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Introduction

As part of the search for a treatment for cancer, statistical studies such as survival analyses
can be useful to evaluate the e�ect of two treatments. During research on a new treatment,
a comparative analysis between treatment e�ects on survival is investigated. The logrank
test is the most popular choice when it comes to comparing treatment e�ciency in cancer
research. It has been well-established that it is the most powerful non-parametric test to
compare survival functions when the hazards are proportional over time. However, in the
case of the assumption of proportional hazard being in doubt, the logrank test may no
longer be optimal. The proportional hazard assumption can easily be veri�ed by using
the Kaplan-Meier curve. Formal way, we can use Grambsh and Therneau's approach [1]
to indentify non-proportionality of a case. A number of statistical approaches have been
investigated to compare treatment e�ects on survival in the event of the proportional haz-
ard assumption being violated but they are still underused and not very well-known. This
lack of application can be explained by the fact that it is currently unclear which approach
should be used according to the design and analysis studies when comparing cancer treat-
ments. Nonetheless, Li et al. [2] and Callegaro and Spiessens [3] compare some methods
where survival functions cross over time.

In this Master's thesis, a particular focus is given to immunotherapy treatment. Im-
munotherapy, explained in [4], consists of using the immune system to �ght cancer both
directly and indirectly. In order to understand what immunotherapy is, we need to become
familiar with how the immune system works. The immune system is composed of organs,
cells and substances. Its function is to protect and defend the body against foreign agents
such as bacteria and viruses. Furthermore, the immune system can di�erentiate between
the healthy cells of the body and cancer cells, and can also �ght them. The immune system
works as a memory. Indeed, it memorizes a trace of all substances that can be found in
the body. Thereby, all new substances which have not been memorized antigens cause
a reaction of the immune system. Germs such as viruses and bacteria can detect these
antigens. Cancer cells work like antigens but unlike the latter, the immune system has a
hard time �ghting the former naturally. Several reasons make this �ght di�cult. Indeed,
in many cases, the cancer cells do not di�er enough from healthy cells. In that case, the
immune system does not consider the cancer cells to be a threat. In other cases, cancer
cells are considered foreign cells but the action taken by the immune system to �ght the
cancer is not powerful enough. Moreover, cancer cells can thwart immune action, releasing
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a substance which neutralizes the immune system.

To �x these problems, di�erent approaches of immunotherapy have been designed in
order to support the immune system. Immunotherapy treatment methods lead to a de-
layed clinical e�ect. The issue of how to compare treatment e�ects when the hazards
are likely non-proportional is of major interest for contemporary cancer research due to
the ground-breaking achievements of immunotherapy, which is typically characterized by
a delayed treatment e�ect. A delayed treatment e�ect means that at the beginning of the
study there are no di�erences between the survival curves of treatment and control groups.
Nonetheless, at a certain time, a treatment e�ect appears which is illustrated by a split
between survival curves. The aim of the present master thesis was to compare the classical
logrank test and the methods designed to deal with non-proportional hazards.

The master thesis is structured as follows: In the �rst chapter, we brie�y introduce the
background of survival analysis. We de�ne what survival analysis is, censoring, survival
function and hazard function are. We demonstrate the Kaplan-Meier estimator of the
survival function. Then we describe the aim of a test comparing survival curves and
�nally explain the proportional hazard assumption. Statistical methods, such as logrank,
restricted mean survival time, generalised pairwise comparison, weighted logrank, adaptive
weighted logrank and weighted Kaplan-Meier test are described in the second chapter.
Then we use three types of simulations to compare all methods according to the type I-
error. Finally, all methods are illustrated on the real EORTC 18991 trial outcome data
to compare adjuvant therapy with pegylated-interfon-α-2b with observation in stage III
melanoma patients.
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Chapter 1

Survival analysis

The aim of survival analysis is to model time until an event occurs. As an example, when
the event of interest is "death", the outcome variable will be the elapsed time between
the beginning of the follow-up of an individual until their death. Within the context of
cancer studies, the main events of interest are either death, or relapse from remission or
from toxicity on vital organs.

In survival analysis, we usually refer to the time until an event occurs as survival time.
However, survival data can be censored; this occurs when the individual does not show the
event of interest. In that situation, we have some information about individual survival
time; however the exact survival time is unknown. For example, the event is not observed
before the end of the study, or the individual withdraws from the study.

Classic endpoints in cancer clinical trials are usually de�ned in terms of survival. For
that purpose, the main objective is to compare the time until one such event occurs be-
tween two groups of patients, namely a control and a treatment group.

In this chapter, based on [5], we will �rst describe some background of the survival
analysis that includes functions, the relationships between them. These functions allow us
to describe the process studied and the probability of an event occurring at a certain time.
Then, we will show how to estimate those new functions and illustrate on an example.
Finally, we will use a classic statistical test to compare two survival distributions. The
�rst one will be a treatment group and the second one a control group. They will be
respectively referred to as "Trt" and "Ctr".

1.1 Background

Consider a non-negative continuous random variable T which takes the value t1, ..., tn where
n ∈ N0∪{∞} with probability density function f(t). This value represents the time which
has passed from the time of recruitment in the study to the completed event. Indeed,
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during a study, not all patients enter the study at the same time. The example 1.1.1.1
illustrates the time from recruitment in the study until the considered event occurs. In
this sub-section, we describe the behaviour of the random variable T in order to use it in
the survival analysis.

1.1.1 Censoring

When studying time-to-event data, the lack of information about the event can be a lim-
iting factor. Indeed, due to the fact that the duration of the study is limited, it is possible
that some events do not occur before the end of the study. In such situations, times are
considered as right censored because we cannot predict the survival time for these individ-
uals. The only information that we have is that the survival time is greater than the end
of the study. Another situation of right censoring occurs when the patient withdraws from
the study; then, we only have a lower bound for his or her survival time. The survival
time T is included in the interval [C,+∞[ when the time is right censored. There exist
other types of censoring such as left censored and interval censoring, but they will not be
explained in this master thesis.

Regarding the time-to-event, we can have di�erent possibilities:

1. An individual completes the event before the end of the study. In this case, the value
of T is completely determined.

2. An individual does not complete the event before the end of study or the individual
withdraws from the study. In this case, we know that the individual stay alive until
C.

Let δ denote a dichotomous variable indicating event occurrence or censoring. Each
individual can then be characterized with a pair of random variables (X, δ) where:

X =

{
T when uncensored
C when censored

δ =

{
1 when uncensored
0 when censored

Example 1.1.1.1. Let us consider the example of a clinical trial to relieve the symptoms
of a chronic medical condition. Recruitment of eligible patient into the trial started on 1st

January 2016. Recruitment of eligible patients into the trial ceases on 1st January 2018.
The variable of interest T is the time between treatment and relapse. The Figure 1.1
illustrates the elapsed time between recruitment and observed or censored time. Censored
observations are represented by red dots. Red dots occur when the survival lines are
truncated by the red line. This truncation shows that the survival time of these patients
continues after the end of the study.
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Figure 1.1: Recruitment and censoring

1.1.2 Survival function

De�nition 1.1.1. The survival function of T provides the probability that the event of
interest has not occurred during [0, t]:

S : [0,+∞[→ [0, 1] : t 7−→ S(t) = P(T > t). (1.1)

In the continuous case,

S(t) =

∫ ∞
t

f(t)dt.

From this equality, we get

f(t) = − d

dt
S(t).

From de�nition 1.1.1, it can be seen that the survival function is a decreasing function
taking values with S(0) = 1 and S(t)→ 0 when t→ +∞.

1.1.3 Hazard function

De�nition 1.1.2. The hazard function for a random variable T is de�ned as
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λ : [0,+∞[→ [0, 1] : t 7−→ λ(t) = lim
∆t→0

P(t ≤ T < t+ ∆t|T ≥ t)

∆t
.

The numerator can be thought of as the expected number of future events (failure) in
the time interval [t, t+ ∆t[.

The quantity λ(t)∆t may be considered as an approximate conditional probability of
an event in the interval [t, t + ∆t[. However, the hazard function is not a probability but

the ratio
P(t ≤ T < t+ δt|T ≥ t)

∆t
can be interpreted as the event (failure) rate over the

time interval [t, t+ ∆t[.

The hazard function illustrates how likely the event is to occur in a small interval con-
taining a particular time t, given that it has not occurred before then.

Furthermore, we have the following equality:

λ(t) =
f(t)

S(t)

Indeed, when applying the conditional probabilities formula,

P(T 6 t+ ∆t | T > t) =
P(T 6 t+ ∆t ∩ T > t)

P(T > t)
,

=
P(t < T 6 t+ ∆t)

P(T > t)
,

=
FT (t+ ∆t)− FT (t)

ST (t)
.

So,

λ(t) = lim
∆t→0

F (t+ ∆t)− F (t)

∆t S(t)
,

=
1

(t)

d

dt
F (t),

=
f(t)

S(t)
.

Then, λ(t) = − d

dt
ln[S(t)].

De�nition 1.1.3. The cumulative hazard function is de�ned by

Λ(t) =

∫ t

0

h(u) du.

This function describes the "total exposure to risk" for a survivor up to T = t.

8



There is a relationship between Λ(.) and S(.):

Λ(t) = −log(S(t))⇐⇒ S(t) = exp(−Λ(t)).

Table 1 summarizes the various relationships that exist between the previously de�ned
functions.

Table 1.1: Relationship between density function,

survival function and hazard function

f(t) S(t) λ(t)

f(t) − d

dt
S(t) λ(t) exp

(
−
∫ t
λ(s) ds

)
S(t)

∫∞
t
f(s) ds exp(−

∫ t
0
λ(s) ds)

h(t)
f(t)∫∞

0
f(s) ds

− d

dt
log(S(t))

1.1.4 Description of observations in terms of failure

At each time ti , a certain proportion of individuals complete the event of interest or are
censored. Let di denote the number of events (e.g. number of deaths) and ci the number
of censored events at time ti. The number of individuals at risk at time ti is denoted by
ni and is equal to the number of individuals who will die or be censored,

ni =
n∑
t=i

(dt + ct).

1.2 Estimation

Certain functions describing the behaviour of the random variable T were introduced into
1.1.2. However, in practice, we do not know the distribution of this variable. We only have
a sample of the observations to form the base to estimate the di�erent functions.

Hereafter, we describe one way of estimating survival function. We will use the max-
imum likelihood to obtain the number of failures and then apply the result to obtain an
estimator for the survival function S(t), known as the Kaplan-Meier estimator.
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1.2.1 Discrete survival distribution

Let 0 < t′1 < t′2 < ... < t′m <∞ be the distinct observed failure times in sample {t1, ..., tn}
as it is possible to observe more than one failure at the same time, m ≤ n. We denote
t′0 = 0 and t′m+1 =∞.

The probability function can be written as

f(t′i) = P(T = t′i), i = 1, ...,m, (1.2)

the survival function as

S(t) = 1−
∑
j:t′j<t

f(t′j) =
∑
j:t′j>t

f(t′j), with t ∈ [t′i, t
′
i+1[ and i = 0, ...,m, (1.3)

the hazard function as

λ(t′i) = P(T = t′i|T ≥ t′i),

=
P(T = t′i)

P(T ≥ t′i)
,

=
P(T = t′i)

P(T > t′i−1)

then,

λ(t′i) =
f(t′i)

S(t′i−1)
. (1.4)

There are constraints from the de�nition of the survival function such as S(t′0) = 1 and
from equations (1.3) and (1.4), we obtain

S(t′i) = S(t′i−1)− f(t′i),

= S(t′i−1)− λ(t′i)S(t′i−1).

Then,
S(t′i) = S(t′i−1)(1− λ(t′i)). (1.5)

Hence,

S(t′i) =
i∏

j=1

(1− λ(t′j)) and f(t′i) = λ(t′i)
i−1∏
j=1

(1− λ(t′j)). (1.6)

In the following sections, for clarity and ease of reading, we denote S(t′i) as Si, f(t′i) as
fi and λ(t′i) as λi .

Let di be the number of failures observed at time t′i (i = 1, ...,m), then
∑m

i di = d+.

Let ci (i = 1, ...,m) be the number of censored observations with censoring times be-
tween t′i and t

′
i+1.
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1.2.2 Maximum discrete likelihood estimation

Maximum likelihood estimation is a general method for parameter estimation. The maxi-
mum likelihood estimator θ̂ maximises the likelihood L(θ) which is simply the joint prob-
ability(density) of the observed data treated as a function of the unknown θ.

Assuming independent and identically distributed observations with no censoring, the
likelihood is given by

L(θ) =
n∏
i=1

f(ti, θ),

as the joint probability density function of independent variables is just the product of
their individual marginal probability density functions.

Now, consider the independent and identically distributed observations with right cen-
soring indicators δ1, ..., δn. For a right-censored observation, ti is not an observed value but
we know an interval [ci,+∞[ where the observation is included. Hence, the appropriate
contribution to the likelihood for a censored ti is S(ti). So, the likelihood is given by

L(θ) =
∏
i:δi=1

f(ti, θ)
∏
i:δi=0

S(ti, θ).

Then, with the following property, we obtain an estimator for discrete hazard function
at time ti.

Property 1.2.2.1. The discrete hazard maximum likelihood estimator is given by

λ̂i =
di
ri

for i = 1, ...,m,

where ri =
∑m

j=i(dj + cj) is called the number at risk (of failure) at t′i.

Proof. We can reformulate the likelihood with the notation introduced previously as follows

L =
m∏
i=1

(fi)
di

m∏
i=0

(Si)
ci . (1.7)

Using equation (1.6), we can write equation (1.7) as

L =
m∏
i=1

[
λi

i−1∏
j=1

(1− λj)

]di m∏
i=1

[
i∏

j=1

(1− λj)

]ci
,

=
m∏
i=1

[(
λi

1− λi

)di i∏
j=1

(1− λj)ci+di
]
,

=
m∏
i=1

(
λi

1− λi

)di m∏
i=1

i∏
j=1

(1− λj)ci+di ,

=
m∏
i=1

(
λi

1− λi

)di m∏
i=1

m∏
j=i

(1− λi)cj+dj ,
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and we �nally obtain,

L =
m∏
i=1

(
λi

1− λi

)di m∏
i=1

(1− λi)
∑m
j=i cj+dj . (1.8)

The log-likelihood is given by

l = logL =
m∑
i

[
di log λi − di log(1− λi) + log(1− λi)

m∑
j=i

(cj + dj)

]
.

So,
∂l

∂λi
=
di
λi

+
di

1− λi
−
∑m

j=i(ci + di)

1− λi
.

To obtain the maximum likelihood estimator, we equal the derivative to 0. Then, we
obtain the solution that we desire:

di

λ̂i
+

di

1− λ̂i
−
∑m

j=i(ci + di)

1− λ̂i
= 0⇒ λ̂i =

di∑m
j=i(cj + dj)

, i = 1, ...,m.

Remark 1.2.2.1. The hazard at each t′i is therefore estimated by the observed number of
failures at t′i as a proportion of the number at risk at t′i.

1.2.3 Kaplan Meier estimator

From the discrete hazard maximum likelihood estimator, we can obtain an estimator for
the survival function. Using equation (1.6), we get the Kaplan-Meier estimator of the
survival function.

De�nition 1.2.1. The Kaplan-Meier (or product limit estimator) estimator of the survival
function is given by:

Ŝ(t) =
i∏

j=1

(1− λ̂j) , t ∈ [t′i, t
′
i+1).

The Kaplan-Meier estimator is the most widely used non-parametric estimator of the
survival function. This method partitions the interval time and estimates the survival
function on each separation. The derived estimates, Ŝi, can then be used to construct
the well-known Kaplan-Meier curve which provides a graphic illustration of the survival
function.

The standard error of the Kaplan-Meier estimator can be obtained using Greenwood's
formula in [5]

σ2(t) = (Ŝ(t))2

i∑
j=1

dj
rj(rj − dj)

, t ∈ [t′i, t
′
i+1), i = 0, ...,m (1.9)
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Example 1.2.3.1. To illustrate the Kaplan-Meier estimator, we will consider the Gehan
data available in R using library(MASS). The Gehan data is a data frame of trials con-
taining 42 leukaemia patients. Some of them were treated with the drug 6-mercaptopurine
(6-MP) and the remainder received a placebo to become the control group. Table 1.2 below
illustrates some of the Gehan data:

Table 1.2: Gehan data

patient pair time cens treatment
1 1 1 1 control
2 1 10 1 6-MP
3 2 22 1 control
4 2 7 1 6-MP
...

...
...

...
...

41 21 8 1 control
42 21 10 0 6-MP

The Kaplan-Meier estimates using 6-MP and the control group are presented in Figure
1.2 and the corresponding Kaplan-Meier estimate of S(t) is depicted in Figure 1.3 below.

Figure 1.2 contains distinct time of observations ("time"), the number at risk ("n.risk"),
the number of events ("n.events"), the standard error ("std.err") using Greenwood's for-
mula and the con�dent interval in each group. Moreover,Figure 1.3 allows comparison of
the two survival curves of each group. We can observe from the Kaplan-Meier curves that
patients from the treatment group, in this example 6-MP, have a higher survival probability
than patients from the control group.
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Figure 1.2: Output from R-code of the Kaplan-Meier estimates

Figure 1.3: Kaplan-Meier curve using Gehan data

The comparison of survival plots allows us to de�ne whether a treatment has an e�ect
on the survival probability of patients or not. A �rst approach is to use the Kaplan-Meier
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plot of the di�erent survival curves and look for di�erences at individual times. Although
simple, this approach provides a preliminary idea of the comparison, but it is not enough
to conclude that one group has a better survival rate than another group. A solution to
test the di�erence between two or more survival curves is to use a statistical test.

Therefore, in Chapter 2, we describe di�erent statistical tests which test the null hy-
pothesis that there is no di�erence between the survival curves. We can write this null
hypothesis and the alternative hypothesis as follows

H0 : STrt(t) = SCtr(t)←→ H1 : STrt(t) 6= SCtr(t), (1.10)

where H0 is the null hypothesis and H1 is the alternative hypothesis.

The classic method testing the di�erences in survival curves is more powerful when the
proportional hazard assumption holds. However, in the context of immunotherapy, the
patterns of the survival curves violate the proportional assumption. In the �nal part of
this chapter, we describe this proportional assumption.

1.3 Proportional assumption

The proportional assumption is de�ned as the fact that the ratio of the hazard function cor-
responding to both groups, treatment and control, is constant over time. This is illustrated
in Figure 1.4. Moreover, the Figure 2.1, 2.2 and 2.3 are example where the proportional
assumption is not checked.
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Figure 1.4: Survival plot illustrating proportional hazard

We can also de�ne this assumption using the concept of hazard ratio (HR). Indeed, the
hazard ratio is an estimate of the ratio between the hazard functions in the treatment and
the control group [6]. If we think about the de�nition of hazard function 1.1.2, we can
interpret the hazard ratio as the odds of an event occurring in the treatment group divided
by the odds of the event appearing in the control group. The assumption of proportional
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hazard can be described by a hazard ratio constant over time.

The proportional hazards assumption may also be assessed informally by inspecting the
Kaplan-Meier curves. However, this method may be misleading in some cases. Another
possibility is the use of Grambsch and Therneau's approach to diagnose non-proportionality
in [1]. Royston and Parmar used a likelihood ratio test to compare survival models with
and without a time-dependent covariate. The proportional hazards assumption tests will
not be discussed here as they go beyond the scope of this master's thesis.
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Chapter 2

Survival methods

When the proportional hazard assumption is in doubt, the logrank test loses power. In
order to solve this loss of power, some alternative methods have been developed. In this
master's thesis, we will consider �ve alternative methods: restricted mean survival time,
generalised pairwise comparison, weighted logrank, adaptive weighted logrank and weighted
Kaplan-Meier tests. These methods have been selected due to their availability in R. How-
ever, many di�erent methods such as the cure model [7] or combined test [8] exist as an
alternative to the logrank.

In this chapter, we will de�ne and present the logrank test and the statistical test of
�ve methods introduced above. Moreover, we will give the R-function, which will be used
in the next chapter and some properties of the di�erent methods will be commented upon.

Some methods have di�erent properties or can be adapted according to the non-
proportional hazard trials. The three main non-proportional hazard situations include
the early e�ect, the delayed e�ect and the reverse e�ect treatment over time [9]. It is
possible to design other types of trials as a mixture of those three e�ects. Below, the based
trials which do not respect the proportional hazard assumption are introduced.

The early e�ect

The early treatment e�ect is a treatment e�ect whose hazard ratio favours the treatment
group. Indeed, as illustrated in Figure 2.4, the hazard ratio is smaller than 1 early in the
trial and approaches or even exceeds 1 over time. We can observe this in the survival plot
as the two curves are separated at the beginning of the study and remain so until the end.
This is illustrated in Figure 2.1

The delayed e�ect

The late treatment e�ect is a treatment e�ect whose hazard ratio does not favour any
group as HR=1 early in the trials and is inferior to 1 over time. This variation of the
hazard ratio over time is illustrated in Figure 2.4. On the survival plot in Figure 2.2, the
two curves are closed at the beginning of the study and they do separate, but later than
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in the survival plot for the early e�ect. That remains so until the end of the study.

Reverse treatment e�ect over time

The reverse treatment e�ect over time occurs when the two survival curves cross over time.
This is shown in Figure 2.3.
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Figure 2.1: Survival plots illustrate the early e�ect
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Figure 2.2: Survival plot illustrating the late e�ect
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Figure 2.3: Survival plot illustrating the reverse

treatment e�ect

Figure 2.4: Hazard ratio according to di�erent patterns

2.1 Logrank test

This section is written based on [10]. The logrank test is the most popular non-parametric
test to compare two survival curves from two di�erent groups. Compared to the Kaplan-
Meier plot approach, this test takes the whole follow-up period into account. Therefore, it
is not necessary to know anything about the shape of the survival curve or the distribution
of the event.

In the following text, we will de�ne the statistic for the logrank test and illustrate it
with the example of the Gehan data.
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Table 2.1 summarizes all the information from both groups, treatment (Trt) and control
(Ctr), at a speci�c time.

Table 2.1: Summary of the information from both groups

at a speci�c failure time

Failed Surviving At risk
Treatment group dTrt nTrt − dTrt nTrt
Control group dCtr nCtr − dCtr nCtr
Combined d n− d n

If the null hypothesis (H0) from relation 1.10 is true, i.e. the equality STrt(t) = SCtr(t)
is checked, then we expect that the total number of failures d is distributed between the
two groups in the ratio of the group sizes; in other words, the expected number of failures
in group Trt and group Ctr, respectively, at this time ti :

eTrti =
nTrti × di

ni
, eCtri =

nCtri × di
ni

.

We denote the total expected number of failures in group Trt and group Ctr respectively
as follows:

ETrt =
∑
i

eTrti , ECtr =
∑
i

eCtri .

To determine what happens at the next failure time ti + 1, we need to update the contents
of Table 2.1. The process of updating is done separately for each group and works as
follows: the number at risk in the table at failure time ti+1 is the number at risk in the
table at failure time ti minus the number of failures in the table at failure time ti minus
the number of individuals censored after failure time ti and before failure time ti+1.

For the computation of the logrank statistic, we need the total of observed failures in
each group:

OTrt =
∑
i

dTrti and OCtr =
∑
i

dCtri .

The statistic for the logrank test is:

LR = X2 =
(OTrt − ETrt)2

ETrt
+

(OCtr − ECtr)2

ECtr
.

This statistic follows a chi-squared distribution with one degree of freedom. As a conse-
quence, H0 is rejected if the observed value of X2 is in the upper tail of the χ2

1 distribution
(where the degree of freedom is equal to the number of groups tested -1).

The logrank test is the most powerful non-parametric test under proportional hazard
assumption and loses power when the curves cross.

This test is implemented in R using the command "survdi�" in the "survival" package.

20



Example 2.1.0.1. Let us continue with the Gehan example to illustrate the logrank test.
First, we created Table 2.2, obtained by applying Table 2.1. Then, we calculated the
logrank statistic which is given by

X2 =
(−10.26)2

19.26
+

(10.26)2

10.74
= 5.46 + 9.8 = 15.26.

We compared this against a chi-squared distribution with 1 degree of freedom and we
reject the null hypothesis at 5% level of signi�cance because the χ2

1(0.05) = 3.84 and
X2 > 3.84.

Using the "survdi�" function in R represented on Figure 2.5, we get the same result.
Indeed, if the p-value < 0.05 then we reject the null hypothesis. That means the survival
functions are di�erent. In this example, Figure2.5 shows that the p-value is such that
p < 0.0001, so we clearly reject the null hypothesis.

Table 2.2: Logrank table for Gehan data

# deaths # in risk set # expected Observed-expected

j t′j dTrtj dCtrj nTrtj nCtrj eTrtj eCtrj dTrtj − eTrtj dCtrj − eCtrj

1 1 0 2 21 21 (21/42)× 2 (21/42)× 2 -1.00 1.00
2 2 0 2 21 19 (21/40)× 2 (19/40)× 2 -1.05 1.05
3 3 0 1 21 17 (21/38)× 1 (17/38)× 1 -0.55 0.55
4 4 0 2 21 16 (21/37)× 2 (16/37)× 2 -1.14 1.14
5 5 0 2 21 14 (21/35)× 2 (14/37)× 2 -1.20 1.20
6 6 3 0 21 12 (21/33)× 3 (12/33)× 3 1.09 -1.09
7 7 1 0 17 12 (17/29)× 1 (12/29)× 1 0.41 -0.41
8 8 0 4 16 12 (16/28)× 4 (12/28)× 4 -2.29 2.29
9 10 1 0 15 8 (15/23)× 1 (8/23)× 1 0.35 -0.35
10 11 0 2 13 8 (13/21)× 2 (8/21)× 2 -1.24 1.24
11 12 0 2 12 6 (12/18)× 2 (6/18)× 2 -1.33 1.33
12 13 1 0 12 4 (12/16)× 1 (4/16)× 1 0.25 -0.25
13 15 0 1 11 4 (11/15)× 1 (4/15)× 1 -0.73 0.73
14 16 1 0 11 3 (11/14)× 1 (3/14)× 1 0.21 -0.21
15 17 0 1 10 3 (10/13)× 1 (3/13)× 1 -0.77 0.77
16 22 1 1 7 2 (7/9)× 2 (2/9)× 2 -0.56 0.56
17 23 1 1 6 1 (6/7)× 2 (1/7)× 2 -0.71 0.71

Totals 9 21 19.26 10.74 -10.26 10.26
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Figure 2.5: Result of the logrank test using R

2.2 Restricted mean survival time

The Absolute Di�erence Restricted Mean Survival time is based on the di�erence of the
area under the survival curves from time 0 to a pre-speci�ed time point using normal ap-
proximation. This method is implemented in R in the survRM2-package using the "rmst2"
function.

In this section, we de�ne the Restricted Mean Survival time as given by Royston and
Parmar [11].Then, the Kaplan-Meier estimate is presented to estimate the restricted mean
survival time. Finally, the statistic test is developed, the R-function "rmst2" used for the
simulation is detailed, and some properties of this method are presented.

De�nition 2.2.1. The Restricted Mean Survival Time (RMST), denoted by µτ , of a
random variable T, is the mean of survival time X = min(T, τ):

µτ = E[X] =

∫ τ

0

S(t)dt, where τ > 0. (2.1)

When the survival time is years until death, we can interpret µτ as τ years of life
expectancy. Moreover, the measure µτ increases monotonically with τ because the inte-
gral gives a non-negative, increasing function of τ . Indeed,

∫ τ2
0
S(t)dt >

∫ τ1
0
S(t)dt when

τ2 > τ1. In this state, nothing is known about the threshold τ .

The pre-speci�cation of this threshold must be established before analysing the trials.
This speci�cation of τ is either de�ned by the context of the study or de�ned as the mini-
mum of the largest observed time in each of the two groups.

Before de�ning the statistic test, we will introduce the Kaplan-Meier method of esti-
mating the restricted mean survival time as described by Wei and Royston [12].

The most currently used method to estimate the restricted mean survival time is to
directly integrate the Kaplan-Meier estimate of the survival function from time 0 to τ .
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This integrate can be calculated using de�nition 1.2.1 by

k∑
j=0,0≤tj6τ

Ŝ(tj)(tj+1 − tj),

where Ŝ(tj) is the Kaplan-Meier estimate at time tj(0 6 tj > τ) and tj is the time at which
an event occurs.

Other methods, such as pseudo-observations and �exible parameter models, of estimat-
ing the restricted mean survival time are described in appendix A.

In order to use the normal approximation for the statistic test, the restricted standard
deviation of survival time is derived from the restricted mean survival time in [13].

The Restricted Variance of Survival Time is given by

var(X) = E[X2]− (E[X])2 = 2

∫ τ

0

tS(t)dt−
(∫ τ

0

S(t)dt

)2

, (2.2)

then the Restricted Standard Deviation of Survival Time is
√
var(X).

To calculate the variance of the restricted survival time X, we need to compute E[X2].
By the law of total probability, we get:

E[X2] = E[T 2|T ≤ τ ]P(T ≤ τ) + τ 2P(T > τ).

Moreover, we know by de�nition that P(T > τ) = S(τ) and P(T ≤ τ) = 1−S(τ). Applying
the de�nition of conditional expectation we get an expression for the �rst term of the sum:

E[T 2|T ≤ τ ]P(T 6 τ) =

∫ τ

0

t2f(t)dt,

=τ 2[1− S(τ)]−
∫ τ

0

2t[1− S(t)]dt.

Hence, by replacing the �rst term by the one above, a shorter expression for E[X2] is
derived

E[X2] =τ 2[1− S(τ)]− 2

∫ τ

0

t[1− S(t)]dt+ τ 2S(τ),

=τ 2 − 2

∫ τ

0

tdt+ 2

∫ τ

0

tS(t)dt,

=2

∫ τ

0

tS(t)dt.
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Finally, we get the equality (2.2) by subtracting the square of the value of the equality
(2.1) from the last expression of E[X2].

To test the null hypothesis, i.e. there are no di�erences between survival curves, we
de�ne the di�erence in restricted mean survival time using the de�nition proposed by Lin
and Xu [14].

De�nition 2.2.2. The di�erence in restricted mean survival time(RMSTD) between two
arms, denoted ∆, is given by

∆ =

∫ τ

0

STrt(t)− SCtr(t) dt = µTrt − µCtr.

where µTrt (resp. µCtr) is the restricted mean survival time for the treatment group (resp.
control group) with a threshold τ .

The interpretation of ∆ is straightforward. Indeed, in the case of the time-scale being
in years, the di�erence in RMST can be interpreted as patients in one group gaining or
losing ∆ more years in life expectancy from the origin to the threshold τ compared with
patients in the other group. Moreover, a di�erence in restricted mean survival time greater
than 0 favours the treatment group.

We can use another approach proposed by Zhao et al.[15] as an alternative measure to
the hazard ratio. It is the relative di�erence in restricted mean survival time. It is given
by the ratio between the RMSTD and τ .

∆ =
µTrt − µCtr

τ
,

where µTrt (resp. µCtr) is the restricted mean survival time for the treatment group (resp.
control group) with a threshold τ . This measure quanti�es how the RMSTD change with
τ . Moreover, this quantity varies between 0 and 1 so it can be interpreted as a percentage.

We can use the Kaplan-Meier method to approximate the di�erence in restricted mean
survival time as

∆ =
∑
j|tj<τ

ŜTrt(tj)− ŜCtr(tj)(tj+1 − tj). (2.3)

We can reformulate the null hypothesis 1.10 as follow:

H0 : µTrt = µCtr ←→ H1 : µTrt 6= µCtr. (2.4)

Hence we have, ∆ = 0 underH0 and ∆ 6= 0 underH1. For the statistic test we estimate
∆ and var(∆) as follows:

∆̂ = µ̂Trt − µ̂Ctr
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and

var(∆̂) =
σ̂2
Trt

nTrt
+
σ̂2
Ctr

nCtr

where nTrt and nCtr is the size of the treatment group and control group respectively.
Moreover, var(µ̂Trt) and var(µ̂Ctr) are estimated using the delta method. This delta
method is de�ned in appendix B.

The following test statistic is proposed by [13] for the comparison of the survival curves
between two groups:

Z =
∆√
var(∆)

.

With the standardization of ∆, Z will be asymptotically standard normal. At signi�cance
level α,we reject the null hypothesis if the p-value is smaller than α where α is the level of
the type I-error. Indeed, when |Z| > Z1−α/2, where Z1−α/2 is the quantile 1 − α/2 of the
standard normal distribution, we reject the null hypothesis.

Now, we have the statistic test that is used in the R-function "rmst2", we can detail this
function. This function uses six parameters: time, status, arm, tau, covariates and alpha.
In this master thesis, we do not use covariates so the parameter covariates is initialised at
NULL. In Chapter 3, we derive the type I-error at a level of signi�cance α = 0.05 then
the value of the parameter alpha is 0.05. If we do not have a pre-speci�ed threshold then
the value of the parameter tau is de�ned as the minimum of the largest observed time in
each of the two groups. The values time, status and arm correspond to the followed-up
time for right censored data, the status indicator (event=1 and censored=0) and the group
indicator for comparison (Trt=1 and Ctr=0) respectively.

Next, some properties established by Royston and Parmer[11] are introduced.

Properties 2.2.0.1.

� Under proportional hazard, the RMSTD continues to increase with τ .

� Under proportional hazard, RMST gives a p-value comparable to that from the logrank
test.

� The di�erence in RMST is a safer measurement because it is free of the proportional
hazard assumption.

� The main advantages are the interpretability of the RMST di�erence from a clinical
perspective such as loss of life expectancy, and the robustness of the estimator to the
proportional hazard assumption.

� The main disadvantage is the dependence of the test statistic on τ .
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2.3 Generalised pairwise comparison

This section is written based on [16] and [17].

As the name indicates, the generalised pairwise comparison takes pairs of individuals
from the two groups and compares them. In this section, we introduce some new notations
in order to classify these pairs into four groups: "Favourable", "Unfavourable", "Neutral"
and "Uninformative". Next, we introduce the net bene�t which enables us to perform a
test analysis of the null hypothesis. Then, we use an extensive procedure that takes into
account the "Uninformative" pairs and updates the net bene�t. Finally, we detail the
R-function related to this method and introduce some properties.

Let nTrt (resp. nCtr) denote the number of individuals who received treatment, de-
noted by Trt (resp. the number of individuals who are in the control group, denoted by
Ctr). There is no prerequisite regarding groups formation, so they are formed by random
allocation.

Pairwise comparisons consider pairs of individuals: one taken from the treatment group
and the other one taken from the control group. Then the outcomes of these two indi-
viduals are compared and classi�ed into one of the di�erent categories: "Favourable, "Un-
favourable", "Neutral", "Uninformative".

� "Favourable": If the outcome of the individual in the treatment group is better than
the outcome of the individual in the control group.

� "Unfavourable": If the outcome of the individual in the treatment group is worse
than the outcome of the individual in the control group.

� "Neutral": If there is no di�erence between the outcomes of the two individuals.

� "Uninformative": Otherwise (e.g. if the outcomes are censored).

In our case, as we are working with a time-to-event variable, we consider that the vari-
able X (resp. Y) in the treatment group (resp. control group) can be right censored. Let ε
and η denote the censoring indicator of variables X and Y respectively. When εi = 0 (resp.
ηj = 0) indicates that Xi (resp. Yj) is a censored observation. This censored observation
is denoted by X ′i and Y

′
j . Let τ be the pre-speci�ed threshold. As Ozenne et al. explain

in [17], the threshold is used when "the di�erence between two variables needs to exceed
a clinically relevent threshold". It can be a function of the precision with which X (resp.
Y) is measured.

Table 2.3 shows how the di�erent combinations of two outcomes can �ll in the di�erent
categories.
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Table 2.3: Generalized pairwise comparisons

for a time-to-event

(εi, ηj) Pairwise comparison Pair is
(1,1) Xi − Yj > τ favourable

Xi − Yj 6 −τ unfavourable
|Xi − Yj| < τ neutral

(0,1) X ′i − Yj > τ favourable
X ′i − Yj 6 −τ uninformative
|X ′i − Yj| < τ uninformative

(1,0) Xi − Y ′j > τ uninformative
Xi − Y ′j 6 −τ unfavourable
|Xi − Y ′j | < τ uninformative

(0,0) X ′i − Y ′j > τ uninformative
X ′i − Y ′j 6 −τ uninformative
|X ′i − Y ′j | < τ uninformative

We de�ne a pairwise indicator, for the pair formed by the ith individual (i = 1, ..., nTrt)
in the treatment group and the jth individual (j = 1, ..., nCtr) in the control group.

pij =


+1 if the pair is favourable
0 if the pair is neutral
−1 if the pair is unfavourable.

Now, thanks to the pairwise indicator, we can de�ne the net di�erence which allows
us to test the null hypothesis. The "proportion in favour of treatment", also called net
bene�t, denoted by ∆?, is the net di�erence between the number of favourable pairs and
the number of unfavourable pairs divided by the total number of pairs. Then, the net
bene�t can be expressed by

∆? =

∑nTrt
i=1

∑nCtr
j=1 pij

nTrt · nCtr
.

We can interpret the net bene�t according to its value as follows:

� If ∆? = 1 then the treatment group is uniformly better than the control group.

� If ∆? = −1 then the control group is uniformly better than the treatment group.

� If ∆? = 0 then there is no net di�erence between the groups.

As the last interpretation indicates, if there are no net di�erences between groups, then
∆? = 0. Hence, we can express the null hypothesis that there are no di�erences between
survival curves as the net bene�t equals 0.
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To test this new null hypothesis, a randomization test can be used. To do so, we need a
large number, say S, of identical simulations to the real experiment under analysis. Hence,
all individuals' data remains unchanged except the allocation of their treatment group
(treatment or control), which is randomly re-allocated. Therefore, we de�ne ∆?

i which is
the proportion in favor of treatment in the ith simulated experiment.

The type I-error of the randomization test can be calculated on the asymptotic nor-
mality of the empirical distribution on ∆? under the new null hypothesis i.e. ∆? = 0. The
standard deviation of the empirical distribution of ∆? is

σ =
1

2

(∆?
1−α

2
−∆?

α
2
)

Z1−α

where Z1−α is the (1 − α) percent standardized normal variable, ∆?
α
2
is the value of

∆?
i (i = 1, ..., S) that leaves at most α/2 percent values of ∆?

i to its left (i.e. ∆?
i ≤ ∆?

α
2
) and

∆?
1−α

2
the value that leaves at most α/2 percent values of ∆?

i to its right (i.e. ∆?
1−α

2
≤ ∆?

i ).

Then the p-value is equal to Φ(−∆?
obs

σ
) for a one-sided test and 2 Φ(−∆?

obs

σ
) for a two-

sided test, where Φ(.) is the standard normal cumulative distribution function.

All we have done to date does not take into account the "Uninformative" pairs which
often occur when both outcomes are censored. Therefore, the net bene�t can be reviewed
to include the "Uninformative" pairs in the test. Two new notations are introduced, time-
to-event denoted by x0

i and y0
j and time-to-observation denoted by xi and yj. We can

update the de�nition of the censoring indicator as follows:

εi =

{
1 if xi = x0

i

0 if xi < x0
i

ηi =

{
1 if yj = y0

j

0 if yj < y0
j .

Then we can also update the de�nition of survival function with the new notation as

STrt(t) = P[x0
i > t] and SCtr(t) = P[y0

j > t].

Based on the Kaplan-Meier estimate of the survival function, we get

P[x0
i > t|xi, εi = 0] =

ŜTrt(t)

ŜTrt(xi)
.

Then, we calculate a new pairwise score for each combination of {xi, yj, εi, ηj}:

sij = P(x0
i > y0

j + τ)− P(y0
j > x0

i + τ).
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When a pair can be categorised as favourable or unfavourable then sij takes the value -1
or 1 and for other pairs, sij ∈ [−1, 1]. We can then build Table 2.4 which shows all the
values of the pairwise score according to each combination of {xi, yj, εi, ηj}. In appendix
C, all the details concerning the formulae in each row are explained.

Table 2.4: Value of sij for pairwise comparison of a time-to-event outcome.

(εi, ηj) xi − yj > τ xi − yj < −τ |xi − yj | < τ

(1, 1) 1 -1 0

(0, 1) 1
ŜTrt(yj + τ) + ŜTrt(yj − τ)

ŜTrt(xi)
− 1

ŜTrt(yj + τ)

ŜTrt(xi)

(1, 0) 1− ŜCtr(xi + τ) + ŜCtr(xi − τ)
ŜCtr(yi)

-1 − ŜCtr(xi + τ)

ŜCtr(yi)

(0, 0) 1− ŜCtr(xi − τ)
ŜCtr(yj)

−
∞∫

A

ŜTrt(t+ τ)

ŜTrt(xi)ŜCtr(yj)
dŜCtr(t) −

∞∫
A

ŜTrt(t+ τ)

ŜTrt(xi)ŜCtr(yj)
dŜCtr(t)

−
∫ ∞

B

ŜTrt(t+ τ)

ŜTrt(xi)ŜCtr(yj)
dŜCtr(t) −

∞∫
D

ŜCtr(t+ τ)

ŜTrt(xi)ŜCtr(yj)
dŜTrt(t) +

∫ ∞

C

ŜCtr(t+ τ)

ŜTrt(xi)ŜCtr(yj)
dŜTrt(t)

+

∫ ∞

C

ŜCtr(t+ τ)

ŜTrt(xi)ŜCtr(yj)
dŜTrt(t) +

ŜTrt(yj − τ)
ŜTrt(xi)

− 1

where A = {t > yj : t ∈ {yj} and δj = 1}, B = {t > xi − τ : t ∈ {yj} and δj = 1},
C = {t > xi : t ∈ {xi} and δi = 1} and D = {t > yj − τ : t ∈ {xi} and δj = 1}.

This score can be seen as the probability of a random patient in the treatment group
having a "better outcome" than a random patient in the control group minus the opposite
probability. The updated new net bene�t is given by

∆? =
1

nTrt · nCtr

nTrt∑
i=1

nCtr∑
j=1

sij.

Then, we apply the same method to calculate the p-value by replacing ∆? by the updated
one.

In the next chapter, in the simulation study, we use the R-function "BuyseTest" with the
following parameters: data, treatment, endpoint, type, threshold, censoring, method.tte,
n.resampling, cpus. The parameter treatment, endpoint and censoring correspond to the
name of the column corresponding respectively to treatment group, time and event. As
already mentioned, if we work with time-to-event observation, then the parameter type
is equal to "timeToEvent". We choose two thresholds, the �rst one is equal to 0 and
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the second to 1. We take the method of "Peron" for the parameter method.tte because
it deals with uninformative pairs. We use one thousand resampling then the parameter
n.resampling equals to 1000. We use the maximum of cpus, so the parameter cpus is ini-
tialised at "all". This method is denoted according to the value of the threshold: if the
threshold is 0 (resp. 1), we denoted it by BT0 (resp. BT1).

During the simulation, we discovered some types of data where the R-function "Buy-
seTest" produced some errors. Discussion with L. Peron and M. Ozenne resulted is then
discovering an inconsistency in the code revealed by our data and they improved the R-
function correspondingly.

Below, some properties derived by Peron, Buyse et al. are introduced in [17].

Properties 2.3.0.1.

� Under proportional hazard, the extended method is less powerful than the logrank test.

� This method depends on the threshold which must be prede�ned according to the clin-
ical context.

� In the case of non-proportional hazards, during some simulations, authors of [17] have
noticed that when the treatment e�ect increases over time, the extended procedure is
more powerful than standard procedure. However, when the treatment e�ect decreases
over time, the extended procedure is less powerful than other standard procedures.

� The extended procedure is more e�cient to detect time-to-event di�erence than the
standard procedure of generalised pairwise comparison when the proportional hazard
assumption holds or in case of late e�ect.

2.4 Weighted logrank test

This section is written based on Peckova and Fleming [18] and Lee [19].

As the logrank test is the most powerful test under proportional hazard assumption,
the weighted logrank test can be chosen when the proportional hazard assumption is in
doubt. In such situations, the weight can be selected in order to maximize the power.

In this section, we �rst introduce some notations. Then we de�ne the statistic test
and the di�erent types of weight function that we can apply according to the shape of the
curve, i.e. early e�ect or late e�ect. Finally, we detail the R-function that we used in the
simulation and some properties are presented.

Consider Tij the independent, positive random variables where i and j are the subscripts
that respectively relate to the groups (i.e. i ∈ {Trt, Ctr}) and a speci�c time-to-event ac-
cording to the groups (i.e. j = 1, ..., ni). Let Cij be the independent censoring variables
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which are also independent of the survival time Tij. The available data consist of the pair
(Xij, δij), i ∈ {Trt, Ctr}, j = 1, ..., ni where Xij = min(Tij, Cij), and δij = I(Tij 6 Cij) is
the censoring indicator.

Let denote Ni be the number of failures in group i before or at time t and Yi be the
number at risk in group i at time t. These two values are de�ned as follows:

Nij(t) = δij I(Xij 6 t), N i(t) =

ni∑
j=1

Nij(t)

Yij(t) = I(Xij > t), Yi(t) =

ni∑
j=1

Yij(t).

We can correspond Ni to Oi and Yi to the sum of ni over time when we use the logrank
notations.

Now we have all the notations to de�ne the weighted logrank test statistic. Therefore,
the weighted logrank statistic can be expressed for all t > 0 as

WLR =

√
nTrt + nCtr
nTrt nCtr

∫ ∞
0

W (t)
Y Trt(t)Y Ctr(t)

Y Trt(t) + Y Ctr(t)

(
dNTrt(t)

Y Trt(t)
− dNCtr(t)

YCtr(t)

)
, (2.5)

where W(t) is a bounded nonnegative weight function.

The estimator of the variance of W under the null hypothesis, i.e. there is no di�erence
between survival curves, is given by [18] and [20]:

σ̂2 =

∫ ∞
0

K2(t)
Y Trt(t) + Y Ctr(t)

Y Trt(t)Y Ctr(t)

(
1− ∆NTrt(t) + ∆NCtr(t)− 1

Y Trt(t) + Y Ctr(t)− 1

)
× d(NTrt(t) +NCtr(t))

Y Trt(t) + Y Ctr(t)
(2.6)

where K(t) =

√
nTrt + nCtr
nTrtnCtr

W (t)
Y Trt(t)Y Ctr(t)

Y Trt(t) + Y Ctr(t)
and ∆Ni(t) = Ni(t)− lim

u→t
Ni(u).

Then, the following test statistic is proposed by [18] for the comparison of two survival
curves:

X2 =
(WLR)2

σ̂2
. (2.7)

At signi�cance level α, we reject the null hypothesis when X2 > χ2
1−α where χ2

1−α is the
quantile 1− α of the Chi-squared distribution.

In the chapter 3, the Fleming and Harrington's weight [21] is used as W (t) in equa-
tion (2.5) for the simulation study. This weight can be adaptive according to the shape of
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the curves. We obtain the statistic test proposed by Lee [19] when we replace W (t) in the
equation (2.5) by the Fleming-Harrington weight

W (t) = (Ŝ(t−))ρ(1− Ŝ(t−))γ, (2.8)

with Ŝ(t−) being the left-continuous Kaplan-Meier estimate for the survival function based
on the pooled survival data [22], the exponents, ρ and γ, can take di�erent values according
to whether we want to put more weight on early departure or late departure. Indeed, when
ρ = 0 and γ = 0 we obtain the logrank statistic test exactly. If we take ρ = 1 and γ = 0
then it gives more weight to early departure, whereas if we take ρ = 0 and γ = 1 then it
gives more weight to departure which occurs later in time.

In the next chapter, we use the R-function "wtdlogrank" with the following parameters:
formula, data, WtFun, param, sided. The formula corresponds to Surv(time, event) ∼ trt
where the function "Surv" creates a survival object according to the treatment. The pa-
rameter data correspond to the dataset that we use for the simulation. The parameter
WtFun equals "FH" is reference to Fleming Harrington's weight. Then the parameter
param is related to the parameter WtFun. Indeed, the Fleming Harrington's weight uses
two parameters: ρ and γ. So the parameter param speci�es the value of ρ and γ. In the
simulation study, we use (ρ, γ) = (0, 1) and we denote this method by G01. Furthermore,
we use (ρ, γ) = (1, 0) and we denote this method by G10. Finally, the value of the param-
eter sided is 2.

Below, some properties based on simulation studies and example in [19] are introduced.

Properties 2.4.0.1.

� Under proportional hazard, the logrank test, G01 and G10 achieve the nominal 0.05
level in the con�guration with di�erent sample size (20, 50 and 70) and with various
censoring patterns (0%, 20%, 40% and 60%).

� Authors of [19] con�rm that the logrank test, written using W (t) with ρ = 0 and
γ = 0, is the most powerful test when the proportional hazard is checked.

� When the con�guration illustrates an early e�ect, G10 is the most powerful test in
any case of sample and censoring patterns. Authors of [19] have observed the same
with G01 in the con�guration, illustrating a late e�ect.

� On a real application, the survival curves cross and authors of [19] have obtained
results indicating that G10 does not reject the null hypothesis (1.10) whereas G01
shows a signi�cant di�erence in the two groups.

� Detecting which value of ρ and γ to be used is still an issue.
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2.5 Adaptive weighted logrank test

This section is written based on Yang and Prentice [23].

When the hazard ratio is not proportional, the adaptive weight gives back the variance
from proportionality and produces an improvement in power compared to the logrank test.
The adaptive weights are obtained by �tting the model of Yang and Prentice to the data.

In this section, the same notations as above are used, and the model developed by Yang
and Prentice, used to de�ne the adaptive weight, is described. Then, a statistical test to
evaluate the null hypothesis is proposed and the R-function used in the next chapter is
described. Finally, some properties are introduced.

The model of Yang and Prentice [24] enables us to provide a more accurate description
of the data in certain non-proportional hazard situations. This model can be developed as
follows:

Let λCtr and λTrt denote the hazard function for the two groups respectively and sup-
pose that these functions belong to a parametric family {λθ, θ ∈ Θ}. Yang and Prentice
proposed a model in which

λTrt(t) =
θ1θ2

θ1 + (θ2 − θ1)SCtr(t)
λCtr(t), t < τ0 = sup{t : SCtr(t) > 0} (2.9)

where θ1 and θ2 are positive.
Under this new method, the hazard ratio between the two groups is non-constant.

Indeed, at time t < τ0 it is given by

λTrt(t)

λCtr(t)
=

θ1θ2

θ1 + (θ2 − θ1)SCtr(t)
, (2.10)

which clearly depends on θ1, θ2 and SCtr(t). Notice that if θ1 = θ2 then we get a constant
ratio that leads to a proportional hazard model. Moreover, this ratio is monotonically
increasing if θ2 > θ1 and inversely, monotonically decreasing in the inverse case, i.e. θ1 > θ2.
Under this model,

θ1 = lim
t↓0

λTrt(t)

λCtr(t)
and θ2 = lim

t↑τ0

λTrt(t)

λCtr(t)
.

We can interpret θ1 and θ2 as the short term and long-term hazard ratio respectively. When
θ1 6= θ2 and one is included in the interval formed by θ1 and θ2, the two hazard functions
cross.

To test the hypothesis of no-treatment e�ect, we can de�ne β1 = log(θ1) and β2 =
log(θ2), and take β1 = γ1θ and β2 = γ2θ. The test is the form of equality (2.5) with weight
function

Ω = γ1SCtr + γ2(1− SCtr) (2.11)
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We notice that we get the same result for the proportional hazard model if we take
γ1 = γ2; this implies that Ω is a constant, in which case the logrank test is optimal.

In Appendix D, we show that

Ω = lim
θ→0

(1− λCtr
λTrt

)

θ
(2.12)

then we can take as a weight:

Ω1 =
λ̂Ctr

λ̂Trt

where the estimator of the hazard functions is calculated by �tting the model of Yang and
Prentice to the data. Hence, this weight depends on the estimated hazard ratio. We can
also de�ne a new weight: Ω2 = 1/Ω1. The technical details to calculate the weight function
are given in [23].

From [23], we can use the following test to reject the null hypothesis H0 when

max(|X2
Ω1
|, |X2

Ω2
|) > Z1−α/2

where X2
Ω1

and X2
Ω2

is the standardised statistic from equation (2.7) with weights Ω1 and
Ω2 respectively, and Z1−α/2 is the upper 100(1− α/2)th percentile of the standard normal
distribution.

The main property described in [23] is that the adaptive method has better power than
the logrank test under non-proportional hazard alternatives.

In the next chapter, we use the R-function "YPmodel.adlgrk" using only the dataset.
This method is denoted by the abbreviation AWLR.

Below, we show properties which result from simulation studies and example in [23]

Properties 2.5.0.1.

� This method is more powerful than the logrank test across several non-proportional
hazard con�gurations such as early and late e�ects, and cross survival curves.

� The main advantage of this method is that we obtain the logrank test if the hazard
ratio is constant, i.e. if the proportional hazard is checked.

2.6 Weighted Kaplan-Meier test

Pepe and Fleming introduced the weighted Kaplan-Meier test in 1989-1991[25]. In this sec-
tion, based on Uno et al. [26], we will describe the updating of the weighted Kaplan-Meier
test. First, we will de�ne Pepe and Fleming's statistic test then we will derive from this
test two other statistic tests. Finally, we describe the R-function used in the next chapter
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and introduce some properties.

The weighted Kaplan-Meier statistic test developed by Pepe and Fleming is

WKM =

√
nCtr nTrt
nCtr + nTrt

∫ τ

0

W (t)D̂(t)dt, (2.13)

where D̂(t) = ŜTrt(t) − ŜCtr(t), ŜTrt(·) and ŜCtr(·) are the Kaplan-Meier estimators

for the treatment and control group respectively. τ = sup
[
t : min{K̂Ctr(t), K̂Trt(t)} > 0

]
1,

K̂i(.) is the left-continuous version of the Kaplan-Meier estimator for the censoring survival
function for the ith groups, ni is the sample size in group i with i ∈ {Trt, Ctr} and W (.) is
the data-dependent weight function. Pepe and Fleming considered two weighting designs:

W1(t) =
K̂Ctr(t)K̂Trt(t)

q̂CtrK̂Ctr(t) + q̂TrtK̂Trt(t)
, (2.14)

and

W2(t) =

√
K̂Ctr(t)K̂Trt(t)

q̂CtrK̂Ctr(t) + q̂TrtK̂Trt(t)
, (2.15)

where q̂i is the proportion of subjects belonging to group i. This weighting scheme
depends only on the censoring distribution.

Taking W (t) = D̂(t) in this way, we put more weight at time t where the di�erence
between the two curves is "large". However, the distribution of the statistic test is similar
to a "Chi-square" statistic and tends to have a rather long right tail under the null hy-
pothesis, i.e. there is no di�erence between two survival curves.

In the following, the aim is to obtain a statistic test distribution such that, under the
null hypothesis, this distribution has a short tail and under other alternatives, the observed
test statistic tends to be large and then rejects the null hypothesis.

We consider again, as in section 2.4, the available data as the pair (Xij, δij), i ∈
{Trt, Ctr}, j = 1, ..., ni, where Xij = min(Tij, Cij) and δij = I(Tij 6 Cij) is the cen-
soring indicator. Let D(t) = STrt(t) − SCtr(t) denote the di�erence between curves at
any time and [0, ς] be a given time interval. Furthermore, we consider that P(Xi > ς) >
0, i ∈ {Trt, Ctr}. The null hypothesis can be written as D(t) = 0, for t ∈ [0, ς]. Now, let
D̂(·) = ŜTrt(·) − ŜCtr(·), σ̂(·) be its standard error estimate. Then Z(·) = D̂(·)/σ̂(·) has
an asymptotic standard normal distribution under the null hypothesis. We replace D̂(t) in
the equation (2.13) by Z(t), then we obtain a new statistic test

V =

∫ ς

0

W (t)Z(t)dt, (2.16)

1We can consider τ as the minimum of the largest censored observation in each of the two groups.
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where W (·) is again a data-dependent weight function. Notice that we de�ne Z(t) = 0
for D̂(t) = σ̂(t) = 0 that means ŜTrt(t) = ŜCtr(t) = 1. That happens when no events occur
at time t. With this statistic test, we still have a distribution similar to a "chi-square"
with a rather long right tail under the null hypothesis and which for speci�c alternatives
does not work well. When W (.) is a constant function, the distribution of the test is more
a standard normal distribution with its center around zero and a short tail under the null
hypothesis. However, this is powerful when Z(t) is constant over [0, ς]. In this state, we
need to �nd a weight function such that the statistic test distribution under the null hy-
pothesis has a short tail but the observed V is larger under the alternative. Uno et al.
suggested two solutions to respect the request of the statistic test distribution.

First, let c ∈ [0, η], where η is a constant2. Let Wc(t) = max{Z(t), c} and

V1(c) =

∫ ς

0

Wc(t)Z(t)dt. (2.17)

In practice, c is usually �xed at 1.65. The choice of c is not obvious a priori ; indeed
the choice of c = 1.65 as made above may not work well in a case where D(.) is positive
for a large portion of time points then Z(.)'s are less than 1.65.

In appendix E, we show that �x c at 1.65 can be good choice in certain case.
The choice of c is not obvious a priori ; indeed the choice of c = 1.65 as made above

may not work well in a case where D(.) is positive for a large portion of time points then
Z(.)'s are less than 1.65.

Therefore, Uno et al. in [26] propose an approach to choose c adaptively in order to
build a new test statistic based on {V1(c), 0 6 c 6 η}.

In appendix E, this approach of the choice of c is explained in general way. In prac-
tice, we take {ξij, i ∈ {Trt, Ctr}, j = 1, ..., ni} a random sample from a standard normal
distribution and the distribution of V1(c) under the null hypothesis can be approximated
by generating M sets of {ξij}. Then for each realised set {ξij}, we calculate

V ?
1 (c) =

∫ ς

0

W ?
c (t)Z?(t)dt, (2.18)

where Z?(·) = (QT (·)−QC(·))/σ̂(·) and W ?
c (·) = max{Z?(·), c}.

We denote D as the set of M realisations of {V ?
1 (c), c ∈ [0, η]} which is considered as a

reference set for the new test. Then, using the reference set D, we get the corresponding
P (c) 3 denoted by P ?(c). Furthermore, the distribution of Pb = min{P (c) : c ∈ [0, η]}
under the null hypothesis can be estimated using the M realisations of P ?

b = min{P ?(c) :

2η is a positive constant, usually η = 4 works well.
3Where P (c) = SV1(c)(V1(c)) and SV1(c)(v) is the survival function of V1(c)
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0 6 c 6 η} which is based on the set {V ?
1 (c), c ∈ [0, η]}.

The bona �de p-value of the new test is then given by P(P ?
b < pb) where pb = min{P (c) :

c ∈ [0, η]}.
Another statistic test proposed by Uno et al. in [26] is

V2(c) =

∫ ς

0

Wc(t)Z(t)dN(t), (2.19)

where N(t) =

∑C
i=T

∑ni
j=1 I(Xij 6 t)δij

nTrt + nCtr
.

N(t) in the equation (2.19) is used as a weighting function of Z(·). Indeed, the weight
is huge when there are many observed events in the time intervals. We can use the same
approach to obtain the bona �de p-value corresponding to V2(c).

In the next chapter, we use the R-function "survAWKMT2" with the following param-
eters: indata, tau, nmethod, seed, v1, v2, test. The parameter indata corresponds to the
dataset. The parameter tau equals the maximum of the observed time. nmethod corre-
sponds to the number of resampling and for the simulation study, 1000 iterations for the
resampling are choosen. We take the value b*123+123 for the seed where b corresponds
to bth iteration in the simulation study. v1 and v2 are initialised at TRUE and test at
"2-side". Then we obtain the p-value of each statistic test. We denote V1 and V2 the
abbreviation corresponding to the statistic test in the equations (2.17) and (2.19). More-
over, we denote BFV1 and BFV2 the abbreviation corresponding to the statistic test in
the equation (2.18) and the one corresponding to V ?

2 .

Below, some properties are introduced based on example and simulation studies in [26].

Properties 2.6.0.1.

� These tests automatically adjust the weighting functions without pre-specifying weights;
this implies that these tests are not restricted to only being powerful for speci�c cases
of non-proportional design such as early orlate e�ect, or cross curves.

� For such simulations, V1 and V2 are more powerful than some other statistical tests
which might be expected to be more powerful than the logrank test in some non-
proportional con�gurations.

� In the simulation studies, V2 performed well when in the presence of early e�ect, and
V1 appeared to be the most powerful in general terms.

37



Chapter 3

Control of the type I-error

Previously, we described the logrank test which is the best test when the proportional
hazard assumption is respected. We have explained other methods for use in the case of
violation of the assumption. In the following, we will compare these methods with the
logrank according to the type I-error. The type I-error occurs when the null hypothesis
is true but is rejected. The probability of rejecting the null hypothesis given that it is
true is called the signi�cance level or the type I-error rate. Let α denote the signi�cance
level. Here, we take α = 0.05 which means there is 5% risk of incorrectly rejecting the null
hypothesis.

In this chapter, we will �rst describe the simulation design, then discuss the results and
�nally establish a conclusion.

3.1 Simulation data

Here, three scenarios with two survival curves representing the survival distributions of
the treatment and control group are discussed. In the �rst scenario, the survival functions
are exactly the same in both groups. In the second scenario, the two survival curves cross
and the true value of the logrank test statistic equals zero. In the third scenario, the two
survival curves cross and the expected mean survival time is the same in both groups.
Below, the �gure shows two survival distributions for the three scenarios.

In the �rst scenario, both curves follow an exponential distribution with mean 1.8. The
�rst and second scenarios use the same principle to generate data described as follows: the
survival distributions are simulated using the principle created by Bender, Augustin and
Blettner [27]. Given the hazard function, the simulated survival time is given by

T = Λ−1[−log(U)], U ∼ Unif [0, 1], (3.1)

where Λ is the cumulative hazard function (see de�nition 1.1.3).
Then for the treatment distribution in both scenarios I and II, we take the following

hazard function
λTrt(t) = 0.65 + 2t. (3.2)
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.
In the second scenario, the hazard function of the control group is given by

λCtr(t) = 0.01 + 4t− 0.7878264t2 (3.3)

where the quadratic coe�cient is calculated such that the value of the logrank test
statistic equals 0. In the R-code section, the function "�nd_d" returns the logrank statistic
which depends on the value of quadratic coe�cient. Then, the function "uniroot" is used
to �nd the value of the quadratic coe�cient in order to have the condition that the logrank
statistic equals 0.

In the third scenario, the hazard function of the control group is given by

λCtr(t) = 0.1 + 3.567035t (3.4)

where the linear coe�cient is calculated such that the expected mean survival time is
the same in both groups. In the R-code section, the function "�nd_d" returns the dif-
ference of the expected mean survival time in both groups which depends on the value of
the linear coe�cient. Then, the function "uniroot" is used to �nd the value of the linear
coe�cient in order to have the condition that the di�erence of the expected mean survival
time in both group equals 0 i.e. the expected mean survival time is the same in both groups.

The �rst scenario is created to illustrate the null hypothesis. In order to be as realistic
as possible, the second and the third scenarios mimic the patterns from [28].

3.2 Simulation design

For the simulation, 1000 iterations are taken, then the estimated type I-error is calculated
as the proportion of 1000 generated random samples in which we reject the null hypothesis
using a two-sided test at the 0.05 signi�cance level.

We consider three censoring con�gurations with 380 events within each of the con�gu-
rations. This number of events is calculated based on the number of events needed to have
a power of 90% to observe a hazard ratio of 0.75.

In the �rst con�guration, we consider no-censoring and the sample size n = 380. In the
second con�guration, we consider small censoring, i.e. 20% of censoring and the sample
size n = 475. In the third con�guration, we consider substantial censoring i.e. 50% of
censoring and the sample size n = 760. In addition, the duration for admission in the
study is one year for the no-censoring con�guration while in the censoring con�guration it
is three years.

3.3 Results

In this section, the survival methods logrank test (LR), restricted mean survival time
(RMST), generalised pairwise comparison with τ = 0 (BT0) and τ = 1 (BT1), weighted
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Figure 3.1: First scenario Figure 3.2: Second scenario

Figure 3.3: Third scenario

logrank test with (ρ, γ) = (0, 1) (G01) and (ρ, γ) = (1, 0) (G10), adaptive weighted logrank
test(AWLR), weighted Kaplan-Meier test using V1(c) (V1), V2(c) (V2), the bona �de p-
value with V ?

1 (c) (BFV1), V ?
2 (c) (BFV2) are compared according to the type I-error based

on the di�erent scenarios. Table 3.1 shows the simulation results of the estimated type
I-error with corresponding 95% con�dence interval.
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3.4 Discussion

In scenario I, where the survival functions are exactly the same in both groups, no rates of
type I-error exceed 7%. When there is no censoring, G01, RMST, BT1 and BFV1 better
control type I-errors than LR. AWLR and V1 have similar rates to LR and all others have
slightly in�ated type I-errors. We observe that when there is 20% of censoring, G01 remains
the best control rate and all others stay equivalent to the LR except for V1 and V2. When
there is 50% of censoring, RMST, BT0 and BFV1 control the type I-error. All others are
similar rates to LR except for BT1 which has a slightly in�ated type I-error (6.3%). We
can conclude that in this scenario, all methods are equivalent to the LR according to the
type I-error. We reach the same conclusion as [14]. Indeed, in [14], the authors compared
LR with RMST and concluded that both tests have similar type I-errors, whereas in [3],
the authors compared LR, G10, G01 and AWLR and concluded that both had similar
type I-errors except for AWLR which had in�ated type I-error. In our study, AWLR has
a similar type I-error to the others. This may be caused by the fact that we do not know
on which simulation the authors tested the type I-error. In [2], the authors compare LR,
G01, G10 and conclude that G01 has a type I-error which is slightly in�ated. However,
in our case, G01 has a type I-error close to the nominal level and exceeds it by 0.2% only
when there is 50% of censoring. In [26], the authors compare LR, V1 and V2. They show
a similar rate to what we have. Indeed, they observed similar type I-error rates for V1 but
the rate corresponding to V2 is smaller than the rate that we observed in our study sim-
ulation. Furthermore, we can notice that each con�dent interval for each method in each
censored con�guration contains the nominal level of 5%. We conclude for this scenario that
the LR, RMST, AWLR and BFV1 are relatively conservative, whereas, G01, G10, BT0,
V1, BFV2 and V2 statistics gradually approach the nominal level of 5% as the censoring
rates increase and BT1 has a slightly in�ated type I-error as the censoring rates increase.

In scenario II, at �rst sight, we notice that the type I-error corresponding to the weighted
Kaplan-Meier test (V1, V2, BFV1, BFV2) explodes the type I-error. Indeed, the type I-
error rate exceeds 45% which means that in at least 45% of cases, this method rejects
the equality of the survival function. In the case of no censoring, the logrank test (LR)
correctly controls the type I-error with a rate of 4.6%. However, BT1 has the smallest the
type I-error rate, at 4.4%. These two tests are followed by RMST with a slightly in�ated
type I-error of 11.1%. All other tests have in�ated type I-errors that exceed 19%. The
more censoring increases, the more type I-errors in�ate for LR, AWLR and BT1. LR,
RMST and BT1 remain methods which have the lowest type I-errors. In the case of 20%
of censoring, BT1 has the smallest type I-error (4.9%) followed by the LR test with 7%.
This order remains the same in the case of 50% of censoring. Moreover, in the last case
of censoring, LR, RMST, BT0 and BT1 have a similar type I-error rate around 7%. It
was expected that LR controls type I-error better than other methods when no censoring
occurs because the survival curves were built such that the true value of the logrank test
statistic is equal to zero. Moreover, in this scenario, BT0 has the smallest type I-error
rate in each censoring con�guration. Furthermore, RMST, G10 and BT0 have a simi-
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lar behaviour. Indeed, when there is 20% of censoring the type I-error grows compared
to the case of no censoring whereas when there is 50% of censoring, the type I-error de-
creases and the rate is smaller than the rate in the case of no censoring for RMST and BT0.

In scenario III, at �rst sight, we notice that the type I-error corresponding to the
weighted Kaplan-Meier test (V1, V2, BFV1, BFV2) and G01 explodes the type I-error.
Indeed, the type I-error rate exceeds 42%. As expected, when there is no censoring, RMST
controls the type I-error (5.4%) better than other methods because the nominal level 5% is
included in the con�dence interval. Indeed, in this scenario, the survival curves were built
such that the expected mean survival time is the same in both groups. However, LR, G10
and BT0 directly follow the RMST test with 9.7% and AWLR has a type I-error exceeding
30%. When there is 20% of censoring, RMST still controls the type I-error with 6.1% and
the nominal level 5% is included in its con�dence interval. LR directly follows RMST with
6.7% and the nominal level 5% is almost included in its con�dence interval. G10, BT0
and BT1 have a slightly in�ated type I-error that exceeds 10%. However, in the case of
50% of censoring, LR, RMST and BT0 better control type I-error ( 4.8%, 5% and 6.1%
respectively) followed by G10 with 8%. All other tests exceed 23%. Furthermore, we notice
as in the previous scenario that RMST, G10 and BT0 have a similar behaviour. Indeed,
they have an increased type I-error for 20% of censoring as the type I-error decrease at
50% of censoring and the rate is smaller than the rate when no censoring occurs.

To conclude this discussion, the weighted Kaplan-Meier test is not signi�cant to the
control of type I-error. As expected in scenarios II and III, LR and RMST correctly control
the type I-error in the case of no censoring which is caused by the building of the curves.
Moreover, in the second scenario, BT1 remains close to the type I-error rate of LR in
each censoring con�guration. The more censoring increases, the closer the LR and RMST
methods are according to the type I-error.
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Chapter 4

Application on real data

In this chapter, we apply the above survival methods to a real data example from [29].

4.1 Resected stage III melanoma

In 2011, Pegylated interferon alfa-2b (PEG-IFN-α-2b) was approved by the US food and
Drug administration for the adjuvant treatment1 of patients su�ering from melanoma. The
patients have microscopic or gross nodal involvement within 84 days of de�nitive surgical
resection, which also includes complete lymphadenectomy, based on the European Organ-
isation for Research and Treatment of Cancer (EORTC) 18991 trial outcome data. In this
trial, EORTC 18991, the treatment group corresponded to patients receiving the adjuvant
treatment with PEG-IFN-α-2b. At the beginning there were 1,256 patients with stage III
melanoma.

Admissible patients were aged 18 to 70 years with historically documented stage III
melanoma after complete regional lymphadenectomy. All patients were aware of whether
or not they were receiving the adjuvant treatmen. Patients were randomly selected in a 1:1
ratio to treatment group according to minimization techniques operated by the EORTC
data center. Patients were assigned to each group for a duration of 5 years of observation.
Table 4.1 shows the number of patients in each group as well as the number of events in
each group.

Table 4.1: Baseline characteristics

PEG-IFN-alpha-2b group Control group
Randomized 627 629
Number of events 384 406

1 Adjuvant therapy is an additional cancer treatment given after primary treatment in order to reduce
the risk of the cancer coming back.
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Figure 4.1 illustrates the relapse-free survival curves of patients from PEG-IFN-α-2b
and one from a control group. In [29], the assumption of proportional hazards was checked
and it was indicated that the curves were not proportional. Furthermore, Figure 4.1 shows
that the late e�ect is present which has already detailed in chapter 2. Indeed, the curves
are closed at the beginning and then are separated. This is what we usually observe in
immunotherapy.

Figure 4.1: Survival comparison of overall population

of relapse-free survival

4.2 Results

Now, we apply all methods to the real dataset. The corresponding p-value of the di�erent
methods developed in chapter 2 are listed in Table 4.2.

Firstly, it appears that the choice of approach has implications for whether or not a
statistically signi�cant e�ect is concluded. We also notice that G01 tends to reject the null
hypothesis (p-value=0.344) whereas G10 identi�es a signi�cant di�erence between the two
groups (p-value=0.026). This can be explained by the fact that G10 gives more weight
to departure which occurs late in time whereas G01 gives more weight to early departure.
In our case, we have a departure which occurs late in time, so G10 is more appropriate.
As expected according to the literature [13] and [30], the p-value of the LR and RMST
tests are closed and these methods do not reject the null hypothesis. Moreover, BFV1
does not provide evidence of a di�erence in treatment e�ect. However, at a 5% signi�cance
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level, AWLR, BT0, BT1, V1, V2 and BFV2 conclude that there are signi�cant di�erence
between the two groups. The literature [16] con�rms that in their example, LR failed to
show a signi�cant survival bene�t while BT showed a survival bene�t.

Table 4.2: EORTC 18991:P-values from the di�erent methods

LR RMST G01 G10 AWLR BT0 BT1 V1 V2 BFV1 BFV2

0.055 0.051 0.344 0.026 0.046 0.035 0.05 0.049 0.011 0.053 0.012
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Chapter 5

Conclusion

In cancer research, the proportional hazard assumption is often violated; particularly in
immunotherapy, because a pattern of delayed treatment e�ect is observed. As this as-
sumption is in doubt, the most popular statistical test, the logrank test, loses power, and
so other statistical methods have been developed in the literature which do not depend on
this assumption.

In this master's thesis, we �rst �xed the background of survival analysis with the def-
inition of survival function and hazard function. We demonstrated the main estimator of
survival function, known as the Kaplan-Meier estimator. Before describing the statistical
methods used in the simulation, we established the aim of testing the comparison of sur-
vival curves of two groups, treatment versus control and the di�erent types of patterns
which can appear when non-proportional hazard is observed. After that, the logrank test
was described and illustrated using the Gehan data.

Furthermore, �ve other statistical methods were described: restricted mean survival
time, generalised pairwise comparison, weighted logrank, adaptive weighted logrank and
weighted Kaplan-Meier tests. The restricted mean survival time di�erence is de�ned as
the di�erence in the area under the estimation of the survival function of treatment and
control groups. As the name of the method implies, this di�erence of area is restricted with
a pre-speci�ed threshold. This threshold is either speci�ed before the study or de�ned as
the minimum of the largest observed time in each of the two groups. The main advantage
of this method is the interpretability of this method from a clinical perspective such as loss
of life expectancy. Generalised pairwise comparison is an uncommon method to test the
null hypothesis. Indeed, this method takes pairs of individuals from each group, treatment
and control, and classi�es them into four groups: "Favourable", "Unfavourable", "Neu-
tral" and "Uninformative". From this we use a pairwise score which can be seen as the
probability of a random patient in the treatment group of having a "better outcome" than
a random patient in the control group minus the opposite probability. Then we obtain
the net bene�t, i.e. the proportion in favour of treatment, which allows testing of the
null hypothesis. Weighted and adaptive weighted logranks are an updating of the logrank
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method. The �rst one uses the Fleming Harrington weight. This weight can be adapted
according to the patterns of the survival curves. Indeed, according to the parameter of
the weight we can add more weight to early departure or more weight to departure which
occurs late in time. On the other hand, adaptive weight is based on the model of Yang and
Prentice. This new model provides a more accurate description of the data in certain non
proportional hazard situations. Finally, the weighted Kaplan-Meier test is the weighting
of the area of the di�erence between the Kaplan-Meier estimator of the survival curves
from treatment and control groups up to a certain threshold de�ned by the study. Four
di�erent statistics based on the di�erent weighted Kaplan-Meier estimators were described.

Then, we compared these six methods according to the type I-error in the simulation
study. We discussed three di�erent simulation scenario. In the �rst scenario, the survival
function was exactly the same in both groups. In the second scenario, the two survival
curves crossed and the true value of the logrank test statistics equalled zero. In the third
scenario, the two survival curves crossed and the expected mean survival time was the
same in both groups. In each scenario, three censoring con�gurations (0%, 20%, 50%) were
investigated. For each pattern, 1000 random samples were generated. From these simula-
tion studies, we noted that in the �rst scenario, regardless of the censoring rate, all type
I-errors were close to 5%. For scenario II, LR and BT1 correctly controlled the type I-error
which was expected for LR due to the structure of scenario II. The same observation was
made in scenario III for LR, RMST, G10 and BT0, and RMST was expected to be the best
method to control the type I-error because this scenario was built on this method. For
other situations, the type I-error rate was highly in�ated for V1, V2, BFV1 and BFV2.

Finally, an application to real data was conducted. The methods were applied to com-
pare survival data from the EORTC phase III clinical trial comparing adjuvant therapy
with pegylated-interfon-α-2b with an observation groups in stage III melanoma patients.
The relapse-free survival �gures and results of the comparison between the two treatment
groups were given. The conclusion drawn from the results on this dataset was that the
choice of the approach has implications on whether or not a statistically signi�cant e�ect
is reached.

At this stage of this master's thesis, we cannot a�rm that there is one method which
is adapted for the case of a non proportional hazard situation. A perspective to continue
this master's thesis is to compare all methods, except that related to the weighted Kaplan-
Meier test which had a highly in�ated type I-error rate, according to the type II-error.
This test of power had already been done to compare some methods in [3] and [2] but
only for crossed curves. The simulation for the type II-error could be curves which are
more realistic in an immunotherapy context, i.e. curves which illustrate a delayed e�ect.
Moreover, after investigating the power of the methods we could focus on the quality of
life in patients. Another perspective is to include methods such as a combined test [8] or a
cure model [7] which were not included in this master's thesis due to the lack of R-function.
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Appendix A

Other methods to estimate the

restricted mean survival time

Method 1: Pseudo-observations

We will �rst de�ne pseudo-observations in a general manner and then apply them to the
case of restricted mean survival time.

Pseudo-observations (or pseudo-values) are non-parametric leave-one-out methods which
enable estimation of the RMST [31].

Let X1, ..., Xn be i.i.d. copies of a random variable X and θ = θ(X) be a parameter of
the form

θ = E[φ(X)] =

∫
φ(x) dFX(x),

where φ(.) is some function of X.
Assume that we have, an unbiased estimator θ̂ = θ̂(X) of θ based on the entire sample

X= {X1, ..., Xn}. Then,
E[θ̂] =

∫
θ̂(x) dFX(x) = θ.

De�nition A.0.1. Let X1, ..., Xn be the i.i.d. random variables and let θ̂(X) be an unbi-
ased estimator of the parameter θ de�ned as before. For each Xj the pseudo-observation
is de�ned by

θ̂j(X) = nθ̂(X)− (n− 1)θ̂−j(X), j = 1, ..., n, (A.1)

where θ̂−j(.) is the estimate based on the sample without the observation j.

We can use the previous de�nition to estimate the restricted mean survival time µτ .
Let us begin by de�ning the function φ(.) and the parameter θ. The function φ(.) is given
by φ(X) = min(X, τ), and the parameter θ by µτ .
Using de�nition 2.2.1, µτ may be estimated by

µ̂τ =

∫ τ

0

Ŝ(t)dt,
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where Ŝ(t) is the Kaplan-Meier estimator (see de�nition 1.2.1). Then the jth pseudo-
observation is given by

µ̂τj =

∫ τ

0

Ŝj(t) dt

= n

∫ τ

0

Ŝ(t) dt− (n− 1)

∫ τ

0

Ŝ−j(t) dt j = 1, ..., n,

where Ŝ−j(t) is the pseudo-observation1 given by

Ŝj(t) = nŜ(t)− (n− 1)Ŝ−j(t),

where Ŝ−j(.) is the Kaplan-Meier estimator of S(.) based on the observations i 6= j.
Then,

µ̂τ =
1

n

n∑
j=1

µ̂τj,

µ̂τ is an unbiased estimator for the RMST when the Kaplan-Meier estimate is an unbiased
estimator of the survival function2.

This method is implemented in R using package "pseudo" and the function "pseu-
domean" to model the survival function based on the restricted mean.

Method 2: Flexible parametric survival model

To begin, the spline function [31] should be de�ned in order to estimate the cumulative
hazard function.

De�nition A.0.2. Let [a,b] be an interval on R and let ν={ν1, ..., νr} be a real number,
called knots, satisfying

a = ν0 < ν1 < ... < νr < b = νr+1

A function sν : [a, b]→ R is a spline function of order d if the following are satis�ed:

� sν(t) is a polynomial of order d on each interval [νi, νi+1], i = 0, ..., r.

� sν ∈ Cd−1[a, b] i.e. the spline sν(.) and its derivatives up to d−1th order are continuous
at all points in the interval [a, b] and in particular at all knots ν.

1 we take as φ(Xj) = I(Xj > t), j = 1, ..., n and the parameter θ = S(.) evaluated at time t
2 This happens when the censored survival time is, independent of participants' covariates, within

treatment groups.
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Royston and Parmar [32] proposed approximation of the baseline log cumulative hazard
function using the restricted cubic spline function3.

First, the log of the cumulative baseline hazard Λ0(t) is approximated using a function
of the log of time

ln Λ0(t) = γ0 + γ1s1(ln t) + ...+ γK0+1sK0(ln t)

where γi(i = 0, ..., K0 + 1) are the regression parameters and si(i = 1, ..., K0) is the ith

spline basis function.
Here, K0 denotes the number of distinct internal knots, which is the join-point in log

time of a pair of adjacent cubic polynomial segments.

The restricted mean survival time can be written as

µ̂τ =

∫ τ

0

S(t) dt =

∫ τ

0

exp(−Λ(t)) dt.

Taking ln Λ0(t) = s(ln t|γ, K0), then the log cumulative hazard function is given by

ln Λ(t) = s(ln t|γ, K0) + s(ln t|δ, K1)x+ βx.

where x presents the treatment arm indicator. The additional term s(ln t|δ, K1)x is taken
in account for the non-proportional hazards. The parameter γ = (γ0, ..., γK0+1) is the re-
gression coe�cient in the baseline spline function which has K0 knots; the δ = (δ1, ..., δK1)
is the regression coe�cient in the interaction spline function which has K1 knots. As the
model is parametric, the parameters can be estimated by the maximum likelihood ap-
proach.

The number of knots increasing implies that the model complexity is also increased.
Usually, 3 degrees of freedom are used for the baseline distribution i.e. K0 = 2.

This method is implemented in R using package "�exsurv" and the function "rmst_
generic" is a generic function to �nd the restricted mean of a distribution.

3Restricted cubic splines are splines that are restricted to be linear before the �rst knot and after the
last knot.
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Appendix B

Delta Method

This appendix is based on [33]. The delta method is a method which allows the user to
derive the variance of a function of an asymptotically normal random variable with known
variance.

The delta method is de�ned as follows:

De�nition B.0.1. Let X1, ..., Xn be random variables with mean µ and variance σ2. If√
n[Xn−µ]→ N(0, σ2) then for all functions g such that g′(µ) exist and is non-zero value,

we have √
n[g(Xn)− g(µ)]→ N(0, σ2(g′(µ))2).
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Appendix C

Derivation of the formula in Table 2.4

For each element in Table 2.4, we use the general formula:

sij = P(X0
i > Y 0

j +τ |Xi, Yj, X
0
i ≥ Xi, Y

0
j ≥ Yj)−P(Y 0

j > X0
i +τ |Xi, Yj, X

0
i ≥ Xi, Y

0
j ≥ Yj)
(C.1)

No censoring: (εi, ηj) = (1, 1)

In favour of treatment,

P(X0
i > Y 0

j + τ |Xi, Yj, X
0
i = Xi, Y

0
j = Yj) = Xi > Yj + τ,

=

{
1 if xi > yj + τ
0 otherwise.

In favour of control,

P(Y 0
j > X0

i + τ |Xi, Yj, X
0
i = Xi, Y

0
j = Yj) = Yj > Xi + τ,

=

{
1 if yj > xi + τ
0 otherwise.

Then, we get the �rst row,

sij =


1 if xi − yj > τ
−1 if xi − yj < −τ
0 otherwise.

Only Xi is censored : (εi, ηj) = (0, 1)

In favour of treatment,

P(X0
i > Y 0

j + τ |Xi, Yj, X
0
i > Xi, Y

0
j = Yj) = P(X0

i > Yj + τ |Xi, Yj, X
0
i > Xi),
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by applying the conditional probabilities formula,

=
P((X0

i > Yj + τ) ∩ (X0
i > Xi)|Xi, Yj)

P(X0
i > Xi|Xi, Yj)

,

using de�nition 1.1.1,

=
P(X0

i > max(Yj + τ,Xi)|Xi, Yj)

STrt(Xi)
,

=
STrt(max(Yj + τ,Xi))

STrt(Xi)

=


STrt(Xi)

STrt(Xi)
if xi > yj + τ

STrt(Yj + τ)

STrt(Xi)
otherwise,

=

 1 if xi > yjτ
STrt(Yj + τ)

STrt(Xi)
otherwise.

In favour of control,

P(Y 0
j > X0

i + τ |Xi, Yj, X
0
i > Xi, Y

0
j = Yj) = P(Yj > X0

i + τ |Xi, Yj, X
0
i > Xi)

= 1− P(X0
i > Yj − τ |Xi, Yj, X

0
i > Xi)

applying the previous result,

= 1−

 1 if xi > yj − τ
STrt(Yj − τ)

STrt(Xi)
otherwise,

=

 0 if xi > yj − τ

1− STrt(Yj − τ)

STrt(Xi)
otherwise.

Then we get the second row,

sij =


1 if xi − yj > τ
STrt(Yj + τ) + STrt(Yj − τ)

STrt(Xi)
− 1 if xi − yj < −τ

STrt(Yj + τ)

STrt(Xi)
otherwise.
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Remark C.0.0.1. Because the survival function is a non-negative decreasing function,

STrt(Yj + τ) < STrt(Xi) when |xi − yj| < τ, then 0 6 sij 6 1

and

STrt(Yj−τ) < STrt(Xi) and STrt(Yj+τ) < STrt(Xi) when xi−yj < −tau, then −1 6 sij 6 1.

Only Yj is censored : (εi, ηj) = (1, 0)

As treatment and control groups work symmetrically, we get the same formula for sij as
in the previous case by exchanging X0

i , Xi, STrt and Y
0
j , Yj, SCtr.

Xi and Yj are censored : (εi, ηj) = (0, 0)

In favour of treatment, when Xi > Yj + τ

by applying the law of total probabilities,

P(X0
i > Y 0

j + τ |Xi, Yj, X
0
i > Xi, Y

0
j > Yj)

= P((X0
i > Yj + τ) ∩ (Xi > Y 0

j + τ)|Xi, Yj, X
0
i > Xi, Y

0
j > Yj)

+ P((X0
i > Yj + τ) ∩ (Xi < Y 0

j + τ)|Xi, Yj, X
0
i > Xi, Y

0
j > Yj),

by applying conditional probabilities formula,

= P(Xi > Y 0
j + τ |Xi, Yj, X

0
i > Xi, Y

0
j > Yj)

+
P(X0

i > T 0
j + τ) ∩ (Xi < Y 0

j + τ) ∩ (X0
i > Xi) ∩ (Y 0

j > Yj)|Xi, Yj)

PX0
i > Xi, Y 0

j > Yj|Xi, Yj
,

= 1− SCtr(Xi − τ)

SCtr(Yj)
+

P((X0
i > Y 0

j + τ) ∩ (Xi < Y 0
j + τ)|Xi, Yj

STrt(Xi)SCtr(Yj)
,

by using P(A > B) = −
∫∞
−∞ SA(s)dSB(s) where A⊥⊥B,

= 1− SCtr(Xi − τ)

SCtr(Yj)
−
∫∞
Xi−τ P(X0

i > t+ τ)dP(Y 0
j > t)

STrt(Xi)SCtr(Yj)
,

= 1− SCtr(Xi − τ)

SCtr(Yj)
−
∫∞
Xi−τ STrt(t+ τ)dSCtrt(t)

STrt(Xi)SCtr(Yj)
.

When Xi < Yj + τ i.e. Yj > Xi − τ ,
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by applying the law of total probabilities,

P(X0
i > Y 0

j + τ |Xi, Yj, X
0
i > Xi, Y

0
j > Yj)

=
P((X0

i > Y 0
j + τ) ∩ (X0

i > Xi) ∩ (Y 0
j > Yj)|Xi, Yj)

P(X0
i > Xi, Y 0

j > Yj|Xi, Yj)

=
P((X0

i > Y 0
j + τ) ∩ (X0

i > Xi) ∩ (Y 0
j > Yj)|Xi, Yj)

P(X0
i > Xi|Xi)P(Y 0

j > Yj|Yj)

=
P((X0

i > Y 0
j + τ) ∩ (X0

i > Xi) ∩ (Y 0
j > Yj)|Xi, Yj)

STrt(Xi)SCtr(Yj)
.

As (X0
i > Y 0

j +τ)∩(Y 0
j > Yj)⇒ X0

i > Yj+τ and (X0
i > Y 0

j +τ)∩(Yj > Xi−τ)⇒ X0
i > Xi

then (X0
i > Y 0

j + τ) ∩ (X0
i > Xi) ∩ (Y 0

j > Yj) = (X0
i > Y 0

j ) ∩ (Y 0
i > Yj),

=
P((X0

i > Y 0
j + τ) ∩ (Y 0

j > Yj)|Xi, Yj)

STrt(Xi)SCtr(Yj)
,

by using P(A > B) = −
∫∞
−∞ SA(s)dSB(s) where A⊥⊥B,

= −

∫∞
Yj

P(X0
i > t+ τ)dP(Y 0

j > t)

STrt(Xi)SCtr(Yj)
,

= −

∫∞
Yj
STrt(t+ τ)dSCtr(t)

STrt(Xi)SCtr(Yj)
.

In favour of control, as treatment and control groups work symmetrically, we get the
same formula as in the previous case by exchanging X0

i , Xi, STrt and Y
0
j , Yj, SCtr.

When Yj > Xi + τ i.e. Xi < Yj − τ ,

P(Y 0
j > X0

i + τ |Xi, Yj, X
0
i > Xi, Y

0
j > Yj)

= 1− STrt(Yj − τ)

STrt(Xi)
−

∫∞
Yj−τ SCtr(t+ τ)dSTrt(t)

SCtr(Yj)STrt(Xi)
.

When Yj < Xi + τ i.e. Xi > Yj − τ ,

P(Y 0
j > X0

i + τ |Xi, Yj, X
0
i > Xi, Y

0
j > Yj)

=
−
∫∞
Xi
SCtr(t+ τ)dSTrt(t)

SCtr(Yj)STrt(Xi)
.
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Then we get the last row,

sij =


P(X0

i > Y 0
j + τ |�, Xi > Yj + τ)− P(Y 0

j > X0
i + τ |�, Yj < Xi + τ)

P(X0
i > Y 0

j + τ |�, Xi < Yj + τ)− P(Y 0
j > X0

i + τ |�, Yj > Xi + τ)
P(X0

i > Y 0
j + τ |�, Xi < Yj + τ)− P(Y 0

j > X0
i + τ |�, Xi ∈ [Yj − τ, Yj < Xi + τ ])

=



1− SCtr(Xi − τ)

SCtr(Yj)
+
−
∫∞
Xi−τ STrt(t+ τ)dSCtr(t) +

∫∞
Xi
SCtr(t+ τ)dSTrt(t)

STrt(Xi)SCtr(Y j)
if xi − yj > τ

−1 +
STrt(Yj − τ)

STrt(Xi)
+
−
∫∞
Yj
STrt(t+ τ)dSCtr(t) +

∫∞
Yj−τ SCtr(t+ τ)dSTrt(t)

STrt(Xi)SCtr(Y j)
if xi − yi < −τ

∫∞
Xi
SCtrt(t+ τ)dSTrt(t)−

∫∞
Yj
STrt(t+ τ)dSCtr(t)

STrt(Xi)SCtr(Yj)
otherwise

Remark C.0.0.2. When Xi and Yj are censored, the following result is used to derive the
formula:

P(A > B) = −
∫ +∞

−∞
SA(s)dSB(s), A⊥⊥B.

Let us prove this equality:

By the Tower porperty we have,

P(A > B) = E[P(A > B|B)],

=

∫ +∞

−∞
P(A > B|B = s)dFB(s),

by the independency of the variable,

=

∫ +∞

−∞
P(A > s)dFB(s),

=

∫ +∞

−∞
SA(s)dFB(s),

= −
∫ +∞

−∞
SA(s)dSB(s).

57



Appendix D

Derivation of the limite 2.12

We express the equation 2.9 as follows

λTrt =
θ1θ2λCtr

θ1(1− SCtr) + θ2SCtr
. (D.1)

Thus,

1− λCtr
λTrt

=
θ1(1− SCtr) + θ2SCtr

θ1θ2

.

Moreover, we have
θ1 = exp(γ1θ) and θ2 = exp(γ2θ).

Then the limit becomes,

lim
θ→0

(1− λCtr
λTrt

)

θ

= lim
θ→0

θ1(1− SCtr) + θ2SCtr
θ1θ2θ

by L'Hôpital's rule, we get

= lim
θ→0

(γ1 + γ2) exp((γ1 + γ2)θ)− γ1 exp(γ1θ)(1− SCtr)− γ2 exp(γ2θ)SCtr
(γ1 + γ2) exp((γ1 + γ2)θ)θ + exp((γ1 + γ2)θ)

= γ1 + γ2 − γ1(1− SCtr)− γ2SCtr

= γ2(1− SCtr) + γ1SCtr

= Ω.
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Appendix E

Supplementary material of weighted

Kaplan-Meier test

E.1 Choice of c �x at 1.65

Let us �x c at 1.65, under the null hypothesis, since Z(t) ∼ N(0, 1) then Wc(t) ' 1.65 for
most of t ∈ [0, ς]. This implies that the distribution of V1(c) which can be considered as
a linear combination of dependent standard normal random variables, would not have a
long right tail. Moreover, under an alternative hypothesis, for a large observed Z(t), i.e.
Z(t) > 1.65, Wc(t) = Z(t), the observed V1(c) would also be large.

E.2 General approach to choose c adaptively

Let assume that we can generate a good approximation to the distribution of the process
V1(c) indexed by c ∈ [0, η] under the null hypothesis.

Let v1(c) be the realisation of V1(c) and its p-value p(c) which is calculated using the
approximation of the distribution of V1(c) under the null hypothesis. We de�ne the most
signi�cant p(c) in c ∈ [0, η] by pb = min{p(c) : c ∈ [0, η]}. Note that a small value of
pb would strengthen the alternative hypothesis. We want to choose the threshold value
c in order to have a statistical signi�cance based on pb. This means that we need to
�nd the null distribution of the random part of pb, Pb = min{P (c) : c ∈ [0, η]}, where
P (c) = SV1(c)(V1(c)) and SV1(c)(v) is the survival function of V1(c). Using the standard
martingale theory and the central limit theorem, it can be shown that Z(·) converges
in distribution to a limiting Gaussian process G(·) [34]. Uno et al. show in [26] that

V1(c) and P (c), as a process in c, converge weakly to φ(c) =
∫ ξ

0
max{G(t), c}G(t)dt and

U(c) = Sφ(c)(φ(c)) respectively.
A perturbation-re-sampling method can be used to empirically approximate the limiting

distribution under the null hypothesis. Therefore, the distribution of the process (Ŝi(t)−
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Si(t)), i = {T,C} can be approximated by following

Qi(t) = −Ŝi(t)
ni∑
j=1

[
1∑ni

k=1 I(xik > xij)
δij I(xij 6 t)ξij

]
, (E.1)

where xij is the observed value ofXij, δij is the censored indicator and {ξij, i ∈ {Trt, Ctr}, j =
1, ..., ni} is a random sample from a distribution with a mean equal to 0 and a variance
equal to 1.
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R-code 

 

install.packages("survival") 

library(survival) 

 

install.packages("survRM2") 

library(survRM2) 

 

install.packages("YPmodel") 

library(YPmodel) 

 

install.packages("PwrGSD") # use version 3.4 for R. 

library(PwrGSD) 

 

install.packages("survAWKMT2") 

library(survAWKMT2) 

 

http://cran.r-project.org/bin/windows/Rtools/ # install Rtools34.exe 

install.packages("devtools") 

 

devtools::install_github("bozenne/BuyseTest") # version 1.3.2 

library(BuyseTest) 

 

install.packages("doSNOW") 

library(doSNOW) 
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SIMDATARAND 

 

 Input: 

 -  n: number of observations.                        

 - acrdur: duration of the admission in the study.  

 

Output: The function returns a list which contains the treatment 

assignment, and time of accrual. 0 for control group and 1 for treatment 

group. The accrual of time is the moment where the patient starts the 

study.                                                                                                                                              

 

SIMDATARAND <- function(n,acrdur){ 

acrtime <- runif(n,0,acrdur) 

trt <- rbinom(n,1,0.5) 

 return(list (trt=trt,acrtime=acrtime)) 

} 

hazard_trt 

Input: t : time. 

 

Output: The function returns the value of the hazard function at the 

specific time t.                       

 

 

hazard_trt <- function(t){ 

   0.65+2*t         

} 

hazard_ctr 

 

Input: 

- t: time. 

- d: quadratic coefficient.   

 

Output: The function returns the value of the hazard function at the 

specific time t.                       

 

 For lrs0 

hazard_ctr <- function(t,d){ 

  0.01+4*t+d*t^2          

} 

 For mst0 

hazard_ctr <- function(t,d){ 

  0.1+d*t 
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} 

 

SIMSURV.FROM.HAZARDS 

 

Input:  

- lambda: hazard function.                          

- n: number of observations.                                                                        

- maxtime: At least the longest time in analysis.                                     

- mintime: Minimum time in analysis. Default 0.       

 

Output: The function returns the survival time for each observation.                                               

 

 

SIMSURV.FROM.HAZARDS <- function (lambda,n,maxtime,mintime=0){ 

  S <- function (time) 

  { 

    S <- exp (-integrate (lambda,lower=0,upper=time)[[1]]) 

    S 

  }  

  fun_to_minimize <- function (time,d) 

  { 

    S <- exp (-integrate (lambda,lower=0,upper=time)[[1]]) 

    S-u 

  } 

  time <- rep(NA,n) 

  for (i in 1:n) 

  { 

    u <- runif(1) 

    if  (u<S (maxtime)) 

   { 

      time[i]<-maxtime 

    } 

    else 

    { 

      time[i]<-uniroot (fun_to_minimize,lower=mintime,upper=maxtime)[[1]] 

    } 

  } 
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  return (time=time) 

} 

SIMSURV.FROM.HAZARDS.CTR 

 

Input:  

- lambda: hazard function.                          

- n: number of observations.                                                                        

- maxtime: At least the longest time in analysis.                                    

- mintime: Minimum time in analysis. Default 0.    

- d: argument to be passed to lambda.   

 

Output: The function returns the survival time for each observation.                                               

 

 

SIMSURV.FROM.HAZARDS.CTR <- function (lambda,n,maxtime,mintime=0,d){ 

  S <- function (time,d) 

  { 

    S <- exp (-integrate (lambda,lower=0,upper=time,d=d)[[1]]) 

    S 

  } 

  fun_to_minimize <- function (time,d) 

  { 

    S <- exp (-integrate (lambda,lower=0,upper=time,d=d)[[1]]) 

    S-u 

  } 

  time<-rep(NA,n) 

  for (i in 1:n) 

  { 

    u <- runif(1) 

    if (u<S(maxtime,d=d)) 

    { 

      time[i] <- maxtime 

    } 

    else 

    { 

      time[i] <-

uniroot(fun_to_minimize,lower=mintime,upper=maxtime,d=d)[[1]] 

    } 



 

68 
 

  } 

  return (time=time) 

} 

 

find_d 

 

Input:  

- d: the argument to be found                                                                       

- trt: the group indicator. The element of this vector takes either 1 for 

treatment group or 0 for control group.                                                                               

- effect: "lrs0" if the argument d is such that the true value of the 

logrank test statistic equals 0. "mst0" if the argument d is such that the 

mean survival time is the same in both groups.         

 

Output: The function returns either the logrank test statistic or the 

difference of mean survival time depending on the argument d.                                                                                                                                            

 

 

find_d <- function (d,trt,effect){ 

  n <- length(trt) 

  ntrt <- sum(trt) 

  nco <- n-sum(trt) 

  time <- rep(NA,n) 

  event <- rep(1,n) 

  timeco <- c() 

  timetrt <- c() 

  for (j in 1:ntrt){ 

    timetrt[j] <- 

SIMSURV.FROM.HAZARDS(lambda=hazard_trt,n=1,maxtime=5,mintime=0)  

  } 

  for (j in 1:nco){  

    timeco[j]<-

SIMSURV.FROM.HAZARDS.CTR(lambda=hazard_ctr,n=1,maxtime=5,mintime=0,d=d)  

  }   

  time[which(trt==0)] <- timeco 

  time[which(trt==1)] <- timetrt 

  if(effect=="lrs0"){   

    fit <- survdiff(Surv(time,event)~trt) 

    return (fit$exp[1]-fit$obs[1]) 

  } 
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  if(effect=="mst0"){ 

    tau <- min(max(time[which(trt==1)]),max(time[which(trt==0)])) 

    fit <- rmst2(time=time, status=event, arm=trt,tau=tau) 

    return (fit[[5]][1,1]) 

  } 

} 

 

The value of the quadratic coefficient depending on the effect  

 

d <- uniroot(find_d,interval=c(-1,0),trt,effect)[[1]] 

 For "lrs0" : d = -0.7878264 

 

d <- uniroot(find_d,interval=c(3,4),trt,"mst0")[[1]] 

 For "mst0": d = 3.567035 

 

 

 

simsurv_curve    

 

Input: 

- trt: the group indicator. The element of this vector takes either 1 for 

treatment group or 0 for control group.   

- effect: "lrs0" if the argument d is such that the true value of the 

logrank test statistic equals 0. "mst0" if the argument d is such that the 

mean survival time is the same in both groups.   

 

Output: The function returns a data frame containing a vector "trt" for 

treatment assignment, a vector of "time" for survival time and a vector of 

"event" containing only 1. 

                                                                                                                                                                   

 

simsurv_curve<-function(trt,effect){ 

  n<-length(trt) 

  ntrt<-sum(trt) 

  nco<-n-sum(trt) 

  time<-rep(NA,n) 

  event<-rep(1,n) 

  timeco<-c() 

  timetrt<-c() 
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  if(effect=="lrs0"){ 

   d<-uniroot(find_d,interval=c(-1,0),trt,effect)[[1]] 

   print(d) 

  } 

 

  if(effect=="mst0"){ 

   d<-uniroot(find_d,interval=c(3,4),trt,effect)[[1]] 

   print(d) 

  } 

 

  for(j in 1:ntrt){ 

    timetrt[j]<-     

SIMSURV.FROM.HAZARDS(lambda=hazard_trt,n=1,maxtime=5,mintime=0) 

  } 

   

  for (j in 1:nco){  

    timeco[j]<-

SIMSURV.FROM.HAZARDS.CTR(lambda=hazard_ctr,n=1,maxtime=5,mintime=0,d=d) 

  } 

  time[which(trt==0)]<-timeco 

  time[which(trt==1)]<-timetrt 

  return(data.frame(trt=trt,time=time,event=event)) 

} 

 

simsurv_zero 

 

Input: trt: the group indicator. The element of this vector takes either 1 

for treatment group or 0 for control group. 

 

Output: The function returns a data frame containing a vector "trt" for 

treatment assignment, a vector of "time" for survival time and a vector of 

"event" containing only 1. 

 

 

simsurv_zero<-function(trt){ 

   n<-length(trt) 

   ntrt<-sum(trt) 



 

71 
 

   nco<-n-ntrt 

    

   time<-rep(NA,n) 

   event<-rep(1,n) 

   timeco<-c() 

   timetrt<-c() 

    

   for (j in 1:n){ 

     time[j]<-rexp(n=1,rate=1.8) 

   } 

   return(data.frame(trt=trt,time=time,event=event)) 

 } 

 

The curve of simulation data 

 

datarand<-SIMDATARAND(n=10^6,acrdur=1) 

## Figure 3.1 ## 

data<-simsurv_zero(datarand$trt) 

 

## Figure 3.2## 

data<-simsurv_curve(datarand$trt,effect = "lrs0") 

 

## Figure 3.3## 

data<-simsurv_curve(datarand$trt,effect = "mst0") 

 

## plot each curve ## 

 

time_month<-data$time*12 

fit<-survfit(Surv(time_month,event)~trt,data=data,conf.type="none") 

plot(fit,col=c("blue","red"),xlim=c(0,36),axes=FALSE,ylab="Survival",xlab="

Time") 

axis(side=2,at=seq(0,1,0.1),labels=seq(0,1,0.1),las=2) 

axis(side=1,at=seq(0,36,2),labels=seq(0,36,2),las=0) 
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legend("topright",legend=c("control","treatment"),lty=1,lwd=2,col=c("blue",

"red")) 

 

Control of type I-error 

 

Hazard function 

 

 

hazard_lrs0<-function(t) 

{ 

  0.01+4*t-0.7878264*t^2  

} 

 

hazard_mst0<-function(t) 

{ 

  0.1+3.567035*t 

} 

 

Simsurv 

 

Input:  

- trt: the group indicator. The element of this vector takes either 1 for 

treatment group or 0 for control group.                                                                              

- nevents: number of events.                                                                       

- acrtime: time of accrual.                                                                        

- effect: "lrs0" if the argument d is such that the true value of the 

logrank test statistic equals 0. "mst0" if the argument d is such that the 

mean survival time is the same in both groups.                                                                             

 

 

Output: The function returns a data frame containing a vector "trt" for 

treatment assignment: 1=treatment group  and 0=control group, a vector of 

"time" for survival time and a vector of "event" containing the status 

indicator, 1=dead and 0=censored. 

 

 

simsurv<-function(trt,nevents,acrtime,effect){ 

  n<-length(trt) 

  ntrt<-sum(trt) 

  nco<-n-sum(trt) 

  event<-rep(1,n) 

  timeco<-c() 
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  timetrt<-c() 

   

  if(effect=="zero"){ 

    time<-c() 

    for (j in 1:n){ 

      time[j]<-rexp(n=1,rate=1.8) 

    } 

  } 

 

  if(effect=="lrs0"){ 

    time<-rep(NA,n) 

    for(j in 1:ntrt){ 

      timetrt[j]<-

SIMSURV.FROM.HAZARDS(lambda=hazard_trt,n=1,maxtime=5,mintime=0) 

    } 

    for (j in 1:nco){  

      timeco[j]<-

SIMSURV.FROM.HAZARDS(lambda=hazard_lrs0,n=1,maxtime=5,mintime=0) 

    }  

    time[which(trt==0)]<-timeco 

    time[which(trt==1)]<-timetrt 

  } 

   

  if(effect=="mst0"){ 

    time<-rep(NA,n) 

    for(j in 1:ntrt){ 

      timetrt[j]<-

SIMSURV.FROM.HAZARDS(lambda=hazard_trt,n=1,maxtime=5,mintime=0) 

    } 

    for (j in 1:nco){  

      timeco[j]<-

SIMSURV.FROM.HAZARDS(lambda=hazard_mst0,n=1,maxtime=5,mintime=0) 

    } 

    time[which(trt==0)]<-timeco 

    time[which(trt==1)]<-timetrt 
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} 

  realtime<-time+acrtime 

  censoredobs<-cumsum(event[order(realtime)])>nevents 

  event[order(realtime)][censoredobs]<-0 

  return(data.frame(trt=trt,time=time,event=event)) 

} 

 

FITMODELS 

 

Input:  

- data: data frame in which to interpret the variable occurring in the 

model function.      

- b: number of iterations. 

 

Output: The function fits models for one sample and returns the 2-sided p-

value for each model.                                                                                       

 

FITMODELS<-function(data,b){ 

  ### Log-rank test ### 

  print("logrank") 

  fit<-survdiff(Surv(time, event) ~ trt, data = data) 

  z<-(fit$obs[1]-fit$exp[1])/fit$var[1,1]^0.5 

  lrt2s<-1-pchisq(fit$chisq, length(fit$n)-1) 

   

  ### Restricted mean survival time ### 

  print("rmst") 

  tau<-min(max(data$time[which(data$event==1 & 

data$trt==1)]),max(data$time[which(data$event==1 & data$trt==0)])) 

  fit<-rmst2(time=data$time, status=data$event, arm=data$trt,tau=tau) 

  z<-fit[[5]][1,1]/(fit$RMST.arm0$rmst.var+fit$RMST.arm1$rmst.var)^0.5 

  drmst2s<-rmst2(time=data$time, status=data$event, 

arm=data$trt,tau=tau)[[5]][1,4] 

   

  ### Weigthed logrank test ### 

  ## G01 ## 

  print("g01") 

  fit2s<-wtdlogrank(Surv(time, event) ~ trt, data=data,WtFun = "FH",  param 

= c(0, 1),sided=2) 
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  U<-fit2s$stat 

  V<-fit2s$var 

  wlr01<-1-pchisq(U^2/V,1) 

   

  ## G10 # 

  print("g10") 

  fit2s<-wtdlogrank(Surv(time, event) ~ trt, data=data,WtFun = "FH",param = 

c(1, 0),sided=2) 

  U<-fit2s$stat 

  V<-fit2s$var 

  wlr10<-1-pchisq(U^2/V,1) 

   

  ### Adaptively weighted log-rank test ### 

  print("awlrt") 

  data1<-as.data.frame(cbind(V1=data$time,V2=data$event,V3=data$trt)) 

  adlrt <- YPmodel.adlgrk(data=data1)$pval # two-sided #A function to 

calculate p-value of the adaptive weighted logrank test. 

   

  ### Generalised pairwise comparison tau=0 ### 

  data3<-as.data.frame(cbind(time=data$time,event=data$event,trt=data$trt)) 

  print("bt0") 

  BT_tau0<-

BuyseTest(data=data3,treatment="trt",endpoint="time",type="timeToEvent",thr

eshold=as.numeric(0),censoring="event",method.tte="Peron",n.resampling=1000

,cpus=8) 

  BT2s_0<-summary(BT_tau0)$table$p.value[1] 

   

  ### Generalised pairwise comparison tau=1 ### 

  print("bt1") 

  BT_tau1<-

BuyseTest(data=data3,treatment="trt",endpoint="time",type="timeToEvent",thr

eshold=as.numeric(1),censoring="event",method.tte="Peron",n.resampling=1000

,cpus=8) 

  BT2s_1<-summary(BT_tau1)$table$p.value[1] 

   

  ### A versatile test based on weighted differences of KM curves ### 

  print("wkm") 
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  data2<-

as.data.frame(cbind(time=data$time,status=data$event,arm=data$trt)) 

  tau = max(data2[data2[,2]==1,1]) 

  val = AWKMT2(indata=data2, tau=tau, nmethod=1000, seed=b*123+123, 

v1=TRUE, v2=TRUE, test="2_side")  

  wkmt<-c(val[[2]],val[[3]],val[[4]],val[[5]]) 

   

  

return(list(twosided=c(lrt2s,drmst2s,wlr01,wlr10,adlrt,BT2s_0,BT2s_1,wkmt))

) 

} 

 

RUNSIM 

 

Input:  

- settings: settings containing number of observations, number of events, 

effect, duration of admission in the study.                                                            

- B: number of iterations.                                                                         

- fn: character string.                                                                             

 

Output: The function executes functions of the different models and 

returns a table containing the p-value of each model for each iteration.                                                                                         

 

RUNSIM<-function(settings,B,fn){ 

  for (s in 1:length(settings[,1])){ 

    pvalues2s<-matrix(nrow=0,ncol=12) 

    colnames(pvalues2s)<-

c("b","lrt","drmst","wlr01","wlr10","adlrt","BT_0","BT_1","crude_V1","crude

_V2","bona_fide_V1","bona_fide_V2") 

     

    for (b in 1:B){  

      print(s) 

      print(b) 

      datarand<-SIMDATARAND(n=settings$n[s],acrdur=settings$acrdur[s]) 

      data<-

simsurv(trt=datarand$trt,nevents=settings$nevents[s],acrtime=datarand$acrti

me[s],effect=settings$effect[s]) 

      results<-FITMODELS(data,b) 

      rm(datarand) 

      rm(data) 

      pvalues2sb<-c(b,results$twosided) 
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      pvalues2s<-rbind(pvalues2s,pvalues2sb)   

    } 

    results2s<-cbind(settings[s,][c(rep(1,B)),],pvalues2s) 

   

    if (s>1){ 

      results2sold<-read.csv2(file=paste(fn,"2s.csv",sep="")) 

      results2s<-rbind(results2sold,results2s) 

    } 

    write.csv2(results2s,file=paste(fn,"2s.csv",sep=""),row.names=FALSE) 

  } 

} 

 

TABLE 

 

Input: fn: character string. 

 

Output: The function returns a table for the control of type I-error of 

each model. 

 

TABLE<-function(fn){ 

  results2s<-read.csv2(file=paste(fn,"2s.csv",sep="")) 

  settings<-unique(results2s[,1:4]) 

  S<-length(settings[,1]) 

  size2s<-matrix(nrow=S,ncol=11) 

  for (s in 1:S){ 

    results2s_s<-results2s[which(results2s[,1]==settings[s,1] & 

results2s[,2]==settings[s,2] & results2s[,3]==settings[s,3] & 

results2s[,4]==settings[s,4]),] 

     

    B<-length(results2s_s[,1]) 

    size2s[s,]<-apply(results2s_s[,c(6:16)]<0.05,2,sum)/B 

  } 

  table2s<-cbind(settings,size2s) 

  colnames(table2s)<-c(colnames(settings),colnames(results2s[6:16])) 

  write.csv2(table2s,file=paste(fn,"table2s.csv",sep=""),row.names=FALSE) 

} 
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Table 3.1 

 

settings<-

data.frame(n=rep(c(380,475,760),3),nevents=rep(380,9),effect=c(rep("zero",3

),rep("lrs0",3),rep("mst0",3)),acrdur=rep(c(1,3,3),3)) 

RUNSIM(settings = settings,B=1000,fn="simulation1") 

TABLE(fn="simulation1") 
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