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Abstract

OUFTI-2’s on-orbit, hot reprogramming of
on-board computer (OBC): design,

implementation and tests

by Thibaut Guillaume

Promoter: Prof. Jacques Verly
Academic year 2016-2017

Today embedded systems are used in many domains and they can execute
complex software. Reprogramming the systems is a functionality that can
really be useful to correct issues that could remain in the software at the end
of the developments.
In this work, the different methods that can be used to remotely reprogram
embedded systems at run-time are explored. A solution to reprogram the
on-board computer of the nanosatellite OUFTI-2 was designed and devel-
oped. This solution is based on the sending of an entire new software to the
satellite, and the use of this new software instead of the previous one.
A particular attention is given to the reliability of the transmission of the
new software. Indeed, having a corrupted software executed on the on-board
computer could lead to the failure of the missions of the satellite.
This work describes the architecture of the solution, and how it was imple-
mented. It also explains the different tests performed to ensure that the
reprogramming mechanism works properly.
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Introduction

Nowadays, embedded systems devices are widely used in many different appli-
cations. Software that manage the devices become more and more powerful,
allowing those devices to perform various complex operations. However, the
software capability improvement sometimes increases their complexity. This
creates more difficulties to test and correct issues before the exploitation of
those systems. Like for traditional software, some issues that were not de-
tected during test phase could thus be encountered during the use of the
embedded systems.
Software update is a process that is really useful to correct the issues. The
simplest way to perform this operation is to plug the programmer tool on
the embedded device and change the software. However, this technique can-
not be applied to all embedded devices. In fact, some of these devices are
hardly or even totally physically inaccessible during their exploitation. Sys-
tems must thus be developed to permit the software update when the device
is not accessible.
This thesis proposes a method that can be used to reprogram the on-board
computer of the nanosatellite OUFTI-2 from the ground. Indeed, the on-
board computer software is rather complex and some issues could remain in
it after the satellite launch in space. Obviously, as the satellite in orbit will
not be physically accessible, a remote update mechanism from the ground is
proposed.
Chapter 1 presents the OUFTI-2 project. It discusses the aims of the project
and the overall OUFTI-2 system organization. Chapter 2 explains the dif-
ferent reprogramming methods that were found in the literature. It also
explains and justifies the chosen method for OUFTI-2. Chapter 3 focuses on
the architecture of the proposed solution. Chapter 4 presents the implemen-
tation details. Finally, chapter 5 explains the tests that were performed to
ensure that the reprogramming method is functional.

1



Chapter 1

OUFTI-2 System

OUFTI-2 like his predecessor OUFTI-1, is a CubeSat. The satellite is es-
sentially a cube with sides of about 10 centimeters long. In this chapter,
an overview of the global project architecture is presented in section 1, the
explanation of the systems used to control and exploit the satellite from the
earth is discussed in section 2, and finally a general overview of the satellite
is exposed in section 3.

1.1 Architecture

The project can be seen as a composition of two systems called segments.
The first is the ground segment with infrastructures and software deployed
on the ground in order to control and communicate with the satellite.
The second one is the space segment, which consist of the satellite containing
the hardware and software used for the mission.
This organization is displayed on Fig.1.1. The two segments will be described
in sections 1.2 and 1.3.

1.2 Ground segment

As it can be observed in Fig.1.1, the ground segment is divided into two parts.
The first is the control segment and the second one the D-STAR segment.

2



Figure 1.1: Architecture of OUFTI-2 systems [7].

1.2.1 Control segment

The aim of the control segment is to send instructions to the satellite and
get information back from it. Instructions that are sent from the ground to
the satellite are called telecommands. Information sent to the ground are
called telemetries. The telecommands and telemetries use the Amateur X.25
(AX.25) protocol. This data link layer protocol is used to transfer data over
radio waves.
In Fig. 1.1, the control segment is separated in two components. The mission
control center is a computer and is used to prepare the sending of AX.25
frames and process to ones received from the satellite. The ground station is
the infrastructure used to send radio waves (ie. radio transmitters, antennas,
amplifiers).
In addition to the telecommands and telemetries channels, a Beacon (BCN)
receiver channel is also used. Indeed, the satellite regularly sends Morse-code
signals to provide basic parameters such as temperatures, voltages, and other
key parameters to the ground.
More explanations about the telecommands, telemetries, and ground station
software will be provided in chapters 3 and 4. Indeed, On-board computer
(OBC) reprogramming will be performed thanks to the control segment using
telecommands and monitored using telemetries.
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Figure 1.2: D-STAR direct communication mode [7].

Figure 1.3: D-STAR indirect communication mode [7].

1.2.2 D-STAR segment

D-STAR is a digital protocol able to transmit voice and data simultaneously.
The OUFTI-2 primary mission is to bring a D-STAR repeater in space so
that users can communicate through this repeater.
The communication using OUFTI-2 can either be direct or indirect. Direct
communication means that the two end users directly transmit data and
voice through the space repeater. This situation is presented in Fig. 1.2.

Indirect communication is the mode in which data and voice are forwarded
using a terrestrial relay and/or internet before or after being forwarded by
OUFTI-2. A schema of this general situation is presented in Fig. 1.3.

As shown on Fig.1.1, the D-STAR segment is divided in two distinct parts.
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The first part is a traditional D-STAR repeater which allows communications
via radio or internet links. And the second one is the satellite extensions
which is the part necessary to make the link between OUFTI-2 and the D-
STAR terrestrial repeater. The D-STAR ground segment is used when the
communication mode is indirect.

1.3 Space segment

This section briefly describes the subsystems that are embedded in the satel-
lite. A particular attention is given to the OBC as the reprogramming tech-
niques presented in the next chapters will be applied to it. A global view of
the satellite is displayed on Fig.1.4.

Figure 1.4: Internal architecture of OUFTI-2 CubeSat [7].

1.3.1 Subsystems

The satellite is composed of different subsystems that are assembled together.
Some of them can be identified on Fig.1.4. In this section, only the commu-
nication (COM) subsystem is briefly presented as it is the only subsystem

5



which is directly involved in the update chain, in addition to the OBC. In-
formation about the other subsystems can be found in [7].
The COM is the subsystem responsible of receiving and sending radio sig-
nals. Its role is to modulate a signal to send information and demodulate
it to receive data. This system deals with D-STAR, AX.25, and BCN. The
reception of telecommands and the sending of telemetry are done via this
subsystem.
However, the AX.25 frame decoding and encoding are not performed by this
subsystem, the OBC is responsible for doing this operation.

1.3.2 OBC subsystem

The OBC is the subsystem which is responsible of globally managing the
satellite. It is used to get and treat requests from the ground. It also sends
back telemetries to give information about the different parameters describ-
ing the state of the satellite. The OBC can activate and stop the different
subsystems and payloads.
The hardware architecture of this system is now fixed. It is presented on
Fig. 1.5. It can be observed that two MSP430 micro-controllers are used
and are both connected to a watchdog. That is the OBC-Redundancy prin-
ciple. There is only one micro-controller that is powered at a given time and
it must regularly send a signal to the watchdog in order to inform that it
is still running without any problem. If the watchdog does not receive any
signal during 5 seconds, it will consider that a problem has been encountered
and will start the other micro-controller. This redundancy increases the re-
liability of the OBC, and thus, the reliability of the whole satellite.
An external 2 Mbits Ferroelectric Random Access Memory (FRAM) is also
connected to both micro-controllers. It is used to keep the different mea-
surements performed on the satellite subsystems. It is also used to keep the
current state of the satellite. So if the second micro-controller is powered on
for any reason, it knows in which operating mode the satellite is and it can
continue to perform the appropriate operations. Finally, part of the FRAM
is used to perform the update as explained later in this document.
A real time operating system is used to perform the different tasks. This op-
erating system is FreeRTOS. Details about the OUFTI-1 on-board software
can be found in [6], but this software has been updated to a newer version
for OUFTI-2’s mission by my student colleague Adrien Rikir.
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1.3.3 Payloads

The primary mission of OUFTI-2 is to provide D-STAR repeating capability
in space.
In addition, two other payloads were added to the satellite. The first one is
the RAD subsystem. Electronic circuits are highly exposed to ionizing radi-
ations in space. The aim of this payload is to test different types of shielding
against the radiations.
The second one is a subsystem developed by high-school students (Sint-
Pieterscollege, Jette, Belgium) which will be used to determine the attitude1

of the satellite. It is called the Inertial Measurement unit (IMU) subsystem.

1The attitude of a satellite is its orientation in the space with respect to a fixed reference
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Figure 1.5: Hardware Architecture of the OBC [7].
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Chapter 2

Review of reprogramming
techniques and selection of the
most appropriate one

In the literature, different methods have already been proposed to reprogram
embedded systems at runtime. The solutions presented in this chapter have
not been exclusively used on satellites but give an overview of the different
techniques available and serve as a base to choose the design of the OUFTI-
2 reprogramming method. The chapter is divided in six sections. Section
1 discusses the requirements for OUFTI-2’s mission. Section 2 talks about
two particular concepts that are important for understanding reprogramming
mechanisms. Sections 3, 4 and 5 present three general types of methods
used for runtime reprogramming. Section 6 describes and justifies the design
choice for OUFTI-2’s mission.

2.1 Requirements

The main purpose of reprogramming techniques for OUFTI-2’s mission is to
correct mistakes that could remain in the OBC software after all the testing
performed on the ground. Indeed, some unknown issues could remain in the
OBC software at launching time, and should potentially be corrected during
the flight to avoid major problems.
The first objective is to have a safe method and be sure that a reprogramming
process will not lead to a communication and control loss with the satellite.
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Obviously, this situation would be critical as no physical access is possible
to manually correct the introduced failure. Mechanisms checking the new
received program and ensuring that the satellite will still be accessible even
in case of an unexpected problem that could occur during the reprogramming
procedure must be used.
The second objective is to disturb as little as possible the routine operations.
Indeed, the satellite must respond to telecommands and send telemetries.
The time during which the OBC performs operations without giving any
status to the ground must be as short as possible.
Finally, the third requirement is to have a solution that does not consume
too much memory of the micro-controllers. Indeed, this resource is limited on
the micro-controllers used. There are 48KB of program memory available.
Similarly, the amount of Random Access Memory (RAM) on the micro-
controllers is limited to 10KB. As the actual OBC software uses about 8KB
of RAM, care must be taken to avoid RAM memory overflow during the
update procedure.

2.2 Addressing and linking

A program in a micro-controller is composed of code and data. These are
stored in the memory and are referenced by their addresses. To execute a
program, jumping between the different addresses is necessary.
However, the addressing can be performed in two ways: either absolute or
relative.
In the absolute addressing method, the code and data are accessed directly
by their actual addresses. The references to functions and variables in the
binary code are their physical address. A code compiled using this method
cannot be moved as is to another location. Indeed, changing the position of
this code without changing the absolute references to variables and functions
contained in it will cause jumping to wrong addresses and give incorrect be-
havior.
Changing the position of this type of code requires to relocate it. The relo-
cation is the process in which absolute references to functions and variables
in the code are adjusted in order to fit with their new positions.
The relocation principle is illustrated on Fig. 2.1. (A) shows the initial mem-
ory configuration in which all references are correct. (B) shows that code has
been moved and references to function A are invalidated. (C) shows that the

10



Figure 2.1: Illustration of relocation principle.

relocation mechanism has been applied and reference to function A is again
correct.

In the relative access method the references to variables and functions are
determined based on the value of the program counter 1 on which an offset
relative to it is added. In opposite to the first method, the code compiled
with this method can be moved without any modification. Indeed, references
to variables and functions in this type of code are not absolute addresses but
offsets which are independent of the real position.
A program can also be statically or dynamically linked.
A statically linked one is a program in which all references to variables and
functions are resolved at compile-time.
In contrast, a program is said to be dynamically linked if some of these ref-
erences are unknown at the end of the compilation process. At runtime a
determination of the references is needed to execute the program correctly.
A linking procedure is thus performed at run-time.
It is worth mentioning that the concept of addressing and linking are inde-
pendent. Indeed, a code compiled using an absolute addressing method can
be either statically or dynamically linked.
The two concepts of addressing and linking are the basis for understanding
methods described in the following sections.

1The program counter is a processor register which holds at any time the address of
the currently executed instruction.
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2.3 Binary replacement

If a code is statically linked, at the end of the linking process, a binary rep-
resentation of the code is obtained. This one can directly be executed by the
micro-controller, but provided that this code is placed at the right position
in program memory if absolute addressing is used.
One solution proposed to reprogram embedded systems at runtime is a bi-
nary replacement of/in the firmware2.
TOSBoot [10], which is a method developed to reprogram sensors networks
and the reprogramming procedure applied to ESTCube-1 CubeSat [15] present
a full firmware binary replacement. In their document, M. Iwiński and al.
[11] also discuss the full binary replacement but also address the possibility
of partial firmware replacement.

2.3.1 Full Binary replacement

The idea of full binary replacement is to compile and link a new/updated
code that can be executed at the position of the previous one. Then, this
binary code is sent to the target that must be updated, where it replaces the
old one by the received one.
The program receiving the new binary code representation is the one on the
micro-controller. The updated code cannot be directly placed at its final
destination as it would overwrite the old code that is still running. It would
result in an undetermined behavior. The new binary representation is stored
somewhere else, this until the whole new firmware is received.
When the complete firmware has been received by the destination, the micro-
controller is rebooted and executes a special piece of code which is called the
bootstrap loader. This code is at a fixed position in the program memory
of the micro-controller, independent of firmwares and cannot be changed.
Its function is to erase the old firmware and replace it by the new one just
received.
The major drawback of this technique is that all the firmware must be re-
transmitted even if the goal is to perform a little modification in the running
firmware. Depending on the size of the code, this technique can consume
time and resources.
However the solution is flexible. Indeed, it allows to easily store multiple

2The term firmware refers to the program which is executed by the micro-controller
and which allows the device in which their are placed to operate
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complete version of a firmware in the target destination. Switching between
firmwares could thus be done without having to send the previous ones again.
It also provides a way of improving the reliability of the target destination.
In fact, if a version of the firmware encounters a problem, a previous one
could be automatically loaded in the program memory and then executed.

2.3.2 Partial binary replacement

In [11], partial binary replacement is discussed. The idea is to create an
updated firmware and compare it to the one which is on the target. Only the
differing elements between the two are sent. When all necessary parts are
received, the micro-controller is rebooted and the bootstrap loader changes
the appropriate binary code parts. This allows to reduce the amount of data
that must be sent and this saves resources. However, as M. Iwiński and
al. [11] explain in their document, the improvement is highly linked to the
behavior of the compiler. Indeed, optimization options in it could lead to
major changes in the binary representation of the code, even if only slight
modifications in the source code are performed.
Obviously, a drawback with this method is that it is always necessary to
know which code is executed in the micro-controller at any moment. Indeed,
using a wrong code as comparison reference could lead to replacing wrong
parts and making the system unusable. Particular care must be taken with
this technique.

2.4 Loadable modules

The loadable module aim presented in this section is to have the code di-
vided in code segments that are called modules. The modules can be placed
anywhere in program memory and executed from this position. The usage
of an operating system is necessary in order to manage the different mod-
ules. Indeed, a system which manages the modules and knows where they
are placed in memory at any given moment is necessary. For instance, if
module A has to call module B, it cannot do it directly as the address of
module B is not resolved at the compilation of module A. Module A has
only a reference to module B. It could so ask the Operating System (OS) to
resolve this reference to know where module B is located.
The OS has functions and variables that all modules can access to perform
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Figure 2.2: Reprogramming with dynamically linked modules.

some operations.
The basic idea for reprogramming using the loadable module method is to
load a new version of the module in memory and ask to the OS to change
the references from the old module to the new one.
The general principle is presented on Fig. 2.2. The module 1 (a) is initially
linked to the OS. The update mechanism consists in changing the linking
from module 1 (a) to module 1 (b) which is an updated version. The re-
linking is symbolized by the dashed arrow. At the end of the re-linking,
module 1(a) is no longer part of the running system.
There are three main approaches that can be used to load modules dynami-
cally in a system. They are explained in the three next sections.

2.4.1 Pre-linked modules

The OS contains functions and data that can be accessed from the modules.
For pre-linked modules, the absolute addresses of the functions and data are
known at compile-time. No address resolution is needed to link the modules
to the OS. The only operation that has to be done at runtime is to relocate
the module, to be able to execute it from anywhere in memory.
In order to perform the relocation, the OS needs to have some additional
information about how the module must be relocated. It is, for instance,
a relocation table which informs the OS about the addresses that must be
changed during a relocation and how they must be modified. This informa-
tion is transferred together to the target with the module itself. The amount
of data transferred is thus larger then the size of the module. However,
overhead is a lot smaller than the one for dynamically linked modules as
explained in the next section.
As the addresses of the OS are determined at compile-time, the OS cannot
be moved, otherwise all the references to the kernel would become invalid.
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2.4.2 Dynamically linked modules

For dynamically linked modules, in contrary to statically linked ones, the
addresses of the accessible functions and variables of the OS are not resolved
at compile-time. This means that the addresses must be resolved at runtime
by the OS to make the program executable: it is the dynamic linking process.
As in the previous section, the code must also be relocated. Additional infor-
mation to perform the relocation and linking process must be sent together
with the module. This information is, e.g., relocation tables, name of exter-
nal symbols that are not resolved and symbols table.
The main advantage of using this method is that the entire firmware does
not need to be resent. Only sending the modules that have been modified
is sufficient. However, the additional information that are sent with those
modules can be voluminous, reducing the efficiency of this method.

2.4.3 Position independent modules

Position independent code is a type of code in which no references use the
absolute addressing method, so they all use the relative method. Modules
that are compiled using this type of code can be placed anywhere in memory
without having to perform a relocation.
This method permits to reduce the size of additional information that must
be sent with the modules. Indeed, in this case, the destination system does
not need the relocation table.

2.5 Virtual machines

Techniques using virtual machines are also considered in Maté’s paper [13]
on virtual machine. In virtual machines, the instructions are interpreted and
executed by a virtual machine installed in the micro-controller.
The major advantage of using this technique is that virtual machine code can
be smaller than native code3. The time and resources which are necessary to
send a new code are thus reduced. However, as this code must be interpreted,
more resources are used during the execution.
Depending on the virtual machine used, a sufficient amount of computational
resources must be available to execute both the virtual machine and the user

3Native code is a code that can directly be recognized and executed by the processor.
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application.
There is thus a compromise between the cost of sending a native code and
the cost of executing a code that must be interpreted by a virtual machine.
Indeed, sending a native code is more costly than sending a virtual machine
code. But the native code uses less resources at execution.

2.6 Design choice for OUFTI-2

The different solutions described in the preceding sections were all examined
for OUFTI-2’s on-orbit reprogramming.
The partial binary replacement has not been used because we are not sure
that the management software embedded in the two micro-controllers will al-
ways be the same. Indeed, the second micro-controller is powered on only if
the first one fails. So it could be possible that one micro-controller was repro-
grammed twice while the other was not. Reprogramming using this method
would so require to send data to each micro-controller independently and
possibly having duplicate data sending. Moreover, knowing exactly which
binary codes are on each of the micro-controllers is crucial but could be a
source of errors.
FreeRTOS is the OS used by the management software on-board. It is a real-
time operating system and there are multiple tasks that are created during
the software development. Dividing the code into modules, with one task
per module has been considered. However, FreeRTOS is a statically linked
operating system. The dynamic linking operation cannot be performed by it.
For this reason, dynamically linked module method has not been retained.
As the aim of the update method developed is to correct mistakes in the
OBC firmware, this method will only be used in case of critical issues on this
OBC firmware. In consequence, it will be rarely used. For this reason, the
virtual machines method was not selected since the overhead cost using it
would be greater than the cost of sending the entire native code.
Finally, the design that has been choosen for OUFTI-2 is similar to those
presented for the ESTCube-1 CubeSat in [15]. Therefore, the reprogramming
is so based on a full replacement method.
When updating a firmware, all the new one is transmitted by radio to the
OBC which stores it in FRAM. When the whole new firmware has been re-
ceived, the micro-controller that is running is restarted to execute a bootstrap
loader. Finally the bootstrap loader replaces the code that is in program
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memory by the one that is in FRAM.
There are 2 distinct codes that are present in both micro-controllers com-
posing the OBC. These are the bootstrap loader and a firmware. Obviously,
the firmware is the management software of the satellite.
The bootstrap loader cannot be updated. It will remain the same for the
entire life-time of the mission.
The design only allows to send one single firmware to reprogram the two
micro-controllers composing the OBC. Indeed, both bootstrap loaders in the
micro-controllers can access the same area in FRAM memory and so use
the code that has been uploaded, whatever which micro-controller received
the new firmware. This solution also adds reliability in the OBC. Indeed, if
a code in a micro-controller becomes corrupted, the bootstrap loader could
gather the code stored in FRAM to correct the errors.

17



Chapter 3

Architecture of the solution

This chapter presents the architecture of the developed solution. Section 1
discusses protocol for sending a new firmware. Section 2 is about the internal
organization of the OBC used to allow its reprogramming. Section 3 presents
internal operations that are executed by the firmware when requested by the
ground station. Section 4 focuses on the developed bootstrap loader. Finally,
section 5 gives a view on the modifications that were performed to the on-
ground software to implement the reprogramming capability.

3.1 Protocol for sending a new firmware

The sequence diagram on Fig. 3.1 presents the communication between the
ground segment and the satellite during an update procedure. This diagram
represents a case in which there is no data loss during the packet exchanges.

If some losses occur, the ground station will not receive any acknowl-
edgment indicating that the requested operation have been successfully per-
formed. In this case, except for the firmware switching request, packets that
are assumed to be lost are automatically retransmitted by the ground sta-
tion.
One can observe in the figure that the operator first sends the file contain-
ing the binary code to the satellite. When this operation is finished, he
can request to change the firmware that is executed on the powered micro-
controller. The firmware change is never performed automatically when the
new firmware has been entirely received. The two reasons that motivate this
design choice are the following.
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Figure 3.1: Sequence diagram of Update protocol.

First, when the firmware change is requested, the running micro-controller is
rebooted to execute the bootstrap loader. Routine operations on-board the
satellite are thus suspended. Obviously, this suspension must not happen
during a critical phase of the mission. The operator must be able to deter-
mine when it is most suitable to perform this switching.
Second, as mentioned in section 2.6, the two micro-controllers of the OBC
can access the same area in FRAM. In case one of the two micro-controllers
has already successfully uploaded a new firmware in FRAM and if the oper-
ator would like to use it on the other micro-controller, it would be useless to
upload the same binary representation again.
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The diagram also highlights that firmware packets are sent one by one to
the satellite. Indeed, as the RAM memory is limited on-board, one must
ensure that the packet sending neither overloads this memory nor disturbs
routine operations. Sending one packet at a time limits the risks. Moreover,
this allows the ground station to easily know if each packet arrived safely at
OUFTI-2.
The operations performed during this protocol for sending firmware are de-
scribed in detail in the following sections.

3.2 Organization of OBC

Each of the micro-controllers on the OBC board have their own flash memory
while the same FRAM memory is accessible by both.
The flash memory in each of the two micro-controllers of the OBC board
have the same internal organization.
There are three distinct zones which are defined in this memory:

• Bootstrap loader zone.

• Firmware zone.

• Information memory zone.

The three flash memory zones are each placed at fixed locations. The boot-
strap loader is located at the beginning of the flash memory. The firmware
is placed just after the bootstrap loader. Obviously, a sufficient amount of
memory is reserved for both zones to be sure that their corresponding binary
code fits in them.
Information memory zone is a specific zone used to provide useful data to
the bootstrap loader. It can be modified by both the firmware and the boot-
strap loader. For instance, when firmware switching is requested, the running
firmware sets a flag in the information memory zone before rebooting. This
flag informs the bootstrap loader that it has to switch the used firmware.
The FRAM is divided in 3 main parts:

• Satellite status and measurements.

• Uploaded firmware.

• Backup firmware.
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The satellite status and measurements are placed in the first zone. This zone
is not used for the reprogramming; only the firmware uses it.
The second zone is where the firmwares sent from ground to OUFTI-2 are
placed. The bootstrap loader can copy the new firmware from this zone to
the flash memory in order to reprogram the active micro-controller.
The third zone contains a backup firmware. Indeed, when the new firmware
is copied from the FRAM to the flash memory, the previous content of the
latter is cleared. But, if there is an issue with the firmware which has just
been copied to the flash memory (such as a code integrity problem), the
backup firmware will be used to reprogram the micro-controller and avoid
major issues in this micro-controller. The backup firmware placed in this
zone will not change during the whole mission. It is injected at this position
during the configuration and programming of the OBC board on the ground.

3.3 Update functions in firmware

This section explains the different reprogramming operations performed by
the OBC when requested by the ground station. Their aim is to receive
properly a new firmware, store it in FRAM, and change the firmware which
is used.
For each request that the ground station can perform, and that were intro-
duced in Fig. 3.1, one sub-section explains the operations that are performed
in the OBC.

3.3.1 Send firmware packets

Figure 3.2 shows the operations that are performed when receiving a packet
containing part of a new firmware.

The entire firmware is split into packets to be sent to OUFTI-2. Each
packet contains thus a part of the firmware. A sequence number is associated
with each of these parts. This sequence number is actually used to inform
the satellite which part of the firmware it is currently receiving.
This number allows to determine if a particular part of the firmware has
already been received or not. Indeed, if the part number which is received
does not correspond to the expected one, it means that the received packet
probably does not contains the expected binary code. If this happens, the
micro-controller sends back a message to inform the ground station, and it
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Figure 3.2: Activity diagram of firmware packet receiving.

does not take the received packet into account.
The length of the received firmware part is also checked. The sum of this
length with the length of the binary code which has already been received is
computed. If this sum is larger than the size of the slot which can be used in
FRAM, an error message is sent back to the ground station. In addition, no
operation is applied to this packet. Indeed, in such a situation, the binary
code would be written in a zone which normally cannot be written in. This
situation could result in the loss of other data stored in FRAM and poten-
tially be catastrophic for the mission.
If the sequence number and the length respect the constraints discussed
above, the content of the packet is simply appended to the already received
content which is located in FRAM. When the whole set of packets forming
the new firmware have been received, a complete image of the new firmware
is available in FRAM.

3.3.2 Initialize update

The aim of the operations performed during the initialization is to reset the
parameters used to perform the reprogramming.
The initialization acts on four parameters used during the reprogramming
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procedure:

• The expected sequence number: It is the sequence number, as
defined in the previous section, which is expected by the satellite

• The length of the firmware in FRAM: It is the length of the binary
code of the new firmware which is actually in FRAM

• Cyclic Redundancy Check (CRC) of the new firmware: It is
the CRC associated with the firmware currently in FRAM

• Not safe flag: When set, this flag signals that the firmware in FRAM
is potentially corrupted and that the switch to it cannot be performed.

The three first parameters are reset.
Resetting the expected sequence number variable allows to have a correspon-
dence between it and the sequence number of the first packet sent from the
ground.
As the sending of binary code of the new firmware has not been already
started, the length of the firmware stored in FRAM must also be reset.
Moreover, during the sending of a new firmware, this variable is also used as
a counter used to know how many bytes of this new firmware have already
been received. Its value is used to determine where the content of a packet
containing the new firmware must be placed in FRAM. It is thus really im-
portant to reset the value of this length variable.
The CRC is also reset.
Finally, the Not safe flag is set. Indeed, by definition, the new firmware
stored in FRAM is not complete during the sending. The operator should
thus not request a switching to this incomplete firmware.

3.3.3 Send CRC

When the sending of the new firmware packets is completed, the ground
station sends the CRC that it has computed. When the micro-controller
receives this CRC, it stores it in FRAM.
The integrity of the firmware stored in FRAM is not directly checked. The
bootstrap loader is responsible for performing this operation. Indeed, in the
AX.25 protocol, packet integrity is already checked. Individual parts of the
firmware contained in packets and which are stored in FRAM have thus a
weak probability of being corrupted.
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However, the integrity should also be checked when the firmware has been
copied from FRAM to flash memory. The first reason is that an error could
occur during the transmission between FRAM and flash. The second reason
is to detect possible FRAM memory alteration between the storage and the
retrieval of the firmware. The alteration can be for instance, a bit flip caused
by single event upset1.
A CRC computation and comparison at the end of the copy process limit
those risks.
When the OBC receives this CRC, it means that the code update is finished
and that the firmware in FRAM is complete. The flag associated with the
firmware in FRAM signaling that it must not be used can thus be cleared to
allow the micro-controllers to use it.

3.3.4 Switch firmware

Figure 3.3 shows what is performed, in the OBC, when the switching opera-
tion is requested by the operator.

Figure 3.3: Activity diagram of switching function.

One can notice that the flag in FRAM signaling that the new firmware
is not suitable for use is checked. Indeed, it is possible to detect unusable
firmware at this stage. The switching procedure thus continues only if this
firmware can be used. If it cannot be used, a status signal is sent back to
the ground station to inform the operator.

1A single event upset is caused by ionizing radiations that affect storage elements. The
radiations are commonly encountered in space.
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If the firmware in FRAM can be used, the switching flag in the informa-
tion memory is set. This flag is used to inform the bootstrap loader that a
switching operation must be done. Then, the micro-controller is rebooted to
execute the bootstrap loader and effectively perform the switching.

3.3.5 Check code version

The aim of this function is simply to send back the code version to the ground
station when requested by the operator. It allows the operator to know which
code is currently executed on the micro-controller, and also to determine if
an update procedure succeeded or not.
For instance, if the backup firmware is the version 0 of the firmware, that the
firmware currently executed on the micro-controller has version numbered
1.0, and the operator sends the version 2.0 of the firmware. If at the end of
the whole update procedure, the firmware executed on the micro-controller
has version number 2.0, it means that the update succeeded. But if the
micro-controller executes the version 0, it means that a problem occurred.
Obviously, the version number associated with a new firmware must be up-
dated when preparing the sending of this new firmware. Otherwise it would
be impossible to distinguish two different firmwares.

3.4 Bootstrap loader

Figure 3.4 shows the operations performed by the bootstrap loader.
The bootstrap loader is executed each time the micro-controller is re-

booted. As reboot does not exclusively occur when a firmware switch is
requested, the bootstrap loader must always check if a firmware change is
necessary or not. If it is not requested, the bootstrap loader simply boots on
the firmware located in the flash memory and does not do any modification
to the running firmware.
If a firmware switch is requested, the bootstrap loader performs the copy
operations and integrity checking like presented in Fig. 3.4.
One can observe that, if the integrity of the uploaded firmware is compro-
mised at the end the copy operation, the flag signaling that the firmware is
not suitable for use is set. Indeed, the error source cannot be determined.
It could be a copy issue or an FRAM memory alteration. The choice of not
taking any risks has been chosen, and the ”not safe” flag is set in FRAM.
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Figure 3.4: Activity diagram of the bootstrap loader.

This prevents the second micro-controller to use the new firmware located in
FRAM and avoids this micro-controller to take the risk of coping a corrupted
firmware.
If integrity check fails, the backup firmware is copied into the program mem-
ory to try to recover a functional system. This would allow to send again the
firmware and permit to try again the update procedure.

3.5 On-ground software

Figure 3.5 presents the operations performed by the ground station during a
binary code upload.

The ground station sends telecommands to initialize the upload. Then
each packet containing part of the firmware is sent to the satellite. As one can
observe in the figure, receiving a return status is expected before continuing
the sending of packets. However, it could happen that the ground station
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Figure 3.5: activity diagram of ground segment packet sending

never receives this return status. For instance, because the satellite does not
receives the packet or drops it2. To take this case into account, a timer is
also set when the packet is sent. If no status is received by the end of this
timer, the packet is considered lost and is resent.
Three type of status can be received from the satellite when sending packets
containing part of the firmware:

• Packet correctly received.

• Bad sequence number.

• Firmware too long.

When a packet containing part of the firmware is correctly received, the
sending operation simply continues.
If a bad sequence number status is received, the operator is warned and
the sequence number which was expected by the satellite is checked. If this
expected sequence number is greater then the one sent with the previous
packet, it probably means that the packet was already received by the OBC
but that the corresponding acknowledgment was not received by the ground
station. The sending simply continues with the next packet.

2Because the packet integrity check fails.
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Finally if a firmware too long status is received, the ground station stops to
send packets containing part of the firmware. In fact, continuing sending the
packets would be useless as the satellite would not be able to store content
of those packets properly in FRAM.
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Chapter 4

Implementation details

The aim of this chapter is to explain the details of implementation. Sections
1 and 2 present the micro-controllers, the memories used, and the way the
memory elements are organized. Section 3 focuses on the bootstrap loader
implementation. Section 4 gives details about particular protocols used to
update the OBCs of OUFTI-2. Section 5 details the telecommands and
telemetries implemented to allow the OBC update. Section 6 discusses the
mechanism used to ensure integrity of the firmware. Section 7 presents the
modifications made to the ground station software. Section 8 exposes a type
of file that is used by the linker and that must be modified for the purpose
of reprogramming. Section 9 presents the procedure that must be followed
to perform a reprogramming of the OBC. The initialization procedure used
to program the micro-controllers on the ground is presented in section 10.

4.1 Flash memory

The micro-controllers that compose the OBC board are manufactured by
Texas Instruments. They are MSP430f1611. In this section, the first part
explains the organization of the flash memory, and the second explains how
the different applicable operations are performed on it.

4.1.1 Flash memory organization

In the micro-controllers, the binary code is placed in flash memory and is
directly executed from this location. Three particular zones are defined in it:
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Code memory: This memory zone contains the code1 developed by the
user. Its size is about 48KB.

Interrupt vector: This memory zone contains the addresses of the inter-
rupt routines that must be executed when an interrupt request occurs.
Its size is 32 bytes.

Information memory: This is a memory zone that can contain code or
data. Its size is 256 bytes.

The code memory is divided into 512 bytes segments, and the interrupt
vector is located in the last segment of this memory zone.
The information memory is organized into 2 segments of 128 bytes.
The micro-controllers also contains RAM memory that can be used during
the code execution. There is about 10 KB of it accessible in the micro-
controller used.
The memory space organization is presented on Fig. 4.1. The exact locations
reserved for the bootstrap loader and the firmware, discussed in section 3.2,
are also highlight in the figure.

Figure 4.1: Memory organization of MSP430f1611.

1But it can also contains data.
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As discussed in section 3.2, a flag is set if the bootstrap loader has to
perform a firmware switching operation. This flag is located at the address
0x1082 in information memory. The bootstrap loader also has to know which
is the address of the first instruction of the firmware. This is located in
information memory at address 0x1080.
The interrupt mechanism is not used in the bootstrap loader, the interrupt
vector must thus be the one that is associated with the firmware used in flash
memory. However, on the MSP430 architecture, the reset vector is located at
the address 0xFFFE in the interrupt vector zone, and contains the address
of the instruction that must be executed after a reboot. This reset vector, in
this work, must thus point to the first instruction of the bootstrap loader.

4.1.2 Operation applicable on flash memory

Three basic operations can be applied to the flash memory: read, erase, and
write.
Read mode is the one which is enabled by default. Access to the content can
be performed either by byte or by word of 16 bits.
Before writing new content to an address, because of the characteristics of
the flash memory, the previous content must be erased. However, a single
address cannot be erased alone. Erase operation can be performed either
on one single segment or on the entire memory except for the information
memory, or on the entire memory. It could thus be necessary to save data
before erasing. Indeed, erasing the content of one address would require to
erase at least one segment. If the data contained in the rest of the segment
should not be modified, restoring them would be necessary at the end of the
erase operation.
The write operation can be performed per byte, per word of 16 bits, or per
block of 64 bits. Writing more bits in a single write operation allows to speed
up the writing process.
The flash memory has an integrated controller that controls write and erase
operations. During the operations, the controller takes the control of the
flash, and the CPU cannot read it anymore. As the program is stored in
flash, the CPU is put in idle mode until the erase or write operation is fin-
ished. When the flash is accessible again, the CPU simply continues the
execution from where it was stopped. However, if the CPU must absolutely
continue the execution, the code could be executed from RAM.
It is worth to mention that it is possible to erase the segment containing the
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next instruction that must be executed by the CPU. This should obviously
be avoided as this would result in undetermined behavior in the subsequent
execution.
Before write and erase, all interrupts should be disabled. Indeed, the inter-
rupt vector is not accessible as it is located in flash.
In this work, the erase operation is performed by segment. It is the best
method as the bootstrap loader is also located in flash memory. Using one
of the two other erase methods could lead to loose the bootstrap loader or
to add additional computations to save and restore it.
The reading and writing operation are performed per byte. This was chosen
because the operations performed on the FRAM memory presented in the
next section are also done per byte.
Finally, three registers are used to configure the integrated controller of the
flash memory. Their names are FCTL1, FCTL2, and FCTL3. In order to switch
between the different modes, only FCTL1 and FCTL2 values must be modified.
The value corresponding to the different modes are presented in Table 4.1.
Details about the choices of those values can be found in [16].

FCTL1 FCTL3
Read 0x0A500 0x0A510
Erase 0x0A502 0x0A500
Write 0x0A540 0x0A500

Table 4.1: Register values of the flash memory controller.

4.2 FRAM Memory

The used FRAM memory on the OBC board has a capacity of 2 Mbits
and is manufactured by Cypress Semiconductor. The first part gives details
about the chosen memory organization. The second part discusses the Serial
Peripheral Interface (SPI) bus, which is used by the micro-controller and the
FRAM to communicate.

4.2.1 FRAM memory organization

The addresses ranges allocated to the different FRAM zones defined in sec-
tion 3.2 are presented in Fig.4.2. Despite the fact that a firmware code could
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take up to 46 KB according to flash memory division, the choice to allocate
only 32KB for each firmware in FRAM was made. The firmware size could
thus not be greater than 32 KB. The reason for this is to keep as much space
as possible for the logs and measurements stored in it. Moreover, at the time
of writing this document, size of the firmware was about 30 KB. A 2 KB
margin is thus available for code size variation during update.
However, if the firmware must be modified later during the satellite develop-
ment and this space is judged to be too small, it can easily be enlarged to
fit the size of the new code. But it would obviously reduce the size available
for logs and measurements.
The backup binary code is not modified during the mission. When this code
is stored in FRAM on the ground before the mission, it will no longer be
possible to change it. One can imagine to reduce the size of backup firmware
zone to have exactly the space needed for this backup firmware, and enlarge
the updated firmware zone with the freed space. This would thus provide a
better size variation margin for the updated codes.
Figure 4.2 also shows that 2 fields are marked as unused in the backup
firmware zone. The reason for this is to allow the bootstrap loader to treat
updated and backup firmware in the same way. The bootstrap loader just
ignores values of those fields when using the backup firmware.
The firmwares are stored linearly in the FRAM. This means that if the
firmware in FRAM has a length N , the N − 32 bytes stored in FRAM cor-
respond to the binary code and that the last 32 bytes are the corresponding
interrupt vector.

4.2.2 SPI bus

Data are sent to and received from FRAM by using an SPI bus.
It is a serial master-slave communication type. On a given bus there is only
one device acting as master but multiple slaves can be present on it. The
SPI bus is a full-duplex one, and it uses 4 signals in order to transmit data
between the devices:

• CS: Chip select

• SO: Serial Output, also called Master in Slave out (MISO)

• SI: Serial Input, also called Master out Slave in (MOSI)
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Figure 4.2: Organization of FRAM Memory.

• SCK: Serial Clock.

Typically, all slaves share the same MISO, MOSI, and SCK physical links. The
master thus uses the same wires to communicate with all slaves. However,
all the slaves have their dedicated chip select link to the micro-controller.
The communication is always initiated by the master and the slaves just
respond to its requests. The slave never starts a communication by itself.
When starting a communication, the master begins by generating a clock
signal on the SCK link. Then, it puts the CS link associated with the slave
low. At that moment, the data transmission can be started using the MISO

and MOSI links. At the end of the communication, the master puts the CS
high and stops sending the clock signal.
Bits are sent one by one through the links, and the most significant bit is
always sent first. The clock signal is used to synchronize the communications.
The devices read their input link at either the raising edge or the falling edge
of the clock signal. The signals sent and received must thus follow this timing
to be correctly transmitted between two devices.
In this work, the master of the bus is one of the micro-controllers and the
slave is the FRAM device. The micro-controllers have dedicated pins that
are used to perform SPI communication and they are thus used. The FRAM
samples data at the rising edge of the clock.
The action the FRAM has to execute is transmitted using an opcode. The
8 first bits of the communication must always be this opcode.
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The way the data transmission must be performed to execute a read operation
is presented in Fig. 4.3. On the input line of the FRAM the opcode is first
transmitted. Then, the 18 bits forming the address that must be read are
sent. Finally the FRAM transmits the content located at this address on its
output link.

Figure 4.3: Read operation on FRAM [5].

By default write operation are locked on the FRAM. Before performing
any write operation in FRAM, the operation must be unlocked. This is
performed by sending the WREN opcode.
The signals that must be sent to perform a write operation are shown on
Fig. 4.4. The opcode, followed by the 18 bits address where data must
be written are transmitted by one micro-controller on the input line of the
FRAM. Finally the 8 bits of data are sent on the same link.

Figure 4.4: Write operation on FRAM [5].

The values of the different opcodes that are used in this work are presented
in table 4.2.
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Opcode
Read 0b00000011
Write 0b00000010

WREN 0b00000110

Table 4.2: FRAM opcodes.

4.3 Bootstrap loader

The bootstrap loader is coded in C language. It is called each time the micro-
controllers are turned on. It first checks the content of the address 0x1082
in flash memory to know if a firmware change is needed.
If the update is not requested, it only creates a function pointer to the address
contained at position 0x1080 in information memory and calls this function.
The effect is thus to boot the firmware located in flash memory.
However, if the firmware must be changed, the copy from FRAM to flash
memory is performed before creating the function pointer.
The copy is performed byte per byte from FRAM to flash. There is one
variable used to know which address must be read in FRAM, and one pointer
used to know where the data must be placed in flash memory. The flash
memory pointer always points initially to address 0x4A00, and the initial
address in FRAM is either 0x2EE00 when using the backup firmware or
0x36AFF when it is an updated firmware that is copied.
The copy is performed in two phases. During phase 1, all the firmware except
the interrupt vector is copied. Phase 2 is about the interrupt vector update.
The operations performed during phase 1 are presented in Fig. 4.5. Each
time 512 bytes have been copied, a flash segment erase is performed. Indeed,
at that moment, the flash pointer enters in a new segment which must be
erased before being rewritten.
When phase 1 is finished, phase 2 starts to complete to firmware copy. In
this phase, the following actions are performed:

1. Save the content of the reset vector.

2. Move the flash pointer to the beginning of the interrupt vector in flash
and erase the corresponding segment.

3. Copy 30 bytes and increment flash pointer and FRAM address.

4. Restore the saved reset vector.
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5. Copy the last 2 bytes in FRAM at address 0x1080 in flash memory.

Figure 4.5: Bootstrap copy - Phase 1.

The address stored into the reset vector cannot change as it points to
the bootstrap loader. The aim of operations 1 and 4 is to avoid losing this
address and to be sure that the micro-controller will always execute the
bootstrap loader at reboot. Not performing these operations would lead to
lose the bootstrap loader address because the operation 2 erases the segment
in which it is located.
Operation 2 copies the new interrupt vector at right position in flash.
Finally, the last 2 bytes in FRAM contain the address of the first instruction
of the new firmware. This address must be placed in information memory,
at address 0x1080, to let the bootstrap loader know which address it must
jump to.

4.4 Protocols used

Two protocols are used to communicate with the OBC and control the satel-
lite. This section briefly presents important characteristics of the AX.25 radio
protocol and then explains the Packet Utilization Standard (PUS) protocol.
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4.4.1 AX.25 protocol

The AX.25 data link layer protocol is used to transmit control packets be-
tween the ground station and the satellite. The control packets are presented
in detail in the section 4.4.2.
The AX.25 frame structure used for OUFTI-2 mission is presented in Table
4.3.

Flag Address Control PID Data CRC Flag
1 byte 14 bytes 1 byte 1 byte Max. 256 bytes 2 bytes 1 byte

Table 4.3: AX.25 frame structure for OUFTI-2.

All the fields of this structure will not be explained in detail here. Indeed,
the decoding of the frames is not part of this work. However, it is important
to notice that a maximum of 256 bytes of data can be transmitted in a single
AX.25 frame. A particular care must thus be taken not to exceed this size
when sending a new firmware.
The CRC field in the AX.25 frame is used to check the integrity of this frame.
This CRC is completely independent from the one used to check the integrity
of the entire firmware.

4.4.2 PUS protocol

The PUS protocol is a norm written by the European Space Agency (ESA).
It defines the way communications between the ground station and the satel-
lite should be performed. The communications are performed using packets
called telecommands and telemetries. Telecommands are the packets sent
from the ground to the satellite. They are used to request the OBC to per-
form some operations. Telemetries are the packets sent from the satellite to
the ground station. They are used to send parameters and operational status
to the ground.
Packets headers are defined for telecommands and telemetries. The decoding
of the headers is not part of this work. Indeed, the OBC firmware is responsi-
ble for performing this decoding for all type of telecommands and telemetries
used for the OUFTI-2 mission. The reprogramming packets disencapsulation
is also performed by it. Details about the PUS headers will not be presented
in this work, but can be found in [2].
However, two particular fields in the headers are meaningful for this work.
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These are the type and sub-type fields. Telecommands and telemetries are
grouped together depending on their utilization and are thus classified by
type. The sub-type is used to define a function that can be implemented in
a given type. These fields are thus used to identify the telecommands and
telemetries and to allow their proper treatment.
The types numbered from 0 to 127 are reserved by the norm. However,
mission specific types can be defined, but they must be numbered between
128 and 255. As no type and sub-types were defined for the reprogramming
capability, it has been chosen to define new functions. Type 128 has been
allocated for reprogramming functions, and sub-types 1 to 5 are used in this
type. Section 4.5 exposes the allocations of these sub-types numbers to the
different functions.
Obviously, some data payloads can be placed in the PUS packets to exchange
information with the satellite. For telecommands, the size of the PUS header
is 9 bytes. One should take into account the fact that the maximum allowed
data size in AX.25 frames cannot be exceeded, particularly during the send-
ing of the new firmware data.
The PUS frames are encapsulated in the data fields of AX.25 frames and
then sent by radio signals.

4.5 Telecommands and telemetries

This section presents the telecommands and telemetries that are used to
perform the reprogramming procedure. For each of them, the PUS type and
sub-type used for telecommands and telemetries are presented.
The data structures used for each telecommand and telemetry are also de-
scribed.

4.5.1 Initialize update

The PUS type of telecommands and telemetries associated with this function
is 128. The sub-type has value 1.
When receiving this type of telecommand, the satellite performs the opera-
tions described in section 3.3.2. As the operation resets some parameters used
during the reprogramming procedure, no additional information is needed.
The telecommand is an empty PUS packet.
Data that is placed in the telemetries is a single byte used to return a status
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to the ground. No particular error could occur during this initialization. The
only status code that can be returned to ground in the telemetry is 0, and it
signals that the operation has been properly performed. Not receiving this
status would mean that the telecommand has not been received by the satel-
lite, or that the telemetry did not arrived properly to the ground station. It
could also mean that the satellite or the ground station dropped the packet
due to issues in it (e.g. bad AX.25 CRC). But, whatever the reason that
lead to this situation, the telecommand packet should be sent again by the
ground station.

4.5.2 Firmware sending

The PUS type of telecommands and telemetries associated with this function
is 128. The sub-type has value 2.
Upon receiving this type of telecommand, the OBC executes the operations
that are presented in section 3.3.1.
Obviously, as the aim of the telecommands is to send the new binary code
to the OBC, data must be sent in them. The way data is organized in the
telecommand packets is presented in table 4.4.

Sequence Number Length Binary code
1 byte 1 byte Max. 245 bytes

Table 4.4: Organization of PUS telecommand for the sending of the firmware.

The size of the binary code per packet cannot exceed 245 bytes. This
choice has been made to conform to the fact that AX.25 data field must not
have a size that is greater than 256 bytes. Indeed, having 247 bytes of data
in the PUS frame in addition to the 9 bytes of header leads to reach the limit.
The sequence number is the part number of the firmware. It is represented
by using a single byte. This size allows to have 256 different values, which is
sufficient. In fact, as the firmware size must not exceed 32KB, the sending
can be performed by using 131 telecommands and the sending thus uses 131
different values for the sequence number field.
Similarly, the field representing the length of the binary code is 1 byte long.
Indeed, as the binary code in packet must not exceed 245 bytes, 1 byte is
sufficient to represent this length.
The format used for the telemetries is presented in Table 4.5. The status
field can take 3 different values:
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• 0: means that the firmware part has been well written in FRAM

• 1: means that the packet received has not the expected sequence num-
ber

• 2: means that the firmware is too long and that it cannot be stored in
FRAM

Status Sequence Number
1 byte 1 byte

Table 4.5: Organization of PUS telemetry for the sending of the firmware.

For the telemetries, the meaning of the value stored in the sequence num-
ber field is dependent on the value in the status field.
If the status is 0, this value is the sequence number of the packet that has
just been received that is stored in this field. This thus allows the ground
station to know which sent packet it is receiving an acknowledgment for.
If the status is 1, the value of sequence number that the OBC expects next
is returned in this field.
Finally, if the value of the status is 2, the sequence number field is simply
not used. It should thus be filled with 0.
With the returned values, the necessary sequence number checking, explained
in section 3.5, is possible.

4.5.3 CRC sending

The PUS type of telecommands and telemetries associated with this function
is 128. The sub-type has value 3.
The only data that is sent using the telecommand is obviously the CRC.
There is only this 2 bytes of data in the PUS telecommand packet.
In the associated PUS telemetry, there is only one byte of data that represents
a status. It can only take the value 0, which signals that the operation has
been correctly performed. Indeed, when receiving the CRC, the OBC just
stores it in FRAM. No particular problem could thus be reported.
If the telemetry is not received after the sending of the CRC, this could mean
that the telemetry has not been received properly by the ground station or
that the telecommand has not been received correctly by the satellite. The
telecommand should thus be resent.
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4.5.4 Switch between the firmwares

The PUS type of telecommands and telemetries associated with this function
is 128. The sub-type has value 4.
When requesting a firmware change, there is no additional data to send with
the request. Indeed, the OBC reboots to execute the bootstrap loader. The
data field of the PUS telecommand is thus empty.
There is only one byte data in the telemetry that is sent to the ground station.
The data is as usual a status. It can take two values:

• 0: means that the switching has started

• 1: means that the firmware in FRAM is not suitable for use (see section
3.3.4)

Obviously, if no status is received, the operator should send the telecommand
to the satellite again.

4.5.5 Code version checking

The PUS type of telecommands and telemetries associated with this function
is 128. The sub-type has value 5.
When receiving this request, the OBC must just send back the version of the
code that is currently being executed on the powered micro-controller. No
data must thus be encapsulated in the request. The data field is kept empty.
The telemetry is used to send back the version number. The data encapsu-
lated in this telemetry is a single byte containing the version number. One
byte is sufficient to represent this version number. In principle, the repro-
gramming capability should rarely be used, it is thus not expected to have
256 different firmware versions.
As with the other functions, if no response is got after some time, it probably
means that either the telecommand or the telemetry has not been received
correctly or dropped. The telecommand should thus be resent.

4.6 Reliability, computation of CRC

This section presents the way the firmware binary code storage and transfer
reliability has been addressed. The first part explains the theory behind the
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CRC, and the second one explains the way it has been implemented in this
work.

4.6.1 Theory about the CRC

Cyclic Redundancy Check (CRC) is a method that is used to ensure that no
bit errors such as bit flips occurred in a sequence of bits. That is a method
which improves reliability in data storage and transmission.
A polynomial is fully defined by its set of coefficients. A sequence of bits
could be seen as a polynomial. For instance, the sequence of bits 1011 can
be represented by the polynomial 1x3 + 0x2 + 1x + 1.
The CRC method can be explained in terms of polynomials. Let us call M(x)
the polynomial representing the message to protect, and G(x) an arbitrary
polynomial of degree r called the generator. A new polynomial can be defined
by their multiplication:

T (x) = M(x) ·G(x)

The obtained polynomial T (x) thus has a degree augmented by r compared
to the polynomial M(x). The polynomial T (x) can be transformed to:

T (x) = M(x) · xr + R(x)

where R(x) is the remainder of M(x)·xr

G(x)
. This polynomial R(x) forms the

CRC, and T (x) is the polynomial representation of the encoded data, that
are sent.
When receiving the polynomial T (x), two methods can be used to check
whether problems occurred during transmission.
The first method is to check that it is divisible by G(x). If it is the case, it
probably means that no data alteration occurred. If not, it is certain that
there is an issue with the received polynomial representation.
The second method is to recompute R(x) on the extracted message and check
that the computed result correspond to the received one. If they are equal,
it is assumed that no problem occurred. If they are not equal, it means that
something unexpected happened.
The choice of the generator polynomial impacts the results and the way data
are protected, but some polynomials are widely used and are known to give
good results.
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4.6.2 Implementation of the CRC

On this work, as in many applications, a 16 bits CRC is used. The algorithm
used is based on the firmware polynomial division by a fixed generator poly-
nomial to obtain the rest of this division.
The chosen generator polynomial is the CRC-CCITT and the algorithm
treats all bits of the firmware one by one and works as follows:

1. Initialize a CRC variable to value 0xFFFF.

2. Shift left the CRC variable and insert the left most remaining bit of
the message at the position of the bit freed in the CRC variable.

3. If the bit shifted out of the CRC was set (i.e 1), apply XOR operation
between the CRC variable and the generator polynomial to obtain the
new value of CRC variable.

4. Repeat operation 2 and 3 while all bits of the messages have not been
treated.

This algorithm is applied in both the ground station and the satellite, and
one checks whether the two CRC values obtained are equal.

4.7 Ground station software modifications

The ground software, developed in Java language, and which was used for
OUFTI-1 mission was adapted to use for communication with OUFTI-2. In
this work, the five types of telecommands and telemetries used for repro-
gramming procedure have thus been added in this ground station software.
Obviously, mechanisms for sending telecommands and receiving telemetries
were already implemented and were reused for reprogramming functions.
However, by contrast with the other telecommands, new threads are instan-
tiated for sending reprogramming telecommands. Indeed, their usage allows
to send packets one after the other, and to deal with retransmission in case
of communication issues (such AX.25 packet dropped by the satellite due
to integrity problems). This retransmission mechanism is implemented for
the following three telecommands: the initialization of reprogramming, the
sending of the firmware, and the sending of the CRC. For the three telecom-
mands, the operator cannot request the sending of a particular one as packets

44



are sent sequentially. An automatic retransmission mechanism is thus nec-
essary. The retransmission mechanism is not implemented for the two other
telecommands because, in case of communication issues, the operator can
simply manually request the resending of the telecommand.
The retransmission mechanism works as follow: when a telecommand is sent,
a new thread is instantiated and it waits to get the corresponding acknowl-
edgment telemetry from the satellite. When it receives it, the thread is waken
up to send the next telecommand. However, if the telemetry is not received
by the ground station within 5 seconds, the ground station will consider that
a problem occurred. The thread is thus waken up to resend the packet that
is presumed to be lost.
Two new Java classes have been added to the ground software. The first one
is called Page. It is used to store data that are sent in a single packet. The
second is called FileSender, and it is responsible for extracting binary code
from the file and manages the sending of it to the satellite. The files that
are used are Intel Hex files and the binary codes of the firmwares are stored
in them. More details about those files are presented in the Appendix A.
The first operation that is performed by the FileSender when it is instan-
tiated is to read the Hex file and to break data into packets. The packets
are organized using the Page class. At the end of the reading, a set of Page
objects are obtained and the sending procedure can start.
During the sending of a firmware, the FileSender class decides which are
the data to send to the satellite. Based on the received acknowledgments,
this class thus determines the packet that must be sent. This class decides
whether a packet containing part of the firmware must be resent or not.

4.8 Linker command file

When the source code is compiled, object files are obtained. They must
be linked together to obtain the binary code that can be executed by the
micro-controllers. The linker performs this action. It is also responsible for
organizing the address space and for preparing the binary code to be placed
at appropriate position in the flash memory.
With the linker used with Code Composer Studio2, this memory organiza-
tion is defined in a linker configuration file. The content of this file can be

2Code Composer Studio is the Integrated Development Environment (IDE) used to
develop embedded application for Texas instrument micro-controllers.
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modified to obtain the desired configuration, and is changed to get the orga-
nization presented in section 4.1.1.
The command file contains MEMORY and SECTIONS directives. The aim of the
MEMORY directive is to assign names to ranges of memory.
The SECTIONS directive is used to create output sections using input sec-
tions coming from object files, and allocate the output sections to the micro-
controllers memories. The allocation is performed using the names defined
in MEMORY directive.
In this work, only the MEMORY directive is changed to tune the memory orga-
nization. The default configuration for the MSP430f1611 micro-controller is
presented on Listing 4.1.

MEMORY
{

SFR : o r i g i n = 0x0000 , l ength = 0x0010
PERIPHERALS 8BIT : o r i g i n = 0x0010 , l ength = 0x00F0
PERIPHERALS 16BIT : o r i g i n = 0x0100 , l ength = 0x0100
RAM : o r i g i n = 0x1100 , l ength = 0x2800
INFOA : o r i g i n = 0x1080 , l ength = 0x0080
INFOB : o r i g i n = 0x1000 , l ength = 0x0080
FLASH : o r i g i n = 0x4000 , l ength = 0xBEE0
INT00 : o r i g i n = 0xFFE0 , l ength = 0x0002
INT01 : o r i g i n = 0xFFE2 , l ength = 0x0002
INT02 : o r i g i n = 0xFFE4 , l ength = 0x0002
INT03 : o r i g i n = 0xFFE6 , l ength = 0x0002
INT04 : o r i g i n = 0xFFE8 , l ength = 0x0002
INT05 : o r i g i n = 0xFFEA, l ength = 0x0002
INT06 : o r i g i n = 0xFFEC, l ength = 0x0002
INT07 : o r i g i n = 0xFFEE, l ength = 0x0002
INT08 : o r i g i n = 0xFFF0 , l ength = 0x0002
INT09 : o r i g i n = 0xFFF2 , l ength = 0x0002
INT10 : o r i g i n = 0xFFF4 , l ength = 0x0002
INT11 : o r i g i n = 0xFFF6 , l ength = 0x0002
INT12 : o r i g i n = 0xFFF8 , l ength = 0x0002
INT13 : o r i g i n = 0xFFFA, l ength = 0x0002
INT14 : o r i g i n = 0xFFFC, l ength = 0x0002
RESET : o r i g i n = 0xFFFE, l ength = 0x0002

}

Listing 4.1: MEMORY directive in linker command file.
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One can observe that ranges of addresses are associated with names.
By modifying origin addresses and length, it is thus possible to change the
memory organization. In particular, for the purpose of reprogramming, the
FLASH, RESET, and INFOA ranges are modified.

4.9 Reprogramming procedure

This section describes the procedure that must be followed to correctly per-
form the reprogramming of the OBC. The following operations must be per-
formed sequentially by the ground station operator:

1. Ensure that the compiler is in Release mode.

2. Enable Hex File generation.

3. Change firmware version number in file definition.h.

4. Check that the MEMORY directive in the linker command file has the
appropriate form.

5. Compile and link the new firmware.

6. Select SOFTWARE_UPDATE command in the ground station software.

7. In the parameters zone, select the Hex File that must be sent.

8. Start the sending by pushing Send TC button in the ground station
software.

9. Wait for the end of the sending of the packets and CRC.

10. In the ground station software , select the command SWITCH_FIRMWARE

and send it using Send TC button.

11. Wait 3 minutes.

12. In the ground station software, select the command GET_FW_VERSION

and send it using Send TC button.

13. Check the version running on the satellite.
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The way to perform step 2 is presented in Appendix B. Step 3 must be
performed to have a unique version number for the code that will be sent
to the satellite. This will allow, at step 13, to exactly know whether the
new code is actually executed on the OBC. Step 4 permits to be certain that
the memory map for the code that will be linked is correct. Indeed, having
a bad memory map could lead to obtain a code that is not executable at
the position where it will be located in the micro-controller in the satellite.
Listing D.1 in Appendix D describes the MEMORY directive that must be used.
Step 6 to 10 corresponds to the sending of telecommands that contain the
new firmware. At step 11 one must wait for three minutes before going to
the next operation. Indeed, the bootstrap loader on-board the satellite takes
about 2 minutes and 30 seconds to retrieve the new firmware from FRAM,
store it in flash, and compute the CRC. The aim of the two last operations
is to check that the executed firmware has the expected version number. If
this is not the case, this means that a problem occurred during the update.

4.10 Initialization procedure

This section presents the procedure that must be followed to initialize the
OBC on-ground. It is divided in two parts. The first deals with the storage
of the backup firmware in the FRAM, and the second deals with the micro-
controllers initialization.
For the first part, the operations that must be performed are the following:

1. In the file update.h, change the defined UPDATE_FW_FRAM value. The
new address must be 0x2EE00.

2. Modify the linker command file such that the MEMORY directive is the
one presented in Listing D.1 in Appendix D.

3. Compile, link, and program one of the OBC micro-controller with this
code.

4. In the file update.h reset the define UPDATE_FW_FRAM value to 0x36AFF.

5. Apply the first 9 operations of the procedure presented in section 4.9.

The first step is used to change the address where the received firmware is
stored; the received firmware is placed in the backup zone in the FRAM. Step
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2 and 3 ensure that an executable code is stored in the micro-controller. Step
4 restores the address such that the backup firmware that will be generated at
step 5 contains the right address. Finally, during step 5, the backup firmware
is sent and stored at the right position in FRAM.
At the end of this first part, the final micro-controllers initialization can start.
For both micro-controllers on the OBC board, the following operations must
be performed:

1. Modify the linker command file of the bootstrap loader to obtain the
configuration presented in Listing D.3 in Appendix D.

2. Modify the linker command file of the firmware to obtain the configu-
ration presented in Listing D.2 in Appendix D.

3. Make the configuration such that the entire flash is not erased when
the firmware programming will be performed.

4. Compile, link, and program the micro-controller with the bootstrap
loader.

5. Compile, link, and program the micro-controller with the firmware.

Step 1 and 2 ensure that the bootstrap loader and the firmware will
be placed at the right position in flash memory. The default configura-
tion is erasing the entire flash before programming it. However, as it can
be seen with step 4 and 5, the bootstrap loader is first programmed and
then the firmware is. However, when the firmware is programmed, the
bootstrap loader must not be erased. The aim of step 3 is to ensure the
bootstrap loader will not be erased. The configuration made in step 3, for
Code Composer Studio IDE, is presented in Appendix C.
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Chapter 5

Tests

This chapter describes the procedures and results of tests used to check that
the reprogramming capability is working. Section 1 describes the tests that
were performed using only the flash memory. Section 2 describes the tests
performed when the FRAM memory has been added in the system. Section
3 presents the tests which that were done after the integration of the solution
in the OBC firmware. Finally, section 4 describes tests performed check the
sending of a new firmware via radio signals.

5.1 Flash memory based

This section describes tests that were performed on a simplified hardware
system using a single micro-controller.

5.1.1 Configuration

An MSP430f1612 micro-controller was used to perform the tests. It is similar
to the MSP430f1611 that is used on the OBC board. The only differences is
that it has a little more flash memory (55KB vs 48KB) but less RAM (5KB
vs 10KB).
For this part of the tests, a simple firmware was developed. Its aim was
only to receive a new firmware code and store it at another location in flash
memory. At this stage, the AX.25 and PUS protocols were not already
used and only the data structures presented in section 4.5, without the PUS
header, were transmitted by using a serial port.
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A simple Java program was written to send bytes of data through the serial
port and to send them to the micro-controller. This program implementation
was a first sketch of the solution integrated in the ground station software.
The protocol used for send the new firmware was the same as the one used
in the final implementation.
The bootstrap loader had limited responsibility at that time. It had only to
check which firmware it had to boot on and choose the appropriate address
to which it had to jump in consequence. The only copies that the bootstrap
loader had to perform concerned the particular case of the interrupt vectors.
Indeed, the interrupt vectors associated with the firmware must be copied to
the right location in the flash memory. The CRC was not yet implemented
in the bootstrap loader; it was checked before rebooting when the switching
request was performed. If the CRC was not correct, the firmware change was
simply not performed.
The code memory was thus divided in three zones: the bootstrap loader zone,
the zone for firmware 1, and the zone for firmware 2.

5.1.2 Objectives

The aims of the tests performed in this section were multiple:

• Test the write and erase operations performed on flash memory.

• Test the bootstrap loader switching capability.

• Test the CRC computation and checking.

• Check that the retransmission mechanism in the sending procedure was
working.

The objectives were to check that storing a new firmware in another location
in flash memory and that safely booting on it was feasible.

5.1.3 Procedures

Three test procedures were used in this section.
In the first procedure, the sending protocol was applied and the new firmware
was stored in the zone for firmware 2 in flash memory. The new firmware
must be executable from this location. The correct CRC was sent, then,
when the switching between the firmware was requested, the new firmware
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should thus be executed from its location in flash.
The second procedure was similar to the first, excepting that an incorrect
CRC was sent to the micro-controller at the end of the sending procedure.
The switching between the firmware should not be executed in this case.
Checking whether the executed firmware has changed was performed exactly
as in the final version. The code version number defined in the code was
checked.
The third procedure tested the retransmission mechanism. The micro-controller
was configured to drop some packets that it had received. The Java program
that sends the packets thus had to resend them. In the Java program, logs
displayed information about the sent packets. Checking those logs allowed
to determine if dropped packet were effectively retransmitted.

5.1.4 Results

The procedures were applied multiple times and all the objectives of the tests
were fulfilled. All the functions developed were operating correctly.
In particular, the switching between the firmwares occurred correctly when
the CRC associated with the new firmware was correct. By contrast, the
switching was not performed when the CRC was not the appropriate one.
Packets that were dropped during executions of the third procedure were cor-
rectly retransmitted, and in each case, the switching between the firmwares
was possible at the end of the sending protocol.

5.2 FRAM memory based

This section describes the tests that where performed when the FRAM mem-
ory was added to the system.

5.2.1 Configuration

As for the flash memory based tests, the present tests were performed using
the MSP430f1612 micro-controller. However, an external flash memory was
connected to the micro-controller. As on the final OBC board, the commu-
nication with this FRAM memory was performed by using a SPI bus.
The simple firmware developed for tests in section 5.1 was reused, but adapted
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to communicate correctly with the FRAM. In particular three of the five re-
programming functions of the OBC were adapted:

• The function executed when receiving a packet containing a part of the
new firmware.

• The function executed when receiving the CRC associated with the
new firmware.

• The function executed when the operator requests a switch of firmware.

The first function no longer stored the new firmware in flash memory,
but in FRAM. Appropriate communication with the FRAM were added in
the firmware. The second function was changed because the OBC stored the
CRC in FRAM. The third function was modified due to the fact that the
CRC was no longer checked before the switching operation. Indeed, as a copy
from flash to FRAM was necessary, the bootstrap loader was responsible for
checking this CRC.
The bootstrap loader was thus responsible for copying the new firmware from
FRAM to flash memory and computing the CRC. It was also responsible for
retrieving the backup firmware for FRAM in case of integrity check error
after the copy of the new firmware.
The Java software used was the same as the one used to perform the tests in
section 5.1. Bytes of data were still sent through a serial port by using the
protocol developed to send a new firmware.

5.2.2 Objectives

Multiple objectives were associated with the tests performed in the section:

• Test the interfacing with the FRAM memory.

• Test that the copy operations were performed correctly form the firmware
to FRAM, and from FRAM to flash.

• Test whether the backup firmware was correctly retrieved if the in-
tegrity check failed for the new firmware.

The objectives of the tests presented in this section are principally related
to data storage and retrieval from FRAM.
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5.2.3 Procedures

At the beginning, a backup firmware was stored in its correct location in
FRAM memory. Its code version number must be exclusively associated
with this backup firmware.
Then, the same first two procedures presented in section 5.1.3 were applied.
According to the update procedure, version number of the code executed
on the micro-controller permitted to determine whether the reprogramming
worked. As a reminder, if the version number of the executed code cor-
responds to the one associated with the backup firmware, this means that
the update failed. But if this code version number corresponds to the one
associated with the new firmware, this means that the update succeeded.

5.2.4 Results

The test were performed several times. When the ground station sent the
appropriate CRC, the micro-controller each time rebooted correctly on the
new firmware. But if the CRC was not the right one, it was always the
backup firmware that was loaded into flash memory.

5.3 Integration in OBC firmware

This section describes the tests performed after the integration of the repro-
gramming function in the firmware of the OBC.

5.3.1 Configuration

The tests performed in this section were executed on the OBC board. Figure
5.1 presents the prototype of the OBC that was used to perform the tests.

Micro-controllers that are present on this board are MSP430f1611 ones.
The FRAM memory was the same as the one used for previous tests.
Reprogramming function that were used in the previous simple firmware did
not change. These functions were only added into the OBC firmware and
the PUS protocol was used.
The bootstrap loader did not change compared to the one used in section
5.2. Indeed the role of the bootstrap loader remained the same, which was
coping the new firmware from FRAM to flash if requested.
However, the Java software that was used to send data to the micro-controllers
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Figure 5.1: Prototype of the OBC [7].

was no longer the same as the one used in the two previous sections. This was
the ground station software modified to be able to send the PUS telecom-
mands and to receive the PUS telemetries.
For the tests in this section, the data were still transmitted to the OBC by
using a serial port.

5.3.2 Objectives

Three objectives were defined for the tests:

• Test that the sending of the firmware was still working correctly after
integration in the OBC firmware.

• Test whether the switching between two real OBC firmwares was work-
ing.

• Perform timing tests to have a idea of the time which was necessary to
perform a complete update.

The tests performed in this section were mainly dedicated to check that the
integration of the reprogramming functions in the real OBC firmware was
correctly performed.
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5.3.3 Procedures

The testing procedures were the same as the ones used in section 5.2.

5.3.4 Results

As for the other tests that were previously performed, the tests have been
performed several times, and the new firmware was correctly copied into flash
memory if the CRC was correct. If the CRC was not appropriate, the backup
firmware was copied into the flash memory and executed.
The time necessary to send a new complete firmware and store this firmware
in FRAM was measured. Sending the 30KB of binary code constituting the
new firmware took about 6 minutes. As each packet can contain up to 245
bytes of binary code, this means that the OBC takes about 3 seconds to
execute correctly the associated telecommand and send back the telemetry.
The sending time has this value because of the OBC firmware implementa-
tion. Indeed, it uses FreeRTOS which is a real time operating system. Dif-
ferent tasks are implemented in the firmware, and each task must be waken
up in order to perform the operations that it has to made. In the firmware
implementation, the tasks are waken up every second. An idle task thus only
check every second if it has an operation to perform. As the reprogramming
telecommands are treated sequentially by three tasks, this explains the time
necessary to send one telecommand.
The firmware switching, performed by the bootstrap loader, takes about 2
minutes and 30 seconds. This switching time is mainly due to the CRC
computation that the bootstrap loader must perform.

5.4 Sending by AX.25

This section explains the last test that were performed. The aim was to send
the firmware by radio, and using the AX.25 protocol.

5.4.1 Configuration

As the tests performed previously, the test realized in this section were made
on the OBC board. The change was that the data was no more directly
received from or sent to a computer. Indeed, the prototype of the COM sub-
system was connected to the OBC. This COM subsystem exchanged data
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with the ground station station software using radio signals. The data came
from or went to the OBC.
The computer which was executing the ground station software was con-
nected to a radio receiver/transmitter. This software was exchanging data
by radio with the COM subsystem.

5.4.2 Objectives

The objective was to test that the packets containing the firmware were
correctly received by the OBC when sent by radio signals. As more losses
or data alteration occur during radio signals transmission, this also allows to
test the sending protocol. Especially, the test was useful in validating the
retransmission mechanism.

5.4.3 Procedures

The procedure that was followed is based on the firmware sending. The
ground station software transferred a new firmware to the OBC.

5.4.4 Results

An entire firmware was not sent to the OBC. Indeed, the configuration on
ground was not suitable to perform the radio tests. The antennas that were
connected to the ground station and to the COM subsystem were too close
one to each other. The signals were not attenuated enough to permit appro-
priate communications. But, this configuration allowed to determine that
the retransmission mechanism was correctly executed even in case of fre-
quent packet losses.
However, the configuration used to perform radio transmissions was close
to the one that was used when using serial link as communication channel.
The transmission by radio should thus work properly. The radio signals
transmission tests should be performed when a better configuration would
be available.
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Conclusion

Contribution of this work

This thesis presents a method that can be used to reprogram the on-board
computer of the OUFTI-2 CubeSat.
First, different solutions were analyzed, and then, the solution that better
fits with the architecture of the OBC of OUFTI-2 was selected. The solu-
tion is based on a full binary replacement of the previous firmware by the
new one. The reprogramming mechanism was developed in parallel with the
development of the firmware of the OBC. The first development phases were
independent on the firmware of the OBC. The integration of the reprogram-
ming functions in the firmware of the OBC was performed in latter phases.
In this work, a protocol that can be used to send a new firmware to the satel-
lite was defined. It was added to the ground station software that is used to
send the new binary code of a new firmware to the satellite. The reprogram-
ming can be performed using the software dedicated to the communication
with the satellite.

Suggestions for future work

Tests of the reprogramming method showed that the solution was working
properly but that it was time consuming. Some improvements could be made
to reduce the time required to perform an update.
First, changing the frequency at which FreeRTOS tasks are waken up in the
implementation could be considered. However, the initial choice was not part
of this work. It was part of the OBC firmware development. The impact that
this frequency modification could have on the OBC firmware performances
should be further investigated.
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Second, the sending protocol could be improved a little bit by not waiting
for an acknowledgment for each received packet. The packets would thus be
sent at a fixed interval of time, which must be calculated to not overload the
satellite, and a map of the received packets could be asked to the satellite at
the end of the sending. The ground station would thus know which packet
was not received and must be resent.
Third, a mix of partial and full binary replacement could be considered. It
would be a solution in which the new firmware is compared to the one that is
stored in FRAM, and only parts that differ would be sent by telecommands.
When a firmware switch is requested by the ground station operator on a
micro-controller, the entire firmware stored in FRAM would be copied to
flash memory. This solution could improve the time necessary to update a
firmware, depending on the weight of the performed modifications.
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Appendix A

Intel Hex File

Intel Hex is a file format that is widely used for programming micro-controllers.
It contains binary data in ASCII format. Data are typically the binary rep-
resentation of the firmware.
The file is composed of lines that have the format presented in Listing A.1.

: l l aaaat tdddd . . . ddddcc

Listing A.1: Format of a line in an Intel Hex File.

The lines always start with a column, followed by information represented
in hexadecimal. The different fields shown in this listing have the following
meaning:

• ll: The number of bytes of data in the line. This field is always one
byte long.

• aa: The start address from which the data on the line must be placed.
This field is always two bytes long.

• tt: The type of data in the line. This field is always one byte long.

• dd: The Sequence of data bytes.

• cc: The check sum associated with data on the line. For instance, it
can be used to check the integrity of data after transmission. This field
is always two bytes long.
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In this work, the tt field can take only two values, either 0 or 1. Value 0
means that the associated line contains binary data, and value 1 is used to
signal the end-of-file.
However, only two of the fields are used: the length, and obviously the data.
Indeed, using the two pieces of information is sufficient to extract the binary
code contained in the file.
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Appendix B

Code Composer Studio -
Enabling the Hex file
generation

The procedure that must be used in Code Composer Studio IDE v7.1.0 to
allow the Hex File generation is the following:

1. Make a right click on the project name in the left panel.

2. Click on properties.

3. In the opened window, on the left panel, click on
MSP430 Hex Utility.

4. In the right panel, check the Enable MSP430 Hex Utility check box.

5. In the left panel, click on Output Format Options.

6. In the right panel, click on the Output format drop down menu and
select Output Intel hex format (--intel, -i).

7. In the opened window, on the left panel, click on
MSP430 Hex Utility.

8. In summary of flags set field, check that the content is
--memwidth=8 --romwidth=8 --intel.

9. The configuration presented in Fig. B.1 should be obtained.
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Figure B.1: Overview of the panel for Intel Hex File configuration.
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Appendix C

Code Composer Studio -
Configuration for initialization

The procedure that must be used in Code Composer Studio IDE v7.1.0 to
ensure that the entire flash memory is not erased while programming the
MSP430 micro-controller is the following one:

1. In the left panel, make a right click on the project.

2. Click on properties.

3. In the opened window, on the left panel, click on
Debug.

4. In the right panel, click on MSP43x Options.

5. In the Erase Options panel, select the option
Replace memory locations, retain unwritten memory

locations.

6. The configuration presented in Fig. C.1 should be obtained.
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Figure C.1: Erase option selection in Code Composer Studio
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Appendix D

Linker command files
modifications

The listing D.1 presents the MEMORY directive configuration that must be used
when preparing the sending of an updated firmware.
The start address of the flash memory is set to 0x4A00, such that it corre-
sponds to the configuration presented in section 4.1.1. The interrupt vectors
are located in the address range from 0xFFE0 to 0xFFFF, this thus permits
to be sure that the 32 last bytes of the firmware that are sent are the inter-
rupt vectors.
One can also notice that the reset vector is placed at address 0xFFFE, while
its content is not physically placed at that position in the micro-controller.
Indeed, the reset vector of the firmware is placed at address 0x1080. How-
ever, this choice was made to ensure that the two last transmitted bytes of
an updated firmware are always the address of the first instruction that must
be executed when booting on the firmware.

MEMORY
{

SFR : o r i g i n = 0x0000 , l ength = 0x0010
PERIPHERALS 8BIT : o r i g i n = 0x0010 , l ength = 0x00F0
PERIPHERALS 16BIT : o r i g i n = 0x0100 , l ength = 0x0100
RAM : o r i g i n = 0x1100 , l ength = 0x2800
INFOA : o r i g i n = 0x1080 , l ength = 0x0080
INFOB : o r i g i n = 0x1000 , l ength = 0x0080
FLASH : o r i g i n = 0x4A00 , l ength = 0xB4E0
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INT00 : o r i g i n = 0xFFE0 , l ength = 0x0002
INT01 : o r i g i n = 0xFFE2 , l ength = 0x0002
INT02 : o r i g i n = 0xFFE4 , l ength = 0x0002
INT03 : o r i g i n = 0xFFE6 , l ength = 0x0002
INT04 : o r i g i n = 0xFFE8 , l ength = 0x0002
INT05 : o r i g i n = 0xFFEA, l ength = 0x0002
INT06 : o r i g i n = 0xFFEC, l ength = 0x0002
INT07 : o r i g i n = 0xFFEE, l ength = 0x0002
INT08 : o r i g i n = 0xFFF0 , l ength = 0x0002
INT09 : o r i g i n = 0xFFF2 , l ength = 0x0002
INT10 : o r i g i n = 0xFFF4 , l ength = 0x0002
INT11 : o r i g i n = 0xFFF6 , l ength = 0x0002
INT12 : o r i g i n = 0xFFF8 , l ength = 0x0002
INT13 : o r i g i n = 0xFFFA, l ength = 0x0002
INT14 : o r i g i n = 0xFFFC, l ength = 0x0002
RESET : o r i g i n = 0xFFFE, l ength = 0x0002

}

Listing D.1: MEMORY directive in linker command file for an updated
firmware.

The Listing D.2 presents the MEMORY directive that must be used to ini-
tialize and program the first firmware in the micro-controllers on the ground.
The binary code of the firmware is placed at address 0x4A00 as required by
the memory map presented in section 4.1.1. The reset vector of the firmware
is placed at address 0x1080, the bootstrap loader thus knows what is the first
instruction that must be executed when booting on the firmware. Finally,
the information memory INFOA starts at address 0x1082 instead of address
0x1080 because the reset vector of the firmware fills the two first bytes.

MEMORY
{

SFR : o r i g i n = 0x0000 , l ength = 0x0010
PERIPHERALS 8BIT : o r i g i n = 0x0010 , l ength = 0x00F0
PERIPHERALS 16BIT : o r i g i n = 0x0100 , l ength = 0x0100
RAM : o r i g i n = 0x1100 , l ength = 0x2800
INFOA : o r i g i n = 0x1082 , l ength = 0x007E
INFOB : o r i g i n = 0x1000 , l ength = 0x0080
FLASH : o r i g i n = 0x4A00 , l ength = 0xB4E0
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INT00 : o r i g i n = 0xFFE0 , l ength = 0x0002
INT01 : o r i g i n = 0xFFE2 , l ength = 0x0002
INT02 : o r i g i n = 0xFFE4 , l ength = 0x0002
INT03 : o r i g i n = 0xFFE6 , l ength = 0x0002
INT04 : o r i g i n = 0xFFE8 , l ength = 0x0002
INT05 : o r i g i n = 0xFFEA, l ength = 0x0002
INT06 : o r i g i n = 0xFFEC, l ength = 0x0002
INT07 : o r i g i n = 0xFFEE, l ength = 0x0002
INT08 : o r i g i n = 0xFFF0 , l ength = 0x0002
INT09 : o r i g i n = 0xFFF2 , l ength = 0x0002
INT10 : o r i g i n = 0xFFF4 , l ength = 0x0002
INT11 : o r i g i n = 0xFFF6 , l ength = 0x0002
INT12 : o r i g i n = 0xFFF8 , l ength = 0x0002
INT13 : o r i g i n = 0xFFFA, l ength = 0x0002
INT14 : o r i g i n = 0xFFFC, l ength = 0x0002
RESET : o r i g i n = 0x1080 , l ength = 0x0002

}

Listing D.2: MEMORY directive in linker command file for initializing
firmware.

The Listing D.3 shows the MEMORY directive that is used for the linker
command file used for the bootstrap loader.
The flash memory section start at address 0x4000 but its length is reduced to
0x0A00. Indeed, to respect the memory map presented in section 4.1.1, the
binary code of the bootstrap loader cannot be outside the addresses range
from 0x4000 to 0x4A00.
Finally, it can be observed that the interrupt vectors of the bootstrap loader
is placed in the range from 0xFFE0 to 0xFFFF which is the same range as
the one used for the interrupt vectors of the firmware. The values placed at
these positions during the bootstrap loader programming, except the reset
vector, are thus erased when the firmware is programmed. However, this is
not a problem as the bootstrap loader does not use any interruption.

MEMORY
{

SFR : o r i g i n = 0x0000 , l ength = 0x0010
PERIPHERALS 8BIT : o r i g i n = 0x0010 , l ength = 0x00F0
PERIPHERALS 16BIT : o r i g i n = 0x0100 , l ength = 0x0100
RAM : o r i g i n = 0x1100 , l ength = 0x2800
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INFOA : o r i g i n = 0x1080 , l ength = 0x0080
INFOB : o r i g i n = 0x1000 , l ength = 0x0080
FLASH : o r i g i n = 0x4000 , l ength = 0x0A00
INT00 : o r i g i n = 0xFFE0 , l ength = 0x0002
INT01 : o r i g i n = 0xFFE2 , l ength = 0x0002
INT02 : o r i g i n = 0xFFE4 , l ength = 0x0002
INT03 : o r i g i n = 0xFFE6 , l ength = 0x0002
INT04 : o r i g i n = 0xFFE8 , l ength = 0x0002
INT05 : o r i g i n = 0xFFEA, l ength = 0x0002
INT06 : o r i g i n = 0xFFEC, l ength = 0x0002
INT07 : o r i g i n = 0xFFEE, l ength = 0x0002
INT08 : o r i g i n = 0xFFF0 , l ength = 0x0002
INT09 : o r i g i n = 0xFFF2 , l ength = 0x0002
INT10 : o r i g i n = 0xFFF4 , l ength = 0x0002
INT11 : o r i g i n = 0xFFF6 , l ength = 0x0002
INT12 : o r i g i n = 0xFFF8 , l ength = 0x0002
INT13 : o r i g i n = 0xFFFA, l ength = 0x0002
INT14 : o r i g i n = 0xFFFC, l ength = 0x0002
RESET : o r i g i n = 0xFFFE, l ength = 0x0002

}

Listing D.3: MEMORY directive in linker command file for the bootstrap
loader.
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Appendix E

Activity

From May 1st to the May 5th 2017, the European Space Agency (ESA)
organized the Flight Your Satellite! selection workshop at ESTEC, in The
Netherlands. The OUFTI-2 team was selected to participate to this work-
shop, and I had the opportunity to be a member of the team that went to
the workshop.
During this week many lectures were organized and a lot of subjects about
the development and design of satellites were presented. Student colleague
Adrien Rikir, from HEPL/ISIL, and I presented the OUFTI-2 project to the
panel of ESA experts. Obviously, this presentation was prepared and dry
runs were performed at the Montefiore Institute the week before the work-
shop.
This gave me the opportunity to meet several people for the other teams com-
ing from different countries in Europe. I also met, of course, many members
of the ESTEC staff. It was a once-in-a-lifetime opportunity and a wonderful
rewarding experience for an engineering student.
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Figure E.1: Photo taken at the end of the OUFTI-2 project presentation at
ESTEC.
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