanced version of the application was
developed, taking user’s remarks into account. This release includes, in ad-
dition to the features presented in Section 1.2, the possibility to highlight text
in the slides as well as a summary view allowing to have an overview of the
notes taken for each page.

A demonstration video showing the basic features (Section 1.2.1) of Amanote
is available at the following URL: https://goo.gl/HC2wzU.

This chapter first presents the last developed version of the application, the
product launching, the feedback from the users, and certain problems en-
countered.

4.2 Overview

This section gives an overview of the current version of Amanote with details
about the main developed features from a high-level point of view as well as
some encountered problems.

4.2.1 Compatibility

As required and thanks to Electron, the cross-platform framework used, the
application is compatible with macOS (all 64-bit versions1), Windows (7 and

1The last mac OS X version supporting 32 bit was Snow Leopard (2009); Mac OS X Snow
Leopard - Wikipedia. https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard.

https://goo.gl/HC2wzU
https://electron.atom.io
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard

54 Chapter 4. Results

FIGURE 4.1: User interface of Amanote (version 2, May 2017).

later; representing 93% of the Windows market share2) and additionally Linux
(Ubuntu 12.04 and later, Fedora 21, and Debian 8). It can, therefore, be used
by the vast majority of laptop holders.

Although the performances of JavaScript have been shown less efficient for
some tasks that had to be optimised, such as the rendering of the PDFs which
we will discuss in the following, this technology choice has allowed reach-
ing the expectation without too many difficulties, and the application is still
maintainable today.

4.2.2 Download

The application is freely downloadable on the Amanote’s Website3 and is
hosted using S3, the Amazon Web Services’ storage service. It costs around
USD 504 per month in data transfer, which is relatively high compared to the
other expenses, but it is highly scalable.

The storage is located in Ireland and a Content Delivery Network (CDN)

2Desktop windows versions market share Worldwide | StatCounter Global Stats. http://gs.
statcounter.com/os-version-market-share/windows/desktop/worldwide.

3https://amanote.com
40.078Go of Amanote × 7, 500 monthly downloads × USD0.09 per Go transferred =

USD52.65

https://aws.amazon.com/s3/
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
https://amanote.com

4.2. Overview 55

covering most of the continents thanks to Amazon CloudFront has been set
up to reduce the latency worldwide.

4.2.3 Installation

Once the application is downloaded, it can be easily installed via a Squirrel
installer for Windows, a DMG for macOS, and an AppImage for Linux.

4.2.4 User interface

The user interface is shown in Figure 4.1. As it can be seen, it fulfilled well
the requirements since it is pretty clean, responsive, and easy to use. Seman-
tic UI, a web development framework, as well as SASS stylesheets greatly
helped to achieve this result.

4.2.5 First use

FIGURE 4.2: Account creation view.

When the app is used for the first time, the user is asked to create an account,
to confirm his email address, and then to log in. The sign-up, authentication,
and users’ personal information are managed thanks to AWS Cognito and
AWS Lambda functions on the backend side.

https://aws.amazon.com/cloudfront/
https://github.com/Squirrel/Squirrel.Windows
http://appimage.org
https://semantic-ui.com
https://semantic-ui.com
http://sass-lang.com
https://aws.amazon.com/cognito/
https://aws.amazon.com/documentation/lambda/

56 Chapter 4. Results

As shown in Figure 4.3, when the user logs in for the first time, a step by step
guide explaining the main features of the application appears.

FIGURE 4.3: First use guide.

4.2.6 Open a document

Any PDF documents can be opened and, as shown in Figure 4.1, it is ren-
dered using PDF.js on the left-hand side. Microsoft PowerPoint files cannot
yet be imported as is5, but a tutorial explaining how to convert a PowerPoint
to PDF pops up when the user tries to open one. In teaching, it is not very
restrictive because students commonly received the course in PDF. However,
.ppt files are more frequently distributed in companies, and it is thus planned
to set up an online API allowing to convert PowerPoint files and others slide
formats (Keynote, Google Slide) to PDF directly when the user open them
with Amanote.

FIGURE 4.4: Navigation.

It is, of course, possible to navigate through the slides, as in any PDF Viewer,
using the navigation buttons (Figure 4.4) or using the keyboard shortcuts (left
and right arrows).

One difficulty that was encountered was to scale the PDF correctly and to
improve the render speed for high-resolution documents. Indeed, if all the

5In fact, it is not possible to include the PowerPoint converter into Amanote for licensing
and size reasons.

https://mozilla.github.io/pdf.js/

4.2. Overview 57

pages of a voluminous PDF are rendered directly, it can impact the perfor-
mances. A mechanism to render only the ten next pages and to pre-render
progressively the others has been set up.

4.2.7 Highlighting

Another feature, that was strongly requested by the users and that came be-
tween the first and the second version, is the possibility to highlight some
part of the PDF with different colours.

FIGURE 4.5: Highlighting feature.

A minor improvement that has still to be done on this feature is to allow the
user to see the height of the line, so he can increase or decrease it, before to
highlighting it.

4.2.8 Note-taking

The particularity of Amanote is the possibility to write structured notes for
each slide/page as well as to link specific areas of the slide with the notes
(Figure 4.6). The editor is quite complete and implemented using CKEditor.

FIGURE 4.6: Linking a specific area of the slide with the notes.

The text can be formatted easily, and mathematical formulas in LaTex format,
charts, drawings, tables, images, enumerations, symbols, and titles can be
added in the notes.

http://ckeditor.com

58 Chapter 4. Results

For the moment, adding mathematical formulas is not enough optimised to
be fast since it requires to open a dialogue box (Figure 4.7). Due to the mecha-
nisms of CKEditor and MathJax, difficulties were encountered to allow writ-
ing formulas directly in the notes using a delimiter without altering perfor-
mances. This optimisation seems important and is requested by many users;
a solution has to be found for the next release.

Moreover, the math rendering is currently implemented with MathJax which
can be slow to render pages with several formulas. It will thus be replaced
soon with KaTeX which is much faster and was not available in 2015 when
choosing MathJax.

FIGURE 4.7: Math input dialogue box.

4.2.9 Save the notes

Once the note-taking is completed, it, is of course, possible to save the docu-
ment in order to consult or edit it later. It is saved into Amanote’s proprietary
file format .ama embedding the PDF, the notes, and some metadata6.

With the new version, which includes the cloud storage, files are stored us-
ing the Amanote’s Virtual File System (VFS) shown in Figure 4.8. They are
stored with all the files in the same directory in which Amanote is allowed
to read and write. The user can also create virtual folders and sub-folders
to manage his notes properly. It enables the synchronisation with the cloud,
which would not have been possible to do on macOS if the users were able to
save the file anywhere due to Apple’s App Sandboxing that prevents the app
to read and write files in background that are not in the application directory.

6Allowing, for example, to open the document on the page at which the user left it.

https://www.mathjax.org
https://khan.github.io/KaTeX/

4.2. Overview 59

FIGURE 4.8: Virtual File System (VFS) UI.

A backup system saves the documents every four minutes in the background.
Thus, if the application is closed without saving, the last document will be
restored.

4.2.10 Cloud storage (Premium)

Premium users benefit from the automatic synchronisation of their notes
with the cloud and all their devices. The synchronisation is done silently
in background and it handles off-line and online changes as well as retries
if an error occurred. Those users can also share their notes with others and
collaborate on the same document. However, the merging system has not
been implemented yet and therefore they can not work simultaneously on
the same document7. This will, of course, be implemented in the next re-
lease.

4.2.11 Exportation

Regarding the exportation, as illustrated in Figure 4.9, the user of Amanote
can export his document to PDF in three different formats. In fact, the user
can export only the notes, the slides with the notes bellow, or, in the case of a
syllabus, the notes after its corresponding page.

7In the case of conflict, the document is currently copied with a timestamp appended to
its name.

60 Chapter 4. Results

FIGURE 4.9: Exportation choice.

However, the exportation of large documents takes too long8. Users did not
complain about that until now, but it should nevertheless be improved. A
straightforward solution is to implement it as a native plugin, which is not
the case for the moment.

4.2.12 Audio recorder (Premium)

The audio recorder (Figure 4.10) allows recording the speaker, provided the
user has obtained his prior authorisation, while matching the audio to the
right slides. It is thus possible to know which slide the speaker was talking
about when listening to the recording. Inversely and primordially, it is pos-
sible to listen to the explanation of a specific slide without needing to play or
to search in the whole recording. The user can thus, in an instant, listen to
the explanation of the slides that he does not understand. This saves consid-
erable time.

Teachers will soon9 be able to upload their slides directly in Amanote to share
them with their students, while authorising themselves audio recording or
not. Moreover, given that the audio quality may not be good enough when
the students are sitting too far away, teachers will be able to record them-
selves and to share (automatically) the recording with the students.

8More than 15min was measured for a 200Mb PDF.
9The development of this feature has already started

4.2. Overview 61

FIGURE 4.10: Audio recorder.

4.2.13 Statistics (Premium)

The statistics system records the time spent on each slide during the course
and allows the user to later have an overview of which slides were the most
relevant ones. The time spent is displayed on each page as illustrated in
Figure 4.11, and in the summary mode, it is also possible to list the pages
sorted by time spent.

FIGURE 4.11: Statistics system.

4.2.14 Summary mode

A new feature is the summary mode (Figure 4.12) which shows an overview
of the notes taken and the time spent on each page. Moreover, it allows
searching inside the notes.

62 Chapter 4. Results

FIGURE 4.12: Summary view.

4.2.15 Focus mode

As its name indicates, the focus mode enables the student to focus only on
Amanote and prevents him from opening any other applications during a
fixed period. This feature is developed but not yet released.

4.3 The launch and growth

As previously stated, the development of Amanote has started in September
2015. From February to June 2016, a prototype version was tested by about
thirty students who gave their feedback throughout the development. The
main issues have, therefore, been detected and resolved at an early stage.

In September 2016, the first version of Amanote was released to the public.
Of course, it was not enough to create a website promoting the application
to make it known. Moreover, with the number of apps on the Internet, new
applications are often drowned in the mass.

On the first day of school began, flyers were distributed to students, but,
although they seemed interested, it was not very effective since only a hun-
dred downloaded it. In October, meetings to ask universities to inform their
students of Amanote were organised. Three of them accepted to email their
students, and more than 3,000 users registered to Amanote in a few weeks.

In November 2016, multiple press releases were sent to different medias. It
was quite effective since many medias10 were interested and talked about

10RTL, RadioContact, Guido, Young Change Maker, CCIMag, Sudpresse, and others.

4.3. The launch and growth 63

Amanote. It was especially the case of the RTL TV news11. The interviews
and article were relayed on social medias and in, December 2016, Amanote
already had more than 10 000 users, most of them located in Belgium.

FIGURE 4.13: Number of users registered to Amanote over the
time.

For the second semester, the goal was to make Amanote known outside Bel-
gium. The main strategy was to offer 4-months free Premium subscriptions
to Erasmus students registered in the Erasmus Student Networks so that they
would bring Amanote when going back to their country. Affiliated links were
also proposed to some bloggers. In April 2016, there were more than 20,000
users located in more than 50 different countries.

Figure 4.13 shows the number of users who subscribed to Amanote over the
time. The different events detailed above can easily be distinguished.

4.3.1 Timeline

• September 2015: Development has started.

• November 2015: VentureLab + ULG Entrepreneur status.

• February 2016: Prototype version tested by about thirty students.

• August 2016: Company creation (Amaplex Software SPRL).

• September 2016: Amanote was publicly released.

• November 2016: Media coverage.

• December 2016: 50,000 EUR fundraising12

11http://www.rtl.be/info/Video/602689.aspx
12It was invested by the SRIW (Société Régionale d’Investissement de Wallonie).

http://www.rtl.be/info/Video/602689.aspx

64 Chapter 4. Results

• April 2017: 20,000+ users and 4500 sessions per day.

4.4 Feedback

In the application, users were asked to send feedback. More than 500 feed-
back have been received. The majority thanked for the app, many requested
new features, and a few complained.

The main requested features are:

1. Improving mathematical formulas and adding LaTex shortcuts.

2. Developing a tablet version.

3. Adding a spell checker.

4. Possibility to split PDF when there are two slides per page.

5. Translating the app into French.

6. Possibility to draw and write on the PDF.

All these suggestions will be carried out in the coming versions except num-
ber 6 because it is not the goal of the application to write on the PDF and it is
already possible to link a specific area of the slide with the notes.

Regarding the metrics, there are between 4,000 and 5,000 sessions par day
and between 30% and 60% of the users are monthly active. The retention is
quite good compared to the average in the application industry13, but it could
still be improved. In fact, contrary to what was foreseen, it is mainly the med-
ical and management students who use most often the application. After
questioning students in more scientific sections, they find it easier to write
mathematical and chemical formulas by hand than with Amanote. There-
fore, this feature will be improved for the next school year. On the contrary,
most students accustomed to take notes on their computer continue to use
Amanote.

13The Average App Loses 77% Of Its Users In The First Three Days - ARC. https : / /
arc.applause.com/2015/06/23/app-retention-rates-2015/. (Accessed on
05/25/2017).

https://arc.applause.com/2015/06/23/app-retention-rates-2015/
https://arc.applause.com/2015/06/23/app-retention-rates-2015/

4.5. Reported bugs 65

4.5 Reported bugs

An error reporter system has been set up using HockeyApp and its API.
However, reports were sent too often, even for normal errors14, which hap-
pened to be too excessive. This made the distinction between real disruptive
errors and normal errors more complicated. Nonetheless, the disruptive re-
ported errors were mainly related to file accesses (permission) and unrespon-
siveness caused by these errors.

Indeed, a few Mac users encountered writing permissions issue in certain
folders while the entitlement keys com.apple.security.files.user-selected.read-write
was set. This lets the app unresponsive, and the user had to force quitting.
Fortunately, the document was restored at the next opening, and the notes
were not lost. However, it was very difficult to understand the nature of this
issue since the vast majority of Mac users did not encounter this problem and
no device with this bug was accessible to test. In the new version, the save
system has been strengthened and, as the documents are saved in a directory
owned by the application, this issue should no longer occur.

Then, there were also two bugs located in the AWS Cognito third-party SDK
preventing a few users to authenticate and another bug which had the conse-
quence of overwriting the session’s refresh token which sometimes forced the
user having to re-authenticate. While Amazon takes some time to fix theses
bugs, they are now fixed and the SDK has been updated to the new version.

Finally, after a new version of Ubuntu came, a network error occurred when
registering and authenticating, which made the use of Amanote impossible
for these users.

To conclude this section, we can see that, even if the application was tested
each time by many users before to be publicly released, bugs almost unde-
tectable15 during the tests could still occur. However, on the whole, only a
few users were affected by these bugs, and it does not prevent thousands of
students to use Amanote every day. The most important thing is that users
did not lose their notes due to bugs.

14Error caught with try catch for instance, such as no space left on the user’s computer.
15Because they occurred in a particular context.

https://hockeyapp.net

67

Chapter 5

Conclusion and future work

5.1 Conclusion

As expected, the reasoning behind the construction of a scalable and modern
application from an high-level point of view was detailed. This included
comparisons of different technologies as well as the methodologies applied
to achieve a deliverable application on a global scale.

The Amanote project was taken as the main thread throughout this work.
The central goal of this project was to develop a note-taking application en-
abling students to take structured notes and to link them with their course
supports (slides or syllabus).

In the first part, the discussion focused on the client-side, starting with the
pros and cons of a native versus a cross-platform development. Then, a com-
parison of the JavaFX, Haxe, Mono, and Electron cross-platform frameworks
and the motivations behind the choice of Electron as the main technology for
the front end were presented. Next, some methods and tools for handling
bugs and tests were detailed. The prototype testing phase and the error re-
porter made it possible to detect certain problems and to locate and correct
bugs early on in the project. Finally, explanations of the processes for releas-
ing and delivering the application were given.

The results presented in chapter 4 show that Electron was well suited for
Amanote since the application works correctly on both Windows and ma-
cOS. Although some bugs occurred, no major problem was caused by the
chosen technologies. Nevertheless, JavaScript showed its limits when per-
forming intensive tasks, which reveals that it may not be adapted for applica-
tions requiring a high performance on the client’s side. Moreover, the results
demonstrated that it was possible to develop a cross-platform client-side us-
ing free and open sourced technologies. In fact, the development costs were
mainly for the code signing certificates and the data transfers for delivering

68 Chapter 5. Conclusion and future work

the application.

The second part focused on the server-side, which required to be highly scal-
able and available. In order to fulfil such requirements, a serverless architec-
ture using Amazon Web Services as a Cloud provider has been set up. This
architecture proved to be beneficial since it made it possible to develop the
back end quickly and without server management. Moreover, no problems
have been encountered in production with this architecture. Until now, it has
been automatically scalable and always available as it was required. More-
over, thanks to the Amazon Web Services’ free tier and promotional credits
offer, it has cost nothing so far.

Finally, with more than 20,000 users registered to Amanote in seven months
and with around 30% and 60% of daily active users, although some improve-
ments still need to be made, theses analytic results confirm, in some way, that
the main goal has been reached.

5.2 Future work

Regarding the future work, some features including the exportation to PDF,
the highlighting system, the cloud storage, and mathematical formulas will
be improved and optimised first. Then, the most requested features listed
in Section 4.4 will be implemented. The note taking will be also sped up
using auto-completion techniques based on the content of the slides and, if
possible, the audio recorder.

Then, as there are numerous presentations in business, the application will
be adapted to meet also the companies and conference needs. Especially, fea-
tures capable to bring more interaction between the audience and the speaker
will be added. For example, the possibility for the speaker to project his slides
with Amanote and to share them in an instant with his public using a short
code to enter in the app as well as a live chat allowing the public to ask ques-
tions.

To increase the virality and not force the audience to download the app be-
fore the presentations, a simplified version of Amanote will be ported as a
web application (SaaS) allowing them to take notes and to interact without
having to download the full application. The app will also be released on the
platform stores to improve its visibility.

5.2. Future work 69

FIGURE 5.1: Prototype of the Questions/Answers feature.

Finally, features allowing more interactions between the users will also be
developed. It will be possible, for instance, to merge notes with other users
or to ask and answer questions on a specific slide as prototyped in Figure 5.1.

In order to be able to improve Amanote as much as possible, it is planned to
raise 500,000 EUR in the course of September 2017. This will allows to hire
developers but also to grow the company internationally.

71

References

[1] android - What is the difference between cross platform app development and
hybrid app development? - Stack Overflow. http://stackoverflow.
com/questions/32902009/what-is-the-difference-between-

cross-platform-app-development-and-hybrid-app-dev.
(Accessed on 05/16/2017).

[2] AngularJS vs. ReactJS Comparison. What to Choose? | MLSDev. https:
//mlsdev.com/blog/68-angularjs-vs-reactjs-comparison-

what-to-choose. (Accessed on 05/21/2017).

[3] AWS Device Farm: A service to test mobile apps on real devices | TO THE
NEW Blog. http://www.tothenew.com/blog/aws-device-
farm-a-service-to-test-mobile-apps-on-real-devices/.

[4] AWS User Authentication & Mobile Data Service | Amazon Cognito. https:
//aws.amazon.com/cognito/. (Accessed on 05/29/2017).

[5] Jim Bird. Building Real Software: Bugs and Numbers: How many bugs do
you have in your code? http://swreflections.blogspot.be/

2011/08/bugs-and-numbers-how-many-bugs-do-you.html.
(Accessed on 05/21/2017).

[6] Case Studies & Customer Success - Amazon Web Services. https://aws.
amazon.com/solutions/case- studies/all/. (Accessed on
05/28/2017).

[7] Cloud Computing Trends: 2017 State of the Cloud Survey. http://www.
rightscale.com/blog/cloud-industry-insights/cloud-

computing-trends-2017-state-cloud-survey. (Accessed on
05/29/2017).

[8] Desktop windows versions market share Worldwide | StatCounter Global
Stats. http://gs.statcounter.com/os-version-market-
share/windows/desktop/worldwide.

[9] Documentation | Electron. https://electron.atom.io/docs/.
(Accessed on 05/21/2017).

[10] Essential Electron. http://jlord.us/essential-electron/.

http://stackoverflow.com/questions/32902009/what-is-the-difference-between-cross-platform-app-development-and-hybrid-app-dev
http://stackoverflow.com/questions/32902009/what-is-the-difference-between-cross-platform-app-development-and-hybrid-app-dev
http://stackoverflow.com/questions/32902009/what-is-the-difference-between-cross-platform-app-development-and-hybrid-app-dev
https://mlsdev.com/blog/68-angularjs-vs-reactjs-comparison-what-to-choose
https://mlsdev.com/blog/68-angularjs-vs-reactjs-comparison-what-to-choose
https://mlsdev.com/blog/68-angularjs-vs-reactjs-comparison-what-to-choose
http://www.tothenew.com/blog/aws-device-farm-a-service-to-test-mobile-apps-on-real-devices/
http://www.tothenew.com/blog/aws-device-farm-a-service-to-test-mobile-apps-on-real-devices/
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
http://swreflections.blogspot.be/2011/08/bugs-and-numbers-how-many-bugs-do-you.html
http://swreflections.blogspot.be/2011/08/bugs-and-numbers-how-many-bugs-do-you.html
https://aws.amazon.com/solutions/case-studies/all/
https://aws.amazon.com/solutions/case-studies/all/
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
http://gs.statcounter.com/os-version-market-share/windows/desktop/worldwide
https://electron.atom.io/docs/
http://jlord.us/essential-electron/

72 REFERENCES

[11] Global Infrastructure. https://aws.amazon.com/about- aws/
global-infrastructure/.

[12] how many students in the world - Wolfram|Alpha. http://www.wolframalpha.
com/input/?i=how+many+students+in+the+world. (Accessed
on 06/01/2017).

[13] Interpreted language - Wikipedia. https://en.wikipedia.org/
wiki/Interpreted_language. (Accessed on 05/20/2017).

[14] JavaFX CSS Reference Guide. https://docs.oracle.com/javafx/
2/api/javafx/scene/doc-files/cssref.html#introlimitations.
(Accessed on 05/21/2017).

[15] JavaFX Documentation Home | JavaFX 2 Tutorials and Documentation. http:
//docs.oracle.com/javafx/2/. (Accessed on 05/17/2017).

[16] JavaFX - Wikipedia. https://en.wikipedia.org/wiki/JavaFX.
(Accessed on 05/17/2017).

[17] Mac OS X Snow Leopard - Wikipedia. https://en.wikipedia.org/
wiki/Mac_OS_X_Snow_Leopard.

[18] Microsoft PowerPoint - Wikipedia. https://en.wikipedia.org/
wiki/Microsoft_PowerPoint. (Accessed on 05/25/2017).

[19] Native vs Cross-Platform App Development: Pros and Cons of PhoneGap, Ti-
tanium, and Xamarin - DZone Mobile. https://dzone.com/articles/
native-vs-cross-platform-app-development-pros-and.
(Accessed on 05/16/2017).

[20] npm. https://www.npmjs.com/.

[21] npm now the largest module repository. http://alexandros.resin.
io/npm-now-the-largest-module-repository/.

[22] Daniel M. Oppenheimer Pam A. Mueller. “The Pen Is Mightier Than
the Keyboard”. In: (2014).

[23] Pearson, ed. Student Mobile Device Survey 2015. Pearson, 2015.

[24] PowerPoint usage and Marketshare - Infogram, charts & infographics. https:
//infogr.am/PowerPoint- usage- and- Marketshare. (Ac-
cessed on 05/25/2017).

[25] Quick Start | Electron. https://electron.atom.io/docs/tutorial/
quick-start/.

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
http://www.wolframalpha.com/input/?i=how+many+students+in+the+world
http://www.wolframalpha.com/input/?i=how+many+students+in+the+world
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Interpreted_language
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html##introlimitations
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html##introlimitations
http://docs.oracle.com/javafx/2/
http://docs.oracle.com/javafx/2/
https://en.wikipedia.org/wiki/JavaFX
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard
https://en.wikipedia.org/wiki/Mac_OS_X_Snow_Leopard
https://en.wikipedia.org/wiki/Microsoft_PowerPoint
https://en.wikipedia.org/wiki/Microsoft_PowerPoint
https://dzone.com/articles/native-vs-cross-platform-app-development-pros-and
https://dzone.com/articles/native-vs-cross-platform-app-development-pros-and
https://www.npmjs.com/
http://alexandros.resin.io/npm-now-the-largest-module-repository/
http://alexandros.resin.io/npm-now-the-largest-module-repository/
https://infogr.am/PowerPoint-usage-and-Marketshare
https://infogr.am/PowerPoint-usage-and-Marketshare
https://electron.atom.io/docs/tutorial/quick-start/
https://electron.atom.io/docs/tutorial/quick-start/

REFERENCES 73

[26] Scripting Languages for AWS Lambda: Running PHP, Ruby, and Go | AWS
Compute Blog. https://aws.amazon.com/blogs/compute/
scripting - languages - for - aws - lambda - running - php -

ruby-and-go/. (Accessed on 06/07/2017).

[27] Stack Overflow Developer Survey 2016 Results. https://insights.
stackoverflow.com/survey/2016.

[28] StatCounter Global Stats. Desktop Operating System Market Share World-
wide. http://gs.statcounter.com. Apr. 2017.

[29] The Average App Loses 77% Of Its Users In The First Three Days - ARC.
https://arc.applause.com/2015/06/23/app-retention-

rates-2015/. (Accessed on 05/25/2017).

[30] Timeline of Amazon Web Services - Wikipedia. https://en.wikipedia.
org/wiki/Timeline_of_Amazon_Web_Services. (Accessed on
05/29/2017).

[31] Version Control Systems: Git, SVN, Mercurial, Bazaar. https://webinerds.
com / version - control - systems - keep - your - code - in -

order/.

[32] What Is JavaFX? | JavaFX 2 Tutorials and Documentation. http://docs.
oracle.com/javafx/2/overview/jfxpub-overview.htm.
(Accessed on 05/17/2017).

[33] What is native app? - Definition from WhatIs.com. http://searchsoftwarequality.
techtarget.com/definition/native-application-native-

app. (Accessed on 05/20/2017).

[34] Why Google has 200m reasons to put engineers over designers | Technology
| The Guardian. https://www.theguardian.com/technology/
2014/feb/05/why-google-engineers-designers. (Accessed
on 06/07/2017).

https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/
https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/
https://aws.amazon.com/blogs/compute/scripting-languages-for-aws-lambda-running-php-ruby-and-go/
https://insights.stackoverflow.com/survey/2016
https://insights.stackoverflow.com/survey/2016
http://gs.statcounter.com
https://arc.applause.com/2015/06/23/app-retention-rates-2015/
https://arc.applause.com/2015/06/23/app-retention-rates-2015/
https://en.wikipedia.org/wiki/Timeline_of_Amazon_Web_Services
https://en.wikipedia.org/wiki/Timeline_of_Amazon_Web_Services
https://webinerds.com/version-control-systems-keep-your-code-in-order/
https://webinerds.com/version-control-systems-keep-your-code-in-order/
https://webinerds.com/version-control-systems-keep-your-code-in-order/
http://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
http://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
http://searchsoftwarequality.techtarget.com/definition/native-application-native-app
http://searchsoftwarequality.techtarget.com/definition/native-application-native-app
http://searchsoftwarequality.techtarget.com/definition/native-application-native-app
https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers

