
http://lib.uliege.ac.be http://matheo.uliege.be

Master thesis : Game Intelligent Analyst - Anomaly Detection in Casino Games

using Machine Learning Algorithms

Auteur : Merchie, Florian

Promoteur(s) : Wehenkel, Louis; 3950

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2017-2018

URI/URL : http://hdl.handle.net/2268.2/4651

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

UNIVERSITÉ DE LIÈGE

MASTER THESIS

Game Intelligent Analyst - Anomaly
Detection in Casino Games using Machine

Learning Algorithms

Author:
Florian MERCHIE

Supervisor:
Prof. Louis WEHENKEL

A thesis submitted in fulfillment of the requirements
for the degree of Master in Civil Engineering in Computer Sciences

Faculty of Applied Sciences
GAMING1

June 8, 2018

https://www.uliege.be
http://www.montefiore.ulg.ac.be/~lwh/
http://www.facsa.uliege.be
http://www.gaming1.com/en

i

UNIVERSITÉ DE LIÈGE

Abstract
Faculty of Applied Sciences

Master in Civil Engineering in Computer Sciences

Game Intelligent Analyst - Anomaly Detection in Casino Games using Machine
Learning Algorithms

by Florian MERCHIE

Anomaly detection is a very large and complex field. In recent years, several
techniques based on data science were designed in order to improve the efficiency of
methods developed for this purpose. In particular, density-based anomaly detection
allows to estimate how much probability densities differ from each other by solving
a supervised learning problem using data drawn from these densities as a dataset.
Besides, the casino games company GAMING1 aims at automating the detection of
behavior modifications in its games when an update is performed. This master the-
sis introduces a method based on density-based anomaly detection to reach GAM-
ING1’s objective. We explore two main approaches to solve this problem. The first
one relies on standard supervised learning algorithms. For this approach, two algo-
rithms were considered: Extremely randomized trees and linear support vector ma-
chine. The second approach is based on deep learning and exploits recurrent neural
networks architectures. Using experimental cases of anomalies in casino games, it’s
been shown that extremely randomized trees outperforms both other methods as
far as performances and visual interpretation are concerned, but also considering
computational resources. In addition to accuracy, we rely on several other metrics
related to the comparison of probability densities in order to assess formal perfor-
mances of the presented algorithm. We show that the tree-based method allows us
to distinguish irregular data with an accuracy of at least 0.7 for standard anomalies,
while providing relevant visual support thanks to probability densities representa-
tion. Moreover, it’s also possible to identify more hardly detectable anomalies by
using classifier calibration in order to enhance the visual support of the probability
densities, despite an associated low accuracy.

HTTPS://WWW.ULIEGE.BE
http://www.facsa.uliege.be

ii

UNIVERSITÉ DE LIÈGE

Acknowledgements
Faculty of Applied Sciences

Master in Civil Engineering in Computer Sciences

Game Intelligent Analyst - Anomaly Detection in Casino Games using Machine
Learning Algorithms

by Florian MERCHIE

I would like to express my deepest thanks to the people who contributed to this
master thesis:

• My thesis director, M. Wehenkel, for its supervision, advice and encourage-
ments.

• GAMING1’s CTO, Christophe Boniver, for offering me the opportunity to real-
ize this project.

• M. Louppe and M. Geurts for guiding me in the algorithmic design of the
solution presented in this master thesis.

• Aurélie Boniver for supervising my day-to-day work at GAMING1 and provid-
ing me regular feedback about the progress of my work.

• GAMING1 company, in particular the Game Engine team, for welcoming me
for several months and providing the material without which I couldn’t have
realized this master thesis.

• My family and friends for their support and patience.

HTTPS://WWW.ULIEGE.BE
http://www.facsa.uliege.be

iii

Contents

1 Introduction 1

2 Theoretical Considerations 3
2.1 Supervised learning . 3

2.1.1 Linear support vector machine 5
2.1.2 Extremely randomized trees . 7
2.1.3 Recurrent neural networks . 9

2.2 Anomaly detection . 11
2.2.1 General considerations . 11
2.2.2 Density-based anomaly detection 13
2.2.3 Likelihood ratio with supervised classification 14

3 Objectives, Motivations and Methods 17
3.1 Main objective and motivations . 17
3.2 Methodology . 17

3.2.1 Problem formalization . 17
3.2.2 Evaluation metrics . 18

3.3 Raw data collection . 20
3.4 Data preprocessing . 21

3.4.1 Standard supervised approach 21
3.4.2 Deep learning approach . 23

3.5 Update verification procedure . 23
3.5.1 Description . 24
3.5.2 Validation . 26

3.6 Implementation and architecture . 28
3.6.1 Software architecture . 29
3.6.2 Deep learning architecture . 30

3.7 Hyper-parameters . 32

4 Results 34
4.1 Standard supervised approach - Extra trees 34

4.1.1 Experiment with default parameters 34
4.1.2 Influence of the concatenation length 36
4.1.3 Influence of the number of trees 42
4.1.4 Influence of the number of features to split 46
4.1.5 Influence of the maximum depth 48
4.1.6 Influence of bootstrapping . 50
4.1.7 Influence of the calibration method 52
4.1.8 Metrics as a function of the dataset size 55
4.1.9 Time Performances . 56

4.2 Standard supervised approach - Linear SVM 57
4.2.1 Experiment with default parameters 57
4.2.2 Influence of the penalty parameter 59

iv

4.2.3 Influence of the loss function . 60
4.2.4 Influence of the calibration method 62
4.2.5 Metrics as a function of the dataset size 64
4.2.6 Time Performances . 66

4.3 Deep learning approach . 66
4.3.1 Slot experiment . 66
4.3.2 Dice experiment . 67
4.3.3 Blackjack experiment . 69
4.3.4 Roulette experiment . 71

5 Conclusion 72

v

List of Figures

2.1 Concept of k-fold cross validation (k = 10) 4
2.2 Controlling complexity in supervised learning 5
2.3 Example of LSVM . 6
2.4 LSVM: Objective illustation . 7
2.5 Bagging illustration . 8
2.6 MLP: network representation . 9
2.7 RNN layer structure . 10
2.8 RNN: fold vs unfold layer . 11
2.9 Example of anomalies in 2-dimensional space 12
2.10 Example of collective anomaly in a human electrocardiogram output . 13
2.11 Example of probability calibration for SVC 16

3.1 Wasserstein distance: example . 19
3.2 Example of data related to GIP . 21
3.3 Layers representation of the classifier of Algorithm 1 25
3.4 KDE example for a standard normal distribution 28
3.5 Static diagram of the software . 29
3.6 LSTM cell description . 31
3.7 RNN architecture used in the master thesis 31

4.1 Density ratio analysis of slot game: experiment with default parame-
ters . 35

4.2 Metrics as a function of the concatenation length for slot game 37
4.3 Density ratio analysis of slot game: l =None 38
4.4 Metrics as a function of the concatenation length for dice game 40
4.5 Metrics as a function of the concatenation length for roulette game . . 41
4.6 Metrics as a function of the concatenation length for blackjack game . 42
4.7 Accuracy as a function of the number of trees 43
4.8 Variance of r(x) as a function of the number of trees 43
4.9 Comparison of the density ratio metrics for low and high number of

trees . 44
4.10 W1 and JSD for p(r(x)) as a function of the number of trees 45
4.11 Accuracy as a function of the subspace of features 46
4.12 Variance of r(x) as a function of the subspace of features 47
4.13 W1 and JSD for p(r(x)) as a function of the subspace of features . . . 47
4.14 Accuracy as a function of the maximum depth 48
4.15 Variance of r(x) as a function of the maximum depth 49
4.16 Comparison of the density ratio metrics with and without maximum

depth . 49
4.17 W1 and JSD for p(r(x)) as a function of the maximum depth 50
4.18 Accuracy as a function of the learning set size 55
4.19 Variance of r(x) as a function of the learning set size 55
4.20 W1 and JSD for p(r(x)) as a function of the learning set size 56

vi

4.21 Density ratio analysis of slot game: experiment with default parame-
ters . 58

4.22 Accuracy as a function of C . 59
4.23 Variance of r(x) as a function of C . 59
4.24 W1 and JSD for p(r(x)) as a function of C 60
4.25 Accuracy as a function of the learning set size 64
4.26 Variance of r(x) as a function of the learning set size 65
4.27 W1 and JSD for p(r(x)) as a function of the learning set size 65
4.28 Density ratio analysis of slot game: deep learning approach 67
4.29 Density ratio analysis of dice game: deep learning approach 68
4.30 Density ratio analysis of blackjack game: deep learning approach . . . 69
4.31 Density ratio analysis of roulette game: deep learning approach 70

vii

List of Tables

3.1 Raw data format . 20
3.2 Illustration of the feature extraction procedure 22
3.3 Shape of the final dataset according to the minimal concatenation length 23
3.4 Default values of hyper-parameters in the scope of Algorithm 1 32

4.1 Number of folds for stratified cross-validation according to the con-
catenation length . 36

4.2 Influence of bootstrapping: slot game 51
4.3 Influence of bootstrapping: dice game 51
4.4 Influence of bootstrapping: roulette game 51
4.5 Influence of bootstrapping: blackjack game 51
4.6 Influence of the calibration method: slot game 53
4.7 Influence of the calibration method: dice game 53
4.8 Influence of the calibration method: blackjack game 54
4.9 Influence of the calibration method: roulette game 54
4.10 Execution time of the supervised learning procedure with extra trees

according to concatenation length and calibration 57
4.11 Influence of the loss function: slot game 61
4.12 Influence of the loss function: dice game 61
4.13 Influence of the loss function: roulette game 61
4.14 Influence of the loss function: blackjack game 61
4.15 Influence of the calibration method: slot game 62
4.16 Influence of the calibration method: dice game 63
4.17 Influence of the calibration method: roulette game 63
4.18 Influence of the calibration method: blackjack game 64
4.19 Execution time of the supervised learning procedure with LSVM ac-

cording to concatenation length and calibration 66

1

Chapter 1

Introduction

Gambling games find their origin in a time almost as old as writing. While historians
acknowledge that the first written language seems to date from the half of the fourth
millennium BC, the oldest traces of gambling games have been associated to the end
of that same millennium, around 3000 BC. Then, as most of mankind’s inventions,
these have evolved through times and places. For example, the first card games
were used in ancient Chinese Empire, while Romans were the first to bet money
on entertainment events, like gladiators fights. Nowadays, these games have taken
an incredibly high number of different shapes. From classical casino games, such
as roulette or slot machines, to sport betting passing by lottery and scratch tickets,
there is always a way to bet money on something. In particular, with the rise of the
Internet, most of these games have been dematerialized and are now available on al-
most every popular enough connected device, such as computers and smartphones.
The demand in such games have grown so much in recent years that new compa-
nies were born to provide safe and reliable services to the classical gambling games
companies. GAMING1 is one of these companies.

Among the services provided by such companies, there is of course the ability to
develop and maintain reliable online games. In the past, the reliability of physical
machines were only depending on mechanical properties. It’s of course not the case
anymore considering online casino games, where these can be subjected to bugs. Up
to now, before the releasing of a game or when updating one, GAMING1 principally
uses one main technique in order to detect bugs. This consists in using simulators
incorporating the different game engines. The results of the performed simulations
are then collected in the form of different statistical features. GAMING1’s game en-
gine team analyzes these results and then make conclusions about the behaviour of
the game. However, such a method often takes time to be done and is not always
very reliable. Indeed, it sometimes happens that games are released and that unde-
sired things occur once these are played by real people. The consequences of such
events can sometimes be very serious for the company, as the early experiences of
players on online games often influences a lot the fact that they will continue to play
it or not. The concerns in terms of profitability are therefore really important.

The purpose of this master thesis is to develop a method allowing to identify
games of which the behaviour has changed when an update has been performed.
Of course, GAMING1 wants this method to independent of the game which is an-
alyzed. In order to achieve this goal, data obtained from simulations of the game
before and after the update have been compared. This kind of problem is denoted as
a density-based anomaly detection problem. The solution to this problem has been
designed relying mainly on two principles. The first one was to consider this state-
ment as a likelihood-ratio problem. Then, this likelihood-ratio problem has been

Chapter 1. Introduction 2

solved a binary classification problem using machine learning algorithms. Two main
approaches have been compared in this master thesis. On the one hand, features ex-
traction techniques have been applied to the data generated by the simulations, fol-
lowed by the application of standard machine learning algorithms (Linear Support
Vector Machine or Extremely Randomized Trees). On the other hand, deep learning
was used by directly passing the simulations results to recurrent neural networks.

This document is divided into six chapters. Following this introduction Chapter,
some explanation about the theoretical background required to understand the work
that has been done, is provided in Chapter 2. Then, Chapter 3 dives more deeply into
the methodology of this master thesis, describing the objectives and motivations as
well as the particular methods that have been designed and applied to achieve these
objectives. Then, the results of the different experiments that have been performed
to validate our methods are detailed in Chapter 4, before briefly concluding in the
final Chapter.

3

Chapter 2

Theoretical Considerations

For years, anomaly detection has been used to identify unexpected or undesired be-
havior in many fields. In the early days of this discipline, basic statistical methods
were the most commonly applied techniques in order to achieve its goals. How-
ever, with the advent of the big data era, these simple methods were quickly put in
a difficult position. One of the main reasons of this was the increasing of the dimen-
sionality of the data which is often considered nowadays. Machine learning is able
to overcome this limitation by relying on algorithms having the capacity to scale
easily according to this dimensionality. In particular, supervised learning is able to
learn the impact of very high number of factors on a given target characteristic.

This chapter will first address supervised learning in its global aspects. Then,
a few examples of algorithms which are widely used in supervised learning will
be explained. Afterwards, a focus will be made on particular techniques used for
anomaly detection.

2.1 Supervised learning

In the scope of machine learning, the basic entities are called objects, or samples. To
each object is associated an ensemble of values, denoted as the features or attributes.
For a given machine learning problem, data is typically available as a set of such
objects, called the learning set. In the case of supervised learning, one of the fea-
ture is defined as the target or output variable. The goal of an algorithm using this
approach is to build a model which is able to predict the output value of a newly ob-
served object. The algorithm selects the best model as possible out of a predefined
space of functions that can map a particular set of classical features to the output
variable. To be able to do so, the algorithm requires two additional tools: a loss
function, measuring the accuracy of output prediction, and a strategy to optimize
the selection of the model.

To formalize this clearly, an object is denoted as o = (x, y), x ∈ X and y ∈ Y ,
where X (resp. Y) is the input (resp. output) space. The learning set of size N,
consisting of a group of objects, can therefore be defined as LS = {oi|i = 1, . . . , N}.
Considering only features, the learning set can be seen as a 2-dimensional array
where a row (resp. a column) represents an object (resp. a feature). From this learn-
ing set, the goal of supervised learning is to find a a function f : X → Y that would
approximate at best the relation between the input x and the output y. The set of all
possible functions f that can be proposed by a given algorithm, is called the hypoth-
esis space H. In order to determine which function among this hypothesis space
is the best one, some metric is required. Therefore, we also define a loss function
l : Y × Y → R which compares the value f (x) estimated by the function f and the

Chapter 2. Theoretical Considerations 4

true output value y. The objective of f is thus to minimize the expectation of this
loss function l. In practice, we often dispose of another dataset called the testing set,
TS, to evaluate the accuracy of f for some new objects. If TS has a size M which
is sufficiently large, the expectation of the loss function can be approximated as the
following:

Ex,y{l(f (x), y)} ≈ 1
M ∑

x,y∈TS
l(f (x), y)

This can be noticed that, if LS = TS, this value is called the re-substitution error.
Otherwise, it’s called the generalization error. As the goal of supervised learning
is formally to find a function f such that f = arg min f∈H Ex,y{l(f (x), y)}, a super-
vised learning problem can also be seen as a optimization problem. Fundamentally,
these are divided into two categories: classification and regression. Classification re-
groups problems of which the output is symbolic. It’s also called a label or class. An
example of loss function for this type of problems is the classification error defined
as:

l(y, ŷ) = 1 6=(y, ŷ) =

{
1, if y 6= ŷ.
0, otherwise.

(2.1)

By contrast, when the output of an algorithm is a purely numerical value, with no
label or class interpretation, this algorithm is said to perform a regression. For these
problems, the most widely used loss function is square error loss defined as:

l(y, ŷ) = (y− ŷ)2

An important consideration in supervised learning is the amount of samples
which is available for the problem. In situations in which we dispose of a suffi-
cient quantity of data, this is separated into the two datasets mentioned above, LS
and TS. Usually, the data proportions are 70% for LS and 30% for TS. Then, he
fitting of function f is performed using LS and the performances are assessed by
comparing the predictions f (x) and the output y for the samples of TS. However,
in some applications, it’s often difficult to gather a sufficient quantity of data. For
example, the required time to produce it could be too large, or this could be sub-
jected to some access restrictions. Therefore, some methods had to be developed to
deal with such situations. A widely used technique is called k-fold cross-validation.
As illustrated in Figure 2.1, the concept is to partition the initial dataset into k equal

FIGURE 2.1: Concept of k-fold cross validation (k = 10) 1

subsets. Then, for each subset, a supervised learning procedure is performed where
the learning set is the set composed of all other k − 1 subsets and the testing set
is the currently considered subset. At the end, the mean error over the performed
predictions is reported to evaluate the performances of f . In this way, if the initial
dataset has a size N, we can evaluate the average error over N predictions with k
learning procedures. Nevertheless, it should be also be considered that successfully
using the same data for both learning and testing, even in different procedures, can
sometimes lead to some issues. When k ∼ N, as the size of TS will be close to 1,

1[1, Geurts 2016]

Chapter 2. Theoretical Considerations 5

FIGURE 2.2: Controlling complexity in supervised learning 2

the variance of the error increases a lot, and the problem becomes highly dataset de-
pendent. Moreover, this requires to perform almost N learning procedures, which
can be very time-consuming. On the other side, when k is smaller, the procedure be-
comes faster and the variance is reduced but bias appears due to the larger number
of samples that are removed of the initial dataset for each fitting.

Most of the time, the size the of the hypothesis spaceH can be very large. Among
all the factors that characterize an element f ∈ H, one of the most relevant is the
complexity. Typically, increasing the complexity reduces the re-substitution error.
Indeed, the more complex a model will be, the better it will fit the specific char-
acteristics of a given dataset. However, in practice, a model that would perfectly
predict the outputs of its learning set is not the desired behaviour. Instead, we want
a model which would generalize as best as possible for new samples. That’s why
using a testing set is relevant at this point. The graph displayed in Figure 2.2 helps
to understand this idea. This details the typical behaviour of the re-substitution and
generalization errors when the complexity of the model increases. It’s observed that,
contrary to the re-substitution error, there exists a minimum for generalization error.
The complexity range where this error is the smallest defines the optimal complexity
to choose for a given problem. Depending on the type of algorithms which is used,
the complexity can depend on a various set of factors.

In further sections, some examples of such algorithms will be given and ex-
plained, as well as the parameters which influence their complexity.

2.1.1 Linear support vector machine

Support vector machines were originally proposed by [2, Vapnik 1963] in order to
classify linearly separable tasks. Let’s assume again the learning LS of previous sec-
tion but let the output space Y be restricted to {−1, 1}, i.e. the problem is reduced
to a binary classification. LS is said to be linearly separable if it’s possible to drawn

2General question regarding Over-fitting vs Complexity of Models

https://stats.stackexchange.com/questions/292283/general-question-regarding-over-fitting-vs-complexity-of-models

Chapter 2. Theoretical Considerations 6

FIGURE 2.3: Example of LSVM 3

an hyperplane in the input space X that classifies the different samples in two dis-
tinct regions according to their output value y. For a new observed sample xnew, the
classifier would thus make the following prediction:

f (xnew) = sgn(wTxnew + w0)

where w is the normal vector to the chosen hyperplane, w0 is linked to the offset
w0
||w|| of the hyperplane from the origin along the normal vector w and sgn denotes
the sign function. In Figure 2.3, an example of SVM hyperplane chosen for an 2
dimensional input space is shown. The regions corresponding to each class label are
also annotated with the corresponding prediction of the classifier.

What differentiates linear SVM from classical linear classification problems is
its objective function. Indeed, when using SVM, the intrinsic is the maximizes the
distance from the hyperplane to the closest point in LS, which can written as:

max
w,w0
{||x− xi|| : wTx + w0 = 0, i = 1, .., N}

This allows the algorithm to be more robust to changes in attributes values than
classical linear classification problems. Figure 2.4 illustrates the choice of the hy-
perplane according to this objective function. It can also be shown that the solution
corresponding to the optimal hyperplane is not unique. Indeed, using some geome-
try, the optimization problem can be written as:

arg max
w,w0
{ 1
||w||min

n
[yn · (wTxn + w0)]}

. By multiplying w and w0 by a constant c > 0, the hyperplane remains unchanged.
Although, unicity can be obtained by imposing |wTxn + w0| > 1 for the closest x
to the surface. The problem becomes then equivalent to minimizing ||w|| under the

3Introduction to Machine learnin: SVM
4Introduction to Machine learnin: SVM

http://www.montefiore.ulg.ac.be/~lwh/AIA/aia-svm-pg-5-11-2012.pdf
http://www.montefiore.ulg.ac.be/~lwh/AIA/aia-svm-pg-5-11-2012.pdf

Chapter 2. Theoretical Considerations 7

FIGURE 2.4: Objective illustation 4

constrains yiwTxi + w0 ≥ 1, i = 1, ..., N.

Up to now, two majors drawbacks can be enhanced considering linear support
vector machines. First, they are restricted to linearly separable problems. Secondly,
it’s mostly limited to binary classification. Several techniques however exist to over-
come these issues. For non linearly separable data, [3, Cortes et al. 1995] introduced
the concept of soft margin. Along with, the hinge loss function was defined as:

max{0, 1− yi(wTxn + w0)}

This allows some samples not to respect the margin by penalizing them if so, propor-
tionally to their distance to the margin. Considering the second limitation, several
solutions have been discussed in the literature, such as in [4, Duan et al. 2005]. A
common proposed technique is the one vs all classification. In this method, if C
classes must be classified, then C classifiers are also trained. For each of them, one
class is chosen and gets its label unchanged, while all the other ones get a common
label. Then, its classifier is trained as a classic binary classifier.

2.1.2 Extremely randomized trees

Extra trees were introduced in [5, Geurts et al. 2006] and rely on decision trees ([6,
Breiman et al. 1984] as base estimators.

First, a decision tree is a binary tree whose nodes can be divided into two cate-
gories. On the one hand, interior nodes are associated with a choice regarding one of
the features of the samples of LS. On the other hand, each leaf node is labeled with
class (resp. numerical value) in the case of classification (resp. regression) problem.
A sample is going down the tree by taking the test of each interior node it meets.
Once it ends up in a leaf node, it’s labeled by its class or value. When a tree is
grown, it’s required to know which test perform on which feature in order to get the
best tree as possible. Therefore, a quality measure must be associated to each that
can be chosen at a given node. This measure is called the impurity and quantifies
the diversity of a set according to the output variable y. More precisely, the more a
test reduces the impurity of its associated set, the better.

Chapter 2. Theoretical Considerations 8

Formally, let N be the set of nodes of a tree, LSn ⊆ LS with n ∈ N be the subset
of the learning sample available at node n, H : 2LS → C ⊆ R be the impurity
measure, where 2LS refers to the power set of the original learning set and P =
{p1, p2, ..., pk} the set of features of LS. To all features of P is also associated the
domains D1, D2, ..., Dk. Moreover, let pi(o) the value of the ith feature for sample o.
Under these assumptions, the splitting criterion for a node n is the pair:

(p∗, d∗) = arg max
pi∈P,dj∈Di

∆H({o ∈ LSn|pi(o) = dj}),

with

∆H({o ∈ LSn|pi(o) = dj}) =H(LSn)

−
|{o ∈ LSn|pi(o) = dj}|

|LSn|
H({o ∈ LSn|pi(o) = dj})

−
|{o ∈ LSn|pi(o) 6= dj}|

|LSn|
H({o ∈ LSn|pi(o 6= dj})

where |S| denotes the cardinality of set S. Once this splitting criterion is established,
the learning set LS is divided into a left and right partition according to the results
of the test. This operation is performed recursively until there are only objects left in
the node, making it a leaf. Using this process, the resubstitution error becomes null
at the end of the growing of the tree, minimzing therefore the loss function. How-
ever, if the tree is kept like this, the generalization error can be very large. That’s
why techniques as pruning have been developed in order to limit the growing of the
tree and reduce the generalization error.

FIGURE 2.5: Bagging illustration 5

Let’s now get back to extra trees. They actually consist in building forests, i.e.
ensemble of trees, and to make a prediction by computing a sort of average of the
prediction of all the trees belong to the forest. This principle is similar to Random
Forests ([8, Breiman 2001]). However, they differ in the following way: in random
forests, the randomness is due to the introduction of bagging in the learning set. As
a reminder, Figure 2.5 illustrates the procedure of bagging. It consists in drawing

5[7, Geurts 2016]

Chapter 2. Theoretical Considerations 9

several learning sets with replacement from the original one and aggregating the
predictions made for all these sets to obtain the final prediction. Conversely, in extra
trees, the splitting thresholds are determined randomly. This induces several advan-
tages compared to random forests. Firstly, using bagging reduces the learning size
of approximately 36% for each tree, which is not the case for extra trees. Secondly,
as the spitting threshold is chosen randomly, the the growing of the tree is much
faster as it’s not required to check all the features to compute the optimal threshold.
Lastly, extra trees tend to obtain better results than random forests in most empirical
situations (cfr [5, Geurts et al. 2006] for results).

2.1.3 Recurrent neural networks

Recurrent neural networks (RNN’s) are particular types of neural networks intro-
duced in [9, Hopfield 1982] as a mathematical model of particular biophysics pro-
cesses. The first application of RNN’s to solve large-scale tasks was done by [10,
Schuster et al. 1997] in the context of signal processing. More generally, these kinds
of neural networks are particularly adapated to deal with sequential data.

Let’s first briefly introduce neural networks in general. The first model of neu-
ral network is the perceptron ([11, Rosenblatt 1958]). It consists of network of two
layers: an input layer, related to the input value x of a given sample o ∈ LS and an
activation layer, to which is associated a weight vector w, an offset b and an function

6Deeplearning4j: example of MLP representation

FIGURE 2.6: MLP: network representation 6

https://deeplearning4j.org/lstm.html

Chapter 2. Theoretical Considerations 10

f (x) of the following shape:

f (x) =

{
1, if ∑i wixi + b ≥ 0.
0, otherwise.

As the output is binary, the intrinsic goal of the perceptron model is to define an
hyperplane separating the learning samples in the input space according to their
output value, just like Support Vector Machine in section 2.1.1. However, contrary
to SVM, the goal of the perceptron is not the maximization of the margin. Instead,
the optimization problem is solved by gradient descent (which can be stochastic or
not). Furthermore, like for SVM, solutions have been designed in order to deal with
non-liear learning data. In the case of the perceptron, the component which is mod-
ified is the function f (x) of the activation layer. A function widely used to deal with
non-linearity is the sigmoid function.

Later, more complex networks called multi-layer perceptrons could be created
when the backpropagation algorithm was proposed. This method is very practical
as applying it implies that each neuron can learn its own model with the only con-
straint of knowing its direct neighbour’s information. The algorithm is divided into
the following steps. Firstly, the information about the learning samples is propagate
forward the network to generate the output values of each neuron. Secondly, the
error term is computed. Lastly, the output activations are propagated back through
the network in order to compute the difference between the targeted and actual out-
put values of all the hidden neurons and the weights of the different neurons are
corrected according to the computed differences. As an example, Figure 2.6 illus-
trates the graph representation of a multi-layer perceptron. As it can be observed,
the connections between two neurons are always made from a layer to another. This
is where the RNN’s differ from classical MLP’s, as it will be explained next.

Now MLP’s have been explained, RNN’s can be tackled more easily. Indeed, as

7Deeplearning4j: example of RNN layer

FIGURE 2.7: RNN: layer structure 7

https://deeplearning4j.org/lstm.html

Chapter 2. Theoretical Considerations 11

illustrated in Figure 2.7, a RNN layer includes one more type of connection com-
pared to MLP’s. Let assume the input x of a RNN corresponds to some time-series
and can be written as x = (x0, x1, ..., xt, ..., xT−1, xT) where T is the number of time
steps. Then, the connection links the output neuron of the recurrent layer associated
to some input value xt with the hidden neuron of the same layer associated to the
next input value xt+1. Therefore, the value given to the activation function this next
neuron becomes a function of the previous one.

The representation given in Figure 2.7 is what is called an unfold representation
of the layer. There also exists a folded representation, in which the layer is rep-
resented as a single triplet of neurons. Fold and unfold layer representations are
compared in Figure 2.8.

FIGURE 2.8: RNN: layer structure 8

Nowadays, many various and more complex architectures have been developed.
The ones that have been used in the scope of this master thesis will be introduced
in the next chapter. Moreover, compared to the previous algorithms, the intrinsic
complexity of such deep learning architectures increases outrageously. As an exam-
ple, [12, Z. Mhammedi et al. 2016] details benchmark experiments conducted with
RNN’s of which the number of parameters to more than 180000. The running time
of such networks can therefore be really important. Combined with time required
to optimize all the hyper-parameters, the effective time to correctly train these net-
works sometimes make them impractical for some applications. However, there
remain an incredibly interesting subject of research and their outstanding perfor-
mances in fields such as natural language processing ([13, Q. Chen et al. 2017] still
promise them a very bright future.

2.2 Anomaly detection

This section focuses on the concept of anomaly detection. First, it globally intro-
duces the principle and the main different types of anomalies which are often met
nowadays. It also focuses on a specific kind of anomaly detection problem, which is
based on the comparison of probability distributions, and proposes a method based
on supervised learning to solve this problem.

2.2.1 General considerations

As explained in [14, Chandola et al. 2009], anomaly detection can be defined as the
ability of finding patterns which differ from an expected nature. Such distinctions

8Wikipedia: fold vs unfold RNN layer

https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Recurrent_neural_network_unfold.svg

Chapter 2. Theoretical Considerations 12

are mostly referred as anomalies or outliers. Lately, this concept has been adapted to
many application fields. Therefore, this gave the possibility to formalize it in a very
general way. It’s been given more and more importance in recent years because,
in many cases, an anomaly in data can be associated to serious (sometimes critical)
events.

To illustrate these explanations, Figure 2.9 shows a simple example of anoma-
lies that can be found in a 2-dimensional space. Two normal regions can be easily
highlighted on this graph: N1 and N2. Besides, three entities can be considered to
be sufficiently distant from these regions: objects o1 and o2, as well as region O3. It
can be noticed that it’s important to correctly make the distinction between anomaly
and noise. Contrary to anomaly, noise has no interest to be subject to analysis and,
most of the time, we want to remove it from the observed data. Of course, it’s not
the case for anomaly. Indeed, as we want to be able to identify outliers on purpose,
the elements that characterize them should be carefully taken into account in the
analysis.

Example shown in Figure 2.9 is only one among many types of outliers that can
be detected in practice. Formally, anomalies are generally classified into 3 main
categories:

• Point anomalies: the outliers introduced in the example of Figure 2.9 are part of
this class. This is the most classical type of anomalies that are currently stud-
ied. It simply consists of single objects or whole regions that can be considered
to be outside the boundary of predefined normal regions.

• Contextual anomalies: this type of anomaly introduces the concept of context, i.e.
a specific situation defined by a set of attributes, called contextual attributes,
which are parts of the features of the original data. On the other side, other at-
tributes, called behavioral, are used to determine if an object is anomaly or not,
conditionally to its contextual features. That means, given same behavioral at-
tributes, an object could be classified as an anomaly or a normal instance if

9[14, Chandola et al. 2009]
10[14, Chandola et al. 2009]

FIGURE 2.9: Example of anomalies in 2-dimensional space 9

Chapter 2. Theoretical Considerations 13

FIGURE 2.10: Example of collective anomaly in a human electrocar-
diogram output 10

their contextual features are sufficiently different. Let’s also notice that this no-
tion of context must be a consequence of the structure of the initial and has to
be specified in the problem statement.

An example of such anomaly can be given in the field of credit card fraud. For
this problem, a contextual attribute could be the time of the purchase. Let’s
consider an individual spending 100e per week. If this individual decides to
spend 1000e during Christmas week, this would be considered as an anomaly
given the context of Christmas. However, if a similar transaction occurs in July
for example, this would be detected as an outlier.

• Collective anomalies: such outliers consist of a group of data which, together,
form a single anomaly. If they were occurring separately, they would not be
detected as such. For instance, Figure 2.10 illustrates an example of this kind of
anomaly. In this example, a abnormal sequence is highlighted out of a human
electrocardiogram output. This sequence is considered as an anomaly because
it remains at low values for a too long time. Let’s note that an individual low
value does not consist of an anomaly itself.

Some remarks can be made about these three categories. First, it’s important to
know that collective anomalies can be considered only there is exists a dependence
between the different instances of the dataset, such as in time-series like in example
of Figure 2.10. Then, it’s possible to turn a point or collective anomaly into a con-
text anomaly if it’s possible to find attributes introducing a context in the problem.
Therefore, any point or collective anomaly problem can be translated into a context
anomaly problem if a correct contextual information can be expressed.

Further section will zoom on a specific anomaly detection problem based on the
comparison of probability densities. The problem which is solved in this master
thesis is an application of the generic task that will be described below.

2.2.2 Density-based anomaly detection

In some applications of anomaly detection, the goal is sometimes to identify stan-
dard patterns of a particular system and, afterwards, to compare these patterns with

Chapter 2. Theoretical Considerations 14

new observations of this system in a global way.

In order to make the link with the scope of this master thesis, let’s take as an
example an online casino game for which it would be required to detect abnormal
behaviour. In particular, we want to check if the game still behaves correctly after
being updated, assuming it was following its standard patterns before the update.

To do so, simulators which are able to generate data, just as if real people were
playing the game, are available. This can be thus seen as a type of collective anomaly
detection, as two sets of data are compared in their global aspect. With these simu-
lators, it’s possible to acquire data related to the game before and after the update. It
can also be assumed that this data is generated according to some probability den-
sity depending on the intrinsic parameters of the casino. In this scope, the notation
θ will be used to sum up all these parameters. Hence, p(x|θ) denotes the associated
probability where x represents a sample that can be generated by the simulator, just
like it represents a sample in a machine learning dataset. These parameters may also
differ when a game is updated, which is not always possible to forecast easily. As the
probability density characterizing a version of the game is unknown, the analysis of
the data is necessary to achieve the goal.

Let’s now assume we want to compare two versions of a same game, each re-
spectively denoted by parameter θ0 and θ1. Just like in supervised learning, data
generated by the simulators can be viewed as a set of samples, each sample being
described by a group of attributes. Therefore, the probability densities p(x|θ0) and
p(x|θ1) can be seen as multivariate probability densities following each attribute. If
a0, ..., am denote the attributes, we obtain:

p(x|θ0) = p(a0, ..., am|θ0)

p(x|θ1) = p(a0, ..., am|θ1)

At first sight, it could be thought about using some classical metrics providing
an idea of the distance between the multivariate probability densities. However, in
practice, the high dimensions of both samples and attributes make the computation
of such metrics very difficult. This is why, in next section, a method allowing to deal
with high dimensional probability density comparison will be introduced.

2.2.3 Likelihood ratio with supervised classification

In this section, a method which is able to perform high dimensional density-based
anomaly detection efficiently is going to be explained. To apply this method, the
same assumptions as in previous section 2.2.2 are made, i.e. two parametrized
probability densities px(x|θ0) and px(x|θ1), with x ∈ X ⊆ Rp and θ defining the
parametrization of the probability density. As a reminder, the objective is to deter-
mine how much these probability densities differ from each other. The correspond-
ing procedure has been introduced in [15, Cranmer et al. 2015] and relies on the
concept of likelihood-ratio. Under the current assumptions and given a set of i.i.d.

Chapter 2. Theoretical Considerations 15

observed data D = {x1, ..., xn}, the likelihood-ratio is defined by:

λ(D; θ0, θ1) = ∏
x∈D

px(x|θ0)

px(x|θ1)
(2.2)

To compute this quantity, it must be possible to evaluate the two probability densi-
ties precisely. However, in most of applications, this is not the case. [15, Cranmer et
al. 2015] therefore proposes a method allowing to approximate the likelihood ratio
λ using supervised learning.

Approximating likelihood ratios with classifiers The main result of the article is
the validation of a procedure allowing to transpose the likelihood-ratio expressed
in equation 2.2 into another one which is equivalent for the probability densities
px(x|θ0) and px(x|θ1). This has been done by proving that the following theorem is
true:

Theorem 1 Let X be a random vector with values in X ⊆ Rp and a parametrized prob-
ability density px(x = (x1, ..., xp)|θ) and let s : Rp → R a function monotonic with the
density ratio r(x; θ0, θ1), for given parameters θ0 and θ1. In these conditions,

r(x; θ0, θ1) =
px(x|θ0)

px(x|θ1)
=

pU(u = s(x)|θ0)

pU(u = s(x)|θ1)
(2.3)

where pU(u = s(x; θ0, θ1)|θ) is the induced probability density of U = s(X; θ0, θ1)

The validity of this theorem allows the initial problem to be formulated as a
probabilistic classification problem, where the decision function

s∗(x) =
px(x|θ1)

px(x|θ0) + px(x|θ1)
. (2.4)

is modeled by a binary classifier used to be able to differentiate the two initial prob-
ability densities. Hence, the density ratio of a given sample can be expressed as:

r(x; θ0, θ1) =
px(x|θ0)

px(x|θ1)
=

1− s∗(x)
s∗(x)

(2.5)

Notice that the monotonicity of s(x) with respect to r(x) is a sufficient but not nec-
essary condition for the transposition to be correct. If the condition is not fulfilled,
another solution is to use classifier calibration, which is going to be explained next.
Let’s notice that, from now, p(x|θ) will denote px(x|θ), p(s(x)|θ) will denote pU(u =
s(x)|θ), and r(x) will denote r(x; θ0, θ1).

Learning and calibrating classifiers As stated by Theorem 1, the problem of ap-
proximating the density p(x|θ) can be reduced to the evaluation of p(s(x)|θ). Again,
this must be done from finite samples set D = {x1, ..., xn}. There is no direct way
from which p(s(x)|θ) can be computed directly but an approximation p̂(ŝ(x)|θ) can
be constructed from the set D′ = {ŝ(x1), ..., ŝ(xn)}. Indeed, from density estima-
tion algorithms such as kernel density estimation, it’s possible to build a probability
density function from a set of sample. The main advantage of this problem trans-
position is the projection from a p-dimensional space onto a one-dimensional space.
This simplifies a lot the representation of the problem and, at the same time, allows

Chapter 2. Theoretical Considerations 16

FIGURE 2.11: Example of probability calibration for SVC 11: probabil-
ity vs fraction of positive class

to preserve the information required to approximate r(x).

Moreover, as said in previous section, when s(x) is not monotonic with respect
to r(x), a solution proposed by the article is to apply probability calibration on the
binary classifier. As explained in [16, Niculescu-Mizil et al. 2005], when classifica-
tion is performed, an output corresponding to the probability is also often required,
such as in the likelihood ratio problem described in this section. More precisely,
when calibrating a classifier, the probability output by the classifier can directly be
interpreted as a confidence level. Therefore, if a calibrated classifier predicts a value
close to 0.8 for a group of samples, around 80% of these samples are expected to
belong to the positive class. An example of the consequence of calibration is shown
in Figure 2.11. In this situation, it’s applied to SVC algorithm and, as expected, the
curve showing the predicted probability with respect to the fraction of positive class
becomes much smoother when calibration is performed.

11http://scikit-learn.org/stable/modules/calibration.html

http://scikit-learn.org/stable/modules/calibration.html

17

Chapter 3

Objectives, Motivations and
Methods

In this chapter, the different objectives of this thesis are laid down and formalized in
the scope of the different approaches.

3.1 Main objective and motivations

At the moment, Gaming1 uses two principal means in order to detect problems
linked to the game engine module of their casino games. On the one hand, released
games are monitored by a Risk & Fraud department which reports the identified
issues. On the other hand, during the development and updating stages, tests are
performed using simulation engines and the generated statistics are manually ana-
lyzed by Gaming1’s game engine team.

The main objective is to improve this second procedure for two reasons. Firstly,
using machine learning techniques would allow to automatize the operation. Gam-
ing1’s developers could then focus on other complex tasks. Secondly, the currently
used tests are not 100% reliable, as some problems still occur after passing them.
Therefore, the machine learning-based method will have the following objective: for
a given casino game, provide a procedure that will be able to compare the standard
patterns of the game to the patterns of the updated game. To achieve this, two ap-
proaches will be tested, both relying on the concept of density ratio explained in
section 2.2.3. The first one will be based on standard supervised learning classifi-
cation algorithms, such as ensemble methods or support vector machine, while the
second one will exploit neural networks architectures used in deep learning.

Further sections will now address the formalism and methodology related to the
objective described in this section.

3.2 Methodology

This section introduces the whole methodology related to the objective of the master
thesis. In particular, it formalizes the problem an introduces the metrics that will be
used to evaluate the algorithms.

3.2.1 Problem formalization

This section formalizes the objective in the scope of supervised learning using some
of the concepts introduced in chapter 2. Then, it introduces the metrics that will be

Chapter 3. Objectives, Motivations and Methods 18

used in Chapter 4 to assess the performances of the anomaly detection procedure.

To solve this problem, it’s been chosen to rely on the concept of likelihood-ratio
introduced in section 2.2.3. Indeed, to a given version of a casino game can be asso-
ciated a probability density p(x|θ) where x corresponds to the input data that will
be used in the machine learning algorithm, whatever it is, and θ is associated to the
intrinsic game engine parameters influencing the behaviour of the game. Therefore,
when a game is updated, 2 versions are available, each one having its own proba-
bility density. Let p(x|θ0) (resp. p(x|θ1)) be the probability density of the original
(resp. updated) version the game. Therefore, as stated in [15, Cranmer et al. 2015],
the problem can be solved as a supervised classification problem. If ŝ(x) denotes
the decision function of the classifier trained by the associated supervised learning
algorithm, equations 2.4 and 2.5 hold for this problem and the approximation ŝ(x)
can be used to model the probability density p(ŝ(x)|θ). This will correspond to a
sufficiently good approximation of equation 2.4.

It’s important to understand to the problem we want to solve does not corre-
spond to a typical supervised learning problem. Indeed, the goal here is not to train
a model that will be re-used later to make some predictions about new data. In the
present case, each game update corresponds to an independent supervised learning
problem to solve using the technique introduced in section 2.2.3. Once the density
ratio of all the samples has been approximated by the trained, this last won’t be used
anymore.

As said in previous section, two approaches are going to be compared for this
problem. The main difference between them, except the types of used algorithms, is
the input data that they require. This distinction will be explained in further sections.
At this stage, it’s assumed to have a dataset D = {xi, yi|i = 1, . . . , N}, yi ∈ {0, 1} ∀i.
Label 0 (resp. 1) is associated to original (resp. updated) data. It’s also assumed
that the proportion of both types of data is approximately the same. Up to now, the
only assumption made on xi is that it contains real values. The preprocessing pro-
cedure for each approach will be detailed in corresponding sections. Moreover, N is
assumed to be quite large as there is no clear bound on the amount of data that can
be generated by simulations.

3.2.2 Evaluation metrics

Besides, to evaluate correctly the performance of the density-based anomaly detec-
tion method, suitable metrics are required to provide a relevant analysis of the out-
puts of the method. Indeed, more than simply using the classic metrics such as
accuracy, precision, etc... used in machine learning, the current problem requires to
compare probability densities. Let p and q be two probability densities to compare.
To do so, the most widely used measures are the following:

• the Jensen-Shannon divergence defined as:

JSD(P || Q) =
1
2

D(P || M) +
1
2

D(Q || M)

where:

– M = 1
2 (P + Q).

Chapter 3. Objectives, Motivations and Methods 19

– D(P || Q) is the Kullback–Leibler divergence between P and Q. When P
and Q are distributions of a continuous random variable, it is defined as
the following:

D(P || Q) =
∫ +∞

−∞
p(x) log

p(x)
q(x)

dx

where p and q denote the densities of P and Q.

• The Wasserstein-1 distance, as explained in [17, Louppe 2018], defined as:

W1(p, q) = inf
γ∈∏(p,q)

E(x,y)∼γ[||x− y||]

where:

– ∏(p, q) denotes the set of all joint distributions γ(x, y) whose marginals
are respectively p and q.

– γ(x, y) indicates how much mass must be transported from x to y in order
to transform the distribution p into q.

– ||.|| is the L1 norm and ||x − y|| represents the cost of moving a unit of
mass from x to y.

More intuitively, the Wasserstein-1 distance corresponds to the minimum mass
displacement required to transform one distribution into the other. Figure 3.1
shows how this distance is calculated for a simple example. We have the fol-
lowing two densities:

– In blue, p = 1
4 1[1,2] +

1
4 1[3,4] +

1
2 1[9,10]

– In red, q = 1[5,7]

The arrows displayed on the Figure represent the minimum cost for moving
each part of p onto q. Therefore, we have:

W1(p, q) = 4× 1
4
+ 2× 1

2
+ 3× 1

2
= 3

FIGURE 3.1: Wasserstein distance: example 1

As a reminder, we want to observe if there is a notable difference between the
two probability densities p(x|θ0) and p(x|θ1), respectively labeled by y = 0 and
y = 1 in the dataset D. To do so, we dispose of the estimates ŝ(x) and r(x), ∀ x ∈ D.
Therefore, for a given anomaly detection problem, it’s been decided to analyze the
following outputs:

1[17, Louppe 2018]

Chapter 3. Objectives, Motivations and Methods 20

• Probability densities p(ŝ(x)|y = 0) and p(ŝ(x)|y = 1) along with their JSD
and W1 measures. This allows a preview of what the classifier has achieved to
perform without having to compute the density ratio yet.

• Two graphs displaying each r(x) w.r.t. ŝ(x) and the probability density p(r(x)).
These are the classical outputs in density ratio problems solved with super-
vised learning. These allow an accurate display of the approximation of the
target value defined by equation 2.2. These graphs can also be translated into
the variance of the density ratio r(x) if only a numerical evaluation is required.

• the ROC curve of the model to provide a more classical view of the perfor-
mances of the classifier. In the scope of the problem, if p(x|θ0) ∼ p(x|θ1), the
ROC curve should be close to the 45° line; otherwise, it should be clearly dis-
tinct from it.

Considering all these metrics, the analyses should be sufficiently complete to distin-
guish relevant differences between the probability densities associated to two ver-
sions of a game. Next sections will focus on describing the specific type data that
is going to be exploited, and the preprocessing that should be applied for each ap-
proach.

3.3 Raw data collection

This section addresses the procedure allowing to collect the data that will be used
to solve the problem. As said in section 3.1, data is generated using game engine
simulators. A simulation will perform a given number of turns (called spins) spread
into different sessions (called Game Instance Player). Not that the size of a GIP is
defined by the simulator as a random variable with a uniform distribution over the
interval [1, 1000]. The data corresponding to a given GIP is the following: every 10
spins, the difference between the amount of won money and the amount of played
money (also called stake) is retrieved. Note that a simulation is performed for some
given parameters. Therefore, to make the link with the abstract data defined at sec-
tion 3.2.1, all the sessions generated by a given simulation will correspond to a fixed
value of θ. Hence, the same label will be assigned to all of them. Thus, to dispose of
a complete dataset, two distinct simulations must be performed, with their associ-
ated values of θ. Considering the amount of data that will be used for our analysis, a
simulation is assumed to produce 5 millions of spins. Thus, a complete dataset will
contain information related to 10 millions of spins.

Index Gip_id Time Win_ratio
0 id1 1 Gratio(1,1)
1 id1 2 Gratio(1,2)
...

...
...

...
N − 2 idn t− 2 Gratio(n,t− 2)
N − 1 idn t− 1 Gratio(n,t− 1)

N idn t Gratio(n,t)

TABLE 3.1: Raw data format

2[18, Merchie 2017]

Chapter 3. Objectives, Motivations and Methods 21

FIGURE 3.2: Example of data related to GIP 2

An example of such time-series is displayed in Figure 3.2. It can be noticed that,
like for spins, the y-axis value is also rounded to the closest multiple of 10. This is a
constraint imposed by the simulator itself, reducing the cost for collecting the infor-
mation because, usually, this kind of simulation are performed for several millions
of spins. Of course, there is a non negligible loss of information by proceeding like
that but this is the price to pay to be able to analyze a large amount of spins within
one simulation. Moreover, in casino games, the main interest of such data analy-
sis mostly resides in the general trends of GIP graphs more than in local behaviours.
After the termination of the simulation, the whole data collection is written in a .csv

file of which the format is described by Table 3.1.

Of course, data collected in such a format is not suitable for any machine learn-
ing algorithm. Therefore, it has to be preprocessed according to the approach that
is going to be used. Next sections describe, for each approach, the preprocessing
procedures that have been designed.

3.4 Data preprocessing

In this section, the issue of data preprocessing is addressed. For each approach, we
describe the whole procedure allowing to transform raw data into a dataset that
could be directly used by supervised machine learning algorithms.

3.4.1 Standard supervised approach

For this approach, it’s required to transform the data described by Table 3.1 into a for-
mat corresponding to the standard input format for supervised learning described
at Section 2.1. At first, it could be thought to directly use the values of the time-
series as features. But, unfortunately, as explained in previous section, the length of
a time-series is a defined as a random variable in the simulator. As a consequence,
the number of features would not be the same for all samples, which can’t happen

Chapter 3. Objectives, Motivations and Methods 22

Index Gip_id Time Win_ratio
0 id1 1 Gratio(1,1)
1 id1 2 Gratio(1,2)
...

...
...

...
N − 2 idn t− 2 Gratio(n,t− 2)
N − 1 idn t− 1 Gratio(n,t− 1)

N idn t Gratio(n,t)

f t1 f t2 f t3 ... f tP
id1 x1,1 x1,2 x1,3 ... x1,p
id2 x2,1 x2,2 x3,2 ... x2,p
...

...
...

...
. . .

...
idn xn,1 xn,2 xn,3 ... xn,p

TABLE 3.2: Illustration of the feature extraction procedure

in supervised learning. Therefore, it was required to use a more complex feature
extraction method. To do so, a strategy that has been discussed in a previous in-
ternship report [18, Merchie 2017] has been applied. This mainly relies on a toolbox
([19, Christ 2016]) allowing to process time-series by automatically extracting a large
number of features and build a dataset such as described by Table 3.2.

Nevertheless, the utilization of this method in the scope of the problem lead to
some issues as explained in section 6.1.1 of the internship report [18, Merchie 2017].
Indeed, some time-series contain an insufficient number of measures for all the fea-
tures to be computed correctly. To counter this problem, the following solutions
were designed:

• Concatenating some time-series between each other according to a minimal
length. Note this makes sense as it’s assumed that every time-series of a given
simulation is generated according to the same parameters. In this way, longer
time-series are artificially created and features can be be computed with more
accuracy. However, a trade-off is faced when using this solution. indeed, if
time-series are concatenated, that means less samples will be available in the
final dataset given a same amount of resources spent to generate the raw data.
It’s been chosen to analyze the influence of time-series concatenation for dif-
ferent values of the minimal length. It’s been decided to set this parameter to
0 (i.e. no concatenation), 500, 1000 or 2000. Note that, for 2000, all features can
be computed correctly.

• A more straightforward strategy consisting in using missing values imputa-
tion methods. A detailed analysis has been performed during the internship
to determine the method providing the best results in the scope of the prob-
lem. This enhanced that techniques based on singular value decomposition of
matrices gave the best results. Note that, during this step, features containing
too many missing values are removed from the dataset. The number of avail-
able features will therefore be a function of the minimal concatenation length
defined by the first solution.

Chapter 3. Objectives, Motivations and Methods 23

Combining these two solutions allow therefore to obtain, for a given collection of
raw data, a complete dataset of which the samples are labeled according to the pa-
rameters of the simulation from which they have been generated. Considering the
size of the datasets, this depends of course on the value of minimal concatenation
length. Table 3.3 details this relation for the chosen values of the minimal length. It
can be observed that, from the point where concatenation is performed, the size of
the dataset sharply decreases. As a consequence, cross-validation techniques should
be used in this case. In particular, cross-validation preserving the class proportion
within the subset, such as stratified k-fold cross-validation, will be applied in this
scope. Next section will describe the equivalent procedure for the deep learning
approach.

3.4.2 Deep learning approach

Concerning deep learning approach, there is one major difference compared to stan-
dard supervised approach in terms of data preprocessing. Indeed, recurrent neu-
ral networks such as described in section 2.1.3 are able to process time-series di-
rectly. Therefore, the feature extraction combined with missing values imputation
described in previous section is not required anymore here. However, it could still be
interesting to observe the effect of the concatenation of time-series, independently of
the fact that it helps increasing the number of features that can be correctly computed
for standard supervised approach. Thus, Table 3.3 is still valid as far as datasets’
shape is concerned.

Moreover, it’s still needed to provide the neural network samples of the same
size. To do so, an existing methods consists in truncating and padding the differ-
ent sequences with 0’s. The neural network will then simply learn that such values
contain no relevant information. Once it’s done, it should also be interesting to stan-
dardize the data. This has been shown to improve the accuracy in some cases.

In next section, the algorithm allowing to actually be able to detect anomalies in
casino games will be explained.

3.5 Update verification procedure

In this section, the actual procedure allowing to achieve the objective described in
section 3.1 is presented. First, the algorithm and its main supervised learning com-
ponents are described, followed by an explanation of the way this algorithm will be
indeed validated.

Minimal concatenation length Size of the dataset Number of features
0 ∼ 40000 ∼ 400
500 ∼ 15000 ∼ 500
1000 ∼ 8000 ∼ 600
2000 ∼ 4000 ∼ 800

TABLE 3.3: Shape of the final dataset according to the minimal con-
catenation length

Chapter 3. Objectives, Motivations and Methods 24

3.5.1 Description

Up to now, the problem statement has been formalized and all the preprocessing
steps allowing to obtain exploitable datasets have been discussed. In this section,
the complete procedure to verify if the behaviour of a casino game has changed af-
ter an update will be detailed. As reminder, it globally consists, from simulations
generated before and after the update, in providing an estimate of the density ratio
between the two theoretical probability densities associated to the versions of the
game. Typically, the method reads the contents of the files containing the results of
the simulations, and applies the different preprocessing techniques discussed in pre-
vious sections, according to the approach. Then, cross-validation is applied to create
successive learning and testing sets. For each of these pairs, a learning procedure
is performed and the metrics introduced in section 3.2.2 are computed. This can be
divided into the following parts:

1. For each simulation, reading the corresponding file into a dataframe.

2. Applying the preprocessing techniques according to the chosen minimum con-
catenation length and supervised learning approach.

3. Splitting the obtained dataset into k subsets thanks to stratified cross-validation.

4. For each learning/testing set pair, train a density ratio classifier according to a
chosen base estimator and associated set of hyper-parameters using the learn-
ing set.

5. Predicting the probability associated to equation 2.4 and the log of the density
ratio r(x) for each sample of the testing set.

6. Storing all the predictions for all training/testing set pairs.

7. Computing and returning the required metrics.

The pseudo-code of this method is presented by Algorithm 1. It’s noticed that sev-
eral arguments are given to the procedure. Most of them have already been dis-
cussed. On the one side, f ile and updateFile denotes the files containing results
of the simulations, which will constitute the input of the preprocessing step. On
the other side, approach either denotes the standard or deep learning strategy and
length refers to the minimum concatenation length. The last argument that must be
discussed is estimator. This contains all the information about the algorithm that
will be used to learn the data. But the classifier is actually much more complex in
our case. It will indeed base composed of several layers, each of them having a set
of hyper-parameters that can be tuned. This layer decomposition was necessary be-
cause of the different metrics that are required to be computed. Figure 3.3 illustrates
this layer decomposition as well as the different components of each of these layers.
Starting from the bottom:

• The first layer is made up of the blocks Base Estimator and Parameters. This
corresponds to the classical instance of a supervised learning estimator, associ-
ated with its given set of tunable hyper-parameters. In this scope, its role is to
provide the predictions of the class probability described by equation 2.4. The
following types of estimator will be compared during the analysis part:

– Extra Trees and Linear SVM in the case of the standard supervised ap-
proach.

Chapter 3. Objectives, Motivations and Methods 25

Algorithm 1 Update verification procedure

1: function PROCEDURE(f ile, updatedFile, approach, length, estimator)
2: data0← READ(f ile)
3: data1← READ(updatedFile)
4: dataset← PREPROCESS(data0, data1, approach, length)
5: nbCol ← dataset.shape[1]
6: X ← dataset[:][: nbCol]
7: y← dataset[:][nbCol]
8: skc← STRATIFIEDKFOLDCV(length)
9: ratios← []

10: predictions← []
11: trueLabels← []
12: for trainIndex, textIndex ∈ skc.SPLIT do
13: XTrain, yTrain← X[trainIndex][:], y[trainIndex][:]
14: XTest, yTest← X[testIndex][:], y[testIndex][:]
15: cl f ← INSTANTIATERATIOCLASSIFIER(estimator)
16: cl f .FIT(XTrain, yTrain)
17: rat, pred← cl f .PREDICT(XTest), cl f .baseEstimator.PREDICTPROBA(XTest)
18: ratios.APPEND(rat)
19: predictions.APPEND(pred)
20: trueLabels.APPEND(yTest)
21: metrics← COMPUTEMETRICS(ratios, predictions, trueLabels)
22: return metrics

– Recurrent Neural Networks in the case of deep learning approach.

• The second layer corresponds to the calibration of the first one. As explained in
Chapter 2, this aims at increasing the robustness of the density ratio estimation
in the case where the probability prediction of the estimator is not monotonic
with respect to this ratio. Note that this layer is not mandatory. Therefore,
the layer itself will be considered as a hyper-parameter for the analysis, as
well as the Calibration Method block. The Cross-Validation Method blocks
is assumed to be of type Stratified k-fold cross-validation and is necessary to
perform calibration.

• Last layer encapsulates every other as a Density ratio Classifier. Its task
is to provides the actual estimate of the density ratio using the elements of all
the previous layers.

Base Estimator Parameters

Calibrated Classi�er
Calibration

Method

Cross-Validation

Method

Density ratio Classi�er

FIGURE 3.3: Layers representation of the classifier of Algorithm 1

Chapter 3. Objectives, Motivations and Methods 26

These 3 combined layers form a classifier providing the information to compute
all the metrics described at section 3.2.2 and thus, to perform a relevant analysis
between two probability distributions. However, it can’t be assessed yet that Algo-
rithm 1 is correct. Validation cases for which the expected result is already known
must be given to the procedure in order to check its correctness. Next section will
present and justify these validation situations in the scope of the casino games.

3.5.2 Validation

This section describes the different cases that have been used to assert the validity
of the proposed method. To evaluate the performances of the algorithm, analyses
will be performed on four types of games: slot, dice, blackjack and roulette. In this
section, the different configurations in which these games will be set for the tests are
briefly explained.

First, we want of course the algorithm to be able to detect modifications in the
behaviour of a given game. These behaviour changes could be voluntary added into
the game, such as modifications brought to a game in order to make it more attrac-
tive to the player. But also, undesired changes could occur in a game, such as bugs
unintentionally incorporated during the development and which are not immedi-
ately detected during the test stage. Both types of changes should be identified by
the proposed algorithm. It’s thus been chosen to insert one anomaly in a game set of
each different types of games. The anomalies are the following:

• Slot: increasing of the probability of the bonus symbol of 30%.

• Dice: real bug that occurred in a past update of the game and which has been
detected only after the releasing of the game. Briefly, the bug was detected
because it was noticed that it was possible to detect phases where the game
would pay much more than usual. Therefore, the players being able to do so
played very small stakes while the game was not in such a phase, and switched
to higher stakes when they detected the phase change.

• Blackjack: Ace cards have been removed from the shoe.

• Roulette: probabilities of 4 symbols have been set to 0.

Secondly, we also want the method not to warn too often about changes occur-
ring after the updating of a game. Therefore, some situations must be defined and
tested where the analysis of the output of the algorithm should not conclude to an
anomaly in the game. At least, there should be clear differences between the cases
where anomalies are expected compared to the situations where nothing abnormal
should be observed. Thus, as a comparison with the bugs described previously, an-
other dataset will be analysed. This time, both classes will come from a same game
set. Hence, it should not be possible for the classifier to separate the data as accu-
rately as when bugs should be observed.

As a summary, for a given case, the validation proceure can be decomposed into
the following steps:

1. Apply Algorithm 1 where f ile (resp. updatedFile) contains data generated by
the correct (resp. bugged) version of the corresponding game. Store the metrics
obtained from this analysis.

Chapter 3. Objectives, Motivations and Methods 27

2. Apply Algorithm 1 where both f ile and. updatedFile contain data generated
by the correct version of the corresponding game. Store the metrics obtained
from this analysis.

3. Display the obtained metrics. An analysis of the test samples will consists in
five different graphs:

• The probability densities p(ŝ(x)|y) for each label in the case where one of
the two labels corresponds to a bugged version of the game. From here
and in Chapter 4, this is denoted as positive case. In this graph, the two
densities should be easily differentiated.

• The probability densities p(ŝ(x)|y) for each label in the case where none
of the two labels corresponds to a bugged version of the game. From
here and in Chapter 4, this is denoted as negative case. In this case, the
two densities should approximately have the same shape. Hence, their
JSD and W1 distance should be negligible compared to these of the two
previous densities.

• The log density ratio ln(r(x)) as a function of the of the prediction ŝ(x)
given the original case (bug or no bug inserted). For this graph, the sam-
ples corresponding to the positive case should spread along a larger range
of values than the samples of the negative case. Therefore, their variance
should also be higher.

• The probability density of the log density ratio ln(r(x)) given the original
case (bug or no bug inserted). Just as the previous, the density associated
to the positive case should be more flattened and spread than the density
of the negative case. Hence, their JSD and W1 distance should not be
negligible.

• The ROC curve associated to each of the two cases. Here, the accuracy
corresponding to the area under the curve, should of course be larger in
the positive case.

It’s important to notice that the probabilities densities detailed in step 3 aren’t
true original densities. Indeed, there are approximations built from the histograms
of the test samples for the corresponding metric. For the experiments conducted in
Chapter 4, the approximation method which has been used is the Kernel Density
Estimator (KDE). As explained in [20, Gutierrez-Osuna 2016], this estimator approx-
imate the shape of a univariate density p by an i.i.d. sample D = x1, ..., xN drawn
from this distribution by using the estimator:

p̂(x) =
1

Nh

N

∑
i=1

K(
x− xi

h
)

where:

• N is the number of samples.

• K is the kernel, a non-negative function integrating to 1.

• h > 0 is a smoothing parameter, called the bandwidth.

In practice, the choice of the bandwidth parameter h is crucial. To illustrate this,
Figure 3.4 shows the resulting density function estimated from 500 i.i.d. samples

Chapter 3. Objectives, Motivations and Methods 28

�� �� �� �� � � � � �
�

���

���

���

���

���

���

	
��

��
��
���

�

���

�

�������
������
����

FIGURE 3.4: KDE example for a standard normal distribution: esti-
mation made from 500 i.i.d. samples

drawn from a standard normal distribution for 3 different values of h: 0.05, 0.4 and
2. The curve corresponding to the smallest value of h is clearly undersmoothed
and becomes highly noisy, while the curve corresponding to the highest value of h
suffers from the exact opposite problem. The effects of the bandwidth parameter
are thus clear. One the one hand, high values reduce the variance from one samples
set to another but the bias with respect to the true density globally increases. On
the other hand, small values reduce the bias with respect to the samples set, but as a
consequence, the curve becomes much more dependent on this dataset. To overcome
this bias/variance trade-off induced by the choice of h, [20, Gutierrez-Osuna 2016]
suggests to select the value that minimizes the mean squared error (MSE) between
the estimated density and the true density:

MSEx(p̂(x)) = E[(p̂(x)− p(x))2] = E[p̂(x)− p(x)]2 −V[p̂(x)]

This bias/variance decomposition appears in the right-hand term. However, in
practice, the true density is course not often available. Therefore, some assumptions
about this true density must be made in order to be able to solve this optimization
problem.

In this section, it’s thus been explained how the procedure defined by Algorithm
1 was going to be validated and what kind of information is going to be displayed in
Chapter 4. In next section, the implementation of the different parts of the software
will be described.

3.6 Implementation and architecture

In this section, some details about the implementation are provided. The goal is to
see how the mechanisms introduced in previous sections of this chapter render into
code. Also, a part of this section is exclusively dedicated to the architecture of the

Chapter 3. Objectives, Motivations and Methods 29

deep learning approchoach. Indeed, as the structure of a neural network can be very
complex, it’s important to explain its different components.

3.6.1 Software architecture

Concerning the architecture of the software, it’s been decided to divide it into several
modules corresponding to the main different steps of the anomaly detection proce-
dure: the extraction of features from the simulation data, the imputation of missing
values into the datasets obtained from feature extraction, and the machine learning
procedure itself. It’s important to be aware that the software has been designed the
very specific problem tackle in this master thesis. Transposition to other problems
is therefore not the main purpose here. The software has been implemented on a
machine featuring a Windows 10 Pro OS, a Intel Xeon CPU of 3.50GHz, 4 cores and
8 logical processors, with 16GB of RAM.

The static diagram of Figure 3.5 represents the structure and the relations be-
tween the different modules of the software. Let’s notice that the code, written in
Python 3.6, is not all brand new. For several modules, existing packages have been
used in order to limit the programming time. Let’s first describe the features ex-
tractor. This module is responsible for the first part of the operations explained in
Section 3.4: the concatenation of the different GIP one after each other and, only for
the standard approach, the extraction of statistical features from temporal data. The
latest has been done using a feature extraction package especially designed to deal
with time-series, called tsfresh ([19, Christ 2016], version 0.11.0). After concatenat-
ing the GIP given a minimal length and potentially extracting features, the module
produces a dataset such as described In Table 3.2

Then, there is the Missing Values Imputer, dealing with second part of the proce-
dure described in Section 3.4. As a reminder, this is divided into 3 main steps. Firstly,
the features having too many missing values are removed. Secondly, the dataset is
prepared for the imputation with a standardization procedure. Finally, the missing

FIGURE 3.5: Static diagram of the software

Chapter 3. Objectives, Motivations and Methods 30

values are actually imputed using the package fancyimpute ([21, Rubinsteyn 2016],
version 0.2.0). This package proposes several techniques in order to perform this
task. According to the analysis performed in [18, Merchie 2017], the Soft Impute
method was chosen. After being processed by this module, the dataset should be
fully ready to be used for the actual anomaly detection procedure.

Moreover, The machine learning procedure is performed by the module Classi-
fier Ratio. This module corresponds to the layers-based classifier described in Figure
3.3. Let’s note that the calibration layer is here directly included in the Classifier Ra-
tio module. Several packages have been used in order to implement this part of the
software. First, the Classifier Ratio itself finds it implementation in the carl pack-
age ([22, Louppe et al. 2016], version 0.2). This package has been especially made
for solving likelihood-free inference problems. In particular, the density ratio-based
anomaly detection presented in this master thesis is one of these sub-problems. Fur-
thermore, in order to perform this task, the module needs a base estimator, i.e. an
actual machine learning algorithm to which the supervised learning task will be ded-
icated. The implementation of these algorithms is found in the scikit-learn package
(version 0.19.1).

Finally, the module allowing to use all the previous ones together in order to
complete the required task is the Anomaly Detector. For this master thesis, it groups
all the experiments that have been performed to assess the performances of Algo-
rithm 1, which will be analyzed in Chapter 4. Considering the final application
which be used later by GAMING1, this will consists of a class receiving the simula-
tion data as input and calling the appropriate functions of the other modules.

Some other more frequently used packages are also part of the implementation.
Particularly, there are numpy (version 1.14.2), seaborn (version 0.8.1) for the design
of the graphs, and scipy (version 1.1) for the computation of statistical data. In the
next section, the architecture related to the deep learning approach is tackled. This
corresponds to the RNN base estimator of the diagram of Figure 3.5.

3.6.2 Deep learning architecture

This section deals with the particular architecture of the module RNN of the class
diagram of previous section. Indeed, as the complexity of the architecture of neural
networks tends to increase nowadays, it’s important to introduce the different com-
ponents of a neural network and to show how they’re gathered together.

First, let’s first describe the basic unit of the architecture of the network that has
been used in this master thesis. It’s called LSTM (Long Short-Term Memory) and
was proposed by [23, Hochreiter et al. 1997] in order to solve long lag problems.
Figure 3.6 illustrates the general structure of such a cell. As observed, the input of a
LSTM cell consists of the concatenation of the output of the previous cell (in tempo-
ral order) and the current input. The cell is generally made up of three main parts:
an input gate, a forget gate and an output gate. The input gate produces a term
consisting of the product of the input passed through a layer of sigmoid functions
and the input which has been squashed by a hyperbolic tangent function. The forget
gate is slightly more complicated. First, it also processes the input with a series of

3LSTM tutorial

http://adventuresinmachinelearning.com/keras-lstm-tutorial/

Chapter 3. Objectives, Motivations and Methods 31

FIGURE 3.6: LSTM cell description 3

sigmoid functions. But, then, it’s multiplied by a variable called the internal state
of the cell. This internal state corresponds to the sum of the result of the input and
forget gates. This introduces the concept of memory into the cell. In the last stage of
the cell, the internal state in squashed with another hyperbolic tangent, then multi-
plied by the result of the output gate. This gate once again passes the input through
another layer of sigmoid functions. The result of this last product corresponds to
the output of the cell. Let’s notice that the activation functions corresponding to a
hyperbolic tangent can be replaced by other types of activation functions.

FIGURE 3.7: RNN architecture used in the master thesis 4

After describing the main component of the network, let’s switch to its global
structure. Figure 3.7 represents the architecture of the recurrent neural network cho-
sen as base estimator for the deep learning approach of this master thesis. It simply
consists of adding LSTM layers sequentially, where an LSTM layer is composed of a
given number of LSTM cells such as described by Figure 3.6. Afterwards, in order to
produce only one input, the outputs of the last LSTM layer are sent through a Dense

4[24, Abdulmajid et al. 2017]

Chapter 3. Objectives, Motivations and Methods 32

layer of one node. The number of LSTM cells by layer will be a hyper-parameter of
the network.

Before diving into the results of the experiments performed in Chapter 4, next
section summarizes the hyper-parameters of which the influence will be analyzed.

3.7 Hyper-parameters

Before plunging into the analysis of the results, this section rapidly summaries all
the hyper-parameters involved in Algorithm 1.

• Data preprocessing

– Concatenation length l.

– Type of supervised approach.

• First layer of the classifier

– Type of base estimator.

• Second layer of the classifier

– Type of calibration method.

• Extra trees

– Number of trees in the forest (default: 10).

– Fraction of the total number of the features to consider when looking for
the best split k (default: square root number of features / number of fea-
tures).

– Maximum depth of a tree (default: no max depth).

– Minimum number of samples to split nmin (default: 2).

– Minimum number of samples per leaf nleaf (default: 1).

hyper-parameter Default value
l 500
Base estimator Extra-trees
Calibration method None
Number of trees 200
k Square root of the number of features / number of features
Maximum depth None
nmin 2
nleaf 1
Bootstrap False
c 1
f Epsilon insensitive
llstm 2
nlstm 100

TABLE 3.4: Default values of hyper-parameters in the scope of Algo-
rithm 1

Chapter 3. Objectives, Motivations and Methods 33

– Whether to use bootstrap or not (default: no bootstrap).

• Linear SVM

– Regularization parameter c (default: 1).

– Loss function f .

• Recurrent Neural Network

– Number of LSTM layers llstm (default: 2).

– Number of LSTM units per layer nlstm (default: 100).

Out of these hyper-parameters, several of them influence the supervised algo-
rithm directly. These correspond to the hyper-parameters of Extra trees and linear
SVM. Besides, the other hyper-parameters influence more the classification method
itself than the algorithm used for classification. Such hyper-parameters, called struc-
tural parameters, have thus a deeper impact than classical ones.

Considering Extra trees, some of its parameters can be highlighted due to their
particular role. Indeed, the maximum depth, nmin and nleaf are three different ways
of controlling the pruning of the trees. Let’s simply notice that nmin is associated to
internal nodes of the trees, which means it prevents an internal from splitting if the
number of samples is below its value. By contrast, nleaf does not prevent from split-
ting as it only influences the leaf nodes. However, it can cancel a split if the number
of samples of one the produced leaf is under its value. As far as linear SVM is con-
cerned, one can highlight the c parameter. This consists of a penalty term added to
the error in order to perform regularization.

Table 3.4 show the default values of the hyper-parameters considered for the
analysis. If not stated otherwise, these values have to be assumed for the experi-
ments performed in the next chapter.

34

Chapter 4

Results

This chapter depicts the experiments conducted with Algorithm 1 and data config-
uration described in section 3.5.2. It’s divided into two section, each corresponding
to one of the approaches defined in Chapter 3. As a reminder, the first approach
aims at using standard supervised learning datasets, which have been built by fea-
ture extraction. By contrast, the second approach directly uses time-series as input
for recurrent neural networks. Let’s also recall that, when no information about a
parameter is given, its value from Table 3.4 has to be assumed. It’s also good to re-
member that both cases when anomaly should be identified and when it should not,
are going be tested, as explained in section 3.5.2. From now, they will respectively be
denoted as positive and negative cases (with respect to the presence of an anomaly).

4.1 Standard supervised approach - Extra trees

This section details all the analyses that have been performed using the standard
supervised approach and extremely randomized trees as base estimator.

4.1.1 Experiment with default parameters

The first experiment simply consists in choosing one data configuration and per-
forming a density ratio analysis with the default parameters. This aims as providing
a first graphical visualization of the different outputs of the algorithm. Indeed, some
of the metrics that are going to be displayed in this analysis are not usually used for
solving machine learning problems. For this experiment, it’s thus been chosen to
analyze the data corresponding to slot game. As a reminder, the bug introduced in
the corrupted part of the data is an increasing of the probability of the bonus symbol.

The metrics introduced at section 3.2.2 have thus been computed for this config-
uration. Their graphical representation is displayed in Figure 4.1. Let’s depict them
one by one. Figures 4.1a and 4.1b both show the density probability of the output of
the classifier ŝ(x), which is here the probability of belonging the class y = 0; They
respectively correspond to situations when one of the class corresponds to data gen-
erated from the bugged version of the game and when both classes have been gen-
erated by the same version of the game. It’s clear that densities of Figure 4.1a are
much less similar than the ones of Figure 4.1b. While label curves are clearly distin-
guishable on the left graph, they almost overlay on each other on the right graph.
Therefore, this provides first clues on the ability of the method to detect the anomaly
on the one hand, and not to identify a false positive on other hand.

Chapter 4. Results 35

��� ��� ��� ��� ��	 ���
̂s(x)

���

���

���

���

���

���

���

̂ s(
x)
��
��
��
��
���
��
�
��
���

������
��
������
��

(A) Probability density function of ŝ(x)
given the true label (positive case)

��� ��� ��� ��� ��
 ���
̂s(x)

�

�

�

�

�

�

�

	

̂ s(
x)
��
��
�

�
���
��
��

��
���

���������
���������

(B) Probability density function of ŝ(x)
given the true label (negative case)

��� ��� ��	 ��

����

��

��

�

�

�

�

���
�

������������
�����������

(C) Density ratio as a function of ŝ(x) given
the true label

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

����

����

����

����

����

����

����

����

r(x
)��
��

	

�
���
��
�
��
���

���������	�
��	�����	�

(D) Probability density function of the den-
sity ratio

��� ��� ��� ��	 ��� ���
������������������

���

���

���

��	

���

���

��
��

��
��
���
��
���

��

������������������������
��
���������������������������

(E) ROC curve

FIGURE 4.1: Density ratio analysis of slot game: experiment with de-
fault parameters

Then, let’s analyze the density ratio metric itself for both correct and bugged
games. Figure 4.1c plots it as a function of the classifier output ŝ(x), while its prob-
ability density is displayed in Figure 4.1d. In both figures, the red curve (resp. blue
curve) is related to probability densities of Figure 4.1a (resp. 4.1b). As expected,
greater values of the ratio are more likely to occur when an anomaly should be de-
tected. This is expressed by the fact that larger values are effectively obtained for test
samples of Figure 4.1c and that the probability density is flattened in Figure 4.1d.
Here, the density starts to be negligible from |r(x)| > 1.5. However, concerning the

Chapter 4. Results 36

negative case, it’s observed that the range of values for the density ratio is not as
small as Figure 4.1b could suggest it. Indeed, its density starts to be negligible only
from |r(x)| > 0.75. It should thus be interesting to see if some hyper-parameters are
able to reduce this range, without reducing the one of the positive casen in order to
cause even bigger differences between them.

Finally, by looking at the ROC curve in Figure 4.1e, it clearly appears that the
classifier is not able to perform the binary classification correctly for the negative
case. Indeed, the curve fits the 45° line very well, with an accuracy of 0.5. Mean-
while, a distinct increasing of the accuracy is observed for the positive case, as it
goes up to 0.71. Intuitively, maybe an even higher rise could be expected but it’s
important to keep in mind that, even if there is an anomaly in the positive case, both
data classes come from a same base game. From this first experiment, it can be as-
sessed that the standard approach seems to already give good results. In particular,
differences between the positive and negative case are already visually perceptible.
For further experiments, it will be important to observe how the parameters influ-
ence the different metrics. In particular, identifying the ones reducing the range of
the density ratio values for the negative case should be considered.

4.1.2 Influence of the concatenation length

In this section, the influence of the minimum size to concatenate the GIP data dur-
ing the preprocessing stage is analyzed. The values that have been chosen for the
experiments are the following: None (no concatenation), 500, 1000 and 2000. It’s
also been explained thanks to Table 3.3 that using concatenation reduced the size of
the dataset. Therefore, it’s been decided to use cross-validation techniques as de-
tailed in the pseudo-code of algorithm 1. Table 4.1 details the chosen values for the
number folds as a function of the concatenation size. The choice seems logical, as
the greater the size, the smaller dataset, and thus, the safer it will be to use a larger
number of folds. Note that, from this point, it’s not possible anymore to display the
data in a similar way as on Figure 4.1. Therefore, the numerical values associated
to the metrics (described in section 3.2.2 will be plotted as a function of the varying
parameter:

• Probability densities of ŝ(x) → Wasserstein distance W1 and Jensen-Shannon
divergence JSD.

• ROC curve→ accuracy.

• ŝ(x) vs r(x)→ Variance of r(x).

• Probability densities of r(x) → Wasserstein distance W1 and Jensen-Shannon
divergence JSD.

Concatenation length Number of folds
None 1
500 10
1000 15
2000 20

TABLE 4.1: Number of folds for stratified cross-validation according
to the concatenation length

Chapter 4. Results 37

	��� ��� ���� ����
����
���
����������

����

����

����

����

����

����

����

����
W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂�������������
��
W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂�����
������
��
JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂�������������
��
JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂�����
������
��

(A) W1 and JSD for p(ŝ(x))

��� ��� ���� ����
��������������������

���

���

���

���

���

���

���

��	

��

��
��
��
��

�������������
������������

(B) Accuracy

	��� ��� ���� ����
�������������������

���

���

���

���

���

���

��
���

�
��
��
�r(

x)

�����������
	�����������

(C) Variance of r(x)

���
 ��� ���� ����
���	��
�������
����

����

����

����

����

����

���� W1(p(r(x)| +), p(r(x)| −))
JSD(p(r(x)| +)||p(r(x)| −))

(D) W1 and JSD for p(r(x))

FIGURE 4.2: Metrics as a function of the concatenation length for slot
game

Slot game Figure 4.2 displays the corresponding for the slot game configuration.
By looking at all figures, it’s clearly noticed that something particular happens when
no concatenation is performed. Indeed, the following elements can be highlighted:

• In Figure 4.2a, the JSD of the negative case is relatively greater than in the
three other cases (where JSD ' 0) , when concatenation is performed. This is
of course unexpected as the probability densities of which the JSD is computed
are expected to be very similar is the negative case. Therefore, something par-
ticular must occur in this situation.

• The accuracy of the negative case in Figure 4.2b is quite high (almost 70%)
while it stays around 50% in the other cases. Once again, this is not what
should occur as, in the negative case, data of both classes come from the same
game set, i.e. the same original probability density.

• In Figure 4.2c, again the negative case, the variance of the density ratio clearly
distinguishes from the three other ones. It’s around trice as great as in concate-
nation situation.

In addition, considering now only concatenation, there are some interesting re-
marks which can be done. Indeed, in the positive case, it seems that all metrics are
monotonically growing functions of the concatenation length. That can be easily in-
terpreted. As we know, in the positive case, each class contains time series generated
from a distinct game set, i.e. probability density. Therefore, if these time series are

Chapter 4. Results 38

��� ��� ��� ��� ��� ���
̂s(x)

���

���

���

���

���

̂ s(
x)

��
��
�

��
���
��
�

��
���

������	��
������	��

(A) Probability density function of ŝ(x)
given the true label (positive case)

��� ��� ��� ��� ��	 ���
̂s(x)

���

���

���

���

���

���

���

���

���

̂ s(
x)
��
��
��
��
���
��
�
��
���

������
��
������
��

(B) Probability density function of ŝ(x)
given the true label (negative case)

��� ��� ��� ��� ��	 ���
����

��

�

�

�

���
�

������������

�����������

(C) Density ratio as a function of ŝ(x) given
the true label

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

���

���

���

���

���

���

���

���

r(x
)��

��
��

��
���
��
��

��
���

�����������
	�����������

(D) Probability density function of the den-
sity ratio

��� ��� ��� ��
 ��� ���
�������������������

���

���

���

��	

��

���

���

��

���

��
��

��
��

���
��

���
��

���������������������������
������������������������
�

(E) ROC curve

FIGURE 4.3: Density ratio analysis of slot game: l =None

combined with each other, the differences between the two probability densities will
be enhanced and the classes will be distinguished more easily by the classifier. An-
other consequence of this is Figure 4.2d. Indeed, it’s clear that increasing the length
also causes the W1 and JSD between the two probability distributions of r(x) to rise.

Let’s now try to discover why the case where no concatenation is performed
seems to lead to some issues. To do so, another experiment is performed and the
information is displayed in the same way as in Figure 4.1. As seen in Figure 4.3,
the reason of issues appears immediately. Something very particular is observed in

Chapter 4. Results 39

both Figures 4.3a and 4.3b: several samples are classified with a very high probabil-
ity. Even though this seems strange at first sight, the reason of such a behaviour is
obvious when knowing the data generation and preprocessing procedures. Indeed,
remember that when a GIP such as in Figure 3.2 is produced during a simulation,
its size is drawn from a uniform distribution U [1, 1000]. Therefore, when there is
no concatenation, it’s possible that the procedure would extract features from very
small time-series. Hence, features of such small time-series would be distorted and
corresponding samples should easily identifiable by the classifier. The dataset is
thus corrupted by such samples. Indirect consequences of this can also be observed
in Figures 4.3c and 4.3e where the positive and negative cases are much more diffi-
cult to distinguish than in Figure 4.1.

For this game configuration, the results clearly speak in favour of concatenation.
However, this has to be considered carefully at the moment for two reasons:

• We don’t know if this analysis is valid for other game configurations yet. It
could indeed be possible that concatenation could give inappropriate in other
cases as, as it’s been already, every case is a new machine learning problem.

• The more time-series are concatenated, the less samples are available in the
final dataset. Therefore, even though it was concluded that concatenation is
always efficient, it should still be performed with parsimony, in order to have
enough samples for the analysis to be relevant. This is why no size greater
than 2000 was considered to do concatenation, as this size already drastically
reduces the number of samples in the dataset.

For the next experiments of this section, other game configurations are going to be
considered.

Dice game Similar experiment has been conducted to evaluate the influence of the
concatenation size on the algorithm for the dice game configuration. Figure 4.4 dis-
plays the corresponding results. First thing that can be noticed is, as for slot games,
there is clear behaviour modification brought by concatenation and the metrics are
still increasing functions of the length. On the other hand, when looking at Figure
4.4a, something new can be noticed. The behaviour of the W1 metric seems very
anarchic in both positive and negative cases, while the JSD remains consistent with
expected results. This may point out that W1 metric might not be suited very well
to the densities that are measured in this Figure, compared to the JSD, or that the
analysis of the divergence of these densities could not be that relevant. We should
then be careful with this quantity in further analyses. Lastly, in terms of pure numer-
ical results, the values obtained for the slot game configuration seem to be slightly
greater than for dice games. The main reason for this could be simply the smaller
influence of the bug inserted in the dice game on the probability density of the game
set than for slot game. Intuitively, it could be thought than increasing the probability
of the bonus in a slot game would have stronger and more regular effects than a bug
exploited only during specific periods of the game.

Roulette game Concerning now roulette game, the results of the corresponding
experiment are shown at Figure 4.5. In this situation, the deviant behaviour of the al-
gorithm without concatenation is really enhanced. Particularly, in Figure 4.5a, there
is a huge relative gap between the JSD values of the first case compare to the 3 other
ones. Moreover, the same remarks can be made about the monotony of the metrics

Chapter 4. Results 40

���� ��� ���� ����

������������������

����

����

����

����

���	

����
W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂���������������
W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂���������������
JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂���������������
JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂���������������

(A) W1 and JSD for p(ŝ(x))

���� ��� ���� ����
��������������������

���

���

���

���

���

���

���

��	

�
��
��
��

������������
�������������

(B) Accuracy

��� ��� ���� ����
������������������

����

����

����

����

����

����

����

����

�
���

��
�
��
�r(

x)

	����������
����������

(C) Variance of r(x)

���
 ��� ���� ����
���	��
�������
����

����

����

����

����

����

����
W1(p(r(x)| +), p(r(x)| −))
JSD(p(r(x)| +)||p(r(x)| −))

(D) W1 and JSD for p(r(x))

FIGURE 4.4: Metrics as a function of the concatenation length for dice
game

with respect to the concatenation length as for previous games. It also seems that
the W1 metric has this same trend for the negative case as well, although there is no
reason for this. Once again, this tends to prove that the analysis of the metrics such
as in Figure 4.5a has to be considered carefully. Finally, maybe the most interesting
thing can be first noticed thanks to Figure 4.5b. On this one, it’s observed that in the
positive case, the accuracy is only slightly higher than 50% and doesn’t even reach
60% when the concatenation length equals 2000. And indeed, when the numerical
values of the other metrics are analyzed for other Figures, it’s observed that they are
also much smaller than for previous configurations.

This is a typical example of situation where the classifier is not able to detect a
bug a very well. Although, not each parameter has been analyzed yet and it may
possible to find parameters combinations allowing to improve the performances.
However, let’s also remember that the bug considered for roulette game was to set
the probability of 4 symbols to 0. It may be possible that, due to the large amount of
symbols and possible bets for roulette, the effects of the bug are less easy to detect.
In any way, this will be something to improve in further analysis.

Blackjack game The last game configuration to analyze concerns blackjack. Figure
4.6 displays the corresponding results. This time, contrary to roulette, the effects of
the bug are clearly visible. In Figure 4.6b and 4.6c, the numerical differences between
the positive and negative cases are non negligible when concatenation is performed.

Chapter 4. Results 41

��� ��� ���� ����
��������������������

����

����

����

����

����

����

���	

���

����
W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂����������������

W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂����������������

JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂����������������

JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂����������������

(A) W1 and JSD for p(ŝ(x))

���� ��� ���� ����
��������������������

���

���

���

���

���

���

���

��	

�
��
��
��

������������
�������������

(B) Accuracy

��� ��� ���� ����
������������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

�
���

��
�
��
�r(

x)

	����������
����������

(C) Variance of r(x)

�� ��� ���� ����
	�����������������

����

����

����

����

����

����

���� W1(p(r(x)| +), p(r(x)| −))
JSD(p(r(x)| +)||p(r(x)| −))

(D) W1 and JSD for p(r(x))

FIGURE 4.5: Metrics as a function of the concatenation length for
roulette game

While the accuracy rises from 75 to more than 80%, the variance of the density ratio
goes up from almost 1 to 3 in the positive case, even though it’s not higher than 0.1
in the negative case. Moreover, in Figure 4.6d, it’s notice that really high values are
quickly achieved compared to roulette game as soon as concatenation is performed.

However, undesired trends still occur for the W1 metric of Figure 4.6a, just like
with dice game as we observe that this decreases from size 1000 to 2000. That means,
for 2 situations out of 4, metrics of the p(ŝ(x)) densities are not consistent with other
observations.

Summary The experiments conducted to analyze the influence of the concatena-
tion length have been very useful and allowed to understand the following things:

• Concatenation seems to be essential for the classification problem to be rele-
vant. Indeed, it’s been observed in all situations short GIP’s with very few
measures distorted the datasets. As illustrated by the example in Figures 4.3a
and 4.3b, almost no uncertainty was associated to the samples corresponding
to the short GIP’s, no matter the case (positive or negative).

• Increasing the concatenation length improves the ability of the algorithm to
detect anomalies (in the positive case). In the meantime, it seems that it has
no undesired effect on the negative case, as the densities metrics remain really

Chapter 4. Results 42

���� ��� ���� ����
���
	���	����������

����

����

����

����

����

W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂������������
	��
W1(p(̂s(x̂|y=0̂, p(̂s(x̂|y=1̂������	�����
	��
JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂������������
	��
JSD(p(̂s(x̂|y=0̂||p(̂s(x̂|y=1̂������	�����
	��

(A) W1 and JSD for p(ŝ(x))

���� ��� ���� ����

�����������������

���

���

���

���

���

	�
��

�
��

������������
�����������

(B) Accuracy

��� ��� ���� ����
������������������

���

���

���

���

���

���

���

�
���

��
�
��
�r(

x)

	����������
����������

(C) Variance of r(x)

���� ��� ���� ����
���
	���	����������

����

����

����

����

����

����

����

����
W1(p(r(x)| +), p(r(x)| −))
JSD(p(r(x)| +)||p(r(x)| −))

(D) W1 and JSD for p(r(x))

FIGURE 4.6: Metrics as a function of the concatenation length for
blackjack game

low and the accuracy stays around 50%. However, it’s important not to use a
too large size , as it reduces a lot the number of samples in the dataset.

• In half of the game configurations, inconsistent behaviour is observed for the
metrics related to the probability densities of ŝ(x). Therefore, for the analysis
of the influence of other parameters, these metrics won’t be used anymore.

• For the roulette game configuration, the algorithm has more difficulties to dis-
sociate the positive and negative cases. One the main concerns of the further
sections is to see if it’s possible to improve the performances of the algorithm
for this particular case.

Next sections are going to cover the parameters related to the Extra trees classifier
used in the algorithm, i.e. the bottom layer of the classifier.

4.1.3 Influence of the number of trees

This section covers the analysis of the influence of the number of trees in the forest
on the chosen metrics. In most applications, increasing the number of trees often re-
sult in higher accuracy. Indeed, this tends to reduce the variability of the model due
to overfitting, by taking into account a higher number of features in many different
ways. Also, aggregating the predictions of several unique trees provide as much
information as the number of trees grows. However, in our situation, there’s a small

Chapter 4. Results 43

� ��� ��� ��� ��� ���
���������������

����

����

��	�

��	�

��
�

��
�

��
��
�
��

+�����������
−�����������
+�����������
−�����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.7: Accuracy as a function of the number of trees

� ��� ��� ��� ��� ���
���������������

���

���

���

��	

��

���

���

�
��
��
��
��
�r(

x)

+�����������
−�����������
+�����������
−�����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.8: Variance of r(x) as a function of the number of trees

difference compared to classical classification problems. Although the accuracy is
expected to be an increasing function of the number of trees in the negative case,
it’s also expected that this parameter won’t affect this metric of in the negative case.
Indeed, when two classes in a dataset are assumed to be non separable, parameter
tuning should allow to differentiate them better.

For this experiment, it’s been chosen to set the varying parameter to the follow-
ing values: 10, 20, 50, 100, 200, 300, 400 and 500. Considering other parameters,
the values of Table 3.4 will be used once again. The accuracy as a function of the
number of trees is shown in Figure 4.7. First, as expected, the accuracy is globally
increasing in the positive when the size of the forest grows too. For slot, dice and
blackjack games, the gain is non negligible as the difference between the lowest and
highest values of the accuracy is approximately 10%. However, for roulette game,
even with the highest value of the parameter, the accuracy does not go over 55%,
which is insufficient to be differentiated from the negative case. As far the negative
case is concerned for the other types of games, even though small oscillations are
observed, the accuracy remains at sufficiently low values, below 55%.

Chapter 4. Results 44

Let’s now observe the influence on the metrics related to the density ratio. Figure
4.8 displays the evolution of the variance of r(x) according to the number of trees.
Here, several particular things occur and can be noticed:

• In every situation, even the positive case, the variance decreases. Intuitively,
this is unexpected as, if the accuracy increases, the log density ratio between
the probabilities of the two classes should take higher values in the positive
case.

• Considering the negative case only, unexpectedly high values of the variance
are observed for small numbers of the trees. This should be linked with the
decreasing of the variance in the positive case. The reason why such high
values are not expected is exactly the same as for the first remark but in the
opposite situation: if the accuracy is close to 50%, small absolute values should
be obtained for the log density ratio as the probability of the two classes are
close to each other. However, this is not the case for small forests.

In order to try the explain the trends observed in Figure 4.8, the graphical metrics
of the log density ratio will be compared for the lowest and highest values of the
number of trees thanks to a new experiment. The results of this new experiment are

��� ��� ��� ��� ��	 ��
 ��� ��� ��
����

��

��

�

�

�

���
�

�������������
�������������

(A) Density ratio as a function of ŝ(x) given
the true label - Number of trees = 10

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

���

���

���

���

���

���

���

��	

r(x
)��
��
�
�
���
��
��
��
���

�������������

������������

(B) Probability density function of the den-
sity ratio - Number of trees = 10

��� ��� ��	 ��

����

��

��

�

�

�

�

���
�

������������
�����������

(C) Density ratio as a function of ŝ(x) given
the true label - Number of trees = 500

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

����

����

����

����

����

����

����

����

r(x
)��
��

	

�
���
��
�
��
���

���������	�
��	�����	�

(D) Probability density function of the den-
sity ratio - Number of trees = 500

FIGURE 4.9: Comparison of the density ratio metrics for low and high
number of trees

Chapter 4. Results 45

shown in Figure 4.9. This immediately allows to understand the values obtained for
the variance of r(x). Indeed, it’s observed in Figure 4.9a that having a small forests
induces kind of discrete values for the density ratio, for both positive and negative
cases. This causes the floor-shaped probability densities in Figure 4.9b. The contrast
with Figures 4.9c and 4.9d, where the larger forest allows much smoother curves, is
therefore very important. This means that having a too small number of trees does
not provide a fully relevant analysis of the density ratio, even though the accuracy
seems to have consistent values. Therefore, it’s really important to understand that
the decreasing of the variance is due to an increasing of the range of possible values
of the ratio, which is directly caused by the growing size of the forest. Also, the
distinction between the positive and negative cases can still be done by looking at
the relative decreasing of the variance. In the negative case, it reaches around 90%,
while only 50-60% at most for the positive one (except for roulette game).

� ��� ��� ��� ��� ���
	��������������

����

����

����

����

����

����

����

W1�������
JSD�������
W1������
JSD������
W1�����������
JSD�����������
W1�����
���
��
JSD�����
���
��

FIGURE 4.10: W1 and JSD for p(r(x)) as a function of the number of
trees

The last metrics to analyze is the JSD and W1 distance between the probability
densities of the log density ratio. These are displayed in Figure 4.10 as a function
of the number of trees. This time, nothing unexpected happens as each metric is an
increasing function of the number of trees and has more or less the same trend as for
the accuracy in Figure 4.7. With this Figure, it’s also really easy to classify the bugs
according to the scale of their effects. The blackjack is clearly the game which has
been affected the most by its bug, while the slot is slightly more affected than the
dice game. As forecast by previous Figures, the bug of the roulette game stays very
hard to identify as shown by the very small differences between the density ratio
densities of the positive and negative cases expressed by low values of the metrics.

This possibility of classification also allows us to enhance a particular feature of
this class of problems. The values observed for the metrics from a case to another
can be very different. Therefore, it seems really difficult to establish standard values
from which it could be said that the behaviour has indeed been modified. Hence,
this confirms that the validation procedure defined in section 3.5.2 will be necessary
even in further applications of this method. Indeed, in realistic situations, we don’t
know whether a game has been modified. Therefore, the comparison of a case for

Chapter 4. Results 46

which the result is already known but for which the metrics will take values that are
specific to this game, is indispensable. In next section, the influence of the size of the
subset of features will be analyzed.

4.1.4 Influence of the number of features to split

This section addresses now the now one of the most important hyper-parameters of
Extra trees algorithm, the size of the features subspace used for each split. As said
in section 2.1.2, the main particularities of Extra trees come from the way splitting
criteria are chosen. Concerning the range of values, it’s been set to the following:
0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1.

��� ��� ��� ��
 ���
�

����

����

����

����

��	�

��
��
��
��

+������������
−������������
+������������
−������������
+����������������
−����������������
+����������������
−����������������

FIGURE 4.11: Accuracy as a function of the subspace of features

First, Figure 4.11 displays the how the accuracy is affected by the number of fea-
tures. For k < 1, it seems that the influence of the parameter is relatively small.
However, when the whole features space is used to determine the splitting criterion
during the growing of the trees, a drop of the accuracy is observed in many situa-
tions. Particularly, the positive cases of the slot and dice games seem to be the most
affected. Nonetheless, this graph shows once again that every problem is different
and that the influence of every parameter cannot be assumed to be the same in every
situation. Nevertheless, it clearly seems that the whole features space should gener-
ally not be used with Extra Trees, which is logical. Indeed, the diversity of the forest
induced by k parameter depends also on the number of feature that are considered
to choose a split.

Then, let’s now see how k influences the variance of the density ratio r(x). This
information is shown in Figure 4.12. The correlation between this metric and the
accuracy is still enhanced here as the same drop is observed for the maximum value
of k. However, this time, the drop is even sharper. Additionally to this drop, an-
other trend, which wasn’t observed in previous Figure, can be highlighted in this
graph. Indeed, especially for most of positive cases, the variance of the density ratio
seems to be an increasing function of the k for all the selected values of k which were
smaller than 1. For most situations, the best value of k among the range of tested
values is thus 0.75.

Chapter 4. Results 47

��� ��� ��� ��� ���
�

���

���

���

���

���

���

	

��

��
��

��
�r(

x)
+��
���������
−��
���������
+��
��������
−��
��������
+��
�������������
−��
�������������
+��
�������
���
��
−��
�������
���
��

FIGURE 4.12: Variance of r(x) as a function of the subspace of features

Finally, Figures 4.13 illustrates the evolution of the distance metrics between the
probability densities of the ratio density for the positive and negative cases. For
these metrics, the influence looks to be a bit harder to discern. Indeed, the gap
between the k = 1 and other values of the subspace size is still visible. However,
surprisingly, for the blackjack game, the distances between the densities increase,
which doesn’t follow at all the trend of the variance of the density ratio. However,
this could be partially explained by what we have seen in Figure 4.11. Indeed, in this
graph, the accuracy gap between the positive and negative cases for the blackjack
game actually increases, contrary to other configurations. Nevertheless, it still seems
that 0.75 is globally the best value for k.

��� ��� ��	 ��
 ���
�

����

����

����

����

����

����

����

W1�������
JSD�������
W1������
JSD������
W1�����������
JSD�����������
W1����������
JSD����������

FIGURE 4.13: W1 and JSD for p(r(x)) as a function of the subspace of
features

Chapter 4. Results 48

4.1.5 Influence of the maximum depth

In this section, the influence of the maximum depth hyper-parameter is addressed.
Considering the chosen values for this parameter, the range has been set to the fol-
lowing: 10, 20, 40, 60, 80, 100, 120, 140. Once again, other hyper-parameters values
have been set according to Table 3.4 First, Figure 4.14 displays the evolution of the
accuracy according to the maximum depth of the trees. It’s observed that this met-
ric remains mostly uninfluenced. Nonetheless, when max_depth = 10, the accuracy
seems to be slightly perturbed. In particular, the most remarkable influence concern
the positive case curve of the dice game, which drops a little. The analysis of other
metrics should help to confirm or not this trend.

�� �� ��
� ��� ��� ���
������������

����

����

����

����

��	�

��	�

��
��
�
��

+�����������
−�����������
+�����������
−�����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.14: Accuracy as a function of the maximum depth

Let’s now see how the variance of the density ratio behaves as a function of the
maximum depth. The results associated to this metric are shown in Figure 4.15. The
signs observed for the accuracy are clearly confirmed in this Figure. Particularly, we
notice a sharp drop of the variance for the positive case of the slot and dice games.
Considering other cases, the decreasing is a bit less pronounced but still visible.
Therefore, it can be asserted that smaller maximum depths values lead to a more
reduced range of density ratio values. Now, just as for the number of trees, an extra
experiment will be performed comparing the graphs associated to the density ratio
between a low and a high value of the parameter.

The additional experiment has been conducted comparing max_depth = 10 to
max_depth = None, which theoretically corresponds to an infinite maximum depth.
Figure 4.16 displays the associated results. The expectations are confirmed, as in the
case of a lower maximum depth, there is significant reduction of the range of values
for the variance of the density ratio in both positive and negative cases. This influ-
ence is relatively simple to explain. Indeed, setting the maximum depth of a tree to
a small value reduces the possibilities of splitting. Therefore, one the one hand, the
leaf nodes will tend to differ less from a tree to another. And on the other hand, the
impurity of these nodes will remain higher, preventing therefore the samples of the
two classes to be more distinctively separated. The reduction of the range of values
for the density ratio is thus a logical consequence of smaller depths of the trees.

Chapter 4. Results 49

�� �� �� �� ��� ��� ���
	������������

���

���

���

���

���

�
���

�
��
��
�r(

x)
+�����������
−�����������
+����������
−����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.15: Variance of r(x) as a function of the maximum depth

��� ��� ��� ��	 ��
 ��� ��� ��
����

���	

����

���	

���

��	

���

��	

���

���
�

�������������
�������������

(A) Density ratio as a function of ŝ(x) given
the true label - Maximum depth = 10

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

�

�

�

�

�

��

��

r(x
)��

��
��

��
���
��
��

��
���

�����������
	�����������

(B) Probability density function of the den-
sity ratio - Maximum depth = 10

��� ��� ��	 ��

����

��

��

�

�

�

�

���
�

������������
�����������

(C) Density ratio as a function of ŝ(x) given
the true label - Maximum depth = None

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

����

����

����

����

����

����

����

����

r(x
)��
��

	

�
���
��
�
��
���

���������	�
��	�����	�

(D) Probability density function of the den-
sity ratio - Maximum depth = None

FIGURE 4.16: Comparison of the density ratio metrics with and with-
out maximum depth

One last graph has to be depicted as far as the analysis of the maximum depth
is concerned. Figure 4.17 illustrates its influence on the distances between the prob-
ability densities of the density ratio. Once again, smaller values of the parameter
seem to influence the most the metrics. However, this time, it causes an increasing

Chapter 4. Results 50

of these metrics rather than a decreasing like in the case of the variance. However,
this can be easily explained by observing the experiment performed in Figure 4.16.
Indeed, it’s obvious that the fact the probability density associated to the negative
case becomes so tight, is the main reason of the increasing of the distances metrics
between the probability densities.

�� �� 	�
� ��� ��� ���
�������������

���

���

���

���

���

���

W1�������
JSD�������
W1�������
JSD�������
W1�����������
JSD�����������
W1�����������
JSD�����������

FIGURE 4.17: W1 and JSD for p(r(x)) as a function of the maximum
depth

To summarize the analysis of the influence of this parameter, a clear effect has
been observed for its smaller values. However, it’s been concluded to this influence
did not help to enhance the differences between the positive and the negative cases
of the different configurations. Therefore, the value of this hyper-parameter should
be kept to its default value indicated in Table 3.4.

4.1.6 Influence of bootstrapping

This section tells about the influence of using bootstrapping during the growing of
trees. As a reminder, this technique and its effects are summarized in section 2.1.2.
All the results associated to the experiments are available in Tables 4.2, 4.3, 4.5 and
4.4. It’s noticed that the trends are relatively similar for any game configuration. On
the one hand, the accuracy and the distance metrics of the densities are not really
influenced by the value of this hyper-parameter. The default value of bootstrap-
ping allows here to get higher variances of the density ratio for the positive case.
The metric also increases for the negative case, but much more slightly. Therefore,
the default value of bootstrapping performs better and enhances the differences be-
tween the two classes for the classification. Changing the value of this parameter is
thus not a solution to improve the results of the method.

Chapter 4. Results 51

Bootstrapping Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

True
+ 0.7071 0.3156

0.1769 0.2359
- 0.5074 0.0410

False
+ 0.7105 0.3698

0.1673 0.2320
- 0.5083 0.0526

TABLE 4.2: Influence of bootstrapping: slot game

Bootstrapping Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

True
+ 0.6807 0.2565

0.1441 0.2096
- 0.5031 0.0354

False
+ 0.6799 0.3030

0.1366 0.2088
- 0.4997 0.0441

TABLE 4.3: Influence of bootstrapping: dice game

Bootstrapping Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

True
+ 0.5276 0.0510

0.0150 0.0588
- 0.4985 0.0320

False
+ 0.5255 0.0623

0.0102 0.0442
- 0.5019 0.0388

TABLE 4.4: Influence of bootstrapping: roulette game

Bootstrapping Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

True
+ 0.7312 0.8443

0.2967 0.3177
- 0.5003 0.0345

False
+ 0.7329 0.8896

0.2967 0.3016
- 0.5010 0.0396

TABLE 4.5: Influence of bootstrapping: blackjack game

Chapter 4. Results 52

4.1.7 Influence of the calibration method

This section addresses now the influence of calibration. As a reminder, calibration
has been explained in section 2.2.3. In Figure 3.3 of Chapter 3, this also corresponds
to the second layer of the classifier. For the next experiments, the following calibra-
tion methods were compared to the default method without calibration: Histogram,
Isotonic, Interpolated-isotonic and Sigmoid. Just like for the analysis of bootstrapping,
the different results are stored in Tables according to the type of game. These are
Tables 4.6, 4.7, 4.8 and 4.9.

Concerning first the accuracy, we note a moderated impact of the parameter.
Nonetheless, it’s possible to distinguish a method that works the best according to
this metric. For instance, the sigmoid gives the most satisfying results for the slot
and dice games, respectively corresponding to Tables 4.6 and 4.7. Indeed, it gets the
highest accuracy in the positive while keeping it the closest to 0.5 in the negative
case.

Although, accuracy is not the metric that is the most influenced by calibration.
Indeed, by looking at the second metric, the variance of the density, we observe a
much more important difference between the default and specific results. To illus-
trate this, let’s for instance analyze the values of obtained for the blackjack, in Table
4.8. In particular, let’s have a look at the ratio of the variance of the positive case over
the variance of the negative case. Without calibration, we have Var[r̂(x)|+]

Var[r̂(x)|−] ≈ 10. By

contrast, for all calibration methods, except interpolation, we observe Var[r̂(x)|+]
Var[r̂(x)|−] >

102. This is a major improvement of the distinction between the positive and the
negative case. Same remarks can be made about the first two games, slot and dice.
However, roulette is still a problem. Indeed, as long as accuracy or variance are con-
cerned, there is no way to observe a large enough distinction between both cases.

The solution to the problem of roulette might come thanks to the last metrics.
Let’s have a look at the last columns of Table 4.9. Particularly, it seems that the JSD
metric has some issues with this particular configuration, as it’s value tends to in-
finity for some calibrations methods. There is thus a reliability problem with this
measure in this case. Nevertheless, the W1 metric still gives correct results. More-
over, something very interesting can be noticed for sigmoid calibration. The W1
distance associated to this parameter value is much higher than for other calibra-
tion methods, despite the relatively small differences between positive and negative
cases for the first metrics. Of course, it remains smaller than the values obtained
for other games using similar calibration, but this might be the solution required to
detect bugs with slighter impacts like the one inserted in the roulette game.

To sum up this section, calibration indubitably reinforces Algorithm 1. This may
be done by intensifying already discovered problems such as for the slot, dice and
blackjack configurations thanks the variance metrics. But this also allows to enhance
bugs which are more difficult to detect such as for the roulette game, thanks the W1
between the two density ratio probability densities.

Chapter 4. Results 53

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.7152 0.3650

0.1590 0.2249
- 0.5116 0.0516

Histogram
+ 0.7171 0.5445

0.5082 0.4314
- 0.5040 0.0024

Isotonic
+ 0.7154 0.5575

0.5771 0.4636
- 0.5004 0.0010

Interpolated
+ 0.7178 0.7426

0.1207 0.1960
- 0.5075 0.1440

Sigmoid
+ 0.7185 0.5871

0.5861 0.4623
- 0.5020 0.0003

TABLE 4.6: Influence of the calibration method: slot game

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.6816 0.3020

0.1427 0.2122
- 0.5064 0.0430

Histogram
+ 0.6894 0.4411

0.4791 0.4212
- 0.5004 0.0021

Isotonic
+ 0.6854 0.4698

0.5145 0.4396
- 0.5015 0.0022

Interpolated
+ 0.6859 0.5935

0.0826 0.1577
- 0.5076 0.1218

Sigmoid
+ 0.6907 0.4271

0.5904 0.4663
- 0.5008 0.0002

TABLE 4.7: Influence of the calibration method: dice game

Chapter 4. Results 54

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.7303 0.9054

0.2864 0.3091
- 0.4980 0.0402

Histogram
+ 0.7411 0.8689

0.5356 0.4360
- 0.4970 0.0021

Isotonic
+ 0.7324 0.8960

0.5767 0.4574
- 0.5016 0.0012

Interpolated
+ 0.7399 1.0734

0.1663 0.2316
- 0.5092 0.1222

Sigmoid
+ 0.7371 0.8305

0.6083 0.4700
- 0.5013 0.0003

TABLE 4.8: Influence of the calibration method: blackjack game

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.5276 0.0618

0.0139 0.0590
- 0.5009 0.0385

Histogram
+ 0.5263 0.0076

∞ 0.1540
- 0.5034 0.0018

Isotonic
+ 0.5283 0.0040

∞ 0.0761
- 0.5002 0.0013

Interpolated
+ 0.5304 0.0814

0.0318 0.1076
- 0.5025 0.1405

Sigmoid
+ 0.5352 0.0062

∞ 0.3312
- 0.4970 0.0001

TABLE 4.9: Influence of the calibration method: roulette game

Chapter 4. Results 55

4.1.8 Metrics as a function of the dataset size

After analyzing the influence of the different hyper-parameters of the Extra trees al-
gorithm, this section will address the size of dataset. Indeed, it’s important to see
how the metrics behave according to this variable. On the one hand, it allows to
obtain a lower bound on the amount of required to get satisfying results. On the
other hand, this can also provide an upper limit to the metrics we’re analyzing and
therefore to how much these can enhance anomalies.

���� ���� ����
��� ����� ����� �����
����������������

����

����

����

����

��	�

��	�

��
��
�
��

+�����������
−�����������
+�����������
−�����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.18: Accuracy as a function of the learning set size

Let’s start with the accuracy graph. This is available in Figure 4.18. Firstly, con-
sidering most of positive cases, it’s observed that, even though the curves are indeed
increasing with respect to the dataset size, it reaches acceptable values relatively
quickly. For instance, in dice game, no more than a few thousands samples are re-
quired to get performances which are equivalent to the ones of the whole dataset.
Secondly, as far as negative cases are concerned, we observe a progressive stabiliza-
tion around 0.5, which is the desired behavior. This time, for all negatives cases, the
whole dataset is required to get a strong stabilization.

���� ���� ���� ���� ����� ����� �����
	����������������

���

���

���

���

���

�
���

�
��

��
�r(

x)

+�����������
−�����������
+����������
−����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.19: Variance of r(x) as a function of the learning set size

Chapter 4. Results 56

Figure 4.19 then shows the influence of the size of the dataset on the variance of
the density ratio. Here, the analysis can be divided into three points. First, the cases
corresponding to low accuracy in Figure 4.18 seem to have their variance decreasing
slowly when the size of the dataset increases. Then, there is the positive case of the
blackjack for which there seems to be a huge drop when only a thousand samples
are used. For all other sizes, the variance does not seem to vary that much. Finally,
the positive case of the dice and slot games for which the size looks to have abso-
lutely no impact on the metric. This might be a confirmation that Extra trees are able
to achieve quite good performances without requiring that much samples for this
particular type of problems.

���� ���� 	���
��� ����� ����� �����
�����������������

����

����

����

����

����

����

����

W1�������
JSD�������
W1�������
JSD�������
W1�����������
JSD�����������
W1�����������
JSD�����������

FIGURE 4.20: W1 and JSD for p(r(x)) as a function of the learning set
size

Lastly, Figure 4.20 shows how the variation of the probability densities metrics
according to the size. Here, in most of the situations, the metrics are increasing
slower and slower, but do not seem to reach a limit yet. This would mean that,
contrary to other metrics, it would be here possible to highlight anomalies much
more by using more samples. However, it should also be considered that, for com-
plex games, generating this data by simulation can take much time. Conversely, for
roulette, the size of the dataset seems to have influence on the distance metrics. This
is a problem that we have already observed for the roulette game, as the anomaly is
quite hard to detect in this situation. The only way that’s been found to counter this
issue was to use calibration.

4.1.9 Time Performances

In this section, we address the time performances of the supervised learning proce-
dure quickly when Extra trees are used as base estimator. We insist on the fact that
the execution times in Table 4.10 represent only the supervised learning task, and
not all the data collection and preprocessing in order to obtain a dataset. The time
performances of these tasks are assessed in the internship report [18, Merchie 2017].
To be able to interpret these results correctly, it’s s required that cross-validation was
used for both base estimator learning and classifier calibration according to Table 4.1.
That’s why the execution time grows so much when calibration is performed. How-
ever, without calibration, it’s observed that the execution time first increased then

Chapter 4. Results 57

decreased. It goes up first from no concatenation to 500 because no cross-validation
is performed without concatenation. Then, it slowly drops because Extra trees is
more sensitive to a decreasing in the number of samples than an increasing of the
number of features and cross-validation folds.

No concatenation 500 1000 2000
No calibration 37s 91s 82s 64s

Calibration 30s 455s 757s 960s

TABLE 4.10: Execution time of the supervised learning procedure
with extra trees according to concatenation length and calibration

4.2 Standard supervised approach - Linear SVM

In the section, we focus on the second base estimator of the standard supervised
approach: linear SVM. Just like for Extra trees, the influence of its different hyper-
parameters will be depicted. Also, a more general analysis will be performed by
analyzing the performances according to the size of the learning set as well as the
required time to achieve these performances.

4.2.1 Experiment with default parameters

Proceeding the same way as for Extra trees, a first experiment has been performed
using the default parameters of the linear SVM implementation of scikit-learn. As
a reminder, these are available in Table 3.4. The main purpose of this section is to
compare the interpretability of the results with the ones obtained for the Extra trees.
The results of this experiment are displayed in Figure 4.21.

First, some remarks can be made about the probability densities of Figures 4.21a
and 4.21b. It’s observed that they differ much more in the positive case than when
Extra trees were used. In the opposite, the densities tend to mostly overlay each
other in the negative case, which is a similar behavior as for the previous estima-
tor. However, the shape of the densities themselves has nothing to do with the ones
obtained for the Extra trees. Actually, we observe the same pathological behavior
noticed for Extra trees when no concatenation was performed.

The issue of getting probabilities very close to 0 or 1 for some samples can lead to
interpretation problems. Indeed, as seen on Figures 4.21c and 4.21d, to get high val-
ues for the density ratio even in the negative case. In particular, the values obtained
for the variance of the density ratio tend to be much higher in the case where lin-
ear SVM is used as base estimator. Therefore, even though the probability densities
are very similar in Figure 4.21b, this feature is not really enhanced by other Figures.
Particularly, the probability densities in Figure 4.21d look very similar, which should
to relatively small JSD and W1 distances compared to what Extra trees had given.
This is a weakness compared this other base estimator where the interpretabilty was
graphically very clear. However, Figure 4.21e representing the ROC curve does not
seem to be affected by previous issue, which is quite logical.

Chapter 4. Results 58

The main goal of hyper-parameters analyses of further sections will be therefore
to see whether it’s possible to have easier interpretation values for the variance and
the probability densities of the density ratio.

��� ��� ��� ��� ��� ���
̂s(x)

���

���

���

���

���

���

���

���

̂ s(
x)

��
��

	

��
��
��

��
��

���������
���������

(A) Probability density function of ŝ(x)
given the true label (positive case)

��� ��� ��� ��� ��	 ���
̂s(x)

���

���

���

��	

��

���

���

���

̂ s(
x)

��
��

�
�

���
��

��
��

���

���������
���������

(B) Probability density function of ŝ(x)
given the true label (negative case)

��� ��� ��� ��	 ��
 ���
����

���

��

�

�

��

���
�

������������
��������������

(C) Density ratio as a function of ŝ(x) given
the true label

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

����

����

����

����

����

����

r(x
)��

��

	

�
���
��
��

��
���

�����������
���
����������

(D) Probability density function of the den-
sity ratio

��� ��� ��� ��� ��	 ���
������������������

���

���

���

���

��	

���

��
��
��
��
���
��
���
��

������������������������
�
���������������������������
�

(E) ROC curve

FIGURE 4.21: Density ratio analysis of slot game: experiment with
default parameters

Chapter 4. Results 59

4.2.2 Influence of the penalty parameter

The first hyper-parameter for which the influence is analyzed in the case of is the
penalty parameter C. Let’s remind that this parameter is linked with how much
misclassification wants to be avoided for each training sample. Therefore, for higher
values, smaller-margin hyperplanes will be preferred by the optimization if they do
a better job at classification. For the corresponding experiments, the following range
of values for C has been chosen: 0.1, 0.2, 0.5, 0.7, 1, 2, 5.

� � � � � �
��������������

����

����

��	�

��	�

��
�

��
��

�
��

+�����������
−�����������
+�����������
−�����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.22: Accuracy as a function of C

� � � � � �
	����������������

�

�

�

�

�

�
���

�
��

��
�r(

x)

+�����������
−�����������
+����������
−����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.23: Variance of r(x) as a function of C

First, Figure 4.22 shows how the accuracy is impacted by the penalty parameter.
It’s obvious that more distinct results are obtained for smaller values C. Therefore,
it can be asserted that high-margin hyperplanes tend to classify the datasets better.
Note that remark is only relevant for this positive case of the configurations, as in
the negative case, the dataset should not be separable in any way. By contrast, it’s
observed that increasing the value of C causes the results of the positive and the
negative cases to be brought closer to each other, which is the exact opposite of the
basically sought goal. This is particularly discernible when having a look at Figures

Chapter 4. Results 60

4.23 and 4.24. In these, the metrics seem to converge to an actual same value for all
the configurations. Furthermore, the expectations that we had about the distance
metrics of the probability densities of the density ratio are confirmed in this sec-
tion. Indeed, when looking at the y-axis of Figure 4.24, it’s observed that we obtain
smaller values for the metrics than we had obtained for Extra trees. This could be
problematic, as we have seen, when analyzing Extra trees, that these metrics could
be useful to enhance anomalies that were not easily detected thanks to accuracy or
variance of the density ratio.

� � � � � �
�����������������

����

����

����

���	

���

W1�������
JSD�������
W1�������
JSD�������
W1�����������
JSD�����������
W1�����������
JSD�����������

FIGURE 4.24: W1 and JSD for p(r(x)) as a function of C

As a conclusion for this hyper-parameter, it can be said that increasing too much
the value of C is equivalent to shadowing anomalies in the data, and prevent there-
fore the possibility to detect them. This is course totally undesired, and that’s why
smaller penalty parameter values will be preferred in our situation. Next section
will focus on the influence of the loss function.

4.2.3 Influence of the loss function

In this section, we observe how the choice of the loss function can impact the dif-
ferent metrics. There are two possible specifications for this hyper-parameter in the
implementation of scikit-learn: ε-insensitive or squared ε-insensitive, respectively
corresponding to a L1 and L2 loss. The associated results are available in Tables
4.11, 4.12, 4.13 and 4.14.

The analysis of the results is quite straightforward. Indeed, concerning first the
accuracy, there is only one situation when the parameter has a real impact on the
metric, which the dice game. In this case, the L2 loss gives a rise of about 4% of
the accuracy compared to the L1 loss in the positive. In every other situations, we
observe that the accuracy remains unchanged from one loss specification to another.
Concerning the variance of the density ratio, the effects are here slightly more sig-
nificant. As it can be noticed, choosing a L2 loss function tends to reduce the metric
values in both positive and negative cases of all situations but, more importantly, it
shrinks the gap between the two cases, which is not was we want at all. In anyway,
it can be observed several times in these Tables, the variance gets higher in the nega-
tive case. Of course, this is due to the behaviour of the probability densities observed

Chapter 4. Results 61

in section 4.2.1, but that doesn’t change the fact that the metric becomes irrelevant in
the current situation.

Loss function Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

ε-insensitive
+ 0.6184 2.7314

0.0007 0.0086
- 0.4973 2.503

squared ε-insensitive
+ 0.6200 1.9159

0.0003 0.0044
- 0.4946 1.8554

TABLE 4.11: Influence of the loss function: slot game

Loss function Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

ε-insensitive
+ 0.5775 2.6739

0.0005 0.0056
- 0.5005 2.6083

squared ε-insensitive
+ 0.6111 2.2216

0.0006 0..0100
- 0.5064 2.0224

TABLE 4.12: Influence of the loss function: dice game

Loss function Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

ε-insensitive
+ 0.4989 2.6066

0.0001 0.0051
- 0.4976 2.6276

squared ε-insensitive
+ 0.5056 2.2011

0.0009 0.0050
- 0.5016 2.2233

TABLE 4.13: Influence of the loss function: roulette game

Loss function Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

ε-insensitive
+ 0.5769 2.6816

0.0001 0.0044
- 0.4968 2.6922

squared ε-insensitive
+ 0.5752 2.3807

0.0002 0.0040
- 0.5060 2.3556

TABLE 4.14: Influence of the loss function: blackjack game

Finally, let’s have a few words about the distances between the probability den-
sities of the density ratio. As noticed in the last two columns of the Tables, they tend
to stay very small, just as in previous section. It’s therefore very difficult to draw
any interesting interpretation about these metrics in the current situation.

Chapter 4. Results 62

4.2.4 Influence of the calibration method

Just as it’s been done with Extra trees, this section addresses now the introduction of
calibration in the procedure of Algorithm 1. Previously, we could already observed
the benefits on using calibration. In particular, it enlarges the gap of density ratio
variance between the positive and negative cases of all games by reducing the vari-
ance of the negative case a lot. Moreover, it provides a solution to the problem of
detecting smaller anomalies such as in roulette game, thanks an increasing of the
distances between the probability densities of the density ratio. This section will
allow us to know if same conclusions can be drawn about LSVM. The associated
results are shown in Tables 4.15, 4.16, 4.17 and 4.18.

Concerning first the accuracy, it’s immediately obvious that calibration has again
a positive impact on the procedure. This time, contrary to Extra trees, there’s already
a non negligible influence on the accuracy. The increasing goes from 3-4% for the sig-
moid calibration in roulette to almost 10% for several calibration methods in black-
jack. It still remains under the best performances obtained with Extra trees but this
clearly shows the power of calibration in this kind of problem. Let’s now analyze the
effects on the variance of the density ratio. It’s observed that, globally, the same con-
sequences are observed as for Extra trees. However, the gap between the variance of
the positive and negative cases are not as big as in Extra trees. Considering now the
last two metrics, there is no new trend to raise out the obtained results. These are
globally similar to the ones got for Extra trees and don’t give better performances.

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.6314 2.0364

0.0004 0.0089
- 0.4965 1.7801

Histogram
+ 0.7012 0.1213

0.3639 0.3606
- 0.4996 0.0029

Isotonic
+ 0.6977 0.2527

0.2089 0.2626
- 0.4946 0.0203

Interpolated
+ 0.6944 0.3280

0.1256 0.2084
- 0.4977 0.0507

Sigmoid
+ 0.7020 0.1058

0.5678 0.4595
- 0.5018 0.0001

TABLE 4.15: Influence of the calibration method: slot game

Chapter 4. Results 63

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.6025 2.2629

0.0005 0.0072
- 0.5013 2.1536

Histogram
+ 0.6737 0.0612

0.3002 0.3105
- 0.4960 0.0027

Isotonic
+ 0.6701 0.1522

0.1208 0.1894
- 0.5052 0.0283

Interpolated
+ 0.6652 0.2501

0.0803 0.1468
- 0.5011 0.0627

Sigmoid
+ 0.6743 0.0478

0.5322 0.4429
- 0.4962 0.0001

TABLE 4.16: Influence of the calibration method: dice game

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.5011 2.2428

0.0002 0.0068
- 0.5033 2.2052

Histogram
+ 0.5143 0.0036

∞ 0.0389
- 0.5051 0.0029

Isotonic
+ 0.5096 0.0298

0.0018 0.0064
- 0.5046 0.0300

Interpolated
+ 0.5105 0.0632

0.0018 0.0061
- 0.5022 0.0663

Sigmoid
+ 0.5319 0.0008

∞ 0.1956
- 0.4954 0.0001

TABLE 4.17: Influence of the calibration method: roulette game

Chapter 4. Results 64

Method Case Accuracy V[r̂(x)] JSD(+||−) W1(+,−)

None
+ 0.6154 2.4056

0.0001 0.0058
- 0.5010 2.2516

Histogram
+ 0.7047 0.0858

0.3543 0.3548
- 0.5052 0.0026

Isotonic
+ 0.7030 0.1971

0.1609 0.2256
- 0.5026 0.0248

Interpolated
+ 0.7123 0.3655

0.1199 0.1931
- 0.5022 0.0646

Sigmoid
+ 0.7049 0.0786

0.5684 0.4606
- 0.5002 0.0001

TABLE 4.18: Influence of the calibration method: blackjack game

4.2.5 Metrics as a function of the dataset size

Now the analysis of the influence of the different parameters is done, let’s do what
has already been performed for Extra trees, i.e. analyzing the evolution of the dif-
ferent metrics according to the size of the dataset. Once again, as calibration had a
very significant impact on the results, it’s also going to be used in this section.

���� ���� ����
��� ����� ����� �����
����������������

����

����

����

����

��	�

��
��
�
��

+�����������
−�����������
+�����������
−�����������
+���������������
−���������������
+��������������
−��������������

FIGURE 4.25: Accuracy as a function of the learning set size

Let’s begin with the accuracy metric. The corresponding Figure 4.25 shows how
fast this converges according the size of dataset. First, it should be considered that
such a analysis is relevant only in the positive cases of the different configurations.
Indeed, for negative cases, the accuracy should only slightly oscillate around 0.5.
So, looking at the positive cases in Figure 4.25, it’s indeed observed that the accu-
racy curves progress following a logarithmic increasing, which is the typical shape
for such curves. Also, it’s observed that from 10000 samples, the 3 top curves start to
increase slower, but still gain a few percents for some games, such as slot or roulette.
Also, for roulette game, even if the accuracy value itself remains low, the behavior
of the positive curve can still give us a clue about the presence of an anomaly, as it
doesn’t actually oscillate.

Chapter 4. Results 65

���� ���� ���� 	��� ����� ����� �����

����������������

���

���

���

���

���

��
���

��
��
��
�r(

x)
+������������
−������������
+������������
−������������
+����������������
−����������������
+����������������
−����������������

FIGURE 4.26: Variance of r(x) as a function of the learning set size

Let’s now consider the variance of the density ratio. Here, we can immediately
see that the metric is much more sensitive to the size of the dataset. Indeed, the
increasing of the variance seems to be much sharper for the 3 top curves. Here,
contrary to accuracy, it’s much more difficult to distinguish the positive case of the
roulette from all other negative cases. In such situations, it should therefore be in-
teresting not to check the variance value alone, but instead, once an anomaly is sus-
pected by the the accuracy metric, to emphasize the impact of more serious anoma-
lies.

���� ���� 	���
��� ����� ����� �����
�����������������

���

���

���

���

���

���

��	

W1�������
JSD�������
W1�������
JSD�������
W1�����������
JSD�����������
W1�����������
JSD�����������

FIGURE 4.27: W1 and JSD for p(r(x)) as a function of the learning set
size

Finally, Figure 4.27 provides information about the JSD and W1 metrics of den-
sity ratio probability densities. In this case, considering every situation except roulette
game, the metrics seem to stabilize relatively quickly compared to other metrics.
However, as it’s been observed from other previous Figures, it does not seem that
more samples cannot allow to highlight more an anomaly in a game. Indeed, for the
variance metrics, no clear stop in the increasing of the metric in the positive cases
has been observed, even for highest values of the dataset size. This would mean it

Chapter 4. Results 66

could be possible to observe even more differences between positive and negative
cases by collecting more samples. However, the time required to generate this data
from simulation has also to be taken into account, and it’s not negligible (can go up
to 5 hours for more complex games).

4.2.6 Time Performances

With this section, we have a quick look at time performances when using LSVM as
base estimator. These are available in Table 4.19. It’s first noticed that the algorithm
is globally slower than Extra trees, even though it obtains poorer results. The reason
is simple as, in Extra Trees, the growing of the different trees can be shared in multi-
processing, which is not the case for LSVM. Moreover, the increasing in the number
of features affect LSVM more than Extra trees, as the latest selects its features ran-
domly to grow its forest. Otherwise, the influence of calibration and cross-validation
remains the same as for Extra trees.

No concatenation 500 1000 2000
No calibration 60s 216s 223s 200s

Calibration 47s 1362s 2136s 2620s

TABLE 4.19: Execution time of the supervised learning procedure
with LSVM according to concatenation length and calibration

4.3 Deep learning approach

This last major section addresses the third approach that was chosen to achieve the
objective stated in Chapter 3. Contrary to the two previous approaches, this one
relies on deep learning. The architecture of the corresponding neural network was
presented in section 3.6. This section will not be developed as much as previous ones
as Extra trees already gave very satisfying results. Moreover, as it will be observed
in further subsections, the approach won’t give acceptable enough results to allow
ourselves to accord more time to this approach. Considering the experiments them-
selves, it’s been decided to test the architecture on the 4 different problem configura-
tions and, for each of them, highlight the different observed issues. The parameters
values used for these experiments are still the ones of Table 3.4.

4.3.1 Slot experiment

Concerning first slot game, the corresponding experiment is depicted in Figure 4.28.
Immediately, something strange appears when looking at the probability densities
in Figures 4.28a and 4.28b. Indeed, contrary to Extra trees or LSVM, the densities are
here not balanced between the two classes. Instead, they the neural network tend to
always give a higher probability in the positive class, in both positive and negative
cases, resulting in values of the density ratio being always positive. Moreover, the
densities are really shrunk, which means the neural network cannot differentiate
the different samples very well according to their temporal features. Of course, this
gives dissimilar probability density plots for the density ratio in Figure 4.28d but it’s
not really supported by the ROC curve displayed in Figure 4.28e. In this experiment,
there is thus only one metric that might help us to differentiate positive and negative
case. Nevertheless, the predictions of the network about the samples of the negative

Chapter 4. Results 67

case are not really consistent with what was expected, i.e. values centered around
0.5.

��� ��� ��� ��� ��� ���

�

�

��

��

��

��

��

��

(A) Probability density function of ŝ(x)
given the true label (positive case)

��� ��� ��� ��� ��� ���

�

�

��

��

��

��

(B) Probability density function of ŝ(x)
given the true label (negative case)

��	�	 ��
�� ��
�	 ��
	� ��
�	 ����� ����	 ���	�
����

���

���

��	

��

���

���

��

���

���
�

�������������
�������������

(C) Density ratio as a function of ŝ(x) given
the true label

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

�

�

��

��

��

r(x
)��

��
	�

	�
���
��
��

��
���

���������
���
��������
���

(D) Probability density function of the den-
sity ratio

��� ��� ��� ��	 ��
 ���
�������������������

���

���

���

��	

��

���

��
��
��
��
���
��
���
��

���������������������������
��������������������������

(E) ROC curve

FIGURE 4.28: Density ratio analysis of slot game: deep learning ap-
proach

4.3.2 Dice experiment

Let’s now analyze the results of the experiment associated to dice game. Results
are shown in Figure 4.29. Considering the probability density of the ratio density
and the ROC curves, the problems are approximately the same as for slot games.

Chapter 4. Results 68

Considering the other metrics, the problem is slightly different. On the one hand,
in the negative case, the samples are still all considered to be more likely to belong
to the positive class. But on the other hand, in the positive case, the samples are all
more likely to belong to the null class, no matter the true original. Once again, this is
inconsistent with the assumed dataset. Obtaining such results about the probability
densities of the prediction which are the same no matter the true original label, gives
us absolutely no relevant information about the presence of an anomaly in the game.
Therefore, it wouldn’t make any sense to assert an anomaly from Figure 4.29d just
because the densities have different shapes.

��� ��� ��� ��� ��� ���

�

�

��

��

��

(A) Probability density function of ŝ(x)
given the true label (positive case)

��� ��� ��� ��� ��� ���

�

��

��

��

��

���

���

(B) Probability density function of ŝ(x)
given the true label (negative case)

���� ���� ���� ���� ���� ��	�
����

���	

����

����

���

���

���

���
�

������������

�����������

(C) Density ratio as a function of ŝ(x) given
the true label

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

�

�

��

��

��

��

��

r(x
)��
��

	

�
���
��
�
��
���

���������	�
��	�����	�

(D) Probability density function of the den-
sity ratio

��� ��� ��� ��	 ��
 ���
�������������������

���

���

���

��	

��

���

��
��
��
��
���
��
���
��

���������������������������
��������������������������

(E) ROC curve

FIGURE 4.29: Density ratio analysis of dice game: deep learning ap-
proach

Chapter 4. Results 69

��� ��� ��� ��� ��� ���

�

��

��

��

��

��

��

(A) Probability density function of ŝ(x)
given the true label (positive case)

��� ��� ��� ��� ��� ���

�

��

��

��

��

��

��

(B) Probability density function of ŝ(x)
given the true label (negative case)

���� ���� ���� ���� ��	�
����

���

���

���

��

���
�

������������
�����������

(C) Density ratio as a function of ŝ(x) given
the true label

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

�

�

��

��

��

��

��

��

r(x
)��
��

	

�
���
��
�
��
���

���������	�
��	�����	�

(D) Probability density function of the den-
sity ratio

��� ��� ��� ��	 ��
 ���
������������������

���

���

���

��	

��

���

��
��

��
��
���
��
���

��

�������������������������	�
���������������������������

(E) ROC curve

FIGURE 4.30: Density ratio analysis of blackjack game: deep learning
approach

4.3.3 Blackjack experiment

Let’s now switch to the blackjack configuration, whose results are displayed in Fig-
ure 4.30. In this situation, as observed in Figure 4.30a, the probability densities are
centered around approximately the same value as densities of Figure 4.30b, but are
slightly more spread. But in the end, this leads to the same kind of problem as in
previous experiments, which is the impossibility to distinguish both classes in the

Chapter 4. Results 70

positive class according to the probability densities of the prediction. The only aus-
picious detail concerns the ROC curve of the positive in Figure 4.30e which is a little
bit more distinct of the ROC curve of the negative case. However, it’s still insufficient
to validate the results.

��� ��� ��� ��� ��� ���

�

�

��

��

��

��

��

��

(A) Probability density function of ŝ(x)
given the true label (positive case)

��� ��� ��� ��� ��	 ���

�

��

��

��

��

��

��

��

(B) Probability density function of ŝ(x)
given the true label (negative case)

���� ���� ���� ���� ���� ��	�
����

���	

����

����

���

���

���
�

������������

�����������

(C) Density ratio as a function of ŝ(x) given
the true label

���� ���� ���� ���� ��� ��� ��� ��� ���
r(x)

���

���

���

���

����

����

����

r(x
)��
��

	

�
���
��
�
��
���

���������	�
��	�����	�

(D) Probability density function of the den-
sity ratio

��� ��� ��� ��	 ��� ���
������������������

���

���

���

��	

���

���

��
��

��
��
���
��
���

��

�������������������������
�
���������������������������

(E) ROC curve

FIGURE 4.31: Density ratio analysis of roulette game: deep learning
approach

Chapter 4. Results 71

4.3.4 Roulette experiment

Roulette’s experiment may be the most particular experiment among the four. In-
deed, probability densities of the prediction are more spread in the positive case
(4.31a) than in the negative one (4.31b), leading to a larger range of values for the
density ratio in Figure 4.31c. At first sight, it could thus be expected that the net-
work is able to distinguish the classes a bit more in the positive case. But then, when
looking at the ROC curve in Figure 4.31e, it’s then noticed that the accuracy in the
positive gets lower than in the negative case. This is actually due to the fact that,
even though the densities are more spread in Figure 4.31a, they’re not more distinct,
as they almost overlay each other perfectly. Therefore, it can’t lead to an improve-
ment of the accuracy.

By way of conclusion for the deep learning approach, we have thus than it did
not give satisfying results at all. In particular, they don’t compete with the visual
interpretability of the standard supervised approach, especially for Extra trees. The
main reason that could have caused such of a fail of this approach could be the
input data. Indeed, as said in section 3, the collected data is aggregated along both
x and y-axis, which leads to a non negligible loss of information. Certainly, this lack
of information has been counterbalanced by the preprocessing procedure (feature
extraction + imputation) of the standard supervised approach.

72

Chapter 5

Conclusion

In this chapter, a brief reminder of the main objective of the master thesis is done
and the results associated to each approach presented in Chapter 3 are synthesized
according to this objective. Our goal was to be able to detect modifications in the
behavior of a casino game after an update. This problem was tackled as a density-
based anomaly detection problem and solved with supervised learning algorithms.
Datasets corresponding to a binary classification problem were built, where one class
corresponds to data generated from the game before its update, and the other class
after its update. The method should be able to classify with a sufficiently high ac-
curacy datasets for which the second class contained an anomaly, but also shouldn’t
be able to differentiate classes of clean datasets. Moreover, the density ratio of the
different samples were computed and its derived probability density should be ex-
plicitly linked to the presence of an anomaly or not in the game.

Extra trees. Concerning the standard supervised approach with Extra trees as base
estimator, the results were globally very satisfying. For 3 out of 4 validation cases,
the method was able, with its default parameters, to provide a very clear distinction
between the case where an anomaly has to be detected in a game and the case where
nothing was done. The reached accuracy in these situations was 0.69 at worst for
dice game and 0.74 at best for blackjack games. Moreover, for the corresponding
cases without anomaly, the accuracy stays remarkably close to 0.5 and the probabil-
ity densities of the density ratio of an anomaly case were very easy to distinguish
visually from a clean case. The introduction of calibration has allowed to enhance
even more this last feature by drastically reducing the variance of the density ratio
in clean cases. In particular, sigmoid calibration did a really good job about this. At
best, this allowed to set the ratio of the variances of the density ratio (of anomaly
and clean case) in the order of 103. Calibration also permitted to solve the configu-
ration that was an issue with the default parameters. An interesting point that has
also been highlighted during the analysis concerns the concatenation of the data ob-
tained from simulations. When no concatenation was done, we observed a major
modification of the shape of the probability densities of the prediction of the classi-
fier, according to the true label. Actually, too small time-series tended to break the
dataset by being too easy to idendify for the classifier. We have also seen that this
method has relatively reasonable execution time, most of the resources being spent
during the preprocessing of the data.

Linear SVM. In the second case of standard supervised approach, with Linear
SVM as base estimator, the results were still good, but couldn’t compete against

Chapter 5. Conclusion 73

Extra trees. There are several reasons to this. The main one is that, with the de-
fault parameters, only the accuracy metric became relevant to assert the presence
of anomaly in a game. Indeed, with Linear SVM, the same kind of pathological
influence on the prediction of the classifier due to absence of concatenation for Ex-
tra trees was observed here even with the default parameters, which included data
concatenation. Another reason concerns the execution time. Indeed we observed
that, despite achieving poorer performances, Linear SVM took more time to solve
the given problem than Extra trees. Only the introduction of calibration allowed this
method to get closer of the results obtained with Extra trees. For the 3 easiest con-
figurations to solve, we get at worst 0.67 for dice game and at best 0.71 for blackjack
game.

Deep learning with RNN. Concerning the deep learning approach, the results
were very disappointing. We didn’t even go through the whole analysis of the
hyper-parameters, as it’s immediately been noticed that it wouldn’t be possible to
reach the performances of the standard supervised approach. Here, none of the val-
idation cases could be solved using the method. The most suspect cause of this fail
is certainly the input data. Indeed, in the case of standard supervised approach,
the time-series went trough a big preprocessing procedure of which the main fea-
ture consisted in extracting statistical features from temporal data, which seemed to
counterbalance the loss of information of data aggregation. Of course, this not per-
formed in this case as RNN are usually directly fed with time-series data.

In a nutshell, the global problem to solve in this master thesis allowed to use
varying approaches, relying on different types of machine learning algorithms and
preprocessing techniques. At the end, we concluded that Extra trees could achieve
the requirements of the objectives and obtained the best experimental results.

74

Bibliography

[1] P. Geurts, Introduction to machine learning: Bias/variance tradeoff, model assessment
and selection, Slides of the course Introduction to machine learning. URL: http://
www.montefiore.ulg.ac.be/~lwh/AIA/model-evaluation-29_10_2012.pdf.
Last visited on 2018/05/11, 2016.

[2] V. Vapnik, “Pattern recognition using generalized portrait method”, Automa-
tion and remote control, vol. 24, pp. 774–780, 1963.

[3] C. Cortes and V. Vapnik, “Support-vector networks”, Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[4] K.-B. Duan and S. S. Keerthi, “Which is the best multiclass svm method? an
empirical study”, in International workshop on multiple classifier systems, Springer,
2005, pp. 278–285.

[5] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees”, Machine
learning, vol. 63, no. 1, pp. 3–42, 2006.

[6] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone, “Classification and regres-
sion trees”, 1984.

[7] P. Geurts, Introduction to machine learning: Ensemble methods, Slides of the course
Introduction to machine learning. URL: http://www.montefiore.ulg.ac.be/
~lwh/AIA/ensembles-21-11-2017.pdf. Last visited on 2018/05/11, 2016.

[8] L. Breiman, “Random forests”, Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[9] J. J. Hopfield, “Neural networks and physical systems with emergent collec-
tive computational abilities”, Proceedings of the national academy of sciences, vol.
79, no. 8, pp. 2554–2558, 1982.

[10] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks”, IEEE
Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[11] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.”, Psychological review, vol. 65, no. 6, p. 386, 1958.

[12] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections”,
ArXiv preprint arXiv:1612.00188, 2016.

[13] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen, “Recurrent neu-
ral network-based sentence encoder with gated attention for natural language
inference”, ArXiv preprint arXiv:1708.01353, 2017.

[14] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey”, ACM
computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[15] K. Cranmer, J. Pavez, and G. Louppe, “Approximating likelihood ratios with
calibrated discriminative classifiers”, ArXiv preprint arXiv:1506.02169, 2015.

[16] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities with su-
pervised learning”, in Proceedings of the 22nd international conference on Machine
learning, ACM, 2005, pp. 625–632.

http://www.montefiore.ulg.ac.be/~lwh/AIA/model-evaluation-29_10_2012.pdf
http://www.montefiore.ulg.ac.be/~lwh/AIA/model-evaluation-29_10_2012.pdf
http://www.montefiore.ulg.ac.be/~lwh/AIA/ensembles-21-11-2017.pdf
http://www.montefiore.ulg.ac.be/~lwh/AIA/ensembles-21-11-2017.pdf

BIBLIOGRAPHY 75

[17] G. Louppe, Advanced machine learning: Generative adversarial networks, Slides of
the course Advanced machine learning. URL: http://www.montefiore.ulg.ac.
be/~geurts/Cours/AML/Slides/AML-2018_Lecture6a.pdf. Last visited on
2018/05/11, 2018.

[18] F. Merchie, “Data preprocessing in machine learning for anomaly detection in
casino games”, 2017.

[19] M. Christ, Tsfresh: A time-series feature extraction toolbox, 2016. [Online]. Avail-
able: http://tsfresh.readthedocs.io/en/latest/index.html.

[20] R. Gutierrez-Osuna, Introduction to pattern analysis: Kernel density estimation,
slides of the course Introduction to pattern analysis. URL: http: // csyue. nccu.
edu. tw/ ch/ Kernel% 20Estimation(Ref) .pdf . Last visited on 2018/05/11,
2016.

[21] A. Rubinsteyn, Fancyimpute: A missing values imputation toolbox, 2016. [Online].
Available: https://github.com/iskandr/fancyimpute.

[22] G. Louppe, K. Cranmer, and J. Pavez, Carl: A likelihood-free inference toolbox,
2016. DOI: 10.5281/zenodo.47798. [Online]. Available: http://dx.doi.org/
10.5281/zenodo.47798.

[23] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag prob-
lems”, in Advances in neural information processing systems, 1997, pp. 473–479.

[24] A. Murad and J.-Y. Pyun, “Deep recurrent neural networks for human activity
recognition”, Sensors, vol. 17, no. 11, 2017, ISSN: 1424-8220. [Online]. Available:
http://www.mdpi.com/1424-8220/17/11/2556.

http://www.montefiore.ulg.ac.be/~geurts/Cours/AML/Slides/AML-2018_Lecture6a.pdf
http://www.montefiore.ulg.ac.be/~geurts/Cours/AML/Slides/AML-2018_Lecture6a.pdf
http://tsfresh.readthedocs.io/en/latest/index.html
http://csyue.nccu.edu.tw/ch/Kernel%20Estimation(Ref).pdf
http://csyue.nccu.edu.tw/ch/Kernel%20Estimation(Ref).pdf
https://github.com/iskandr/fancyimpute
http://dx.doi.org/10.5281/zenodo.47798
http://dx.doi.org/10.5281/zenodo.47798
http://dx.doi.org/10.5281/zenodo.47798
http://www.mdpi.com/1424-8220/17/11/2556

