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Introduction

"Air pollution is causing damage to human health and ecosystems. Large parts of the pop-
ulation do not live in a healthy environment, according to current standards. To get on to
a sustainable path, Europe will have to be ambitious and go beyond current legislation."

This statement originates from the Belgian scientist Hans Bruyninckx, Executive Di-
rector of the European Environment Agency and reveals a very important current topic
[4]. According to an estimation of the World Health Organisation (WHO), around 4.2
million people die every year as a result of exposure to ambient outdoor air pollution [8].
By lowering levels of air pollution it is possible to improve the overall health of people
around the world, asserts the WHO.

Since 1995, the ULiège Sensing of Atmospheres and Monitoring Laboratory (SAM) is
developing low cost chemical sensors devices for monitoring environmental odours in the
�eld. On the one hand, these sensors are advantageous for measurement of mixed com-
pounds, but on the other hand they are unprivileged for single pollutant sensing. However,
it is believed that the simultaneous use of several low cost sensors could result in a su�cient
information about the concentration of several pollutants. Therefore, an experiment has
been conducted in which sensors measurements are compared to the sensing performances
of standardized chemical analysers. The analysers are certi�ed and operated by the o�cial
Wallonia public scienti�c institute (ISSeP).

In 2010, the SAM laboratory started a long-term study in collaboration with ISSeP
in order to compare the reference analysers with low cost chemical sensors. Both kind
of devices worked simultaneously for real time measurements. Their special subject is
the comparison of detecting malodours, but also chemical compounds are considered. In
this work, we focus exclusively on the second monitoring of chemical target compounds
which are methane, ammonia, hydrogen sulphide, and also non-methane and petroleum
hydrocarbons like limonene, pinene, benzene, toluene, ethylbenzene and xylene.
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The general objective of this study is to search for signatures of the named compounds
identi�ed by the reference analysers in all ULiège sensors. Which sensors contribute in the
prediction of air pollutants and could be considered for a wide surveillance network?

For the analysis, Prof. Dr. Anne-Claude Romain, responsible for the project of the
Department of Environmental Sciences ULiège, made available the real-measurements per-
formed by sensors and analysers for the period 24.08.2016 - 30.01.2017. A data set about
the meteorological conditions was also provided to improve the analysis.

This study comprehends two contributions: �rst, a preprocessing approach and a user
interface is constructed for an appropriate pretreatment of the data. Secondly, a linear
modelling is developed with its performances, limits and perspectives.

In Chapter 1 "Data collection" the functioning and installation of the sensors and anal-
ysers is explained. This section illustrates how the data have been collected by the two
instruments. The response times of sensors and analysers are discussed as well.

Chapter 2 "Data preprocessing" consists on the process of pretreatment of the data to
enable the comparison of data from sensors and analysers. It must be noticed that the
complete preprocessing can be reproduced for new similar data.

Next, there will be a descriptive analysis of the available data in Chapter 3 "Data de-
scription and subsequent pretreatment". The measurements of each chemical sensor and
each analyser will be explored and all anomalies or missing values will be detected.

Chapter 4 "Graphical user interface" illustrates the user interface created for the data
preprocessing in a Shiny application.

Once the data set is complete, the search of a predictive model can begin. In Chapter 5
"Predictive model", the procedure of �nding a model for every analyser as well as their
qualities will be explained in detail.

In the last Chapter 6 "Conclusion and perspectives", we discuss about the obtained
results and possible perspectives for a further study with these data.

Objective and scope of the study The aim of this work consists in a search for signa-
tures of di�erent compounds identi�ed by reference analysers in the ULiège sensors. More
in detail, we want to predict the concentrations of the components in the atmosphere. It
is considered that the actual concentrations of these components are as reported by the
analysers. For this work, we concentrate on linear models to predict with our multivariate
sensor data. We illustrate this in general:
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Let Yana be the variable containing the measurements from one of the analysers. We
want to explain this variable Yana in terms of the data given by all sensors. In other words,
we search a function f such that

Yana = f(S1, S2, ..., Sn)

where f is a linear function, S1, S2, ..., Sn the measurements of all sensors and n the
total number of sensors used in the prediction. More in detail, the search of the function
f consists in a search of real coe�cients α1, ..., αn so that

Yana = f(S1, S2, ..., Sn)

= α1S1 + ...+ αnSn.

The coe�cients α1, ..., αn will give the contribution of each sensor in the prediction.
Moreover, we want to �nd such a function f , which could apply to all di�erent analysers,
hence for all speci�c chemical compounds. Then, the low cost chemical sensors would have
the additional advantage of being able to predict speci�c compounds by the prediction
model like the expensive analysers.

A good understanding of the data is necessary for the further preprocessing and analysis
of them. Therefore, the installation and functioning of analysers and sensors is explained
in detail in the next chapter.
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Chapter 1

Data collection

The data for this study originate from two sources: sensors and analysers. The sensors
are small, low cost devices developed by ULiège SAM Laboratory. The analysers are more
sophisticated and expensive measuring devices operated by ISSeP. First, we describe the
functioning, measuring and limits of the sensors. Then, we clarify how the analysers per-
form measuring. And �nally, the installation of the two devices is explained.

1.1 Sensors

Material Sensors data were captured by six non speci�c sensors having particular prop-
erties and being identi�ed by codes. Those sensors are non-speci�c, meaning that they are
sensitive to the presence of multiple chemical components. Nevertheless, their chemical
properties are such that we may expect each of them to be sensitive to some speci�c com-
pounds. The speci�cities of every sensor are resumed in Table 1.1. They are not calibrated
and return the signal of electrical resistance every minute 1.

Table 1.1: Table of sensors array

Sensor Announced compounds selectivity Observed measurement range
TGS2602 VOC, Hydrogen sul�de and ammoniac 6.13− 17.81 kOhm
TGS2610 propane and butane 15.39− 50.86 kOhm
TGS2611 methane 8.38− 28.53 kOhm
TGS2620 organic solvents, alcohols and carbon monoxide 4.46− 24.43 kOhm
GGS1330 combustibles gazes 6.62− 59.82 kOhm
TGS2444 ammoniac 38.4− 211.3 kOhm

1We note that several additional speci�c sensors dedicated to the detection of VOC, CO2, H2S and NH3

where also installed, but they will not be used in this study. One of the reason is that these substances
were not su�ciently present in the land�ll during the experiment. A descriptive analysis of these signals
can be found in Appendix B.1.
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Concerning the device, the sensors array is composed of 6 metal oxide sensors TGS2602,
TGS2610, TGS2611, TGS2620, GGS1330 and TGS2444 2. The sensors are placed inside
a cylindrical chamber in PTFE (200 ml) whose inlet and outlet are respectively centred
on the inferior and superior sides of the cylinder-forming size. The sensors are forming
a circle perpendicular to the gas �ow, to ensure that the same air goes through all the
sensors simultaneously. The �ow pump placed after the sensor chamber has a regulated
�ow rate of 250 ml/min. The chamber temperature is kept at 50°C by a heating resistor and
natural cooling. Speci�c software 3 controls the hardware and allows the acquisition of the
sensor signals resistance (in kOhm). The sensors resistance was measured every 10 seconds,
averaged out in 1 minute steps and stored in local memory. On the following picture (see
Figure 1.1), the chemical sensors are represented on the left, the sensors chamber on the
right [14].

non selective sensors

air intake flow pump

Figure 1.1: Chemical sensors and sensors chamber

Measurement principle The six sensors are metal oxide semiconductors. Oxygen oxi-
dises the material and negative charges are blocked on the surface. As a result, the electric
current does not �ow. In other words, in the presence of oxygen the resistance is very
high. However, if a pollutant is present, the oxygen oxidises more easily the pollutant
than the material. There are more free electrons in the material of the semiconductor, the
resistance decreases and the current goes faster. So, the appearance of a pollutant results
in a decrease in electrical resistance.

Discussion Humidity and temperature may in�uence the resistance: the latter increases
if the humidity and/or the temperature decrease. There may also be other in�uences
related to events a�ecting the air quality that are detected by the sensors. Besides, given

2The �ve "TGS" sensors are of the brand FIGARO, the "GGS" sensor of the brand UST.
3The concerned software has been developed in LabView (NI instrument, USA).
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the principle of metal oxides, only the molecules that get oxidised will cause resistance
decreasing. The other ones have either no impact on the resistance (will remain stable),
or will possibly increase the resistance (for example this is the case for O3). In conclusion,
we have to pay attention in interpreting resistance variations.

1.2 Analysers

Material Analysers data were captured by six analysers, operated by ISSeP. These anal-
ysers are speci�c and target chemical compounds whose concentrations are returned every
half hour 4. The speci�cities of these analysers are presented in Table 1.2.

Table 1.2: Table of analysers

Analyser Return Unit Measurement range
RMHB09 CH4 concentration of methane ppm 1.1− 57.689
RMHB09 H2S concentration of hydrogen sulphide µg/m3 1− 341.653
RMHB09 NH3 concentration of ammoniac µg/m3 1− 124.54
RMHB09 BENZ concentration of benzene µg/m3 0.1− 3.5
RMHB09 TOLU concentration of toluene µg/m3 0.1− 11.442
RMHB09 LIMO concentration of limonene ppm 0.1− 9.442

Detection method The analysers rely on di�erent detection methods:

� Flame ionization detector: The concentration of CH4 in the air is measured using
this method. The acquisition time of this analyser is equal to 10 seconds and has
been averaged to the half hour.

� Fluorescence UV: The analyser dedicated to H2S �rst converts H2S into SO2, which
is then measured by the principle of �uorescence UV 5. Like the CH4 analyser before,
the provided measurements for every 10 seconds have been averaged to the half hour
afterwards.

� The concentration of NH3 is converted into nitric oxide (NO) measured by the chemi-
luminescence reaction 6 with ozone. These signals are also averaged for every half
hour.

4We note that the measurements from three analysers (MPXY, ETBZ and PINE) are also available,
but not used in this study because of the too minimal concentrations. A descriptive analysis of these 3
analysers is described in Appendix B.2.

5This principle consists in the measurement of �uorescence emission in a wave length of 330 nm.
6Chemiluminescence is the emission of light (luminescence), as the result of a chemical reaction

(https://www.sciencedirect.com/topics/neuroscience/chemiluminescence).
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Analysers dedicated to benzene, toluene and limonene have another measurement prin-
ciple: The air to be analysed passes through an adsorbent that will adsorb organic com-
pounds during 12 minutes. Then, the adsorbent is heated up/pressed to release the whole
�xed mass during 3 minutes. The values are the totals over the sample during 12 minutes.
After 15 minutes, this process is repeated and so forth. Afterwards, these values are also
averaged to the half hour. The detection process by the aid of an adsorbent is illustrated
in the following Figure 1.2.

0 1512 30 [min]

M1 M2

adsorption release

Figure 1.2: Measuring of the adsorbent

7



1.3 Installation of sensors and analysers

Mobile laboratory trailer Sensors and analysers have been placed within a mobile
laboratory trailer. For this study, the trailer was installed at the site of a municipal solid
organic waste land�ll in a trailer of the ISSeP which was located at Habay (Province
of Luxembourg, Wallonia, Belgium). On this location, identi�ed as Biogas, sensors and
analysers proceeded measuring simultaneously for the period of August 2016 - January
2017.

A weather station and a tube providing air intake are situated on the roof of the trailer.
On Figure 1.3 we can see the trailer containing all the measurement instruments [14].

Figure 1.3: Trailer of ISSeP

Installation of the sensors and analysers It is important to mention that sensors and
analysers have the same air intake. The air enters through a pipe at 2.8 m from the ground
and passes through the chamber of the sensors and analysers respectively, as represented
on the following Figure 1.4.
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air-intake

sensors analysers

Figure 1.4: Installation of sensors and analysers

Parameters of control In addition to sensors and analysers data collection, several
control parameters are measured, which are represented in the following Table 1.3.

Table 1.3: Table of control parameters

Name Return Unit Frequency
Temp. Enc. temperature around enclosure °C per minut
Temp. In. temperature in enclosure °C per minut

target value : 50°C
Hr. Enc. relative humidity in enclosure % per minut
Hr. In. relative humidity around enclosure % per minut

RMHB09 DV wind direction ° per 30 minutes
0°= East

RMHB09 HR relative humidity outside % per 30 minutes
RMHB 09 PA atmospheric pressure hPa per 30 minutes
RMHB09 TT outside temperature °C per 30 minutes
RMHB09 VV wind velocity m/s per 30 minutes

We call these measurements parameters of control, because they are not part of the
direct databases produced by sensors and analysers, but more supplementary parameters.
Only if special events will be detected in the sensors and analysers sensing, we will compare
with the parameters of control, to check every in�uence.

The �rst four measurements include the temperature and relative humidity in the en-
closure in which the sensors are located, as well as the same measurements around the
enclosure for every minute. The temperature in the enclosure is maintained at 50°C with
the aid of a heater. The last �ve measurements provide from a meteorological station from
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the ISSeP located on the mobile laboratory trailer. This station observed the wind direc-
tion, the relative humidity, the atmospheric pressure, the temperature and wind velocity
from the laboratory location every half hour.

1.4 Response times

In�uences on the response times The lengths and diameters of the pipes bringing
air to the chambers of sensors and analysers respectively are not necessarily the same. It
follows that the volumes of aspirated air and the response times are not necessarily identical
for the two devices. Using volumes, physical and chemical properties, one can calculate
the time to arrive at the two di�erent instruments. Moreover, the time of measurement is
not equivalent for sensors and analysers as explained in detail before (see Section 1.1 and
Section 1.2). Finally, the measuring frequency of the sensors is one minute, whereas it is
30 minutes for the analysers.

Method for determining the response time of sensors and analysers The re-
sponse time of sensors and analysers can be determined by several approaches. Concern-
ing the data of this study, the response times have been veri�ed and the reactions of both
instruments were quasi-instantaneous and simultaneous.

Now, after having a better understanding of the functioning and procedures of mea-
surements, we can carry on with the data preprocessing in the next chapter.
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Chapter 2

Data preprocessing

Some preprocessing is needed before we can conduct any analysis on the collected data.
First, measurements from sensors, analysers and control parameters were recorded in dif-
ferent �les, with di�erent formats and at di�erent time frequencies. Therefore, an interme-
diate objective in this chapter is the fusion of these data �les into a single working dataset.
Secondly, some speci�c time periods cannot be considered for our analysis, as sensors were
dedicated to another experiment at that time. Another objective is thus to subset the
dataset so that it contains only usable data.

The chapter is organized as follows. We �rst de�ne the necessary preprocessing for the
sensors data �le. Afterwards, the process for the analysers data set is explained. Finally,
we proceed to the fusion and creation of one large data set, which will be analysed in the
subsequent chapter.

At the end of the chapter, we will also introduce the preprocessing of the control parame-
ters data, which is very similar to the one for the sensors and analysers data.

It has to be noticed that the preprocessing is a standard procedure that has to be conducted
for any similar study resulting in similar data �le structure. At SAM Laboratory, it used to
be undertaken "manually", using Excel. On the opposite, we propose a sequence of semi-
automatic functions in the software R (version R-3.4.3), which will resolve all intermediate
problems. The functions are called semi-automatic because there is a necessary intervention
of the user to enter data and options and react in case of warning. These functions are
designed to be general enough so as to be applied to a dataset coming from similar studies.
The R script of all functions of the preprocessing is available on the MatheO platform.

2.1 Summary of the data preprocessing

The complete preprocessing procedure is summarized in the following Figure 2.1.
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Input:
Sensors data

Elimination of useless data

elimination.R

Concatenation of sensors files

sensorsFusion.R

Parsing into date-time object

createTimeSensors.R

Conductance

conductance.R

Missing values

addRowsNA.R

Linear interpolation

approxAnalysers.R

Read and save the analysers file

readAndSave.R

Creation of date-time object

createTimeAnalysers.R

Input:
Analysers data

Elimination of useless data

elimination.R

Fusion of the data

dataFusion.R

Delete observations

deleteRows.R

Reduce time steps

timeReduction.R

Figure 2.1: Summary of the data preprocessing
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This process is general and can be applied to new datasets with a similar structure. Fur-
thermore, a shiny interface is accessible to the user to proceed this preprocessing for new
data (see Chapter 4).

2.2 Sensor data �le

Sensors �le formatting The data �le of the sensors must conform certain conditions
or have several characteristics for a smooth preprocessing:

� One column of the data set contains date values, which must have the format day-
month-year, e.g. 29.08.2016, the separator being arbitrary.

� Another column contains the time values, which are in the order hour-minute-second,
e.g. 13:28:57, and also an arbitrary separator.

� For further preprocessing, the time zone "UTC" is the most adequate because there
is no ambiguity about the time lag as for the "MET" time zone for example.

� The sensors measurements are returned as resistance measurements.

� Missing values and the corresponding measurement times are not written in the data
set and imply a higher time di�erence between two consecutive measurements.

The following Table 2.1 contains further information about the datasets of sensors.

Table 2.1: Table of sensors data �les

Content one �le per day
Format text �le (.txt)
Period 29.08.2016 13:28:57 - 30.01.2017 23:59:14

Frequency per minute
Number of columns/sensors measurements 16

The available sensors data starts the 29.08.2016 at 13:28:57 and stops the 30.01.2017
at 23:59:14. The sensors provide measurements for each minute. One data �le is created
for each day of measurement. Figure 2.2 provides an example of the �rst lines of such a
data �le.
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2.2.1 Concatenation of sensors �les

The �rst step is to concatenate all the daily �les in order to have all sensors measurements
in only one �le. This concatenation will be executed by the function sensorsFusion():

sensorsFusion(files_location,save_location,date_column)

Description This function reads the data sets located on files_location one by one
and creates the concatenation of them, which will be saved on the speci�ed location
save_location with the speci�ed �le name.

Arguments

� files_location is a string enclosed in quotation marks containing the path of the
�le where all the sensors data sets (and them only) are stored. The storage name of
these �les is not relevant, e.g.: "C:/Users/user/folder/sensors_�les". The data sets
that have to be concatenated by this function have to include the date values in the
speci�ed column in date_column to ensure a correct output data set.

� save_location is a string in quotation marks containing the desired path directory
where the concatenation �le will be saved, the name of this �le and the extension
.csv, e.g.: "C:/Users/user/folder/�leName.csv".

� date_column is a quoted string, specifying the exact name of the column containing
the date values, e.g.: "Date".

Value The concatenation of the sensors dataset �les are written and saved in one CSV
�le named by the name in save_location.

Remarks

� By comparing the date of each �le, we check if days are repeated in the files_location
and if so, a warning message appears but the repeated day is not joined to the �le
"�leName.csv". If not, the measurements of this day are added to the �le "�le-
Name.csv".

� It is recommended to choose another directory in save_location as the one speci�ed
in files_location to keep the sensors �les unchanged when the preprocessing will
be re-executed afterwards.

The next Figure 2.3 shows a part of the new obtained �le which is named "sensorsCom-
plete.csv". We can see that the measurements from the 29.08.2016 are directly followed by
the values from the 30.08.2016.
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Figure 2.3: Pass from �rst to second day

2.2.2 Elimination of useless data

One goal of the preprocessing is to keep the useful data and to delete those which are
not informative or useful for the analysis. For instance, our sensors dataset contains mea-
surements for the control parameters which are not preprocessed in exactly the same way
as sensors measurements. Furthermore, the signals from some additional speci�c sensors,
that is PID, CO2, H2S and NH3, do not give any information (see Appendix B) and thus
will be deleted as well. The function named elimination() has been written to do this
task:

elimination(data,var_to_keep)

Description The function elimination() reads the input dataset data and creates a
new dataset containing only those columns speci�ed in the argument var_to_keep.

Arguments

� data is a data frame containing values we want to retrieve.

� var_to_keep is a vector of character strings containing the desired column names of
the data set data we want to retain.

Value The function elimination() returns a new dataset, where the columns not refer-
enced in var_to_keep are away. All other columns of data will remain in the new dataset
without any change.

Remarks In case of misspelling or inserting a wrong column name, a warning message
is written and the data set will remain unchanged. If we do not want to eliminate any
column of the data set, we simply enter an empty string " " or -1 and the data set will not
be changed.

The header of the new dataset is shown on the following Figure 2.4.
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Figure 2.4: Data set after elimination

2.2.3 Parsing into date-time object

On the new data set (see Figure 2.4), the values in the columns Date and Heure are stored
as factors, and not as date and time objects in R.

In this study, we use the R-package lubridate which includes functions to parse date-
time data. More in detail, we use the parse_date_time() function of this package to parse
an input vector into a POSIXct date-time object [6]. The POSIXct class allows handling
dates and times with control for time zones, "ct" stands for calendar time. A POSIXct
date-time object is stored as the number of days or seconds from some reference date.

To transform the separated date and time values to date-time objects in one column,
the function createTimeSensors() has been created:

createTimeSensors(data,time_zone,date_column,time_column)

Description The function createTimeSensors() will read the input data set in the
argument data. This data set must contain dates in the column named in the argu-
ment date_column in the order day-month-year (29.08.2016) and time values in the col-
umn named in time_column in the order hour-minute-second (13:28:57). The remaining
columns of the input data set contain sensors measurements. The function concatenates
the two �rst columns, then parses the concatenated values into POSIXct date-time objects
and returns a new data set containing the date-time objects in the �rst column, and the
remaining sensors measurements from the input data set.

Arguments

� data is a data frame containing date values in the column speci�ed in date_column,
time values in the column time_column.

� time_zone is a quoted character string that speci�es the time zone with which to
parse the dates, e.g.: "UTC" for Coordinated Universal Time or "MET" for Middle
European Time.
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� date_column is a character string containing the name of the date column in quota-
tion marks, e.g. "Date".

� time_column is a character string containing the name of the time column in quota-
tion marks, e.g. "Heure".

Value The function createTimeSensors() has as output a new data set newData. The
�rst column of newData contains the date-time objects in the speci�ed time zone, the
remaining columns the unchanged measurements of the sensors.

Remarks Concerning the time zone, we have to pay attention in which time zone the in-
put dataset is de�ned. Furthermore, the MET time is also known as Central European Time
"CET" and is the same as the UTC time with a time lag of one hour (MET=UTC+01:00).
For our sensors data set, the time is de�ned in the time zone UTC. If no time zone is
speci�ed in the createTimeSensors(), the default "UTC" is considered.

The following Figure 2.5 represents the header of the output dataset after applying the
createTimeSensors() function.

Figure 2.5: Data set including date-time objects

2.2.4 Conductance

Up to present, our sensors data set contains resistance measurements. In Chapter 1,
it is explained that the resistance decreases when a pollutant is present, that is to say
the chemical concentration of the pollutant increases. So, resistance and concentration
change in opposite way. To evade this, we can transform the sensors measurements into
conductance, which is the inverse of resistance. On the following Figure 2.6, the resistance
measurements of one sensor are represented on the left, the conductance measurements on
the right.
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Figure 2.6: Resistance - Conductance of the TGS2602 sensor

The following function will compute this transformation, which will make the subse-
quent interpretation clearer:

conductance(data,columns)

Description The function conductance() transforms a data set by computing the in-
verse of the elements in the speci�ed columns in the argument columns.

Arguments

� data is a data set containing values to inverse.

� columns is a vector containing the column names of the data set in quotation marks
which have to be inverted.

Value This function returns a new dataset newData containing the inverse values of the
elements in the columns speci�ed by columns in the dataset data.
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Remark For our sensors dataset, we will apply the conductance() function to all
columns in the dataset except the �rst one. This column contains the time values, which
we do not want to be inverted.

2.2.5 Missing values

We have already seen that the measurement frequency of the sensors is one minute. When
a value is missing in the data set, the respective measuring time is not written in the
data set, thus the whole row in the data set is missing and a time di�erence of more than
one minute appears. In the following Figure 2.7 a part of the data set with missing rows
(indicated by the red cases) is illustrated.

Figure 2.7: Part of data set with missing time values

To complete the data set by the missing rows, the function addRowsNA has been written:

addRowsNA(data)

Description The function addRowsNA() takes as argument the database to handle, cal-
culates the time di�erences between each consecutive couple of rows, and if necessary,
inserts a row �lled with NA and the corresponding time value. The output is a new data
set which corresponds to the input data set where the NA rows have been added for missing
values.

Arguments

� data is a data frame containing in the �rst column date-time objects.

Value The function addRowsNA() outputs a new dataset newData, which is the input
data set where rows have been added when a sensor measurement is missing.

Remarks If each time di�erence calculated on the �rst column in the dataset data is
already less or equal to one minute, the new dataset newData corresponds to the original
dataset data. This is the case when there are no missing values.

Now, the new data set includes NA values when a sensor measurement is missing like
shown in the subsequent Figure 2.8.
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Figure 2.8: Part of data set with added NA values

The preprocessing for the sensors data set is �nished here. We will now describe the
preprocessing of the analysers data.

2.3 Analysers data �le

Analysers �le formatting As for the sensors data sets, several characteristics and
formats have to been followed for a correct preprocessing:

� The date values are stored in the format day.month.year, the separator being arbi-
trary.

� The time values are implemented in the preprocessing in the format hour:minutes:seconds,
because the original data set does not include exact measuring times.

� After some manipulation in Excel, the data �le must be in .csv format.

� The analysers data set presents two heading rows of the analysers data set, that will
by merged to one header.

Table 2.2 provides general information about the analysers data �le before pretreating it.

Table 2.2: Table of analysers data �le

Content one �le
Format excel �le (.xlsx)
Period 24.08.2016 00:00:00 - 30.01.2017 23:30:00

Frequency per 30 minutes
Number of columns/analysers measurements 10

The available analysers data starts the 24.08.2016 at midnight (00:00:00) and stopped
the 30.01.2017 at 23:30:00. The analysers provided measurements for each half hour, which
are stored in one excel �le. The header of this data �le is represented in Figure 2.9.
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Figure 2.9: Header of the analysers data �le in Excel

The preprocessing concerning the analysers data starts with several manipulations in
Excel:

� In the �rst excel cell A1, we add "Date".

� In the cell A2, we delete "Unité" so that this cell is empty.

� The cells C2-J2 are merged to one cell and contain the unit "µg/m3". We cancel the
merge of these cells and repeat the concerned unit for each single cell.

� We save this modi�ed data �le with the CSV format at a speci�ed location, e.g.:
"C:/Users/user/analysers_�le.csv".

The next Figure 2.10 illustrates this new data set "analysers_�le.csv".

Figure 2.10: Header of the modi�ed analysers data �le in Excel

The subsequent preprocessing of the analysers data set will be executed in R.

2.3.1 Read and save the data �le

We can observe on the previous Figure 2.10 that there are two heading rows in the data
set. Therefore, the following function readAndSave() has been created:

readAndSave(file_path)

Description The function readAndSave() reads the input data set whose �le path is
file_path, concatenates the two �rst lines of this data set and stores the output data set.
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Arguments

� file_path is a string enclosed in quotation marks containing the �le path of the
analysers data set, e.g.: "C:/Users/user/analysers_�le.csv".

Value The function readAndSave() creates a new data set data_ana containing the
concatenation of the two �rst rows of the input data set as �rst row, and then the remaining
values of this data set.

Remarks We concatenated the two �rst rows of the data set to keep the units of every
analyser.

The header of the output data set is represented beneath (see Figure 2.11).

Figure 2.11: Header of data_ana

2.3.2 Elimination of useless data

Like in the preprocessing of the sensors data, we want to select only the columns of the
studied analysers data and to delete those which are not useful. Therefore, we will use
the same function as explained in the Section 2.2.2 to obtain a new data set. We want to
delete the columns specifying the measurements of the three unusable analysers MPXY,
ETBZ and PINE (see Appendix B.2).

2.3.3 Creation of date-time object

On the last Figure 2.11 we observe that the �rst column consists of date values in the form
day.month.year followed by empty cells. We have to see this data set in blocks. Every
block corresponds to one day, the �rst column contains �rst the date of the concerned
day and then 47 empty cells are following for the remaining half hours of this day. The
function createTimeAnalysers() will transform the date values into date-time objects so
that afterwards, we have date-time values for every 30 minutes:

createTimeAnalysers(data,time_zone,date_column)
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Description This function takes as argument the input dataset data, fragments this
input data in blocks, one block corresponding to one day. The date of the current block
will be repeated 48 times (because a day consists of 48 half hours). Then, an output
dataset will be created, whose �rst column named time is a concatenation of the repeated
dates and the half hours from 00:00:00 up to 23:30:00 for every block. These date-time
values will than be parsed into date-time objects like got the sensors time measurements.
The remaining columns contain the analysers measurements.

Arguments

� data is a data frame containing date values for each 48 cells, with intermediate
empty cells in the �rst column and other values (e.g. analysers measurements) in the
remaining columns.

� time_zone is a quoted character string containing the time zone used for the time
values, e.g: "UTC", which is also the default time zone.

� date_column is a string in quotation marks specifying the column name of the
column containing the date values.

Value The function createTimeAnalysers() returns an output dataset newData whose
�rst column contains date-time objects of the analysers measuring times and the remaining
columns the respective measurements.

Remarks This function checks simultaneously if every block contains actually 48 rows,
otherwise there are missing or too many measurements. If a block with more or less than
48 rows appears, a warning message will be written and the function stops executing. An
NULL object will be returned.

The new data set has the following heading (see Figure 2.12).

Figure 2.12: Head of newData
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2.4 Fusion of the sensors and analysers data sets

After having �nished the preprocessing of the sensors and analysers data sets separately,
we can �nally achieve the fusion of the two obtained data sets in this section, which is our
intermediate objective.

Output �le formatting The �nal output data �le presents several characteristics in
terms of the format:

� The date-time objects are written in the format year-month-day hour:minutes:seconds,
for example: "2016-10-07 13:50:30" in the �rst column.

� The data �le contains �rst the columns of the approximated data by interpolation,
then the exact data. In our study thus, the approximated analysers data is followed
by the exact sensors values.

� The column names can be chosen by the user for an agreeable use and readability
afterwards.

2.4.1 Linear interpolation

To proceed on the fusion of the sensors and analysers data �les, we should have the mea-
surements from both instruments for the same time series. However, the analysers have
a measuring frequency of half an hour and the sensors one of a minute. Furthermore,
they did not start measurements at the same time. The sensors started to work on the
29.08.2017 at 13:28:57, but the analysers on the 24.08.2016 at 00:00:00. If we want to keep
the exact measuring times of the sensors, we take as sensors values the measured values
for the abscissa time. The analysers values will be the estimated values at the abscissa
time after linear interpolation of the data in the window [time− 30min; time + 30min],
and NA otherwise. The following function, called approxAnalysers() will perform this
approximation for the analysers:

approxAnalysers(data_analysers,data_sensors,

time_step_analysers,time_step_sensors)

Description The function approxAnalysers() executes a linear interpolation of the
measurements with the greater time step by taking the time series of the data set with
smaller time step and writes the interpolated values in a new data set.
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Arguments

� data_analysers is a data frame containing a �rst column time with date-time ob-
jects and measurements in the remaining columns, e.g. the data set found at the end
of the analysers data set preprocessing.

� data_sensors is a data frame with the same speci�cations but with another time
step in the �rst column. We take the data set obtained after preprocessing of the
sensors data.

� time_step_analysers is an integer indicating which time di�erence (in minutes) is
de�ned in the data set data_analysers.

� time_step_sensors is an integer indicating which time di�erence (in minutes) is
de�ned in the data set data_sensors.

Value The function approxAnalysers() compares the time steps of both data sets in
the input, then performs a linear interpolation on the data set with the larger time step
and returns an output data set named data_approx which contains these interpolated
measurements in terms of the smaller time steps.

Remarks The time series used to perform the interpolation, thus the smaller time steps
de�nes the time period when the approximation takes place. If the time series to approxi-
mate exceeds the time period for the interpolation (before and/or after), these values will
simply not be taken in the new data set. In the opposite way, if it falls short of the inter-
polation time period, the approximated data set is �lled with NA values up to the moment
where the two input data sets simultaneously contain measurements.

The head of the new data set data_approx is shown in the following Figure 2.13.

Figure 2.13: Head of approximated analysers data set

2.4.2 Fusion of data

Finally, the function dataFusion() will proceed the fusion of the sensors data set with the
analysers data set.

dataFusion(data_approximated,data_exact,colNames)
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Description This function merges the data set containing the exact measured values
with the approximated data set, created by the previous function approxAnalysers().

Arguments

� data_approximated is a data frame containing the approximated values by interpo-
lation with �rst column time.

� data_exact is a data frame containing the real measured values with �rst column
time.

� colNames is a character string containing the chosen column names for the output
data.

Value The function dataFusion() returns the output data set data_fusion whose �rst
column contains the date-time objects given by the �rst data set 1, the remaining columns
contain the interpolated measurements from data_approximated, and then the exact mea-
surements.

Remark The column names of the output data set can be chosen for the convenience
and clearness for the subsequent work.

In the next Figure 2.14, we can see the header of the merged data set.

Figure 2.14: Head of data_fusion

2.5 Preprocessing on the merged data set

Some manipulations must be realised on the fusion data set before we can use it in the
model prediction.

1By the use of the approxAnalysers() function, the two time columns are exactly the same.
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2.5.1 Time reduction

Up to now, the time frequency of our data set is one minute. With this time step, the
measurements are very likely to be dependent with the time. Therefore we want to increase
the time di�erence to at least 30 minutes to avoid this time dependence. The following
function named timeReduction() is used:

timeReduction(data,step)

Description This function creates a dataset containing data with a greater time lag than
the input dataset data. The number of minutes in the argument step is added to the �rst
time value in the data set, and the smallest time value greater than this sum is de�ned
as the next measuring time. This process continues until the end of the data set. This
procedure ensures time di�erences of at least the number of minutes in step and therefore,
the independence of the measurements in time.

Arguments

� data is a data frame containing the measurements of analysers and sensors and the
�rst column de�nes the time series.

� step is a strictly positive integer specifying the desired number of minutes between
each measurement (row).

Value The function timeReduction() returns the output dataset smallData whose �rst
column contains the date-time objects whose di�erences are given by the argument step.
All measurements between these minutes are deleted.

Remark When the sensors started measuring, there were sometimes 10 seconds time
steps, so less than one minute between each measure. With this function, all measure-
ments with a step smaller than it should be, will be eliminated.

In the next Figure 2.15, we can see the header of the data set after time reduction.

Figure 2.15: Head of small_Data
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2.5.2 Delete observations

For several days, there were odour bags connected to the instruments. We have to delete the
rows containing the concerned measurements, otherwise we could misinterpret �uctuations
of the signals. The next Table 2.3 contains the days, where odour bags were connected.

Table 2.3: Days of odour bags

Odour bag connection
27.10.2016
3.11.2016
14.11.2016
16.112016
23.11.2016
24.11.2016
25.11.2016
29.11.2016
30.11.2016

The following function deleteRows() will perform the elimination of speci�ed obser-
vations:

deleteRows(data,start_rows,end_rows)

Description The function takes as argument an input data set, compares the column
time of this data set with the time intervals given by start_rows and end_rows and
deletes the rows corresponding to time values included in one of the intervals.

Arguments

� data is a data frame whose �rst column contains a time series, the remaining columns
contain analysers and sensors measurements.

� start_rows is a vector containing character strings in quotation marks specifying
the starting time of the intervals to delete, e.g. ("2016-10-09 01:00:00" , "2016-10-27
00:00:00").

� save_location is a vector containing character strings in quotation marks specifying
the ending time of the intervals to delete, e.g. ("2016-10-11 11:00:00" , "2016-10-27
23:59:59").
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Value The function deleteRows() returns an output dataset newData containing only
the rows of the input dataset, whose measuring time is not between two respective starting
and ending times of intervals. In our example described in the arguments, we would delete
all measurements taken between "2016-10-09 01:00:00" and "2016-10-11 11:00:00" as well
as the measurements from "2016-10-27 00:00:00" to "2016-10-27 23:59:59".

Remarks If the number of starting times do not equal those of the ending times, a
warning message will appear and the input data set will not change.

2.6 Control parameters preprocessing

We want to use the control parameters if special events are observed in the sensors and
analysers sensing, to check every in�uence. Therefore, we have to pre-process these data
sets as well. The next Figure 2.16 presents the summary of the preprocessing of the control
parameters.
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Input:
Control parameters with 
sensors data structure

Elimination of useless data

elimination.R

Concatenation of files

sensorsFusion.R

Parsing into date-time object

createTimeSensors.R

Missing values

addRowsNA.R

Linear interpolation

approxAnalysers.R

Read and save the file

readAndSave.R

Creation of date-time object

createTimeAnalysers.R

Input:
Control parameters with
analysers data structure

Elimination of useless data

elimination.R

Fusion of the data

dataFusion.R

Delete observations

deleteRows.R

Reduce time steps

timeReduction.R

Figure 2.16: Summary of the control parameters preprocessing
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We will look back on the table summarising the control parameters (see Table 2.4).

Table 2.4: Table of control parameters

Name Return Unit Comments
Temp. Enc. temperature around enclosure °C per minut
Temp. In. temperature in enclosure °C per minut

maintained at 50°C
Hr. Enc. relative humidity in enclosure % per minut
Hr. In. relative humidity around enclosure % per minut

RMHB09 DV wind direction ° per 30 minutes
0°corresponds to East

RMHB09 HR relative humidity outside % per 30 minutes
RMHB 09 PA atmospheric pressure hPa per 30 minutes
RMHB09 TT outside temperature °C per 30 minutes
RMHB09 VV wind velocity m/s per 30 minutes

The �rst four variables have their source in the same dataset as the sensors measure-
ments. So, the preprocessing of these four variables has the same structure as the sensors
data set and the same functions as explained in Section 2.2. The only modi�cation is, that
we do not need to apply the conductance() function, because it makes no sense to inverse
temperature or humidity values.

The last �ve variables delivered by the meteorological station from the ISSeP are stored
in a data set having the same structure as the original analysers data set. Thus, we can
use the same functions as explained in Section 2.3.

Afterwards, exactly as for the sensors and analysers data set we can proceed a linear
interpolation to receive the same time series before merging the two data sets. Then, we
can also reduce the time step to take the same as for the fusion data set containing the
sensors and analysers measurements and also delete the rows we want to exclude by the
same reasons as before. Now, we can use the �nal control data set to check any in�uence
when having results in further analyses.

2.7 Overview

In general, this preprocessing can be reproduced for a new data set, with the same proper-
ties than the data sets in this study, e.g.: contain time values in one of the columns. When
the preprocessing is terminated, we can begin the analysis of the �nal data set.
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Chapter 3

Data description and subsequent

pretreatment

In this chapter, we analyse the preprocessed data set to obtain a better understanding of
the data. For every analyser and every sensor variable, we provide a data summary for
all the variables separately in the data set, count the missing values, examine their ranges
and observe atypical events.

The �rst lines of the preprocessed dataset are represented in Figure 3.1.

Figure 3.1: First values of the data set

We can see one time column, six analysers and six sensors measurements. Now, the
analysis of each of the analysers and sensors can begin.

3.1 Analysers values

We analyse the measurements of every analyser separately to observe missing values, the
measuring range, the distribution and atypical values. The missing values are marked by
red ticks in the time series. Given that we will work with the analyser measurements taken
to the logarithm, the transformed time series is also represented.
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3.1.1 CH4 Analyser

Sep Nov Jan

0
10

20
30

40
50

CH4 analyser

time [30min]

co
nc

en
tr

at
io

n 
[p

pm
]

Min Q1 Median Mean Q3 Max Missing values
1.1 1.781 2 2.871 2.429 57.689 216

Histogram of CH4 analyser

concentration [ppm]

F
re

qu
en

cy

0 10 20 30 40 50 60

0
10

00
20

00
30

00
40

00
50

00
60

00

0 10 20 30 40 50

Boxplot of CH4 analyser

concentration [ppm]

Figure 3.2: Descriptive statistics for CH4 analyser

34



Distribution On closer examination of the histogram and boxplot, it is con�rmed that
the distribution of CH4 values is very asymmetric, because of the huge amount of small
values and the few high measurements of CH4. Moreover, we can observe several extreme
concentrations exceeding the right whisker of the boxplot. This indicates that events of
high CH4 concentration have been quite rare on the measurement site during the observa-
tion period.

Range On the time series and the table beneath, we observe the range of the CH4 mea-
surements going from 1.1 to 57.69 ppm. But there are only a few measurements reaching
the high values. The third quartile is equal to 2.429, that is to say that 75% of the ob-
served CH4 concentrations are less or equal to this value. This predominant small range is
con�rmed by the histogram and boxplot and also by the mean equal to 2.871.

Missing values The statistic summary indicates 216 missing values occurring in the
CH4 variable. These CH4 values are missing from "2017-01-26 11:39:11 UTC" to "2017-
01-30 23:55:13 UTC" and de�ne the last measurements of this analyser. A power failure
is probably the reason for these missing measurements.

Logarithmic time series The following Figure 3.3 represents the CH4 concentrations
after logarithmic transformation.
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Figure 3.3: Logarithmic CH4 concentration
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3.1.2 H2S Analyser
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Figure 3.4: Descriptive statistics for H2S analyser
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Distribution We see much more �uctuation of the H2S measurements from September
to November and afterwards nearly no more signal except little elevations. The intense
drop out from November has no known explicit reason and leads to a huge amount of small
values. Moreover, it leads to a strong right-tailed distribution of the H2S measurements as
seen on the histogram and boxplot.

Range The H2S analyser provided measurements from 1 to 341.653 µg/m3. Like for
the CH4 analyser, most values are very small, three-quarter of them are less or equal to 3
µg/m3. This high quantity of measurements around 1-3 µg/m3 is also con�rmed by the
width of the box in the boxplot. Nevertheless, the range of 340.653 µg/m3 is the widest
over all the analysers.

Missing values The time series indicates only one missing value taking place the "2017-
01-30" at 23:55:13 o'clock. At this time, the last measure of the sensors data set has been
collected, but the analysers stopped measuring at approximately 23:30:00. Thus there is
no value 30 minutes later and a missing value occurs in the interpolation.

Logarithmic time series The logarithm of the H2S concentrations is shown on Fig-
ure 3.5.
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Figure 3.5: Logarithm of the H2S concentration
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3.1.3 NH3 Analyser

Sep Nov Jan

0
20

40
60

80
10

0
12

0

NH3 analyser

time [30min]

co
nc

en
tr

at
io

n 
[µ

g/
m

3]

Min Q1 Median Mean Q3 Max Missing values
1 1 2 7.625 8 124.54 311

Histogram of NH3 analyser

concentration [µg/m3]

F
re

qu
en

cy

0 20 40 60 80 100 120

0
10

00
20

00
30

00
40

00
50

00

0 20 40 60 80 100 120

Boxplot of NH3 analyser

concentration [µg/m3]

Figure 3.6: Descriptive statistics for NH3 analyser
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Distribution Like for the H2S analyser, we can observe very oscillating signals in Septem-
ber, then the values decrease in October and from November there is nearly no more am-
moniac measured. As before, we do not have any explication for this phenomena, but it
provides an important number of weak ammoniac measurements. The histogram and box-
plot show up a right-skewed distribution. Many observations reside outside the whiskers
on the right side of the boxplot.

Range The NH3 analyser collected measurements in a range from 1 to 124.54 µg/m3. So,
we have a smaller range than for H2S. However, a more important number of observations
remains high for this analyser. About 25% of the measurements reside between 2 and 8
µg/m3.

Missing values We observe 311 missing values for the NH3 analyser. These values are
missing from "2017-01-24 11:50:02 UTC" to "2017-01-30 23:55:13 UTC", so nearly six days
of measurements, most probably caused by a problem of the electric power supply for this
analyser.

Logarithmic time series The following Figure 3.7 shows up the logarithmic transfor-
mation of the NH3 concentration.
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Figure 3.7: Logarithmic NH3 concentration
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3.1.4 BENZ Analyser
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Figure 3.8: Descriptive statistics for BENZ analyser
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Distribution The BENZ analyser generates the inverse phenomena of the H2S and NH3

analysers. Until mid-October the measurements of benzene remain low, then increase and
provide more �uctuations. Here, the distribution is right-tailed as well and there are also
several extreme values bigger than the right whisker in the boxplot.

Range These �uctuations of the benzene measurements are not so immense, because the
analyser has a very small range from 0.1 to 3.5 µg/m3 compared to the precedent analysers.

Missing values There is one missing value for the benzene measurements. Like for the
H2S analyser, it is the last measure at 23:55:13 universal time on 30/1/2017. As before,
the missing value occurs when performing the linear interpolation of the analysers mea-
surements between around 23:30:00 and 23:55:13 o'clock. The last measure of the BENZ
analyser has been provided at 23:30:00, so the interpolation gives a NA value as output
afterwards.

Logarithmic time series Figure 3.9 represents the logarithmic benzene measurements.
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Figure 3.9: Logarithmic BENZ concentration
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3.1.5 TOLU Analyser

Sep Nov Jan

0
2

4
6

8
10

TOLU analyser

time [30min]

co
nc

en
tr

at
io

n 
[µ

g/
m

3]

Min Q1 Median Mean Q3 Max Missing values
0.1 0.2 0.3 0.5471 0.6 11.4423 1

Histogram of TOLU analyser

concentration [µg/m3]

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

00
20

00
30

00
40

00
50

00
60

00

0 2 4 6 8 10

Boxplot of TOLU analyser

concentration [µg/m3]

Figure 3.10: Descriptive statistics for TOLU analyser
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Distribution Excepted a high peak on 5/10/2016, the values of the TOLU analyser
remain stable between 0 and 3 approximately. Again, we can observe a right-skewed dis-
tribution of values, as shown on the histogram and boxplot.

Range The analyser dedicated to toluene provides a range from 0.1 to circa 11.44 µg/m3.
Furthermore, 75% of the TOLU measurements are between 0.1 and 0.6 µg/m3.

Missing values There is one missing value present in the measurements of the TOLU
analyser. As before, this single value provides from the interpolation between the last value
of the analyser and the missing value 30 minutes later.

Logarithmic time series The following time series represents the TOLU measurements
taken to the logarithm.
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Figure 3.11: Logarithmic TOLU concentration
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3.1.6 LIMO Analyser
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Figure 3.12: Descriptive statistics for LIMO analyser
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Distribution We observe important and frequent signals from the two �rst months of
measuring, and then again nearly no more signal. So, the LIMO analyser will perform a
high number of very weak concentrations of limonene. Therefore, the distribution of the
limonene measurements is strongly right-tailed.

Range The LIMO analyser possesses a measuring range from 0.1 to 9.4417 µg/m3. Three
quarter of its values are equal to 0.1 µg/m3, as con�rmed in the histogram and boxplot.

Missing values One missing value occurs in the measurements of limonene at 23:55:13
o'clock on 30/1/2017. This NA value has also its seeds in the interpolation of the analysers
measurements.

Logarithmic time series Figure 3.13 shows the logarithmic LIMO values.
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Figure 3.13: Logarithmic LIMO concentration

45



46



3.2 Sensors values

The same descriptive statistics and graphical representations as for the analysers will be
presented for the sensors measurements. Remember that the sensors resistances have been
transformed in conductance measurements, so the used unit is kOhm−1.

Furthermore, the sensors, situated in the sensors chamber, performed at the same time.
Thus, when there is a power breakdown, all sensors stopped measuring simultaneously. The
326 missing values for all sensors take place on three di�erent time periods:

� on "2016-09-30 09:57:00 UTC"

� from "2016-10-05 09:17:00 UTC" to "2016-10-07 11:17:00 UTC"

� from "2016-11-17 00:05:00 UTC" to "2016-11-21 15:35:00 UTC"
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3.2.1 Sensor TGS2602
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Figure 3.14: Descriptive statistics for the TGS2602 sensor
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Distribution On Figure 3.14 the measurements of the TGS2602 sensor are illustrated.
We observe a global increase from September to December followed by a weak falling down.
Remember that the sensors are non speci�c but very sensitive instruments, which can be
in�uenced by temperature and humidity. Therefore, a reason for this in- and later decrease
could be the drop in temperature (winter). A remarkable peak occurs on 7/10/2016 at
12:17:34. Otherwise, the distribution remains very stable, as con�rmed in the histogram
and the boxplot. Compared to the right-tailed analysers distributions, the distribution of
the TGS2602 sensor seems to be more symmetric.

Range The TGS2602 sensor has a measuring range from approximately 0.06 to 0.16
kOhm−1. The most frequently occurring measure is between 0.12 and 0.13 kOhm−1 by
regarding the histogram. On the boxplot, we do not observe extreme values exceeding the
whiskers.
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3.2.2 Sensor TGS2610
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Figure 3.15: Descriptive statistics for TGS2610 sensor
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Distribution The TGS2610 sensor presents more �uctuations than the TGS2602 sensor
(see Figure 3.15). The measurements of the TGS2610 sensor oscillate around circa 0.025
kOhm−1. This can be con�rmed by looking on the histogram and boxplot. This �gure
illustrates also the rather right-tailed character of the distribution. Compared to the
TGS2602 sensor just before, we have a more important number of extreme values in the
boxplot.

Range The range of the TGS2610 sensor goes from 0.02 to 0.065 kOhm−1 approximately.
Three quarter of the measurements are less or equal to 0.027. The boxplot and more in
detail the small width of the box con�rms the huge number of values around 0.025-0.027
kOhm−1.
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3.2.3 Sensor TGS2611
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Figure 3.16: Descriptive statistics for TGS2611 sensor
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Distribution The TGS2611 sensor produces a very �uctuating signal around 0.05-0.06
kOhm−1. The histogram and boxplot represent a light right-tailed distribution with a few
extreme values on the right side. The time period from the "2016-09-06 13:46:18 UTC" to
"2016-09-23 09:28:36 UTC" shows higher conductance values which precede a little drop
down on the �rst measuring days. During the last �ve days, the TGS2611 sensor presents
smaller measurements as well.

Range We can observe a measuring range from 0.035 to 0.119 kOhm−1 for the TGS2611
sensor, which is greater than the range of the precedent TGS2610 sensor.
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3.2.4 Sensor TGS2620
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Figure 3.17: Descriptive statistics for TGS2620 sensor
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Distribution The values of the TGS2620 sensor represent 3 levels of conductance mea-
surements (see Figure 3.17). First, the values are around 0.125 kOhm−1, then decrease up
to 0.05 kOhm−1 before coming back around 0.125 kOhm−1. This period shows the same
shifted values as the TGS2611 sensor. After the 23/9/2016, the conductance measurements
drop down to 0.05 kOhm−1 and increase for the last month around 0.10 kOhm−1. We see
a weak trend to the left of the distribution. The extreme values in the boxplot present the
higher values between the 6/9/2016 and the 23/9/2016.

Range The summary table shows up a measurement range from 0.04 to 0.22 kOhm−1

approximately for the TGS2620 sensor. With a value of 0.1833 kOhm−1, it is the widest
range of the six sensors.

55



3.2.5 Sensor GGS1330
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Figure 3.18: Descriptive statistics for GGS1330 sensor
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Distribution In Figure 3.18 we can observe a global increasing trend. As for the
TGS2611 and TGS2620 sensors, we see a decrease of measurements during the �rst days
followed by higher conductance values for the GGS1330 sensor. Regarding the time series,
the distribution shows up a symmetry and no extreme values (see boxplot). The last �ve
days (26/1/2017-30/1/2017), we remark a drop down of the GGS1330 sensor measurements
with a di�erence of circa 0.04 kOhm−1.

Range The conductance measurements of the GGS1330 sensor go from 0.0167 to 0.1425
kOhm−1, where 50% of the values are between 0.0235 and 0.0972 kOhm−1.
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3.2.6 Sensor TGS2444
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Figure 3.19: Descriptive statistics for TGS2444 sensor
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Distribution The TGS2444 sensor presents the most conductance values around 0.006-
0.007 kOhm−1. More �uctuations occur at the beginning of the TGS2444 sensor mea-
surements. We examine the same signature at the beginning of the curve as for the
TGS2611, TGS2620 and GGS1330 sensors: a drop down starting the third day of measuring
(31/8/2016) is followed by a strong increase on 6/9/2016 after decreasing again to values
oscillating around 0.007-0.008 kOhm−1. Like for the other sensors, we can note the little
fall down at the end of measurement period. In contradiction to the precedent GGS1330
sensor, we observe a more right-tailed distribution. The outstanding high conductance
measurements starting on the 6/9/2016 are probably the reason of the right-skewed form
and the extreme values in the boxplot. In contradiction to the other sensors, we also ob-
serve measurements at the left side of the left whisker. They represent the measurements at
the end of the time series, which are smaller than all other measurements of the TGS2444
sensor.

Range The summary table represents a measurement from 0.0047 to 0.026 kOhm−1 for
the TGS2444 sensor. Furthermore, we see that an important majority of measurements
(75%) are beneath 0.0087 kOhm−1. The width of the box in the boxplot con�rms the
oscillating main values around 0.007 kOhm−1.
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3.2.7 Joint time evolution of the sensors

Collinearity of the sensors variables

The sensors are sensitive and non speci�c. Therefore, their measurements often increase
simultaneously for all sensors and inversely. Looking at their measurements, we see the
high dependence between the six sensors as shown in Figure 3.20. The correlation matrix
con�rms this dependence (see Figure 3.21).

Figure 3.20: Sensors measurements
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Figure 3.21: Correlation matrix
of the six sensors

Interaction of the sensors

Remember that the sensors are non speci�c instruments returning a conductance value1

and not the concentration of a particular chemical component. So, because of their low
sensitivity2 and non speci�city3, the signal is expected to be located in the combination
of several sensors. Therefore, we add the interactions up to the maximal order of all six
sensors to the explanatory variables (see Table 3.1).

Table 3.1: Table of sensor interactions

Order Number Example
1 C1

6 = 6 S2602

2 C2
6 = 15 S2602 · S2610

3 C3
6 = 20 S2602 · S2610 · S2611

4 C4
6 = 15 S2602 · S2610 · S2611 · S2620

5 C5
6 = 6 S2602 · S2610 · S2611 · S2620 · S1330

6 C6
6 = 1 S2602 · S2610 · S2611 · S2620 · S1330 · S2444

Total 63

1We converted the resistance measurements into the conductance of the sensors in the preprocessing
(Section 2.2.4).

2The intensity of the responses is not very high for any component.
3They react to a large range of chemical compounds.
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Naturally, the interactions of the sensors are also dependent on the sensors measure-
ments. Therefore, we perform a principal component analysis (PCA) on the interactions
of sensors.

Non reliable periods of measurements

On Figure 3.22, the sensors measurements are representing two time periods standing
out by higher values. The orange time period represents the measures from "2016-10-09
01:00:00 UTC" to "2016-10-11 13:00:00 UTC" and the green one from "2016-12-15 22:00:00
UTC" to "2016-12-20 14:00:00 UTC". These shifts are not reliable in terms of the real
measurements and are most likely a consequence of dirt present in the pipe of air intake.
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Figure 3.22: Shifts of the sensors

The next Figure 3.23 represents the individual factor map in terms of the �rst and
second principal components of the PCA. Every individual on this �gure represents a
moment in time. Dim.1 and Dim.2 are the �rst two principal components of the PCA,
which are linear combinations of the interactions. On this �gure, we remark that the
two speci�ed groups of observations have a di�erent temporary connection than the other
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individuals. Consequently, they in�uence strongly the principal components and thus also
the prediction model, whose explanatory variables are these principal components of the
sensors interactions.
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Figure 3.23: Individuals represented in function of the two principal components

Baseline

When we return to Figure 3.20, we observe that all the sensors present a baseline. We
take the TGS2620 sensor to illustrate more in detail this baseline (see Figure 3.24). The
presence of the baseline can be explained by the environmental sensibility of the sensors.
This in�uence factor causes deviations which are not conditional on concentrations. The
analysers in contrary do not report these deviations.
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Figure 3.24: Presence of baseline for the TGS2620 sensor

The next Figure 3.25 represents the individual factor map in terms of the �rst and
the second principal components after having removed the observations from "2016-10-09
01:00:00 UTC" to "2016-10-11 13:00:00 UTC" and from "2016-12-15 22:00:00 UTC" to
"2016-12-20 14:00:00 UTC".
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Figure 3.25: Individual factor map of the PCA

We see a certain structure in this representation. Again, we will go back to the repre-
sentation of the sensors to examine where this structure has its origin (see Figure 3.26). We
observe a "jump" for 3 of the six sensors (2620, 1330, 2444). These observations, signalised
in light blue, have been measured in the time period from "2016-09-06 13:46:18 UTC" to
"2016-09-23 09:28:36 UTC". The same colouration is used in the individual factor map
plot (see Figure 3.27). We conclude that the "shift" in the sensors values is the reason for
this special structure in the individual plot.
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Figure 3.26: Shift of the sensors
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Figure 3.27: Individual factor map of the PCA
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3.2.8 Data pretreatment

Exclusion of the non reliable measurements

Given that the shifted values are not representing real concentrations but rather the pres-
ence of an external event, we exclude these observations from the data set.

Baseline correction

By the aid of the baseline correction explained beneath, we want to avoid that the principal
component analysis is de�ned for the most part by the deviation of the sensors. We will
take the TGS2620 sensor as example, to show how the baseline correction works. The
conductance measurements of this sensor are represented in the following Figure 3.28.
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Figure 3.28: TGS2620 sensor measurements

We can observe the shifted period over the time series from the 2016-09-06 at 13:46:18
to the 2016-09-23 at 09:28:36. We will proceed a baseline correction, to avoid a too impor-
tant in�uence of this shift in our prediction later on.
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We employ the baseline function of the baseline package in R [13]. This function uses the
default method "IRLS", standing for "Iterative Restricted Least Squares". The description
of this method says, that it consists of an algorithm with primary smoothing and repeated
baseline suppressions and regressions with second derivative constraint. On Figure 3.29,
the red line represents the baseline for the example of the TGS2620 sensor. Above, we see
the original measurements of the sensor, underneath the correction of the same sensor by
the baseline is illustrated.
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Figure 3.29: TGS2620 sensor measurements before and after baseline correction

A disadvantage of the baseline correction is a limitation of the rows in the data set. If the
data set, that has to undergo the correction, has a too large number of rows, the baseline
correction can not take place and an error message appears in R. A manual research of the
limitation leads to the result that data sets with up to 45000 rows approximatively can be
corrected by the baseline algorithm. Beyond this, the error can occur and the correction
is not possible. If the limitation number of rows exceeds, the function returns a warning
message and the columns will not be corrected. In this study, we do not exceed this limit
because of the time reduction to half hour steps.
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Chapter 4

Graphical user interface

In this chapter, we present the graphical user interface created for a simple use of the pre-
processing functions described in Chapter 2, which can be applied to any dataset having a
similar format as the dataset in this study. The R script of the user interface is available
on the MatheO platform.

First, we have to remark that the interface is created in a Shiny application in R-
Studio. The R-package shiny is used for the creation of interactive interfaces, which has
to be installed before executing the application. The second required package is the li-
brary lubridate for the creation of the date-time objects. Once the necessary libraries are
installed, the entire script can be executed and the shiny interface appears in a new window.

On Figure 4.1, the �rst view after having executed the code is illustrated. The instruc-
tions for the user are written on the left side, the consequential results are displayed on
the right side. Furthermore, the instructions are in the same order as the functions in the
preprocessing.

We start to �ll in the questioned inputs and see the �rst data set. The �rst input
de�nes the time zone of our data (e.g. UTC), which is not enclosed in quotation marks as
in R. Then, we start with the preprocessing of the �rst data set. We insert the location
of the �les which have to be concatenated to one �le, like the sensors �les. Therefore, we
must use the forward slash (/) and we do not have to enclose the directory in quotation
marks, e.g. C:/Users/User/folder1/sensors_�les. Afterwards, the location to save the
concatenated data set is demanded with the extension .csv but also without quotation
marks, e.g. C:/Users/user/folder2/merged_data.csv. The last step in this part is to insert
the name of the column containing the date values, e.g. Date. The entries are validated
by clicking the "Ok"-button and the header of the data set appears on the right side as
shown in Figure 4.2.
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Figure 4.1: First view of the shiny application

Figure 4.2: Creation of the �rst data set
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The second step is dedicated to the elimination of useless data in the �rst data set.
Therefore, we choose the variables we want to keep in the data set by marking them, and
delete the mark for the useless variables. Anew, we click the "Ok"-button and a new data
set with the selected variables appears (see Figure 4.3).

Figure 4.3: Selected data set

The third step of the preprocessing of the sensors data is the parsing into date-time
objects. For it, we have to enter the name of the column containing the time values, e.g.
Heure. Then, we click the "Ok"-button and the new data set with date-time objects in
the �rst column is shown as seen in Figure 4.4.

Remember that the sensors measurements are resistance measurements, but we want
them to be transformed into conductance measurements. Therefore, we choose all variables
of the last data set that should be transformed into conductance measurements by marking
them on the left side. We validate our choice and the new data set is represented as
illustrated in Figure 4.5.
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Figure 4.4: Data set with date-time objects

Figure 4.5: Data with conductance values
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The last preprocessing step, which is applied only for the sensors data, is to add the
missing values with the corresponding date-time objects in the data set. This is done by
clicking on the "Ok"-button and the data set including NA values appears on the right
side of the interface (see Figure 4.6).

Figure 4.6: Data with missing values

Now, we pass to the preprocessing of the reference analysers data. By clicking on the
"Browse"-button, a new window opens and the data set to be read can be chosen on the
PC. When the upload of the data is complete, the data set is displayed as shown in Fig-
ure 4.7.

Then, the elimination of unused data is performed like for the �rst data set. We select
the variables we want to keep, validate our choice and the selected data set appears (see
Figure 4.8).
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Figure 4.7: Upload of the second data set

Figure 4.8: Elimination in the second data set
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For the creation of the date-time objects in the second data set, we have to insert the
name of the column containing the date values, e.g. Date. By clicking the "Ok"-button,
the new data set including date-time objects is represented like illustrated in Figure 4.9.

Figure 4.9: Date-time objects in the second data set

The next step is to merge the two data sets. Therefore, the preprocessing executes
�rst a linear interpolation on the data set with the higher time lag, then the approxi-
mated and the other unchanged data set are merged. So, we have to input the time lag
in minutes for the two data sets. It is also demanded to enter desired column names
which have to be separated by commas and without quotation marks. An example for our
data is to enter: time, A_CH4_ppm, A_H2S_µg.m3, A_NH3_µg.m3, A_BENZ_µg.m3,
A_TOLU_µg.m3, A_LIMO_µg.m3, S_2602_kOhm, S_2610_kOhm, S_2611_kOhm,
S_2620_kOhm,S_1330_kOhm, S_2444_kOhm. If, for any reason, we do not want to
name the columns di�erent, we type "original" and the original column names are re-
tained. Then, we click on the "Ok"-button to execute the interpolation and fusion (see
Figure 4.10).
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Figure 4.10: Interpolation and merge of the data sets

The last part of the preprocessing consists in the choice of a higher time lag and the
deletion of observations. Therefore, we insert the desired time lag in minutes and the start
and ending times of the time intervals we want to delete. These vectors must have the same
length, being separated by commas and all elements are of the format "year-month-day
hour:minute:second". They do not require quotation marks. An example could be 2016-
10-09 01:00:00,2016-10-27 00:00:00 as starting vector and 2016-10-11 13:00:00,2016-10-27
23:59:59 as ending vector. If we do not want to delete any observations, enter "no" in the
two cases. The resulting data set is shown on Figure 4.11.
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Figure 4.11: Time lag increase and deletion of observations

Now, the preprocessing is �nished and we have the possibility to save the �nal data
set and to save plots of the variables (see Figure 4.12). Therefore, we enter the save
location with forward slashes, without quotation marks and with the extension .csv, e.g.
C:/Users/User/folder/�nal_data.csv. By clicking on the "Save"-button, the data set is
saved on the speci�ed location on the PC. Finally, the user can choose a variable of the data
set to plot. By clicking the "Plot"-button, the time series with the selected measurements
appears on the right side. The "Download"-button enables to save this plot under PDF-
format by choosing the direction and the name of the plot in an opened window. Naturally,
another variable can be selected and illustrated before saving the plot.
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Figure 4.12: Plot and download of the time series

This interface is also useful for the preprocessing of the control parameters. The only
thing to mind is to not select any variable for the conductance transformation, because it
makes no sense to inverse a control parameter.

A second version of this application has been written for the case when a reference data
set is not available. Then, only the preprocessing of the sensors data is necessary. And
instead of changing the time lag and deleting the observation of the fusion, we execute
these functions on the �rst �nal data set.
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Chapter 5

Predictive model

In this chapter, we present the models created to predict the presence of di�erent chemical
compounds in the air. Therefore, an adjusted model is established for every analyser
separately. We �rst present the modelling approach we developed. A model is then �tted
for each pollutant separately. A diagnostic analysis of the performances of the model is
provided for each targeted pollutant. Several aspects will be discussed, like the robustness
and the performances of the models. Finally, we identify the contribution of every sensor
in the prediction of the chemical air components. The R script for the application of the
predictive models is available on the MatheO platform.

5.1 Statistical linear modelling

The main objective of this study is to �nd a prediction model that explains the presence
of chemical components in the air - as detected by the analysers - as a function of the
signals returned by the sensors. Remember that the signal is expected to be located in
the combination of several sensors (see Section 3.2.7). The �rst step is to perform a linear
model before passing to a more complex prediction model. Linear models are well known
very performing [11]. We examine the contributions of each sensor with the linear model.
This analysis is aimed to serve as a basis for a further study, in which more complex
modelling approaches could be implemented in order to get better quality predictions.

5.1.1 Response analysers variables

For each chemical component in the study, the measurements returned by the dedicated
analyser are used as proxies for the true concentrations of the component in the air. As a
reminder, ISSEP's analysers are certi�ed instruments. As a result, every analysers signal
serves as a response variable for a distinct model.
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Logarithm of analysers values By performing a MLR model, we state a multiplicative
error term in the prediction. To avoid this, we choose to work with the logarithm of the
analysers values in the subsequent prediction. The following Figure 5.1 represents the
measurements of the CH4 analyser on the left, and its transformation to the logarithm on
the right.
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Figure 5.1: Logarithmic transformation of the CH4 analysers measurements

Henceforth, the six response variables will be named as follows: ACH4
, AH2S

, ANH3
,

ABENZ, ATOLU, ALIMO.

5.1.2 Explanatory sensors variables

We want the sensors to predict the chemical components in the air. In Chapter 3, we
perform a data pretreatment for the further analysis. To handle the collinearity we execute
a principal component analysis on all interactions from order 1 to 6. After this, we continue
to work with the 63 principal components from this analysis instead of the precedent
interaction variables. We name this 63 principal components PC1,...,PC63.
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5.1.3 Time independence

The atmospheric state, and henceforth the concentration of pollutants in the air, evolves
continuously in time. This time dependency a�ects the true concentrations of the chemical
compounds in the air, and thus it a�ects the target values that are estimated by both,
the analysers and the sensors. Accounting for this time dependency between the target
values would suggest that we could improve the prediction of a concentration at time t+1
by knowing the (estimated) concentrations at times t, t-1, t-2... This is a perspective for
a further study.

In the present study, we do not focus on the time evolution of the concentrations of
air pollutants, but rather on the link between the measurements provided by the sensors
and the analysers. Therefore, we are concerned about the time independence of the mea-
surements errors a�ecting the devices. For this reason, we decided to restrict the model
calibration on data collected every 30 minutes. In this way, we can consider that there is no
"instrumental memory" between two successive measurements and that their correlation
is only related to the fact that the targeted value is similar. A perspective for a more
advanced further study could be the increase of the time frequency and the adaptation of
the model to account for the auto-correlation of the measurements.

5.1.4 Multiple linear regression

First, we tried out a multiple linear regression (MLR) for every analyser variable separately
by taking all the principal components as explanatory variables. Unfortunately, the error
terms do not follow a normal distribution for all analysers. All QQ-plots have approxima-
tively the same form as shown in Figure 5.2 and the Kolmogorov-Smirnov Test with all
p-values less than 2.2 · 10−16 also con�rms the non-normal distribution of the error terms.
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Figure 5.2: QQ-plot of the residuals for
the CH4 analyser

The hypotheses of normality and homoscedasticity of the residual terms not being
respected, the usual procedures used for the linear regression inference are not applicable.
The quantile regression model, making it possible to overcome normality assumptions and
homoscedasticity of the residuals to predict the median of concentrations on terms of
explanatory variables would probably provide an adequate setting for regression on these
data.

5.1.5 Creation of binary analysers variables

To concentrate only on the signals of the analysers measurements, we dichotomise the val-
ues of the response variables separately into signal and noise. Therefore, an individual
threshold for every analyser will be de�ned. Then, the value "signal" is associated to the
values exceeding the threshold, and "noise" to the values beneath.

Let's take the analyser ACH4
to show the dichotomisation in detail. The next �gure

Figure 5.3 illustrates the real concentration measurements of this analyser. The red hori-
zontal line represents the chosen threshold equal to 5 ppm for CH4. So all measurements
greater or equal to this threshold will de�ne a signal, those less than 5 ppm de�ne a noise.
We obtain a discrete binary variable containing signal or noise de�ned by the selected
threshold. For this example, the CH4 analyser with threshold equal to 5 ppm corresponds
to 493 signals and 5917 noise values.
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Figure 5.3: Measurements of ACH4

5.1.6 Linear discriminant analysis

We created binary response variables, so we are in case of a classi�cation problem. One aim
of the linear discriminant analysis (LDA) is to determine if the variables make it possible
to discriminate groups, here signal and noise. Then, the explanatory variables are called
discriminant. In this case, the second aim is to classify new observations in one group.

In general, we dispose of n observations explained by p explanatory variables. Suppose
that we have q classes, which are de�ned by the modalities of the response variables. So,
in the case of a binary response like in our study, the response variables de�ne 2 classes.
The linear discriminant analysis then, is divided in two steps. The �rst step consists in a
search of linear discriminant functions on a learning or training sample. These functions
are linear combinations of the p explanatory variables separating best possibly the classes.
Afterwards, the second step proceeds the classi�cation of new observations in the classes
given the explanatory variables of these observations.
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The choice of the linear combinations is determined by the minimisation of the variance
within the groups and the maximisation of the variance between the groups. With this
criterion, the di�erence between the classes is enforced and simultaneously the variation
range is delimited. Then, the next linear combination which is not correlated with the �rst
one and which discriminates the best the groups is chosen and so on.

Given thatX is the data set of n observations (rows) and p variables (columns). Suppose
that a de�nes a linear combination of the p centred explanatory variables and take an
individual i:

a(i) =

p∑
j=1

aj(xij − x̄j)

where x̄j de�nes the j-th coordinate of the center of gravity G of the individuals.

As a(i) is centred, the variance of a(i) is given by:

var(a) =
1

n

n∑
i=1

a2(i)

=
1

n

n∑
i=1

(

p∑
j=1

aj(xij − x̄j))2

=
1

n

n∑
i=1

p∑
j=1

p∑
j′=1

ajaj′(xij − x̄j)(xij′ − x̄j′)

=

p∑
j=1

p∑
j′=1

ajaj′cov(xj, xj′)

= a′Sa

The last but one equality is found by inversion of the sums and by the de�nition of the
covariance matrix. For the last equality, we pose S the covariance matrix of the p variables.

By the decomposition of König-Huygens, we have

S = W + B

where W represents the covariance within groups and B the covariance between groups.

Therefore, the variance of the linear combination a is decomposed into the sum of the
within variance and the between variance:

a′Sa = a′Wa + a′Ba. (1)
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Remember that we search a such that the variance within groups is minimal and the one

between the groups is maximal, thus we want to maximise the ratio
a′Ba

a′Wa
. To search the

maximum of this ratio, we search the stationary points of the Lagrangian L with ‖a‖ = 1
as constraint 1:

L(a, λ) =
a′Ba

a′Wa
− λ(a′a− 1)

L(a, λ) maximal⇔


∂L

∂a
= 0

∂L

∂λ
= 0

⇔
{

Ba = λWa
a′a = 1

⇔W−1Ba = λa

So we obtain that a is an eigenvector of W−1B associated to the greatest eigenvalue
value λ of the matrix W−1B . The next linear combination is chosen to be the eigenvector
of W−1B to the second greatest eigenvalue value λ of W−1B and so on.

Hypotheses Before discrimination into groups, it is usually suggested to test if the
explanatory variables are able to separate in two groups. Therefore, a test of mean com-
parison is adequate:

H0 : µ1 = µ2←→ H1 : µ1 6= µ2

If the null hypothesis is not rejected, it does not make much sense to continue the
analysis. We have to notice that a normal multivariate distribution of the explanatory
variables, that is the 63 principal components and their homoscedasticity, should be veri�ed
if we want to test for these hypotheses using a Hotelling statictics.

Discussion

We do not apply this test of mean comparison because of the non-multi normal distribution
of the explanatory variables, which is necessary to apply this test. To verify that the

1We can suppose that ‖a‖ = 1 ⇔ a′a = 1 because a continuous function reaches its maximum on a
compact.
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model discriminates well signals and noises, we perform a cross-validation and observe the
prediction capacity on validation sets.

5.1.7 Model selection

A LDA prediction model for a binary response variable signal/noise has several outputs:
a confusion matrix, sensitivity, speci�city, accuracy and the ROC curve. A confusion
matrix is represented on Table 5.1.

Table 5.1: De�nition of the confusion matrix

Reference
noise signal

Prediction
noise TN FN
signal FP TP

The confusion matrix contains the following information:

� TN : number of true negatives

� FN : number of false negatives

� FP : number of false positives

� TP : number of true positives

The sensitivity of a prediction is de�ned as the true positive rate equal to TP
FN+TP

, the

speci�city as the true negative rate equal to TN
TN+FP

. The accuracy gives the true prediction

rate which is TN+TP
TN+TP+FN+FP

. The ROC curve is a plot representing the sensitivity in terms
of 1-speci�city. The optimal curve would have the maximal area under the curve, which
represents the accuracy of the prediction equal to 1 [7].

In the LDA model, we proceed a model selection by the aid of the stepclass() R-
function of the klaR R-package [15]. This function selects by estimating a classi�cation
performance measure. In our study, we choose to select under the criterion "accuracy" with
an improvement of 0.001 in the forward direction. It means that a variable is added to the
prediction model if the accuracy increases by at least 0.001 when the model is enlarged.
If there is no more variable which increases the accuracy by at least 0.001, the algorithm
stops and the selection is �nished.
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5.1.8 Model diagnosis

Analysis of the LDA model In the model diagnosis for every analyser separately, we
discuss about the results of the LDA model over the complete data set. The evolution of
the accuracy is represented in terms of the model selection and the number of detected
events is analysed.

Comparison with the MLR model We execute a MLR model with the selected vari-
ables from the LDA model for an a additional comparison of the two models. We also
represent the evolution of the adjusted R squares in terms of the selected variables.

Cross-validation Afterwards, a cross-validation with random split is performed. In this
section, a model is produced twenty times by splitting randomly the data set into a training
and validation set (80% - 20% respectively). The principal component analysis is executed
on the training set before applying the LDA model and the selection. It is important to
remark that the principal components are reconstructed for every new training set. Then,
the minimum, mean and maximum of the sensitivities, speci�cities and also the adjusted
R squares of the selected models are interpreted. The twenty ROC curves are superposed
for a supplementary information.

Prediction for the time series When we split the data set according to the sequence
and not randomly, we interpret the ability of the prediction model for the near future.
However, for three of the six analysers, namely H2S, NH3 and LIMO, the variation range
decreases drastically in the time period from November to January. Therefore, a prediction
in the future for these analysers is not relevant because of the non-existence of signal in
the �nal 20% of the series.

In�uence of the control parameters in the prediction The residual terms of the
MLR model with the selected variables from the LDA model are represented in terms of
the control parameters to show their possible in�uence on the prediction model. Possible
reasons for false predictions can be concluded in this section.

Which interactions of sensors contribute to the prediction? Remember that the
main objective of this study is to �nd a prediction model that explains the presence of
chemical components in the air - as detected by the analysers - as a function of the signals
returned by the sensors. Therefore, we consider the LDA model over the complete data
set without separation in training and test set and we want to analyse which interactions
of sensors contribute in the predictions.
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5.2 Model diagnosis for the CH4 analyser

The threshold for methane signals has been chosen to 5 ppm, based on the values in this
study.

5.2.1 Fitting linear discriminant analysis model over the complete

data set

Selected principal components The selection in the LDA model results in twelve prin-
cipal components, which are represented on Figure 5.4 with the evolution of the accuracy.
We see that with one principal component, an accuracy of 0.77 is already reached. The
addition of the next variables increases the accuracy a bit, but then it remains nearly stable
around 0.87.
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Figure 5.4: Accuracy evolution in the
model selection

Prediction of signals and pollution events The predicted signals are represented in
Figure 5.5 on the real CH4 analyser's time series. The confusion matrix of this predictions
is shown in Table 5.2.
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Figure 5.5: CH4 prediction with LDA model

Table 5.2: Confusion matrix of the LDA
prediction for the complete data set

Reference
noise signal

Prediction
noise 5397 248
signal 105 229

We see that 248 out of 477 signals and only 105 out of 5502 noise values have been
wrong predicted. This results in a sensitivity of 0.48, a speci�city of around 0.98, a false
positive rate of 0.019 and a false negative rate of 0.52. The false negative rate is relatively
high. Nevertheless, when we go back to Figure 5.5, we observe that all the important
peaks are nearly always detected at least once. The model does not detect the entirety of
exact signals but the pollution events are most of time captured. We count the number of
detected and non detected events (Table 5.3) and the number of true and false predicted
events (Table 5.4).
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Table 5.3: Detection of pollution events

Detected Non detected Total
Pollution events 64 17 81

Table 5.4: Predicted pollution events

True False Total
Predicted events 63 18 81

The 17 non detected events corresponds to CH4 concentrations beneath 15 ppm and
among the 17, there are 11 events with weak concentrations under 10 ppm. Concerning
the false predicted events, 13 out of 18 false predicted events occur at moments, when the
CH4 analyser did not work. The prediction takes place on the interpolated values, so it is
not excluded that a pollution event actually occurred at that time.

False positive and negative predictions In Figure 5.6 the false positive and negative
predictions are represented in red and green respectively. We see as before in the confusion
matrix, that there are much more false negative signals than false positive ones. This e�ect
underlies also the high number of noise values in the data set and the more weak signals
in the CH4 values. We can also observe that the most false positive predictions are more
concentrated near to the threshold. The �gure concerning the false predictions con�rms
the high false negative rate. Nevertheless, we see that the important peaks in the CH4

curve are nearly always detected at least once. In the high CH4 concentrations there are
always right positive predictions (in black), like already observed in the precedent tables.
Some gaps are visible on this �gure in October, November and December and originate
from the missing values in the sensors data. Either the observations are missing because
the sensors did not work or because of the deletion when odour bags were connected.

ROC curve The ROC curve in Figure 5.7 con�rms the results already discussed about
the confusion matrix. Although the true positive rate (sensitivity) is not so strong, the
curve behaves not so bad. Remember that the optimal curve would have the maximal area
under the curve, which represents the accuracy of the prediction equal to 1. This would be
the case when the sensitivity equals to 1 and the speci�city to 1. For the CH4 prediction,
the area under the curve equals 0.88.
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Figure 5.6: False predictions in the LDA model
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5.2.2 Comparison of the LDA and MLR model predictions

In the following Figure 5.8, the predictions of the LDA and MLR model are superposed.
We observe that the LDA and MLR model provide very similar predictions. When a signal
has not been detected by the LDA model, the MLR predictions are underestimating the
true concentration as well.

The evolution of the adjusted R squared is illustrated in Figure 5.9. We observe an
increase from circa 0.1 up to 0.39 of the adjusted R squared.
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Figure 5.8: LDA and MLR predictions for the CH4 analyser
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of the selected variables

5.2.3 Cross-validation with random split

By cross-validation, we examine how robust the model is. Therefore, we extract the sen-
sitivities and speci�cities of the LDA model, as well as the adjusted R squares from the
MLR model over the twenty executions shown in Table 5.5.

Table 5.5: Range and mean over the sensitivities,
speci�cities and adjusted R squares

Min Mean Max
Sensitivity 0.4 0.45 0.52
Speci�city 0.97 0.98 0.99
Adjusted R2 0.36 0.38 0.42

The sensitivity presents its values between 0.4 and 0.52. The second rate in comparison
remains even more stable around 0.98 by a factor of 0.01. The mean of the adjusted R
squared equals 0.38. The table shows a good stability in terms of these values.

Figure 5.10 represents the twenty ROC curves in the cross-validation of the LDA model.
These curves present the same trend and con�rm the good stability of true positive and
true negative rate (sensitivity and speci�city respectively).
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Figure 5.10: ROC curves in the CH4 prediction

5.2.4 Prediction with split of the time series

On the following Figure 5.11 the prediction of the training set by the LDA model in blue,
the one of the test set in green. The prediction of the MLR model with the selected
variables from the LDA model is also represented. These prediction values are shown in
pink, the test set in orange.
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Observations of the predictions The following observations are indicated by the re-
spective numbers in Figure 5.11:

1. The signal predictions of the MLR method have too small signals when there are
true signals in the training and test set.

2. However, when the analysers measurements are beneath the threshold, the MLR
predictions are often higher than the reference values.

3. For the LDA method, there are some predicted false signals, mainly at the beginning
of November, but no false signals in the test set.

4. When we look on the prediction of the test set, one smaller peak of the CH4 has not
been detected by neither of the two methods.

5.2.5 Discussion of residuals and false predictions

In terms of the response variable

The following Figure 5.12 represents the residuals in terms of the logarithmic CH4 values.
The red coloured points correspond to false negative predictions, the green ones to false
positive predictions provided by the LDA model. Remember that the residuals are de�ned
as the di�erence between the observed and the predicted values. We see that most of the
false negative observations (red) have a positive residual term. Thus, the prediction is
smaller than the observation and the real signal is predicted as noise. This is also enforced
by the unbalance in the number of signal and noise observations. For the false positive
observations (green), the contrary takes place. The predicted values are higher than the
real measurements and give false signal predictions.

In terms of the control parameters

Remember that the sensors are very sensitive instruments which are depending on humidity,
temperature and so on. Therefore, it is possible that the control parameters contribute to
the high number of false negative predictions in the LDA model. We represent the residuals
in terms of these control parameters in Figure 5.13.
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Figure 5.13: Residuals of the MLR model in terms of the control parameters
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We observe a dependence between control parameter and residuals for the relative
humidity and the wind velocity. When the relative humidity increases, the residual range
becomes more important. The contrary e�ect is the case for the wind velocity, when the
velocity increases, the residual error gets smaller. So high humidity and little velocity
measurements lead to high residuals, and therefore also to bad predictions. When the
humidity has small values (40%-60%), there are nearly no false predictions, as well as for
high velocity values. An explication of this e�ect could be that under these conditions (high
humidity and little velocity), the concentration of methane presents its highest values. But
the high number of noise values truncates the predictions. Concerning the other control
parameters, the false negatives and positives appear under the same conditions.

5.2.6 Which interactions of sensors contribute to the prediction?

Figure 5.14 represents the contributions of every interaction of sensors in the selected prin-
cipal components in the LDA model. The size of the circles represents the contribution of
the interactions as percentages. The colour of the circles enforces this proportion. A very
light big circle stands for an important contribution, a very dark small circle for a weak
contribution in the concerned principal component. The �rst selected principal component
is Dim.8, which shows up one very important contribution of 30%: the sensor TGS2602.
We remark that in the contributions of this principal component, the interactions con-
taining TGS2610 · TGS2611 present often slightly larger circles. In the second selected
variable Dim.2, we remark the same. Moreover, many of the interactions in higher orders
contribute to the prediction which supports our hypothesis that there is information in
a combination of sensor signals. Dim.6 provides two bigger circles for the TGS2610 and
TGS2611 sensors (16% and 19% respectively). The TGS2620 sensor reappear in Dim.7
with a contribution of 38%. The sensors TGS2620 and TGS2444 are present in the last
two selected principal components with respectively 23% and 16%.

It was expected that the TGS2611 sensor contributes strongly on the prediction of methane,
because of its announced selectivity. Indeed, this sensor shows up in the �rst three selected
components, but it is often accompanied by the sensor TGS2610. The TGS2602 sensor
however represents also an important contribution in even two selected variables. This
could be explained by the higher correlation between the methane and hydrogen sulphide
concentrations (see Figure 5.15).
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Figure 5.15: Correlation matrix of the analysers concentrations

5.3 Model diagnosis for the H2S analyser

5.3.1 Fitting linear discriminant analysis model over the complete

data set

For the H2S analyser we chose the threshold of 20 µg/m3, which is the standard olfactory
threshold for hydrogen sulphide [14].

Selected principal components The model selection of the LDA model chooses 11
out of the 63 principal components. The evolution of the accuracy during the selection
is represented in Figure 5.16. As for the CH4 analyser, the accuracy starts already high
(around 0.87) and increases a bit for the further variables until reaching its maximum of
0.895.

Prediction of signals and pollution events Figure 5.17 shows the LDA prediction
on the real CH4 analyser's curve. The confusion matrix of these predictions is shown in
Table 5.6.
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Figure 5.16: Accuracy evolution in the
model selection
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Figure 5.17: H2S prediction with LDA model
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Table 5.6: Confusion matrix of the LDA
prediction for the complete data set

Reference
noise signal

Prediction
noise 5680 208
signal 38 53

The confusion matrix shows that 208 out of 261 signals and only 38 out of 5718 noise
values have been wrong predicted. This results in a weak sensitivity of 0.20, a speci�city
of around 0.9, a false positive rate of 0.006 and a false negative rate of 0.797. The false
negative rate is very high. Nevertheless, when we go back to Figure 5.17, we observe
that nearly all the important peaks are detected at least once. Some smaller signals have
not been detected, for example at the end of January. We count the number of detected
and non detected events (Table 5.7) and the number of true and false predicted events
(Table 5.8).

Table 5.7: Detection of pollution events

Detected Non detected Total
Pollution events 37 53 90

Table 5.8: Predicted pollution events

True False Total
Predicted events 36 11 47

Among the 53 non detected events, there are 24 beneath 30 ppm, so very near to the
threshold of 20 ppm. Concerning the false predicted events, 3 out of 11 false predicted
events occur at moments, when the H2S analyser not worked. The prediction takes place
on the interpolated values, so it is not excluded that a pollution event actually occurred
at that time.

False positive and negative predictions On Figure 5.18, the false signal and noise
predictions are represented in green and red respectively. This �gure con�rms the results of
the confusion matrix. There are much more false negative signals than false positive ones.
Here, the number of noise values is even greater than for the CH4 analyser. Moreover,
the signals of H2S analyser decrease strongly after November for an unknown reason. But
we can see that the important peaks of H2S are almost all always detected at least once.
Thus, when counting the exact predicted signals, the result is very bad. However, in terms
of pollution events the important H2S signals are very often detected. As for the CH4

analyser, the gaps in this �gure are due to missing sensors values due to a non functioning
or the connection of an odour bag.
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Figure 5.18: False predictions in the LDA model

ROC Curve Figure 5.7 represents the ROC curve for the hydrogen sulphide concen-
trations. Naturally, the results already discussed before are con�rmed in this �gure. The
curve increases more slowly in terms of the true positive rate (sensitivity), but the false
positive rate is small. For the H2S prediction, the area under the curve equals 0.81.
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Figure 5.19: ROC curve of the LDA model
over the complete data set

5.3.2 Comparison of the LDA and MLR model predictions

The predictions of the LDA and MLR model are illustrated with the real H2S measure-
ments in Figure 5.20. We can observe that the LDA and MLR model provide very similar
predictions. When a signal has not been detected by the LDA model, the MLR predictions
are underestimating the true concentration as well.

The evolution of the adjusted R squared is illustrated in Figure 5.21. We observe an
increase from circa 0.06 up to 0.15 of the adjusted R squared, which is smaller than the
ones for the CH4 predictions.
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Figure 5.20: LDA and MLR predictions for the H2S analyser
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Figure 5.21: Adjusted R squares in terms of
the selected variables
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5.3.3 Cross-validation with random split

Table 5.9 represents the minimum, mean and maximum of the sensitivities, speci�cities
and adjusted R squares from the cross-validation with 20 executions.

Table 5.9: Range and mean over the sensitivities,
speci�cities and adjusted R squared

Min Mean Max
Sensitivity 0.12 0.2 0.31
Speci�city 0.987 0.991 0.996
Adjusted R2 0.104 0.151 0.179

The sensitivity presents its values between 0.12 and 0.31. The speci�city is very high
and stable. The mean of the adjusted R squared equals 0.151 and remains also stable.

Figure 5.10 represents the twenty ROC curves in the cross-validation of the LDA model.
These curves present the same trend and con�rm the good stability of true positive and
true negative rate (sensitivity and speci�city respectively).
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Figure 5.22: ROC curves in the H2S prediction
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5.3.4 Prediction with split of the time series

Because of the decrease in H2S concentrations for the time period from November to
January, it makes no sense to split the time series in 80% and 20% to perform a prediction.

5.3.5 Discussion of residuals and false predictions

In terms of the response variable

The following Figure 5.23 represents the residuals in terms of the logarithmic H2S values.
The red coloured points correspond to false negative predictions, the green ones to false
positive predictions provided by the LDA model. We see that all false negative observations
(red) have a positive residual term. Thus, the prediction is smaller than the observation
and the real signal is predicted as noise. This is also enforced by the strong unbalance in
the number of signal and noise observations. For the false positive observations (green), the
contrary takes place. Most of the predicted values are higher than the real measurements
and give false signal predictions.

In terms of the control parameters

We observe a dependence between control parameter and residuals for the relative humidity
and the wind velocity as for the CH4 analyser before. A high humidity and little velocity
measurements lead to high residuals, thus to bad predictions. When the humidity has
small values (40%-60%), there are nearly no false predictions, as well as for high velocity
values. An explication of this e�ect could be that under these conditions (high humidity
and little velocity), the concentration of hydrogen sulphide presents its highest values. But
the high number of noise values truncates the predictions. Concerning the other control
parameters, the false negatives and positives appear under the same conditions.
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Figure 5.23: Residuals of the MLR model
in terms of log(A_H2S)
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Figure 5.24: Residuals of the MLR model in terms of the control parameters
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5.3.6 Which interactions of sensors contribute to the prediction?

The contributions of every interaction of sensors in the selected principal components in
the LDA model are represented in Figure 5.25. Remember that the size and the lightness
of the circles are proportional to the contribution percentages. The �rst selected principal
component is Dim.2 showing up the most important contribution of 11% for the interac-
tion TGS2610 · TGS2611. The two sensors individually show up a higher contribution as
well. In higher orders of interactions, the contributions containing TGS2610 · TGS2611
are always more present, combined either with TGS2620 or TGS1330. The second variable
Dim.10 displays a contribution of 13% for TGS2602 · TGS2620. The interaction TGS2602
· TGS2610 appears with a contribution of 17.55% in Dim.5. Finally, the greatest con-
tribution (around 20%) is shown for the last selected variable Dim.40 for the interaction
TGS2611 · TGS2444. The presence of important contributions for interactions in higher
orders a�rms our hypothesis that there is information in a combination of sensor signals.
We observe that even the interaction with maximum order presents an important contri-
bution to the prediction in Dim.47.

The sensor TGS2602 announces a selectivity for hydrogen sulphide among others. In the
contributions, we observe interactions with this sensor, but the sensor alone seems to be
not enough to predict H2S. Furthermore, it is naturally that the TGS2611 sensor appears
often in the important contributions of the H2S prediction. The announced selectivity
of this sensor is methane, and methane and hydrogen sulphide occur often together (like
shown in the correlation matrix (see Figure 5.15).
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Figure 5.25: Contributions of interactions of sensors in LDA prediction [%]
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5.4 Model diagnosis for the NH3 analyser

The threshold of 25 µg/m3 is chosen for the prediction model of ammoniac regarding the
range of signals in this data set.

5.4.1 Fitting linear discriminant analysis model over the complete

data set

Selected principal components For the ammoniac prediction, 17 variables have been
chosen in the model selection. Figure 5.26 represents the evolution of the accuracy when
the 17 principal components are added one by one. The addition of the �rst variable
Dim.1 returns an accuracy equal to 0.73. Then, the accuracy increases by 0.1 for each new
variable and becomes stable for the last 7 components around 0.81.
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Figure 5.26: Accuracy evolution in the
model selection

Prediction of signals and pollution events The LDA prediction with the real NH3

measurements is illustrated on Figure 5.27. The confusion matrix of these predictions is
shown in Table 5.6.
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Figure 5.27: NH3 prediction with LDA model

Table 5.10: Confusion matrix of the LDA prediction for the complete data set

Reference
noise signal

Prediction
noise 5353 343
signal 98 185

We observe that 98 out of 5451 noise and 343 out of 528 signal values have been false
predicted. In conclusion, the sensitivity equals 0.35, the speci�city equals 0.98, the false
positive rate has a value of 0.02 and the false negative rate a value of 0.65. The sensitivity
is higher than the one for the H2S prediction, but there are 6 variables more selected in
this model. Although the sensitivity is not so high, we see that nearly all strong peaks
in Figure 5.27 detected at least once. Some smaller signals have not been detected and
between December and January, three false positive signals occur. We count the number of
detected and non detected events (Table 5.11) and the number of true and false predicted
events (Table 5.12) for a better comprehension of the prediction.
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Table 5.11: Detection of pollution events

Detected Non detected Total
Pollution events 28 17 45

Table 5.12: Predicted pollution events

True False Total
Predicted events 29 13 42

Among the 17 non detected events, there are 7 beneath 35 µg
m3 . There is only one out

of the 13 false predicted pollution events occurring when the NH3 analyser did not work
and values are taken from the interpolation. It is possible, that an event occurred at that
time.

By taking a zoom on the NH3 predictions (see Figure 5.28) we observe daily e�ects:
every day, an important peak is shown. This phenomena can be observed almost every-
where from September up to the middle of October. Then, the e�ect disappears because
of the non existence of high signals. The decrease in ammoniac from the end of October
has no known reason.
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Figure 5.28: Zoom on the NH3 analyser's signal
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False positive and negative predictions In Figure 5.29, the false positive and negative
predictions are represented in red and green respectively. We can see, as before in the
confusion matrix, that there are much more false negative signals than false positive ones.
This e�ect underlies also the high number of noise values among the NH3 values. We also
observe that the �rst to groups of peaks are well detected at least once, and afterwards the
prediction of signals gets weaker. The prediction is more di�cult because there are much
more noise values, and no more signals from October up to the end. The missing sensor
values present the gaps here as well.
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Figure 5.29: False predictions in the LDA model

ROC Curve Figure 5.30 illustrates the ROC curve for the NH3 prediction. The exam-
ination of this curve con�rms the results already developed before. The area under the
ROC curve is equal to 0.88, which is a very good result.
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Figure 5.30: ROC curve of the LDA model
over the complete data set

5.4.2 Comparison of the LDA and MLR model predictions

In the following Figure 5.31, the predictions of the LDA and MLR model are superposed.
We observe that the LDA and MLR model provide very similar predictions. When a signal
has not been detected by the LDA model, the MLR predictions are underestimating the
true concentration as well (1). Furthermore, when the LDA model predicts a false positive,
the MLR prediction was too high likewise (2). The two events are illustrated in Figure 5.33.

The evolution of the adjusted R squared is illustrated in Figure 5.32. We con observe
an increase from circa 0.07 up to 0.3 of the adjusted R squares.
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Figure 5.31: LDA and MLR predictions for the NH3 analyser
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Figure 5.33: Zoom of the LDA and MLR predictions for the NH3 analyser

5.4.3 Cross-validation with random split

The minimum, mean and maximum of the sensitivities, speci�cities and adjusted R squares
from the cross-validation with 20 executions are represented in Table 5.13.

Table 5.13: Range and mean over the sensitivities,
speci�cities and adjusted R squared

Min Mean Max
Sensitivity 0.27 0.34 0.42
Speci�city 0.97 0.98 0.99
Adjusted R2 0.28 0.34 0.38

The sensitivity is slightly unstable between 0.27 and 0.42. The speci�city is as before
very high and stable. The adjusted R squared is almost stable around the mean of 0.34.

Figure 5.34 represents the twenty ROC curves in the cross-validation of the LDA model.
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Figure 5.34: ROC curves in the NH3 prediction

5.4.4 Prediction with split of the time series

Because of the decrease in NH3 concentrations for the time period from November to
January, it makes no sense to split the time series in 80% and 20% to perform a prediction.

5.4.5 Discussion of residuals and false predictions

In terms of the response variable

The following Figure 5.35 represents the residuals in terms of the logarithmic NH3 values.
The red coloured points correspond to false negative predictions, the green ones to false
positive predictions provided by the LDA model. We see that all false negative observations
(red) have a positive residual term. Thus, the prediction is smaller than the observation
and the real signal is predicted as noise. This is also enforced by the unbalance in the
number of signal and noise observations. For the false positive observations (green), the
contrary takes place. The predicted values are higher than the real measurements and give
false signal predictions.
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In terms of the control parameters

Figure 5.36 represents the residuals of the MLR model after variable selection in terms of
the control parameters. Unlike for the �rst two analysers, the prediction is not visually
a�ected by humidity and only slightly by the wind velocity. And concerning all the other
parameters of control, the false predictions are present under the same conditions as well.
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Figure 5.35: Residuals of the MLR model
in terms of log(A_NH3)
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Figure 5.36: Residuals of the MLR model in terms of the control parameters

5.4.6 Which interactions of sensors contribute to the prediction?

Figure 5.37 illustrates the contributions of every sensors interaction with a circle. A big
and light circle indicates an important contribution to the prediction of NH3. Concerning
the �rst selected variable, namely Dim.1, there is no standing out interaction. In the sec-
ond selected variable Dim.16 however, the highest contribution of around 26% occurs for
the TGS2444 sensor. This principal components presents also a higher contribution of 15%
for the TGS2620 sensor. The third selected variable Dim.6. shows up higher contributions
for the sensors TGS2610 and TGS2611, but also for interactions containing the TGS2444
sensor. Dim.37 presents the interaction TGS2602 · TGS2620 · TGS2444 with 12%. After-
wards, Dim.17 contains a contribution of 23.1 % for the sensor TGS2620. In Dim.19, the
interaction TGS2602 · TGS2444 occurs with 15.87%. The appearance of important con-
tributions for interactions in higher orders con�rms our hypothesis of information present
in a combination of sensor signals.

Regarding the announced compounds selectivities of the sensors, the sensor TGS2444 is
expected to detect ammoniac as well as the TGS2602. The TGS2444 sensor is very present,
already in the second selected component with the highest contribution. The TGS2602
sensor appears also in higher contributions but often in combination with other sensors.
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Figure 5.37: Contributions of interactions of sensors in LDA prediction [%]
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5.5 Model diagnosis for the BENZ analyser

For the BENZ analyser, we select a threshold equal to 1 µg/m3. It has to be remarked
that the intoxication limit is equal to 0 µg/m3, but the maximal concentrations has to be
beneath 5 µg/m3 [14].

5.5.1 Fitting linear discriminant analysis model over the complete

data set

The model selection of the LDA model chooses 20 out of the 63 principal components. The
evolution of the accuracy during the selection is represented in Figure 5.38. The accuracy
starts lower compared to the three last model selections with a value of 0.55. Then, it
increases constantly by steps for around 0.002 and reaches a �nal value of 0.6. It seems to
be more di�cult to predict the benzene concentration because more variables are selected
compared to the precedent predictions and the accuracy remains smaller as well.

Prediction of signals and pollution events Figure 5.39 shows the LDA prediction
on the real BENZ analyser's curve. The confusion matrix of these predictions is shown in
Table 5.14. We see on this �gure the benzene curve in levels, so the measurements reach
the limit of detection of the BENZ analyser.
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Figure 5.39: BENZ prediction with LDA model

Table 5.14: Confusion matrix of the LDA
prediction for the complete data set

Reference
noise signal

Prediction
noise 5140 715
signal 60 64

Prediction of signals and pollution events The confusion matrix shows that 715
out of 779 signals and only 60 out of 5200 noise values have been wrong predicted. This
results in a very small sensitivity of 0.08, a speci�city of around 0.99, a false positive
rate of 0.01 and a false negative rate of 0.92. The false negative rate is extremely high.
When we go back to Figure 5.39, we observe that many important peaks are detected
at least once. The smaller signals with concentrations around 1.5 µg/m3 are not always
detected. Moreover, we observe false positives in September and October. In terms of
pollution events, (Table 5.15) shows the number of detected and non detected events and
(Table 5.16) the number of true and false predicted events.
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Table 5.15: Detection of pollution events

Detected Non detected Total
Pollution events 26 38 64

Table 5.16: Predicted pollution events

True False Total
Predicted events 21 20 41

Among the 38 non detected events, there are 14 beneath 1.5 µg/m3, so very near to the
threshold of 1 µg/m3. Concerning the false predicted events, 2 out of 20 false predicted
events occur at moments, when the BENZ analyser did not work. The prediction takes
place on the interpolated values, so it is not excluded that a pollution event actually
occurred at that time.

False positive and negative predictions On Figure 5.40, the false signal and noise
predictions are represented in green and red respectively. This �gure con�rms the results
of the confusion matrix. There are detected signals, but not in a high amount. In contrary,
the prediction of noise values shows only a minimal number of false positives. The unbal-
ance in terms of signal and noise enforces this result. The visible gaps are present because
of the missing values in the sensors data. Either the sensors did not work or odour bags
were connected at this moments.

ROC Curve Figure 5.41 represents the ROC curve for the benzene concentrations. Nat-
urally, the results already discussed before are con�rmed in this �gure. The curve increases
more slowly in terms of the true positive rate (sensitivity), but the false positive rate is
small. We observe that the curve approximates slightly the diagonal and therefore, the
area under the curve is a bit less than for the other analysers, namely 0.76.
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5.5.2 Comparison of the LDA and MLR model predictions

The predictions of the LDA and MLR model are illustrated with the real BENZ concen-
trations in Figure 5.42. We observe that the LDA and MLR model provide very similar
predictions. When the LDA model predicts a false positive, the MLR prediction was too
high likewise. Moreover, signals that have not been detected by the LDA model are un-
derestimated by the MLR model as well.

The evolution of the adjusted R squared is illustrated in Figure 5.43. We observe an
increase from circa 0.05 up to 0.24.
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the selected variables

5.5.3 Cross-validation with random split

Table 5.17 represents the minimum, mean and maximum of the sensitivities, speci�cities
and adjusted R squares from the cross-validation with 20 executions.

Table 5.17: Range and mean over the sensitivities,
speci�cities and adjusted R squares

Min Mean Max
Sensitivity 0.03 0.08 0.11
Speci�city 0.975 0.987 0.993
Adjusted R2 0.21 0.25 0.29

The sensitivity presents its very small but stable values between 0.03 and 0.11. The
speci�city is very high and also stable with a mean of 0.987. The adjusted R squared goes
from 0.21 to 0.29 and remains also stable.

Figure 5.10 represents the twenty ROC curves in the cross-validation of the LDA model.
These curves present the same trend and con�rm the strong stability of sensitivity and
speci�city.
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5.5.4 Prediction with split of the time series

On the following Figure 5.45 , the prediction of the training set by the LDA model in
blue, the one of the test set in green. The prediction of the MLR model with the selected
variables from the LDA model is also represented. These prediction values are shown in
pink, the test set in orange.
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Observations of the predictions The following observations are indicated by the re-
spective numbers in Figure 5.45:

1. We observe false signals of the LDA prediction in the training and test set. Among
the 6 false predicted events, one is occurring at a moment when the BENZ analyser
did not work. It is possible that the sensors have detected a pollution event while
the analyser did not work.

2. There are some signals that are not detected in the validation set.

3. The signal predictions of the MLR method have to small signals when there are true
signals in the training and test set.

4. In contradiction, when the analysers measurements are beneath the threshold, the
MLR predictions are often higher than the reference values.

5.5.5 Discussion of residuals and false predictions

In terms of the response variable

The following Figure 5.46 represents the residuals in terms of the logarithmic benzene
values. The red coloured points correspond to false negative predictions, the green ones
to false positive predictions provided by the LDA model. We see that all false negative
observations (red) have a positive residual term. Thus, the prediction is smaller than
the observation and the real signal is predicted as noise. This is also enforced by the
strong unbalance in the number of signal and noise observations. For the false positive
observations (green), the contrary takes place. Most of the predicted values are higher
than the real measurements and give false signal predictions. Moreover, the high number
of false negatives and the small number of false positives is visible in this �gure.

In terms of the control parameters

We observe a weak dependence between control parameter and residuals for the relative
humidity and the wind velocity. A high humidity and little velocity measurements lead
to high residuals, thus to bad predictions. This dependence remains however very slight
and the other control parameters have not at all a dependence on the false predictions of
benzene.
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Figure 5.47: Residuals of the MLR model in terms of the control parameters
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5.5.6 Which interactions of sensors contribute to the prediction?

The contributions of every interaction of sensors in the selected principal components in
the LDA model are represented in Figure 5.48. The size and the lightness of the circles
are proportional to the contribution percentages. The �rst selected principal component is
Dim.8 showing up the most important contribution of over 30% for the sensor TGS2602.
Moreover, the interactions in higher orders containing the sensor TGS2602 are also more
contributing than those without this sensor. This can be observed in the second selected
variable too. Thus, our hypothesis that there is information in a combination of sensors
signals is con�rmed. The principal component Dim.16 presents a contribution of 26% for
the sensor TGS2444 and one of 15% for the sensor TGS2620. The greatest contribution
with a value of 37.9% is present in the principal component Dim.7 and corresponds also to
the sensor TGS2602.

The sensor TGS2602, which is the most present in the contribution �gure, announces a
selectivity for VOC, hydrogen sulphide and ammoniac and the sensor TGS2444 for ammo-
niac. These are compounds occurring during the emission of waste and compost.

The benzene compound arises typically from tra�c. It is possible that trucks trans-
porting waste implicate that the benzene could be accompanied by VOC, H2S and NH3.
Another reason for the accompanied compounds of benzene could be the location of the
compost and waste between the highway and the measuring station [14].
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Figure 5.48: Contributions of interactions of sensors in LDA prediction [%]

133



5.6 Model diagnosis for the TOLU analyser

The threshold of 0.8 µg/m3 is chosen for the prediction model of toluene regarding the
range of its signals in this data set. With this threshold, we have 720 signal and 5289 noise
values.

5.6.1 Fitting linear discriminant analysis model over the complete

data set

For the toluene prediction, 17 variables have been chosen in the model selection. Figure 5.49
represents the evolution of the accuracy when the 17 principal components are added one
by one. The addition of the �rst variable Dim.8 returns an accuracy equal to 0.59. Then,
the accuracy increases up to 0.63 very slowly.
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Figure 5.49: Accuracy evolution in the
model selection

Selected principal components

Prediction of signals and pollution events The LDA prediction with the real TOLU
measurements is illustrated on Figure 5.50. The confusion matrix of these predictions is
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shown in Table 5.18. As for the BENZ analyser, we observe that the limit of detection for
the TOLU analyser is reached.
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Figure 5.50: TOLU prediction with LDA model

Table 5.18: Confusion matrix of the LDA
prediction for the complete data set

Reference
noise signal

Prediction
noise 5177 648
signal 82 72

We observe that 82 out of 5177 noise and 72 out of 648 signal values have been false
predicted. In conclusion, the sensitivity equals 0.1, the speci�city equals 0.98, the false
positive rate has a value of 0.02 and the false negative rate a value of 0.9. The sensitivity
is very small and the speci�city extremely high. Going back to Figure 5.50 we observe that
several higher signals are nevertheless detected at least once, but many smaller ones are
not detected. We count the number of detected and non detected events (Table 5.19) and
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the number of true and false predicted events (Table 5.20) for a better comprehension of
the prediction.

Table 5.19: Detection of pollution events

Detected Non detected Total
Pollution events 28 56 84

Table 5.20: Predicted pollution events

True False Total
Predicted events 27 24 51

Among the 56 non detected events, there are 35 beneath 1 µg
m3 . Moreover, there are 2

out of the 24 false predicted pollution events occurring when the TOLU analyser did not
work and values are taken from the interpolation. It is possible, that an event occurred at
that time.

False positive and negative predictions In Figure 5.51, the false positive and negative
predictions are represented in red and green respectively. In each of the higher peaks remain
black points. Thus, every pollution event is detected at least once. Moreover, there are
only a few false positive predictions. The gaps, most visible at the end of November and
in December, are due to missing sensors values by the same reasons: they did not work or
odour bags were connected.

ROC Curve Figure 5.52 illustrates the ROC curve for the toluene prediction. The
examination of this curve con�rms the results already developed before. The area under
the ROC curve is equal to 0.77. The curve behaves well because of the extremely high
speci�city.
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Figure 5.52: ROC curve of the LDA model
over the complete data set
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5.6.2 Comparison of the LDA and MLR model predictions

In the following Figure 5.53, the predictions of the LDA and MLR model are superposed.
We observe that the LDA and MLR model provide very similar predictions. When a signal
has not been detected by the LDA model, the MLR predictions are underestimating the
true concentration as well. Furthermore, when the LDA model predicts a false positive,
the MLR prediction was too high likewise.

The evolution of the adjusted R squared is illustrated in Figure 5.54. We can observe
an increase from circa 0.09 up to 0.21.
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Figure 5.53: LDA and MLR predictions for the TOLU analyser
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Figure 5.54: Adjusted R squares in terms of
the selected variables

5.6.3 Cross-validation with random split

The minimum, mean and maximum of the sensitivities, speci�cities and adjusted R squares
from the cross-validation with 20 executions are represented in Table 5.21.

Table 5.21: Range and mean over the sensitivities,
speci�cities and adjusted R squares

Min Mean Max
Sensitivity 0.03 0.09 0.15
Speci�city 0.97 0.98 0.99
Adjusted R2 0.18 0.21 0.24

The sensitivity is stable between 0.03 and 0.15. The speci�city is as before very high
and stable. The adjusted R squared is almost stable around the mean of 0.21.
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Figure 5.55 represents the twenty ROC curves in the cross-validation of the LDA model.
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Figure 5.55: ROC curves in the TOLU prediction

5.6.4 Prediction with split of the time series

On the following Figure 5.56 , the prediction of the training set by the LDA model in
blue, the one of the test set in green. The prediction of the MLR model with the selected
variables from the LDA model is also represented. These prediction values are shown in
pink, the test set in orange.
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Observations of the predictions The following observations are indicated by the re-
spective numbers in Figure 5.56:

1. We observe several false signals of the LDA prediction in the training and test set.

2. There are some signals that are not detected in the training and validation set by
the LDA model.

3. The signal predictions of the MLR method have to small signals when there are true
signals in the training and test set.

4. When the analysers signal is beneath the threshold, the MLR prediction sometimes
overestimates these measures.

5.6.5 Discussion of residuals and false predictions

In terms of the response variable

The following Figure 5.57 represents the residuals in terms of the logarithmic toluene values.
The red coloured points correspond to false negative predictions, the green ones to false
positive predictions provided by the LDA model. We see that all false negative observations
(red) have a positive residual term. Thus, the prediction is smaller than the observation
and the real signal is predicted as noise. This is also enforced by the strong unbalance in
the number of signal and noise observations. For the false positive observations (green), the
contrary takes place. Most of the predicted values are higher than the real measurements
and give false signal predictions.

In terms of the control parameters

We represent the residuals in terms of these control parameters in Figure 5.58. We observe
a weak dependence between control parameter and residuals for the relative humidity
and the wind velocity. A high humidity and little velocity measurements lead to higher
residuals, thus to bad predictions. This dependence remains however very slight and the
other control parameters have not at all a dependence on the false predictions of toluene.
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Figure 5.58: Residuals of the MLR model in terms of the control parameters
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5.6.6 Which interactions of sensors contribute to the prediction?

Figure 5.59 illustrates the contributions of every sensors interaction with a circle. A big
and light circle indicates an important contribution to the prediction of toluene. The �rst
selected principal component Dim.8 contains a contribution of 30.7% for the TGS2602
sensor. The interactions in higher orders containing this sensor present also higher con-
tributions than those without it. In the second selected variable Dim.3, the interactions
of order two TGS2602 · TGS2610 and TGS2602 · TGS2611 show up the most important
contributions. In the third component Dim.17, the TGS2620 sensor occurs with 23%. The
highest contribution of around 37.9% is present for the TGS2602 sensor in Dim.7. Often,
the interactions containing the TGS2611 sensor show up higher contributions as well. We
observe that many interactions in higher orders contribute to the prediction which supports
our hypothesis that there is information in a combination of sensor signals.

Regarding the announced compounds selectivities of the sensors, the sensor TGS2602 is
expected to detect VOC, hydrogen sulphide and ammoniac, the sensor TGS2620 for organic
solvents, alcohols and carbon monoxide. The sensor TGS2602 sensor shows up the most
important contributions in the toluene prediction likewise for the benzene prediction. This
could be explained by the high correlation (equal to 0.72) between the toluene and benzene
measurements (see Figure 5.15). So, the same reasons as for the benzene analyser persist.
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Figure 5.59: Contributions of interactions of sensors in LDA prediction [%]
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5.7 Model diagnosis for the LIMO analyser

For the limonene analyser, we select a threshold equal to 1 µg/m3 regarding the range of
its signals in this data set.

5.7.1 Fitting linear discriminant analysis model over the complete

data set

Selected principal components The model selection of the LDA model chooses 11
out of the 63 principal components. The evolution of the accuracy during the selection
is represented in Figure 5.60. The accuracy presents a high starting value as the CH4

analyser. The �rst accuracy equals 0.87. Then, it increases constantly by slight steps until
reaching a �nal value of 0.9.
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Figure 5.60: Accuracy evolution in the
model selection

Prediction of signals and pollution events Figure 5.61 shows the LDA prediction
on the real LIMO analyser's curve. The confusion matrix of these predictions is shown in
Table 5.22.
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Figure 5.61: LIMO prediction with LDA model

Table 5.22: Confusion matrix of the LDA
prediction for the complete data set

Reference
noise signal

Prediction
noise 5713 156
signal 50 60

The confusion matrix shows that 156 out of 216 signals and only 50 out of 5713 noise
values have been wrong predicted. This results in a sensitivity of 0.28, a speci�city of
around 0.99, a false positive rate of 0.01 and a false negative rate of 0.72. When we go
back to Figure 5.61, we observe that almost all high peaks are detected at least once. The
smaller signals with concentrations under 2 µg/m3 are not always detected. Moreover, we
do not observe as much false positives in the limonene prediction. In terms of pollution
events, (Table 5.23) shows the number of detected and non detected events and (Table 5.24)
the number of true and false predicted events.
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Table 5.23: Detection of pollution events

Detected Non detected Total
Pollution events 26 34 60

Table 5.24: Predicted pollution events

True False Total
Predicted events 27 10 37

Among the 34 non detected events, there are 14 beneath 1.5 µg/m3, so very near
to the threshold of 1 µg/m3. Concerning the false predicted events, 2 out of the 10 false
predicted events occur at moments, when the LIMO analyser did not work. The prediction
takes place on the interpolated values, so it is not excluded that a pollution event actually
occurred at that time.

False positive and negative predictions On Figure 5.62, the false signal and noise
predictions are represented in green and red respectively. This �gure con�rms the results
of the confusion matrix. In the important peaks are always black points located, so the
pollution event is detected. Like for all the other analysers, we observe only a little amount
of false positive predictions. The gaps in this �gure are due to missing values in the sensors
data due to a non functioning or the connection of odour bags.

ROC Curve Figure 5.63 represents the ROC curve for the limonene concentrations.
Naturally, the results already discussed before are con�rmed in this �gure. Although the
true positive rate (sensitivity) is not so strong, the curve behaves not so bad. Remember
that the optimal curve would have the maximal area under the curve equal to 1. For the
LIMO prediction, the area under the curve equals 0.87, which is a good result.
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Figure 5.62: False predictions in the LDA model
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5.7.2 Comparison of the LDA and MLR model predictions

The predictions of the LDA and MLR model are illustrated with the real LIMO concen-
trations in Figure 5.64. We observe that the LDA and MLR model provide very similar
predictions. When the LDA model predicts a false positive, the MLR prediction was too
high likewise. Moreover, signals that have not been detected by the LDA model are un-
derestimated by the MLR model as well.

The evolution of the adjusted R squares is illustrated in Figure 5.65. We observe an
increase from circa 0.04 up to 0.18, which is not very high.
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Figure 5.64: LDA and MLR predictions for the LIMO analyser
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Figure 5.65: Adjusted R squared in terms of
the selected variables

5.7.3 Cross-validation with random split

Table 5.25 represents the minimum, mean and maximum of the sensitivities, speci�cities
and adjusted R squares from the cross-validation with 20 executions.

Table 5.25: Range and mean over the sensitivities,
speci�cities and adjusted R squared

Min Mean Max
Sensitivity 0.14 0.25 0.4
Speci�city 0.985 0.991 0.996
Adjusted R2 0.09 0.16 0.21

The sensitivity presents its values from 0.14 and 0.4, which remains more or less stable.
The speci�city is extremely high and stable with a mean of 0.991. The adjusted R squares
go from 0.09 to 0.21 and remain also stable.
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Figure 5.66 represents the twenty ROC curves in the cross-validation of the LDA model.
For a small false positive rate and the sensitivity up to 0.3, all curves are very stable. But
after 0.4 for the sensitivity and 0.1 for 1 - speci�city, the curves are more dispersed. There,
the ROC curves are a slightly more unstable.
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Figure 5.66: ROC curves in the LIMO prediction

5.7.4 Prediction with split of the time series

The number of limonene signals decreases extremely from November. Therefore, it makes
no sense to execute a prediction model based on training and test set obtained by splitting
the time series in 80% and 20%. The validation set would contain only 10 out of around
1200 signals.

5.7.5 Discussion of residuals and false predictions

In terms of the response variable

The following Figure 5.67 represents the residuals in terms of the logarithmic limonene
values. The red coloured points correspond to false negative predictions, the green ones
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to false positive predictions provided by the LDA model. We see that all false negative
observations (red) have a visible positive residual term. Thus, the prediction is smaller
than the observation and the real signal is predicted as noise. This is also enforced by
the strong unbalance in the number of signal and noise observations. Concerning the false
positive predictions, most of the residuals are negative. The predicted values are higher
than the real measurements and give false signal predictions.

In terms of the control parameters

Figure 5.68 represents the residual terms of the MLR model in terms of the control param-
eters. We observe a dependence between control parameter and residuals for the relative
humidity and the wind velocity like for the CH4 analyser. When the relative humidity
increases, the residual range becomes more important. The contrary e�ect is the case for
the wind velocity. So high humidity and little velocity measurements lead to high resid-
uals, and therefore to bad predictions. When the humidity has small values, there are
nearly no false predictions as well as for high velocity values. Concerning the other control
parameters, the false negatives and positives appear under the same conditions.
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Figure 5.67: Residuals of the MLR model
in terms of log(A_LIMO)
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Figure 5.68: Residuals of the MLR model in terms of the control parameters

5.7.6 Which interactions of sensors contribute to the prediction?

The contributions of every interaction of sensors in the selected principal components in
the LDA model are represented in Figure 5.69. The size and the lightness of the circles
are proportional to the contribution percentages. The �rst selected principal component
is Dim.16 showing up the most important contribution of 26% for the sensor TGS2444.
The sensor TGS2620 contributes with 15% in this principal component. Several inter-
actions containing the TGS2611 sensor present also higher contributions. The greatest
contribution with a value of more than 30% is present in the second principal component
Dim.8 and corresponds to the sensor TGS2602. Afterwards, the interactions containing the
TGS2602 sensor seem to be more present in the contributions. For example, the two last
selected principal components Dim.24 and Dim.26 show up two interactions of third order:
TGS2602 · GGS1330 · TGS2444 with 17% and TGS2602 · TGS2610 · TGS2611 with 18%.
The appearance of important contributions for interactions in higher orders con�rms our
hypothesis of information present in a combination of sensor signals.
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Limonene is always present in rural areas. It is a typical compound of plant emissions
but it is also characteristic of the odours of waste. However, depending on the direction
of the wind it may be accompanied by either waste emissions or the green waste com-
posting center 2. Emissions of waste and compost may contain NH3, ammoniac and other
VOC. Thus, the high contributions of the sensors TGS2602 and TGS2444 arise from the
accompanied compounds.

2According to the ISSeP, limonene could come from the composting depending on the wind direction
[9].
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Figure 5.69: Contributions of interactions of sensors in LDA prediction [%]
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Chapter 6

Conclusion and perspectives

The �rst important step of any data analysis is the collection and preprocessing of the
available measurements. Several manipulations have to be done before starting the de-
tailed data analysis. Therefore, a package of functions has been written to perform the
preprocessing in a semi-automatic process in the software R. These functions are designed
to be general enough so as to be applied to a dataset coming from similar studies. Fur-
thermore, an user interface has been created to apply these preprocessing functions in a
simple way, even for users that are newcomers in R. Once, the pretreatment process �n-
ished, the data analysis starts. In particular, a prediction model for every analyser has
been developed based on the interactions of the sensors. The construction of these models
has also been implemented by R functions and hence, can be executed rapidly to obtain
the statistical results. We have been able to deduce several conclusions by examining the
returned interesting �ndings.

In summary, in terms of signal detection for all analysers and therefore for all chemical
compounds, the numeric results are a little de�ating. However, on closer inspection we
assert that the pollution events emerge being not so poor in prediction quality. Whereas
the sensors are sensitive to many environmental factors, the analysers are speci�c to their
chemical compounds. The decrease in concentration for three out of the six analysers
(H2S, NH3, LIMO) in the second half of measuring phase brings some di�culties about the
prediction by the sensors. Additionally, the small ranges of the chemical concentrations
complicate the prediction by the sensors. A possible improvement in a new study could
be the choice of a measuring location ensuring a more important variation of the chemical
compounds. Concerning the contributions of the sensors interactions in the predictions,
many of the interactions in higher orders contribute to the prediction which con�rms our
hypothesis that there is information in the combinations of sensor signals.

Concerning the CH4 analyser, the pollution events are detected most of time. The
sensor expected to detect methane, namely TGS2611, contributes to the prediction of
CH4, but most of time its combination with other sensors presents higher contributions in
the methane prediction. The TGS2602 sensor shows up important contributions as well.
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The detection of hydrogen sulphide presents somewhat more di�culty because of the
decrease in concentration at the end of the measurement phase. The TGS2602 sensor
dedicated to measure H2S contributes to the prediction, but the sensor alone seems to be
not enough to predict well. However, in interaction with other sensors like TGS2444 and
TGS2611, the presence of higher contributions can be observed.

The problem of decrease in concentration is even more present in the prediction of
ammoniac. However, the TGS2444 sensor expected to detect NH3 shows up the most
important contribution in the prediction. Concerning the TGS2602 sensor, which is also
dedicated to measure ammoniac among others, accounts only in interaction with other
sensors in the NH3 prediction.

Concerning the last three analysers, namely benzene, toluene and limonene, there is no
sensor very sensible explicitly to these compounds. The sensors TGS2602 and TGS2444
are common in the highest contributions in the prediction of the three pollutants. This
can be explained by the accompanied compounds of benzene, toluene and limonene.

In subsequent studies, it is recommended to keep the sensors TGS2602 and TGS2444
which proved their contributions in the prediction of methane, hydrogen sulphide and am-
moniac. The sensor TGS2611 occurred often in the contributions but mainly in interaction
with other sensors. Its share in the prediction of methane could be observed but could
probably be improved by combining it with another sensor or to take the TGS2602 sensor
for the methane prediction. Concerning the sensors TGS2610, TGS2620 and GGS1330,
their contribution in prediction of air pollution could be veri�ed in further studies by con-
centrating on chemical compounds like those speci�ed in the announced selectivities of
these three sensors. The three sensors shared often in the predictions in the interactions
in higher orders.

Several perspectives arise from this study either to resolve di�culties encountered in
the created model or to improve the prediction quality.

First of all, we can either restrict ourselves to a model that predicts the presence or
absence of a signal or a model that predicts the concentration of chemical compounds,
depending on the interests in a study.

Because of the non-normality present in the data, the hypotheses of the linear multi-
ple regression and the linear discriminant analysis could not be veri�ed. The passage to
a quantile regression model permits to handle the non-normality by estimating the con-
ditional median (or other quantiles) instead of the conditional mean by the least mean
squares method [2],[10].
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In terms of the time dependence, two perspectives are possible fur subsequent studies.
First, the prediction quality could be improved by taking into account the past. Therefore,
the predictors are de�ned as the multivariate observations in the past [1]. Secondly, we
could reduce the time lag between the measurements to improve the prediction model.

The prediction model could also be improved by choosing another method for the in-
terpolation of the analysers and for the baseline algorithm [13].

In this study, we performed a principal component analysis on the sensors indepen-
dently of the concerned response variable. A partial least squares discriminant analysis
(PLS-DA) enables a principal component analysis in terms of the response variable which
maximises the separability [5].

Finally, the �rst approach in the model research being to create a linear model can be
followed by the establishment of a more complex model. There are many possibilities as
for example the addition of quadratic or non linear terms or non parametric modelling.
Furthermore, several approaches in machine learning could be good candidates to improve
the prediction, for example a neural network [7]. Nevertheless, the inconvenient of these
processes is that they are very complex and can not always return information based
on the original data. In matters of prediction however, there are many possibilities for
improvement.
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Appendix A

List of abbreviations

EEA European Environment Agency

WHO World Health Organisation

SAM Sensing of Atmosphere and Monitoring Laboratory

ISSeP O�cial Wallonia public scienti�c institute

VOC Volatile organic compound

PID Photo ionization detector

CO2 Carbon dioxide

H2S Hydrogen sulphide

NH3 Ammonia

ppm Parts per million

O3 Ozone

CH4 methane

BENZ benzene

TOLU toluene

MPXY xylene

ETBZ ethylbenzene

PINE pinene

LIMO limonene

NO nitric oxide

Temp. Enc. temperature in the enclosure

Temp. In. temperature around the enclosure
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Hr. Enc. relative humidity in the enclosure

Hr. In. relative humidity around the enclosure

DV wind direction

HR relative humidity

TT temperature

VV wind velocity

UTC Coordinated Universal Time

MET Middle European Time

CET Central European Time

IRLS Iterative Restricted Least Squares

MLR Multiple linear regression

LDA Linear discriminant analysis

PC Principal components

ROC Receiver operating characteristic

PLS-DA Partial least squares discriminant analysis
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Appendix B

Descriptive analysis of the unused data

B.1 Speci�c sensors

The measurements of the four speci�c sensors PID 1, CO2, H2S and NH3 are illustrated
below:
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1PID stands for photo ionization detector, which is used to detect VOC.
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The concentrations of PID, H2S and NH3 were too low during the measuring, as we can
see in the next Table B.1. Furthermore, the sensors report negative values for ammoniac
and hydrogen sulphide, which is absurd for concentrations.

Table B.1: Statistics for the speci�c sensors

Sensors Minimum Moyenne Maximum

PID 4.08 4.54 5.12

CO2 253.8 331.3 753.8

H2S -99.9 0.06 0.35

NH3 -99.9 0.1884 0.72

Concerning the carbon dioxide measurements are concerned, it is expected that they
remain stable around 300-400 ppm. Hence, this sensor will provide little useful information
too. As additional information, we can have a look on the histograms on these four sensors
on Figure B.1.

163



PID sensor

concentration  [ppm]

F
re

qu
en

cy

4.2 4.4 4.6 4.8 5.0

0
20

00
0

50
00

0

CO2 sensor

concentration  [ppm]

F
re

qu
en

cy

300 400 500 600 700

0
40

00
0

80
00

0

H2S sensor

concentration  [ppm]

F
re

qu
en

cy

−100 −80 −60 −40 −20 0

0
40

00
0

10
00

00

NH3 sensor

concentration  [ppm]

F
re

qu
en

cy

−100 −80 −60 −40 −20 0

0
10

00
00

20
00

00

Figure B.1: Histograms of the sensors PID, CO2, H2S and NH3
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B.2 Analysers MPXY, ETBZ and PINE

First, we will observe the measurements of the three analysers inFigure B.2.

Figure B.2: Measurements of MPXY,ETBZ and PINE analysers

We can see that the measuring range of these three analysers is very small. The table
containing minimum, mean and maximum values of these measurements con�rms the weak
concentrations of MPXY, ETBZ and PINE (see Table B.2).
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Table B.2: Statistics for the unused analysers

Analyser Minimum Moyenne Maximum

MPXY 0.1 0.1025 0.4

ETBZ 0.1 0.1598 2.0

PINE 0.1 0.1013 1.1

Furthermore, we can have a look on the histograms on Figure B.3.
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Figure B.3: Histograms of MPXY, ETBZ and PINE analysers
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