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Abstract

Stroke, which is the second largest disability worldwide, may induce one side transient paralysis.
The rehabilitation method is a key point for minimizing the time of recovery, for increasing the
patient comfort or for decreasing the cost of stroke therapy for the society. This thesis aimed
to process the raw surface electromyography (sEMG) signal coming from the biceps to extract
useful information to trigger an actuator combined to a exoskeleton or to apply functional elec-
trical stimulation (FES) for stroke rehabilitation. Thus, the FES/actuator triggering will be
assist-as-needed.

The data acquisition was first performed using an sEMG prototype circuit. The sEMG signal
was recorded at a given sample frequency (1 kHz) and was displayed in real-time. Several kinds
of surface electrodes were tested and characterized.

Next, several muscle activity evaluations were analysed to find the most appropriated. The
sEMG signal in presence in FES was recorded. It has been shown the alteration of the stimula-
tion artifacts and the need of further analysis to remove them for providing consistent data.

Finally, interesting information such as intention, force and fatigue estimation were extracted
from the sEMG signal in real-time. Intention is the time activation of a muscle and can be used
to trigger FES or to control the actuator. Force estimation is the signal normalisation according
to a reference providing an estimation of the force exerted by the muscle. This data provides
a proportional indication for FES or the actuator. From the sEMG signal, localized muscular
fatigue was assessed. This may optimize the rehabilitation session and may also track the patient
progress. Some characteristics of sEMG signal during an elbow flexion/extension movement were
studied.
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Chapter 1
Introduction

Stroke, also named cerebral vascular accident, occurs when blood supply to some parts of brain
is insufficient. This lack of blood induces a lack of oxygen and causes injuries or death of brain
cells. Stroke is the second largest disability worldwide after demantia, one in six people will
suffer a stroke during their lives [11]. Disability may often include one side transient paralysis
(hemiplegia). To recover, patients who have survived a stroke have to follow a high number
of rehabilitation sessions. Therefore, in order to minimize the recovery time, the cost of stroke
therapy and to increase the patient comfort, it is important to develop effective rehabilitation
methods. Indeed, rehabilitation approaches using repetitive and functional tasks reduce time
needed to strength muscle and to enable daily life movements [12].

Several kinds of devices have been developed to help rehabilitate the stroke patient. The first
ones, the simple ones, are passive devices including lockable and unlockable brakes or springs
and strapping tape. The second type of devices are active devices. These ones are used to help
patients to perform movement which are impossible for them to achieve by themselves with the
use of actuator or functional electrical stimulation (FES). Active devices include exoskeletons.
Exoskeletons allow patients to mimic natural human movement. An advantage of exoskeletons
over other devices is that they offer an independent precise control of different joints. However,
their portability is limited due to their energy requirements and the actuator weight.

FES elicits muscle contraction by means of high-frequency electrical pulse. The patients muscles
are doing the work, so they do not atrophy. If an actuator does all the movement, the muscles
do not grow. However, the use of FES induces muscle fatigue and pain for some patients.

Electromyography (EMG) records the electrical activity of muscles. EMG may be used to con-
trol and/or to initiate the exoskeleton actuator or FES. Indeed, for healthy patients and for
many stroke patients as well, a movement attempt lead to muscle action potentials (MUAPs) in
muscle(s) involved. MUAPs appear slightly before the movement and are readable using elec-
trodes. Sometimes, patient have not enough strength to perform their intended movement and
exoskeleton or FES could help to achieve it with information from EMG.

Ashley Stewart, the Ph.D. student I have assisted, is developing an upper-limb hybrid assist-
as-need exoskeleton for the rehabilitation of the elbow (biceps/triceps muscles). By definition,
hybrid skeleton combines the use of FES and an electromechanical actuator to provide assistive
or resistive training. The choice of hybrid exoskeleton seems to be the most effective method for
providing continuous locomotion as well as efficient helping to perform daily activity of a patient
with paralysis [13]. Moreover, this combination enables a reduction in the overall weight of the
exoskeleton because smaller actuators can be used as the patient muscles help the movement and
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CHAPTER 1. INTRODUCTION

thus improves its portability. EMG may be monitored to assess muscle fatigue induced mainly
by FES. This feedback is useful for the physiotherapists to evaluate the patient progress and to
adapt the rehabilitation session. Other information can be extracted from the EMG signal such
as intention or force estimations. Intention means the movement intention of the user. The in-
tention is related with the activity of the muscle involved in the movement. This estimation may
be used to trigger FES or the actuator. Force estimation gives an additional information about
the size of the intended movement. Thus, this information can be used to adapt proportionally
the actuator or FES assistance. Moreover, the exoskeleton should be easy to use for allowing
at-home rehabilitation. The prototype exoskeleton is shown in Figure 1.1

Figure 1.1: Prototype upper-limb exoskeleton developed by Ashley Stewart

My goals in this project were to process the raw EMG signal coming from the EMG sensor
developed by Benjamin Fortune. Firstly, intention estimation is performed: a binary value that
indicates whether the person wants to move the muscle. Second, muscle activity estimation is
evaluated: this is provided by a normalized value representing the size of the movement which
the person wishes to perform. Normalisation requires measuring what the maximum EMG signal
is for a particular person each time the sensor is used on a different person or at the start of
a different session. Third, muscle fatigue assessment is done using the decrease of the mean
and median frequency according to time. The tasks mentioned above should be achievable in
conjunction with the use of FES on the same muscle and preferably during non-isometric con-
tractions if possible (while the arm is moving). Some keys are given to analysis the EMG signal
during simultaneous use of FES. Finally, a tentative to estimate the elbow angle using informa-
tion coming from the EMG signal is done and analysed.

Approval from the University of Canterbury Human Ethics Committee was granted for testing
the EMG sensor and the FES system.
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Chapter 2
Background

This chapter reviews, firstly, the basis of the musculo-skeletal structure and its contraction mech-
anisms including the biological process and the neuronal control. Secondly, the source of surface
electromyography signal is described. Finally, functional electrical stimulation is briefly explained.

2.1 Muscles

The human body consists of three kinds of muscles: cardiac, smooth and skeletal muscles. The
latter are responsible for producing skeletal movement. Therefore, the focus is done on the com-
prehension of skeletal muscle structure and its contraction mechanisms.

Skeletal muscles are composed of a bundle of aligned axial muscle fibers. Each muscle fiber is
a set of several myofibrils which consist of an assembly of thick and thin filaments. The thick
filament is composed of myosins whereas the thin one is made up of two strands of actins, tro-
ponin and tropomyosin. The thin and thick filaments are perfectly arranged giving the striated
appearance to the skeletal muscle. The muscle can be divided into small units called sarcomeres.
The Z-lines separate each sarcomere and these lines are clearly visible on transmission electron
microscopy (TEM). The sarcomere explains the sliding-filament model of muscle contraction.
Figure 2.1 summarizes the structure of skeletal muscles.

Sliding-filament model and biological process of muscle contraction

The sliding-filament model stipulates that the sarcormere is the unit of the contraction. A de-
tailed sarcomere schematic is summarized in Figure 2.2. In the sliding-filament model, the thick
and thin filament lengths remain constant. Indeed, the contraction is due to sliding of the two
filaments across each other. Muscle contraction can be explained based on sliding inside only
one sarcomere.

The myosin head is the main actor of the contraction. This head contains two binding sites:
actin and adenosine triphoasphate (ATP) binding sites. At rest, the myosin head is in its lower
energy configuration, i.e. link with ATP. The myosin head cannot bind to the thin filament.
During a contraction, hydrolisation of the ATP into adenosine diphosphate (ADP) and inorganic
phosphate (Pi) occurs. The hydrolisation causes the myosin head to be in its higher energy
configuration. The head is dressed up and the binding between the both filaments is now possi-
ble. Therefore, the myosin head links to the actin of the thin filament and the ADP and Pi are
released. As a result, the myosin head takes its lower initial energy configuration again and the

3



CHAPTER 2. BACKGROUND

Figure 2.1: Skeletal muscle structure [1]

Figure 2.2: Sarcormere unit including detailed thick and thin filaments [2]

thin filament is driven towards the sarcomere center. The distance between the Z-lines decreases
inducing the sarcomere contraction. The cross-bridge between both of the filaments is broken
when a new ATP links the myosin head. A new cycle can begin again.

The muscle contraction cycle is only possible if the myosin binding sites of the thin filament
are exposed. This exposition depends on regulatory proteins (tropomyosin and troponin) and
on the calcium (Ca2+) concentration in the cystosol. A muscle contraction is triggered by an
action potential sent by a motor neuron. The neuronal control will be further explained. The
action potential allows the Ca2+ release from the sarcoplasmic reticulum into the cystosol. The
Ca2+ binds to the troponin. The configuration of the tropomyosin on the actin changes allowing
the exposition of myosin binding sites: the muscle contraction occurs. When the action poten-
tial disappeared, the cytosolic Ca2+ is actively removed thanks to pumps into the sarcoplasmic
reticulum. Therefore, cytosolic Ca2+ concentration decreases, the myosin binding sites are not
accessible any more and the muscle relaxes.

4
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Neuronal control of muscular contraction

Each muscle fiber is controlled by only one motor neuron. However, a motor neuron can manage
several fibers. Therefore, the contraction of a particular muscle is controlled by many motor
neurons and these neurons may be associated with quite a few fibers. In other words, a skeletal
muscle consists of several motor units (MUs). MUs are composed of a motor neuron, its axons
and its associated fibers. Figure 2.3 illustrates this decomposition of neuronal control. The
number of muscle fibers, that means the innervation ratio, in each MU is variable. The more the
muscle performs large movement or produces large force, the higher is the innervation ratio. For
instance, the innervation ratio of the biceps brachial is approximatively 72 [3].

Figure 2.3: Two motor units : one represented in solid line and the other one in dashed line [3]

A neuron sends an action potential, called single-motor-unit action potential (SMUAP), through
its axons towards its related fibers. This action potential induces a simultaneous "all or nothing"
contraction of the overall MUs fibers. That means, the MU is the smallest unit which may be
contracted. The SMUAP waveforms are usually biphasic or triphasic, illustrated by Figure 2.4,
and last between 3 and 15 ms with a period of 6 to 30 s. Moreover, their amplitudes vary among
100 and 300 µV [3]. The summation of the SMUAPs gives the electromyography (EMG) signal.
SMUAP shape provides an amount of information concerning the diagnosis of neuromuscular
disorders [8]. The use of needle electrodes enables registration of SMUAPs.

(a) Biphasic waveform (b) Triphasic waveform

Figure 2.4: SMUAP waveforms [3]

The contraction of one fiber is brief and "all-or-nothing" type. However, the contraction force
of a specific muscle can vary. Indeed, this graduation can be done via two ways: the number of
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fibers involved (spatial recruitment) and the stimulation frequency of fibers (temporal recruit-
ment). Spatial recruitment means the contraction force increases according to the number of
MUs implicated and their size. Temporal recruitment occurs when several action potentials are
sent before the total fiber relaxation. This recruitment is illustrated by Figure 2.5. An unique
action potential provides a brief contraction. If a second action potential is sent to the fiber be-
fore its total relaxation, the contraction force increases. The force can increase until the tetanic
contraction: the fiber does not relax between the contiguous action potentials. The tetanic con-
traction is in fact a normal contraction that means a continuous contraction.

Figure 2.5: Temporal recruitment until tetanic contraction [1]

Type of contraction

A contraction can be classified into three different types which influence the EMG signal [5]:

- Isometric contraction
The muscle length remains constant during an isometric contraction. For example, it
happens when the muscle carries a load in a specific unchanging position.

- Concentric contraction
A shortening of muscle occurs during the concentric contraction. The muscle can produce a
movement, it exerts a force greater than the external resistance. The EMG signal amplitude
is lower than in isometric contraction given that some energy is lost in the shortening
processes.

- Eccentric contraction
When the external force overcomes the force exerted by the muscle, the muscle stretches
out, providing an eccentric contraction.

2.2 Electromyography Signal

The EMG signal can be recorded with needle electrodes or surface electrodes. If the EMG signal
is recorded with surface electrodes, it is called surface EMG (sEMG) signal. Surface electrodes
are preferred given that it is a non invasive method. Details concerning this subject will be de-
veloped later. However, the sEMG signal is complex. Indeed, surface electrodes register several
SMUAPs and sometimes signals from different muscles. This phenomenon is called crosstalk and
may induce some noise.
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Figure 2.6 depicts the model of the generation of sEMG signal. The motor neuron firing pattern
can be modeled as an impulse train. This activates and generates SMUAP. The summation of
the SMUAPs gives the physiological sEMG signal mp(t, F ) which is dependent on the time t and
the force produced F . This is the physiological part of the model. The second part of the model
concerns the recording instrumentation. As in all recordings, some noise n(t) is induced. The
different kinds of noises will be further explained. In order to attenuate these noise components,
electrode and recording equipments have specific characteristics and perform some treatments
r(t). These will be explained in Chapter 3. Finally, the sEMG signal m(t, F ) may be visualized
and further analysis can be performed.

Figure 2.6: Model of the generation of sEMG signals [3]

Characteristics of sEMG signal are mentioned in Table 2.1. The amplitude of the signal is a
stochastic process and a Gaussian distribution function can be used to represent it [9]. The
amplitude reflects the number of MUs involved and the SMUAPs frequency in the muscle over
a given period [14]. However, it is impossible to distinguish spatial from temporal recruitments.

Peak-to-peak amplitude 0 - 10 mV
RMS amplitude 0 - 1.5 mV
Frequency range 0 - 500 Hz

Dominant frequency range 50 - 150 Hz

Table 2.1: Characteristics of the sEMG signal[8] [9]

Noise

Several noise sources have to be take into account for the sEMG signal recording. There exist
four major sources of noise [9] :

7
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- Inherent noise from the recording equipment
This noise can not be removed. The only solution is to use high quality components.

- Ambient noise
Electromagnetic radiations (50 or 60 Hz and its harmonics) are everywhere and have a high
impact on the sEMG signal given its small amplitude.

- Motion artifacts
Motion artifacts include the relative movement between the electrodes and the skin and
the movement of electrodes cables. The frequency contents of these artifacts are mostly
comprised between 0 and 20 Hz [15].

- Inherent instability of the signal
Instabilities of the sEMG signal are mainly present for the frequency contents range from
0 to 20 Hz. These instabilities are due to random characteristics of the MU firing rate.
Therefore, in order to maintain signal stability, this frequency range should be removed
from the sEMG signal.

2.3 Functional Electrical Stimulation

Functional electrical stimulation (FES) is a particular type of neuromuscular electrical stimu-
lation (NMES). The purpose of FES is to accomplish functional tasks by activation of a single
muscle or a group of muscles. This activation is performed using several electrodes which induce
an electrical stimulation in a similar way to SMUAPs. Therefore, FES can be used to assist
or replace voluntary movement of a stroke patient. To achieve this goal, specific stimulation
sequences and magnitudes have to be defined. The electrode placement and stimulation charac-
teristics used will be explained in Chapter 3.

Moreover, FES drives the neural repair of the stroke patient. Neural plasticity, which is brains
ability to repair itself after an injury, has been proven to be quicker using the repetition of func-
tional tasks than simple range-of-motion movement [12]. FES allows this high repetition even if
patient movement is minimal.

Stimulation characteristics

In the most cases, the electrical stimulation is a symetrical biphasic waveform as shown in Figure
2.7. The main parameters that characterise the electrical stimulation are the following: pulse
amplitude, pulse duration and stimulation frequency.

Figure 2.7: Symetrical biphasic waveform used for the FES c© Medi-Stim

8



CHAPTER 2. BACKGROUND

As in voluntary contraction, the contraction intensity is regulated using temporal and spatial
summations. If the frequency of stimulation increases, the contraction force increases. Above a
specific frequency, called fusion frequency, muscle fibers do not have time to reach their resting
state. Thus, the contraction is continuous like the tetanic contraction in the case of voluntary
contraction. Below the fusion frequency, fiber twitching occurs. It is important to know that
with higher frequencies, more muscle fatigue occurs [16]. Hence, stimulation frequency used in
FES is usually close to the fusion frequency. The number of fibers involved (spatial summation)
in the contraction is related to the pulse duration and the amplitude stimulation [17]. If these
stimulation characteristics provide an applied stimulus below the nerve fiber stimulation thresh-
old, no action potential reaches the sarcoplasmic reticulum and no contraction occurs. If the
pulse duration or/and the amplitude stimulation increases, the stimulation intensity increases as
well hence the electrical field created enlarges and more fibers are involved in the contraction.

Characteristics of FES application for the upper limb are summarized in Table 2.2.

Minimum fusion frequency 12.5 Hz
Stimulation frequency range 12 - 16 Hz

Pulse duration range 0 - 300 µs

Table 2.2: Characteristics of FES therapy for the upper limb [10]

sEMG signal during FES

The sEMG signal is different when the contraction is due to an electrical stimulation as FES.
The sEMG signal recorded during an stimulation is called a compound muscle action potential
(CMAP) or more commonly M-wave. The electrical stimulation elicits synchronized SMUAPs
in muscle fibers in the electrode vicinity [18]. The sum of this synchronized SMUAPs gives the
M-wave. Therefore, the muscle response due to a electrical stimulation is a quasi-deterministic
signal, given that contiguous M-waves are very similar [19]. However, in the most cases, there
is a presence of stimulus artifacts (electrical signal/interference from the FES signal). These
artifacts will be developed in more details in Chapter 4.

Figure 2.8 shows parameters which characterize the M-wave, including the stimulus artefact.
PosT is the time between the stimulus artifact and the positive peak, PtpT is the peak to peak
time, PtpA is the maximum amplitude between the two peaks and Area is the area of the two
peaks.

Figure 2.8: M wave and its parameters: PosT , PtpT , PtpA and Area. The stimulus artefact is
represented [4]
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Studies have shown that electrical stimulation improves rehabilitation progress. Moreover, this
one can be assessed with the characteristics of the maximum M-wave as its amplitude evolves
according to the training duration.
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Chapter 3
Data acquisition

How the data is recorded is explained in this chapter. This chapter contains two sections: hard-
ware and software parts. The first section resumes which components are used to record the
sEMG signal, to apply FES and to measure the elbow angle. The two software used (Arduino
IDE and Matlab) during this project are briefly described in the second section.

Some processing using hardware and software are needed to record the sEMG signal. First of all,
the electrical noise sources have to be removed such as the electromagnetic interference and the
motion artifacts. These issues are overcome using special hardware components. Then, surface
electrodes are necessary to capture the electrical muscle activity from the skin. A lot of time
was consecrated to find electrodes providing satisfactory results. After that, another requirement
for providing consistent data for further analysis is to have a precise sample frequency. This is
performed using Arduino. Finally, the sEMG signal must be displayed in real time. The software
Matlab is used to show the sEMG time evolution as well as other information such as intention,
force and fatigue estimation.

3.1 Hardware

First, the necessary hardware to record sEMG signal can be divided into two main parts: Elec-
tronic sEMG circuit and the electrodes. The circuit design is briefly explained. Several electrodes
are tested and characterized in order to find which kind is the most appropriate in our project.
Second, the electronic FES circuit is outlined. Finally, another sensor is used during the project:
angle sensor.

3.1.1 Electronic sEMG circuit

A sEMG circuit has been designed by Benjamin Fortune. This circuit costs approximatively $30
(≈ 20 e) which is cheap in contrast to the commercial ones. The circuit consists of two inputs
and two outputs. The inputs are ’Electrode +’ and ’Electrode -’ and these ones allow to measure
the muscular electrical activity. The first output is ’Reference Electrode’ and it is used during the
attenuation of electromagnetic interference (EMI). The second output is ’Output Signal’ which
is the signal of interest, that means this signal reflects the muscle activity after a specific signal
processing. The electronic circuit can be divided into four major parts as shown in the block
diagram in Figure 3.1:

- Instrumentation amplifier
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The instrumentation amplifier is a differential amplifier using three electrodes (’Electrode
+’ and ’Electrode -’ and ’Reference Electrode’) and provides one output signal. The sub-
traction of the signals coming from the two input electrodes is taken. Therefore, the
common signal in both signals is rejected. Then, the output signal is amplified with a fixed
gain of 50 V/V.

This processing allows to reduce the crosstalk phenomenon.

- Active band-pass filter
This filter removes frequencies below 20 Hz and above 480 Hz. The lower cutoff frequency
is chosen in order to remove the movement artifacts between the electrodes and the patient
whereas the higher cutoff frequency is selected to remove unwanted signals produced by
the tissue at the electrode site.

Moreover, the gain of the filter is adjustable. This is a great advantage as the sEMG am-
plitude varies according to the subject, the performed task, the moment of the day and the
considered muscle. The gain filter range is 4.3 V/V to 104.3 V/V. The instrumentation
amplifier has a fixed gain of 50 V/V, therefore the total gain may vary from 215 V/V to
5215 V/V.

No notch filter is used to reduce the ambient noise (50 Hz). Indeed, an implementation of
this filter will reduce the surrounding frequencies of 50 Hz as well. It can be a considerable
issue given that the dominant frequency range of the sEMG signal is 50-150 Hz as said
previously. Therefore, another technique called "Right leg driver" (RLD) is used to remove
the power line interference.

- Right leg driver
A RLD circuit is commonly utilised during the recording process of biomedical signals.
This is due to the small amplitude of the signals compared to the high amount of coupled
electromagnetic interference. The purpose of RLD is to attenuate the EMI. For that
purpose, the common mode voltage is inverted, amplified and used to drive the subject’s
body through the ’Reference Electrode’.

- Power and isolation
The circuit is supplied by 5V due to the system acquisition used (Arduino). In future, the
circuit will be isolated to provide a subject safety if power supply leakage currents occur.

Figure 3.1: Block diagram of the sEMG circuit made by Benjamin Fortune

The circuit is made of two channels to provide the measurements of two muscles as illustrated
in Figure 3.2.
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Figure 3.2: Prototype circuit board conceived by Benjamin Fortune

I contributed and I am an author on a paper [20] submitted and in review for a conference 1

about this sEMG circuit: "Design and Testing of a low-cost Electromyogram that Uses a Right
Leg Driver Circuit".

3.1.2 Electrodes

The muscle activity can be measured using needle or surface electrodes. Needle electrodes are
directly in contact with the muscle and thus the crosstalk noise is less present than with the
surface electrodes [8]. Nevertheless, this kind of electrodes are invasive, hence surface electrodes
are more suitable and most commonly used.

The first electrodes tested were electrocardiogram (ECG) specific electrodes given that the lab
where the project was performed had a lot of these. These electrodes are surrounded by hydrogel
as shown in Figure 3.3a. However, these electrodes may cause damage to the skin after several
uses as shown in Figure 3.3b. Hence, other electrodes have to be obtained.

(a) Surface electrode with gel (b) Skin irritation

Figure 3.3: Surface electrodes with hydrogel

I designed the first electrodes. The latter are made of conductive fabric (silver-plated nylon).
These ones consist of 2 disks of a diameter of 10 mm and spaced of 20 mm as recommended by
the SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles) project
[21]. The second ones are simply two nickel disks with the same geometrical characteristics as
the fabric electrodes developed by Mervin Chandrapal during his thesis [22]. Nickel is chosen
due to its high conductivity and its resistance to oxidation. These two kinds of surface electrodes
are attached with velcro to allow their attachment to an arm bracelet (3.4c). A gel can be added
to the nickel electrodes in order to increase the contact between the skin and the electrodes.
Spectra R© 360 electrode gel manufactured by Parker Laboratories is used. This is a salt free

1http://www.m2vip-conference.org/
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hypoallergenic gel.

(a) Surface electrode made of conductive fabric (b) Surface metal electrodes

(c) Arm bracelet

Figure 3.4: The new electrodes developed

Finally, specific EMG electrodes are tested. These are a bipolar silver/silver chloride electrode
called Norotrode 20 manufactured by Myotronics. The inter electrode spacing is 22 mm and is
similar to the other type of electrodes. Moreover, these electrodes are pre-gelled with hypoaller-
genic gel increasing the contact between skin and electrodes.

Figure 3.5: Norotrode - specific EMG electrodes

In order to evaluate the quality of the different electrodes, the SNR (signal-to-noise ratio) is
computed. Delsys [23] recommended to measure the SNR value as follow for an sEMG signal:

SNR = 20× log

(
SRMS

NRMS

)
[dB] (3.1)

As the equation suggests, the SNR is the ratio of the RMS (root-mean-square) value of the signal
of interest (SRMS) and the noise (NRMS). In our case, biceps activity is evaluated. The signal
considered is a MVIC (maximal voluntary isometric contraction) [24] and the noise is recorded
when the muscle is at rest. Obviously, the placement of the electrodes plays an important role
and the position for every kind of electrodes is kept as consistent as possible. The gain of the
sensor is at its smallest level. Figures 3.6, 3.7, 3.8 and 3.9 summarize these signals for the ECG,
fabric, nickel and EMG electrodes respectively.
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Figure 3.6: ECG electrodes
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Figure 3.7: Fabric electrodes
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Figure 3.8: Nickel electrodes
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Figure 3.9: EMG electrodes

The set of SNR values are presented in Table 3.1. It is important to notice that for these mea-
surements no skin preparation is used. The SNR values can probably be higher with addition of
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electrode gel and moreover if the skin is cleaned with alcohol and shaved.

ECG Fabric Nickel EMG
31.90 dB 22.88 dB 33.13 dB 41.40 dB

Table 3.1: SNR values for the different electrodes

These SNR values are sensitive to a great number of factors. Thus, the SNR values are indicative
and useful to direct the choice of adequate surface electrodes. During the measurements, fabric
electrodes are noticed to be quite sensitive to the applied pressure to each on them. The addition
of gel increases the contact between the skin and the electrodes and provide better results. How-
ever, its SNR value is still lower than the others. It could be explained due to a more important
relative movement between the skin and the electrodes and a poor quality of skin contact as well.
The position of electrodes has a significant influence on the SNR value. Difference between the
SNR values could also be explained by the inaccuracy to keep the same electrode position.

Table 3.2 summarizes the advantages and disadvantages of these four kinds of surface electrodes.

Advantages Disadvantages
ECG * Sticky patch - Small relative move-

ment of the electrodes
* Several electrodes do not work at
all

* Already pre-gel * No pair - difficulties to have the
same inter spacing between uses
* Skin irritation
* Single use - price

Fabric * Several use - price * High relative movement of the
electrodes

* Electrode array easily imaginable * Poor skin contact
* Electrode pair * Lowest SNR value

* Arm bracelet needed
Nickel * Several use - price * High relative movement of the

electrodes
* Electrode pair * Arm bracelet needed

EMG * Sticky patch - Small relative move-
ment of the electrodes

* Single use - price

* Already pre-gel
* Electrode pair
* Highest SNR value

Table 3.2: Comparison of the different surface electrodes tested

Therefore, for the rest of the measurement the EMG electrodes are chosen due to their advan-
tages. For the future, reusable surface electrodes are suitable. The conductive fabric electrodes
seem promising. Indeed, our fabric electrodes are handmade and attached to velcro tape in order
to choose the spot of the recording. Velcro tape can induce relative movement which can be a
problem. Conductive fabric directly sewn on cloth will lead to best results. Moreover, the arm
bracelet used was too stretched out reducing the skin-electrode contact. Electrode arrays are
easily conceivable using conductive fabric allowing the recording of several muscles.
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Placement of the electrodes

The electrode placement is a key factor to obtain a signal with sufficient quality. As said before,
with the surface electrodes, the activity of muscles in the vicinity of the muscle of interest may be
recorded. This phenomenon is called crosstalk and may be reduced if the electrodes are placed
in the middle of the muscle belly [25]. The surface electrodes have to be placed according to the
fiber length. The recommended electrode positions for the biceps and the triceps are illustrated
on Figure 3.10.

(a) Biceps (b) Triceps

Figure 3.10: Recommended position of the electrodes [5]

3.1.3 Electronic FES circuit

Lachlan McKenzie, the Ph.D. student responsible for the FES, has developed an electronic FES
circuit. He uses a symetrical biphasic waveform for the electrical stimulation as illustrated by
Figure 2.7. The current amplitude is a constant ± 20 mA. The phase duration is typically
between 0 and 600 µs and the stimulation frequency typically ranges from 20 to 50 Hz. With
these frequency and phase duration variables, the contraction force can be controlled. If the
stimulation is too weak, no contraction occurs at all. The stimulation intensity necessary to
trigger a contraction depends on among other things on the subject, the stimulated muscle and
the electrode.

Electrical stimulation is sent through electrodes. The configuration used is bipolar electrodes.
One is the active electrode which is placed in the vicinity of the muscle of interest. The second
one is the indifferent electrode and it is located close to the active one.

For illustration, the circuit is shown in Figure 3.11.

Figure 3.11: FES circuit designed by Lachlan McKenzie
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3.1.4 Other sensor

Another sensor is used in this project in order to record the elbow angle. This value is necessary
in order to link the sEMG signal from the biceps to the elbow angle. The elbow angle estimation
is treated in Chapter 8.

Exoskeleton combined with a potentiometer

In Chapter 8, the elbow angle has to be evaluated. Ashley Stewart developed a prototype
exoskeleton equipped with a potentiometer which can measure the elbow angle as illustrated
in Figure 3.12. The exoskeleton is putted on the arm which elbow angle has to be recorded.
The rotary potentiometer turns according to the elbow angle. Thus, the variable resistor inside
evolves according the angle providing an output signal related to the angle. However, during its
use, it is noticed that it is not comfortable for the subject and the measure is not performed
with a high accuracy. The velcro tape hurts the user and does not allow a total flexion/extension
movement. Hence the choice of another sensor has to be considered.

Figure 3.12: Angle sensor - Exoskeleton combined with a potentiometer

3.2 Software

Two software languages are used during this project. The first one is Arduino IDE and allows
to record data from different sensors. The second one is Matlab and is used to process the data
recorded by the Arduino. Processing could have been done using Arduino but Matlab is easier
to handle.

In order to avoid aliasing, the Nyquist sampling theorem is applied to find the adequate sampling
frequency fs:

fs ≥ fc (3.2)

fc is the highest frequency founded in the signal, that means 500 Hz. Therefore, a sampling
frequency of 1000 Hz is enough to record the sEMG signal.

3.2.1 Arduino acquisition

The board used for this project is the Arduino MEGA 2560 connected on a PC USB port (Fig-
ure 3.13). After several trials to avoid problems due to the time constraint, the best solution
found is the use of interrupts. ’Timer1’ library of Arduino is used due to its simplicity of use.
The interrupt mechanism enables a precise sample frequency. As previously explained, a sample
frequency of 1000 Hz is sufficient to record the sEMG signal. Therefore, interrupts occur every
1 ms in order to record new sensor values (elbow angle and sEMG). Two distinct buffers are
used. These ones consist of an array of 2 x 50 elements. The number 2 is used because two
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sensor values may be recorded whereas the number 50 is chosen as it does not exceed the buffer
limitation. This working approach can be used to record more than two sensors at the same time.

Figure 3.13: Arduino MEGA 2560

The main loop of the code consists to print data of the actual buffer to the serial when it is full
so it can be read by the PC running Matlab (R2016a). However, this printing can take more
than 1 ms, so new sensor values should be recorded. It is on this case that interrupts play a
great role and the second buffer as well. Therefore, the printing to the serial is stopped and
the sensor values are recorded on the second buffer. After the recording, the printing continues
until the end of the first buffer. Then, we wait till the second buffer is full and so on. As the
data is sent to Matlab in the form of a bundle, the communication with Matlab occurs every
50× 1 ms = 50 ms but the sample frequency remains 1000 Hz.

3.2.2 Matlab acquisition

Matlab is used to process the sEMG signal all along this project. Matlab receives data from
Arduino in bundle form. The data transfer is performed using two main functions :

- serial (’port’, ’baudrate’, 115200) : this function creates a serial port object and
allows the communication with the Arduino board (connected at port specified by the
’port’ parameter) using a baudrate of 115200.

- fscanf(’fileID’, ’format’): this function reads the data from text file. The format
used is ’%s’ meaning character string given that every sensor data sent by Arduino to
Matlab is separated using a comma. Thus, the str2num function is used to remove the
comma and a vector with the sEMG amplitude value is returned every 50 ms.

Thanks to Matlab, the raw sEMG signal is shown in real-time. Moreover, after some processing
which will be further explained, intention, force and fatigue estimations may be displayed in
real-time as well. In Chapter 8, Matlab processing is useful to determine the elbow angle.
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Chapter 4
Data Analysis

This chapter consists of two parts. Analysis of the sEMG signal is summarized in the first one:
envelope extraction to evaluate the muscle activity is investigated. The second part focuses on the
sEMG signal during FES application. One method is explained to remove artifacts in the sEMG
signal due to stimulation.

The sEMG signal is random in nature. A simple analysis of its time evolution does not give
useful information. It is necessary to find a way to characterize the signal. Several mathematical
formula have to be applied to the signal in order to reflect the muscle activity according to time.
Concerning the sEMG in presence in FES, the signal is different: the SMUAPs are synchronized
and their sum gives the M-wave. The M-wave analysis could be performed without a mathemati-
cal processing. Nevertheless, the application of the stimulation induces a high amplitude artifact.
The latter has to be removed for further analysis. Indeed, the artifact alters the M-wave and
its frequency spectrum. Thus, for example, fatigue estimation may be not properly evaluated
without the stimulation artifact removal.

4.1 sEMG signal

The muscle contraction increases as more fibers are activated and the firing rate increases. As a
result, SMUAPs begin to overlap. Thus, the sEMG is more and more complex. An example of
sEMG signal recorded by the developed sensor is shown on Figure 4.1.
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Figure 4.1: sEMG signal example
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Similar to most biomedical signals, sEMG signal is non-stationary which means that signal sta-
tistical characteristics change according to time. Non-stationarities can be classified into slow
and fast stationarities. Metabolite accumulation results in slow non-stationarities. This accu-
mulation is usually related to muscle fatigue. Fast non-stationarities are due to change in muscle
length, force or/and electrode position [15]. sEMG signal can not be a stationary signal even if
no movement is performed due to the inherent organ physiology [8]. Thus, the analysis of the
sEMG signal has to be performed using short time analysis, during a short time duration, 0.5 -
2 s [19], the sEMG signal can be assumed to be quasi-stationary. However, during no isometric
contraction, stationary hypothesis is not satisfied anymore. Therefore, dynamic contraction is
more difficult to analyse. Hence, for first approximation, most of analysis in this work will be
performed during isometric contraction.

Given the non-stationarities, a global analysis of sEMG signal is incoherent and short-time anal-
ysis has to be used. A periodogram of a part of a sEMG signal during a biceps contraction is
shown in Figure 4.2. A periodogram is an estimation of the power spectral density of the signal.
This PSD estimation is evaluated over a fixed window of 1 s.
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Figure 4.2: Periodogram evaluated of sEMG signal over a window of 1 s

The visual analysis is usually not possible, in contrast to electrocardiography (ECG) signal, ex-
cept just for the trend of increase or decrease of activity level. Some methods have been defined
to allow precise activity analysis in order to link electrical muscle activity to mechanical activity.

The measure of activity can be performed using several techniques [3]:

- Zero-crossing rate (ZCR)
ZCR increases by one each time the signal crosses the zero-line or another reference. This
measure is done on a specific window. Thus, it is a frequency indication. The more
muscle activity occurring, the more signal spectrum moves to the right and ZCR increases.
However, ZCR is highly influenced by noise.

- Turn count (TC)
A turn is counted every time the sEMG slope sign changes. However, the difference between
the signal slope change has to be higher than a specified threshold to avoid taking into
account the sEMG signal variations induced by noise.
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- Root-mean square (RMS) value
Given that the sEMG signal is not stationary, the RMS value has to be evaluated over a
specific window ofM samples. The window lengthM is a key factor. The short-time RMS
value is defined as follow:

RMS (t) =

(
1

M

M−1∑
k=0

x2(t− k)

) 1
2

(4.1)

- Butterworth filter
The absolute value of the sEMG signal is taken (full wave rectification). Thus, high
frequency-peaks are created due to this rectification: a lowpass filter has to be applied.
The envelop can be obtained thanks a Butterworth lowpass filter. The order N and the
cutoff frequency fc of the filter depends on the raw signal. For the sEMG signal, N = 8 and
fc = 8 Hz provides a good trade-off between smoothing and reflecting the non-stationarity
of the signal.

- Moving average (MA) filter
Another method to extract the envelope is a moving average (MA) filter. With this method,
a time average envelope y(t) of a signal x(t) may be expressed with this simple equation:

y(t) =
1

Ta

∫ t

t−Ta

| x(t) | dt (4.2)

Ta is the duration of the MA filtering window.

In all of these activity estimation techniques a window is used (except for the butterworth filter;
N and fc play the role of the window). The length of this window has to be chosen to the smooth
of the discontinuities of the rectified signal but also to the importance to represent accurately
the change in the sEMG signal amplitude wanted. Moreover, two kind of windows can be used:
with or without overlap. Windows with overlaps are more precise but the computational time
is higher. This is important for real-time analysis, particularly when using low-cost embedded
systems such as Arduino.

These activity estimation techniques are applied to four isometric contractions of the biceps.
This position is maintained during the entire experiment. This recording was approved by the
Human Ethics Committee, University of Canterbury (HEC 2015/53/LR-PS) as the other record-
ings of this chapter. A non overlapping window of 200 samples is chosen for the all methods
and the butterworth filter is characterized by N = 8 and fc = 8Hz as recommended by [3]. All
the results are shown in Figure 4.3. First, ZCR is evaluated with the zero-line reference. This
does not provide good results. Another reference is used: 0.02 V. Better results are obtained.
It has been demonstrated that the noise level and the baseline of the sEMG signal alter this
estimation approach. The threshold has to be chosen according to these factors. Third, TC is
evaluated without a specific threshold: when any slope change occurs, TC is increased by one.
The muscle activity is not well reflected due to the noise as expected. A constraint is added for
the estimation: the signal slope change has to be higher than 0.02 V. By now, the value reflects
the muscle activity. Fourth, the envelope extraction using a Butterworth filter provides good
results as well as the estimation using a MA filter.

In conclusion, the RMS value is chosen to evaluate the muscle activity. First, this one is less
sensitive to the noise level than ZCR and TC. Second, for real-time constraints, the RMS value
is preferred over the estimation using the Butterworth filter. Finally, the RMS value and MA
filter provide similar results but most of studies used the RMS value to assess muscle activity
[3], [9]. Hence, the RMS value is used during this report mainly in Chapter 5 and 6.
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(a) ZCR with zero-line as reference
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(b) ZCR with 0.02 V as reference
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(c) TC with every slope change counted
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(d) TC with slope change higher than 0.02V
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Figure 4.3: Muscle activity estimation techniques
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Other features can be extracted from sEMG to provide information about muscle activity or
fatigue. These one are classified into time and frequency domains:

• Time domain : mean absolute value (MAV), mean value (M), Willison amplitude (WAMP),
harmonic mean (HM), variance (VAR) and waveform length (WL)

• Frequency domain: autoregressive model coefficient (ai), mean power frequency (MF) and
median power frequency (MDF)

This set of features will be explained and used during the determination of muscle fatigue or
elbow angle in Chapter 7 and Chapter 8 respectively.

The muscle activity can be studied using the analysis of SMUAPs as well. The sEMG signal de-
composition into SMUAPs can be performed using wavelet transform technique. The SMUAPs
analysis is useful to diagnose myopathy or neuropathy [3].

4.2 FES

In this research, FES is applied on the biceps and sEMG signal is recorded on the same mus-
cle with a sample frequency of 1000 Hz using Arduino and Matlab. Moreover, elbow angle is
recorded in order to evaluate if there is a movement. As demonstrated in Figure 4.4, when the
amplitude of the FES exceeds a specific value (which depends on physiological parameters), the
muscle contracts and a movement is performed.

Figure 4.4: FES application, sEMG signal and elbow angle recording

Figure 4.5 depicts the sEMG signal when FES is not enough to trigger a movement. As Fig-
ure 4.5b shows, a stimulus artifact is well present. The impact of the contamination depends
on the muscle studied as well as the electrical stimulation characteristics. M-wave spectrum is
affected by this high frequency artifact and thus moves the M-wave spectrum to higher values
[6]. It is important to notice that the sEMG signal amplitude is much lower than the stimulation
artifact. The latter has to be removed in order to analyse the real sEMG signal in a coherent way.
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(a) Stimulation train and the corresponding
sEMG (b) M-wave

Figure 4.5: sEMG signal when the FES amplitude is too low to trigger a movement

(a) Stimulation train and corresponding sEMG (b) M-wave

Figure 4.6: sEMG signal when the FES amplitude causing a movement

4.2.1 Suppression of stimulus artifacts

In the most cases of sEMG recording during FES, a stimulus artifact is present and has to be
suppressed. M-wave and the stimulus artifact are illustrated in Figure 4.7a and the contamina-
tion by the artifact on M-wave is shown in Figure 4.7b. It can be seen that the artifact amplitude
is lower than the sEMG signal which is the signal of interest. The amplitude difference could
reach four orders of magnitude.

In order to remove the stimulation articfacts, a peak detection is performed using the findpeaks
function provided by Matlab. A minimum peak height is specified as 0.4 V. The detection is not
performed in real-time. As shown by Figure 4.8a, the stimulation peaks are correctly identified.
Then, a stimulation period has to be defined in order to reconstruct the M-wave by piecewise
cubic Hermite polynomials interpolation like done in the work of Liu et al. [6]. The period
begins 4 samples before the detected stimulation peak and ends 5 samples after the peak. Thus,
the stimulation artifact is assumed to last 10 ms. All stimulation periods are removed from
the signal. Finally, a piecewise cubic Hermite polynomials interpolation is performed using the
pchip function to recreate the M-wave.
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(a) M wave and stimulus artic-
fact

(b) M wave contaminated by
stimulus artifact

Figure 4.7: Contamination M wave by stimulation artifact [6]

Reconstruted M-waves are illustrated in Figure 4.8b. Figure 4.8c illustrates the reconstruction
of the M-waves contaminated by artifacts whose triggered a movement represented in Figure 4.6a.
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Figure 4.8: Suppression of stimulus artifacts
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The sEMG signal recording in presence of FES was performed only once. At this moment, my
knowledge in this area is limited. Hence, I can not draw a conclusion on this suppression of
artifacts. Further analysis and research need to be performed. Indeed, thanks to a high-quality
reconstruction of the M-wave, useful data may be extracted such as the fatigue of the stimulated
muscle.

There also exist hardware methods to eliminate the stimulus artifact [26] [27].
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Chapter 5
Intention estimation

In the first section, intention is evaluated without FES. First, given the complexity of sEMG
signal, the RMS value is calculated using a specific fixed window to estimate the muscle activity.
Second, a threshold is chosen to determine if a contraction occurs or not. Finally, a performance
test is performed. The second section gives useful directions for intention estimation when FES
is applied. The last part deals with the application of intention estimation without and with FES
application in stroke rehabilitation.

Subject’s intention is defined as his/her intention to perform a movement. The muscle becomes
active as the subject wants to move. Thus, the intention estimation allows to find the on-off
time of a specific muscle.

5.1 Intention without FES

In intention estimation, the assumption of isometric muscle is not necessary. Indeed, if the mus-
cle activity is higher than a determined threshold, the muscle involves a contraction. As the
project is about the upper limb, the biceps is the muscle of interest and all the experiments are
performed on this muscle. This intention estimation method could be the same for other muscles.

Given that the intention is recorded in real-time, no overlapping is taken into account. Therefore,
RMS value of one sEMG segment of N samples is given by:

RMS =

√√√√ 1

N

N∑
i=1

x2i (5.1)

Firstly, the RMS value is evaluated using different windows lengths: 50, 150 and 300 samples
corresponding to 50 ms, 150 ms and 300 ms. The experiment was conducted by performing
three dynamic contractions. This study was approved by the Human Ethics Committee, Univer-
sity of Canterbury (HEC 2015/53/LR-PS). Figure 5.1 shows the impact of the window length.
The larger the window, the smoother the output signal. However, as demonstrated by Figure
5.1b, a large window introduces a delay, that means that the beginning of muscle activity is not
well evaluated: the muscle dynamics are biased. This is important as the intention according
to time has to be recorded. A small window introduces a great amount of variations: no effec-
tive averaging. Taking these observations into account, a window length of 150 samples is chosen.
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Figure 5.1: Illustration of the different window sizes for the RMS evaluation

To estimate the on-off time of the muscle, in other words if there is a contraction or not, a
threshold has to be defined. This threshold depends on the subject, the recording, noise and on
the activity estimation methods.

Detailed observations of Figure 5.1b provide information concerning the choice of the threshold.
After some trials, a threshold T = 0.02 V was chosen. If the RMS value exceeds this thresh-
old during 150 ms, the muscle is considered as active. If the noise is higher, the threshold has
to be increased. That means that the threshold is also dependent of the gain of the sEMG sensor.

Figure 5.2 depicts the raw sEMG signal, the RMS value using a window of 150 samples and
the movement intention. The number 0 means no movement whereas the number 1 indicates a
movement. As demonstrated by the figure, the movement is correctly determined.
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Figure 5.2: Movement evaluation

In order to evaluate the performance of this classification method, a performance test is done:
39 contractions are performed. All type of contractions are considered: isometric (sustained and
brief) and dynamic contractions. These ones are represented in Figure 5.3.

Method performance may be evaluated using a confusion matrix shown in Table 5.1. True pos-
itive means that the contraction is correctly determined whereas false negative indicates a non
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detection of the contraction. When the muscle is at rest and a contraction is detected, this is
called a false positive. True negative means that no muscle activity is detected when the muscle
is at rest. The true positive classification was performed by an observer looking at the plot
displayed in real-time.

Predicted Class
Actual Class Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 5.1: Confusion matrix

Moreover, a classification method may be assessed using these three following characteristics:

- Sensitivity - accuracy of contraction detection

Sensitivity = S+ =
TP

TP + FN
(5.2)

- Specificity - correctness to detect no contraction

Specificity = S− =
TN

FP + TN
(5.3)

- Accuracy - overall precision

Accuracy =
TP + TN

TP + FN + FP + TN
(5.4)

Figure 5.3 shows the train of contractions with its correspondent RMS value and movement
intention estimation for a threshold T = 0.02 V. As seen on the set of graphs, the movement
estimation seems correctly assessed. Table 5.2 proves this prediction. Indeed, the accuracy of
the classification method is 100 %. All contractions are detected. Moreover, the contraction
duration estimation is acceptable: not too short, not too high.
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Figure 5.3: Set of 39 different contractions
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Predicted Class
Actual Class Positive Negative
Positive 39 0
Negative 0 40

(a) Confusion matrix

Sensitivity 100 %
Specificity 100 %
Accuracy 100 %

(b) S+, S− & accuracy

Table 5.2: Performance with T = 0.02 V

Other thresholds (T = 0.005 V, T = 0.01 V, T = 0.05 V and T = 0.2 V) are tested and the
results are shown in Figure 5.4. Method performances for the different thresholds are represented
in Tables 5.3, 5.4, 5.5 and 5.6. The higher the threshold, the lower sensitivity and the higher
specificity. Concerning the overall accuracy, this one raises acceptable values in a specific inter-
val. In this case, this interval is approximatively: T = [0.015, 0.05] V. A lower threshold than
the chosen one results in apparent muscle duration that is longer than actual whereas a higher
threshold leads to a reduced duration or even until false negative classification. This issue is par-
ticularly visible in Figure 5.4d. Therefore, the choice of the threshold is a significant parameter
and it depends on the noise and the gain configuration of the sEMG sensor. Nevertheless, the
threshold choice should be not changed at every recording considering the acceptable threshold
interval. Moreover, the threshold could be different for other muscles studied. In this recording
configuration, a threshold of 0.02 V provides an excellent trade-off between classification response
time, sensitivity, specificity and accuracy.
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Figure 5.4: Threshold tests
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Predicted Class
Actual Class Positive Negative
Positive 39 0
Negative 15 25

(a) Confusion matrix

Sensitivity 100 %
Specificity 62.5 %
Accuracy 81 %

(b) S+, S− & accuracy

Table 5.3: Performance with T = 0.005 V

Predicted Class
Actual Class Positive Negative
Positive 38 1
Negative 5 35

(a) Confusion matrix

Sensitivity 97.4 %
Specificity 87.5 %
Accuracy 92.4 %

(b) S+, S− & accuracy

Table 5.4: Performance with T = 0.01 V

Predicted Class
Actual Class Positive Negative
Positive 37 2
Negative 0 40

(a) Confusion matrix

Sensitivity 94.8 %
Specificity 100 %
Accuracy 97.5 %

(b) S+, S− & accuracy

Table 5.5: Performance with T = 0.05 V

Predicted Class
Actual Class Positive Negative
Positive 9 29
Negative 0 40

(a) Confusion matrix

Sensitivity 23 %
Specificity 100 %
Accuracy 62 %

(b) S+, S− & accuracy

Table 5.6: Performance with T = 0.2 V

5.2 Intention estimation with FES

During FES application, SMUAPs synchronize to give the M-wave. Thus, the sEMG signal is not
random anymore. The amplitude of the M-wave could be a parameter to notice if a movement
is triggered by FES. To elicit a movement the stimulation has to be strong enough. Thus, the
maximum M-wave amplitude is above a specific threshold when FES triggers a movement.
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5.3 Application in stroke rehabilitation

Intention estimation without FES application on the same muscle could be useful in bilateral
rehabilitation. The intention is recorded on the healthy biceps and the other arm, the disabled
one, can be equipped with a motorised exoskeleton or FES can be applied on the muscle. The
motor or the FES is controlled using the intention estimation of the other arm. If the patient
wants to move its affected arm, he can perform a contraction using the other one. This mirror
therapy has been proved to have benefits given that both arms are active. Thus, neural activity
and the mobility of the disabled arm show improvements. However, intention estimation provides
a binary information: movement wanted or not. Thus, no graduation is possible or just using the
time of contraction of the healthy arm. This technique does not allow precise or specific move-
ment. Secondly, the sEMG could record the biceps which is in conjunction with the exoskeleton.
In this configuration, if the patient wants to move his/her affected arm whereas his/her muscles
does not allow to perform the movement, the motor can allow a certain movement. Finally, FES
could be applied on the muscle whose intention is estimated. In this case, if any activity of the
muscle is detected, a contraction is elicited using electrical stimulation.
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Chapter 6
Force estimation

In this chapter, force estimation is firstly analysed without FES application in the case of iso-
metric contraction and some keys to study dynamic contraction are given. The estimation is
performed using normalisation methods. Secondly, the estimation during FES application is
briefly described. Finally, examples of application in stroke rehabilitation are provided.

The estimation of the force exerted by a muscle can provide attractive information for actuator
control or FES application. Nevertheless, no quantitative relationship function has been found
to describe the link between sEMG signal and force. An equation linking both will be really
useful but seems complicated to find due to the randomness of the sEMG signal and its high
number of influencing factors [8][25]. Some factors are related to the recording itself (extrinsic
factors): configuration and placement of electrodes, for example. Physiological, anatomical
features (intrinsic factors) influence the signal amplitude as well. Qualitative estimation can
be made using the well-known fact that muscle activity increases with the force exerted by the
muscle. Some research has demonstrated that the RMS value and TC (turn count) increase
linearly according to the force [3]. Other studies have shown that the increasing of RMS value
is non-linear. Actually, the linearity depends on the muscle. For example, the relationship for
the first dorsal interosseus (FDI) is linear whereas for the biceps and the deltoid, it is non-linear
[28]. For small muscles, such as FDI, the dynamic range of the stimulation fiber frequency is
large and the most of MUs are recruited at low force level. In contrast, in large muscles, such
as the biceps and deltoid, the dynamic range is small and the MU recruitments occur all along
the force increase, providing less linearity [9]. Given all the influencing factors, recordings from
different subjects and different sessions are meaningless and no comparable. The RMS increase
provides only information of augmentation or reduction of the force exerted by the muscle during
a session. Hence, a normalisation process is appropriate to allow comparison and thus overcomes
the the human body heterogeneity problem.

6.1 Force estimation without FES

Generally, the normalisation is simply the division of the sEMG signal by a reference sEMG.
The reference signal is a sEMG signal recorded during a specific task recorded with the same
configuration of muscle and same recording equipment [29]. This reference signal must be easily
repeatable for different persons who will be compared. A number of reference exists in this area.
Haliki et al. summarizes them into four distinct groups [29]:

- Maximum activation levels during maximum contractions
This method uses the muscle activity from a maximum isometric contraction or dynamic
contraction at a specific range of joint angle.
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- Peak or mean activation levels obtained during the task under investigation
This reference can be used during walking [30], cycling [31] or biceps curls exercises [32]
for example.

- Peak to peak amplitude of the maximal M-wave
This normalisation approach is used during application of external stimulation such as
FES.

- Activation levels during submaximal isometric contractions
This reference can be used for patients who experience difficulty in performing a maximal
contraction. Hence, a specific weight can be lifted by the patient and serve as a reference.
However, with this normalisation technique, comparison between subjects can not be done.
In our case, it is not a problem given that the importance is the evolution of the performance
of the patient. This technique could be interesting.

The normalisation process should be done at every recording.

It is important to note that normalisation is not necessary for all signal recordings. First, when
spectral analysis is performed, for example for fatigue estimation [29]. Fatigue assessment will
be explained in details in the next section. Second, when the sEMG signal is decomposed into
its motor unit action potential using the wavelet technique, normalisation is not necessary as
well. Finally, normalisation is not necessary for the muscle time activation [29].

Isometric contraction

Isometric contraction is the easiest contraction to study: less factors influence the sEMG signal.
The Maximum Voluntary Isometric Contraction (MVIC) is the most commonly used of the
multiple normalisation techniques. As recommended by [5], a MVIC normalisation method
consists of these following steps:

1. 6 seconds MVICs of the muscle of interest (in this case, the biceps) are recorded. Between
each contraction, it is important that the muscle has time to recover. The rest time has to
be at least 2 minutes [25].

2. RMS value of the sEMG signal is calculated. Here, a window of 150 samples that means
150 ms with 0% of overlap are used.

3. The middle 2 seconds of each MVIC are taken

4. The 3 segments of RMS values are averaged

5. The maximum of the previous average is considered as the MVIC value

6. By now, the RMS value will be divided by the MVIC value providing an idea of the con-
traction strength according to the MVIC.

The MVIC from biceps was recorded in this research when the upper arm was at 90 degrees and
the forearm was flexed at its maximum as illustrated in Figure 6.1. This study was approved by
the Human Ethics Committee, University of Canterbury (HEC 2015/53/LR-PS).
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Figure 6.1: Elbow configuration for the MVIC value evaluation

Steps 1 and 2 of the MVIC normalisation method are illustrated in Figure 6.2.
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Figure 6.2: Illustration of the MVICs

The middle 2 seconds of the three MVICs and their mean are shown in Figure 6.3. The MVIC
value is estimated at MVIC = 0.2908 V.
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Figure 6.3: Middle 2 seconds of the three MVICs and the mean RMS value
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By now, sEMG signal can be recorded and force exerted by the muscle can be estimated according
to the MVIC. To do so, the RMS value is simply divided by the MVIC value. Figure 6.4 repre-
sents the impact of the normalisation in a contraction train of the biceps. This sEMG signal is
recorded on the same subject shortly after the MVIC value evaluation. In Figure 6.4b, the RMS
value is expressed according to the MVIC value after the normalisation. Several contractions
are close to the MVIC. Moreover, the RMS value exceeds 1 twice, mainly for one contraction.
This can be due to an imperfect test evaluation for the MVIC value. No report expressing a
high-quality test which allows to generate the muscle maximal activation exists, to the author
knowledge.
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Figure 6.4: Effect of the normalisation on the sEMG signal (blue = sEMG signal and red =
RMS value)

In conclusion, MVIC normalisation before each session seems a good approach to assess the
force exerted by a muscle. To evaluate the reliability and the performance of this method
several recordings with different weights could be done after the normalisation process. More
precisely, during the same session and with resting time between the recordings, a subject could
lift successively different dumbbells with a constant position providing an isometric contraction.
These data could be shown the convergence towards the MVIC value of the RMS value if the
weight increases.

Dynamic contraction

Anisometric contraction provides more non-stationarities in the sEMG signal. For example, the
shape of SMUAPs is modified because the relative position between fiber and electrode change
during the contraction. The faster the movement, the more large non-stationarities [25]. Thus
the relationship between the force and the sEMG signal amplitude is completely alterated.

Nevertheless, force can be estimated during a dynamic contraction. For this purpose, the signal
has to be divided in epochs with near-isometric conditions. Force between the successive epochs
is then extrapolated. For cyclic dynamic contractions such as walking or biceps curls, epochs
can be extracted at specific moments of the movement. Afterwards, epochs can be compared at
specific time. Thus, the impact of non-stationarities of the signal are reduced given that the com-
parison is performed during same conditions [25]. Concerning the normalisation, it is preferable
to use as reference the maximum dynamic and ideally isokinetic contraction. In other words, the
subject has to perform a maximum dynamic contraction for the entire range of motion of the
joint. Then the sEMG data is normalised using the sEMG signal-angle curve.
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6.2 Force estimation with FES

Another technique has to be used instead of the MVIC method during an electrically evoked
contraction. This method normalizes the sEMG signal using the peak to peak amplitude PtpA
of the maximal M-wave [29]. Figure 6.5 shows parameters which characterize the M wave in-
cluding the PtpA. PosT is the time between the stimulus artifact and the positive peak, PtpT
is the peak to peak time and Area is the area of the two peaks.

Figure 6.5: M wave and its parameters [4]

The maximal M-wave is found in increasing the amplitude of the stimulation till the PtpA
achieves a plateau. This PtpA is then used to normalise the sEMG signal under recording of the
same muscle and same investigated tasks.

6.3 Application in stroke rehabilitation

Individuals who had a stroke are able to produce maximum activation levels using the same
MVIC tests as healthy individuals [29]. However, if MVIC provides pain or other disconfort, the
normalisation may be done using the peak or mean activation levels obtained during the task
under investigation. Some studies have been done concerning the normalisation of sEMG signal
after a stroke [33] [34].

Force estimation could be useful in the rehabilitation of stroke. First, patient progression can be
evaluated. MVIC of the biceps altered due to the stroke may be recorded at each session. The
MVIC value should be increased as function of rehabilitation. This increase demonstrates the
augmentation in muscle strength due to the rehabilitation using FES or not. Sabut et al. studied
the tibialis anterior muscle from hemiplegic patients having drop foot due to stroke. Patients
were trained with FES. After 12 training weeks, MVIC value increased by 83.5% [35]. Second,
bilateral control can be performed using FES. The sEMG signal is recorded on the healthy arm.
From this recording, the force is estimated according to MVIC. This force information can be
used for the FES application on the disabled arm for example. The application will be pro-
portional to the exerted force by the unaffected arm. The actuator which is in conjunction of
the exoskeleton can be also activated in function of the force exerted. Finally, if FES may be
applied on the same muscle which the sEMG signal is recorded, the amplitude of the FES may
be proportional to the level of force recorded by the sEMG.
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Chapter 7
Fatigue estimation

The present chapter investigates how to estimate localized muscular fatigue. First of all, fatigue
is introduced and explained. Second, different methods to assess the fatigue are described. Third,
an experiment is conducted to evaluate the fatigue in the biceps using spectral values (mean power
frequency and median power frequency). Fourth, some clues to study dynamic and evoked elec-
trical contractions are given. Finally, fatigue assessment is shown to be a beneficial application
in stroke rehabilitation.

Fatigue assessment is important because undetected fatigue for a long period can cause injury to
the subject. Physiologists typically estimate fatigue as the failure point of a muscle. This point
is when the muscle contraction is not possible anymore. Psychological conditions can affect the
result as well as the subject’s motivation. Fatigue is evaluated after its appearance, which is
a major disadvantage. Blood sample analysis is another method used often in sports medicine
for evaluating fatigue. This test is based on the lactate contraction measured in the muscle.
Blood samples are extracted at different times providing an estimation of the fatigue evolution
during a task. However, real-time assessment is not possible with this method. Moreover, blood
lactate tests provide information for the global state of fatigue rather than for a specific muscle.
These two weaknesses can be overcome by the use of the sEMG signal. Indeed, sEMG signal
characteristics evolve during a task producing fatigue. The fatigue estimate with sEMG signal is
called localized muscular fatigue. The advantages of fatigue assessment using sEMG signal are
multiple [36]: non-invasiveness, real-time evaluation, fatigue of a particular muscle, correlation
with biochemical and physiological change in muscles during fatiguing.

7.1 Physiological explication

In 1912, Piper discovered [37] a slowdown in the sEMG signal during a sustained contraction.
This slowing is actually a frequency shift towards the lower frequencies of the signal power
spectrum. A decade later, sEMG amplitude increase during fatigue is observed by Cobb [38].
Actually, these two phenomena are related together. By now, some physiological mechanisms
have been shown to explain these two observations. During localized fatigue, three modifications
occur: conduction velocity modification, motor unit recruitment and motor unit synchronisation
[39]. As a result, the sEMG signal changes due to fatigue.

Conduction velocity (CV) of the fibers, i.e. the propagation velocity of the action potential along
the fibers, is reduced due to a decrease in intracellular pH. The latter is caused by the lactic acid
accumulation induced by a blood flow reduction during the contraction [25]. The lactid acid is
a metabolic by-product of the muscle contraction. The conduction velocity reduction provokes
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a shape change of the SMUAP and thus a power spectrum shift. As fatigue progresses, the CU
slows and the greater lower frequency contents. Moreover, as tissues act as a low-pass filter, more
energy is received by the surface electrodes. Hence, during fatigue tasks, the amplitude increase
can be explained as a result of conduction velocity diminution.

Conduction velocity modification is not the only responsible of the amplitude increase and the
frequency shift. In order to keep the constant force, motor units are recruited, providing an in-
crease of the sEMG signal. Some SMUAP synchronizations occur during a sustained contraction
inducing low frequency content and amplitude increase of the sEMG signal. Nevertheless, these
two factors have less impact on the sEMG signal modification [15]. Moreover, these modifications
are now put into question by several studies.

Localized fatigue can cause localized pain, tremor and the impossibility to still perform a con-
traction [39]. Therefore, the estimation of fatigue can potentially improve patient comfort and
compliance with rehabilitation.

7.2 Estimation methods

The shift to lower frequency has demonstrated to be an appropriate approach to assess local
muscle fatigue [15]. The periodogram is the mostly used [40] to evaluate the power spectral
density (PSD) of the sEMG signal. Periodogram is defined as the absolute value of the Fourier
transform of the signal divided by the length of the signal:

PSD =
1

N
| fft (x) |2 (7.1)

The mean power frequency MNF is simply the average frequency of the spectrum. MNF is
evaluated as:

MNF =

∫ fs
2

0 f × P (f)df∫ fs
2

0 ×P (f)df
(7.2)

where P (f) is the PSD of the signal at a specific frequency f and fs is the frequency sample.

The median power frequency MDF is the frequency value which divides the spectrum into two
parts with the same area under each part. MDF is calculated using the equation below:∫ MDF

0
PSD(f)df =

1

2

∫ fs
2

0
PSD(f)df (7.3)

Other methods have been investigated to assess localized muscular fatigue. Here are the major
ones [41],[19],[8]:

- Wavelet transform

- RMS value increasing

- Autoregressive modelling

Nevertheless, MDF and MNF values are the most used in the literature to evaluate fatigue.
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It is important to try to respect these assumptions during the fatigue estimation[25]:

- isometric contraction

- constant force

- contraction greater than 30% of MVIC

The isometric condition is necessary for detecting fatigue. Indeed, during anisometric contrac-
tions, a large number of factors influence the SMUAP shape. Hence, the shape modification and
spectral modification cannot be only attributed to a conduction velocity reduction. The second
requirement is due to the fact that temporal and spatial recruitments occur if the force increases.
Thus, the sEMG amplitude increases and the frequency contents are modified. The last assump-
tion is required because at this contraction level the blood flow becomes to be occluded. As a
result, by-products, such as lactic acid, accumulate.

7.3 Experiment during isometric contraction

The localized muscular fatigue is evaluated on the biceps. The experiment is performed for an
isometric contraction, that means without change in the muscle length. For that purpose, several
dumbbells (4 kg, 7 kg and 11 kg) were used to provide a constant force. Concerning the elbow
configuration, the arm and the forearm are at right angle as shown in Figure 7.1. This position
is maintained during the entire experiment. This study was approved by the Human Ethics
Committee, University of Canterbury (HEC 2015/53/LR-PS).

Figure 7.1: Fatigue test configuration on subject 1

Three healthy subjects participated at this experiment. Their characteristics are summarized
in Table 7.1. The subjects were asked to carry the weight and to keep their elbow at 90◦ until
muscle tremors and pain feeling occur.

Sex Physical condition Age Stroke victim
Subject 1 Female Poor 22 No
Subject 2 Male Very good 24 No
Subject 3 Male Very good 22 No

Table 7.1: Subject detailed

The signal is recorded as before at 1000 Hz. The signal is divided into several epochs. The
window length of 1 second is chosen as recommended by [19]. Every 1 s, the periodogram is
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evaluated and spectral parameters (MPF and MNF) are extracted. Therefore, MDF and MNF
evaluated in real-time and thus fatigue may be assessed.

Figure 7.2 shows the sEMG signal and MNF and MDF values according to time for the subject
1. She carried a 4kg dumbbell during 112 s.
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Figure 7.2: sEMG and MNF and MDF evolution during fatigue test - Subject 1 with 4 kg weight

After the end of recording, a curve fitting is applied to illustrate the decrease of the spectral
parameters. This decrease is interpolated using a linear least-squares fit. The polyfit function
provided by Matlab approximates the decrease of the MNF and MDF values as:

MDF(t) = 60.9184− 0.0506× t (7.4)
MNF(t) = 69.6886− 0.0679× t (7.5)

As demonstrated by the slope of these two previous equations, the decreases of the MNF and
MDF values are not significant. After a rest of at least 2 minutes, the subject is asked to carry
a heavier weight, i.e. 7 kg. Results are represented in Figure 7.3.

Several important information can be extracted from Figure 7.3. First, the spectral parameters
decline more rapidly as shown by the gradient in the curve fitting equations:

MDF(t) = 68.9403− 0.5961× t (7.6)
MNF(t) = 79.0583− 0.5968× t (7.7)

where t is the time in seconds.

Second, the test duration is obviously shorter. Third, the muscle activity is greater. Indeed,
sEMG amplitude is higher due to more force needed to carry the weight. Finally, initial MDF
and MNF values are shifted to higher values.
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Figure 7.3: sEMG and MNF and MDF evolution during fatigue test - Subject 1 with 7 kg

Figure 7.5 illustrates the evolution of sEMG signal due to fatigue. The data comes from the
recording shown in Figure 7.3. ’Slowing’ of the sEMG signal is demonstrated by Figure 7.4a.
Two 0.1 s periods of the sEMG signal are compared: one period at the start of the contraction
and the other one at the end. Moreover, Figure ComparaisonPSD shows two periodograms eval-
uated at the beginning and the end. The frequency shift toward the left is visible.
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Figure 7.4: sEMG signal comparison between the beginning (t = 15s) and the end (t = 45s) of
the sustained isometric contraction

As previously noted, experiments are performed on several subjects with several weights. The
experiments on the same subject are performed during the same period of the day with identical
sensor configuration. Resting time of at least 2 minutes is taken between recordings. All results
are summarized in Table 7.2.
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MDF(t) [Hz] MNF(t) [Hz] Duration [s]

Subject 1 - 4 kg 60.9184− 0.0506× t 69.6886− 0.0679× t 112
59.3842− 0.0246× t 70.5367− 0.0235× t 110

Subject 1 - 7 kg 68.9403− 0.5961× t 79.0583− 0.5968× t 40
71.8358− 0.6663× t 79.3365− 0.6647× t 45

Subject 2 - 4 kg 88.17220 + 0.0141× t 99.3688 + 0.0159× t 492
Subject 2 - 7 kg 90.7692− 0.0569× t 99.7392− 0.0692× t 100
Subject 2 - 11 kg 93.5100− 0.2780× t 102.8878− 0.3035× t 90
Subject 3 - 7 kg 78.3686− 0.0148× t 98.2557− 0.0256× t 171
Subject 3 - 11 kg 83.3526− 0.0627× t 92.7828− 0.0763× t 90

Table 7.2: Experimental fatigue results

Many observations may be extracted from this data set:

• For the same subject, the higher the effort is, the higher the MDF and MNF initial val-
ues are. This could be explained by the fact that the more muscle strength needed, the
more fibers involved, the more SMUAPs overlapping, the larger high frequency contents.
Therefore, the MDF and MNF initial values are a possible measure of muscle strength.
Moreover, the higher weight, the stepper the gradient, the faster MDF and MNF value
decline, the lower experiment duration: fatigue occurs faster.

• The slope is higher for MNF measurement than MDF. However, the difference is not
significant. Both of them may be used for the fatigue assessment.

• The better the subject is trained, the higher the MDF and MNF values are. This can be
explained by the amount of subcutaneous fat tissue between the biceps and the surface
electrodes. The thicker the fat tissue, the more important the low-pass filtering is. As a
result, MDF and MNF values are greater for trained subjects.

• If the weight is too light, the curve slope provides few or no information concerning fatigue.
This observation can be due to the fact that the force exerted has to be assumed greater
than 30% of MVIC. As illustration shows, for the subject 2 with a 4 kg dumbbell, MDF
and MNF values have an increase tendency.

Nevertheless, comparisons between subjects are problematic. A great number of factors can
influence the data, thus the conclusion. For example, the electrode positions against the biceps
among subjects as close to identical as possible. However, it is almost impossible to assure this
similarity. Other measurements have to be conducted to confirm these observations.

Another approach is used in several studies [3] [39]. The researchers use the increase of the RMS
value during the fatigue test. However, in the most sEMG signal recording of this experiment,
RMS growth is not really observed as illustrated in Figure 7.5a. However, for some recording
especially for the subject 3, significant RMS value increasing according to time is found as shown
in Figure 7.5b. Moreover, as said previously, time analysis requires normalization in contrast of
frequency analysis. Hence spectral parameters are preferred for fatigue assessment.
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Figure 7.5: RMS value evolution during fatigue test

7.4 Dynamic contraction fatigue

The final goal of the fatigue estimation is to evaluate it during a flexion/extension movement of
the arm. Thus, the contraction is not anymore an isometric contraction but a dynamic contrac-
tion. Therefore, several modifications have to be taken into account.

Experimental conditions and fatigue assessing methods to limit non-stationarity are the following:
[15]:

1. The dynamic contraction must be cyclic and the most as possible identical for every cycle.
Thus, the upper arm could be fixed to the flank. Only the forearm can move, this increase
the repeatability of the cyclic contraction.

2. The analysis of the MDF and MNF values is focused at a specific angle in order to attenuate
the impact of non-stationarity due to the movement. For example, an angle of 45 degres
during the flexion could be chosen.

3. The MDF and the MNF values are then averaged for several cycles.

7.5 Fatigue during FES

Fatigue occurs more rapidly when contraction is electrically induced [26]. Hence, fatigue evalua-
tion during evoked contraction is important. Fatigue may be evaluated in M-wave using spectral
parameters as well. Indeed, the M-wave widens as time increased. In other words, a shift to
the lower frequency occurs exactly as muscle are voluntary contracted. However, M-wave RMS
amplitude decreases due to the M-wave broadened which is contrary to the voluntary contraction
case [26].

As explained before, during voluntary contraction, the sEMG is subdivided in several epochs
of constant time (1 s). Then, the PSD is evaluated for each epoch in order to estimate MDF
or MNF time evolution. In the case of electrically elicited contraction, the similar method is
applied except the definition of epochs. Indeed, the signal is divided into epochs comprising N
responses (M-waves) elicited by N electrical stimulus. Then, these N M-waves are averaged and
this mean is used to estimate the PSD [19].
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7.6 Application in stroke rehabilitation

First, improvement evaluation may be done using the MDF and the MNF values. Indeed, as
demonstrated in the previous section, the stronger the muscle is, the higher MDF and MNF ini-
tial values are. As an illustration, tibialis anterior muscle from hemiplegic patients having drop
foot due to stroke are trained with FES. After 12 weeks, MDF increased by 15.8% [35]. The signal
recorded is a MVIC. Moreover, the slope may be used as well for progress assessment. The better
the muscle is trained, the slower fatigue is. Second, fatigue may be evaluated in real-time during
FES and provides to the physiotherapist information to optimize the session time. This is partic-
ularly important because the stroke patient has difficulty to feel his muscle fatigue condition [26].
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Chapter 8
Elbow angle estimation

This chapter focuses on the elbow angle estimation. First, the elbow motion is explained and sim-
plified in order to facilitate its estimation. Second, features for providing interesting information
from the sEMG signal are cited. Third, an experiment is performed on an isokinetic contrac-
tion. Fourth, one method is tested to evaluate the elbow angle: adaptive neuro-fuzzy interference
system. Finally, some applications in stroke rehabilitation are given. It is important to say that
this chapter is more a trial. Some useful information is extracted and underlined in order to find
other approaches to estimate the elbow angle.

As the sEMG signal occurs slightly before the intended movement, information may be extracted
from the signal reflecting the movement before its apparition. Thus, the actuator or FES can be
control to help the patient to achieve a specific movement. Hence, another interesting estimation
is the elbow angle assessment.

8.1 Elbow representation, muscles involved and experimental setup

The elbow joint allows pronation/supination and flexion/extension of the forearm. Thus, the
elbow consists actually of a combination of two types of joints: pivot joint and hinge joint. The
pivot joint called radioulnar joint allows the rotation of the radius around the ulna. The forearm
is said pronated when the palm is downward and supinated when this one is upward. The flexion
and extension involve the humeroradial joint that means the hinge joint. The range of motion
is 0-145 degrees (ROM). It is important to notice that to perform these two reverse movements
two muscle groups (flexor and extensor) are necessary. Figure 8.1 shows the major flexor muscles
whereas Figure 8.2 presents the main extensor muscles.

The main flexor muscle is the brachialis and the following is the biceps. Given that the brachialis
is located below the biceps, the measurement of its electrical activity using sEMG signal is dif-
ficult. Therefore, the biceps activity is studied instead. The brachioradialis is involved in the
flexion as well mainly when the forearm is pronated [5]. Therefore, the supination/pronation de-
gree influences the biceps activity during a flexion. The triceps is the principal extensor muscle.
Their activity during a flexion/extension movement is shown in Figure 8.3.
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Figure 8.1: Major flexor muscles of the elbow : Brachialis, biceps and brachioradialis [7]

Figure 8.2: Major extensor muscles of the elbow : Triceps brachii and anconeus [7]

Time [s]
0 2 4 6 8 10 12 14 16 18

A
ng

le
 [d

eg
]

-50

0

50

100

150

200
Elbow angle

Time [s]
0 2 4 6 8 10 12 14 16 18

E
M

G
 [V

]

2.5

3

3.5

4

4.5
Raw EMG Biceps

Time [s]
0 2 4 6 8 10 12 14 16 18

E
M

G
 [V

]

2

2.5

3

3.5

4

4.5

5
Raw EMG Triceps

Figure 8.3: Biceps and triceps activities during a flexion/extension movement
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In order to evaluate the elbow angle using sEMG signal from the biceps, several assumptions
are required. First, the shoulder is fixed. The subject’s arm is in vertical position close to the
flank. Second, the forearm is on neutral position. Supination and pronation are not permitted.
Indeed, when the forearm is supinated the biceps contributes more to the flexion given that this
muscle is slightly stretched. Therefore, elbow movement is simplified as one degree of freedom
(dof) movement. This dof is the elbow angle θ. Figure 8.4 represents a simple 1 dof (elbow angle
θ) model of the shoulder (S), elbow (E) and hand (H). Finally, the elbow movement has to be
as much as possible an isokinetic contraction. In other words, the movement speed has to be
approximatively constant.

Figure 8.4: Elbow representation

8.2 Interesting features

Literature provide a great number of features [42][43][24]. A distinction among them can be done
between time and frequency features. The sEMG signal x is segmented into windows of length
N . The segmentation may be done with overlapping or not. The major features to extract
information in the sEMG signal are the following:

Time features

• Mean Absolute Value - MAV

1

N

N∑
i=1

| xi | (8.1)

• Mean Value - M

1

N

N∑
i=1

xi (8.2)

• Zero Crossings - ZC

N∑
i=1

sgn(−xi × xi+1) (8.3)

sgn =

{
1 if x > 0

0 otherwise
(8.4)

• Root Mean Square - RMS √√√√ 1

N

N∑
i=1

x2i (8.5)

53



CHAPTER 8. ELBOW ANGLE ESTIMATION

• Waveform Length - WL

N∑
i=1

| xi − xi−1 | (8.6)

Frequency features

• Autoregressive Model - AR

xk =

p∑
i=1

aixk−1 + ek (8.7)

p is the order of the model and 4 is proved adequate for the modeling of the sEMG signal and
ai’s represent the AR coefficient. As previously explained, a modification of the muscle contrac-
tion induces a spectrum change. This can be reflected by the AR coefficients. ek represents the
residual white noise.

The coefficient ai’s are found using these two recursive equations:

ai = ai−1 + PiXi

(
xi −XT

i ai−1

)
(8.8)

Pi = Pi−1 −
Pi−1XiX

T
i Pi−1

1 + XT
i Pi−1Xi

(8.9)

where Xi = (xi−1, xi−2, · · · , xi−p), ai vector represents the actual estimates of the AR coeffi-
cients whereas ai−1 resumes the previous estimates, and P is a p× p matrix. AR coefficents are
evaluated within each time window. Therefore, these recursive equations are evaluated for every
window and the last estimate is considered as the representative AR coefficients.

8.3 Experiment on isokinetic contraction

The sEMG signal from a biceps was recorded during extension and flexion of the elbow and
was illustrated in Figure 8.5. Angle elbow was assessed in the same arm using the exoskeleton
equipped with a potentiometer. The subject (subject 2) tried to keep a constant movement
speed to facilitate the analysis. Therefore, contraction is supposed isokinetic. The elbow angle
is normalised in order to correspond to the ROM meaning 0-145 degrees. This experiment was
approved by the Human Ethics Committee, University of Canterbury (HEC 2015/53/LR-PS) as
all recordings in this chapter.
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Figure 8.5: Biceps sEMG signal during isokinetic extension/flexion according to the elbow angle
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Figure 8.6 illustrates the configuration during the experiment. As noticed on this figure, the
exoskeleton is cumbersome. Moreover, it is difficult to stabilize it. The velcro tape has to be
tightened to provide more stability. However, the tighter the tap is, the more difficult the whole
ROM is to achieve and the more painful it is for the subject. Hence, another sensor to estimate
the angle is desirable.

Figure 8.6: sEMG from the biceps and elbow angle during flexion/extension movements

8.3.1 Features extraction

Several features are extracted from the sEMG signal: MAV, M, WL, RMS, ZC and AR coef-
ficients. A time window of 250 milliseconds or 250 samples given that the sample frequency is
1000 Hz as suggested by [44]. The segmentation into these windows is done with 0 % of overlap.
Indeed, in the future, the angle estimation has to be performed in real time, overlapping costs
more in computational time. The set of features is illustrated by Figure 8.7.
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Figure 8.7: Features - MAV, M, WL, RMS, ZC and AR coefficients - during isokinetic contrations

First, Figure 8.7 demonstrates that M feature is not adequate for the angle estimation compared
to the other ones. MAV, RMS, WL and a1 features have the same behaviour. They follow the
elbow angle. Moreover, it is important to notice that they seem to follow linearly the elbow angle
during the flexion and not during extension. This phenomenon may be explained due that the
biceps is more involved during the flexion and the triceps during the extension as demonstrated
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by Figure 8.3. Second, ZC feature has a different behavior. This feature reaches its maximum
when the muscle is inactivated. When the muscle is not activated, the sEMG sensor records
noise. Thus, the signal crosses more the reference line meaning 0 V. However, when the muscle
becomes active, ZC feature has its minimal value. Then, ZC feature increases as the muscle
activity develops due to the increase of high frequency contents. Finally, electromechanical delay
is illustrated on Figure 8.8. The SMUAPs are triggered few milliseconds before the movement is
performed. Cavanagh et al. [45] have demonstrated that the mean electromechanical delay for
the biceps is 49.5 ms for eccentric contraction, 53.9 ms for an isometric contraction and 55.5 ms
for a concentric contraction.
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Figure 8.8: Electromecanical delay illustration with MAV and a1 features

In order to compare different data and see if there are some differences between the recordings,
another sEMG signal from the biceps is recorded on the same subject but at a different moment
of the day. The sEMG signal is shown in Figure 8.9 and the set of features is displayed in Figure
8.10.
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Figure 8.10: Features - MAV, M, WL, RMS, ZC and AR coefficients - during isokinetic contra-
tions

The set of features from the second recording (Figure 8.7) shows some dissimilarities from the
first one (Figure 8.10). The second recording shows a feature increase with less linearity during
the flexion. Moreover, it is important to notice for this subject that the biceps is a lot involved
during the extension, in contrast to other persons (Figure 8.3). This subject goes to the gym
everyday and he is used to perform some exercises to increase the strength of his biceps. This
higher physical condition could explain this difference.

8.3.2 Adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference systems (ANFIS) is an artificial neural network that has the
advantages of the neural network and the fuzzy logic. From an input/output data set, ANFIS
creates a fuzzy interference system with membership function characteristics that maximise the
map between the input and output data. ANFIS uses a back propagation algorithm to learn
from the data [46].

The cyclic dynamic contraction of Figure 8.5 is used for the assessment. The set of movement is
separated into two data classes: training set and testing set. The third, fourth and fifth cycles
are defined as the training set whereas the testing set corresponds to the last two cycles. Three
features are extracted from the two sets. Then, these features and the angle are normalised
between 0 and 10. The normalisation is necessary to remove some factors like the dependence of
the conditions of the electrode placement or the patient’s physical condition. The normalisation
is performed according to this equation, where X corresponds to a feature or the angle:

XN =
X −min(X)

max(X)−min(X)
× 10 (8.10)

The elbow angle and the RMS, MAV and WL features are illustrated in Figure 8.11.
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Figure 8.11: Set of features for the training and testing data

Matlab provides a Neuro-Fuzzy Designer toolbox. The Neuro-Fuzzy Designer app allows to
design, train and test an ANFIS. For this purpose, the training data are downloaded in the app
and different ANFIS configuration may be tested. After several trials, the Gaussian curve mem-
bership function (gaussmf) for the whole system is chosen because of its small error estimation
in contrast to the others. Four memberships are attributed to the inputs as shown by Figure 8.12.

(a) RMS (b) MAV (c) WL

Figure 8.12: Input membership functions

Matlab performs the training in order to find links between the inputs (RMS, MAV, WL features)
and the output. 64 if-then rules are created to link the inputs to the output. The estimation for
the training and testing data are shown in Figure 8.13a and Figure 8.13b.
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Figure 8.13: Angle estimation
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Regression curves are drawn for both data sets as illustrated by Figure 8.14. R squared values
for the both classes are evaluated as:

R2 = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2

(8.11)

where yi represents the real angle and ŷi is the estimation one.

R squared equals to 0.9998 for the training set and -11.4876 for the testing set.
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Figure 8.14: Regression curves

8.4 Discussion

Good results for the training set are obtained. However, the result for the testing data is com-
pletely false. Using the training data, the estimated angle is correctly estimated because the
algorithm is based on these data. To improve the estimation, some ideas can be cited. First,
more training data are suitable. As shown in Figure 8.7 and 8.10, feature amplitude is different
for the different cycles of the same recording. Moreover, the features have the same behaviour
and thus provide practically identical information for the estimation. It could be interesting
to record the sEMG signal from the triceps given that this muscle is antagonist to the biceps.
Hence, their activity should be different during the flexion/extension movement and should pro-
vide complementary information. Another problem is that a specific angle can be reached during
the flexion or the extension movement. The muscle activity is not the same for this two different
movements. Thus, two kinds of activity represent a particular angle. Features from the biceps
could have more weight for the angle estimation during flexion and features from the triceps dur-
ing extension. Or another method is to distinct angles achieved during flexion from extension.
In addition, the angle was not recorded by a precise sensor, this can change the map between
the features and the angle for every cycle. Finally, the isokinetic condition is not well respected.
To overcome this, the wanted angle to respect the isokinetic condition could be displayed on a
screen as well as the actual angle. Thus, the user would know if his/her movement is too fast or
to slow.

59



CHAPTER 8. ELBOW ANGLE ESTIMATION

Therefore, recommendations for further analysis are:

1. Record the sEMG signal from the triceps

2. Record the elbow angle with an accurate and easy-to-use angle sensor

3. Have more data for the training set

4. Work in real-time

5. Display the angle wanted on a screen to respect the isokinetic condition

8.5 Application in stroke rehabilitation

The sEMG signal may be recorded in the damaged biceps. Given the electromechanical delay, the
angle may be evaluated before the movement. Thus, the exoskeleton actuator or FES amplitude
may be controlled to assist the movement.
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Chapter 9
Conclusions and perspectives

All along this report, the sEMG sensor prototype has provided satisfactory results despite its
low price. This sensor can be used to assess electrical muscular activity. Moreover, the sEMG
signal has been shown to provide useful information for the stroke rehabilitation. First, intention
estimation can be easily extracted from all kinds of contractions. Second, force estimation for
isometric contraction is achievable using MVIC normalisation. However, MVIC evaluation is
necessary at every session. For anisometeric contraction, it is more difficult to extract coherent
information due to the non-stationary increase. Despite of these additional non-stationarities,
force assessment could be performed during a cyclic dynamic contraction if the evaluation is done
at specific constant time. Third, localized muscular fatigue is well identifiable during sustained
isometric contraction. Concerning dynamic contraction, issues and solutions are the same than
force estimation. Finally, elbow angle estimation has shown some issues and has to be further
investigated.

During all the recordings, the sEMG signal depended on a lot of factors. During contraction in
non isometric condition, signal non-stationarities are particularly significant. Hence, dynamic
contraction is difficult to analyse. To reduce the impact of non-stationarities, cyclic dynamic
contraction has to be preferred to non-cyclic dynamic contraction. Analysis should be performed
for every cycle at a specific angle. Hence, an accurate elbow angle measurement should be in-
vestigated. For example, the use of several detectable markers by a camera could be positioned
on the arm.

FES application has been briefly studied. A large artifact was unfortunately present as expected.
To attenuate the artifact effect, further investigations are needed exploring software or hardware
filtering in order to allow M-wave recording.

All sEMG signals were recorded on healthy subjects. It could be interesting to conduct these
estimation methods on sEMG signals coming from a patient who had a stroke. This will allow to
check, on a stroke patient, the signal amplitude versus the noise level and to validate the studied
estimation methods.

Consulted physiologists mentioned that muscle atrophy estimation could be useful to improve
their rehabilitation approach. Muscular atrophy is a muscle reduction due to physiological or
pathological phenomena. After a stroke, muscle atrophy develops due to the patient immobility.
Atrophy could be assessed using the muscular fiber diameter. The fiber diameter is proportional
to its conduction velocity [25]. The larger diameter, the greater average conduction velocity, the
more high frequency contents, the larger MDF and MNF values. This relation could be fur-
ther explored. The muscle atrophy state could optimize the rehabilitation and provide subject
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progress assessment.

Another biosignal could be used instead of, or in conjunction with, the sEMG signal to reflect the
muscle activity: the mechanomyography (MMG) signal. This signal records the muscle surface
oscillation during a contraction. The recording may be done using contact microphone or ac-
celerometer directly in contact with the skin. MMG signal has advantages over sEMG signal: it is
not dependent of skin impedance as sweating and does not require a precise placement sensor [47].

The rehabilitation in general, not only for stroke patient, has a promising future thanks to
the overall technological progress. Virtual reality is an example among others and could be
interesting as mentioned by the physiologists that we met. Some recent studies have already
been conducted for stroke patients and provided promising results [48].
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