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Abstract
The Shock-Wave/Boundary-Layer Interaction (SWBLI) occurs in the in-

let of high-speed engines and on transonic wings, and can exhibit unsteadi-
ness. Large scale unsteadiness may cause the premature fatigue of aerody-
namic structures and the instabilities of the air intakes, while small scales
cause laminar-turbulent transition, leading to higher friction and thermal
load. The latter small scales are studied in this work with stability theory.

The linearised Navier-Stokes equations for stability analyses are used to
identify the linear eigenmode growth present in a broad range of flow ap-
plications. They present a pertinent approach to identify the origin of the
unsteadiness and of the laminar-turbulent transition occurring in the SWBLI.
The compressible BiGlobal stability equations are implemented and the vali-
dation of the solver with well-known Blasius flows shows excellent agreements
with the literature.

The convective instability represented by the Tollmien-Schlichting waves
in developing boundary layers is thoroughly analysed. A moving refer-
ence frame is used to represent the most unstable instability by one unique
eigenfunction, aiming to improve the effectiveness of the BiGlobal approach
drastically. Finally, the convective instabilities associated with the Kelvin-
Helmholtz waves and the underlying characteristics of steady modes existent
in the SWBLI are detailed through the Reynolds-Orr energy equation.
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1. Introduction

1.1 Motivation
The ubiquitous presence of the Shock-Wave/Boundary-Layer Interaction (SWBLI) in
applications ranging from the transonic to the hypersonic regime makes it a thoroughly
studied fundamental phenomenon in fluid dynamics. The laminar/turbulent SWBLI im-
pacts high-speed aerodynamic surfaces and engines with the ultimate effect of increasing
the drag in addition to the potential unsteadiness of the shock-induced separation bub-
ble. The SWBLI can affect significantly the performances of the aircraft at different
scales and hence it consists of a worthwhile research work for the improvement of fuel
consumption.
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Figure 1.1.1: From the largest scales to the smallest scales of the SWBLI: Lockheed SR-
71 (a), supersonic air intake (b) from Yongzhao et al. [2015], laminar SWBLI (c) from
Touber and Sandham [2009] and Kelvin-Helmholtz instability (d) from present work.
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In regards of the largest scale of the high-speed aircraft, depicted in Fig. 1.1.1a, the
shocks along the aerodynamic surfaces induce wave drag to be added to all the other
drag components. At a scale relative to the engine (Fig. 1.1.1b), the shocks system
existent in the inlet generates total pressure losses, decreasing inevitably the engine ef-
ficiency. Furthermore, the flow at the air intake is significantly distorted by the large
shock-induced separation of the boundary layer on the cowls and by large amplitude
unsteadiness. These phenomena can be so severe that the performance of the engine
can be affected drastically. In the worst scenario, highlighted by Babinsky and Harvey
[2011], it can result in an engine unstart.
Fig. 1.1.1c suggests a zoom at the scale of the boundary layer, where the shock-induced
separation originates. The whole SWBLI potentially exhibits a low-frequency breathing,
characterised by a periodic increase and decrease of the size of the separation bubble.
Although the origin of this unsteadiness defies the physical explanation of the fluid dy-
namics community for decades (Dolling [2001]), the breathing is generally associated to
an amplification of the turbulent structures by the separation bubble.
The turbulent structures are significantly enhanced by the separated region, where the
laminar-turbulent transition generally takes place in laminar SWBLI. Turbulent flows
increase the friction drag and the thermal load on the aerodynamic surfaces. For the
present work, we zoom in the perturbation level, that represents the smallest scales of
the SWBLI (Fig. 1.1.1d), where the laminar-turbulent transition originates from the
linear growth and, thereafter, from the interaction between eigenmodes of the system.
The analysis of these theoretically infinitesimal modes gives the opportunity to identify
the origin of the incipient turbulence and of the largest scale unsteadiness.

In the current thesis, we approach the stability of the laminar separation bubble
induced by an incident shock impinging on a flat plate with BiGlobal linear stability
analysis. With the rising computational power, such analyses have become possible
nowadays and it is a pertinent methodology used to approach the stability problem.
Nevertheless, due to the complexity of the compressible equations, stability studies of
the SWBLI are almost non-existent in the literature. The present thesis aims to provide
a first insight into the stability of the modes present in the SWBLI. As a baseline
for the flow configuration, the experiments conducted by Giepman [2016] in the TST-
27 blowdown transonic/supersonic wind tunnel of Delft University of Technology are
considered.

1.2 The shock-wave/boundary-layer interaction
The occurrence of a shock-wave is characterised by an abrupt change in pressure, temper-
ature, velocity and density such that a sharp discontinuity is generated where it appears
in the flow (Courant and Friedrichs [1999]; Babinsky and Harvey [2011]). Typical sit-
uations where shocks occur are a pressure adaptation through a diverging-converging
nozzle or a flow deviation at a solid boundary. Moreover, the shock can be normal,
oblique or even curved in case of bluff bodies or subsonic aerofoils travelling at super-
sonic speed. They reflect at solid interfaces, yielding extremely complex shock patterns
in high-speed internal flows. In addition, the fluid viscosity causes the development of
boundary layers over the solid surfaces (Schlichting [1960]; White [1991]). Depending
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on the flow conditioning such as, the Mach number, the Reynolds number, Re, or the
surface roughness, the boundary layer can be laminar, transitional or turbulent (Pope
[2000]; Davidson [2015]). Finally, dealing with supersonic flows over a surface yields to
inevitable interactions between the shock and the boundary layer. The phenomenon is
referenced by the fluid dynamics community as Shock-Wave/Boundary-Layer Interac-
tion (SWBLI) and has been observed experimentally for the first time by Ferri [1939].

The SWBLI consists of the interaction between the viscous region (boundary layer)
and the shock-waves in the supersonic flow around solid surfaces. The Mach numberM ,
defined as the ratio between the flow velocity and the speed of sound, must be higher
than the unity to observe shocks. The emphasis about the local Mach number is impor-
tant to take into account transonic flows, where M < 1 in the freestream but reaches
unity locally (Anderson [2011]). Nonetheless, in the current thesis, the transonic regime
is omitted and the SWBLI with a supersonic freestream is considered.

Three basic configurations are generally considered for the study of the SWBLI; back-
wards facing step, compression ramp and the flat plate (Fig. 1.2.1). Although only the
latter is considered in the current thesis, the basic principles of the SWBLI remain valid
for the other flow configurations. Fig. 1.2.1 shows the interaction between an incident
oblique shock and a developing boundary layer over a flat plate. Due to the pressure
rise across the incident shock, a strong adverse pressure gradient is induced within the
boundary layer around the impinging location. Due to the decrease in speed when en-
tering the boundary layer, a slight curvature of the incoming shock is observed in this
particular region. In addition, the decrease in speed implies the existence of a sonic line
within the boundary layer, where the flow becomes subsonic and finally reaches zero
at the wall. The subsonic region is a fundamental feature as it ensures the informa-
tion to travel upstream and downstream, while supersonic regime allows only the latter.
As a consequence of the strong adverse pressure gradient, an incipient separation of the
boundary layer occurs upstream of the shock. The separation induces a strong deflection
of the boundary layer. A reflected shock is generated as a result. On the other hand,
the incident shock reflects on the sonic line, resulting in an expansion fan emerging from
the top of the bubble. Consequently, the lifted shear layer is redirected towards the wall,
yielding the reattachment which induces a final compression fan. Between the separa-
tion and the reattachment points, a bubble characterised by a reversed flow takes place
and exhibits a near-constant pressure. Note that this physical description is based on
Fig. 1.2.1, where a strong shock is considered. In case of weak interaction, the separation
bubble is small and does not exhibit constant pressure. Furthermore, the compression
waves at the separation coalesce with the expansion fan and the compression waves.
Such arrangements are greatly detailed by Babinsky and Harvey [2011] beside several
other combinations of shock strengths and flow configurations.

Up to this point, the boundary layer has been treated equally for laminar and tur-
bulent regimes. However, it influences the behaviour of the SWBLI strongly due to
the fuller boundary layer velocity profile for the latter, yielding a higher momentum
close to the wall. Therefore, more energy is needed to induce a separation compared to
the emptier velocity profile of the laminar boundary layer. Consequently, the turbulent
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Figure 1.2.1: Schematic representation, from Touber and Sandham [2009], of a SWBLI
induced by an incident shock impinging on a flat plate.

SWBLI exhibits a smaller separation bubble than the laminar equivalent. Note that the
latter flow regime is difficult to maintain over the entire interaction due to the strong
generation of perturbations in the shear layer across strong shocks. In general, it leads
to the transition to turbulence of the boundary layer in the rear region of the bubble.

In addition to the static comportment of the SWBLI, the shock-induced separation
bubble can exhibit unsteadiness. This is observed experimentally and numerically with
both laminar and turbulent boundary layers. Nowadays, the origin of the unsteadiness is
not well understood and two different perspectives are considered by the fluid dynamics
community (Dolling [2001]; Clemens and Narayanaswamy [2014]). The first approach
proposed by Ganapathisubramani et al. [2007, 2009] consists of considering the bubble as
a perturbation amplifier (extrinsic mode). They argue that the low frequency unsteadi-
ness is caused by the response of the bubble to the incoming turbulent structures. The
broad frequency spectrum resulting from the amplification of the turbulent structures
has been extensively studied by Touber and Sandham [2009]; Grilli et al. [2012]; Sansica
et al. [2013]; Clemens and Narayanaswamy [2014]; Sansica et al. [2016]; Larchevêque
[2016]; Pasquariello et al. [2017] for turbulent SWBLI. Although, such structures do
not exist in laminar boundary layers, a similar approach is followed by Sansica et al.
[2013, 2014, 2016]; Guiho et al. [2016], who artificially perturb the laminar SWBLI. A
white noise is imposed at different regions through Direct Numerical Simulations (DNS)
conducted by Sansica et al. [2013, 2014] and the dominant frequencies correspond to
the growth of Kelvin-Helmholtz (KH) instabilities followed by vortex shedding in the
post-shock region of the bubble. Similarly, Sansica et al. [2016] use the one-dimensional
Linear Stability Theory (LST) and the linear Parabolised Stability Equations (PSE)
to highlight the transition from a laminar SWBLI to a turbulent SWBLI. According
to the authors, the unsteadiness is caused by a feedback mechanism of the post-shock
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turbulence that induces the low-frequency motion of the separation region.
The second approach, followed by Boin et al. [2006]; Robinet [2007]; Guiho et al.

[2015] with DNS and global stability analyses, consider intrinsic modes existing in the
shock-induced separation bubble. Nevertheless, they used the stable configuration of
Degrez et al. [1987], which does not exhibit any growth of the low-frequency unsteadiness.
Guiho et al. [2015] were only able to reveal briefly the presence of extrinsic modes
such as KH-like structures and Mach waves radiations, which demonstrate again the
amplifier characteristic of the laminar SWBLI. On the other hand, Boin et al. [2006];
Robinet [2007] highlight for the first time the presence of a global mode in SWBLI,
yielding a bifurcation towards a three-dimensional topology of the separation bubble,
when the shock strength is increased. In addition, for a sufficiently large shock angle,
the unsteadiness of the bubble is highlighted by DNS. However, this unsteady case is not
handled by Boin et al. [2006]; Robinet [2007] with the global stability analysis and the
presence of an intrinsic mode related to the bubble breathing is not revealed nowadays.

1.3 The linear stability analysis
The stability analysis is based on the linearisation of the Navier-Stokes Equations (NSE)
and gains interest in the fluid dynamics community as it represents an alternative tool
to the conventional methods (DNS, Large-Eddy Simulations (LES) and Reynolds Av-
eraged Navier-Stokes (RANS)) to predict the linear regime before non-linearities occur.
The DNS solve the entire NSE and consists, therefore, of the most accurate and realis-
tic approach for solving any flow configuration. Nevertheless, as the entire underlying
physics of the fluid dynamics is involved, all the turbulent structures from the largest
to the smallest scales are resolved. It implies very expensive simulations in term of the
computational requirements and only canonical cases can be resolved in a reasonable
amount of time. On the other hand, RANS is based on modelling turbulence entirely.
The flow is decomposed into mean variables and finite perturbations representing the
turbulent fluctuations. Aiming to decrease the requested computational power, it leads

Figure 1.3.1: Schematic representation, adapted from Reshotko and Tumin [2006], of
the path to turbulence breakdown.



CHAPTER 1. INTRODUCTION 6

to approximation errors depending on the approach used to evaluate the eddy viscos-
ity (Frahnert and Dallmann [2002]), which is related to the modelling of the Reynolds
stresses. For instance, RANS is not adapted for the prediction of the transition, for
separated flows (separation bubbles, stalled aerofoils) or for secondary flows (backwards
facing step, square pipe). Nevertheless, because of the ease to interpret the results and
of the relatively low requirement of computational power, this is the most used method
in the industry.
LES is located between RANS and DNS as it solves fully the largest turbulent scale,
while the smallest ones are modelled. LES require less computational resources than
DNS if there is no need to solve the near-wall region accurately. Notwithstanding, if
wall-bounded flows are considered, the smallest structures have to be resolved to ensure
realistic results and the computational time becomes similar to DNS. Although all these
methods can compute or model the non-linearities of the flow, it does not make them
efficient to predict the earlier linear regime.
Therefore, the linear stability analysis approach shows up as an ideal alternative to pre-
dict such a flow regime without solving the full NSE. The eigenmode growth shown in
the path A1 of Fig. 1.3.1 illustrates the all possible perturbation amplification physics
considered by the linear stability theory. As the non-linearities are due to the combina-
tions and to the interactions of linear modes, understanding the origins of the latter is
essential. A characterisation of the linear modes gives the opportunity to control and to
delay the transition to non-linear breakdowns, which are difficult to control afterwards,
such that the friction drag can be decreased and the unsteadiness predicted.

Different types of stability equations can be derived from the linearisation of the NSE
depending on the important physics to be resolved. The simplest formulation of the lin-
ear stability equations consider only the effects associated to one-dimensional boundary
layer profiles and consists of the LST approach2. LST considers only one inhomoge-
neous direction (streamwise in this case), while the spanwise and wall-normal direction
of the modes are assumed to be homogeneous. Through the continuity equation and
the boundary conditions, it implies that the wall-normal velocity component of the flow
is not included in the stability equations; the streamlines are always assumed to be
parallel to the wall. In contrast, the BiGlobal stability analysis involves all the flow
features in two directions and assumes only that the modes have a fixed spanwise wave-
length. In case of separation bubbles which are at least two-dimensional, the BiGlobal
approach must be chosen. The third dimension could be entirely resolved by the means
of TriGlobal stability analysis, but this is not feasible with the computational memory
available nowadays.

Although the stability analysis has been originally derived to predict the transi-
tion to turbulence without using DNS, it has the ability to reveal all the eigenmodes
present in a flow before the non-linear regime. For instance, Batterson [2011] applied
the methodology to bidirectional vortex, Theofilis [2017] to lid-driven cavity and Dogval
et al. [1994]; Theofilis et al. [2000]; Rist and Maucher [2002]; Rist [2005]; Theofilis and

1The reader interested in the other non-linear paths depicted in Fig. 1.3.1 is referred to the book of
Schmid and Henningson [2001] and to the article of Reshotko and Tumin [2006] for detailed descriptions.

2The appellation LST by the fluid dynamics community for one-dimensional problems is confusing
and, as emphasized by Groot [2013], UniGlobal stability analysis would be more appropriate in the
current context. Even though LST must stand only for Linear Stability Theory, the abbreviation is
used in the current thesis when the one-dimensional stability equations are involved.
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Colonius [2004]; Rodriguez and Theofilis [2010]; Rodriguez [2010] exploited extensively
the incompressible stability equations for the analysis of different modes in the laminar
separation bubbles. The application of the stability theory to compressible flows is more
rare and only a few examples can be found in the literature (Boin et al. [2006]; Robinet
[2007]; Guiho et al. [2015, 2016]). In addition, the exact compressible BiGlobal equations
have been reported for the first time by Groot [2013].

1.4 Thesis objectives
Analysing the stability of the shock-wave/boundary-layer interaction must take into
account the two-dimensionality of the phenomenon, justifying the application of the
BiGlobal linear stability theory. The development and the validation of a BiGlobal
solver based on the compressible formulation of the linear equations derived by Groot
[2013] consist of the first objective of the thesis (chapters 2 and 3). As a part of this
objective, the pressure boundary closure derived by Theofilis [2017] for incompressible
problems is adapted to the present compressible solver in order to improve the quality
of the stability results.

The second objective handled in chapter 4 is the stability analysis of compressible and
incompressible developing boundary layers. It aims to study the effect of the method
used to compute the equilibrium solution of the NSE on the BiGlobal results. The
understanding of the impact of the boundary conditions and of the grid convergence
on the stability results is a fundamental purpose handled in chapter 4. Furthermore, it
aims at providing a first insight into the underlying physics of simple developing flows
in order to acquire experience for further more complex flows. The improvement of
the representation of the convective modes is a third objective of the thesis and the
methodology employed is presented in chapter 4 with developing boundary layers.

The fourth objective, handled in chapter 5 of the thesis, is the analysis of the laminar
shock-wave/boundary layer interaction computed with direct numerical simulations. It
aims at the comparison with the experiments conducted by Giepman [2016] and with
similarity laws derived from the free interaction theory to predict the wall-pressure dis-
tribution within the separation bubble. Finally, the identification of the instabilities
present in the laminar shock-wave/boundary layer interaction and providing an initial
analysis of their underlying characteristics is the ultimate objective of the thesis.

The overall purpose of the research work is to understand the atoms of the flows
physics of developing boundary layers and of laminar shock-wave/boundary layer inter-
actions through direct numerical simulations and the built BiGlobal tools.



2. BiGlobal Stability Solver

This chapter consists of the development of a BiGlobal stability code written in the
Matlab language. The first section considers the different theoretical aspects to take
into account regarding the stability theory in general. The derivation of the equations is
not handled in the current thesis and the reader is referred to Groot [2013]; Pinna and
Groot [2014].
The second part focuses on the numerical approaches followed to implement the BiGlobal
stability solver. The Chebyshev and Lagrange polynomials are presented to ensure
discretisation with high accuracy. In addition, two mappings of the collocation points
to the physical space are handled. The concepts are used to numerically represent
the stability equations in terms of a discrete eigenvalue problem. Different boundary
conditions are discussed and implemented in the current solver. Finally, some brief
explanations about the Matlab built-in eigensolver end the chapter.

2.1 Theoretical approach
From a general point of view, stability theories are based on the linearisation of the con-
sidered equations around an equilibrium state. For the unsteady Navier-Stokes Equa-
tions (NSE), the instantaneous flow is decomposed into a base flow Q and a perturbation
part q′ leading to:

Q = Q+ q′. (2.1.1)

It is important to remark that Q is O(1) while the perturbations q′ are O(ε) with
ε << 1, i.e. q′ are infinitesimally small as opposed to the Q and hence do not have an
effect on the variables latter. The equilibrium state Q is so-called the base flow which
is distinguishable from a mean flow, consisting of a statistically time averaged flow. In
a mean flow, all the non-linearities are included and may not have to correspond to a
proper equilibrium solution of the NSE. A differentiation has to be done between the
current decomposition proposed by Eq. (2.1.1) and the Reynolds Averaged Navier Stokes
(RANS) approach. While the former assumes a total decoupling between Q and q′, the
RANS equations consider that the fluctuation component influences the mean flow.
Regarding the stability analysis, the equations obtained by the introduction of (2.1.1)
in the NSE are called the mean-plus-perturbation equations. The stability equations
to be solved ultimately are obtained by subtracting the base flow equations from the
mean-plus-perturbation equations and performing linearisation.

8
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2.1.1 Stability equations

In addition to the linearisation accompanying Eq. (2.1.1), the perturbation q′ is decom-
posed into the following modal form:

q′ = q̃e(Θ(x,y,z)−ωt) + c.c, (2.1.2)

where Θ(x, y, z), ω are the complex phase in space and angular frequency, respectively.
q̃ is the complex perturbation amplitude and the additional term c.c ensures that q′
remains a real quantity. The spatial feature of the modes is defined by Θ(x, y, z) where
the real part gives information about the wavenumber and the imaginary part represents
the spatial growth rate or, more generally, the amplitude. On the other hand, the
real and the imaginary parts of ω are the frequency and the temporal growth rate,
respectively.
Nowadays, the available computational power does not allow to solve three-dimensional
(TriGlobal) problems with regular workstations and, therefore, the spatial directions
are not all numerically resolved. It implies that one (or two) directions are spectrally
(i.e. homogeneously) solved. Considering a spectral direction implies that a unique
wavenumber of the modes is imposed such that the derivatives in this direction are not
based on numerical differentiations. In other words, it imposes the periodicity of the
modes in the direction resolved spectrally. Tab. 2.1.1 summarises the different kinds of
global stability equations. Generally, the LST method solves spectrally the streamwise
and the spanwise direction while the only differential direction is the wall-normal one.

Name Perturbation Base Flow
TriGlobal q′ = q̃(x, y, z)e−iωt + c.c 3D

Streamwise BiGlobal q′ = q̃(x, y)ei(βz−ωt) + c.c 2D
Spanwise BiGlobal q′ = q̃(y, z)ei(αx−ωt) + c.c 2D

LST q′ = q̃(y)ei(αx+βz−ωt) + c.c 1D

Table 2.1.1: Global stability appellation and related modal formulation of the perturba-
tions.

Instead of solving the entire 3D domain with the TriGlobal stability equations, the
use of the BiGlobal or LST approaches on different base flows locations inside the whole
domain is feasible, i.e. extracted profiles or planes of interest. The LST method is
generally applied at different streamwise locations for developing flows. However, it
keeps the homogeneity assumption in the streamwise direction and the base flow wall-
normal velocity is not included in the problem. Therefore, the streamlines are parallel to
the wall; the non-parallel effects are neglected in the stability solutions. An alternative is
the use of a spatial marching instead of solving each location separately. Such methods
are known as the Parabolised Stability Equations (PSE) and consist of allowing a slight
amplitude change in the marching direction, essentially streamwise. It makes generally
sense only for the streamwise direction the boundary layer advects perturbations in this
direction, while developing at a slow rate compared to the large length scale. As the
PSE are not used in the current thesis, the reader is referred to Holmes [2013] for more
information. Only the streamwise and spanwise BiGlobal equations are considered in
the present implementation.
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In the present thesis, all variables are expressed in the temperature and pressure
variables using the calorically perfect gas equation of state, expressed in terms of the
base flow and perturbation variables as follows:

γM2P = ρT , γM2p′ = ρ′T + ρT ′. (2.1.3)

with p the pressure, T the temperature and ρ the density. The Mach number is defined
by M = U e/

√
γRT e with R the specific gas constant, γ the specific heat’s ratio and the

subscript e indicative of a quantity evaluated in the freestream. On the other hand, the
instantaneous transport coefficients, such as the viscosity coefficients µ and λ and the
thermal conductivity k, are assumed to vary only with the temperature T , yielding to:

µ =
∂µ

∂T

∂T

∂x
, λ =

∂λ

∂T

∂T

∂x
, k =

∂k

∂T

∂T

∂x
, (2.1.4)

µ′ =
∂µ

∂T
T ′, λ′ =

∂λ

∂T
T ′, k =

∂k

∂T
T ′, (2.1.5)

where the derivatives of the base flow transport coefficients depend only on the base flow
temperature T and on the viscosity/conductivity law (Sutherland or the power law).

2.2 Numerical approach

2.2.1 Weighted residual methods

The choice of the discretisation in the BiGlobal code development is handled in order
to ensure accurate results. As previously done by many authors (Robitaillié-Montané
[2005]; Piot [2008]; Batterson [2011]; Pinna [2012]; Groot [2013]), the numerical discreti-
sation is based on a pseudo-spectral method with Chebyshev polynomials. The spectral
methods represent a type of weighted residual methods. It assumes that the solution of
an ODE can be evaluated as a series expansion minimising the error with the exact func-
tion at the discrete nodes. A spatial (time-independent) ODE equation can be written
in the general form:

Af(ξ) = g(ξ), ξ ∈ [−1; 1], (2.2.1)

where A could be any spatial differential operator with respect to ξ and f(ξ) contains
the variables. Assuming that the solution of Eq. (2.2.1) is given by a series expansion
leads to

f(ξ) =
∞∑

k=1

f̂k−1φk−1(ξ), ξ ∈ [−1; 1], (2.2.2)

under the hypothesis of homogeneous boundary conditions. In Eq. (2.2.2), both f̂k−1

(expansion coefficients) and φk−1(ξ) (basis function) have to be determined. Only a
finite number of points is used, leading to the truncated series:

fN(ξ) =
N∑

k=1

f̂k−1φk−1(ξ), ξ ∈ [−1; 1]. (2.2.3)
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The residual is defined by the difference between the polynomials approximation and
the exact function:

R(ξ) := fN(ξ)− f(ξ) (2.2.4)

The fundamental of the weighted residual methods is to select expansion coefficients
such that: ∫ +1

−1

R(ξ)wi(ξ)dξ = 0, (2.2.5)

where wi (for i = 1, ..., N) are test functions to determine. Amongst the different ways to
verify Eq. (2.2.5), the current approach focuses only the spectral methods characterized
by globally defined basis functions. In this sub-category of the weighted residual meth-
ods, the test functions can verify Eq. (2.2.5) following different approaches: Galerkin,
Collocation, τ -method, Petrov-Galerkin.
According to Batterson [2011] and Pinna [2012], the collocation method is the more
adapted for the eigenvalue problem of the stability analysis. Therefore, wi is selected
such thatR(ξ) is zeroed at each collocation node ξi. Mathematically, this can be written:

R(ξi) = 0, (2.2.6)

which implies that the test functions should verify:

wi = δ(ξ − ξi) with δ(ξ − ξi) =

{
1 for ξ = ξi
0 for ξ 6= ξi

. (2.2.7)

Using the conditions described by Eq. (2.2.7), the expansion coefficients f̂k are deter-
mined through the set of equations:

fN(ξi) =
N∑

k=1

f̂k−1φk−1(ξi), (2.2.8)

where the only unknowns are the basis functions.
For periodic problems, the basis functions could be trigonometric polynomials (Fourier

series), but it is subjected to Runge oscillations if the periodicity is not strictly respected.
The Chebyshev polynomials circumvent this issue, logically introduce a non-uniform grid
and are able to sustain quite sharp gradients. For a detailed comparison of both methods,
the reader is referred to Dutykh [2016].

2.2.2 Chebyshev and Lagrange polynomials

The Chebyshev polynomial of the first type is a solution of the Sturm-Liouville equation:

(1− ξ2)
∂T 2

k−1

∂ξ2
(ξ)− ξ ∂Tk−1

∂ξ
(ξ)− k2Tk−1 = 0, (2.2.9)

By applying the change of variables ξ = cos θ with 1
dξ

= − 1
sin θ

d
dθ
, Eq. (2.2.9) simply

becomes:
d2Tk−1

dθ2
+ (k − 1)2Tk−1 = 0. (2.2.10)
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The solution of Eq. (2.2.10) reads:

Tk−1 = cos((k − 1)θ), (2.2.11)

and represents the Chebyshev polynomial of the first kind. The derivative of Eq. (2.2.11)
gives:

dTk−1

dθ
= (k − 1)

sin((k − 1)θ)

sin(θ)
= (k − 1)Uk−1, (2.2.12)

where UN−1 is defined as the Chebyshev polynomial of the second kind. Finally, consid-
ering again θ = arccos(ξ), the polynomials become:

Tk−1 = cos((k − 1) arccos(ξ)), Uk−1 =
sin((k − 1) arccos(ξ))

sin(arccos(ξ))
, (2.2.13)

for ξ ∈ [−1, 1]. To circumvent the limited interval of ξ where the inverse transformation
is valid, mappings to the physical domain are applied and will be presented later.
Introducing Tk−1 as a basis function in Eq. (2.2.3) leads to:

fN(ξ) =
N∑

k=1

f̂(k−1)T(k−1)(ξ). (2.2.14)

According to De Vicente et al. [2012], the orthogonality of the Chebyshev polynomi-
als of the first kind as well as the condition represented by Eq. (2.2.7) allows writing
Eq. (2.2.14) as a Lagrange interpolation:

fN(ξ) =
N∑

i=1

f(ξi)ψi(ξ), (2.2.15)

where, according to Robitaillié-Montané [2005], Batterson [2011], De Vicente et al. [2012]
and Groot [2013], the Lagrange functions ψi(ξ) correspond to:

ψi = κi(ξ) =
(−1)i

ci(N − 1)2

(
1− ξ2

ξ − ξ2
i

)
dTN−1

dξ
=

(−1)i+1

ci(N − 1)2

(√
1− ξ2

ξ − ξ2
i

)
UN−1,

(2.2.16)

with ci =

{
2 for i = 1 or i = N
1 for 2 ≤ i ≤ N − 1

.

However, inasmuch as the discretisation is to be applied with BiGlobal stability equa-
tions, the previous development is extended to a second dimension η (Groot [2013]):

fNξ×Nη(ξ, η) =

Nξ∑

i=1

Nη∑

j=1

f(ξi, ηj)ψji(ξ, η) =

Nξ∑

i=1

Nη∑

j=1

fjiκi(ξ)γj(η), (2.2.17)

with the corresponding Lagrange functions:

κi(ξ) =
(−1)i

ci(N − 1)2

(
1− ξ2

ξ − ξ2
i

)
dTN−1

dξ
=

(−1)i+1

ci(N − 1)2

(√
1− ξ2

ξ − ξ2
i

)
UN−1, (2.2.18)

γj(η) =
(−1)j

cj(N − 1)2

(
1− η2

η − η2
j

)
dTN−1

dη
=

(−1)j+1

cj(N − 1)2

(√
1− η2

η − η2
j

)
UN−1, (2.2.19)
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where
ci =

{
2 for i = 1 or i = Nξ

1 for 2 ≤ i ≤ Nξ − 1

cj =

{
2 for j = 1 or j = Nη

1 for 2 ≤ j ≤ Nη − 1
.

2.2.3 Pseudo-spectral derivatives

The major advantage of the Chebyshev polynomials is to evaluate the derivatives of
Eq. (2.2.17) as follows:

∂fNξ×Nη(ξ, η)

∂ξ
=

Nξ∑

i=1

Nη∑

j=1

fji
∂κi(ξ)

∂ξ
γj(η), (2.2.20)

∂fNξ×Nη(ξ, η)

∂η
=

Nξ∑

i=1

Nη∑

j=1

fjiκi(ξ)
∂γj(η)

∂η
, (2.2.21)

which can be written:

∂fNξ×Nη(ξ, η)

∂ξ
=

Nξ∑

i=1

Nη∑

j=1

Nξ∑

m=1

fjm1Dξ,miκi(ξ)γj(η), (2.2.22)

∂fNη×Nη(ξ, η)

∂η
=

Nξ∑

i=1

Nη∑

j=1

Nη∑

m=1

1Dη,jmfmiκi(ξ)γj(η), (2.2.23)

such that the derivatives are computed by multiplying the discrete function f with the
coefficients:

1Dξ =





1Dξ,11 =
2(Nξ−1)2+1

6

1Dξ,ii = − ξi
2(1−ξ2i )

for i = 2, ..., Nξ − 1

1Dξ,im = ci
cm

(−1)i+m

ξi−ξj for i 6= m i,m = 2, ..., Nξ − 1

1Dξ,NξNξ = −2(Nξ−1)2+1

6

, (2.2.24)

where the subscript 1 indicates a one dimensional formulation of the matrix:

1Dξ =




2(Nξ−1)2+1

6
. . . 2 (−1)1+m

1−ξm . . . 1
2
(−1)1+Nξ

... . . . . . . (−1)i+m

ξi−ξm
...

1
2

(−1)i+1

ξi−1

... − ξi
2(1−ξ2m)

... (−1)
i+Nξ

ξi+1

... (−1)i+m

ξi−ξm . . .
. . . ...

−1
2
(−1)Nξ+1 . . . 2 (−1)

Nξ+m

1+ξm
. . . −2(Nξ−1)2+1

6




. (2.2.25)
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This is the pseudo-spectral differentiation matrix (Batterson [2011]). To be complete,
Eq. (2.2.24) and Eq. (2.2.25) have to be extended in the other direction, η, but this is
not shown in full for sake of brevity. The matrix Eq. (2.2.25) and its analogue for η are
simply used as a coefficient matrices to compute the derivatives of the function fNξ×Nη
at the collocation nodes. A Matlab suite for collocation methods has been implemented
by Weideman and Reddy [2000] to efficiently obtain the numerical representation of
Eq. (2.2.25).

2.2.4 Vector and matrix representation

In the previous sections, all the mathematical development are based on the matrix form
of the function fNξ×Nη . However, in order to solve ultimately an eigenvalue problem,
fNη×Nη should be written in stack-column vector form. The different columns of fNη×Nη
are concatenated to construct a vector as follows:

fNη×Nη =




f11 f12 . . . f1Nξ

f21 f22
...

... . . . ...
fNη1 . . . . . . fNηNξ


 =⇒ fNη×Nη =




f11
...

fNη1

f12
...

fNη2
...

f1Nξ
...

fNηNξ




, (2.2.26)

The pseudo-spectral differentiation matrix (Eq. (2.2.25)) has to be adapted in a same
way. This transformation is handled by considering the Kronecker product, defined on
arbitrary matrices Am×n and Bp×q as follows:

Am×n ⊗Bp×q =



a11B . . . a1nB
... . . . ...

am1B . . . amnB


 = Cnq×mp, (2.2.27)

According to Eq. (2.2.27), the pseudo-spectral differentiation matrices become:

Dξ = 1Dξ ⊗ INη , Dη = INξ ⊗ 1Dη, (2.2.28)

Dξ = 1Dξ ⊗ INη , Dη = INξ ⊗ 1Dη, Dξη = 1Dξ ⊗ 1Dη, (2.2.29)

with the INξ and INη identity matrices of sizes Nξ × Nξ and Nη × Nη, respectively.
Fig. 2.2.1a, 2.2.1b and 2.2.1c show the non-zero elements of the differential matrices,
with Nξ = Nη = 5 collocation nodes.
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Figure 2.2.1: Non-zero coefficients of the pseudo-spectral differentiation matrices with
Nξ = Nη = 5.

2.2.5 Mapping to physical space

The Chebyshev polynomials have been derived by considering only a square domain
[−1, 1] × [−1, 1]. To represent other domain types, mapping methods are used. In the
current thesis, two mappings are considered.

Bi-linear mapping

A first mapping is proposed by Malik [1990] and has been extensively used by Piot
[2008]; Pinna [2012]; Groot [2013]. It reads:

y =
yiymax(1 + η)

ymax − η(ymax − 2yi)
, (2.2.30)

with y the wall-normal direction in the physical space [0, ymax]. The same formula can
be applied for the mapping in the x-direction. The coordinate yi represents mapping
half of the points in [0, yi] and the other half in [yi, ymax]. For semi-infinite problem,
where ymax tends to infinity, it becomes:

y =
yi(1 + η)

1− η . (2.2.31)

If yi is equal to ymax/2, Eq. (2.2.30) degenerates into:

y =
ymax

2
(1 + η), (2.2.32)

which implies a uniform repartition of the collocation points.

Bi-quadratic mapping

The second mapping, developed by Groot et al. [2017], divides the domain into three
refinement regions. In the current thesis, where SWBLI is ultimately studied, particular
refinements are needed to resolve the shock and the bubble in the x-direction. It justifies
the use of the bi-quadratic mapping, which reads:
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y = ymax
aη2 + bη + c

dη2 + eη + cf
, with





a = (yi2 − 3yi1)
b = 1.5(yi2 − yi1)
c = 0.5(yi2 + 3yi1)
d = 2(2yi2 − 2yi1 − ymax)
e = 0
f = 2ymax − yi2 + yi1

, (2.2.33)

where the values yi1 and yi2 have to be selected such that 0 < yi1 < yi2 < ymax,
yi2 < 9yi1 and 9yi2 < yi1 + ymax to avoid discontinuities and mapping outside the
physical domain [0, ymax]. The bi-quadratic mapping separates the domain in to three
parts ([0, yi1], [yi1, yi2] and [yi2, ymax]), each containing one third of the collocation nodes.
The cosine distribution is (globally) maintained near the boundaries, so avoiding the
Runge phenomenon.

Mapping and pseudo-spectral differentiation matrices

The mapping functions are finally taken into account to compute the coefficients of the
pseudo-spectral differentiation matrices acting in the physical space of interest. Using
the chain rule for the wall-normal direction leads to:

∂f

∂y
=
dη

dy

∂f

∂η
, (2.2.34)

which could be written as:
1Dy = 1T

η
y 1Dη, (2.2.35)

where 1T
η
y is the discrete analogue of dη/dy used to scaled the derivatives. Considering

again the form to be applied to the stack-column representation, Eq. (2.2.35) becomes:

Dy = T ηyDη = ( 1T
η
y ⊗ INξ )( 1Dη ⊗ INξ ) = ( 1T

η
y 1Dη ⊗ INξ ), (2.2.36)

Finally, the full discretisation process is handled by extending Eq. (2.2.36) to the x-
direction as well as to the other derivatives (Eq. (2.2.28) and Eq. (2.2.29)).

2.2.6 The eigenvalue problem

From a general point of view, the eigenvalue problem of the stability equations can be
written as:

AΞ = λB Ξ + λ2B2 Ξ, (2.2.37)

with Ξ an eigenvector and λ the corresponding eigenvalue. The latter can be either a
complex spatial wavenumber (α or β) or a complex frequency ω, depending on the kind
of stability problem solved. The matrices A and B are the amplitude coefficient matrices
corresponding to the stability equations derived by Groot [2013]. In the present thesis,
the temporal features are of main interest and Eq. (2.2.37) degenerates into:

AΞ = ωB Ξ, (2.2.38)
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simply due to the linearity of the stability equations with respect to ω. The eigenvector
Ξ represents the different perturbation variables, expressing the thermodynamics in the
temperature and pressure variables (T̃ , p̃). Therefore, Ξ has the form:

Ξ =




ũ
ṽ
w̃

T̃
p̃



, (2.2.39)

where each component is a vector of size NηNξ. Dealing with compressible stability
equations, other combinations of thermodynamics variables are possible such as (ρ̃, T̃ ),
(ρ̃, p̃) using the calorically perfect gas equation of state.

The amplitude coefficient matrices for temporal compressible stability analysis reads:

A =




Lũ1 Lṽ1 Lw̃1 LT̃1 Lp̃1
Lũ2 Lṽ2 Lw̃2 LT̃2 Lp̃2
Lũ3 Lṽ3 Lw̃3 LT̃3 Lp̃3
Lũ4 Lṽ4 Lw̃4 LT̃4 Lp̃4
Lũ5 Lṽ5 Lw̃5 LT̃5 Lp̃5



, B =




Rũ
1 0 0 0 0

0 Rṽ
2 0 0 0

0 0 Rw̃
3 0 0

0 0 0 RT̃
4 Rp̃

4

0 0 0 RT̃
5 Rp̃

5



, (2.2.40)

where the subscripts 1, 2 and 3 are, respectively, referencing to x-, y-, z-momentum
equations while 4 and 5 stand for the continuity and the energy equations. L or R
correspond to the coefficients in stability equations, while the superscripts indicate the
variable they multiply. Up to this point, the matrices A and B depend only on the base
flow. The boundary conditions have to be imposed for the five perturbations variables
at the four boundaries of the domain.

2.2.7 Boundary and compatibility conditions

Having an infinite domain would be the perfect condition to represent a natural phe-
nomenon, but it is impossible to represent discretely. It implies that the domain used
should be finite and boundary conditions have to be chosen.
The boundary conditions replace the governing equations at the boundary nodes of the
domain. Note that any eigenvalue problem is homogeneous in the sense that there is no
forcing term and therefore, all the boundary conditions should verify this property as
needed as well for the collocation method. The detailed theoretical foundations about
the boundary conditions can be found in the master thesis of Groot [2013]. The cur-
rent section briefly handles their implementation in the BiGlobal tools. An exception is
made for the linearised pressure Poisson equation (LPPE) initially derived by Theofilis
[2017] for the incompressible stability equations. A detailed derivation of the LPPE is
handled in the current section for the compressible stability equations. The effect on
the results is analysed in chapter 4 beside the stability of developing compressible and
incompressible boundary layers.
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Homogeneous Dirichlet condition

Applying on a variable the Dirichlet conditions consists of imposing zero at the consid-
ered boundary. It is an essential feature to represent the no-slip condition at a solid
wall. According to Groot [2013], imposing such a condition in the present eigenvalue
problem consists of setting 1 in the amplitude coefficient matrix A at the location of the
boundary and imposing 0 elsewhere for the corresponding variable, including in B.

Homogeneous Neumann condition

The Neumann condition specifies a variable to have zero normal derivative at the bound-
ary. This condition involves, therefore, coefficients in differentiation matrices. For the
B matrix, it simply corresponds to set 0 at the location of the boundary, while for the
matrix A, the coefficients from the stability equations are overwritten by the pseudo-
spectral differentiation matrices Dξ or Dη.

Pressure Compatibility (PC) condition

The solid boundary closure for the pressure is an issue encountered when solving flow
problems and thus as well for the linear stability problem on a collocated grid. Although
the no-slip condition logically extrapolates to velocity and temperature perturbations,
there is no such condition for the pressure. Different closures are commonly applied.
A widely used boundary closure variant is the PC equation, based on evaluating a mo-
mentum equation at the wall. The resulting equation relates the first order wall-normal
derivative of the pressure to (higher order derivatives of) the velocity and temperature
variables. Considering a streamwise BiGlobal stability problem, where the top and bot-
tom boundaries are a solid-wall, the PC closure is derived by using the y-momentum
equation with enforcing the no-slip and isothermal condition (ũ = ṽ = w̃ = T̃ = 0)
through Dirichlet condition. Therefore, the PC closure reads:

[
γ M2 V V y

T
+
γ M2 U V x

T
+

∂

∂y

]
p̃ (2.2.41)

=

[
µT T x
Re

∂

∂y
+

µ

Re

∂2

∂x∂y
+

λ

Re

∂2

∂x∂y

]
ũ

+

[
−γ M

2 P V

T

∂

∂y
+

2µT T y
Re

∂

∂y
+
λT T y
Re

∂

∂y
+

2µ

Re

∂2

∂y2
+

λ

Re

∂2

∂y2

]
ṽ

+

[
i β µ

Re

∂

∂y
+
i β λ

Re

∂

∂y

]
w̃

+

[
2µT V y

Re

∂

∂y
+
λT V y

Re

∂

∂y
+
λT Ux

Re

∂

∂y

]
T̃ .

This boundary closure does not introduce independent information for the pressure
(Rempfer [2006]) and it causes strongly oscillatory spurious modes which can affect
physical modes by displaying comparable oscillations. To circumvent the issue, Theofilis
[2017] derives the LPPE for the incompressible stability equations and it effectively
removes the spurious mode. Consequently, an adaptation of the LPPE for compressible
flow is derived in the current thesis.
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Linearised Pressure Poisson Equation (LPPE)

The LPPE is used at boundaries where the no-slip condition causes the flow to approach
the incompressible limit. This justifies using the incompressible Poisson equation as a
boundary condition for the pressure, when accounting for the appropriate thermody-
namic properties. Following Theofilis [2017], the Poisson equation for the instantaneous
flow reads:

∂2p

∂xi∂xi
= −ρ ∂

∂xi

(
uk

∂

∂xk

)
ui. (2.2.42)

where p is the pressure, ui are the velocity components and xi the coordinates (x1 = x,
x2 = y, x3 = z). As a result, the LPPE for a no-slip condition at a boundary y = const
becomes:

[
∂2

∂x2
+

∂2

∂y2
− β2 +

γ M2

T

(
2Uy V x + U

2

x + V
2

y

)]
p̃ (2.2.43)

= −2
γM2P

T

[
V x

∂

∂y

]
ũ

−2
γM2P

T

[
V y

∂

∂y

]
ṽ.

2.2.8 Practical implementation

Considering the previous concepts, the matrices A and B, where the boundary conditions
are included, are built. In order to solve any kind of temporal BiGlobal stability problem,
the matrices are generated in four steps illustrated in Fig. 2.2.2. In this example, only A
is handled for sake of clarity; the matrix B is similarly built. For this illustrative case,
the Neumann condition is imposed for all the variables at inlet/outlet while the no-slip
condition is imposed for the top and bottom boundaries beside the PC closure for the
pressure. Therefore, according to Fig. 2.2.2, the different steps consist of:

• (a) The base flow is interpolated on the Chebyshev collocation node and the matri-
ces A and B are filled with the coefficients in front of each variable in the BiGlobal
stability equations.

• (b) All the boundary nodes are zeroed without considering the type of boundary
conditions to be applied later on.

• (c) The values of the boundary conditions are imposed in the A matrix. The red
dots correspond to coefficients set to 1 for Dirichlet conditions. The green dots are
the corresponding coefficients of the pseudo-spectral differentiation matrices Dξ or
Dη where the Neumann conditions are applied. In matrix B, the coefficients at
the boundaries remain zero.

• (d) The PC boundary closure is imposed for the pressure in matrix A and B.
The y-momentum equation at the boundaries is shifted in A and B to lie beside
the energy equation. It is equivalent to impose Eq. (2.2.41), but it consists a
more systematic application of the boundary conditions. The same is applicable
regarding the x-momentum equation, if the inlet/outlet needs the closure for the
pressure as well.
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(d) Final matrix with PC boundary closure
at y = 0, ymax (magenta).

Figure 2.2.2: Construction of the matrix A with [Nξ, Nη] = [5, 5].

Finally, the eigenvalue problem can be solved for the two matrices A and B. It can
be remarked that the size of the matrices is already significant (125 × 125) for a very
simple illustrative case [Nξ ×Nη] = [5× 5].

2.2.9 Solving the eigenvalue problem

Two widely used algorithms, the QZ and Arnoldi algorithms, are available through the
ARPACK and LAPACK routines, and offer the possibility to solve the current large
eigenvalue problems. From a general point of view, the two methods do not give the
same accuracy and the eigenvalue problem is treated in a very different way. The QZ-
algorithm (function eig in Matlab) is a direct method which solves the entire problem
and delivers all the eigenvalues with their corresponding eigenfunctions. On the other
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hand, the Arnoldi algorithm (function eigs in Matlab) is an iterative method based on
the formation of a Krylov subspace, which needs an initial eigenvector to compute a
certain amount of eigenvalues close to it. It has the advantage to be fast as it provides
only the required number of eigenvalues instead of solving the entire problem. In stability
theory, the region where the most unstable modes are located is generally close to the
origin in the half-plane of positive real parts and the initial value for the iterative method
can be easily selected.
On the other hand, it is important to note that the eigensolvers have a limited accuracy,
which is relevant to identify for both algorithms in order to track eventual accuracy lacks
in the stability solution. The QZ-algorithm is capable of solving the eigenvalue problem
with an accuracy (Anderson et al. [2012]) up to:

εQZcrit = εmmax(‖A‖F , ‖B‖F ), (2.2.44)

where ‖A‖F and ‖B‖F denote the Frobenius norm of the matrices A and B. Moreover,
εm stands for the machine precision, generally about 10−16. All the solutions below the
εcrit should be considered with care as it reaches the edge of the solver accuracy. For
the current compressible stability problem, the observed εcrit is about 10−12. According
to Lehoucq et al. [2012], the accuracy of the Arnoldi algorithm reads:

εArnoldicrit = εm|ω|, (2.2.45)

where ω is a complex eigenvalue computed by the eigensolver. Dealing with temporal
stability, ω is generally small and therefore the accuracies of the two algorithms are
indistinguishable. In the current thesis, the Arnoldi algorithm is mainly used for the
streamwise stability problems due to extremely large matrices A and B.



3. Parallel Blasius Boundary Layer

The parallel (non-developing) boundary layer profile is a case for which the stability has
been well studied by many authors during the past decades and represents a relatively
simple case to validate the BiGlobal code. A first analysis consists of a supersonic flat
plate boundary layer profile for which the only velocity component of the boundary
layer is exactly aligned with the streamwise direction. The second analysis is conducted
using a low Mach number Blasius profile to demonstrate the ability of the compressible
BiGlobal code to solve very low subsonic cases. A third case is analysed by using the
former supersonic parallel flow where a spanwise component of the base flow velocity,
W , is added, implying that the direction of the flow is not aligned with the streamwise
direction. The velocity W is added to the base flow such that the direction of the
flow is perpendicular to the wave front of the most unstable mode, minimising the
number of nodes required to represent the mode structure in the plate parallel direction.
Conducting such a rotation involves other terms of the stability equations, but the most
unstable mode showing up is exactly the same as for the streamwise case, allowing
a direct verification. For all the cases, a convergence analysis is performed in both
directions. The current results are finally compared with stability analyses carried out
by Mack [1976], Malik [1990], Pinna [2012] and Groot [2013].

3.1 Numerical set-up of the base flows
The profiles of both compressible and incompressible boundary layers have been com-
puted by Groot [2013] with a fourth-order Runge-Kutta shooting method. The base
flows are computed such that the residual is below the critical epsilon of the eigenvalue
problems leading to 104 points for the incompressible profile while the compressible case
comprises 3.2×106 points. On the other hand, as the considered cases consist of parallel
Blasius flows, only one of each compressible and incompressible profile is computed and
is duplicated in the spanwise direction in order to create two-dimensional base flows
for BiGlobal analysis. The self-similar compressible Blasius boundary layers can be
evaluated, according to White [1991], with the set of equations

{
(cf ′′)′ + ff ′′ = 0
( c
Pr
g′)′ + fg′ + (γ − 1)M2cf ′′2 = 0,

(3.1.1)

coupled with the boundary conditions

for f :





f ′(0) = 0
f(0) = 0
limη→∞ f ′(η) = 1,

for g :





g′(0) = 0

limη→∞ g(η) = 1,
(3.1.2)

22
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and considering the superscript d indicates dimensional variables




f ′(η) = df(η)
dη

= U
d
(η)

U
d
e

g(η) = h
d
(η)

h
d
e

c = ρdµd

ρdeµ
d
e

ξ(xd) =
∫ xd

0
ρdU

d

eµ
d
edx̃

d

η(xd, yd) = U
d
e√
2ξ

∫ yd
0
ρddỹd

. (3.1.3)

The thermodynamic quantities are evaluated assuming a calorically perfect gas and
therefore, the density and the enthalpy can be expressed in terms of the other variables:

γM2P = ρT , h = cpT , (3.1.4)

where cp is the heat capacity ratio at constant pressure. On the other hand, the Lamé’s
second viscosity parameter (dynamic viscosity) µ and the thermal conductivity are eval-
uated with the Sutherland law as follows:

µd = C
(T

d
)3/2

T
d

+ S
, k =

cpµ

Pr
, (3.1.5)

where Pr = 0.7 is a constant Prandtl number and the temperature is in Kelvin. The
Sutherland constant are defined as S = 110.4K and C = 1.458×10−6 kg

ms
√
K
. Moreover,

Stokes hypothesis is considered for the Lamé’s first viscosity parameter λ = −2
3
µ.

3.2 BiGlobal stability analysis

3.2.1 Streamwise parallel Blasius

The BiGlobal stability analysis is carried out on a compressible and an incompressible
boundary layer. In Tab. 3.2.1, the mean flow data is summarised. The velocity com-
ponents U e, V e and W e at the edge of the boundary layer show that the base flow
velocity is strictly aligned in the streamwise direction. A convergence with respect to
the variables yi and ymax used for the mapping of Malik [1990] has been done by Groot
[2013] to show the influence of the domain truncation on the stability results. Selecting
ymax = 283, the domain is sufficiently high to have a proper representation of the decay
of the most unstable mode in the freestream. Additionally, yi is chosen so to impose a
high resolution near the wall. Generally, for boundary layer cases, yi is about δ99, such
that half of the collocation points are mapped into the boundary layer while the other
half is in the freestream.
For both wall and freestream boundaries, the Dirichlet condition is imposed for the
velocity and temperature variables while the compatibility condition is applied for pres-
sure. Concerning the spanwise boundaries, the symmetry is enforced, according to Piot
[2008] who suggested the Neumann condition for all the variables except for the spanwise
velocity perturbations where Dirichlet is enforced (w̃ = 0). For the present temporal
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BiGlobal stability analysis, the streamwise direction is assumed to be spectral (real
wavenumber α). The values of α for both cases is set according to Malik [1990], Pinna
[2012] and Groot [2013]. The aim is to analyse an unstable Tollmien-Schlichting mode
which is represented, for parallel Blasius flow, by a unique discrete eigenvalue. Tab. 3.2.1
shows that for the incompressible case, the TS mode has an infinite spanwise wavelength
(β = 0) while the compressible case assumes an oblique TS wave. In this section, this
mode is especially analysed beside convergence analyses of the results to ensure accurate
comparison with external results for the code validation. For a deep analysis of several
other modes present in the parallel Blasius flows, the reader is referred to the master
thesis of Groot [2013].

M Re U e V e W e β α yi ymax
2.5 3000 1 0 0 0 0.06 6 283

10−6 580 1 0 0 0 0.179 10 283

Table 3.2.1: Parameters of the BiGlobal set-up for the streamwise parallel Blasius.

For the stability analysis, the lengths are scaled with respect to the Blasius length l
and the reference Reynolds number is based on l as well.

Convergence analysis

In Fig. 3.2.1 and Fig. 3.2.2, the convergence of the spectra with respect to different
numbers of collocation points in the wall normal direction η and the spanwise direc-
tion ξ is shown, respectively. Different features can be distinguished when a continuous
branch, a discrete mode or even a purely numerical mode is considered. In Fig. 3.2.1,
the discrete modes have a higher convergence rate than the continuous ones; it is al-
most impossible to distinguish the former when Nη is increased. Tab. 3.2.2 shows the
convergence of the real and the imaginary parts of the Tollmien-Schlichting wave. For
Nη larger than 110, both parts of the complex ωl/U e are converged to the εcrit and it
is therefore not useful to increase the number of collocation points in this direction. As
depicted by Tab. 3.2.3, the most unstable mode is also converged in the z-direction when
Nξ = 15. Moreover, Fig. 3.2.2 shows that when Nξ is increased, a branch extends from
the Tollmien-Schlichting mode towards the branch of vorticity modes corresponding to
higher harmonics. It consists of a cluster of discrete modes related to the most unsta-
ble one. The higher the number of points in the spanwise direction, more and more
harmonics of the TS mode are resolved.

The spurious modes, observable in all spectra for the current parallel Blasius, are
purely numerical and do not represent any physical phenomenon. They come from the
PC boundary closure imposed at the wall and the freestream. Fig. 3.2.1 and Fig. 3.2.2
show clearly a linear divergence of the modes when Nη is increased. On the other hand,
an increasing Nξ adds even more spurious mode. Due to their lack of physical meaning,
the spurious modes should be avoided. Using other boundary conditions for the pres-
sure circumvents the issue. For instance, applying Neumann conditions at the freestream
boundary does not reveal the presence of these modes. However, the decay of the modes
of interest should be taken into account. Imposing Neumann on the perturbations com-
ponents enforces indeed the decay/growth of the modes at the boundaries. In section 4
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Figure 3.2.1: Compressible (M = 2.5) streamwise parallel Blasius: convergence of the
BiGlobal spectrum with respect to the normal direction Nη for a fixed Nξ = 15.

Nη ωrl/U e ωil/U e εcrit
100 0.036691071 0.000572142 1.9e−12

110 0.036691071251 0.0005721423 2.6e−12

120 0.036691071249 0.00057214231 3.4e−12

130 0.036691071247 0.00057214232 4.4e−12

140 0.036691071255 0.00057214231 5.7e−12

150 0.036691071247 0.00057214232 7.2e−12

160 0.036691071247 0.00057214232 9.1e−12

Table 3.2.2: Compressible (M = 2.5) streamwise parallel Blasius: convergence of the
most unstable mode with respect to the spanwise direction Nη for fixed Nξ = 15.

where developing boundary layers are analysed, the application of the previously derived
LPPE is handled beside comparison with Neumann and PC boundary closures.

The continuous branch, even if a low convergence rate is observed, represents physical
modes. The apparition of branches in spectra is due to modes flowing through the
boundaries. For example, the TS waves for a developing boundary layer is travelling from
the inlet to the outlet of the domain. It, therefore, implies the TS mode is represented
by a continuous branch (section 4). In contrast, for the present case of parallel Blasius,
the TS mode is enclosed inside the domain and is not advected within the confinements
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of the domain through the boundaries by any group speed (cgr,TS = 0) defined as:

cgr =
∂ωr
∂kr

, (3.2.1)

where kr is a real wavenumber in the direction of the advection. The continuous branch
depicted by Fig. 3.2.1 represents vorticity modes travelling through the top boundary of
the domain (non-zero group speed).
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Figure 3.2.2: Compressible (M = 2.5) streamwise parallel Blasius: convergence of the
BiGlobal spectrum with respect to the spanwise direction Nξ for fixed Nη = 130.

Nξ ωrl/U e ωil/U e εcrit
5 0.036 0.0006 2.5e−12

10 0.03669 0.000572 3.6e−12

15 0.03669107124 0.000572142317 4.4e−12

20 0.03669107124 0.000572142317 5.1e−12

Table 3.2.3: Compressible (M = 2.5) streamwise parallel Blasius: convergence of the
most unstable mode with respect to the spanwise direction Nξ for fixed Nη = 130.

Additionally, according to Balakumar and Malik [1992], the most dominant part of
a mode is evaluated with the following relation:

U |yq̃max = cph =
ωr
ki
, (3.2.2)

where cph is the phase speed. Considering the asymptotic behaviour of the continuous
branch, it implies that the relation described by Eq. (3.2.2) tends to one; the vorticity
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modes are dominant in the freestream. Thence, it highlights that the mode is prone to
travel across the upper boundary.

A similar convergence analysis is performed with the incompressible boundary layer
as depicted in Fig. 3.2.3 for the wall normal direction η and by Fig. 3.2.4 for the span-
wise direction ξ. The same behaviour as the compressible case can be observed with a
high convergence rate of the discrete modes and a low one for the continuous branch.
Moreover, the spurious modes are again present due to the pressure boundary closure.
Fig. 3.2.3 clearly shows the linear divergence of the spurious modes when the number of
collocation points in the normal direction is increased.
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Figure 3.2.3: Incompressible (M = 10−6) streamwise parallel Blasius: convergence of
the BiGlobal spectrum with respect to the normal direction Nη for a fixed Nξ = 5.

Nη ωrl/U e ωil/U e εcrit
70 0.06517800 0.001424787 6.4e−8

80 0.06517800 0.001424787 8.1e−8

90 0.0651779 0.0014247 1.0e−7

100 0.0651779 0.00142478 2.5e−7

110 0.0651780 0.00142478686 1.2e−7

120 0.0651780 0.001424786857 1.5e−7

Table 3.2.4: Incompressible (M = 10−6) streamwise parallel Blasius: convergence of the
most unstable mode with respect to the normal direction Nη for fixed Nη = 5.

In Tab. 3.2.3, the convergence with respect to Nη is shown for the most unstable
mode. It is converged when the difference between two Nη reaches the order of mag-
nitude of εcrit. Therefore, Nη larger than 100 is sufficient for the incompressible case.
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Nonetheless, εcrit is about 10−7 while the compressible Blasius reaches εcrit = 10−12.
This significant difference is due to the non-dimensional form of the stability equa-
tions. For the incompressible formulation, the pressure is not involved while the present
compressible stability equations use the non-dimensional pressure P = 1

γM2 . For the
incompressible case, with M = 10−6, the pressure is extremely large and the numerical
evaluation of the eigenvalue problem is ill-posed. It leads to a significantly high Frobe-
nius norm of the matrices A and B, increasing εcrit. For this particular reason, even
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Figure 3.2.4: Incompressible (M = 10−6) streamwise parallel Blasius: convergence of
the BiGlobal spectrum with respect to the spanwise direction Nξ for fixed Nη = 100.

Nη ωrl/U e ωil/U e εcrit
5 0.06518 0.00142478 1.0e−7

10 0.06518 0.001424787 1.6e−7

15 0.0651779 0.001424787 2.1e−7

20 0.0651779 0.001424787 2.5e−7

Table 3.2.5: Incompressible (M = 10−6) streamwise parallel Blasius: convergence of the
most unstable mode with respect to the normal direction Nξ for fixed Nη = 100.

though the base flow has been computed with M = 10−6, the constant pressure used to
solve the BiGlobal stability equations is based on M = 10−3, reducing εcrit from 105 to
10−7. A lower value of εcrit could be obtained by increasing again the Mach number, but
it then leads to non-negligible discrepancies with the stability results of Groot [2013].
The choice of M = 10−3 consists of a good compromise between high accuracy (i.e low
value of εcrit) and consistency with the base flow Mach number (i.e very low subsonic
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case). Another approach is to scale the pressure differently, but this would require
changing the equations in the current implementation which is here avoided for integrity
purposes.

Regarding the discretisation in the z-direction (Nξ), Tab. 3.2.4 shows that five points
are already sufficient to ensure converged results. Such a low value of Nξ is simply due
to the zero spanwise wavenumber of the most unstable mode for the incompressible case
(β = 0). It implies that even three points (two for the boundary conditions and one
inside the domain) in z-direction are already sufficient; the wavefronts of the mode are
strictly parallel to the base flow plane. Finally, the collocation grid [Nξ, Nη]× [120, 5] is
kept for later mode analyses and code validation.

Considering the two Blasius cases for which the convergence is ensured, the eigenvalue
of most unstable mode can be compared with stability analyses reported in the refer-
ences carried out on exactly the same cases in order to validate the current BiGlobal tool.
Tab. 3.2.6 compares the present values obtained for the Tollmien-Schlichting mode with
the reported LST data of Mack [1976], Malik [1990], Pinna [2012] and Groot [2013]. The
cited authors reported the values of the complex phase velocity (cph = ω

α
) for the incom-

pressible case, with α = 0.179. Nonetheless, for sake of consistency, Tab. 3.2.6 shows the
complex frequency ω for both incompressible and compressible Blasius boundary layers.
It clearly shows that the results are in perfect agreement with the previous analyses and
the current BiGlobal tool is able to compute the stability properties of both compressible
and incompressible (very low subsonic) cases.

Reference M = 2.5 M = 10−6

Current BiG 0.0366911 + 0.0005721i 0.065177999 + 0.00142478i
Mack [1976] 0.0367339 + 0.0005840i 0.0651739 + 0.001432i
Malik [1990] NA 0.0651739 + 0.0014141i
Pinna [2012] 0.0366795 + 0.0005728i 0.06517569 + 0.00142484i
Groot [2013] 0.0366911 + 0.0005721i 0.065178017 + 0.00142484i

Table 3.2.6: Comparison of the temporal growth rate and frequency of the Tollmien-
Schlichting mode with external LST results.

Analysis of modes

Up to this point, the spectra delivered all the existing eigenvalues in the Blasius flow.
The growth rate, as well as the frequency, can be directly extracted to have an insight
into the temporal stability. However, it does not directly provide spatial information
about the modes. Such analysis is briefly performed in the current section in order to
give an overview of the spatial behaviour of the TS and the pressure spurious modes.
Furthermore, many clusters of discrete modes exist as depicted in Fig. 3.2.1, but it is
not considered as a detailed analysis has been conducted by Groot [2013] for exactly the
same boundary layer cases.

In Fig. 3.2.5 and Fig. 3.2.6, the eigenfunctions corresponding to the TS mode for com-
pressible and incompressible cases, respectively, are shown. For the former, Fig. 3.2.5
shows clearly the spanwise wavelength of the mode corresponding to 2π

β
= 2π

0.1
≈ 62.83l.

After reaching a maximum, all the variables (even T̃ , not shown for sake of brevity),
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Figure 3.2.5: Compressible (M = 2.5) with [Nξ, Nη]× [160, 15]: two dimensional contour
plot of the Tollmien-Schlichting mode.

the mode decays in the wall normal direction. In Fig. 3.2.7a, where the mode is shown
at z/l = 6.85, it can be seen in a better way that all the variable tends to zero when
ymax → ∞. Mathematically, this spatial decay of the Tollmien-Schlichting wave is
represented by e−y

√
α2+β2−(α−ω)2M2 . It is therefore important to impose the boundary

conditions such that the mode behaves properly at the edge of the domain. Applying
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the Neumann condition in the freestream with a too small domain height is generally
not able to represent the proper spatial decay due to an enforced zero-gradient at the
boundary.
Due to the non-zero β, the z-component of the perturbation velocity, w̃, is not zero.
It implies that the wave is oblique and has its front oriented with an angle arctanβ

α
=

arctan 0.1
0.06

= 59.03 ◦ with respect to the streamwise x-axis. In other words, the wave is
travelling with an angle of about 59.03◦ with respect to the streamwise velocity compo-
nent U , although W = 0.
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Figure 3.2.6: Incompressible (M = 10−6) with [Nξ, Nη] × [120, 5]: two dimensional
contour plot of the Tollmien-Schlichting mode.

The TS mode of the incompressible boundary layer is shown in Fig. 3.2.6 over the
entire 2D domain, while Fig. 3.2.7b shows the wave amplitude profile at one spanwise
location. For this case, the spanwise wavelength is infinite (β = 0), yielding a decoupling
of the z-momentum equation and then w̃ = 0. Therefore, for sake of brevity, only ũ and
ṽ are shown in Fig. 3.2.6.
In the wall-normal direction, the behaviour of the mode is quite similar to the compress-
ible one but with a smaller spatial decay in the freestream. It is justified by the smaller β
and Mach number than the supersonic boundary layer case. The incompressible TS wave
presents its maximum amplitude close to the wall while its compressible equivalent has
a first small increase in amplitude at this location and reaches a maximum higher in the
boundary layer. This behaviour is explained with Eq. (3.2.2) derived by Balakumar and
Malik [1992] arguing that the phase speed provides information about the location where
the mode is the most dominant. For the compressible TS case, U |yq̃max = cph = 0.612
showing that the mode has its main impact in the middle of the boundary layer while
for the incompressible case U |yq̃max = 0.364; TS mode is dominant closer to the wall.
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(a) Compressible (M = 2.5) at z/l = 6.85
with [Nξ, Nη]× [160, 15].
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|ṽ|
|w̃|
|T̃ |
|p̃|

(b) Incompressible (M = 10−6) at any z/l
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Figure 3.2.7: Perturbation components normalised by |ũ|max of the Tollmien-Schlichting
mode.

0 1 2
0

5

10

15

20

y
/l

|ũ|
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(a) Compressible (M = 2.5) at z/l = 6.85
with [Nξ, Nη]× [160, 15].

0 1 2 3
0

5

10

15

20

y
/l

|ũ|
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Figure 3.2.8: Perturbation components normalised by |ũ|max for the most unstable spu-
rious pressure mode.

Even if they do not represent any physical phenomenon, it is relevant to distinguish
the spurious modes from the others. Fig. 3.2.8 shows the most unstable spurious modes
for the collocation grids [Nξ, Nη] × [160, 15] and [Nξ, Nη] × [120, 5] for the compressible



CHAPTER 3. PARALLEL BLASIUS BOUNDARY LAYER 33

and incompressible cases, respectively. The oscillatory behaviour of the spurious mode
represents clearly its main characteristic. Generally, ṽ is the most sensitive variable and
presents high amplitude oscillations close to the wall. Regarding the pressure, the first
grid point is overestimated compared to the rest of the field, which is caused by the
PC boundary closure relating the first order wall normal derivative of p̃ with the second
order wall normal derivative of ṽ.

3.2.2 Rotated parallel compressible Blasius (M = 2.5)

The previous analyses based on the streamwise parallel Blasius involved only the x-
component of the velocity field and therefore, many terms of the BiGlobal equations
dropped out due to V = W = 0. In order to verify in another way the stability code, a
velocity W is added to the base flow such that the streamwise case is rotated with an
angle equivalent to arctanW

U
with respect to the x-axis. This rotation is done to have the

wavefronts of the TS mode perpendicular to the flow direction (W,U), which renders the
numerical problem in the z-direction trivial, because, again, only the constant amplitude
profile is to be resolved. It implies

√
W

2
+ U

2
= 1 , W =

βs
αs
U s , U =

U s√
1 + ( βs

αs
)2

(3.2.3)

where the subscript s represents the variables computed beforehand for the streamwise
parallel Blasius. In addition, the value of α for the assumed spectral direction becomes

α =
√
β2
s + α2

s (3.2.4)

Quantitatively, the parameters of the rotated parallel Blasius are summarised in Tab.
3.2.7, for the compressible case only. It is not relevant to rotate the incompressible
boundary layer, because of β = 0; the flow direction is already perpendicular to the
wavefronts of the TS mode.

Case M Re U e V e W e α yi ymax
Streamise 2.5 3000 1 0 0 0.06 6 283
Rotated 2.5 3000 0.514 0 0.858 0.116 6 283

Table 3.2.7: Comparison of the set-up between streamwise and rotated parallel Blasius.

Consequently, the rotation of the flow allows validating in another way the BiGlobal
code as the most unstable mode has the same temporal behaviour but more terms are
involved in the stability equations. Before comparing ω with the streamwise case, a
convergence analysis is carried out in both y and z-directions. Fig. 3.2.9 and Fig. 3.2.10
show the spectrum convergence in the former direction (Nη) for fixed odd and even Nξ,
respectively. A differentiation is done for Nξ because the continuous branches, except
the one with vorticity modes, are not represented in the same way depending if Nξ is odd
or even. For instance, in the range displayed by Fig. 3.2.9 and Fig. 3.2.10, the number of
continuous branches is different. This behaviour is analysed later in the current section
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Figure 3.2.9: Rotated parallel Blasius: convergence of the BiGlobal spectrum with re-
spect to the normal direction Nη for a fixed odd Nξ = 15.

Nη ωrl/U e ωil/U e εcrit
100 0.0366910712 0.000572142 2.0e−12

110 0.03669107125 0.0005721423 3.4e−12

120 0.03669107125 0.00057214231 5.7e−12

130 0.03669107124 0.00057214232 9.1e−12

140 0.03669107125 0.00057214232 2.7e−12

150 0.03669107092 0.00057213759 4.6e−12

160 0.03669107125 0.00057214232 7.5e−12

Table 3.2.8: Rotated parallel Blasius: convergence of the most unstable mode with
respect to the normal direction Nη for a fixed odd Nξ = 15.

by considering different Nξ on a larger spectrum range.

Nonetheless, as depicted in Fig. 3.2.9 and Fig. 3.2.10, the physical modes are not
affected by the odd-even distinction. Therefore, the convergence analysis can be properly
conducted for this TS mode, which remains the most unstable as expected. Tab. 3.2.8
and Tab. 3.2.9 show that increasing Nη leads to a convergence level with an order of
magnitude reaching the critical epsilon for both odd and even Nξ. There is a small
exception with Nη = 150 which exhibits a quite significant difference compared to the
cases with Nη = 140 and Nη = 160. No explanation has been found for this small
discrepancy and it is neglected since all the other cases show a proper convergence of
the results according to the magnitude of εcrit.
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Considering the convergence in z-direction, the strong dependence on the parity of
Nξ is depicted as well in Fig. 3.2.11 and Fig. 3.2.12. It shows that the vorticity branch
with the asymptotic behaviour at ωrl/U e = 0.06 is converged with respect to all Nξ

cases. On the other hand, the adjacent continuous branches converge with a slow rate
as the odd/even Nξ numerically constraints the possible wavenumbers.
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Figure 3.2.10: Rotated parallel Blasius: convergence of the BiGlobal spectrum with
respect to the normal direction Nη for a fixed even Nξ = 16.

Nη ωrl/U e ωil/U e εcrit
100 0.03669107124 0.00057214199 2.6e−12

110 0.03669107138 0.00057214236 4.4e−12

120 0.03669107116 0.00057214233 7.2e−12

130 0.03669107132 0.00057214217 2.1e−12

140 0.03669107108 0.00057214291 3.5e−12

150 0.03669107165 0.00057214244 5.9e−12

160 0.03669107019 0.00057214165 9.5e−12

Table 3.2.9: Rotated parallel Blasius: convergence of the most unstable mode with
respect to the normal direction Nη for a fixed even Nξ = 16.

Fig. 3.2.13 and Fig. 3.2.14 show a larger range of the spectra with the odd and even
Nξ. It reveals Nξ − 2 similar branches presenting a low convergence rate. A hypothesis
about the existence of such modes is due to the components W that induces the mode
to travel across the lateral boundaries. Furthermore, changing the number of collocation
points in the spanwise direction allows the existence of the modes with a lower smallest
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Figure 3.2.11: Rotated parallel Blasius: convergence of the BiGlobal spectrum with
respect to the spanwise direction Nξ (odd) for a fixed Nη = 130.

Nξ ωrl/U e ωil/U e εcrit
3 0.03669107124 0.000572142317 1.8e−12

7 0.03669107124 0.000572142318 2.9e−12

11 0.03669107124 0.000572142317 3.7e−12

15 0.03669107124 0.000572142317 4.4e−12

19 0.03669107124 0.000572142317 5.0e−12

Table 3.2.10: Rotated parallel Blasius: convergence of the most unstable mode with
respect to the spanwise direction Nξ (odd) for a fixed Nη = 130.

Nξ ωrl/U e ωil/U e εcrit
4 0.0366910 0.000572142 2.2e−12

8 0.03669106 0.000572142 3.2e−12

12 0.036691072 0.000572142 3.9e−12

16 0.036691071 0.0005721421 4.6e−12

20 0.036691071 0.0005721422 5.1e−12

Table 3.2.11: Compressible (M = 2.5) rotated parallel Blasius: convergence of the most
unstable mode with respect to the spanwise direction Nξ (even) for a fixed Nη = 130.

wavenumber β, but the origin of the behaviour is purely numerical and is still unex-
plained despite the observation by Groot [2013]. Note that the other branches occur
symmetrically to vorticity branch cph = 1 and an increase of collocation nodes tends to
increase the distance from this axis of symmetry. In addition, a spurious pressure mode
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Figure 3.2.12: Rotated parallel Blasius: convergence of the BiGlobal spectrum with
respect to the spanwise direction Nξ (even) for a fixed Nη = 130.

can be observed on the top of each branch. Additionally, Fig. 3.2.13 and Fig. 3.2.14
depicts other numerical modes represented by horizontal branches clearly visible for the
cases Nξ = 12, 15, 16. However, it finally reveals these modes are diverging, towards
high imaginary values, when the z-resolution is increased as shown by Fig. 3.2.13 and
Fig. 3.2.14. Nonetheless, even if the spectrum is less clean for the rotated Blasius than
for the streamwise one, the convergence of the TS mode with respect to Nξ remains
excellent (Tab. 3.2.10 and Tab. 3.2.11) for both even and odd discretisation. As for
the incompressible case where U is aligned with the direction of the mode propagation,
Nξ = 3 is sufficient for the rotated compressible Blasius.

Finally, the temporal growth rate and frequency of the most unstable mode are com-
pared with the previously studied streamwise case in Tab. 3.2.12. It highlights a small
difference of 10−11 and 10−10 for the real and imaginary part, respectively, between the
odd and even case of the rotated Blasius. While an absolute difference of about 10−12

and 10−14 is found between the rotated with an odd Nξ and the streamwise Blasius.
According to εcrit, it is confirmed that the odd discretisation provides exactly the same
results as the streamwise flow while the even rotated Blasius reveals a very small dis-
crepancy. Although it remains close to the order of magnitude of critical epsilon, the
use of an even number for Nξ is recommended as it resolves more relevant harmonics.

All the different spectra obtained for the parallel Blasius are perfectly adapted to
validate the BiGlobal stability tool because of their simplicity as well as the reachable
high accuracy. However, it is important to remark that all the different cases have
V = 0; the terms of the BiGlobal equations involving V are zeroed. The validation of
the current code could therefore be seen as not totally achieved. Nonetheless, regarding
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Figure 3.2.13: Rotated parallel Blasius: convergence of the BiGlobal spectrum with
respect to the normal direction Nξ (odd) for a fixed Nη = 130 (Zoom out).
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Figure 3.2.14: Rotated parallel Blasius: convergence of the BiGlobal spectrum with
respect to the normal direction Nξ (even) for a fixed even Nη = 130 (Zoom out).
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Case ωrl/U e ωil/U e εcrit
Rotated BiG Nξ Odd 0.036691071245 0.000572142317 4.4e−12

Rotated BiG Nξ Even 0.036691071316 0.000572142169 4.6e−12

Streamwise BiG 0.036691071247 0.000572142317 4.4e−12

Table 3.2.12: Comparison of the temporal growth rate and frequency of Tollmien-
Schlicthing mode with streamwise parallel Blasius with odd and even collocation grids
[Nξ, Nη]× [130, 15] and [Nξ, Nη]× [130, 16], respectively.

the methodology followed to implement the boundary conditions and the results provided
for the parallel Blasius, the only potential source of error is the set of stability equations
itself. However, it has been verified with respect to well-validated equations from Pinna
and Groot [2014] that also do not involve V . Therefore, the BiGlobal code developed in
the current thesis is undoubtedly valid and can be used for application involving more
complex flows.

3.3 Intermediate conclusion
In this chapter, the validation of the BiGlobal solver is handled with the parallel Blasius
boundary layer. Due to its well-referenced stability properties for subsonic and super-
sonic regimes and to its high reproducibility, it consists of an adequate case to validate
the code. The high accuracy base flows computed by Groot [2013] with a fourth-order
Runge Kutta shooting method are reused. It minimises drastically the discrepancies
with respect to that case and gives the opportunity to compare the results up to the
eigensolver precision εcrit. In order to involve a maximum of terms of the BiGlobal sta-
bility equations, one streamwise case and one rotated case of the parallel Blasius are
considered.

The first case consists of a boundary layer whose only base flow velocity component
is U , such that it is perfectly aligned with the streamwise direction. One compressible
(M = 2.5) and one incompressible (M = 10−6) base flow are considered to show the
ability of the code to solve a broad range. For the M = 10−6 case, the reference Mach
number for the BiGlobal equations is increased to M = 10−3, such that it represents
incompressible flows undoubtedly and it ensures a good conditioning of the matrices
A and B, yielding a low level of εcrit. A convergence analysis reveals that [Nξ, Nη] ×
[160, 15] and [Nξ, Nη] × [120, 5] collocation nodes respectively for the M = 2.5 and
M = 10−6 cases are sufficient to compute the temporal eigenvalue ω of the most unstable
discrete mode (Tollmien-Schlichting) up to the precision of the eigensolver. It shows
excellent agreement with the literature and particularly with the results obtained by
Groot [2013], where a difference of O(εcrit) is found for both flow regimes. In addition,
a high convergence rate is observed for discrete modes, while the continuous branch
needs a denser repartition of nodes because the former is dominant in the well-resolved
boundary layer, while the latter is dominant in the freestream. The divergence of some
eigenvalues in the spectrum highlights they are spurious numerical modes whose the
eigenfunctions present highly oscillatory behaviour.

The second case uses the stability results from the compressible streamwise boundary
layer (with β 6= 0) to rotate the flow such that the velocity vector (U,W ) becomes
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perpendicular to the wave crests of the most unstable Tollmien-Schlichting mode. It
gives the opportunity to involve other terms of the BiGlobal equations, but the same
mode as the streamwise case is retrieved exactly. The convergence analysis reveals
differences in the spectrum if Nξ is odd or even due to the wavenumbers that can be
numerically resolved within the domain. The comparison with the streamwise case
reveals an excellent agreement for the Tollmien-Schlichting waves and differences of
O(εcrit) are found. Selecting an even value for Nξ is recommended as it exhibits a better
agreement with the streamwise boundary layer.



4. Developing Boundary Layer

The following section focuses on the analysis of a low subsonic and a supersonic devel-
oping boundary layer. It provides a first insight into stability analysis of streamwise
developing flows. It gives the opportunity to understand the different mechanisms that
exist in such flows in order to select the best numerical set-up for further more complex
configurations where shocks are involved.
The first part focuses on the base flows. Both supersonic and low subsonic cases are
evaluated with a compressible boundary layer (CBL) solver marching in space. In addi-
tion, the former boundary layer is computed with Direct Numerical Simulation (DNS)
to compare with the CBL solver.
In the second part, parameters studies are conducted on the stability results of the
developing boundary layers, evaluated by the CBL solver only. The aim is to analyse
the behaviour of the eigenvalue spectrum and the related modes with respect to the
boundary conditions as well as the domain height. It gives an overview of the different
structures present in the spectrum in order to understand the potential influence of the
numerical set-up on the results. A convergence analysis on the low subsonic case ends
the section.
The last part of the current chapter focuses on physical analyses of the Tollmien-
Schlichting (TS) mode with a zero spanwise wavenumber (β) for both low subsonic
and supersonic boundary layers. The reconstruction of wave packets related to this con-
vective mode is handled. The streamwise growth rates and wavenumbers are evaluated
with different methods. For the supersonic case, the analyses are carried out with the
base flows computed with the DNS and CBL solvers. It provides, therefore, an overview
of the stability equations sensitivity with respect to the accuracy of the base flows.

4.1 Numerical set-up of the base flows
The physical parameters of both subsonic and supersonic developing boundary layers
are summarised in Tab. 4.1.1. The Reynolds numbers define the size of the domain from
the leading edge of the flat plate, in the Blasius units l chosen as reference length. The
former is selected as length scale for the BiGlobal analyses. Concerning the supersonic
case, the flat plate dimensions are set according to the experiments of Giepman [2016].
The aim is to use exactly the same domain as the SWBLI cases for later comparisons.
For the subsonic case, the flat plate length is arbitrarily chosen since the main purpose
is to conduct a study of the numerical parameters. The supersonic boundary layer is
numerically evaluated with an implicit CBL solver, and a DNS solver while the subsonic
case is only computed with the former.

41
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Case Mach Pr Rein Reout lin [m]
Low subsonic 0.1 0.72 435 949 7.9118× 10−5

Supersonic 1.7 0.72 923 2681 2.6372× 10−5

Table 4.1.1: Physical parameters of the developing boundary layers.

In regards of the subsonic boundary layer, the low Mach number makes this case
to be considered as incompressible. According to Chapman [2000], the compressibility
effects can be ignored since the square of the Mach number (M2 = 0.01) is negligible
with respect to unity. In addition, the Tollmien-Schlichting modes from stability analysis
performed later in the section depict typical incompressible features for the low subsonic
case.

4.1.1 Compressible boundary layer solver

The CBL solver uses an implicit finite difference marching in space starting with an
Illingworth-Levy transformed Blasius profile (Eq. (3.1.1)) for an upstream located sta-
tion, x/l = O(1). The method has been proposed by White [1991] for the evaluation of
two-dimensional compressible laminar boundary layers.1 It assumes that the wall-normal
velocity V and the streamwise derivatives ∂x are small with respect to the streamwise ve-
locity U and the wall-normal derivatives ∂y, respectively. Consequently, the compressible
NSE for steady developing boundary layer degenerates into:

Continuity: ∂
∂x

(ρU) + ∂
∂y

(ρV ) = 0,

x-momentum: ρ
(
U ∂U

∂x
+ V ∂U

∂y

)
≈ −∂P e

∂x
+ ∂

∂y
(µ∂U

∂y
),

y-momentum: ∂P
∂y

≈ 0,

Energy: ρ
(
U ∂h
∂x

+ V ∂h
∂y

)
≈ U ∂P e

∂x
+ ∂

∂y

(
k ∂T
∂y

)
+ µ
(
U
∂y

)2
,

(4.1.1)

where P e is the inviscid pressure at the edge of the boundary layer evaluated with the
Bernoulli equation through

∂P e

∂x
= −ρeU e

∂U e

∂x
= ρe

∂he
∂x

. (4.1.2)

Considering a calorically perfect gas, the thermodynamic relations (Eq. (3.1.4)) used
for the parallel Blasius remain valid as well as the Sutherland law (Eq. (3.1.5)) for the
viscosity. Initially, the only known variables are U e, ρe, T e (freestream) and the no-slip
and adiabatic conditions are imposed at the wall.
To ensure high accuracy, a third order backwards difference scheme is used in the x-
direction, while Chebyshev spectral collocation is applied in the wall-normal direction.

1For developing boundary layer, the ξ-and η-direction of the BiGlobal grid denote the streamwise
x-and wall-normal y-direction of the base flow.



CHAPTER 4. DEVELOPING BOUNDARY LAYER 43

Both boundary layers are exactly evaluated on the BiGlobal grid to avoid interpola-
tion of the base flow for stability analysis and keep the accuracy as high as possible.
Nevertheless, as the solver starts with an initial Illingworth-Levy profile imposed at the
most upstream station, the following downstream locations show some dependency with
respect to this initial condition. To avoid this effect, the number of points in the stream-
wise direction has to be extremely large (Nx ≈ 105) such that it is infeasible to use the
base flow grid exactly for the BiGlobal due to a memory limit; Nξ × Nη = 7500 is the
maximum allowed. To circumvent this issue and to compute a high accuracy solution of
the base flow on the BiGlobal grid, even in the streamwise direction, the flow is recon-
structed by using only the last station of the CBL solver. Consequently, the CBL solver
evaluates Nξ times a developing boundary layer for which the last x-station corresponds
to one streamwise collocation node of the BiGlobal grid. Finally, the base flow grid
consists of Nx = 150 points in the x-direction and Ny = 2Nη − 1 in the wall-normal
direction where Nη = 50 reveals already converged results (see section 4.2.3). Such im-
plementation allows having a high accuracy solution for the stability analysis without
interpolating the BiGlobal collocation grid on the base flow.

For the incompressible case, three domain heights are used to conduct a parameters
study; y/l ∈ [0, 25],[0, 50] and [0, 75]. On the other hand, for the supersonic boundary
layer, y/l ∈ [0, 25] and [0, 200] are used. For both cases, the small domain (ymax/l = 25)
enhances the presence of spurious modes, giving the opportunity to apply different
boundary conditions in order to remove them. The highest domain y/l ∈ [0, 200], used
only for the supersonic boundary layer, is exactly the same as for the future SWBLI
cases where a significant height is needed to let the separation bubble properly grow in
the wall-normal direction. The largest domain is, therefore, considered to compare the
different cases (SWBLI, boundary layer; CBL or DNS solvers) and to perform physical
analyses.

In order to map the collocation points in the physical space, the two mappings pre-
sented in section 2.2.5 are used. The one proposed by Malik [1990] is applied to all
the cases in the y-direction except for the supersonic boundary layer with the highest
domain. The parameter yi of the mapping of Malik [1990] is set such that half of the
points are mapped in the boundary layer. This implies that yi/l = 5 and yi/l = 6
for subsonic and supersonic cases, respectively. For the domain y/l ∈ [0, 200], the bi-
quadratic mapping is used in order to be again in agreement with the BiGlobal grid of
the SWBLI where the separation bubble has to be well-resolved. Therefore, the mapping
parameters in the wall-normal direction are yi1/l = 10 and yi2/l = 30. On the other
hand, for the streamwise direction, the bi-quadratic mapping is always applied. For all
the cases, except the highest domain, the streamwise direction is equitably divided, i.e.
xi1 = 1/3xmax and xi2 = 2/3xmax. For the supersonic boundary layer with ymax/l = 200,
the parameters of the bi-quadratic mapping are again selected identical to the SWBLI
case, such that the grid around the bubble is properly refined in the x-direction. It leads
to xi1/l = 1820 and xi2/l = 1995. All the details about the highest domain (i.e the
SWBLI domain) are discussed later in chapter 5.

For the different base flows, the residual levels of the CBL solver are evaluated with
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Figure 4.1.1: Heat imbalance |µU2

y+kT +kT yy| of the CBL solver at different streamwise
stations. (a,b) for low subsonic case (M = 0.1) and (c,d) for supersonic case (M = 1.7)
with ymax/l = 25.
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the force imbalance and the heat imbalance at the wall. The latter, which reveals the
highest residual level, is shown in Fig. 4.1.1 for supersonic and low subsonic boundary
layers at the first and the last streamwise station of the BiGlobal domain. Fig. 4.1.1
considers the lowest domain (ymax = 25l), but the height does not show an influence
on the residual behaviour. For the M = 0.1 case, the wall heat imbalance reveals an
accuracy about 10−7, while the force imbalance, not shown for sake of clarity, is about
10−11. Regarding the supersonic case, both heat and force imbalances exhibit a 10−9

residual level.

4.1.2 Direct numerical simulations

The purpose of conducting DNS is to later represent the shock impinging on the develop-
ing boundary layer for the SWBLI cases. Having the same simulation without the shock
allows, therefore, to carry out a proper comparison between the spectra of the boundary
layer and of the SWBLI. The numerical set-up of the DNS case is exactly similar to
the SWBLI and detailed justifications can be found in chapter 5. On the other hand, a
second boundary layer base flow gives the opportunity to compare the BiGlobal results
between DNS and CBL solvers. Using different methods leads to inevitable infinitesimal
discrepancies, suggesting an analysis of sensitivity of the stability results.

Due to the resolution fixed in the DNS, the grid cannot be the same as the BiGlobal
one. Moreover, the domain size is different in order to avoid the base flow bound-
ary conditions to affect the stability results. Therefore, a spline interpolation between
the DNS grid (x, y)/l ∈ [758.4, 3121.4] × [0, 250] and the BiGlobal grid (x, y)/l ∈
[923, 2681]× [0, 200] is performed. The DNS domain comprises (Nx×Ny) = (1000×500)
points. Physically, the flat plate used for DNS corresponds to the case described by Giep-
man [2016] with a domain starting at 20mm from the leading edge. The grid distribution
is uniform in the x-direction and is hyperbolic for the wall-normal direction. Close to
the wall, the entire boundary layer is resolved with y+ = 1. All boundary conditions are
based on the Riemann invariant, in order to avoid shock reflections at the boundaries,
except at the wall where the no-slip and adiabatic conditions are enforced. In addition
to the Riemann condition, a Blasius profile is imposed at the inlet of the domain. The
DNS solver is initialised with a boundary layer evaluated at the different streamwise
locations with a compressible flat plate self-similarity law.

The current DNS solver, INCA, is based on a finite volume method where the viscous
fluxes are evaluated with a second order central scheme while the third order accuracy
Harten-Lax-van Leer-Contact (HLLC) solver is used for the convective fluxes. Since it
does not reveal to be necessary with the HLLC scheme, limiters are not used to ensure
high accuracy. The current numerical set-up allows converging to a residual level of
10−14, based on the governing momentum and energy equations.

Comparison of DNS and CBL base flows

The two supersonic base flows, evaluated with the DNS and the CBL solvers on the high-
est domain, are compared in Fig. 4.1.2 through the temperature T , U and V profiles.
Note the different scaling and heights used in Fig. 4.1.2. It reveals that both methods
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Figure 4.1.2: Supersonic boundary layer (M = 1.7): Profiles of U/U e (top, continuous
line), of T/T e (top, dash dotted line), magnified by a factor 200 and of V /U e (bottom),
magnified by a factor 2 × 105 evaluated with CBL solver (black) and DNS (red). Note
the different vertical scales for U/U e and V /U e.

provide very similar results along the entire wall. The largest difference (about 10−4) in
the U and T profiles is located in the region y/l ∈ [5, 6.5]. Regarding the wall-normal
velocity V , the same absolute difference is noticeable in the freestream, while a 10−5

difference exists close to the wall. In the freestream, the wall-normal velocity must be
constant as it is perfectly represented by the CBL solver whereas the DNS reveals fluc-
tuations. Such behaviour is due to a slight compression wave caused by the growing
boundary layer.

Despite the small differences existing in the base flow, the sensitivity of the BiGlobal
equations could induce significant discrepancies of the stability results for the CBL and
the DNS solvers. Since the dominant part of the TS modes is close to the wall, it is ex-
pected that the freestream condition does not influence their representation significantly.
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Therefore, the potential discrepancies between the two spectra should mainly be induced
by the streamwise velocity as the maximum differences appear in the corresponding shear
layer.

4.2 Parameter study on the BiGlobal set-ups
In this section, the stability analyses are carried out with the small domains for incom-
pressible and compressible boundary layers. The aim is to observe the influence of the
boundary conditions and of the domain height on the TS modes. For both cases, only
the base flows with the implicit solver are used. Performing such parametric study is
worthwhile to determine the best numerical set-up for the future SWBLI cases. Finally,
a convergence analysis of the temporal spectra is conducted in both directions.

4.2.1 Influence of the boundary conditions

In case of streamwise flows where modes are prone to travel across the inlet and out-
let boundary, the choice of boundary conditions is important. Rodriguez [2010], Pinna
[2012], Groot [2013] use Robin boundary conditions. This imposes a fixed wavelength
at the boundaries in order to represent the modes travelling through and, therefore, it
consists of an intermediate solution between the Dirichlet and the Neumann conditions.
However, it adds parameters to select and the results must be more or less known a
priori. In the present well-known cases of developing boundary layers, assigning such
boundary conditions is feasible, but the final aim is to apply a similar set-up to SWBLI
where the modes are unknown. An alternative is the Neumann condition applied for each
perturbation components at the inlet and outlet boundaries. The drawback of enforcing
zero gradient at a boundary is to constrain the modes being constant at this location.
Consequently, the overall modes can exhibit biased decay/growth. Furthermore, dealing
with waves, the use of the Neumann condition at the inlet/outlet is equivalent to impose
the spatial periodicity of the modes in the streamwise direction. Nonetheless, it shows
up to be the most adapted for the current developing boundary layers and, later, for
the SWBLI. Due to the lack of other possibilities for the inlet and outlet boundaries,
the following section focuses on the boundary conditions applied at the top and bottom
extremities in order to represent as good as possible the TS modes.

Pressure compatibility condition and spurious modes

At the bottom of the domain, the no-slip condition is imposed by zeroing the velocity
and the temperature fields (i.e. Dirichlet condition) to represent the solid wall. The
same boundary conditions are applied at the top, similar to the parallel Blasius case.
However, there is no physical formulation for the pressure at these locations. An ap-
proach proposed by Theofilis and Colonius [2004] consists of imposing the pressure at
boundaries by incorporating a staggered grid. The continuity equation is evaluated on
Chebyshev-Gauss points, while the momentum and energy equations are evaluated on
the Chebyshev-Gauss-Lobatto collocation nodes. The method has been successfully used
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by Robinet [2007] and Theofilis and Colonius [2004] but requires interpolation to eval-
uate the variables on the different node sets, introducing a source of error. Moreover,
spurious mode due to the behaviour of the pressure at boundary exists.
Another widely used approach consists of imposing the PC boundary closure but, as
already shown with parallel Blasius cases, it introduces spurious modes. In addition
to providing a less clean spectrum, they may add a spurious oscillatory component to
other physical modes. Therefore, in order to filter them, it is relevant to understand the
origin of these modes as well as the dominant factors which influence their presence in
the spectrum. The main features of the spurious modes are the oscillations present in
the perturbation field, mainly ṽ, and the large pressure jump at the first point on the
wall. Fig. 4.2.1 depicts one of the pressure mode present in the incompressible spectrum
when the PC boundary closure is applied to both top and bottom walls.
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Figure 4.2.1: Low subsonic boundary layer (M = 0.1): contour plot of spurious mode
ω = 0.0448 + 0.0190i.

In order to have a better interpretation of the spurious pressure modes, a common
characteristic is identified through the Reynolds-Orr energy equation. It is depicted in
Fig. 4.2.2, where the largest terms of the BiGlobal equations acting on several spurious
modes are shown. The ωi-budget reveals that the modes are ruled by six contributions.
Considering the Stokes assumption for the second viscosity, the diffusive terms ṽyy are
linearly dependent. Consequently, p̃y is larger than |(2µ + λ)/Reṽ∗ṽ| and constitutes
the term prevailing in the spurious modes. In point of fact, the pressure gradient p̃y is
a consequence of the very strong discontinuity of p̃ near the wall, indicating a causal re-
lation with the PC equation (Eq. (2.2.41)). Accordingly, a high correlation (larger than
99.99%) is found between the diffusive terms ṽyy and the wall-normal pressure gradient
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ṽ∗ṽyy
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ṽ∗ṽyy

∣∣

ωrl/U e

(a) Subsonic boundary layer (M = 0.1).

−1 −0.5 0 0.5 1

2µ
Re
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ṽ∗ṽyy
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Figure 4.2.2: Most dominant Reynolds-Orr balance terms for typical spurious pressure
modes: ωi-budgets normalized by the largest contribution. Imaginary part of eigenvalues
themselves (∗) and increasing real part indicated by the arrows. The remainders are
magnified by a factor 10.

revealing a proportionality factor of −0.717 and −0.745 for the subsonic and supersonic
case respectively. In the remainder, magnified by a factor ten, other wall-normal deriva-
tives with respect to ũ, ṽ and T̃ , are highly correlated (≥ 99%) with the three largest
contributions. However, these terms are individually two orders of magnitude smaller
than the most significant ones. Additionally, while ṽyy and p̃y are in the y-momentum
equation, the Reynolds-Orr energy balance highlights three other large contributions
originating from the x-momentum equation. The diffusion (µ/Re)ũ∗ṽ remains almost
constant over the frequency range. On the other hand, approaching the imaginary axis,
the Reynolds stress γM2 P

T
ũ∗ṽUy and the pressure work ũ∗p̃x increase so to become ex-

tremely large when ωrl/U e → 0, indicating a strong structural change in the spurious
modes where the oscillations are quite small. It justifies that the energy budget does
not consider the two spurious eigenvalues close to the imaginary axis as depicted in
Fig. 4.2.3 and Fig. 4.2.4. Therefore, the six contributions depicted in Fig. 4.2.2 are the
main signature of the remaining spurious modes.
Furthermore, in the spectrum of streamwise case, the spurious modes are easily identi-
fiable by a branch located at an almost constant growth rate as shown in Fig. 4.2.3 and
Fig. 4.2.4.
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Application of the linearised pressure Poisson equation

According to Theofilis [2017], the use of the LPPE circumvents the previously cited
issues for the incompressible BiGlobal and TriGlobal stability problems. The spurious
pressure modes then do not occur amongst the eigensolutions, yielding a clean spec-
trum, while the solution accuracy is preserved. The mathematical approach related to
the adaptation of LPPE to the compressible BiGlobal equations can be found in section
2.2.7. In the current section, the effect of the LPPE imposed at wall and freestream is
analysed with respect to compressible BiGlobal equations.

First of all, the incompressibility hypothesis underlying the LPPE should be im-
peratively taken into account. Theoretically, the LPPE can only be applied where the
divergence of the instantaneous velocity Q is zero in order to strictly respect the as-
sumption of the Poisson equation for the pressure. Therefore, it can be undoubtedly
applied at solid walls where the amplitude of the modes reaches zero. In addition, in
the freestream of developing boundary layers, the base flow velocity Q is uniform and
satisfies the divergence free assumption, while it is invalid for the perturbations vari-
ables q′. Despite the divergence free condition being not respected at the top boundary
in general, the LPPE is used at this location for both incompressible and supersonic
boundary layers in order to complete the parametric study and to determine its impact
on the spectrum.
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Figure 4.2.3: Low subsonic boundary layer (M = 0.1): spectra with PC or LPPE
boundary conditions applied at wall (w) or freestream (∞).

The incompressible BiGlobal spectrum, comprising the TS branch, is depicted in
Fig. 4.2.3 with the combinations of LPPE and PC boundary conditions. The spurious
pressure modes exist only if the PC equations are applied on both boundaries. When
the LPPE is applied at least one boundary, the spurious modes are removed. Applying
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y = 0 y = ymax ωil/U e × 104 ωrl/U e × 102

PC — PC 9.98327 4.36928
LPPE — PC 9.98257 4.36927
PC — LPPE 9.94716 4.36853

LPPE — LPPE 9.97677 4.36926

Table 4.2.1: Low subsonic boundary layer (M = 0.1): most unstable Tollmien-
Schlichting eigenvalue.

it at both wall and freestream demonstrates that the spurious modes are not caused by
the symmetry in the conditions. The use of LPPE instead of the PC boundary closure
at the wall induces, as shown in Tab. 4.2.1, an absolute difference of about 10−8 for
both imaginary and real parts on the most unstable eigenvalue of the TS branch. On
the other hand, imposing the LPPE at the freestream boundary has a more significant
impact on the results. Tab. 4.2.1 shows an absolute difference of about 10−6 and 10−5

for the imaginary and real parts, respectively, compared to PC closure. While the
eigensolver precision is independent from the boundary condition of the freestream, it
reveals εcrit = 10−12 and εcrit = 10−10 for PC and LPPE applied at the wall, respectively.

The spectrum of the supersonic boundary layer is shown in Fig. 4.2.4, where the
LPPE has been applied in the freestream as well. Similarly to the subsonic case, apply-
ing the LPPE at one or two boundaries removes the spurious modes from the spectrum.
When the LPPE replaces the PC boundary closure at the solid wall, a 10−7 absolute
difference on both imaginary and real parts of the eigenvalue is distinguishable for the
most unstable TS mode. On the other hand, considering the same mode, the impact
of the LPPE boundary closure at freestream is about 10−5. It is due to the divergence
free condition on the perturbation variables, which is not fully satisfied at this location.
Tab. 4.2.2 summarises the ωl/U e of the most unstable TS mode for different combina-
tions of boundary conditions at wall and freestream boundaries. Finally, it is concluded
that the LPPE is effective for both supersonic and subsonic flows, when applied to the
solid wall, where the incompressibility hypothesis underlying the Poisson equation is
fully satisfied.

y = 0 y = ymax ωil/U e × 104 ωrl/U e × 102

PC — PC 1.71563 3.13677
LPPE — PC 1.71735 3.13686
PC — LPPE 1.84313 3.13931

LPPE — LPPE 1.76049 3.13682

Table 4.2.2: Supersonic boundary layer (M = 1.7): most unstable Tollmien-Schlichting
eigenvalue
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Figure 4.2.4: Supersonic boundary layer (M = 1.7): spectra with PC or LPPE boundary
conditions applied at wall (w) or freestream (∞).

Neumann conditions

Instead of zeroing the modes amplitude at the freestream boundary, the Neumann con-
dition is used for all the perturbation variables as a separate case. Nevertheless, that
boundary condition has to be applied taking care that the resulting decay/growth of
the modes as y → ∞ can strongly depend on the domain height. For instance, the TS
modes studied in the current thesis have a decay in the freestream which is expressed
analytically (Balakumar and Malik [1992]):

e−y
√
α2+β2−(α−ω)2M2

, for Re >> 1 and Pr =
3

4
. (4.2.1)

Therefore, the Neumann conditions can provide only trusted results if the domain is
sufficiently high; the amplitude of the modes at the top boundary has to be close to
zero. In the following, the effect of the Neumann condition on the spectrum is analysed
for both compressible and incompressible boundary layers with the small domain height
ymax/l = 25.

In Fig. 4.2.5, the influence of the Neumann conditions on the incompressible spectrum
is depicted. Similarly to the LPPE, enforcing zero-gradient at the top boundary removes
the spurious modes. However, it influences the other (physical) modes as clearly shown
by the TS branch. When approaching the imaginary axis, the frequency ωrl/U e decreases
at the same time as the streamwise wavenumber. The linear relation between both is
the group speed cgr = ∂ωr/∂αr ≈ 0.4 for the subsonic case. Coupled with Eq. (4.2.1),
it shows that reducing the frequency yields to a decrease in the decay rate of the TS
modes. Therefore, the decay rate of modes with a small frequency deviates from the
theoretical value due to Neumann condition. On the other hand, the combination of
the LPPE at the wall and the Neumann condition at the top boundary shows a larger
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Figure 4.2.5: Low subsonic boundary layer (M = 0.1): spectra with PC or LPPE
boundary conditions at wall (w). PC or Neumann (N) at freestream (∞).

difference than the combination with the PC at wall and Neumann for the freestream.
It is most probably due to the difference existing between the manifestations of p̃ and
ṽ. These two variables reveal significantly smaller absolute values at the top boundary
when the PC closure is applied at the wall for a small domain height. In other words, the
small height and the application of the Neumann condition do not allow the TS mode
to adapt properly inside the domain itself due to a strong dependency with respect to
the boundaries.

Eq. (4.2.1) reveals that the decay becomes smaller with an increasing Mach number.
Therefore, for the supersonic boundary layer having the same domain height as the
incompressible case, the effect of the Neumann condition becomes significant as depicted
in Fig. 4.2.6. Moreover, imposing zero-gradient at the freestream adds other spurious
modes that interact with the TS branch. For the current compressible boundary layer,
the Neumann condition is clearly not applicable for such a small domain. A combination
of PC/LPPE must be used in order to accurately represent the physical behaviour of the
TS mode. A similar conclusion has been drawn by Groot [2013] about the freestream
boundary conditions for the parallel Blasius. This justifies not to investigate more
about the application of such top boundary conditions. Finally, all the stability analyses
conducted in following sections use the LPPE at the solid wall and the PC boundary
closure for the freestream.
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Figure 4.2.6: Supersonic boundary layer (M = 1.7): Zoom on TS-waves branches of the
spectra with PC or LPPE boundary conditions at wall (w) and PC or Neumann (N) at
freestream (∞).

4.2.2 Influence of the domain height

As shown previously by Eq. (4.2.1) for the TS modes, the decay of modes must be
respected to represent their physical behaviour properly. In addition to the boundary
conditions, it is relevant to analyse briefly the effect of the domain height. In the current
section, only the incompressible case is considered because of the cleaner spectrum in
the first place, yielding the TS branch easily identifiable. Nevertheless, the conclusions
about the domain height are similar for both flow regimes.

In Fig. 4.2.7, three different domain heights are shown with the LPPE applied at the
wall and the PC boundary closure at the freestream. It highlights that, even with the
Dirichlet condition on the velocity components and the temperature, the behaviour of
the TS branch is influenced by the height. By increasing it, a fast convergence of the
modes close to the imaginary axis is observed. It implies that theses modes can reach a
value sufficiently close to zero at the top boundary of the domain. On the other hand,
the modes with a higher frequency content are subject to a larger decay such that the
domain height does not have a significant impact on the results.

The same observation can be done in Fig. 4.2.8, where the pressure is imposed
with the LPPE closure at the wall, while the Neumann condition is applied at the
freestream boundary. A quite fast convergence is found with respect to the increasing
height although the growth rate of the low-frequency modes is more over-estimated
than with the previous LPPE-PC case. In addition, a new branch crossing the TS
modes appears when the domain height is increased. As the related mode shape present
oscillations, it is argued that this spurious branch is due to the decreased resolution
caused by the increased height.
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Figure 4.2.7: Low subsonic boundary layer (M = 0.1): Spectra for different domain
heights with LPPE at wall and PC at freestream.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−0.003

−0.002

−0.001

0

0.001

0.002

ωrl/U e

ω
il
/U

e

ymax=25
ymax=50
ymax=75

Figure 4.2.8: Low subsonic boundary layer (M = 0.1): Spectra for different domain
heights with LPPE and Neumann boundary conditions at wall and freestream, respec-
tively.

Finally, in view of the negligible difference existing between ymax/l = 25 and the
other heights for most of the eigenvalues lying on the TS branch, the former is chosen
for further consideration in combination with the LPPE at wall and PC at freestream
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for the low subsonic case. Selecting such a small domain allows increasing the resolution
in the freestream significantly. Concerning the compressible boundary layer, the same
set of boundary conditions is chosen, but due to the very low decay of the TS mode, the
use of ymax/l = 200 is justified.

4.2.3 Convergence analysis

In order to ensure accurate results, a convergence analysis is performed. For sake of
clarity, only the low subsonic boundary layer is shown in this section but the same
conclusions have been drawn for the supersonic case. Moreover, the current case con-
sists of the smallest domain with the LPPE applied at the wall and the PC closure
at freestream. The convergence analysis, focusing on the TS branch, is conducted for
both x and y-directions. In Fig. 4.2.9, the convergence in the streamwise direction is
shown. The y-direction is under-resolved to be able to increase Nξ from 150 to 200
without exceeding available memory (≈ 150Gb). Increasing Nξ reveals a linear move-
ment of the spectrum. Therefore, the streamwise resolution should be increased such as
Nξ > 200. This lack of convergence of continuous modes in the streamwise direction is a
well-known issue by the hydrodynamic stability community (Alizard and Robinet [2007];
Ehrenstein and Gallaire [2005]; Åkervik et al. [2008]) but, nowadays, the computational
power does not allow to have a better resolution. Consequently, all the results obtained
from streamwise BiGlobal stability are generally under-resolved. It is important to note
that the convergence of branches are always slower than the one of discrete modes as
clearly shown with the parallel Blasius cases. This is a consequence of the in-/outflow
dynamics of the modes.
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Figure 4.2.9: Low subsonic boundary layer (M = 0.1): convergence of the BiGlobal
spectrum with respect to the streamwise direction Nξ for fixed Nη = 20.



CHAPTER 4. DEVELOPING BOUNDARY LAYER 57

On the other hand, an increase of the number of points in the wall-normal direction,
where perturbations are confined in the domain such that they do not outflow, is shown
in Fig. 4.2.10 and reveals a higher convergence rate than in the streamwise direction.
The difference of the most unstable TS mode between 40 and 50 collocation nodes in
the y-direction is about 10−7 while the same is observed between 30 and 40 nodes.
Consequently, the wall-normal direction is sufficiently resolved. The same conclusion
is drawn for the supersonic boundary layer with the smallest domain. All the physical
analysis of the next section are based on (Nξ, Nη) = 150× 50 grids.
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Figure 4.2.10: Low subsonic boundary layer (M = 0.1): convergence of the BiGlobal
spectrum with respect to the streamwise direction Nη for fixed Nξ = 150.

4.3 BiGlobal stability analysis
In the following section, the TS modes with β = 0 are analysed with a physical approach
for both subsonic and supersonic boundary layers. In addition to the temporal feature ω
of the modes, the spatial dimension is treated. Moreover, wave packets related to the TS
modes are constructed. Based on the conclusion of the parameter study, the boundary
conditions are Dirichlet at wall/freestream for all the perturbations, except LPPE and
PC are used for the pressure on bottom and top, respectively. The Neumann condition
is used for inlet/outlet. The domain height of the subsonic case is ymax/l = 25, while
ymax/l = 200 is used for the supersonic case. Finally, the grids have (Nξ, Nη) = 150×50
collocation nodes.
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4.3.1 Low subsonic boundary layer

In the spectrum depicted by Fig. 4.2.3, the continuous branch of the TS modes is clearly
visible and all the temporal features (i.e ω) are directly obtained. However, there is
no information about the spatial growth rate αil and wavenumber αrl of each mode
lying on the branch; it must be extracted from the two-dimensional modes themselves
as described by Alizard and Robinet [2007] and Groot [2013]. Reminding that the
perturbation field can be written:

q′ = q̃ei(βz−ωt) = |q̃|eiΘ(x,y)ei(βz−ωt), (4.3.1)

where Θ(x, y) is the phase of a mode varying with respect to x and y between −π and
π. As reminder, β is the assumed constant wavenumber in the spanwise direction. The
phase Θ(x, y) can be evaluated from one mode as follows:

Θ(x, y) = tan−1

(
q̃i
q̃r

)
. (4.3.2)

According to Alizard and Robinet [2007], the dimensional streamwise wavenumber α is
computed with:

αr(x) =
∂Θ(x, yq̃max)

∂x
, (4.3.3)

where yq̃max designates the coordinate y where the considered field q̃ reaches its maxi-
mum. On the other hand, the spatial growth rate αi is evaluated as follows:

αi(x) = − 1

|q̃(x, yq̃max)|
∂q̃(x, yq̃max)

∂x
. (4.3.4)

In the current thesis, only the perturbation field ũ is used to compute the spatial
behaviour of the TS modes. For instance, Alizard and Robinet [2007] used both ũ and
ṽ, but it returns exactly the same results.

The values obtained through Eq. (4.3.3) and Eq. (4.3.4) are compared in Fig. 4.3.1
to the spatial LST simulations carried out at each streamwise station of the BiGlobal
base flow. At one x-station, providing to the one-dimensional stability equations a single
ω of the TS branch and β = 0 returns the spectrum related to the wavenumbers α. A
filter is then applied to identify the unique α related to the TS mode. The method is
used at each streamwise location and for each ω of the TS branch in order to resolve the
entire mode. Nevertheless, for sake of clarity, not all different ω along the TS branch are
shown in Fig. 4.3.1. Note that solving the 2D base flow at different discrete locations with
compressible LST equations assumes homogeneity (non-parallel effect) in the streamwise
direction and, therefore, some minor differences are expected with the BiGlobal mode,
where non-parallel effects are incorporated.

In Fig. 4.3.1, the values of αil from the LST are shown, which are always larger
than the BiGlobal ones. This is due to the non-parallel effects, taken into account by
the latter, which tend to destabilise the boundary layer. The discrepancies on αil are
also due to different domain lengths used to extract the local spatial behaviour of the
BiGlobal modes. A truncated domain avoids interpolating malicious boundary condition
effects which are significant at the inlet of the domain. It is depicted in Fig. 4.3.2 and
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Figure 4.3.1: Streamwise wavenumbers αrl (top) and growth rates αil (bottom) of four
TS modes: ωl/U e = 0.04369 + 0.000998i (black), ωl/U e = 0.04884 + 0.000923i (red),
ωl/U e = 0.05405 + 0.000576i (blue), ωl/U e = 0.05929 − 0.0000779i (green). Full do-
main LST (continuous), truncated domain BiGlobal (dash dotted line) and full domain
BiGlobal (dashed line).

Fig. 4.3.3 where the boundary conditions clearly affect the regions before x/l < 550. In
addition, due to the slight oscillations of |ũ| in the streamwise direction, a polynomial
interpolation is used to smooth the signal as shown by the red curves in Fig. 4.3.2 and
Fig. 4.3.3 for two of the TS modes. The interpolation allows performing the derivation
described by Eq. (4.3.4) effectively, allowing the computation of the growth rate αil.

Even if the smoothing method applied on |ũ| seems to give adequate results, it is de-
pendent on the domain truncation which could be discussable. In this case, the domain
has been truncated such that the increase of |ũ| at the inlet of the domain is removed
from the interpolation (i.e. x/l ≈ 455). It is shown in Fig. 4.3.1 that the results are in
good agreement with LST when such truncation is applied. On the other hand, not all
TS modes are influenced in the same way by the inlet boundary conditions as depicted
in Fig. 4.3.3, where the inflow effects are quite small compared to Fig. 4.3.2. An ideal
case would consist of a very long domain where the regions influenced by the boundary
conditions are negligible with respect to the rest of the domain that can be resolved
accurately with the bi-quadratic mapping.

The spatial growth rate αil can also be evaluated with the eN -method. The approach
is generally dedicated to engineering applications, where the location of the transition
from laminar to turbulent boundary layer is required. It consists of evaluating the
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Figure 4.3.2: Two-dimensional perturbation |ũ|/|ũ|max of TS mode ωl/U e = 0.04369 +
0.000998i (top). One-dimensional perturbation |ũyũmax |/|ũyũmax |max (bottom) without
smoothing (black), with smoothing over the full domain length (dashed line) and trun-
cated domain (dash dotted line).
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Figure 4.3.3: Two-dimensional perturbation |ũ|/|ũ|max of TS mode ωl/U e = 0.05929 −
0.0000779i (top). One-dimensional perturbation |ũyũmax |/|ũyũmax |max (bottom) without
smoothing (black), with smoothing over the full domain length (dashed line) and trun-
cated domain (dash dotted line).
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cumulative growth in the streamwise direction as follows:

eN(x) = e
−

∫ x
x0
αi(x̂,yq̃max )dx̂

, (4.3.5)

where x0 is the location where the perturbations become unstable. With the spatial LST,
the N -factor is directly obtained by integrating the growth rate −αi at each streamwise
location for the wall-normal station where |q̃| reaches the maximum. From the BiGlobal
mode, according to Groot [2013], N(x) is simply evaluated with:

N(x) =

∫ x

x0

1

|q̃(x̂, yq̃max)|
∂q̃(x̂, yq̃max)

∂x̂
dx̂ = ln

∣∣∣∣
q̃(x, yq̃max)

q̃(x0, yq̃max)

∣∣∣∣, (4.3.6)

and, therefore, eN(x) is simply expressed as the absolute value of a perturbation variable
q̃:

eN(x) =

∣∣∣∣
q̃(x, yq̃max)

q̃(x0, yq̃max)

∣∣∣∣. (4.3.7)

For flow around airfoils with low freestream turbulences, the transition occurs at the
location where eN is between 9 and 13.

In Fig. 4.3.4, a comparison of the eN values obtained with LST and BiGlobal is
shown for the ten most unstable modes. The advantage of evaluating the growth rate
in this alternative form is the avoidance of polynomial interpolation of the BiGlobal
results, minimising the error. On the other hand, the LST integration consists of a
simple cumulative summation, weighted by the x-spacing, in the streamwise direction.
For both BiGlobal and LST approaches, the source of error is then significantly reduced
compared to the computation of αil previously shown in Fig. 4.3.1. For both cases,
x0 = 0 is chosen to compute eN over the entire domain, although the neutral curve does
not lie at the inlet of the domain. The growth is defined up to a multiplicative constant,
which can be assessed such that the maximum amplitude of the BiGlobal modes match
with the maximum eN predicted by the LST.

The comparison of LST and BiGlobal in Fig. 4.3.4 shows that the shape and the
amplitude of the overall eN curves are in perfect agreement. Nevertheless, a discrepancy
is found regarding the streamwise locations. It is caused by the boundary conditions
influencing strongly the most upstream locations of the two-dimensional modes. A shift
of x/l = +20 is applied to all LST curves in order to correct this impact of the in-
flow. According to Lesshafft [2017], the influence of the boundary is characterised by
the edge velocity U e, the viscosity µe as well as the pressure. The latter causes a global
pressure feedback following a reflection of the pressure waves on the outflow boundary.
It finally impacts the inflow such that an equilibrium is reached. However, it remains
quite difficult to quantify analytically the exact length influenced by the inlet boundary.
In any case, the reader is referred to the article of Lesshafft [2017] for more theoretical
approaches about the effect of finite domains on stability results.

In contrast, the phase required for the evaluation of αrl is not interpolated and the
truncation of the domain does not have an influence on these values. Actually, it reveals
that the phase is not especially affected by the inflow boundary conditions. As depicted
in Fig. 4.3.1, the αrl computed from the BiGlobal modes are in a very good agreement
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Figure 4.3.4: eN for the ten most unstable TS modes evaluated with the two-dimensional
BiGlobal ũ field (black) and with the sequential spatial LST (red). Blue arrows indicate
increasing ωrl/U e from 0.0289 to 0.0748 following the branch.

with the values assessed by the LST. Considering the several αrl related to the TS
branch, the mean group speed reads:

cgr =
∂ωr
∂αr

= 0.4086. (4.3.8)

It is important to emphasize that the derivative of ωr with respect to αr along a branch
is not perfectly constant. It is observed that cgr tends to increase while the TS modes
become more unstable. Consequently, a maximum group speed of about 0.4290 is found
for the most unstable TS mode. For this reason, only a mean group speed is evaluated
in Eq. (4.3.8) and it indicates the advection speed of a unique wave packet related to the
TS mode. To have an actual representation of this convective mode as a wave packet,
the Fourier transform is used as follows:

q′ =
k=m∑

k=1

akq̃ke
−iωkt, (4.3.9)

where m is a certain amount of eigenmodes lying on the branch, ωk is the complex
frequency of one mode k and q̃k is the related two dimensional eigenfunction. The
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coefficients ak are chosen such as the perturbation q′ imposed at time t = 0 satisfies:

q′ =
k=m∑

k=1

akq̃k. (4.3.10)

Despite the non-zero growth rate, the modes are assumed orthogonal to write:

〈q̃l, q′〉 = 〈q̃l,
k=m∑

k=1

ak〉 =
k=m∑

k=1

ak〈q̃l, q̃k〉 =
k=m∑

k=1

akδlk = al. (4.3.11)
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Figure 4.3.5: Low subsonic boundary layer (M = 0.1): snapshots at different times
tU e/l of the TS wave packet represented by <(ũ)/|ũt=0|max.

In the current case, the perturbation is a Dirac function imposed at location (x0, y0)
within the domain. Therefore, the coefficients ak in Eq. (4.3.9) are evaluated with:
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ak = 〈q̃k, δ(x− x0)δ(y − y0)〉

=

∫ ∫
q̃∗kδ(x− x0)δ(y − y0)dxdy

= q̃∗k(x0, y0), (4.3.12)

where q̃∗k(x0, y0) is simply the complex conjugate of the eigenfunction q̃k at the po-
sition specified for the impulsion. With the Fourier transform, it is therefore possible
to reconstruct a wave packet related to the TS mode. Fig. 4.3.5 shows a wave packet
at three different times tU e/l travelling downstream after a Dirac impulsion imposed at
(x0, y0, tU e)/l = (485, 10, 0). Note that <(ũ) is normalised by |ũ| at the first time step
in order to visualise the physical growth of the mode. Although the actual group speed
is a function of the streamwise coordinate x, the mean value cgr = 0.4086 is already an
excellent indicator of the celerity of the TS wave packet for the current low subsonic
boundary layer.

Because of the existence of a branch and the TS mode cannot be represented as an
absolute instability in the current reference frame. This representation is achievable if
the reference frame moves at the group speed of the convective mode. Such moving
frame is obtained by subtracting the mean group speed from the current base flow.
In other words, it consists of eliminating the advection contribution linked to the TS
modes from the stability equations. For one-dimensional problem (i.e. LST equations
excluding non-parallel flow V ), these terms can be totally removed from the stability
equations to represent all the convective modes as absolute modes. However, due to the
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Figure 4.3.6: Low subsonic boundary layer (M = 0.1): Spectrum (black diamond)
without the mean group speed cgr = 0.4086 of the TS mode (highlighted by green
circles).
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non-separability caused by the two-dimensionality of the BiGlobal equations, it is not
possible to remove the advection terms linked to all the modes. Therefore, for 2D cases,
it is only possible to represent one convective mode as an absolute mode by considering
a reference frame moving at the corresponding group speed. Here, the group speed of
the TS branch mode is selected.

Solving the compressible BiGlobal stability equations in the reference frame moving
at cgr = 0.4086 provides the spectrum depicted in Fig. 4.3.6. It shows that the TS mode
appears in the form a cusp. According to Briggs’ and Bers’ criteria, the presence of a
cusp with a branch point at the top indicates that the mode is absolute, in this moving
reference frame. The branch point is the most unstable eigenvalue of Fig. 4.3.6 and
indicates the growth rate of the TS mode directly. An illustrative example is depicted in
Fig. 4.3.7, where the absolute mode related to the branch point ω = 0.00572+0.001262i
is shown. Although the inlet boundary condition has small impact on the amplitude
of the modes, it clearly shows that a convective instability can be represented by an
absolute mode in a moving reference frame. Note that, to have a perfect representation
of the TS mode as an absolute mode, the group speed varying with respect to x should
be removed from the base flow instead of a mean value. This way, it is expected that the
parabola collapses into points aligned below the branch point. We will investigate such
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Figure 4.3.7: Low subsonic boundary layer (M = 0.1): TS mode represented by
|ũ|/|ũ|max (top) and |<(u)|/|ũ|max (bottom) as an absolute mode in a reference frame
moving at cgr = 0.4086.
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implementation in further researches about the streamwise stability of developing flows
and, up to this point, we conclude that removing the mean speed consists in a major
improvement in the representation of convective mode as absolute mode.

4.3.2 Supersonic boundary layer

For the stability of the supersonic boundary layer, the two base flows previously com-
pared are involved to give an insight into the sensitivity of the stability equations. In
Fig. 4.3.8, the spectra are shown for a static reference frame and the TS branch is
highlighted in blue. In this case, the identification of the branch is challenging and a
convergence analysis in the wall-normal direction has been conducted in order to localise
the eigenvalues with the higher convergence rate. On one hand, the two different base
flows reveal extremely similar spectra as an 10−6 absolute different exists for both real
and imaginary parts of the modes with a higher frequency content. On the other hand,
close to the imaginary axis, the difference becomes almost indistinguishable. In addi-
tion, both spectra exhibits slight interaction with other modes which are not associated
to the TS ones. For instance, the eigenfunction corresponding to ωrl/U e ≈ 0.0188 has
spurious oscillations superimposed on the TS mode.
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Figure 4.3.8: Supersonic boundary layer(M = 1.7): spectra for base flows evaluated
with CBL solver (red cross) and with DNS solver (black diamond). The TS modes are
indicated in blue.

Unfortunately, the complexity of the supersonic TS modes does not give the op-
portunity to represent the spatial growth rate of each mode lying on the TS branch.
The methods used previously for the low subsonic case are not able to provide accurate
results due to the strong oscillations of the absolute value |ũ| or |ṽ|. In Fig. 4.3.9, a
two-dimensional representation of a TS mode is shown beside the corresponding one-
dimensional streamwise variation of |ũ(x, yũmax)|. Compared to the incompressible case,
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it exhibits strong oscillations in the streamwise direction and a significant influence of
the inlet boundary. Even though the smoothing seems effective in Fig. 4.3.9, strong
discrepancies are found for αil when compared to the LST results due to the polynomial
interpolation and the domain truncation sensitivity.
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Figure 4.3.9: Two-dimensional perturbation |ũ|/|ũ|max of TS mode ωl/U e = 0.0097008+
0.0000784i (top). One-dimensional perturbation |ũyũmax |/|ũyũmax |max (bottom) without
smoothing (black) and with smoothing (red dashed line).
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Figure 4.3.10: Streamwise wavenumber αrl of one TS mode (ωl/U e = 0.018818177 +
0.00012228i evaluated with CBL-CLST (green square), CBL-BiG (red cross), DNS-
CLST (blue diamond) and DNS-BiG (black circle).

Nevertheless, the spatial wavenumbers αrl can be evaluated in the same way as previ-
ously done for the incompressible boundary layer. For sake of clarity, only one wavenum-
ber varying with x is shown in Fig. 4.3.10. Comparing the LST and the BiGlobal results,
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it reveals very similar values, up to a 10−4 accuracy, for both base flows. In addition,
the absolute difference between the wavenumbers computed by the LST-CBL and the
LST-DNS is only about 10−10 while 10−8 is observed between the BiG-CBL and BiG-
DNS wavenumbers. Finally, the group speed can be computed using each αrl with the
related ω as shown in Tab. 4.3.1, revealing a 10−4 error depending on the case handled.

BiGlobal CLST
CBL base flow 0.5245 0.5218
DNS base flow 0.5238 0.5214

Table 4.3.1: Group speed based on the BiGlobal and LST computation using the CBL
or the DNS solver for the base flow.

The group speed cgr = 0.5238 corresponds to the propagation speed of the TS mode
wave packet, shown in Fig. 4.3.11. The packet is constructed exactly in the same way as
the low subsonic boundary layer and uses all the modes lying on the branch shown in the
spectrum (Fig. 4.3.8). As the TS mode is more complex for supersonic boundary layers
than the incompressible equivalent, the travelling wave packet shows several differences
compared to the previous case. The inflow is more prone to influence each independent
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Figure 4.3.11: Supersonic boundary layer(M = 1.7, DNS): Snapshots at different times
tU e/l of the TS wave packet represented by <(ũ)/|ũt=0|max.

mode present on the TS branch. It impacts therefore the overall wave packet as depicted
by the first snapshot of Fig. 4.3.11, where the mode is difficult to distinguish. When
moving downstream, three regions where the maximal magnitude in the vertical direction
are identifiable while the low subsonic boundary reveals only two of them. For the latter,
a region close to the wall (y/l ∈ [0, δ99] with δ99 ≈ 5) contains the maximum values of
the modes and a second region consists of the characteristic decay of the TS mode in
the freestream. Both zones are advected at the same group speed with the whole wave
packet. Regarding the compressible boundary layer, an intermediate region, exhibiting
a different advection speed than the rest of the wave packet, seems to be generated at
the inflow boundary. Moreover, when approaching the inlet or outlet boundaries, the
propagation speed of the intermediate part decreases.

On the other hand, it is important to notice that, physically, once the perturbation is
applied (Dirac function here), the wave packet is generated and convected downstream
with a certain group speed. Therefore, after a time t ≈ cgrL with L the domain length,
the entire wave packet should have left the computational domain. In the current recon-
struction of the TS mode as a convective mode through the Fourier transform, there is
a strong assumption about the temporal periodicity of the wave. In the two last snap-
shots of Fig. 4.3.11, this periodicity is clearly visible as the wave packet travels across
the outflow boundary and continues at the inlet of the domain. Such phenomenon is
enforced as well by the Neumann condition at the inlet/outlet which imposes the spatial
periodicity of all the perturbation waves. Considering that the length of the current
domain is about L/l = 1757 and the group speed is cgr = 0.5245, the period of the
wave packet is about TU e/l = 3350. Nevertheless, this periodicity is purely due to the
problem set-up and the Fourier reconstruction of the wave packet; it does not represent
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Figure 4.3.12: Supersonic boundary layer(M = 1.7): spectra with TS group speed from
CBL (black, cgr = 0.5245) or DNS (red, cgr = 0.5238) removed from the base flows
evaluated with CBL solver (cross) and with DNS solver (diamond).

any physical process in the case of a simple impulsion at t = 0. In other words, except
the first period where the wave packet travels across the domain for the first time, the
other periods are not physically induced by the impulsion. Nevertheless, in Fig. 4.3.11,
the second period is shown instead of the first one for sake clarity. In point of fact,
as the amplitude is continuously growing in time, it gives the opportunity to represent
the wave packet in a better way by avoiding the low contour level inducing noise in the
visualisation.

The representation of the TS mode as an absolute mode instead of a convective one
is carried out by removing the advection speed from the streamwise velocity component
of the base flow. As shown in Tab. 4.3.1, several group speeds have been computed de-
pending on the method used to evaluate the base flow. Nevertheless, only the BiGlobal
group speeds are considered to be subtracted from the two base flows. The resulting
spectra are shown in Fig. 4.3.12, where the crosses represent the BiGlobal solutions with
the base flow from the CBL solver, while the diamonds indicate the base flow evaluated
with the DNS solver. Removing the TS group speed clearly gives similar results as the
incompressible case; the TS mode is represented by a cusp with a unique branch point.
Although the group speed impacts slightly the frequency of the branch point, it does not
influence the temporal growth rates. Fig. 4.3.12 shows that the branch point is closer
to the imaginary axis when a smaller group speed is removed. In contrast, as already
mentioned with the static reference frame, both frequency and growth rate shows a de-
pendency with respect to the base flow solutions.

Fig. 4.3.13 shows the isolated eigenfunction corresponding to the red diamond branch
point of Fig. 4.3.12. In contrast to the subsonic case, where the mode is confined in the
interior of the domain, the TS wave of the compressible boundary layer has its location
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Figure 4.3.13: Supersonic boundary layer (M = 1.7, DNS): TS mode represented by
|ũ|/|ũ|max (top) and |<(u)|/|ũ|max (bottom) as an absolute mode in a reference frame
moving at cgr = 0.5238.

of maximum amplitude at the inflow boundary, yielding a strong influence of the inlet.
Therefore, removing the group speed from the base flow shows that the domain has to
be extended upstream in order to ensure the TS mode reaches its minimum amplitude
at the boundaries.

Finally, we conclude that removing the group speed from the base flow is undoubtedly
effective to perceive the TS mode as an absolute mode for both compressible and incom-
pressible cases. Therefore, using this reference frame for the representation of convective
modes is promising for future researches based on the BiGlobal stability equations.

4.4 Intermediate conclusion
This chapter handles the stability of one subsonic and one supersonic developing bound-
ary layer. It aims to provide an insight into more complex stability problems, where
the modes travel in the streamwise direction through the inflow and outflow boundaries.
Analysing a developing boundary layer poses an introduction to understand the under-
lying physical and numerical aspects of such stability analyses before considering more
complex configurations where shocks are encountered. For both subsonic and supersonic
boundary layers, the base flows are computed by a compressible boundary layer (CBL)
solver with an implicit marching in space. An additional supersonic case is computed
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with a Direct Numerical Simulations (DNS) solver, aiming to analyse the impact of the
base flow solution on the stability results. The two methods reveal a good agreement in
the velocity and temperature profiles such that only relative errors of O(10−4) are found
in the shear layer.

Parameter studies are carried out on the numerical set-ups for the BiGlobal analy-
ses. Different boundary conditions are examined for the freestream boundary in order
to ensure the best representation of the decay of Tollmien-Schlichting (TS) waves in the
freestream. It reveals that imposing the no-slip and isothermal condition is more ap-
propriate than the Neumann condition on all the variables as it shows less dependency
with respect to the domain height. Nevertheless, with the former boundary condition,
an additional closure for the pressure term is needed. As the pressure compatibility con-
dition reveals the presence of spurious modes in the unstable half-plane of the spectrum,
the linearised Poisson pressure equation adapted from Theofilis [2017] to a compressible
BiGlobal framework is employed. It exhibits excellent results compared to the compat-
ibility condition and the spurious modes are effectively removed. Finally, a convergence
analysis in both directions is conducted for the incompressible case. It shows that the
streamwise direction is under-resolved, while the wall-normal direction is converged, but
only small discrepancies are encountered as consequence. Nevertheless, the nowadays
computational memory does not give the opportunity to increase the number of collo-
cation nodes in the streamwise direction.

Physical aspects of the TS mode of the subsonic and supersonic boundary layer are
handled next. The spatial wavenumbers and growth rates in the streamwise direction
are extracted from the two-dimensional mode. For comparison purpose, one-dimensional
stability analyses (LST) are carried out at several streamwise location. Although such
approach does not take into account the stabilising parallel effects, good agreements for
the streamwise growth rates and wavenumbers between the LST and BiGlobal results
for the subsonic case are found. In addition, in order to predict the transition with a
more practical approach, the N -factor is computed. By applying a streamwise shift to
neglect the inflow boundary effects of the BiGlobal modes, very similar results are found
between the LST and BiGlobal approaches. On the other hand, the computation of
the spatial growth rate for the compressible boundary layer is subjected to the stronger
influences of the inlet boundary and to the more complex eigenfunction related to the
TS mode. Nevertheless, the evaluation of the streamwise wavenumbers exhibits very
similar results between LST and BiGlobal approaches. Finally, a comparison between
the supersonic base flow computed with the DNS and the CBL solver reveals relative
differences of O(10−5) for the temporal eigenvalues lying on the TS branch.

Finally, as the TS mode is a convective instability, the related wave packet is con-
structed for both subsonic and supersonic boundary layers. The wave packet is generated
by a Dirac impulsion at the inlet of the domain and, based on an assumed orthogonality
of the modes present in the branch, the Fourier transform is used to build the entire
mode. It travels downstream at group speeds cgr = 0.4086 and cgr ≈ 0.52 for theM = 0.1
and M = 1.7 cases, respectively. Due to the convective behaviour of the TS wave, the
representation in the BiGlobal spectrum as a branch exhibits low convergence rate in
the streamwise direction. In contrast, the discrete modes reveal very high convergence
rate in general and it consists of an ideal representation of a mode. In order to achieve
such representation, the group speed of the TS wave is removed from the base flow of
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both boundary layer cases. It implies that the convective mode cannot be advected
and the original branch collapses into a cusp with a branch point. It yields a TS mode
represented by an isolated eigenfunction whose the growth rate (of the wave packet) is
described by the branch point. This simple manipulation of the base flow consists of a
major improvement about the convective modes for further work with BiGlobal analyses
as the convergence rate in the streamwise direction must be significantly increased.



5. Shock-Wave/Boundary-Layer
Interactions

Numerical investigations of the laminar Shock-Wave/Boundary-Layer Interactions (SWBLI)
are conducted with DNS and BiGlobal stability analyses. The first section focuses on the
numerical set-ups beside a discussion about the ability of spatial discretisation schemes
to converge a steady-state solution with shocks. The second section considers three
different shock angles impinging on a boundary layer developing over a flat plate and
are compared with the original experiments conducted by Giepman [2016] in the TST-
27 blowdown transonic/ supersonic wind tunnel of Delft University of Technology. In
addition, the results are verified and correlated with several similarity laws based on
free interaction theory. Finally, the last section handles the BiGlobal stability of the
separation bubble, where a Kelvin-Helmholtz instability and a common characteristic of
a steady mode are identified.

5.1 Numerical set-up of the base flow
The laminar SWBLI case has exactly the same numerical set-up as for the supersonic
developing boundary layer. The only difference is the introduction of a shock-wave
at the top boundary of the domain. The impinging location on the wall is at 51mm
from the leading edge of the flat plate, according to the experiments of Giepman [2016].
For the present case, three shock angles are chosen for the analysis of different bubble
sizes, providing the opportunity to verify the similarity laws from free interaction theory.
Tab. 5.1.1 shows several physical parameters of the SWBLIs, where θd is the deflection
angle of the wedge to induce the oblique shock and θw is the related wave angle eval-
uated with the Rankine-Hugoniot relation. pe = 1/(γM2) is the freestream pressure
before the incoming shock, p2 and p3 are respectively the pressures behind the incoming
shock and behind the entire shocks system. The Blasius length l of the boundary layer
imposed at the inlet of the BiGlobal domain (x, y)/l ∈ [923, 2681] × [0, 200] is used as
reference length (see Tab. 4.1.1 in chapter 4). The dimensions of the DNS grid are
(x, y)/l ∈ [758.4, 3121.4]× [0, 1000] with (Nx×Ny) = (1000× 500) points uniformly dis-
tributed in the x-direction and with a hyperbolic stretching in the y-direction such that
y+ = 1 for the first cells above the wall. At this boundary, the no-slip and the adiabatic
boundary closures are applied, while Riemann invariant conditions are imposed for the
other boundaries to avoid shock reflections. A compressible equivalent of the Blasius
boundary layer profile is imposed along the wall as initial condition.
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M θd θw pe/p2 pe/p3 l[m] δimp/l δ∗imp/l Rel Rex,imp
1.7 1◦ 36.96◦ 1.05 1.15 2.6372× 10−5 8.74 4.1 923 1.8× 106

1.7 2◦ 37.93◦ 1.11 1.22 2.6372× 10−5 8.74 4.1 923 1.8× 106

1.7 3◦ 38.92◦ 1.16 1.35 2.6372× 10−5 8.74 4.1 923 1.8× 106

Table 5.1.1: Numerical set-ups for the DNS simulations of the shock-wave/boundary-
layer interactions.

The viscous fluxes are computed with a second order central scheme while the third
order accuracy Harten-Lax-van Leer-Contact (HLLC) solver is used for the convective
fluxes (discussed in the next section). The viscosity and the thermal conductivity are
computed with the non-dimensional Sutherland law:

µ =
1

Rel

(
T

T e

)3/2
1 + S

T e
T
T e

+ S
T e

, k =
1

(γ − 1)M2Pr
µ, (5.1.1)

where S = 110.4K (effective temperature) and Pr = 0.72 the Prandtl number. Finally,
it yields a perfect consistency with the supersonic developing boundary layer previously
analysed.

In addition, due to a potential transition from laminar to turbulent flow in the post-
shock region of the bubble, the Selective Frequency Damping (SFD) method, developed
by Åkervik et al. [2006], is used to enforce a steady state solution of the NSE. In the
present DNS solver, the encapsulated formulation (Jordi et al. [2014]) of the SFD method
(ESFD) is considered. In addition to the avoidance of any modification in the core of the
solver, ESFD reveals better performances, since Jones and Sandberg [2011] succeeded
to convergence numerical experiments, while conventional SFD failed.

5.1.1 Convective flux reconstruction schemes

The convergence to steady-state solutions, when shocks are encountered, has always
been challenging during the last decades and is still the centre of interest of many
researchers focusing on discretisation schemes for such problems. Basically, the residual
of the governing equations is required to converge fast to machine precision, while a high
accuracy near the shock region is desired. The former objective can be easily obtained by
using limiter across the shock, leading to a first-order solution in the shock region (shock
smearing) and a higher accuracy elsewhere. Consequently, the post-shock oscillations
are avoided and the steady solution can be obtained at machine precision. On the other
hand, if a high-order method is used to evaluate the shock regions, strong post-shock
oscillations or overshoots tend to appear, yielding difficulties for reaching a low residual
level. Nowadays, the Weighted Essentially Non-Oscillatory (WENO) schemes, originally
presented by Liu et al. [1994], for the reconstruction of the convective fluxes are a good
compromise between shock resolving and high-order accuracy. In the current thesis, a
third-order accuracy WENO scheme is considered for two reasons.

The first reason is the ability to reach machine precision for steady-state solution
with a third-order WENO scheme, while it is challenging with a fifth-order method.
The latter does introduce slight post-shock oscillations, causing the residual level high
above machine precision. Different investigations have been conducted by Zhang and
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Figure 5.1.1: Density ρ [-] jump across the incident shock-wave at θd = 3◦ (pe/p3 = 1.35)
with respect to the streamwise direction x/l considering different flux reconstruction
WENO schemes.

Shu [2006]; Borges et al. [2008]; Zhang et al. [2011] in order to improve the behaviour of
the WENO5 with respect to the reachability of supersonic steady states. Nevertheless,
the variants of the WENO5 schemes cannot remove entirely the post-shock oscillations as
depicted in Fig. 5.1.1, where JS-WENO (3rd and 5th) stands for the schemes originally
presented by Jiang and Shu [1996]. The ZS-WENO scheme, proposed by Zhang and
Shu [2006], consists of removing the second derivatives term related to the smoothness
indicators. The results showed by Zhang and Shu [2006] are promising but Zhang et al.
[2011] reveal that a low residual level can only be reached if the shocks are perfectly
aligned with the grid points of the discretised domain. Without alignment, as shown in
Fig. 5.1.1, the shock exhibits strong oscillations along a large downstream part. Such
behaviour puts the residual level at a minimum of 10−5, largely above machine preci-
sion. Borges et al. [2008] introduced another formulation of the WENO5; the Z-WENO
scheme. Fig. 5.1.1 clearly shows that the damping of the post-shock oscillations is more
efficient than the two other fifth order schemes. Nevertheless, the Z-WENO presents a
stronger overshoot in the post-shock region, as highlighted by Zhang and Shu [2006];
Zhang et al. [2011]. Despite the better performances compared to the other schemes,
the residual level hangs at 10−6 with the Z-WENO scheme. Consequently, we conclude
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that the fifth-order WENO schemes cannot ensure a steady state with a low residual
level for the current SWBLIs.

The second reason of choosing the WENO3 scheme is related to the sensitivity of
the stability equations to the second-order derivatives. A third-order WENO scheme
introduces a slight smearing of the shocks while a fifth order induces very abrupt vari-
ations and high amplitude oscillations in these regions. Therefore, conducting the DNS
with the JS-3 WENO allows reaching a very low residual level in combination with
smoothened derivatives in shock region.

5.2 Analysis of the base flow
In the current section, the base flows with the three shock angles are analysed. In
Fig. 5.2.1, the streamwise velocity U is shown beside the isolines U = 0.9U e and U = 0.
It reveals that the three separation bubbles are totally different. When θd = 1◦, the
boundary layer is subjected to a very small adverse pressure gradient and has only a very
small upward deflection (≈ +0.75l) at the shock impingement. Increasing the deflection
angle to θd = 2◦ increases the length of the bubble. In addition, the bubble exhibits
a near-symmetrical structure with respect to the impingement location ximp/l = 1934.
Nevertheless, note that the velocity field inside the recirculation region is not symmetric.
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Figure 5.2.1: Streamwise velocity U/U e for deflection angles θd = 1◦ (top), θd = 2◦

(intermediate) and θd = 3◦ (bottom). Black dashed lines for boundary layer height
δU=0.9Ue

and black solid lines for U = 0 contours.
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Due to the bubble dimensions, the flow decelerates quite significantly on the bubble
front, while a distinguishable expansion fan accelerates it in the post-shock region. The
phenomenon is amplified with θd = 3◦, which induces a strong pressure gradient at the
impinging location. Furthermore, for this large shock angle, a second re-circulation zone
appears within the primary bubble. The separation bubble does not have a symmetrical
structure, the length between the separation point xs and ximp is significantly greater
than the distance between ximp and the reattachment location xr. Furthermore, with
θd = 3◦, the back region of the bubbles reveals a time invariant wiggling behaviour which
tends to perturb slightly the compression waves of the reattachment. Even though the
largest shock strength could induce the transition from laminar to turbulent flow, the
SFD method enforces a steady-state equilibrium of the solution.

The wall-normal velocity depicted in Fig. 5.2.2 shows the shock pattern of the SWB-
LIs. In case of the smallest deflection angle, the velocity is only disturbed around
the shock impinging location. The small deflection of the boundary layer renders not
distinguishable the compression waves at the reattachment and the expansion wave.
Regarding the other cases, the shocks extend within the entire domain such that the
whole flow field is strongly perturbed by the compression waves induced by the separa-
tion and the reattachment of the boundary layer. Wiggles are observable in the back
region of the largest recirculation zone and reveal small stationary vortices close to the
reattachment point. Sivasubramanian and Fasel [2015] highlight vortex shedding (i.e.
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Figure 5.2.2: Wall-normal velocity V /U e for deflection angles θd = 1◦ (top), θd = 2◦

(intermediate) and θd = 3◦ (bottom). Black dashed lines for boundary layer height
δU=0.9Ue

and black solid lines for U = 0 contours.
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the unsteady phenomenon) at the back of the bubble for a laminar SWBLI computed
by DNS without enforcing steady-state NSE. In addition, the vortex-like structure in-
fluences the compression waves at the rear of the bubble. In his experiments, Giepman
[2016] does not notice such vortices, even for shock angles larger than θd = 3◦.

A comparison between the SWBLI and the undisturbed boundary layer with respect
to velocity and temperature profiles at different streamwise locations is suggested in
Fig. 5.2.3. The U profiles clearly show the regions where the velocity becomes negative at
the wall. The separation is characterised by the wall-normal derivative of the streamwise
velocity becoming zero first and then negative within the separated region. The largest
shock angles shown in Fig. 5.2.3 reveal this feature undeniably, while it is more difficult to
visualise for the case with θd = 1◦, due to the very short bubble. In addition, the SWBLI
with θd = 3◦ induces a second bubble, which is characterised by a counter-clockwise
recirculation zone, while the primary separation bubble depicts a clockwise rotation. It
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Figure 5.2.3: Profiles of U/U e (top, continuous line), of T/T e (top, dash dotted line)
magnified by a factor 200 and of V /U e (bottom), magnified by a factor 200. Undisturbed
boundary layer (green) and SWBLI with deflection angles θd = 1◦ (blue), θd = 2◦ (red)
and θd = 3◦ (black). Note the different vertical scales for U/U e and V /U e.
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is highlighted in Fig. 5.2.3 at x/l = 2124, where the streamwise velocity is positive close
to the wall. The wall-normal velocity V , provides complementary information about the
rotation of the flow within the bubble. Upstream of the shock impingement, the reversed
flow has a positive V while a negative contribution is revealed in the downstream part.
In addition, the wall normal velocity in the freestream portion is strongly affected by
the shocks pattern. The lifting of the boundary layer at the separation point and the
induced compression wave yields a positive wall-normal velocity in the freestream as
depicted in Fig. 5.2.2 and Fig. 5.2.3.
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Figure 5.2.4: Friction coefficient (top) and non-dimensional pressure (bottom) along the
wall for undisturbed boundary layer (black dashed line for DNS; green line for Eckert
[1955]) and SWBLI with deflection angles θd = 1◦ (blue), θd = 2◦ (red) and θd = 3◦

(black). The shock impinging location is indicated by the magenta line. The separation
and the reattachment points are indicated by the circles and the crosses, respectively.

The length of the bubbles is evaluated through the skin friction coefficient cf , can-
celling at the separation and the reattachment locations. Fig. 5.2.4 (top) shows the
streamwise variation of cf for all the SWBLI cases and for the undisturbed boundary
layer computed with DNS. In addition, Fig. 5.2.4 depicts the theoretical friction coeffi-
cient for supersonic boundary layers derived by Eckert [1955]:

Cf,Eckert = 0.664
x√
µe

√
Cr, where Cr =

µwT e

µeTw
, (5.2.1)

Cr is the Chapman-Rubesin constant (Chapman [1949]) relating the temperature and
the viscosity. The subscript e indicates a quantity evaluated at the boundary layer edge
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(i.e. freestream), while w refers to the wall. Fig. 5.2.4 shows that the skin friction
computed with the DNS solver and with Eq. (5.2.1) are in perfect agreement. On the
other hand, as a characteristic of the SWBLI, the skin friction exhibits a negative region
where the boundary layer is separated. From the smallest shock angle to the largest, the
lengths of the separation are respectively LSB/l = 77, LSB/l = 705 and LSB/l = 1170.
For θd = 3◦, the length of the secondary bubble is LSB2 = 348. Furthermore, the friction
coefficient within the second bubble exhibits strong oscillations caused by the steady
vortex structure.

The streamwise pressure variation, depicted in Fig. 5.2.4, reveals several plateaus.
The first plateau represents the constant freestream pressure 1/γM2 = 0.2471, the
second plateau is related to the separated region and the third gives the freestream
pressure after the shock system. Again, the steady vortex structure of θd = 3◦ induces
some oscillations at the end of the second plateau while the secondary bubble yields
a slight decrease of the pressure. On the other hand, due to the size of the smallest
bubble, the θd = 1◦ case exhibits only one rise from ante-shock to post-shock pressure.
For strong interaction, i.e θd = 2◦ and θd = 3◦, the rise in pressure leading to the first
plateau is described by the free interaction theory suggested by Chapman et al. [1958].

5.2.1 Free interaction theory

The free interaction theory argues that the increase of pressure p, yielding the first
plateau, due the supersonic separation is independent from the mechanism inducing the
interaction. Chapman et al. [1958] suggested the following correlation to determine the
rise in pressure:

p− p0

q0

∼
√

cf0√
M2

0 − 1
, (5.2.2)

where the subscript 0 indicates a quantity evaluated at the onset of the interaction
x = x0. In addition, the skin friction coefficient cf0 and the dynamic pressure q0 are
defined as:

τw0 =
1

2
ρ0U0cf0 , q0 =

1

2
ρ0U

2
0 =

γ

2
p0M

2
0 , (5.2.3)

with τw the wall shear stress and the freestream Mach number M .
Hakkinen et al. [1959] made the difference between the proportionality factors of Eq. (5.2.2)
for the pressure at the separation point ps and at the plateau ppl such that:





ps−p0
q0

= Cps ≈ Ps
√

cf0√
M2−1

,

ppl−p0
q0

= Cppl ≈ Ppl
√

cf0√
M2−1

,
(5.2.4)

where Ps =
√

2 and Ppl = 1.65
√

2. These relations are empirical. The experiments of
Gadd [1953] showed Ps = 1.39, while the correlation of the data provided by Chapman
et al. [1958] return Ps = 1.19 and Ppl = 2 as highlighted by Hakkinen et al. [1959]. Erdos
and Pallone [1963] proposed Ps = 1.15 and Ppl = 2.08. Katzer [1989] reveals Ps = 1.4
and Ppl = 2.3 with numerical simulations of SWBLI at several Mach and Reynolds num-
bers. On the other hand, Stewartson and Williams [1969]; Williams [1975] determine,
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respectively, Ps = 1.45 and Ppl = 2.55 with the triple-deck solutions. This indicates
that the coefficients Ps and Ppl can be slightly case dependent and should be deter-
mined through the correlation of numerical or experimental approaches by considering
several shock strengths.

Stewartson and Williams [1969] developed a more elaborated theory based on the
analysis conducted originally by Chapman et al. [1958]. The aim is to determine a
continuous similarity function to describe the region where the free interaction applies,
i.e. from x0 to xpl. Following the procedure summarised by Babinsky and Harvey
[2011]; Matheis and Hickel [2015], the x-momentum equation related to the boundary
layer reads:

ρU
∂U

∂x
+ ρV

∂U

∂y
= −dp

dx
+
∂τ

∂y
. (5.2.5)

At wall y = 0, where the no-slip conditions is enforced through U = V = 0, Eq. (5.2.5)
degenerates into:

dp

dx
=
∂τ

∂y

∣∣∣
w

=
∂τw
∂y

, (5.2.6)

for which the integration along the wall in the streamwise direction yields:

p(x)− p0 =

∫ x

x0

∂τw
∂y

dx. (5.2.7)

In addition to the quantities introduced by Eq. (5.2.3), a non-dimensional length s is
considered:

s =
x− x0

L
=

x− x0

xs − x0

, (5.2.8)

with L = xs − x0 a characteristic length of the interaction. Therefore, the non-
dimensional form of Eq. (5.2.7) reads:

p(s)− p0

q0

=
L

δ∗0
cf0

∫ x

x0

∂(τw/τw0)

(∂y/δ∗0)
dx =

L

δ∗0
cf0f1(s), (5.2.9)

where f1(s) is the first similarity function. On the other hand, Stewartson and Williams
[1969] argue that the boundary layer is subjected to a deflection ϕ caused by the sep-
aration. According to Chapman et al. [1958], the linearised supersonic wave equation
relating the pressure and the flow direction in the outer inviscid flow is applied to eval-
uate the deflection angle as follows:

dδ∗(x)

dx
= ϕ(x)− ϕ0 ≈

√
M2

0 − 1

γM2
0

p(x)− p0

p0

=
√
M2

0 − 1
p(x)− p0

q0

. (5.2.10)

Introducing the non-dimensional quantities in Eq. (5.2.10), the second equation relating
the pressure rise in the free interaction region is written:

p(s)− p0

q0

=
L

δ∗0

(d(δ∗(s)/δ∗0)

ds

)
=
L

δ∗0
f2(s), (5.2.11)
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with f2(s) the second similarity function. Finally, the correlation function F is defined
as:

F =
√
f1(s)f2(s) =

√
p(s)− p0

q0

ϕ− ϕ0

cf0
, (5.2.12)

and provides, therefore, a continuous relation to evaluate the free interaction region. In
comparison, P from Eq. (5.2.4) only gives the correlation

√
2F for the separation point

and the plateau:
Ps =

√
2Fs and Ppl =

√
2Fpl (5.2.13)

Furthermore, note that Eq. (5.2.10) used by Chapman et al. [1958] considers a uni-
form incoming flow and, therefore, the similarity law cannot be applied, for instance,
to nozzles where the curvature of the wall yields non-uniformities in the outer flow. To
circumvent this limitation, Carrière et al. [1969] proposed the universal function:

F̃ =

√
p(s)− p0

q0

ν0(s)− ν̃(s)

cf0
, (5.2.14)

where ν is the Prandtl-Meyer function:

ν(s) =

√
γ + 1

γ − 1
arctan

(√
γ − 1

γ + 1

(
M2(s)− 1

))
− arctan

√
M2(s)− 1, (5.2.15)

computed for the undisturbed boundary layer (ν0) and for the shock-induced separation
(ν̃). The variation of the Mach number M(s) in the streamwise direction is evaluated
as follows:

M2(s) =
2

γ − 1

[(
p0

p(s)

) γ−1
γ
(

1 +
γ − 1

2
M2

0

)
− 1

]
, (5.2.16)

assuming an isentropic compression process. In the present case of flat plate flow, the
universal similarity function F̃ is, therefore, in perfect agreement with F . A comparison
between the three shock angles of the current SWBLI is depicted in Fig. 5.2.5, where
several characteristic values are shown. Note that the interaction onset is determined
with the methodology proposed by Matheis and Hickel [2015] and consists of selecting
x0 where:

δ(x)

pw(x)

dp

dx

∣∣∣
w
≈ 10−5, (5.2.17)

with δ(x) the height of the undisturbed developing boundary layer. Fig. 5.2.5 shows a
good correlation exists between F and F̃ for all the shock strengths, except θd = 1◦

for the plateau region. The dissimilarity between θd = 1◦ and the largest angles is
due to very small separation bubble induced by the shock at θd = 1◦. In Fig. 5.2.4,
the plateau representing the pressure within the bubble saturates rapidly into the last
plateau related to the downstream pressure of the entire shock system. Such a weak sep-
aration does not verify the underlying strong shock assumption of free interaction theory.
Therefore, the plateau for θd = 1◦, approximated by the similarity law in Fig. 5.2.5, is
not representative of the actual constant pressure in the bubble. On the other hand,
before Fpl, the similarity functions evaluated for all the shock angles are in excellent
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Figure 5.2.5: Similarity functions F (solid line) and F̃ (dashed line) for θd = 1◦ (blue),
θd = 2◦ (red) and θd = 3◦ (black) with several values from the literature (dash dotted
lines) for the separation (subscript s) and the plateau (subscript pl) converted from P .

agreement. At the separation point (s = 1), Fs = 0.942 is found for both θd = 1◦ and
θd = 2◦ while the case θd = 3◦ reveals Fs = 0.940. In regards of the universal function,
F̃s = 0.934 is observed for the smallest angles and F̃s = 0.928 for the largest shock angle.

In order to estimate ultimately the bubble length in case of laminar SWBLI, Katzer
[1989] proposed the use of a similarity law to determine the pressure rise due to the
shock leading to an incipient separation, pinc:

pinc − p0

q0

= Pinc
√

cfimp√
M2 − 1

, (5.2.18)

where Pinc = 2
√

2 as stated by Greber et al. [1958], while Rizzetta et al. [1978] show
Pinc = 1.57

√
2 with the triple-deck theory. In his own numerical experiments, Katzer

[1989] found Pinc = 1.85
√

2. Note that the skin friction coefficient cfimp is measured at
the impinging location of an undisturbed boundary layer, leading to small dissimilarity
with previous analyses, where cf0 was used. Eq. (5.2.18) does not need the location of the
beginning of the interacting region and is more practical to use as only one undisturbed
boundary layer solution is required. Finally, the similarity law derived by Katzer [1989]
for the length of laminar separation bubbles reads:

lSB
δ∗imp

M3

√
Cr

Rex,imp
= 4.4

p3 − pinc
pe

, (5.2.19)

where p3 is the pressure downstream of the entire shock system. In Fig. 5.2.6, the
different lengths recorded by Giepman [2016] are compared to the current DNS and the
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similarity law of Eq. (5.2.19) with the two Pinc based on the work of Greber et al. [1958]
and Rizzetta et al. [1978] in order to provide a bounded interval. The DNS results are
in excellent agreement with respect to the analytical formulation such that the slope
reveals an intermediate value Pinc ≈ 1.72

√
2, close to the value Pinc ≈ 1.85

√
2 observed

by Katzer [1989]. Nonetheless, the experimental data of Giepman [2016] shows strong
discrepancies with respect to both similarity law and DNS. While the experimental
bubble with θd = 1◦ is twice as large as the DNS one, the two other largest bubbles are
definitely underestimated. The low seeding density due to the sub-millimeter laminar
boundary layer thickness and the wall reflections in the reversed flow region cause these
measurement errors in the experiments, as briefly highlighted by Giepman [2016]. In
addition, the TST-27 blowdown transonic/supersonic wind tunnel of Delft University
of Technology exhibits freestream fluctuations, yielding a flow not strictly steady which
can reduce the length of the separation bubble.
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Figure 5.2.6: Comparison of the bubble length (normalised by δ∗imp) predicted by similar-
ity law (black lines) with experiments (red) of Giepman [2016] and current DNS (blue)
for the three deflection angles: θd = 1 (star), θd = 2◦ (diamond) and θd = 3◦ (cross).

The angle of flow deflection αSB due the boundary layer separation is evaluated by
Giepman [2016] with:

αSB = arctan
(

0.5Cppl
√
M2 − 1

)
, (5.2.20)

and relies on the pressure rise of the first plateau Cppl evaluated with the free interaction
theory. Giepman [2016] computed αSB = 1.8◦ with Ppl = 1.65

√
2 (Hakkinen et al. [1959])

for the experimental SWBLI with θd = 3◦. Giepman [2016] revealed excellent agreements
between Eq. (5.2.20) and the measured recirculation zone although the bubble length
does not match with the similarity law. It concludes that the experiments significantly
underestimate the height of the reversed flow in the same way as the length. In regards to
the current DNS, the flow deflections are computed with respect to all the SWBLI cases
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as depicted in Fig. 5.2.7. Furthermore, several Ppl values provided by the literature for
the empirical plateau pressure are considered. Fig. 5.2.7 shows that the parameter Ppl
(blue curve), chosen by Giepman [2016] provides an overestimated deflection angle for all
θd while it showed good agreement with the experimental θd = 3◦. This could be caused
by the evaluation of the friction coefficient, for Eq. (5.2.4), which depends on the onset
of the interaction region. Due to the underestimated bubble length in the experiments,
the skin friction of the undisturbed boundary layer case is significantly smaller than the
one from DNS. Consequently, with a fixed Ppl = 1.65

√
2, Eq. (5.2.20) returns a smaller

deflection angle for the experiments than for the numerical simulations. In contrast,
Ppl = 2 provides a deflection angle in perfect agreement with the current DNS for
θd = 3◦. Nevertheless, even with Ppl = 2, small discrepancies are found for the two
smallest shock angles. Such observations are consistent with the slight overestimation of
the bubble length depicted in Fig. 5.2.6. Finally, Fig. 5.2.7 clearly depicts the triangular
shape of the bubble, which becomes more curved towards the bubble centre when the
shock strength increases.
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Figure 5.2.7: Separation bubbles for θd = 1 (left), θd = 2◦ (middle) and θd = 3◦

(right) with theoretical flow deflections αSB for Ppl = 2 (red), Ppl = 1.65
√

2 (blue) and
Ppl = 2.55 (green).

5.3 BiGlobal stability analysis
In this section, the numerical set-up used for the BiGlobal approach is discussed and is
followed by the stability analyses. The first aim is to identify the most dominant con-
vective mode present in the SWBLI with an intermediate shock angle and, second, to
characterise a typical steady global mode exhibited by the separation bubble at θd = 2◦

and θd = 3◦. The SWBLI with θd = 1◦ is not handled as the small separation does not
provide strong modification of the modes already observed in the undisturbed develop-
ing boundary layer. In addition, the resolution of the BiGlobal grid is not sufficient to
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distinguish the existence of a global mode in the small confinement of the bubble.

5.3.1 Numerical set-up

The number of collocation nodes in the x and y-directions is (Nξ × Nη) = (150 × 50)
lying in the domain defined by the dimensions (x, y)/l ∈ [923, 2681] × [0, 200]. The bi-
quadratic mapping is applied in both directions such that the regions with the largest
shear stress are significantly resolved, because these regions are the main origins of the
instabilities. As the majority of the stability analyses are conducted with θd = 2◦, it
consists of the reference case for the selection of the parameters for the bi-quadratic
mapping:

{
xi1/l = 1820
xi2/l = 1995

,

{
yi1/l = 10
yi2/l = 30

. (5.3.1)

It results in a refinement of the shear layer around the separation bubble as depicted
in Fig. 5.3.1 by a high density of collocation nodes in this particular region. In order
to compare the spectra directly, the same grid arrangement has been used for the two
other SWBLI cases even though it does not consist of an optimal node repartition due do
dissimilar bubble sizes. Finally, the DNS base flow is interpolated with a spline method
over the grid used for the BiGlobal analysis.
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Figure 5.3.1: BiGlobal collocation grid superimposed on the shear stress µ∂U/∂y.

5.3.2 Convective instabilities

The analyses in the current section are conducted with a infinite spanwise wave length
(i.e β = 0) for comparison purpose with the supersonic boundary layer previously in-
vestigated. The convective instability observed for the developing boundary layer was
the TS mode and arises as a branch in the BiGlobal spectrum. The introduction of
a shock impinging on the boundary layer tends to change the characteristics of this
convective mode branch as depicted in Fig. 5.3.2. Note that the branches are isolated
from the rest of the spectra for sake of clarity. The circles continuing the branch for
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θd = 2◦ indicate that the Nyquist limit of the current domain is reached. It implies that
the grid size in the streamwise direction does not sufficiently resolve larger wavenumbers.
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Figure 5.3.2: Tollmien-Schlichting branch for undisturbed supersonic boundary layer
(blue), SWBLI with θd = 1◦ (red) and SWBLI with θd = 2◦(black). The black circles
indicate the reached Nyquist limit.

When the shock strength is increased, all the eigenvalues present on the branch have
a larger imaginary part, the entire branch becomes more and more unstable. A shock an-
gle of θd = 1◦ yields a slight lift of the branch with only a very small amplification of the
TS mode found in the eigenfunctions. The behaviour of the TS mode is, therefore, very
similar to the supersonic boundary layer. From θd = 1◦ to θd = 2◦, the spectrum reveals
a strong increase of the growth rate of the entire branch. Moreover, the convective mode
is subjected to non-negligible structural changes such as the TS instability evolves into a
Kelvin-Helmholtz (KH) instability over the bubble. As mentioned by Rist [2005] about
incompressible laminar bubbles, the shift from TS to KH modes occurs smoothly when
the shear layer is lifted from the wall. The former is a viscous instability existing only
close to the wall in the boundary layer, while the latter is an inviscid, pressure driven,
process. It takes place in free shear layers where the velocity profile contains an inflection
point. Nonetheless, Rist [2005] showed that the shift from TS to KH modes can only be
distinguished if the shear layer of the boundary layer is sufficiently distant from the wall;
the deflection of the boundary layer due to the separation bubble has to be large enough.
The convective eigenfunctions of θd = 1◦ do not lift up from the wall and thus cannot
be labelled as KH modes. The inverse process from KH to TS waves is also a possibility
as highlighted by Masahito et al. [1996] with the separation bubble over a backward step.

For θd = 2◦, the evolution of the wave packet related to the branch is shown in
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Fig. 5.3.3 and Fig. 5.3.4 for an initial impulsion at (x0, y0, tU e)/l = (973, 2, 0). From
the generation of the perturbation to tU e/l = 1000, the wave packet simply travels
downstream with a slight decay in amplitude. In addition to the first main structure
above the boundary layer, a second smaller structure exist within the boundary layer and
propagates downstream at a lower speed. When the first structure crosses the impinging
shock, a part of the perturbation enters the shear layer and the second perturbation is
amplified when reaching the separation point. At tU e/l = 1250, the bubble exhibits an
absolute mechanism, propagating the first structure upstream and downstream of the
shock within the shear layer. At the same instant, the second structure perturbs the
reversed flow region at the separation location and a third structure appears before the
reattachment of the boundary layer. Finally, the entire wave packet amplified by the
bubble is observable at tU e/l = 1500. Moreover, the typical features of the KH waves
are visible at tU e/l = 1750 and at tU e/l = 2000. Namely, the maximum amplitude of
the modes is reached exactly where the shear has its highest value. The peak of the KH
wave packet amplitude is followed by smaller parts near the wall and in the freestream.
It differentiates the KH instabilities from the TS instabilities, where the maximum am-
plitude occurs close to the wall and decays exponentially in the freestream only.

At tU e/l = 2250, the wave packet reveals structural features associated to the TS
and KH waves at the same time. The former appeared in the separated region, where
the shear layer is lifted, while the latter becomes dominant after reattachment. Similar
shifting has been observed by Masahito et al. [1996] with an incompressible flow over a
backward facing step, exhibiting KH waves over the separated region and TS waves after
the reattachment. It confirms the close link existing between the instabilities. Finally,
the generated wave packet leaves the bubble with an amplitude increased by a factor of
30 with respect to the initial amplitude measured at (x0, y0, tU e)/l = (973, 2, 0). The
separation bubble acts, therefore, as a perturbation amplifier.
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Figure 5.3.3: Snapshots at different times tU e/l of the convective instability as a wave
packet represented by the phase <(ũ)/|ũt=0|max with separation bubble (solid line), δU=0.9

(dashed line), and incident oblique shock (dash dotted line).
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Figure 5.3.3: Snapshots at different times tU e/l of the convective instability as a wave
packet represented by the phase <(ũ)/|ũt=0|max with separation bubble (solid line), δU=0.9

(dashed line), and incident oblique shock (dash dotted line).
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Figure 5.3.4: Snapshots at different times tU e/l of the convective instability as a wave
packet represented by the amplitude |ũ|/|ũt=0|max with separation bubble (solid line),
δU=0.9 (dashed line), and incident oblique shock (dash dotted line).
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Figure 5.3.4: Snapshots at different times tU e/l of the convective instability as a wave
packet represented by the amplitude |ũ|/|ũt=0|max with separation bubble (solid line),
δU=0.9 (dashed line), and incident oblique shock (dash dotted line).
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The determination of the most dominant of the 111 terms in the BiGlobal momentum
equations relies on the Reynolds-Orr energy budget (Schmid and Henningson [2001]). It
is depicted in Fig. 5.3.5 for the TS-KH branch of the undisturbed boundary layer and the
SWBLI with θd = 2◦. The ωi-budget provides information about the physical phenom-
ena inducing the temporal instability of the mode through the production or destruction
of perturbation energy, while the ωr-budget gives the contribution to the dispersion of
the modes, i.e. representative of the advection speed of the convective waves. Due to
the difference of the growth rates between the SWBLI and the boundary layer, all terms
contributing to the ωi-budget of the SWBLI are one order of magnitude higher than for
the boundary layer. Regarding the supersonic boundary layer, Fig. 5.3.5 reveals a differ-
ent energy budget for the mode ωrl/U e ≈ 0.0188 of the TS branch, which is subjected
to an interaction with a spurious mode as mentioned in section 4.3.2. Although shown
for sake of completeness, this spurious mode is not considered in the analysis.

The ωr-budget highlights that the terms γM2 P
T
ũ∗ũx U and γM2 P

T
ṽ∗ṽx U are ruling

the dispersion of the modes. The perturbation variables ũ and ṽ are mainly advected by
the streamwise velocity U . These two advection terms confirm that the KH and TS in-
stabilities are convective modes. In the ωi-budget, the advection term γM2 P

T
ũ∗ũx U has

significantly different behaviours on the growth rate if the boundary layer is subjected to
a shock. For the SWBLI case, dominated mainly by KH instabilities, it has a destabilis-
ing effect on the mode. In contrast, the TS waves exhibited by the developing boundary
layer are subjected to a stabilising effect from the advection term γM2 P

T
ũ∗ũx U . In

addition, both TS and KH modes exhibit an advection of ũ (γM2 P
T
ũ∗ũy V ) in the wall-

normal direction which is stabilising for the KH waves while it destabilises the TS waves.
The two terms related to the gradient of the perturbation pressure are tedious to analyse
in term of instability growth ωilU e. Nonetheless, from the ωr-budget, −ũ∗p̃x < 0 can
be seen as an increasing perturbation pressure in the streamwise direction that works
against ũ, yielding in a slowdown of the dispersion of the velocity perturbation. The
same interpretation is valid for −ṽ∗p̃y in the wall-normal direction. The two pressure
balances act in the same way on the mode of the undisturbed boundary layer and the
SWBLI.
The γM2 P

T
ũ∗ṽ Uy reaction term involved in the TS-KH branch represents the Reynolds

stress due to the intense shear related to Uy. As highlighted by the ωi-budget, it is
the main contribution to the growth rate of both KH and TS modes. The dominating
presence of the Reynolds stress reveals a destabilising effect, that can be related to later
turbulence production extracting energy from the base flows. Finally, the growth rate
is dictated by the diffusive term µ

Re
ũ∗ũyy which represent both diffusive transport and

dissipation. Nevertheless, the former quantity cancels over the interior of the domain
and, therefore, the ωi-budget shows that energy is dissipated through viscosity, yielding
a stabilising effect. The dissipation process is significantly higher for the TS mode than
the KH modes and it justifies that the latter is an inviscid instability while the former
is due to the viscous effect within the boundary layer.
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Figure 5.3.5: Most dominant Reynolds-Orr balance terms for KH/TS branch: ωr-budgets
(top) and ωi-budgets (bottom) with related real and imaginary parts of the complex
frequency ωl/U e (red asterisks). Undisturbed boundary layer (left) and SWBLI with
θd = 2◦ (right). The remainders contributing to the real part are magnified with a factor
of 10.
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5.3.3 Global steady modes

The identification of the global unstable steady modes in the spectrum has only been
successful in the research of Robinet [2007] for a well known case of laminar SWBLI.
Robinet [2007] shows with BiGlobal analysis that a bifurcation exists from a 2D steady
to a 3D steady separation bubble when the shock strength is increased. From a stability
point of view, it implies that a stable global mode becomes unstable when the shock
is strong enough. In regards of the spectrum, it implies that the eigenvalue crosses the
real axis such that the growth rate becomes positive, along the imaginary axis, implying
its steadiness. It yields a bifurcation from a steady bubble with an infinite wavelength
in the spanwise direction to a steady bubble with a periodic pattern in this specific
direction. In addition to this steady feature, Robinet [2007] showed through DNS that
continuing to increase the shock strength leads to a second bifurcation from a 3D steady
to a 3D unsteady flow organisation of the bubble. Nevertheless, such transition has not
be shown by the author with BiGlobal analysis.

For the present numerical experiments, the flow conditions are totally different from
the reference case (Degrez et al. [1987]) used by Robinet [2007] and it is, therefore,
difficult to argue that a physical global steady mode exists in the current SWBLI. The
presence of a low-frequency unsteadiness instead of steady modes due to the second
bifurcation must not be discarded. Nevertheless, the complexity of the SWBLI spectrum
and the low number of considered shock angles do not allow to identify such bifurcation.
Consequently, in the current section, two modes (one at θd = 2◦ and one at θd = 3◦) lying
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Figure 5.3.6: Most dominant Reynolds-Orr balance terms for steady modes: ωr-budgets
(top) and ωi-budgets (bottom) with related real and imaginary parts of the complex
frequency ωl/U e (black dashed line). SWBLI with θd = 2◦ (left), ω = −0.001507i, and
θd = 3◦ (right), ω = −0.000218i. The advection terms are highlighted in blue and the
remainders contributing to the real part are magnified with a factor of 10.
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on the imaginary axis are analysed to characterise the features common to such modes.
Even though the convergence study conducted in x and y-directions for both cases
does not reveal a clear trend allowing to identify irrevocably the physical integrity of the
modes, the two most converged ones are retained for the following analysis. The BiGlobal
stability analysis are performed with β such that the assumed spanwise wavelength
corresponds to 0.75LSB. This an approximate value of the most unstable spanwise
wavelength observed in a laminar separation bubble with shock (Robinet [2007]) and
with incompressible flow (Rodriguez [2010]).

The identification of the physics underlying the steady mode is carried out through
the evaluation of the Reynolds-Orr energy budget as depicted in Fig. 5.3.6. For both
shock angles, the advection has the most dominant contribution to the dispersion of the
steady modes. Nonetheless, the order of magnitude of all terms in the ωr-budget are
very small. A different expected scenario, where the advection is balanced by the action
of other terms, is therefore precluded. As a consequence, the mode is not advected; it
is a steady standing wave. The explanation is found by considering the mathematical
expression of the dispersion relation for the advection appearing in the ωr-budget:

<
{
AU + AV + AW︸︷︷︸

0

}
= γM2P

T



U
V
W


 · =



−




q̃∗ · ∂q̃/∂x
q̃∗ · ∂q̃/∂y
q̃∗ · iβq̃





 (5.3.2)

with A the advection of the eigenfunctions by the velocity indicated with the superscript
and q̃ the perturbation velocity vector. The entire expression of the Reynolds-Orr terms
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Figure 5.3.7: Contour of the real part <(ũ)/|ũ|max of the θd = 2◦ steady
mode ω = −0.001507i. (U ,V )-vectors indicated by black arrows. Contour level
[0,0.1,0.3,0.5,0.7,0.9] of U in dash dotted lines.
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can be found in appendix A. Note that the advection term AW is strictly zero for the
present case as there is no spanwise velocity W . The advection terms in the Reynolds-
Orr budget are virtually small, so the terms in Eq. (5.3.2) are zero. This means that the
velocity vector is orthogonal to the vector quantity on the right, which represents the
gradient of the phase or the in-plane wave vector. An illustrative example is depicted
in Fig. 5.3.7 by considering the advection of ũ by U and V . It shows that velocity
vectors represented by the black arrows are aligned with the isocontours of the eigen-
function. Towards the outflow, the structure increases in magnitude along the in-plane
flow direction, which is excluded from the phase.

5.4 Intermediate conclusion
This chapter considers the Laminar Shock-Wave/Boundary-Layer Interaction (SWBLI).
The numerical base flows consist of an incident shock impinging on the supersonic bound-
ary layer handled in chapter 4.3. Three deflection angles of the shock (θd = 1◦, 2◦ and
3◦) are employed, according to the experiments of Giepman [2016], to induce different
types of separation bubble. In order to ensure steady-state solutions, the encapsulated
selective frequency damping method is applied to the Direct Numerical Simulations
(DNS) solver and a third-order Weighted Essentially Non-Oscillatory (WENO) scheme
is used for the reconstruction of the convective fluxes evaluated with a Harten-Lax-van
Leer-Contact (HLLC) solver.

The flow fields of the three SWBLI cases are fundamentally different due to the
shock strengths. While the smallest angle exhibits a very weak separation yielding only
a small deflection of the boundary layer, the largest shock angle reveals the presence
of a secondary recirculation zone within the primary separation bubble. Between these
two extreme cases, the deflection θd = 2◦ induces one large separated region that should
adhere to free interaction theory. The latter stipulates that, for a strong enough adverse
pressure gradient, the wall-pressure distribution of a separated supersonic boundary
layer is independent of the downstream mechanisms inducing the interaction. It yields
to an equilibrium between the deflected viscous layer and the inviscid supersonic outflow.
From this concept, several similarity laws are derived to assess the pressure distribution
and, in case of laminar separation, the boundary layer deflection and the bubble length
can be predicted. Although the smallest shock does not strictly verify the assumption of
strong separation, the three SWBLIs reveal a very good agreement with the free inter-
action theory, while the experiments of Giepman [2016] exhibit significant discrepancies.
It is suggested this is due to the measurement techniques and the slight freestream tur-
bulence of the TST-27 blowdown transonic/supersonic wind tunnel of Delft University
of Technology.

In the last section, the stability of the SWBLI is handled. A convective instability
related to the Kelvin-Helmholtz (KH) mode and two steady global modes are considered.
The former is based on the SWBLI with the intermediate shock strength and, for com-
parison purpose, the latter considers one steady mode for θd = 2◦ and one for θd = 3◦.
The introduction of a Dirac impulse within the domain to reconstruct the convective
mode shows that the perturbation is significantly amplified when it travels through the
shock and within the bubble such that it suggests the presence of an absolute instability
in the bubble. Furthermore, the mode observed in the lifted shear layer is a KH instabil-
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ity, which degenerates into a TS wave after the reattachment. The Reynolds-Orr energy
budget reveals that the two modes have their common origins in the shear stress while
their differences lie in the main advection contributions which are destabilising for the
KH wave and stabilising for the TS wave. In addition, the diffusive term is significantly
more stabilising for the TS waves than for the KH ones. This is due to the inviscid
nature of the KH modes travelling through the inflectional SWBLI part. Finally, the
characteristics of the steady modes are considered by analysing the Reynolds-Orr energy
balance. It reveals that the contribution to the steadiness of the modes is due to the
very small advection caused by the alignment of the in-plane velocity vector with the
constant phase levels; the mode is very long and does not have any phase structure in
the streamwise direction, yielding a standing wave.



6. Conclusion

First, several theoretical aspects of the linear stability theory are handled, followed
by mathematical considerations for the discretisation of the stability equations with a
spectral method based on the Chebyshev polynomials. Two mappings are presented to
transform the domain from the Chebyshev space to a physical space. The eigenvalue
problem is built and several boundary conditions are considered. Furthermore, the lin-
earised pressure Poisson equation initially derived by Theofilis [2017] for incompressible
problems is extended to the current compressible BiGlobal framework in order to pro-
vide an additional boundary condition, which removes spurious pressure modes from
the stability solution. Finally, two eigensolvers are discussed in order to yield stability
results with very high accuracy.

Secondly, the validation of the BiGlobal solver is handled with the relatively simple
stability analysis of the parallel Blasius, which is well documented in the literature.
The compressible and incompressible base flows computed by Groot [2013] are reused to
reduce the source of error. In addition to the original case, a spanwise velocity is added
to this base flow such that the flow is rotated in the direction of the most unstable
mode. Although it leads to the same physical modes, it involves other terms of the
BiGlobal equations for the validation of the solver. Finally, we find excellent agreements
with the results of Groot [2013] and with the literature in general for both compressible
and incompressible Blasius flows. Therefore, we deem that the BiGlobal stability solver
developed in the current thesis is verified.

Thirdly, the stability of subsonic and supersonic developing boundary layers is con-
sidered. Different boundary conditions for the wall and freestream boundaries are em-
ployed to analyse the impact on the results. We conclude that the Dirichlet conditions for
the velocity and temperature perturbation variables combined with an extension to the
compressible BiGlobal framework of the linearised pressure Poisson equation provides
excellent results and removes the spurious modes related to pressure boundary closure.
In addition, a convergence analysis shows that the number of collocation nodes in the
streamwise direction is limited by the computational memory. On the other hand, the
spatial characteristics of the Tollmien-Schlichting waves are evaluated with the BiGlobal
and one-dimensional Linear Stability Theory (LST) stability methods. While it shows
an excellent agreement for the subsonic case, the supersonic equivalent exhibits signifi-
cant discrepancies due to the complexity of the compressible Tollmien-Schlichting mode
and the inflow boundary. Nonetheless, the wave packet corresponding to the Tollmien-
Schlichting instability travelling at a certain group speed is successfully reconstructed
for both boundary layers and it illustrates clearly the convective behaviour of this mode.
Finally, by removing the group speed from the base flow, we represent for the first time
a convective mode by an unique isolated eigenfunction. The related spectrum exhibits
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a cusp with a branch point that is conjectured to show more favourable convergence
characteristics compared to a continuous branch. We emphasize that this result consists
of a major improvement for the study of convective instabilities.

Finally, we consider the laminar shock-wave/boundary-layer interactions. The base
flow is computed with direct numerical simulations according to the set-up of the exper-
iments conducted by Giepman [2016] in the transonic/supersonic wind tunnel of Delft
University of Technology. A comparison of the numerical and experimental results with
the free interaction theory reveals discrepancies, which are potentially caused by the
measurement techniques of the latter, that tend to underestimate significantly the size
of the separated region. Considering the numerical base flows, we reveal the presence
of a convective mode associated to the Kelvin-Helmholtz waves in the laminar shock-
wave/boundary-layer interactions. It originates in the shear layer of the separated region
and degenerates into Tollmien-Schlichting waves after the reattachment of the bound-
ary layer. With the Reynolds-Orr energy budget, we highlight the differences between
these two types of instability. The chapter ends with the comparison of steady modes at
two different shock angles. Through the Reynolds-Orr energy balance, we find that this
standing wave (i.e. not advected by the flow) is caused by the alignment of the in-plane
velocity and the constant phase levels of the mode.

6.1 Recommendations and future research work
First, in the present thesis, we highlighted the representation of convective instability
as absolute instability in a moving reference frame. Future research would focus on
the effectiveness of this representation. The improvement of the convergence rate with
respect to the number of streamwise collocation nodes has to be quantified. In addition,
convergence analyses have to be carried out to determine the influence of the domain
length and of the inlet location on the cusp representation.

Secondly, as presented with the stability analysis of the shock-wave/boundary-layer
interaction, the Tollmien-Schlichting and the Kelvin-Helmholtz waves can exist simul-
taneously in a single eigenmode. Although the shape of the eigenfunctions allows iden-
tifying the two instabilities, future research work would consist of the exact distinction
between the Tollmien-Schlichting and the Kelvin-Helmholtz waves through the Reynolds-
Orr analysis to be conducted on viscous and inviscid BiGlobal simulations of the same
(viscous) shock-wave/boundary-layer interaction base flow. Thereby the transition from
one type of wave to the other type can be identified.

Thirdly, we conducted separately the Reynolds-Orr methodology on the different
modes of the convective wave packet. A complement to this study would be to apply
the Reynolds-Orr energy balance on the entire wave packet at different instants, aiming
to characterise the movement of the perturbation. In addition, detailed analyses about
the integrand of the production terms would provide information about the laminar-
turbulent transition triggered by the Tollmien-Schlichting and the Kelvin-Helmholtz
modes. Similar analyses of the wave packet shall be applied to the shock-wave/boundary-
layer interaction to find the mechanisms underlying the absolute perturbation behaviour
at the top of the separation bubble.
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A. Reynolds-Orr energy terms

The Reynolds-Orr energy terms in the compressible BiGlobal stability momentum equa-
tions are grouped according to the advection (Aa) by the base flow velocity indicated
with the superscript, advection (Ad) by the diffusion imposed through a temperature
gradient, Reynolds stress (R) and dissipation (D) by the viscosity.

AUa = −i
∫ ∫

(γM2 P

T
Uũ∗ũx + γM2 P

T
Uṽ∗ṽx + γM2 P

T
Uw̃∗w̃x) dx dy

AVa = −i
∫ ∫

(γM2 P

T
V ũ∗ũy + γM2 P

T
V ṽ∗ṽy + γM2 P

T
V w̃∗w̃y) dx dy

AWa = −i
∫ ∫

(γM2 P

T
Wiβũ∗ũ+ γM2 P

T
Wiβṽ∗ṽ + γM2 P

T
Wiβw̃∗w̃) dx dy

Ad = i

∫ ∫
ũ∗

Re
(µT T yũy + 2µT T xũx + λT T xũx + µT T yṽx + λT T xṽy + iλT T xβw̃)

+
ṽ∗

Re
(λT T yũx + µT T xũy + 2µT T yṽy + λT T yṽy + µT T xṽx + iλT T yβw̃)

+
w̃∗

Re
(iµT T xβũ+ iµT T yβṽ + µT T yw̃y + µT T xw̃x) dx dy

R = −i
∫ ∫

ũ∗(γM2 P

T
Uxũ+ γM2 P

T
Uyṽ)

+ ṽ∗(γM2 P

T
V xũ+ γM2 P

T
V yṽ)

+ w̃∗(γM2 P

T
W xũ+ γM2 P

T
W yṽ) dx dy

D = i

∫ ∫
ũ∗

Re
(µ ũyy + 2µ ũxx − µβ2ũ+ λ ũxx)

+
ṽ∗

Re
(2µ ṽyy + µ ṽxx − µβ2ṽ + λ ṽxx)

+
w̃∗

Re
(2µ w̃yy + µ w̃xx − 2µβ2w̃ − λβ2w̃) dx dy
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