
http://lib.ulg.ac.be http://matheo.ulg.ac.be

Master thesis : Langage pour plate-forme de développement de jeux sur le web

Auteur : Chupin, Simon

Promoteur(s) : Mathy, Laurent

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "computer systems and networks"

Année académique : 2016-2017

URI/URL : http://hdl.handle.net/2268.2/3160

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège
Faculty of applied sciences

Master Thesis

Evolutive programming language for
game development platform on the web

Author: Simon Chupin Supervisor: Prof. L. Mathy

Master thesis submi�ed for the degree of

MSc in Computer Science and Engineering

Academic year 2016-2017

Acknowledgements

I would like to thank my supervisor, Prof. L. Mathy, who gave me the oppor-
tunity to work on such an interesting subject for my master thesis and who let
me a lot of freedom on the conception of the application.

I would also express my special thanks to Renaud Hoyoux, who gave me
useful advice.

Finally, I would like to express my deepest gratitude to all those who pro-
vided me time, support and encouragement during this year and all my years
of university study, especially my family and my close friends.

Abstract

Evolutive programming language for game
development platform on the web

Author: Simon Chupin
Supervisor: Prof. L. Mathy

Master thesis submitted for the degree of MSc in Computer Science and
Engineering

Academic year 2016-2017, University of Liège

The continuous evolution of digitalization during the past decade has led to
a developers and computer scientists shortage. In response to that trend, many
tools have emerged to promote programming and particularly among children.

This works aims at developing a new impelling application to teach pro-
gramming and encourage teenagers to get into informatics. The application
concept is to provide simple tools and an adapted programming language to
develop 2D games that run in the browser.
The challenge of this work is to bypass the tedious steps of usual languages and
frameworks learning curves by giving the opportunity to produce complete
games with little knowledge on programming and game development. The
other key objective is to give an evolutive environment that allows children to
progressively develop their skills as they gain experience.

This thesis presents the design choices made to achieves these goals and
describes the application architecture and implementation.

Contents

1 Introduction 3

1.1 Purpose . 3
1.2 Existing applications . 4

1.2.1 Scratch . 5
1.2.2 Code Combat . 7

1.3 Problem-solving approach . 8

2 Application design 10

2.1 Application tools . 10
2.1.1 Board initializer . 10
2.1.2 Code editor . 11
2.1.3 Other features . 12

2.2 Programming language . 13
2.2.1 Lexical structure . 13
2.2.2 Syntax . 14
2.2.3 Semantics . 16
2.2.4 Type system . 17
2.2.5 Core library . 17

3 Application architecture and technologies 20

3.1 Languages and frameworks . 20
3.1.1 Client side . 20
3.1.2 Server side . 24

3.2 Front-end . 24
3.3 Back-end . 26

1

4 Implementation 28

4.1 Front-end . 28
4.1.1 Board initializer . 28
4.1.2 Code editor . 33
4.1.3 Game container . 34
4.1.4 Core library . 34
4.1.5 Other features . 36

4.2 Back-end . 37
4.2.1 Server creation and database connection 37
4.2.2 Routing . 37
4.2.3 Image storage . 38
4.2.4 Transpiler . 39

5 Conclusion 40

5.1 Main achievements . 40
5.2 Improvements & future works 40

5.2.1 Type system . 41
5.2.2 Core library . 41
5.2.3 Language features . 41
5.2.4 Editors autocomplete 42

5.3 Current deployment and source code 42

A Application screenshots 43

B Web resources 47

2

Chapter 1

Introduction

1.1 Purpose

About �fteen years ago, the world has entered in the digital age, that is the
point in time where human kind was able to store more information in digital
than in analog format. And with this digital age, computer code has started to
populate our everyday life. Not only the use of computer has exploded but also
the development of new technologies, highly requiring programming, such as
smart-phones, intelligence in cars, home automation and many more. We also
�nd this digitalization in many companies with the use of automated processes
and more recently with the development of arti�cial intelligence such as data
mining to manage the company data and optimize their production.
This big change in the society has led to an increasing demand for computer
programmers in the last decade. And more generally, coding skills has become
a core skill requirement for a broad range of careers, not only for IT jobs. An
American report [Tec16] states that 20% of well-paid job openings in 2015 was
requiring coding skills. The same report assesses that coding jobs are growing
faster than the overall job market with an estimation of a 12% faster growth.
Despite this increasing demand, the developer scarcity in the market is a reality.
According to the 2016 edition of "Baromètre de la société de l’information du
SPF Économie" [SE16], 46% of Belgian companies have encountered di�culties
to �ll ICT job vacancies in 2015. In Switzerland, a lack of 24, 000 computer
scientists is forecasted for 2024 [Cha16].

However, the awareness of the coding skills importance has grown and many
countries have put e�ort and investment to reverse the current trend. The idea
is to sensitize and train more people to programming and a common thought
is that it is both better and easier to learn it at an early age.

3

For example, the Obama administration has launched ’Computer Science for
All’ in 2016 [Smi16], a $4 billion initiative to give American students from
kindergarten through high school the opportunity to develop programming
skills.
In the UK, coding is on the national curriculum for primary and secondary
school since 2014 as it is seen as a long-term solution to the "skills gap" between
the number of technology jobs and the people quali�ed to �ll them.
France also started to follow the �ow. In high school, in addition to the �nal
year specialization in informatics, optional courses are proposed to all other
sections since 2016. The same year, basic informatics and algorithmic concepts
have started to be taught in elementary school and real programming projects
are made in high school [dS13].
In education, Belgium is still late in the informatics �eld [NJ13]. Most of the
ICT and informatics courses focus more on how to use informatics tools instead
of how to design and produce them.
Moreover, many websites propose programming languages on-line courses
(Code.org, CodeAcademy,...) or learn-to-code applications (Tynker, Hopscotch,
Scratch,...) and plenty of coding clubs have emerged such as Code Club, Coder-
Dojo and much more. These clubs o�er extracurricular free sessions to teach
programming to children by helping them to use applications like Scratch or
to develop their �rst website.

This work aims at encouraging teenagers to get into informatics by provid-
ing a new impelling tool to learn programming. The goal is to teach how to
develop simple, but fully functional, 2D games that run on the browser. Video
games are an exciting application of programming and is a real motivation to
start learning it.
This tool tries to bypass the tedious steps of usual languages and frameworks
learning curves by giving the opportunity to produce complete games with
little knowledge on the subject. The other key concept of the work is to give
an evolutive environment that allows children to progressively develop their
skills as they gain experience.
The target audience is children from 12 to 18 years old, which means high
school students.

1.2 Existing applications

Besides websites o�ering programming courses, a lot of interactive applica-
tions are available on-line to initiate kids to programming. This section brie�y

4

reviews what those applications provide by presenting two of the most popular
applications and their di�erent approach to answer the problem. Their bene�ts
and weaknesses are also discussed.

1.2.1 Scratch

1.2.1.1 What is scratch?

Scratch [1] is a block-based programming language for creating interactive sto-
ries, games and animations. The program conception is made by manipulating
graphical elements instead of writing textual code. Scratch is intended to be
a stepping stone for more advanced programming. For this reason, it is often
used as a �rst approach to programming, and more particularly to promote
computer science among kids aged from 8 to 16 years old.

1.2.1.2 Scratch functioning

Scratch uses multiple active objects called sprites to compose the user pro-
grams. Sprites are displayable objects, drawn from an editor or imported from
the library or the user computer. Each sprite is programmable and have its own
code.

Scratch is event-driven, users can de�ne code to be executed in response to
a particular event, e.g. when this sprite clicked. To code an interactive game,
user usually places its logic code inside a forever loop attached to a start event
to simulate the game loop.

To compose the code, the user can drag and drop code blocks from ten dif-
ferent categories:

• Motion - Move and rotate sprites, modify x and y position

• Looks - Control sprite appearance; attach speech or thought bubble, change
of background, enlarge or shrink, transparency, shade

• Sound - Play sounds and notes

• Pen - Allow turtle graphics; control pen width, color, and shade

• Data - Create variables, assign value to variables; create lists

• Events - Event handlers, message manager

5

• Control - Control structures (repeat, forever, if-then, if-then-else, repeat-
until), time manager, clone manager

• Sensing - Keyboard and mouse sensing, input manager, distance comput-
ing, collision manager

• Operators - Arithmetic, textual and boolean operators; random number
generator

• More blocks - Custom procedure creation

Scratch works with 3 built-in types: text, number and boolean. The Data
blocks allows to create and manipulate textual or numeric variables. A variable
can be global or local to a sprite, and sprites can communicate through global
variables. Another way of communication is using the messaging blocks in
the Events category: when a sprite wants to trigger an event, it broadcasts a
message that can be caught by any sprite.

Scratch allows to de�ne procedures by creating custom blocks in the More
blocks category, the user can specify the number and types of the procedure’s
parameters. However, Scratch does not provide a way to de�ne functions with
return value.

Scratch also allows to pause script execution at sprite level and o�ers the
possibility to create sprite clones at runtime.

1.2.1.3 Advantages

Scratch is really easy to take in hand and its visual language removes the bur-
den of learning a language syntax, what could be a brake for children when
�rst programming. Scratch allows to create a wide variety of programs, from
simple animations to interactive games. It also o�ers some powerful features
such as its sprite collision detection.
Another strength of Scratch is its important internationalization. Both the user
interface and the block instructions are translated in more than 50 languages.

1.2.1.4 Limitations

As it allows to create a large scale of di�erent applications, from animations
to interactive games; Scratch can be a bit di�cult to approach for beginners.
If the user has no precise idea of what type of program he wants to develop,

6

the code can quickly become messy and the result a bit precarious. This is a
reason why Scratch learning is often supervised by teachers at school or by
experienced programmers in coding clubs.

Scratch also su�ers from a lack of features that could limit the development
possibilities. As already stated, it misses the implementation of real functions
with return value. Moreover, except for collision detection, Scratch does not
expose a physics library. Managing sprite motion velocity and acceleration
would be useful for certain type of program.

Scratch uses simple sprite images and the game rendering is not of high
quality. Moreover, sprite motion is not smooth as the sprite position increases
by steps. Even if Scratch provides block to glide sprites, the sprite motion is
still jerky.

The fact that Scratch uses a block-based language can also be seen as a limi-
tation for evolution towards a real programing language. However, the impact
of block-based language on programming skills development is subject of de-
bate.

A �nal disadvantage of Scratch implementation is that each sprite has its
own code and there is no way to de�ne logic applied for several sprite. This
can result in code redundancy.

1.2.2 Code Combat

Code Combat[2] is a platform for students to learn programming while playing
a game. The student has to solve role-playing based puzzle mini games by
controlling the game hero with lines of code. For instance he would use control
�ow structures and call hero methods in order to move it towards the dungeon
exit while checking if any monsters are in its sight and attacking them if so.
Code Combat proposes an evolving environment where new programming
concepts are introduced as the user progresses through the di�erent game lev-
els, each level consisting on a new objective to be achieved with lines of code.
The role-playing approach is enforced with the earnings of gems when solving
a level and the possibility to spend them in order to buy new items that unlock
programming functionalities.

7

1.2.2.1 Advantages

The learning is strongly gradual at two levels: on one hand, the user starts
with a restricted API and will unlock new hero methods as he succeeds lev-
els and buy new equipment; on the other hand, control �ow statements and
programming concepts (such as parameters, variables,...) are introduced every
few levels. This avoids to overwhelm a beginner with a large documentation
and language syntax and at the same time simulates its appetite to progress.

The game-based learning system also entertains the motivation and concen-
tration of children. It involves challenges, encouraging students to master their
skills, and avoids boredom by providing an enthralling storyline [Cam16][Alb15].

Students have the choice between four real-world programming languages
to play the game: Python, JavaScript, Co�eeScript and Lua. This prepares the
user to real programming experiences by teaching him to use strict syntax and
code structure. Moreover, Code Combat provides useful UI features that ease
the code production such as code completion, list of available methods, hints,...

1.2.2.2 Limitations

The Code Combat free version is only limited to basic programming concepts.
Even though the user interface is available in numerous languages, writing
code is done in English. As it uses real-world programming languages, the
language keywords obviously stay unchanged, but the exposed hero methods
are not translated either.
Even if it incorporates a (paying) level for learning how to develop games, it
doesn’t provide a way to fully create a deployable game.

1.3 Problem-solving approach

This section describes the application approach to combine programming learn-
ing and game creation.

Game creation does not only involve logic coding and some steps of the
development require complex con�guration. The choices made in the applica-
tion conception aim to reduce the amount of con�guration and the number of
repetitive and non educational tasks.

8

The life-blood of a game are its graphical elements, they have to be loaded,
sometimes in di�erent format depending on the needs, placed, resized, rotated,
etc. Achieving those manipulations programmatically might not be an easy
thing to do.
The application eases the assets management by providing an image gallery
from which the user can load the desired graphic elements. It also provides a
board initializer that gives the possibility to move and modify those elements
with the mouse. Those graphical tools generates code internally that will be
prepended to the user code afterwards. This results in an easier way to initialize
the game stage and lets the user to focus more on logic.

Another di�culty for children in developing games might be the physics
management as it could require advanced mathematical knowledge. The appli-
cation is based on a game engine that already provides an API for physics man-
agement such as collision detection, gravity, velocity and much more. How-
ever, it could still be delicate to manipulate all these concepts on �rst approach
with programming; and as the application purpose is to give the ability to de-
velop functional games for real beginners, it provides a higher level of abstrac-
tion by exposing a core library implementing prede�ned behaviors. For in-
stance, you can create a platformer hero that will automatically be subject to
gravity, collide with platform and be controllable with the arrow controls.
The application intends to permit coding skills evolution and is then composed
of di�erent level of di�culty that provides di�erent level of abstraction of the
game engine, giving at the same time more freedom of implementation to the
user. As the user progress in the di�culty levels, he also unlock new language
functionalities.

In conclusion, this application is a game development platform adapted to
teenagers that is composed of a graphical interface for tasks unrelated to game
logic and that uses an adaptable language that �ts the actual skills and knowl-
edge of the user.

9

Chapter 2

Application design

This chapter deepens the discussion on the application’s choices. It presents
its main features and the designed programming language characteristics.

2.1 Application tools

This section presents the tools available to design games and explain how they
can be used.
When the user connects to the web application, it reaches the landing page; this
page’s goal is to gather principal application’s information. From the landing
page, the user ends up on the playground page where he �rst has to choose
which level of programming di�culty he wants to use. There are three di�er-
ent levels: Beginner, Intermediate and Expert; they all share the same function-
ing model but provide di�erent level of abstraction and o�er di�erent access
to some functionalities. Those di�erences are discussed through the next sec-
tions. After picking the desired level of di�culty, the user has access to the
actual playground page where he will design, code, and run its game.
The playground is composed of two principal tools: the board initializer and
the code editor ; they are presented in the two following sections.

2.1.1 Board initializer

As brie�y explained in section 1.3, the board initializer’s purpose is to provide
a graphical environment to build the game stage. It divides the window in two:
on the left side is the part to add game elements, and on the right side is the
board preview.

10

By manipulating inputs and buttons, the user can set a background, change
the dimensions of the stage and add sprites on the board. Sprites are displayable
elements that can interact with each other and respond to user inputs during
the game; they are the main pieces that compose a game.
The user has access to a gallery of image from where he can select the desired
images to represent its sprites. Each added sprite must have a unique name
that follows some naming restriction, a validator checks if each name is unique
and valid and warns the user otherwise. The sprite basic properties, namely
its x and y position, width, height and orientation, are also displayed. Those
properties can be modi�ed by manipulating the sprite from the board preview.
For each sprite, the user choose its type from a list of prede�ned sprite types
and can consult the corresponding documentation. It can also make some spe-
ci�c sprite initialization and for images that contains di�erent costumes, he
can select the default costume to be displayed. Prede�ned sprite types are dis-
cussed in section 2.2.5.2.
Figures A.1 and A.2 from Appendix A show an example of board initialization.

2.1.2 Code editor

The code editor is also divided into two parts. On the left are the actual edi-
tors and on the right is the game at its current state. In order to run the code
and launch the game, the user has to save a board �rst from the board ini-
tializer. When saving a board, code for the game con�guration and the sprite
creation is generated; each sprite is added in a variable corresponding to the
sprite name. Those variables can be manipulated in the di�erent editors and
more con�guration can be de�ned.

There are 2 to 4 editors depending on the current di�culty level. Beginner
level includes Creation and Events editors, intermediate introduces a third one:
Functions editor; and Expert level adds the Type editor.
Once the user has placed its sprites on the board and made its con�guration
from the board initializer, he can press the Save Board button to generate ini-
tialization code. This auto-generated code ends up in the Creation editor in
read-only mode but user can add more code initialization below.
The application uses an event-driven programming language and the user de-
�nes the code to trigger on particular events in the Event editor. The di�erent
types of events are discussed in section 2.2.3.2.
From the Functions editor, the user can de�ne functions with parameters and
return values. From the Type editor he de�nes its own sprite types.

11

To see the result of the current code, the user can press the Run code button.
If the code contains any syntax or semantic errors, he is noti�ed and the game
is not launched. When executing an error free code, the game is launched in
the right part of the window and the user can test it.
Figures A.3, A.4 and A.5 from Appendix A show an example of code edition
and execution.

2.1.3 Other features

2.1.3.1 Internationalization

The whole application is available in English and in French. The programming
language is also translatable; grammar keywords, core library global variables
and prede�ned sprite types and their methods and �elds have di�erent naming
depending on the current language.

2.1.3.2 Documentation

A complete documentation is described in the Documentation section of the
web application. This documentation describes how to use the application and
presents the programming language syntax. It explains the di�erences between
each level of di�culty and also describes the core library global variables and
the prede�ned sprite types.
The prede�ned sprite types are also brie�y described on the board initializer
when the user selects the type for a sprite.

2.1.3.3 Error noti�cation system

An error noti�cation system is implemented to prevent some wrong manipu-
lation of the tools by the user. For instance, it avoids saving a board if there
are sprite name con�icts and it prevent running a game without initializing the
board �rst.

2.1.3.4 Code completion and highlighting

The editors provide basic code completion based on local variables and lan-
guage keywords. They also handle brace completion and automatic indenta-
tion.
The syntax highlighting is also con�gured to suit the application language.

12

2.2 Programming language

The language is highly inspired by JavaScript. It follows most of its syntactic
rules but presents some di�erences.
It uses di�erent keywords, for instance the repeat keyword eases the imple-
mentation of basic loop control �ow; the conditional if statement is also a bit
di�erent as it comes along with a then keyword.
The syntactic processing is also stricter. The syntax forces semicolons at the
end of each instruction while they can be omitted in JavaScript; and the control
�ow bodies are always surrounded by curved brackets even if they are made
of a single instruction. This implies a more rigorous syntax but involves less
confusion for beginner.

The language implementation is based on the event-driven paradigm. The
user de�nes several events by specifying their type, their condition and the
action to trigger when they are �red. The reason why it uses this paradigm
is to add a level of abstraction on game development by hiding the game loop
from the code.
It also adopts an object-oriented approach by providing class-like sprite types
with �elds and methods.
The full description of the language is detailed in the next sections.

2.2.1 Lexical structure

2.2.1.1 Whitespace and comments

Whitespace characters are treated the same way as in JavaScript, they are ig-
nored in the parsing process. The language de�nes single-line (//) and multiline
(/* */) comments that are also ignored by the parser.

2.2.1.2 Keywords

The list of reserved keyword is given in Listing 2.1. Keywords are case-sensitive.

and do else equals
function forever greater_than if

let lower_than not once
or repeat repeat_until return

13

then when while

Listing 2.1: Language keywords

2.2.2 Syntax

A program consists in a set of instructions and event, function and
type de�nitions. The syntax of the language is described by the following
grammar using the extended Backus–Naur form (EBNF).

program = p { p };

p = instruction
| event
| function
| type

;

instruction = expr ";"
| assignment ";"
| declaration ";"
| control_flow
| return ";"

;

event = ("when" | "while" | "once") "(" expr ")" "do" block;

function = "function" identifier "(" params ")" block;

expr = text
| number
| boolean
| identifier { "." identifier } ["(" args ")"]
| expr ("+" | "-") expr
| expr ("*" | "/") expr
| expr ("and" | "or") expr
| "not" expr
| expr ("greater" | "lower" | "equals") expr
| "(" expr ")"

;

assignment = identifier "=" expr;

14

declaration = "let" identifier ["=" expr];

control_flow =
"if" "(" expr ")" "then" block ["else" block]

| "repeat" "(" expr ")" block
| "forever" block

;

return = "return" expr;

block = "{" { instruction } "}";

args = [expr { "," expr }];

params = [identifier { "," identifier }];

identifier = letter { letter | digit | "_" };

text = (’"’ { all_characters - ’"’ } ’"’ | "’" {
all_characters - "’" } "’");

number = ["-"] positive_integer ["." positive_integer];

boolean = "true" | "false";

lowercase_letter = "a" | "b" | "c" | "d" | "e" | "f" | "g"
| "h" | "i" | "j" | "k" | "l" | "m" | "n"
| "o" | "p" | "q" | "r" | "s" | "t" | "u"
| "v" | "w" | "x" | "y" | "z" ;

uppercase_letter = "A" | "B" | "C" | "D" | "E" | "F" | "G"
| "H" | "I" | "J" | "K" | "L" | "M" | "N"
| "O" | "P" | "Q" | "R" | "S" | "T" | "U"
| "V" | "W" | "X" | "Y" | "Z" ;

letter = lowercase_letter | uppercase_letter;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"
| "9";

positive_integer = digit { digit };

15

all_characters = ? all visible characters ? ;

Listing 2.2: Language syntax in EBNF form

2.2.3 Semantics

2.2.3.1 Instructions

An instruction can have four di�erent semantic goals. It can be an expression,
an assignment, a variable declaration or a control �ow statement. Except for
control �ow, an instruction is always ended with a semicolon.

Expression An expression is either a number, text or boolean value, a prop-
erty access, a method call or an operation. Built-in types and the language type
system are discussed in section 2.2.4.

Assignment An assignment assigns the evaluation value of the right hand
side expression to the variable identi�ed by the left hand side identi�er. The
type of the expression does not need to match the type of the variable. If they
don’t match, the type of the variable will dynamically change.

Declaration A variable is declared with the keyword let and the variable
name should be unique. A declaration can be combined with an assignment in
which case it forms an initialization.

Control �ow Control �ow statements modi�es the order in which the in-
struction are executed. There are 5 control �ow statements; 2 conditional
branches: if-then and if-then-else, and 3 loop control: repeat, repeat_until and
forever. repeat condition should evaluate to a positive integer number value
and the loop body is executed accordingly to that value. repeat_until condition
should evaluate to a boolean value and the loop body is executed while the
condition is true.

2.2.3.2 Events

An event is composed of two parts: the condition and the action; and can be of
3 types: when, while and once.

16

The condition is an expression continuously evaluated and its value deter-
mine whether the action is triggered or not depending on the event type. The
action is a block of instructions that are executed sequentially when triggered.

when An event of type when is triggered when the value of its condition
switch from false to true. The action is only executed once while it is true and
can’t be triggered again before the condition value switches back to false.

while An event of type while continuously executes the action code when
its condition is true.

once An event of type once behaves like a when event but the condition is
never evaluated again after the �rst time the event is triggered.

2.2.3.3 Function

Functions de�nition is similar to JavaScript. Once a function is de�ned, it can
be called anywhere in the code.
Functions de�nition are only introduced at the intermediate level of di�culty.

2.2.4 Type system

The language is composed of 3 built-in types: text, number and boolean. The
text type strictly correspond to strings in JavaScript. Number types also strictly
correspond to the numbers in JavaScript, they can be positive, negative, integer
or decimal numbers. The boolean type can only take two values: true or false.

Types are not statically de�ned at variable declaration but inferred from the
assigned value. As JavaScript, the language uses coercion to deal with values
whose type doesn’t �t the expecting type of an operation. This means it will
implicitly cast the value to the correct type.

2.2.5 Core library

The application language comes with a standard library that includes global
variables and prede�ned sprite types. This section draws up the list of these
objects and describes their role. The complete library documentation can be
found in the Documentation section of the application.

17

2.2.5.1 Globals

Game This object provide game con�guration functions to resize, pause, re-
sume the running game. It also handles background manipulation and provides
function to create and add sprites to the game stage.

Keyboard This object monitors keyboard inputs and handles key press events.
Each of its properties corresponds to a keyboard key and each key is composed
of two boolean properties: isDown and isUp that expresses to the current key
state.

Mouse This object monitors mouse left click and cursor position. Works also
with any other pointer device.

Math This object has properties and methods for mathematical constants
and functions.

Time Provides static properties for di�erent unit of time, namely: a quarter
of a second, half a second, a second and a minute. Also provides the wait
method that allows to wait a delay before executing a function. The delay to
wait and the function to execute are both given in parameters.

Direction Provides static properties corresponding to 8 angle orientation:
up, down, left, right, north-east, north-west, south-east, south-west. This eases
motion methods manipulation by abstracting the arbitrary angle values corre-
sponding to these directions.

Color The object contains a set of 140 static �elds corresponding to the 140
color names supported by all browsers.

2.2.5.2 Sprite types

This section explains the purpose of exposing prede�ned sprite types in the
core library a describes the most important ones. The list of currently imple-
mented sprite types is drawn up in Appendix ??. This list does not mean to be
exhaustive and is intended to be extended.
A sprite type de�nes a sprite with prede�ned logic adapted for a particular
game role. It provides con�gurable properties, high-level methods to perform
actions related to its role; and read-only boolean variables whose values be-
comes true on particular event. Those variables will be called event variables
in the rest of the text.

18

Sprite This is the basic sprite type that de�nes properties and methods shared
by every sprite type. When the user creates a new sprite type, it can use those
properties and �elds to implement its custom logic.

Hero This is the most advanced implementation of a sprite type. It de�nes
a controllable sprite for platform games. A hero is subject to gravity and the
player can control its movements with the arrow keys; it can jump and move to
the left and to the right. It automatically collides with instances of sprite type
Platform and can jump only if touching one. Its properties allows to change its
motion speed, the force with which it jumps and the gravity force applied to
him. It can equip a Weapon and shoot bullets with its �re() method.

Platform A platform is not subject to gravity and don’t move on collision.
It aims at holding sprites of type Hero or Enemy.

Object Sprites of Object type contains a collected event variable that evalu-
ates to true when the object overlaps with a controllable sprite type.

Weapon A Weapon is a particular type of sprite, it is not visible on the board
but can be equipped by compatible sprite types. Once equipped it de�nes the
bullets appearance and properties of the weapon. �reRate, bulletSpeed and �re-
Angle are con�gurable properties.

19

Chapter 3

Application architecture and
technologies

This chapter discusses the architecture details.
As the created games are conceived to be run in the browser, the application is
developed as a web application. This allows to directly test and play the game
while it is on development, without having to set up a local server and switch
between a desktop application and the browser.

3.1 Languages and frameworks

In this section, the web technologies used to develop the application are de-
scribed and the choices are justi�ed.

3.1.1 Client side

3.1.1.1 Aurelia

Considering the importance of the front-end in this application, choosing a
complete JavaScript client framework appeared to be relevant.
Aurelia[3] is a descendant of the popular AngularJS framework but o�ers some
advantages. The key advantage is that Aurelia is unobtrusive; after con�gu-
ration, developing a web application in Aurelia is basically writing in normal
JavaScript and the templates look like absolutely sane HTML. It shortens the
learning curve and is a bene�t for maintenance. Moreover, Aurelia is more
standard compliant than Angular.

20

Aurelia supports the last versions of javascript: ES5, ES 2015, ES 2016 and
also supports TypeScript. Aurelia takes care of the transpilation and poly�lls
so the application can run on today’s browsers.

Development in Aurelia is based on the Model - View - View-Model design
pattern. User interface elements are composed of an HTML view and a JavaScript
view-model. The view is rendered into the DOM and the view-model provides
data and behavior logic to the view. Aurelia’s powerful data-binding automat-
ically synchronizes them together, allowing changes in the data to be re�ected
in the view and vice versa.
The Aurelia templating system lets the developer create custom HTML ele-
ments, custom attributes and control template generation with conditional or
repeated DOM element creation.

Aurelia is used along with JSPM package manager and its associated Sys-
temJS module loader. Those two tools make it really simple to install and im-
port any JavaScript library from registries such as npm and GitHub. JSPM
handles libraries dependency problems transparently to the developer.

Such technologies allow a highly modular JavaScript development with cre-
ation of components and services that can be reused and injected into each
other. This results in a safer development process and helps to produce a more
maintainable code.

3.1.1.2 TypeScript

Typescript[4] is a superset of JavaScript designed to improve and secure the
production of JavaScript code. Typescript adds an optional static typing to
JavaScript and provides additional language features such as interfaces and
classes. It gives access to traditional object-oriented programming with Java-
like class inheritance, access level modi�ers on class members, decorators, and
much more.
TypeScript supports the EcmaScript 6 speci�cation that comes with many use-
ful features such as block-scoped variables without hoisting, arrow functions
and a more intuitive handling of current object context. This results in a cleaner
and safer code production.

TypeScript supports de�nition �les (.d.ts) that contains type de�nition of
existing libraries written in vanilla JavaScript. This enables the use of values
de�ned in the �les as if they were statically typed, easing and securing the
development when using external libraries.

21

3.1.1.3 Bootstrap

Bootstrap helps the design of the user interface and makes it responsive, it also
provides useful JavaScript components.
In addition to the bootstrap classes, a traditional Cascading Style Sheet for
custom styling is used. Some style rules are also directly de�ned in HTML
tags’ attributes in the views.

3.1.1.4 Gulp

During development, automated tasks are executed by the Gulp task manager.
Gulp manages the build of the application and prepares client �les for pro-
duction. It executes the following tasks: transpile TypeScript into JavaScript,
minify HTML and JavaScript, generate documentation from JsDoc and bundle
the �les.

3.1.1.5 Visual Studio Code

Visual Studio Code is a free powerful and lightweight code editor particularly
adapted for the used technologies. It provides smart code completions with In-
telliSense and is compatible with TypeScript de�nition �les. VS Code includes
enriched built-in support for Node.js development with JavaScript and Type-
Script. It comes with a large set of extensions that enhance code production
and ease web development.

3.1.1.6 Fabric.js

Fabric.js[5] is a powerful and simple Javascript HTML5 canvas library. It is
used to implements the board initializer preview by adding and manipulating
images on the canvas.

3.1.1.7 Ace editor

Ace[6] is an embeddable code editor written in JavaScript. It comes with a set
of useful features: syntax highlighting creation, automatic indent and outdent,
code completion,...

3.1.1.8 Phaser

The game engine was probably the most important choice in the architecture
as it guides the way the application language and the core library are imple-

22

mented. Phaser is ranked 8th in the "Best 2D games engine" and is the �rst
framework of the list using JavaScript [pha].

Phaser[7] is an open source framework for creating 2D browser games in
JavaScript. It uses both canvas and WebGL renderer internally by means of
the Pixi.js library. Phaser is a full-�edged game engine, it handles many fea-
tures beyond rendering such as physics, inputs (keyboard, mouse), camera
scrolling, collision, state management, spritesheets and animations, game loop,
and more.

Phaser is shipped with support for 3 di�erent physics systems: Arcade, Ninja
annd P2.

Arcade Arcade Physics is for high-speed AABB collision only; it means the
sprite hitboxes are non rotatable rectangles. This is cheap and fast to com-
pute, but AABB doesn’t guarantee that there really is a collision as it may be a
completely transparent area overlapping.

Ninja Ninja Physics allows for complex tiles and slopes and handles rota-
tions. This is a more �exible and accurate physics model but it’s probably
slower. Ninja physics has however a bigger �aw, it does not implement some
basic features that can be found in the arcade physics.

P2 P2 is a full-body physics system, with constraints, springs, polygon sup-
port and more. It is allows real collision detection but require to de�ne the
polygon hitbox. As the application sprite creation is automated with the board
initializer, complex polygon hitbox is not relevant as it would require to add a
complex feature to de�ne it. Moreover, constraints and springs physics might
be super�uous for beginner.
From the above re�exion, the arcade physics has been chosen as the physics
that runs the application core library.

Phaser handles events and event dispatching through its Signal manager. It
provides methods to listen to signals by binding callback to it. Phaser sprites
comes with a lot of prede�ned handy signals but the Signal manager also allows
to create its own signals and dispatch them when desired. The Phaser Signal
system is at the core of the application events management.

23

3.1.2 Server side

3.1.2.1 Node.js

The overall application development is based on the asynchronous and event-
driven JavaScript runtime environment Node.js[8]. Node contains a built-in
library to create http server and is served with a handy package manager NPM
that provides easy installation of dependencies.
Node.js also provides the advantage to use JavaScript on server-side; this allows
the web application development to unify around the same programming lan-
guage, rather than rely on a di�erent language for writing server side scripts.

3.1.2.2 Express.js

The Express.js[9] framework is used to create the web server based on Node.
Express handles client requests with its routing system. It both serves client-
side �les and exposes the server RESTful API.

3.1.2.3 MongoDB

Application data are stored on a MongoDB[10] server. MongoDB is a cross-
platform document-oriented database management system. It is classi�ed as
NoSQL database program and uses JSON-like documents to store data.

The Mongoose module is used to manipulate the database. It uses schemas
to model data that allows to de�ne types and structure data as if it was using
SQL tables. Mongoose also handles database connections and data insertions
with data validation and provides a useful query builder.

3.1.2.4 Jison

Jison[11] is a JavaScript parser generator. It is based on the parser generator
Bison and includes its own lexical analyzer modeled after Flex.
The grammar is de�ned in a .jison �le with a syntax similar to the one used
with Bison.

3.2 Front-end

This section presents the main components of the application front-end.
Figure 3.1 presents the client directory structure.

24

Figure 3.1: Client directory structure

The following list explains the role of each subdirectory:

• assets: media contains the client images used for the UI design, lo-
cales regroups the localization �les for i18n, doc contains the generated
documentation in JSON format and styles includes all the custom style
sheets.

• build: contains all the gulp tasks that automates development and de-
ployment

• dist: contains the transpiled source for testing the application under de-
velopment

• export: contains the bundled and mini�ed transpiled source with the
dependencies ready for deployment

• jspm_packages: contains the source of the installed dependencies

• src: contains the actual application source code

• typings: contains the typescript declaration �les of the imported li-
braries

Figure 3.2 presents the client directory structure.

25

Figure 3.2: Source directory structure

The following list explains the role of each subdirectory:

• api: contains the application core library �les; de�nition of global vari-
ables and prede�ned sprite types.

• components: common application components, such as game-container,
language-switcher,...

• pages: implementation of the routed pages

• services: singleton service classes such as backend-service for back-
end REST requests, board-canvas for Fabric.js canvas manipulation, and
more.

• utils: contains reusable and con�gurable custom HTML elements and
value converters; interfaces.ts contains typescript interfaces of important
object, interfaces role is to enable "duck typing" during development

3.3 Back-end

This section presents the main components of the application back-end.
Figure 3.3 presents the server directory structure.

26

Figure 3.3: Server directory structure

The following list explains the role of each subdirectory:

• api: contains �les related to the management of the RESTful API routes;
api.js exposes the API,img-gallery.js andtranspiler.js han-
dle the requests for image fetching and code transpilation and construct
the resulting json responses

• node_modules: contains the installed dependencies sources

• public: contains the sprite images and spritesheets

• utils: contains services; db contains database utility functions andparser
contains scripts that handle the parser generation and provides utility
functions to transpile code

27

Chapter 4

Implementation

This chapter discusses the application implementation details.

4.1 Front-end

4.1.1 Board initializer

The board initializer view implements navigation tabs to arrange initialization
tools by category. Tabs separate the categories in di�erent panes and each pane
is viewable one at a time.
There are two categories: Background and Dimensions and Sprites.
From the �rst pane, game size can be modi�ed and a background can be se-
lected from a background gallery. The user can also select a type for the back-
ground among 3 possibilities: Fixed, Camera and Scrollable.

A �xed background scales to �t the game size and has no particular features.
With a camera background, only a portion of the game board is visible at any
time. This portion is de�ned by the camera size and position. The camera
can move around the game stage and can be set to focus or follow a particular
sprite.
A scrollable background transforms itself into a repeating texture that can be
scroll in any direction. The scrolling speed can also be controlled.
Sprites creation and management are discussed in the next section.

4.1.1.1 Sprite list

The sprites tab implements the tools to create and manage sprites. As it re-
quires a lot of logic, this is implemented in a separated component: sprite-list.

28

This component consists on a button for adding sprite to the list and to the
board preview. Clicking that button pops up an image gallery from where the
user can select the image he wants to use for its sprite. A sprite can be selected
either from the board preview or from the list. An example of a sprite list is
shown in Figure 4.1

Figure 4.1: Sprite list example

When a sprite is selected, some action can be applied to the sprite and its in-
formation the displayed.
The sprite can be removed from the board preview and the list by pressing the
Delete Sprite button.
An editable input is �lled with a default name for the sprite, this will be used to
name the variable corresponding to that sprite in the code. That name has to
ful�ll some variable naming convention, it has to start with a lower letter, can’t
contain special character except underscore, must not be empty and should be
unique among all the sprites.
The plugin aurelia-validation is used to control that sprite names conform to
those conditions. It detects errors and noti�es them to the user in real time
while he is editing the sprite name. The validator uses regular expression to
control these requirements.
Figure 4.2 illustrates bad name validation errors and Listing 4.1 shows the val-
idation plugin implementation.

29

Figure 4.2: Bad name validation error

1 ValidationRules.ensure(’name’)
2 .required().withMessage(’board-init.errorReq’)
3 .matches(/∧[a-z].*$/).withMessage(’board-init.errorLow’)
4 .matches(/∧\w*$/).withMessage(’board-init.errorSpec’)
5 .satisfies((name: string, data: any) => {
6 return this.sprites.map(sprite => {
7 if (sprite !== newSprite)
8 return sprite.data.name;
9 }).indexOf(name) == -1;

10 }).withMessage(’board-init.errorUniq’)
11 .on(data);

Listing 4.1: Sprite name validation

The sprite information pane contains several tabs below the name input and
delete button.
Type tab allows for picking the sprite type; it also also describes the currently
selected type and exposes its properties and methods.
Properties tabs lists the sprite position, dimension and orientation properties.
Options tab sets allows to change default value of the sprite properties.
Costumes tab allows to pick a default costume to use when the game starts. This
tab is only enabled for spritesheets. Such sprite, containing multiple costume,
is identi�able by a play icon in the top right corner of its miniature.

4.1.1.2 Image gallery

The Aurelia dialog-service plugin is used to implement the di�erent image gal-
leries. The dialog service supports the use of dynamic content by calling cus-
tom view/view-model pair to construct the dialog and passing to it data from
the parent view-model.

30

Both background and sprite image gallery use the same view/view-model pair:
image-gallery. Depending on the model passed to image-gallery, it will query
the database with di�erent requests.
For the background gallery, this results in a set of background images while the
sprite gallery is composed of several set of sprite images gathered in collapsible
panels. Figure 4.3 shows the sprite gallery.

Figure 4.3: Sprite gallery

To pick an image from the gallery, the user has the possibility to double click
on the desired item or to select it and then press the Ok button. In both cases,
it triggers a callback with a response parameter containing the selected im-
age information. This callback is then responsible for the image manipulation.
Listing 4.2 illustrates the dialog service use.

1 private openBackgroundGallery() {
2 let model = {
3 title: ’board-init.bgnd-gallery-title’,
4 sections: [{name: ’img-gallery.background’, tag: ’Backgrounds’}]
5 }
6 this.dialogService.open({ viewModel: ImageGallery, model: model })
7 .whenClosed(response => {

31

8 if (!response.wasCancelled && response.output != undefined) {
9 this.board.setBackground(response.output);

10 this.background = response.output;
11 }
12 });
13 }

Listing 4.2: Dialog service used for background gallery

4.1.1.3 Board preview

The board preview is implemented in the BoardCanvas class as a service. The
class inherits from fabric.Canvas and initializes a fabric instance on the canvas
element with id "board". BoardCanvas implements high-level public methods
to perform canvas manipulation: resize canvas, add a background, add sprite
or spritesheet, remove object,...
Adding an object to the canvas automatically places it in the center and selects
it. Selection of an object enables border controls for resize and rotation.
Figure 4.4 shows a selected sprite with border controls on the board preview.

Figure 4.4: Board preview sprite manipulation

32

4.1.1.4 Board saving

In order to generate code from the board initialization, the user have to save
the current state of the board by clicking on the Save Board button.
Saving the board gathers all information from the board initialization and use
the Aurelia Event Aggregator to pass it in a message to the code editor.
The signature of the exchanged message is de�ned in the service �lemessages.ts
by the BoardInfo class. It contains the game dimensions, the background infor-
mation and an array of SpriteInfo objects containing sprite information.

4.1.2 Code editor

The ace editor module gives editors con�guration possibilities such as inden-
tation size, editor theme and syntax highlighting.

4.1.2.1 Code initialization generation

The Editor class subscribes to BoardInfo messages and de�nes a callback to
execute when the event is triggered.
The board information is parsed using the BoardInfoParser service and corre-
sponding code is generated. The BoardInfoParser generates two types of code
from the board information.
The �rst one is directly Phaser code corresponding to the loading of sprite im-
ages and spritesheets. This code is not exposed to the user. The parser prevent
image loading duplication by maintaining a list of key during the process. The
resulting code is stored in a string and will be called in the preload() function
of the game.
The second generated code consists of sprite creation and initialization. This
code uses the application library and is inserted to the Creation editor. This
code is set in readonly mode to prevent the user to induce incoherence be-
tween the code and the board initializer. However, the user can add more code
initialization in the Creation editor below the generated code.

4.1.2.2 Code execution

The user can execute its code and see the results by clicking the Run code but-
ton. When he does so, if the application language was not set to english, its
code is translated in english. The code translator is implemented using regu-
lar expressions generated from the map of keywords, variables and methods
translations.

33

The resulting code is sent to the server to be properly parsed and transpiled.
Server transpilation is explained in section 4.2.4.
The result of the transpilation contains instructions and function de�nitions
and event information. The event information is processed to be transformed
in phaser code. The resulting codes are surrounded by a try...catch clause in
order to handle runtime errors.
Once code generation is complete, it is sent to the game-container component
via CodeUpdate to launch the game.

4.1.2.3 Event precessing

The events are implemented using Phaser signals. For each event a new signal
is created. The signal creation takes a callback that is triggered when the signal
is dispatched, the callback contains the event action code.
The event condition is tested in the game loop and the event is dispatched
whenever the condition evaluates to true. In order to implement the when
event type, the signal is set inactive as soon as it is dispatched and get back to
active only when the condition evaluates to false. This allows to execute the
action code only once each time the event occurs.

4.1.3 Game container

The game container component subscribes to CodeUpdate messages. This mes-
sage contains the generated phaser code from the code editor.
It contains 3 strings corresponding to the 3 phaser methods required to run a
game: preload(), create() and update(). A new Game instance is created upon
reception of a CodeUpdate message.

Game extends the Phaser.Game class and creates the actual phaser game in-
stance. The 3 code strings are passed to the constructor of the Game class and
are transformed into function via the JavaScript Function method. The global
variables of the core library are passed to those function so they are in the same
scope of the generated code. To actually launch the game, those functions are
passed to an instance of the Chapter class that inherits from Phaser.State. The
chapter is �nally started and the game is launched and ready to be played.

4.1.4 Core library

The core library implements an abstraction of the Phaser framework. Some
Phaser features are simpli�ed, others are combined to implement new func-

34

tionalities and the remaining is not exposed. Some library functionalities, par-
ticularly some sprite methods, are inspired from the Scratch block instructions.

4.1.4.1 Phaser functionalities

This sections explains how to use some Phaser features in order to help under-
standing the core library implementation.

State A Phaser game is composed of states. Each state implements 3 funda-
mental functions: preload(), create and update().
The preload method contains the assets loading. It associates an image or
spritesheet to a key that can be used to create a sprite object later.
The create function is where the sprite are created and placed on the board.
Sprite properties can be initialized and a physics system can be instantiated.
The update function implements the game loop. It is called 60 times per seconds
and all the game logic is implemented there.

Collision Phaser arcade physics does not provide a way to set collision in
the create() function. Collision between two sprites has to be checked at each
game loop iteration in the update() function with the Physics.Arcade.collide()
function. Both sprites are passed as parameters to the function and an op-
tional function callback can be passed as third parameter. This callback has
two parameters corresponding to the two sprites, and is executed when the
collision happens.

4.1.4.2 Sprite types

The prede�ned sprite types are classes that inherit from the Phaser.Sprite class.
The sprite types implements high-level methods by manipulating parent class
function and properties. They also overrides the Phaser.Sprite update() func-
tion, the logic implemented in this function is automatically added to the global
game loop.
The collision management of sprite types is also managed in the overridden
update function. Listing 4.3 shows the implementation of automatic collision
between Hero and Platform sprites. At each game loop, the Hero-type sprite
traverses all the sprites present in the game and checks their type. If it en-
counters a Platform-type sprite, it then calls the collision function. The code in
Listing 4.3 also shows how an event variable automatically sets to true when an
event occurs. All the event variables are always reset to false at the beginning
of the update function.

35

1 // Set collision with platforms
2 let children = this.game.world.children;
3 for (let i = 0; i < children.length; i++) {
4 let child = children[i];
5 if (child instanceof Platform) {
6 this.game.physics.arcade.collide(this, child);
7 }
8 // Notify when touch enemy
9 if (child instanceof Enemy) {

10 this.game.physics.arcade.overlap(this, child, () =>
this.touchEnemy = true);

11 }
12 }

Listing 4.3: Sprite type collision and event variables

4.1.5 Other features

4.1.5.1 Internationalization

Aurelia provides a plugin for internationalization support: aurelia-i18n. The
plugin is con�gured in main.ts.
English is set to be the default and fallback language, this means the applica-
tion starts in English and if a translation is missing in a language, the English
translation is used instead.
The current available languages are English and French.

One JSON �le is associated to each language and contains the key-value
pairs for translation. Every translatable value is represented by its key and its
translation is automatically updated from the view by applying the translation
binding behavior.

The user can change the current application language at any time using the
language-switcher located in the nav-bar. The language switcher implemen-
tation is based on the Bootstrap select-picker component and triggers a signal
in the whole application when a di�erent language is selected. The language-
switcher is shown in Figure 4.5.

36

Figure 4.5: Language switcher

4.1.5.2 Documentation

The documentation generation is automated from the source code. Each global
and sprite type properties and methods are documented in the source with
JSDoc comments.
On application build, a gulp task reads the JSDoc in the typescript source �les.
This task is composed of two steps. The �rst step is a slightly modi�ed version
of the comment-parser module. For each multi-line comment, it reads the in-
formation of each tag and the global comment description. The result of this
step is stored in a JSON object. The second step consists in parsing this JSON
object and interpret the meaning of each tag to create a meaningful object de-
scribing each global and sprite type. This structured object is then injected in
model-views that require to display documentation.

4.2 Back-end

4.2.1 Server creation and database connection

The server is launched by executing the server.js script with Node.js. This script
instantiates an Express application, con�gures the Express middleware func-
tions, connects to the database and then creates the server.

4.2.2 Routing

Client �les are served by an Express application from the export folder in
case of application deployment and from the dist folder during development.
Image �les contained in the public folder are also served by Express as static
�les.

The RESTful API is exposed by the means of an Express Router instance
that creates a modular and mountable route handler. This Router is mounted

37

during the Express middleware con�guration at server start-up and provides
the 3 following URLs:

• /api/img-gallery - GET - List the di�erent gallery categories names

• /api/img-gallery/:id - GET - Fetch the information of all images of the
category id

• /api/transpiler - POST - Transpile the code given in the post body

4.2.3 Image storage

The server stores the images �les used for sprite creation and background in-
stantiation in its �lesystem in .png or .jpg format. They are stored in the public
directory and sorted by category in di�erent subfolders.
In order to download the images, the client needs to be informed of their loca-
tion on the server. This information is available in the database in the imggal-
leries collection.
The database is populated with the images information at server start-up; once
the connection to the database is established, a procedure reads the server pub-
lic directory and inserts for each images found its information in the collection.
An image is described in the database by a unique name and its url location. In
the case of a spritesheet image, it also contains spritesheet information required
to access the individual sprites separately. Image information are stored in the
imggalleries collection by category, each entry of the collection consists of the
category name and an array of images information.
The schema of an imaggalleries entry is given in Listing 4.4 using Mongoose
schema de�nitions of the �le utils/db/schema.js.

1 var mongoose = require(’mongoose’);
2
3 var imageSchema = mongoose.Schema({
4 name: String,
5 url: String,
6 spritesheet: {
7 type: {
8 sheetUrl: String,
9 spriteWidth: Number,

10 spriteHeight: Number,
11 horizontalNbr: Number,
12 verticalNbr: Number,
13 spriteNbr: Number,

38

14 defaultSpriteNo: Number
15 },
16 default: null
17 }
18 });
19
20 var imgGallerySchema = mongoose.Schema({
21 sectionName: String,
22 images: [imageSchema]
23 });
24 exports.ImgGallery = mongoose.model(’ImgGallery’, imgGallerySchema);

Listing 4.4: Typed declaration syntax suggestion

A spritesheet holds two di�erent URLs, one is pointing to an individual image
representing its default sprite, that is used for spritesheet miniature and the
sheetUrl is pointing to the actual sheet containing the di�erent sprites.

4.2.4 Transpiler

The grammar syntax is implemented in BNF form in a .jison �le. When the
server API receives a request for the transpiler, the code in the POST method
body is parsed by the generated parser. The result of the transpilation is an
object containing 4 �elds. The �rst one is a string containing the instructions
transpiled JavaScript. The second one is an array of event information. An
event is described by 3 strings: its type, the expression of its condition and the
instruction of its body. The last two �elds are arrays containing the functions
and types information.

39

Chapter 5

Conclusion

5.1 Main achievements

The contribution of this work o�ers a new approach to teach programming. It
proposes a textual programming language intended to develop 2D games that
run in the browser and graphical tools to handle game initialization.
The graphical tools, reduce the amount of tedious tasks required to make a
deployable game.

The language is event-driven and allows to de�ne intuitive event handlers.
The user game logic thus no longer resides in a in�nite loop as in traditional
game development process.
It also exposes a core library that provides high-level types giving the oppor-
tunity to develop functioning game with relatively straightforward logic.
The language is evolutive and introduces more programming concepts as the
level of di�culty increases. The library also implements di�erent level of ab-
straction that allows the user to choose the trade-o� between programming
ease and game conception freedom.

5.2 Improvements & future works

The application at its current state does not pretend to be complete. Many
more features can be added to the existing tools and the existing ones could be
subject to improvements.
This section describes features that could be added or improved in a future
work and explain some of the current application defects.

40

5.2.1 Type system

The language type system could be improved by providing typed declaration.
This would allow for static type checking and result in more secure variable
assignments and parameters passing in methods calls.
An example of a possible syntax for type declaration is given in Listing 5.1.

1 let bar: number = 42;
2
3 function foo(arg1: text, arg2: boolean) {
4 return arg1 + arg2;
5 }

Listing 5.1: Typed declaration syntax suggestion

5.2.2 Core library

As already discussed, the sprite types set does not pretend to be exhaustive and
many more types could be de�ned in the library.
The current work behind the prede�ned sprite type implementation is to �nd
reusable solution to abstract phaser logic in prede�ned classes. The concept
implemented in the existing types, such as collision detection and event vari-
ables, might be exploited to de�ne more sprite types.

Global variables can also be improved in a future work. For instance, the
Mouse global could also handle the middle and right mouse buttons.
A Debug global variable could be introduced to provide code debugging func-
tionalities.

5.2.3 Language features

5.2.3.1 Control �ow

The language de�nes a reduced set of control �ow statements with the in-
tention of not overwhelming the beginner with too many syntax features to
learn. However, the set of statements could be progressively extended as the
user change the di�culty level.
Useful control �ow statements that are not currently included in the language
are break, continue, while-loop and switch-case.

41

5.2.3.2 Sprite type de�nition

Although presented in previous sections, the sprite type de�nition has been
removed from the current version of the application as it was not working
properly. A further re�ection on the design and the implementation of this
functionality is required in order to make it fully functional.

5.2.4 Editors autocomplete

The current code completion only predicts language keywords and local vari-
ables. Autocomplete should be based on the manipulated variable type and
provide the set of its properties and method in order for it to become opera-
tionally meaningful.

A powerful tool to achieve this behavior has been considered during the ap-
plication development. This tool is Tern.js, a stand-alone code-analysis engine
for JavaScript. It provides many functionalities including autocompletion on
variables and properties and function argument hints.
Unfortunately, the tern plugin for Ace editor is still in development and in-
cludes some issues. At the time of this work redaction, it was to complicated
to be implemented.

A solution would be to change the text editors used in the application and
for instance opt for Code Mirror whose tern plugin is more functional but still
sparsely documented.

5.3 Current deployment and source code

The application is currently deployed on EvenNode, a Node.js web hosting
platform, and is accessible at the following URL:
http://codeyourgames.eu-4.evennode.com.

The source code can be browsed at the following GitHub repository:
https://github.com/sChupin/codeyourgames.git

42

http://codeyourgames.eu-4.evennode.com
https://github.com/sChupin/codeyourgames.git

Appendix A

Application screenshots

Figure A.1: Board initializer sprites list (left part)

43

Figure A.2: Board initializer sprites list (right part)

44

Figure A.3: Code edition - Creation editor

45

Figure A.4: Code edition - Events editor

Figure A.5: Running game

46

Appendix B

Web resources

[1] Scratch https://scratch.mit.edu

[2] CodeCombat https://codecombat.com

[3] Aurelia http://aurelia.io

[4] TypeScript https://www.typescriptlang.org

[5] Fabric.js http://fabricjs.com

[6] Ace https://ace.c9.io

[7] Phaser https://phaser.io

[8] Node.js https://nodejs.org/

[9] Express.js http://expressjs.com

[10] MongoDB https://www.mongodb.com

[11] Jison https://zaa.ch/jison/

47

https://scratch.mit.edu
https://codecombat.com
http://aurelia.io
https://www.typescriptlang.org
http://fabricjs.com
https://ace.c9.io
https://phaser.io
https://nodejs.org/
http://expressjs.com
https://www.mongodb.com
https://zaa.ch/jison/

List of Figures

3.1 Client directory structure . 25
3.2 Source directory structure . 26
3.3 Server directory structure . 27

4.1 Sprite list example . 29
4.2 Bad name validation error . 30
4.3 Sprite gallery . 31
4.4 Board preview sprite manipulation 32
4.5 Language switcher . 37

A.1 Board initializer sprites list (left part) 43
A.2 Board initializer sprites list (right part) 44
A.3 Code edition - Creation editor 45
A.4 Code edition - Events editor 46
A.5 Running game . 46

48

List of Listings

2.1 Language keywords . 13
2.2 Language syntax in EBNF form 14
4.1 Sprite name validation . 30
4.2 Dialog service used for background gallery 31
4.3 Sprite type collision and event variables 36
4.4 Typed declaration syntax suggestion 38
5.1 Typed declaration syntax suggestion 41

49

Bibliography

[Alb15] Brie Albert. Infographic: How game-based learning can sup-
port strong mathematical practices. MIND Research Institue
Blog, 2015. http://blog.mindresearch.org/blog/
game-based-learning-infographic-strong-math-practices.

[Cam16] Billy Camden. Gaming is "good for children’s brains", study
suggests. Schools Week, 2016. http://schoolsweek.co.uk/
gaming-is-good-for-childrens-brains-study-suggests/.

[Cha16] Yannick Chavanne. Tendances 2017: Pénurie promise
de spécialistes it. ICT journal, December 2016. http:
//www.ictjournal.ch/articles/2016-12-07/
tendances-2017-penurie-promise-de-specialistes-it.

[dS13] Académie des Sciences. L’enseignement de l’informatique en france,
il est urgent de ne plus attendre. Technical report, Académie des
Sciences, 2013. http://www.academie-sciences.fr/pdf/
rapport/rads_0513.pdf.

[NJ13] Julie Henry Noémie Joris. L’enseignement de l’informatique en
belgique francophone : état des lieux. In Drot-Delange, B. ;
Baron, G-L. & Bruillard, E. Sciences et technologies de l’information
et de la communication (STIC) en milieu éducatif, 2013, Clermont-
Ferrand, France., 2013. <edutice-00875646v1>https://edutice.
archives-ouvertes.fr/edutice-00875646v1/document.

[pha] 100 best 2d game engines as of 2017. https://www.slant.co/
topics/341/~best-2d-game-engines. Accessed: 2017-08-05.

[SE16] Classes moyennes et Energie SPF Economie, P.M.E. Baromètre
de la société de l’information. Technical report, SPF
Economie, P.M.E., Classes moyennes et Energie, 2016. http:
//economie.fgov.be/fr/binaries/Barometre_de_la_
societe_de_l_information_2016_tcm326-278973.pdf.

50

http://blog.mindresearch.org/blog/game-based-learning-infographic-strong-math-practices
http://blog.mindresearch.org/blog/game-based-learning-infographic-strong-math-practices
http://schoolsweek.co.uk/gaming-is-good-for-childrens-brains-study-suggests/
http://schoolsweek.co.uk/gaming-is-good-for-childrens-brains-study-suggests/
http://www.ictjournal.ch/articles/2016-12-07/tendances-2017-penurie-promise-de-specialistes-it
http://www.ictjournal.ch/articles/2016-12-07/tendances-2017-penurie-promise-de-specialistes-it
http://www.ictjournal.ch/articles/2016-12-07/tendances-2017-penurie-promise-de-specialistes-it
http://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf
http://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf
https://edutice.archives-ouvertes.fr/edutice-00875646v1/document
https://edutice.archives-ouvertes.fr/edutice-00875646v1/document
https://www.slant.co/topics/341/~best-2d-game-engines
https://www.slant.co/topics/341/~best-2d-game-engines
http://economie.fgov.be/fr/binaries/Barometre_de_la_societe_de_l_information_2016_tcm326-278973.pdf
http://economie.fgov.be/fr/binaries/Barometre_de_la_societe_de_l_information_2016_tcm326-278973.pdf
http://economie.fgov.be/fr/binaries/Barometre_de_la_societe_de_l_information_2016_tcm326-278973.pdf

[Smi16] Megan Smith. Computer science for all. obamawhithe-
house.com blog, 2016. https://obamawhitehouse.archives.
gov/blog/2016/01/30/computer-science-all.

[Tec16] Burning Glass Technologies. Beyond point and click. Tech-
nical report, Burning Glass Technologies, 2016. http:
//burning-glass.com/wp-content/uploads/Beyond_
Point_Click_final.pdf.

51

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
http://burning-glass.com/wp-content/uploads/Beyond_Point_Click_final.pdf
http://burning-glass.com/wp-content/uploads/Beyond_Point_Click_final.pdf
http://burning-glass.com/wp-content/uploads/Beyond_Point_Click_final.pdf

