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ABSTRACT

Many industrial processes make use of welding to assemble structural parts. While this is standard
procedure, the high temperatures encountered during the welding process can generate distortions
in the base metal. These distortions negatively impact the parts by generating reworks in order to
overcome them. This detrimental effect cannot be avoided, but it can be controlled. One way of
performing such control is to add an allowance, which is an accepted amount of distortion.
However, a prediction tool is elementary to determine the necessary tolerances.

Nowadays, the prediction methods can be grouped in three main approaches: experimental,
computational (finite-element method) and machine learning. While the first two methods have
been well studied, the machine learning approach is not as well understood.

The aim of this study is to explore machine learning algorithms such as neural networks and
polynomial regressions in order to come out with a prediction model. Along with this, a best fitting
study took place so that a simple formula for predicting metal distortion could be outlined.

In order to create some prediction models, the Knime software was used and main design
parameters were gathered. The model’s workflow has been organized so that several cases could
be tested.

By using the workflow, results for eight variables were obtained. Nonetheless, the results were not
satisfactory due to limitation of given data. Hence, the problem has its variables reduced to two,
which increases the accuracy of the model.

Finally, it was possible to generate some models for the welding distortion prediction and it has
been proven that these methods can be applied to such problems. Yet, they were not as accurate as
the best fitting method, which means that more data is required so that the accuracy can be

improved.

Keywords: Accuracy Control; Welding Distortion; Prediction.
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1. INTRODUCTION

This first chapter introduces the welding distortion problem. Truly, most of processes in various
industries make use of welding in order to assemble or join structural parts. The welding process
of heating and cooling generates distortions which is an issue impossible to avoid but possible to
be controlled. By trying to restrain such behaviors, the residual stresses are enhanced which can
reduce the structural resistance.

Also, the usage of thinner plates causes the material to deform more than thicker plates. These
distortions can be adjusted by the straightening process with the purpose of either correcting the
appearance or the structural functionality. Nonetheless, the correction process generates extra cost
due to reworks and it may also generate schedule delay that can infer in contractual penalties.
Having said that, it is desirable to have a prediction tool so that preventive actions can be taken
and the welding distortion controlled within an acceptable limit.

The second chapter briefs the welding distortion problem along with the sorts of distortions and
the parameters that have already been identified by other researchers. Even though, transverse,
longitudinal, buckling, longitudinal bowing and angular were identified, only the transverse and
longitudinal (in-plane distortions) are analyzed in this study due to the limitation of data available.
In addition, three main group of influencer parameters have been outlined from the literature
review: geometric parameters (design); material properties; and welding process parameters
(manufacturing process).

Moreover, it was identified three main applications of welding prediction tools which are: formulas
based on experimental setups; finite element models; and machine learning methods. Whereas
there are several proposals for analytical and computational methods, there is little exploration of
the machine learning methods. Another advantage of machine learning methods over analytical
and computational methods is that it is less time demanding, coming to meet the time frame of this
study. On top of that, a machine learning method can be reused to learn distortion for other
elements whenever data is available requiring less time to be implemented. Hence, this study
focused on offering a solution by making use of machine learning algorithms. Finally, the available
methods of machine learning are commented and a chart presenting the distribution of found

articles is displayed.
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The third chapter describes the methodology used in order to describes the work environment, the
actual measurement check-up, the selection of the methods to be analyzed, the database
elaboration, historical data collection, the modelling process and the understanding of the
contributing factors.

The chapters four discretizes the case of study by outlining the measurement procedure, the
selection of a program in order to develop the model and a detailed modelling description.
Ultimately, chapters five and six present the results, analysis and conclusions. The aim of this
study is the development of a prediction tool that can provide work-arounds for the welding
distortions avoiding production problems that might arise during the manufacturing process and,

additionally, to evaluate contributing factors.
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2. LITERATURE REVIEW

The first section of this chapter details the welding distortion problem by commenting on how it
arises, in which processes, what are the sorts of welding distortions and their influencer parameters.
Additionally, the second section presents the available types of prediction tools that were find in
the literature. As well, the third section details the machine learning methods. Finally, the fourth
section presents an overview of the found researches and further state the motivation of selecting
the machine learning approach.

2.1. Welding Distortion

Welding technology is greatly used in various areas in order to assemble structures of different
usages due to its high productivity (Deng 2010) (Mahendramani and Swamy 2012) (Deng,
Murakawa, and Liang 2007) (Deng and Murakawa 2008b). In addition, both low strength and high
strength materials are used while producing the structural part in shipbuilding.

Whereas the low strength materials are cheaper, high-strength steels have been preferred to be
used while producing steel structures in order to handle large amount of stress while having a better
strength-to-weight ratio and to reduce topside weight, improve fuel consumption and enhance
mission capability (Yang et al. 2014) (Deng and Murakawa 2008b). Moreover, the thinner
structures are more likely to deform during welding since they have a lack of rigidity (Yang et al.
2014).

Welding distortion is a consequence of the non-uniform expansion and contraction of the welded
material and the adjacent base material while the heating and cooling cycle of the welding occurs
(Yang et al. 2014) (Deng, Liang, and Murakawa 2007) (Deng and Murakawa 2008a).

In addition, the residual stress occurs in a welded joint and this stress reacts to produce internal
forces, provoking shrinkage or length deficiency of the main plates when comparing to the design
dimensions (Kim et al. 2015).

As well, the welding distortion can lead to detrimental during the fabrication and service. Having
said that, the welding distortion acts an initial imperfection of welded components (Yang et al.
2014). Any complex structure is subjected to welding deformation and the more complex the
structure is, the greater the problems which will be inherent (Mahendramani and Swamy 2012).
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As a matter of fact, it is impossible to avoid the welding-induced distortion during the assembly
process (Yang et al. 2014) (TAJIMA et al. 2007) (Deng, Murakawa, and Liang 2008). On the other
hand, it is possible to fabricate the structures with an acceptable level of accuracy to avoid the
problems in the course of assembly (Deng, Murakawa, and Liang 2007). Thus, it is the designer
and constructor duty to find the best balance between cost and acceptable limits in order to satisfy
all stakeholders. As a result, the welding distortion reduces the fabrication accuracy while
increasing the cost and working time to perform the necessary corrections (Yang et al. 2014).
One category of the distortions is the shrinkage which generates a difference between the
dimensions of the actual parent metal and the dimensions of the design (Kim et al. 2015) (Deng,
Murakawa, and Liang 2008). Additionally, the shrinkage induces to low quality in the production
of ship blocks and reworking which decreases the productivity (Kim et al. 2015) (Deng and
Murakawa 2008b). By that it can be inferred, there might be a delay in the project in case of the
task being under the critical path and there is going to be an increase in the cost due to rework to
adjust or to redo it.

Further, correcting unacceptable distortions is extremely costly and sometimes impossible.
Excessive lateral distortion decreases the buckling strength of the structural members while under
compressive loading (Mahendramani and Swamy 2012) (Deng, Liang, and Murakawa 2007)
(Deng and Murakawa 2008b). The straightening process is used to reduce the deformations, mainly
spot and line heating. However, it is mainly manual, costly and time-consuming (TAJIMA et al.
2007) (Deng, Murakawa, and Liang 2007) (Deng, Liang, and Murakawa 2007) (Deng and
Murakawa 2008b).

Another problem is that, welding deformation and welding residual stresses are effects which
oppose each other. Hence, while giving restraint to welding material in order to avoid deformation,
the residual stress is increased. On the other hand, if the material is not restraining larger
deformations will happen but less residual stress is decreased (Kim et al. 2015).

As a consequence, these initial imperfections can influence the structural behavior under variable
loading and they can reduce the buckling strength of the structure (YYang et al. 2014). An additional
issue, is that these imperfections lead to misalignment of the structural elements which will require

straightening processes (Mahendramani and Swamy 2012).
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Correspondingly, the welding shrinkage, distortion, and residual stresses are significant issues
during the manufacturing process of welded structures made out of steel (Yang et al. 2014)
(Mahendramani and Swamy 2012).

While constructing the ship hull, welding is greatly adopted to join stiffeners to plates, build
subassemblies and blocks, and finally to join these blocks and assemble the ship hull (TAJIMA et
al. 2007) (Deng, Murakawa, and Liang 2007). Usually, these blocks are all-welded, thin-plate
structures (Deng, Murakawa, and Liang 2007). The shipbuilding construction can be categorized

into the following stages:

Erection

Processing Subassembly Assembly Final

ePreceding Assembly

eCutting eMaterial
*Bending e|nstallation
*Blasting *Welding
eCovering eFinishing

eSetup
ePositioning

eMaterial eSetup
e|nstallation ePositioning
*Welding e|nstallation
e|nspection *Welding
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Figure 1 — Shipbuilding Construction - Flowchart

2.1.1. Sorts of Welding Distortion
Truly, the welding process is present in most of the processes and it is used to join the structural
members. Furthermore, the welding distortions can be classified into:
e Transverse shrinkage (In-plane mode) (Yang et al. 2014) (Mahendramani and Swamy
2012) (Deng, Murakawa, and Liang 2007)
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Figure 2 — Example of Transverse Shrinkage (Welding Defect 2017).
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e Longitudinal shrinkage (In-plane mode) (Yang et al. 2014) (Mahendramani and Swamy
2012) (TAJIMA et al. 2007)
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Figure 3 — Example of Longitudinal Shrinkage (Welding Defect 2017).
e Buckling (Out-of-plane mode) (Deng 2010) (Yang et al. 2014) (Mahendramani and Swamy
2012) (TAJIMA et al. 2007) (Deng and Murakawa 2008b)
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Figure 4 — Example of Buckling (Deng and Murakawa 2008b).
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e Longitudinal bowing (Out-of-plane mode) (Yang et al. 2014)
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Figure 5 — Example of Longitudinal Shrinkage (Welding Defect 2017).

e Angular (Out-of-plane mode) (Yang et al. 2014) (Deng, Murakawa, and Liang 2007)
(Deng, Liang, and Murakawa 2007)

ORIGINAL SIZE
Figure 6 — Example of Angular Distortion (Welding Defect 2017).

2.1.2. Influencer Parameters

While reading the research papers, the parameters which are most likely to cause those
deformations can be:
e geometric parameters (design) (Deng 2010) (Yang et al. 2014) (Mahendramani and Swamy
2012) (Deng, Murakawa, and Liang 2007);
o dimensions of the structure (plate thickness; weld length and stiffeners’ spacing)
o type and size of welded joints
e material properties (Deng 2010) (Yang et al. 2014);
e welding process parameters (manufacturing process) (Deng 2010) (Yang et al. 2014)
(Mahendramani and Swamy 2012) (Deng, Murakawa, and Liang 2007) (Deng, Murakawa,
and Liang 2008);
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o heat input;

o welding sequence;

o preheating;

o post heating;

o gaps;

o tack welds;

o the edge preparation;
o welding conditions;

o interpass temperature;
o the shape of penetration;
o positioning;

o welding procedure;

o and the degree of restraint during welding.

2.2. Prediction Tools

According to (Gray, Camilleri, and McPherson 2014), there are two major categories of tools to
understand the mechanics of welding distortion in order to provide better strategies so that better
control of this phenomenon can be achieved: Artificial Neural Networks and Computational
Simulation.

However, there are two more other applications that can be quite useful for the matter, which are
Fuzzy Logic and Feature Selection Method.

Finally, the Feature Selection and Artificial Neural Networks are sub-areas of machine learning
which are closely related to statistics. Moreover, the fuzzy logic is based on the degrees of truth
instead of probability prediction. As a matter of fact, these three methods can be seen as approaches
that do not require fully physical discretization of the material and production processes. On the
other hand, the computation simulation requires a good discretization of the model, including all

physical phenomena or satisfactory approximation through analytical or numerical methods.
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2.2.1. Artificial Neural Networks (ANNSs)

The aim of an ANN is to infer functional relations between the observations and phenomena. When
used for practical application, the objective could be to establish an empirical model that will relate
the input of fabrication process to the likely deformation outcomes. As well, the process of
establishing the relations is mainly statistical. Nonetheless, the methodology has the capability of
deducing the interactions along the hidden layers and thus revealing influences which may not be
promptly recognized when studying physical models.
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Figure 7 — Example of Artificial Neural Network (Caprace et al. 2007).

2.2.2. Fuzzy Logic

Moreover, another option is to use a fuzzy method which is consists of a system that provides a
non-linear mapping between crisp input variables and crisp output ones and allow the use of
linguistic expressions for the rules which define the input-output relationship (Caprace et al. 2009).

2.2.3. Feature Selection Method

According to (Chandrashekar and Sahin 2014), feature selection which can also be understood as
variable elimination assists on understanding the data, reducing computational time, reducing the
effect of curse of dimensionality and improving the predictor performance.

The aim of feature selection is to decide a subset of variables from input that can readily describe
the input data while minimizing the effects from noise and irrelevant variables and still provide

good prediction results.
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Indeed, the variable elimination methods are broadly classified into: filter and wrapper methods.
As the objective of this report is to briefly present the tools that can be used and as they are a lot
of literature on the methods, the main concepts, some advantages and drawbacks are going to be

shortly introduced.

2.2.3.1.Filter Methods

Filter approach makes use of ranking techniques, such as Pearson correlation criteria or mutual
information (MI), in order to classify the important variables and remove variables below a
threshold. They are used due to their simplicity and satisfactory success is reported for practical
applications.

Some other favorable advantages that can be outlined are: it is computationally light and avoids
overfitting and is proven to be good for certain databases; and they do not rely on learning
algorithms.

On the other hand, the drawbacks are: the selected subset might not be optimal in that a redundant
subset might be obtained; Some ranking methods do not discriminate the variables in terms of the
correlation to other variables; Finding a suitable learning algorithm can also become hard since
the underlying; and there is no ideal method for choosing the dimension of the feature space.

2.2.3.2.Wrapper Methods

Whereas the filter methods make use of a feature relevance criteria, the wrapper methods rely on
the classification for obtaining a feature subset. Actually, wrapper methods utilize the predictor as
a black box and the predictor performance as the objective function to evaluate the variable subset.
They can be classified into Sequential Selection Algorithms and Heuristic Search Algorithms. The
first one, begin with an empty set (full set) and add features (remove features) until the maximum
objective function is obtained. A criterion is chosen which incrementally boosts the objective
function until the maximum with the minimum number of features. On the contrary, the heuristic
search algorithms evaluate different subsets to optimize the objective function. Different subsets
are generated either by searching around in a search-space or by generating solutions to the

optimization problem.
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The main drawback of wrapper methods is the computational iterations required to obtain a feature
subset. Another disadvantage is that these methods use classifier performance the objective
function and by doing so they are prove to overfitting. In order to overcome the last downside, a

separate holdout test set can be used to guide the prediction accuracy of the search.

2.2.3.3.Embedded Methods

Embedded methods target to shrink the computation time taken up for reclassifying different
subsets which is performed in wrapper methods. In order to overcome it, the main way is to

incorporate the feature selection as part of the training process.

2.2.3.4.0ther Techniques

The techniques mentioned above are feature selection techniques using supervised learning. For
instance, the output class labels of the data are known or could be derived. However, there are
situations where operation details are unknown but their operational data is available. One of the
mentioned methods is clustering technigues.

In addition, there are situations where there are partially known and unknown data and the semi-
supervised learning can be applied. They consist of a mixture of unsupervised and supervised
learning.

Another mentioned technique is ensemble feature selection where a single feature selection
algorithm is run on different subsets of data samples obtained from bootstrapping method. The

results are aggregated to obtain a final feature set.

2.2.4. Computational Simulation

On the contrary of the ANNSs, the computational simulation relies on the real physical models in
order to discretize the complex thermos-mechanical behavior induced by welding. This is being

more used nowadays because of the rapid development of finite-element analysis (FEA) and the

availability of more computing resources. However, the experimental results remain invaluable.
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2.3. Machine learning

Machine learning can be defined as a field of research regarding automated large-scale data
analysis (Barber 2012). Also, to better enlighten, the machine learning is a mimic of the human
brain or biological systems where there is not a structured-defined algorithm stating the exact rules,
but instead data is given to be learnt from. Hence, being possible to construct a better and useful
approximation (Alpaydin 2014).

Truly, the machine learning includes many of the traditional areas of statistics, nonetheless,
focusing on mathematical models and also prediction (Barber 2012).

Furthermore, there are a lot of methods within machine learning. Inclusive, sometimes, there might
be difficult to strongly identify each one, since there can be a small-scale difference from one
method to the other. In this section, we will define the main concepts and then target on the one
the better suits our problem.

On the contrary, there are mainly three different categories of machine learning: supervised,
unsupervised and semi-supervised. Additionally, there are some others which can be understood
as one or more of them plus some additional features and they will be briefly discussed.

Finally, some known applications will be expressed in order to advance the details in the topic.

2.3.1. Supervised Learning

According to (Barber 2012), the supervised learning can be defined — Definition 13.1 - as follows.
Giventhe setof data D = {(x™,y™),n = 1, ..., N} the task is to learn the relationship between the
input x andoutput y such that, when given a novel input x* the predicted output y*is accurate.
The pair (x*,y*)is not in D but assumed to be generated by the same unknown process that
generated D. To specify explicitly what accuracy means one defines a loss function
L(yPTed, ytrue) or, conversely, a utility function U = —L.

There are two types: classification problem or regression problem. A classification problem occurs
when the output is one of a discrete number of possible “classes”. For instance, the bank would
like to analyze good and bad credit costumers when providing them a loan. The other problem,
regression, is when the output is continuous — numbers. For example, we would like to predict the

house’s selling prices based on their features.
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2.3.2. Unsupervised Learning

According to (Barber 2012), the supervised learning can be defined — Definition 13.2 - as follows.
Given the set of data D = {(x",y™),n =1, ..., N} is unsupervised learning, we aim to find a
plausible compact description of the data. An objective is used to quantify the accuracy of the
description. In unsupervised learning, there is no special prediction variable so that, from a
probabilistic perspective, we are interested in modelling the distribution p(x). The likelihood of
the model to generate the data is a popular measure of the accuracy of the description. This process

is also known as density estimation in statistics.

2.3.3. Semi-supervised Learning

The semi-supervised learning is the mixture of both supervised and unsupervised learning. Hence,
you will have partial data with output outlined and the other part will be only input data. By that,
you will try to make use of the unsupervised learning to enhance the results that would be made

only by the supervised learning with partial data.

2.3.4. Reinforcement Learning

According to (Alpaydin 2014), some applications, the output system is a sequence of actions.
Cleary, a single action does not play a major role, but the sequence of right actions to achieve the
goal —also known as policy. In addition, there is not a best action in any intermediate step. Yet, an
action is considered good if it is part of a good policy. Hence, the machine learning program should

be able to assess the policies and learn from past good action sequences in order to create a policy.
2.3.5. Deep Learning
In simple words, the deep learning is the implementation of the artificial neural network with a

feature selection method but instead of removing the feature the deep learning will assign weights

for the features not eliminating them.

“EMSHIP” Erasmus Mundus Master Course, period of study September 2016 — February 2018



P30 Marcio Fleming

2.3.6. Data Pre-processing

Which is the process of eliminating the out-of-range values, impossible data combinations, missing

values, etc.

2.3.7. Online machine learning

In the online learning, the data keeps being updated subsequently when there are new data

available. It may be for supervised or unsupervised context.

2.3.8. Dimensionality reduction

The dimensionality reduction can be divided into two main categories: feature selection and feature

extraction.

2.3.8.1.Feature Selection

This is the process of assessing the features and them eliminating them in order to reduce the

number of variables analyzed.

2.3.8.2.Feature Extraction

Feature extraction is the creation of additional features by combining existing ones and creating

more meaningful features.

2.4. Research Paper

During the literature research, it was possible to find 51 articles related to welding distortion
prediction. The Table 1 and Figure 8 below demonstrate their distribution among three main

categories.
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Table 1 — Welding Research Papers' Distribution

Classification Counting | Percentage
Analytical/Experimental 14 27.5%
Computational 36 70.6%
Machine Learning 1 2.0%
Total 51 100.0%

Counting

2%

= Analytical/Experimental = Computational = Machine Learning

Figure 8 — Welding Research Papers' Distribution

By looking at them, it possible to see that most of the studies are dedicated to Computational
methods. As well, when reading all papers is possible to see a trend from moving from analytical
and experimental to Computational.

As a matter of fact, it is important to highlight that the welding distortion is a non-linear process
which has a lot of influencer parameters. Due to data limitation, the only evaluated distortions in
this study are the transverse and longitudinal distortions.

Additionally, the tool is going to be used by CAM/Nesting department which possesses design
information only. Due to this fact and to limitation of time, the design parameters that can be
retrieved were the parameters analyzed.

As the case of study is performed directly into a company which retains measurement information
about their own process, computational and learning machine methods are preferred over the

experimental ones.
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As it had been said before, the computational method requires a considerable time to setup the
model due to the need of explicitly stating all physical phenomena, and also to validate it. The
internship period lasted four months and this time limitation could lead to a non-accurate solution.
Truly, all methods are restrained within their limitation determined by the range of setups in which
they are developed. Anyhow, the machine learning models have a strong capability of being reused
with other set of data, adapting themselves with less effort on the setup procedure for new schemes.
Another advantage of the machine learning is the validation process. The experimental and
computational results might require additional subjects to be tested while the machine learning
methods can separate part of the data to perform their validations.

As well, the company’s intention is to explore even more the aspects of the welding distortion
starting from the deck plate and evolving to each structural element.

Ultimately, due to the time frame, reusability, adaptation to new scenarios and exploration of new
methods, the machine learning methods were adopted in order to explore solutions that could meet

all requirements.
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3. METHODOLOGY

Firstly, when starting the internship, a meeting with all stakeholders took place in order to confirm
the expectations of the study subject and available resources and data in the company.

Next, a mapping of the process was developed in order to verify ensure that all possible design
factors that can influence the process are covered.

Afterwards, a benchmark study of some available software to develop the prediction tool has been
performed. Clearly, there are several learning methods available. Anyway, the ones included in
this study were outlined.

Following, the database elaboration is detailed. The characteristics can be grouped in three major
categories: block characteristics which are estimated by a personnel staff of the company; welding
characteristics which are manually retrieved from the 2D drawing; and the welding characteristics
which can be gathered directly from the 3D model.

Subsequently, the collection of the data would take place. Then, the prediction tool was modelled,
and the contributing factors studied.

Finally, the results are explored, discussed and analyzed, and the conclusions are drawn.

3.1. Process Mapping

Firstly, a tour around the production facilities has been provided during the first days.
Subsequently, the measurement team has been shadowed for 1-2 weeks where there was the
opportunity to get to better know the processes. After this, the process has plotted in a flowchart
which had been presented through some of the colleagues of various departments in order to assess
it. After the compliance with the process, a brief description of the activities has taken place.
Unfortunately, due to a policy, no photographs were taken during the internship period. The

mapping of processes is detailed in Appendix | and as per non-disclosure agreement is restricted.
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3.2. Verification/Implementation of monitoring tools

While accompanying the measurement crew, a checkup of the monitoring tools was done.
However, there is only the verification of the distortions in loco and their records transferred into
reports. The measurement team is limited and any change to process would require more resources
which could require more time than the one proposed for the topic. Therefore, it was decided to
make use of the existing system. Below find the description of the measurement process for

longitudinal, transverse and angular distortions.

3.2.1. Measurement in (x,y)

The equipment used in order to perform the measurements in the “X, Y direction is the Sokkia
total station. Truly, this instrument consists of one optical scanning which is pointed to a prism or
a cube where the point of the desired data is. As well, the equipment is also integrated with a small
portable gadget which can allow the used to be away from the optical unit in order to trigger the
measurement. Finally, the organization of measurements can be inputted inside this computer in
order to expedite the service onsite, for instance: ship block number, target locations, etc.
When facing troublesome measurement positions, it is possible to measure additional points to
create a new reference and then measure the aimed position. Below find an illustration of the
equipment.
The procedure in order to measure the points goes as it follows. Firstly, the target points are setup
into the software. When onsite, the best location in order to measure all points is selected. After
that, the tripod is mounted, and the total station is attached to it. Next, the leveling of the total
station must be done in order to achieve satisfactory accuracies. Following, the prism cube or prism
stick which are the aims of the total station optical unit are placed in one of the positions:

e Bow — Portside (Vorne — Backbord)

e Bow — Centerline (Vorne — Mittellinie)

e Bow — Starboard (Vorne — Steuerbord)

e Stern — Portside (Hinter — Backbord)

e Stern — Centerline (Hinter — Mittellinie)

e Stern — Starboard (Hinter — Steuerbord)
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Figure 9 — Measurement Device — X, Y direction — Sokkia Total Station (Product_cx_05.Jpg (375%310) n.d.).

The optical unit is pointed to the cube or stick, the operator indicates in the computer which is the
point of measurement and the computer is triggered in order to obtain the measurement. The step
is repeated until all desired points are collected. A representation of the main points is shown
Figure 10.
As it had been mentioned before, different shapes or more complex structures might require extra
points in order to give better view or even as coordinates in order to acquire main points, for
instance: main plates divided into two heights, main plates with cut-off for doors or other openings,
etc.
If there is no possibility to reach all points from the initial position, then reference points are placed
on the walls of the workshop or nearby structures and then the equipment is unmounted and
remounted in a more favorable location.

: A

Bow (Vorne)

Portside(PS) Centéerline Starboard(SB)

Backboard (BB) 5 Steuerbord (SB)

| Stern (Hinter
A ( )

J/AnY
Figure 10 — Representation of the main measurement points — X, Y direction
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Ultimately, the data is retrieved by a software in the computer and the data is transferred to an
Excel spreadsheet which is used only for control and its named “Messprotokoll”. The retrieved
information is used for the positioning approval and on-site corrections, not being saved as a
databased nor becoming a feedback to the department which generates the allowance.

In addition, for each point, the table below is filled-in inside an Excel spreadsheet:

Table 2 — Input spreadsheet sample

X Y

Ist v.d. SchweiRen (before

welding)

Ist n.d. Schweillen (after
welding)
Soll (Original DWG Target)

3.2.2. Measurement in (z)

In addition, to check the discrepancies in z direction another equipment is used which consists of
electronic laser device along with a stick with the receiver of the laser as shown in Figure 11. Some
points (6-8) are marked along with the walls on the below level and they are checked. Manual
corrections using hydraulic jack-ups, cutting processes or shimming pieces are used. After the

corrections the block is released so another can be erected. The data is compiled into a report so

named “Montageprotokoll”.
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Figure 11 — Representation of the main measurement points — Z direction (612360TshtL._SL1001_.Jpg (1001x1001) n.d.).
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3.3. Program Selection
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As a matter of fact, there are a considerable number of tools available, which have been retrieved

by searching online, in order to deal with machine learning which some examples are listed in the

table below. As well, there is a nice review comparing the open source tools for data science which

is written by (Wimmer and Powell 2016).

Table 3 — Software suites” samples

Free and Open Source | Proprietary with free and Open Source Proprietary
R Knime Google Prediction API
Weka Rapid Miner MATLAB

As the company did not have any proprietary software for machine learning implementation, free

and open source tools were considered in order to solve the proposed problem. Hence, the R

Weka, Knime and Rapid Miner were considered as feasible options and they are discussed below

IR & B8 24 K Pproject: (None) ~
*%  @]untitledS* x @) Untitled6* x @] Untitled7* x @ Neural Network -RR % = » =[] I Environment  History =0
= SourceonSave Q /- i L#Run % | Source v| <% [J | _#Import Dataset~ & Clear | (& List~
24 ), Global Environment~ Q
25 f#hidden is a vector specifying the number of hidden layers and hidden n{ @ hc.single List of 7

26 [#For example the vector (3,2,1) induces a neural network with three hid

: : : .| ©hc.single.sca.. List of 7
27 Rone with three, the second one with two and the third one with one hid

28 © km.out List of 9
29 misClasificat.. 0.205645161290323
30 0 new.output List of 2
31 nn Onn List of 13

32 plot(nn)

|
33 |nn$net.result #overall result i.e. output for each replication ‘ Files Plots Packages Help Viewer =0
. | -
34 nn$weights| ! | 2 Zoom . Export~ @ 3 Clear Al @
35 nns$result.matrix
36 i) )
37 nn$covariate
20 I fs e age
34:11 £ (Top Level) = R Script =
Console ~/ = =0
- o . ) -
Call: neuralnet(formula = case ~ age + parity + induced + spontaneous, da paty .

ta = infert, hidden = 2, err.fct = "ce", linear.output = FALSE) i
1 repetition was calculated. induced

Error Reached Threshold Steps
1 120.5350645 0.009688719384 25163 spontaneous

> plot(nn) Error: 120.535064 Steps: 25163

>

Figure 12 — Program Selection — R Studio — Screenshot (Maxresdefault.Jpg (1920=1080) n.d.)

Firstly, R is the simplest one, requiring a good level of programming skills in order to correctly

setup a model. According to (Wimmer and Powell 2016), by default R does not provide visua

features turning out to be difficult for a novice to create a workflow. Even though there is R Studio
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graphical interface for R language, R language is still considered an interpreted language more

than an environment. A view of the R studio is shown in Figure 12.

Secondly, Weka provides a more user-friendly environment by providing a more guided way to

setup the model and being a collection of machine learning algorithms. As well, Weka contains

tools for data pre-processing, classification, regression, clustering, association rules and

visualization. It also provides its own packages in order to reduce programing (Wimmer and

Powell 2016). A screenshot of the GUI is presented in Figure 13.

L] Weka Explorer = = ﬂ
Preprocess  Classify | Cluster | Assodate | Select attributes | Visualize
Classifier
Choose  MultilayerPerceptron-L 0.3-M0.2-NS00-Y0-S0-E20-Ha
Test options Classifier output
() Use training set Input "
() Supplied test set Node 1
= Class Iris-virginica
() Cross-validation ~ Folds |10 Input
(®) Percentage split % |80 Node 2
More options...
Time taken to build model: 0.19 seconds
(Nom) dass v
=== Evaluation on test split ===
Start === Summary ===
Result list (right-click for options) o i i 5 SEECETR
Correctly Classifie nstances 2 . 7
08:20:02 - functions.MultiayerPerceptron [l
= Incorrectly Classified Instances 1 3.3333
Kappa statistic 0.9497
Mean absclute error 0.0317
Root mean squared error 0.1436
Relative absolute error 7.1216 %
Root relative squared error 30.4322 3
Total Number of Instances 30
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 0 1 1 1 Iris-setosa
1 0.05 0.909 1 0.952 0.995 Iris-versicolor
0.889 0 0.889 0.941 0.995 Iris-virginica
Weighted Avg. 0.967 0.017 0.97 0.967 0.966 0.997
=== Confusion Matrix ===
a b ¢ <-- classified as
11 0 0| a = Iris-setesa
010 0| b = Iris-versicolor
0 1 8| c=Iris-virginica
v
| status
oK Log w x0

Figure 13 — Program Selection — Weka GUI — Screenshot (16_splitandstartrun.Jpg (1018x825) n.d.)

Thirdly, Rapid Miner has a lot of features to offer however some of them are limited in the free

open source version. A positive point is the user-friendly workflow environment which allows you

to create the flow without requiring high level of programming. A drawback of the free version is

the limitation in memory access being 1 GB only (Wimmer and Powell 2016). Another downside
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is the limitation of the community edition which grants you to work with only database up to
10,000 rows (Communications 2017). A glimpse of the software is provided in Figure 14.
=X RapidMiner sRapidNTBO1 o&

File Edit Process Tools View Help

JEEy »a bl VYD

L Overview ~ Process 3 Tree = XML © context =2 Parameters
‘ @ - 4 B Process » -9 E S+ 8 e 5B~
R F g~ %, Validation (X-Validation)
" T 1
Y Retrieve [Vai ) average performances only
E)) out 0:» mod qres
s’ D es L) leave one out
: B p N
D ave —_ &
D number of validations |1U
o BJ U
- sampling type | stratified sampli.. ~ |
("] use focal random seed
'8 Repositories (7] paratielize training
5 Operators O
parallelize testing
@ - | ] @ P
2y AT e
+ () Data Transformation (110)
= & Modeling (255)
= < Classification and Regression (17
@ () Lazy Modeling (2)
# L) Bayesian Modeling (2) 0 Help B System Monitor
& () Tree Induction (13) - (A
05 o s, -
Lﬂ ) Rule Induction (5) % X-Validation
= &y Neural Net Training (2)
'y Perceptron
\"dNeural Net & Log /1, Problems )
@ () Function Fitting (8) = Py Synopsis
® () Logistic Regression (2) e X-Validation encapsulates a cross-
@ () Support Vector Modeling (6) aftribute. Using the version 5.0 style XML text content as description text £ validation in order to estimate the
# ) Discriminant Analysis (3) Mar 1, 2010 9:05:49 PM INFO: The tag &it,description&gt, is missing a text performance of a leaming operator
& L) Meta Modeling (13) aftribute. Using the version 5.0 style XML text content as description text
# L) Data Transformation (3) Mar 1, 2010 9:05:53 PM INFO: The tag &it,description&gt, is missing a texdt Description
@ () Weka (115) 82 attribute Using the version 5.0 style XML text content as description text X-Validation performs a cross-
&2 alida ace Tha innut & 82

R

Figure 14 — Program Selection — Rapid Miner — Screenshot (Maxresdefault.Jpg (960%720) n.d.)

Finally, Knime is quite similar to Rapid Miner by offering a graphical workflow which facilitates
the development of the model by a novice. In this sense, Knime has a slightly advantage on rapid
miner by making use of a more colorful workflow with clear names for the nodes. Another
advantage is the traffic lights for each node allowing the user to verify the flow between the model.
In addition, Knime has integration with R language and Weka while Rapid Miner can only
integrate with R language (Communications 2017). A representation of a workflow is

demonstrated in Figure 15.
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Figure 15 — Program Selection — Knime — Screenshot (Maxresdefault.Jpg (1440x900) n.d.)

A quick comparison matrix discussed by (Wimmer and Powell 2016) is partially presented below

allowing a final overview of all software and their methods.

Table 4 — Open Source Tools — Comparison Matrix (Wimmer and Powell 2016)

Method R | Weka | Rapid Miner | KNIME
K-means Clustering Yes | Yes Yes Yes
Association Rule Mining | Yes | Yes Yes Yes
Linear Regression Yes | Yes Yes Yes
Logistic Regression Yes | Yes Yes Yes
Naive Bayesian Classifiers | Yes | Yes Yes Yes
Decision Tree Yes | Yes Yes Yes
Time Series Analysis Yes | Yes Some Yes
Text Analytics Yes | Yes Yes Yes
Big Data Processing Yes | Yes No No
Visual Workflows No | Yes Yes Yes

Ultimately, a free of charge tool should be selected which has driven us to open source solutions
such as R, Weka, Rapid Miner and Knime. The first criterion in order to choose the software was

the user-friendliness. Hence, Knime and Rapid Miner were the best options as they offer graphical
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workflow facilitating the creation and application of the methods and not requiring high level of
programming. The second criterion was the capability of processing data. While Rapid Miner
limits the free version around 10,000 rows, Knime does not possess such restriction. The third
criterion was the integration with other tools. Although both Rapid Miner and Knime offer the
integration with R, just Knime explicit mention the integration with Weka. Having said that, the

chosen software was Knime.

3.4. Selection of Method

Truly, Knime offers more than 1,500 modules for data science. Nonetheless, the selected methods
were Neural Network, Linear Regression and Best Fitting.

As a matter of fact, the main advantage of the neural network is to deal with the nonlinearities
which are resulted from a very nonlinear process such as welding.

As well, the company would like to verify their actual process and maybe to alter for a simple
formula, therefore the linear regression also takes place.

Additionally, to complement the linear regression method, the best fitting method is developed.

3.5. Database Elaboration

As the proposed solutions should be oriented to be used by the CAM/Nesting team, main design
parameters were preferred in order to elaborate the database. Therefore, three main sources of
information were gathered to compose the database.

Firstly, the estimation of the main block characteristics which is developed by a personnel staff.
Secondly, the characteristics that could be outlined from the 2D drawings were analyzed and
tabulated into a spreadsheet.

Thirdly, the characteristics which could be inferred from the 3D model database available from
the company’s design system.

Finally, all of the information was joined by the ship and section number resulting in 60 available
blocks to be studied.
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3.5.1. Block Characteristics

Block characteristics such as section number, main composition (Steel/Aluminum), length, width,

height, volume and weight were estimated by one personnel and included here.

3.5.2. Welding Characteristics from 2D model — (Manual)

Later, each 2D drawing was verified and its elements classified into:

Transversal — Fillet weld of any element placed in the main plate which is positioned in the
transversal direction (y); E.g. Frames and Carlings. Color: Light Blue

Longitudinal - Fillet weld of any element placed in the main plate which is positioned in
the longitudinal direction (x); E.g. Stiffeners. Color: Green

Girder - Fillet weld of any element placed in the main plate which is positioned in the
longitudinal direction (x) and has its sizing reminding a girder; Color: Pink

Butt Weld — Any butt weld. Color: Orange

] K [
i
III \ q i .l
¥ 4 b L >
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Figure 16 — Welding Research Papers' Distribution

In addition, after colors that would be representative, more than 50% of the plate, were counted as

1 complete element and this information was tabulated along with the spacing of girders, stiffeners
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and frames. Moreover, the most representative thickness was included in the spreadsheet as well.
Finally, as the spacing of girders and frames could be different between the blocks, an average
value was taken for each section so that the machine learning methods could make use of these

features.

3.5.3. Welding Characteristics from 3D model — (Automated)

This process was developed to outline the information of Plate, Girder, Stiffener and Frame
automatically from the 3D drawing. It can express the similar information as in the topic above,
but it cannot give the spacing. It had been created at first when the number of blocks were high,
however when it dropped it was preferred to do it manually. On the other hand, it can still provide

estimations of the welding length and weightage.

3.5.4. Collection of historical data

The process started around 2011 and its standards changed over the years. Hence, in order to collect
all of those data, a common spreadsheet was used to gather all information and the data was
collected from PDF and excel spreadsheets and, finally, some were directed retrieved from the
total station files. The compilation and consolidations of these files into one database took around
2-3 months.

3.6. Modelling the prediction tool

The development of the model tool started in early September being improved to the most until
December. During the development some study cases were assigned as it follows, at first all
features were given to the model trying to predict the variables (X, y) in the for edges. As no good
results were achieved, next the reduction of the variables (x, y) to one length and widthwise
variables were done and tested again with all features. Better results were achieved, but with poor
accuracy, hence the same model was tested but with one feature at each time Length and Width

which were computed from the target points. Ultimately, a back-feature selection method was
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applied to select the most relevant features and the model was run one more time with the selected
features.

As a matter of fact, in order to enhance the learning of the outliers were removed by assessing the
variation between the target and actual points and by using two different methods: the two-standard
deviation which give us a 95% of confidence level; and the interquartile range.

In addition, a different proposal of using the principal component analysis (PCA) had taken place
in order to reduce most of the features to two virtual features and the model was applied. Another
difference between this attempt and the other models is that this model takes the outliers based on

the PCA variables instead of considering the variation between the target and actual points.

3.6.1. General Overview

The model has been divided in three main categories “Loading Data”, “Pre-processing” and
“Processing and Results” which can be visualized in the Figure 17 and Figure 18. After a first trial
with all variables and considering X and Y direction, a second attempt reducing the points to
measurements along X and Y direction were performed. In sequence, a trial with just the length
and width variables took place in order to try to come up with a simple formula for the
CAM/Nesting team. Finally, a back-feature selection method was implemented in order to outline

the most significant geometric features in the design.

Master Thesis developed at West Pomeranian University of Technology, Szczecin



Accuracy Control and Welding Distortion Prediction in a Deck Plate 45

I Loading Data I Pre-processing I

Loading biocks' main chamchrsics

{cirinq Databaces Pre-processing  Graphing/
. Clusterin
[Edacics” Main 1 « Romowing Unnecessany g
Charsdsricion Columins
T 2 - Compuling Averane ;'g_‘-"“_“r“:{w
Lergth and Widk from tamet " racnira &
X g
~— o0 points o
— dainer 3 - Elimiralirg O wal s R
I o Redudancy| .
) o 4 « Applying Shinkage Fackor PR —
Lo ey Mboasunemanis __,.ﬂ' i 5 - Cornpio rg e e I
- L \ i W froe afer wel dirg

Mezcursmenic Juining All Fashures| wc0a poirks W
. e |I y .

II m““ "

4 | Pt 0: Gaussian Treahment 2

| scinar ST 5%

Port 1 - Daka

! - Fort 1: Bowplot

Lo rey &l ements charachesdcs o 1*1-' S ) mizﬂew

sHonal cha clics l R Fort 4 . FS-Stom
Sudddonal charachod S80S o Do corslGoned |m T Sy ‘_,-‘ B » N

. JoururaNIFo..n.m:.l. [ — ot B
oharasfericio J— — Dwinpad
E \ Joiner ..‘__.—"' ’E
e -
1,5 o
R
"Ml dineg Seam chamchelsics L~
® L

Suddional charachal s8cs o ba corsldened in S0
Exosl Reader (XL E)

L
201 70525 - Wiel ding Seam Couriing Jlss

Joirirg All Foatues

Figure 17 — KNIME Model — General Overview — Loading and Pre-processing
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Figure 18 — KNIME Model — General Overview — Processing and Results
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3.6.2. Loading Data

All data has been stored in Excel spreadsheets. Hence, the Excel Reader (XLS) node has been used
so that the data could be load into Knime workflow. There are ten different spreadsheets that were

loaded into Knime workflow.

3.6.2.1.Blocks’ Main Characteristics

The first spreadsheet to be loaded was the blocks’ main characteristics. This spreadsheet contains
the ship number, the section number, main material used, average length, average width, estimated
volume and estimated weight. These characteristics were estimated by a personnel staff from the
Ship Construction department. The workflow representation is shown below in Figure 19 and
Figure 20.

Loading blocks' main characteristics

Blocks' Main
Characteristics

S

Figure 19 — KNIME Model — Loading Data — Blocks’ Main Characteristics — General Workflow

>

Excel Reader (XLS)

HLS
3 >

2017-09-29 - Ship blocks’ main characteristics xlsx

JavaScript
Number To String Pie/Donut Chart
a5 b

Transforming Ship number  Number of Section
to String in order to plot per Ship

Figure 20 — KNIME Model — Loading Data — Blocks’ Main Characteristics — Metanode
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Additionally, there is a node converting the ship number into string so that a pie chart could be
plot in order to demonstrate how many sections could be studied. Truly, the number of sections
summed up is 452 and the distribution is demonstrated in Figure 21.

Number of Section per Ship

@®shipl @ship2 @ship3 @sShipd @ship5 @Ship6 @sShip7 @ship8

Figure 21 — KNIME Model — Loading Data — Blocks” Main Characteristics — Number of Sections per Ship
3.6.2.2.Measurements

The representation of the metanode in the workflow can be seen in Figure 22, Figure 23 and Figure

24. The Figure 22 represents the view in the general flow while Figure 23 and Figure 24 represent
the inside setup of the metanode.

Loading Measurements

Measurements

v

Figure 22 — KNIME Model — Loading Data — Measurements — General Workflow

Firstly, all measurements that where collected during the internship period are loaded into the
workflow. Then, some numbers which KNIME recognized as string are converted back again into
number (double) values in order to be used in the machine learning process.
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Figure 23 — KNIME Model — Loading Data — Measurements — Metanode — Loading and Converting Strings

Afterwards, there were some columns which were used to consolidate the data that were still being
recognized by KNIME. Hence, they are excluded by the column filter node. In sequence, all tables
are concatenated. Finally, along with the selection of good data and its forwarding to the general

workflow, a plot with the data stratification is performed and it is shown in Figure 25.
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Figure 25 — KNIME Model — Loading Data — Measurements — Metanode — Number of Measurement by Classification
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3.6.2.3.Elements’ Characteristics

The elements characteristics is an exportation of all data available inside their current design
system. Moreover, the features are: Ship, Section, Element, Layer, Geometry and Type of
Material. Using these data, estimated welding length and weight were outlined based on each

element existing inside a section. The layout of the elements’ characteristics node is shown in

Figure 26 and Figure 27.

Marcio Fleming

Loading elements characteristics

Additional characteristics to be considered in the study

Elements’
characteristics

Vi

Figure 26 — KNIME Model — Loading Data — Elements’ Characteristics — General Workflow
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Figure 27 — KNIME Model — Loading Data — Elements’ Characteristics — Metanode

As a matter of fact, this is the biggest database loaded into KNIME workflow, therefore the first
action was to eliminate solely information rows from the database. This has been achieved by

eliminating rows without any geometric data and no welding information. Then, the sum of the
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estimated welding length and weight occurred followed by the renaming of the Sum columns in
order to facilitate reading and coding at a later stage of the model.

Furthermore, the sums of the weightage and welding estimative were plotted according to the

section and defining shapes for the dots representing each ship. The setup and plots are presented

in Figure 28, Figure 29 and Figure 30.

Dialeg - 0:18:19 - Shape Manager (Shaping Ships) i - O >

File
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‘Ship 2 @ circle
Ship 3 A Triangle
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Figure 28 — KNIME Model — Loading Data — Elements’ Characteristics — Metanode — Shape Manager
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Figure 29 — KNIME Model — Loading Data — Elements’ Characteristics — Metanode — Chart Plot — Sum of Weightage
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Figure 30 — KNIME Model — Loading Data — Elements’ Characteristics — Metanode — Chart Plot — Sum of Weightage

3.6.2.4.Welding Seam

Based on least number of section which was provided by the measurements database (69),
additional features based on the technical drawing of the main plate were stated. Features such as:
Number of Transversal Elements, Number of Significant Welded Transversal Elements, Number
of Longitudinal Elements, Number of Significant Welded Longitudinal Elements, Number of
Girders, Number of Significant Welded Girders, Number of Butt Weld Seams, Number of
Significant Weld Seams, Girder Spacing, Stiffener Spacing, Frame Spacing and Main Thickness
of the deck plate. A representation of loading data in the general flow is displayed in Figure 31.

Welding Seam characteristics

Additional characteristics to be considered in the study
Excel Reader (XL5)

HLS g
S

2017-08-28 - Welding Seam Counting.xlsx

Figure 31 — KNIME Model — Loading Data — Welding Seam Counting — General Workflow
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3.6.2.5.Joining

After loading all data, the joining process among 4 databases was performed and passed to the pre-
processing process. An image is not displayed here as the representation of the joining process can
be seen in Figure 17. The method used for joining the tables is Inner Join matching ship and
section.

3.6.3. Pre-processing — Data

A general view of the pre-processing metanode and its components are demonstrated in Figure 32

and Figure 33.

Pre-processing

1 - Remaving Unnecessany
Columins

2 - Computing Average
Length and Width from target
=dge points

3 - Eliminating 0 values
{Redudancy)

4 - Apphying Shrinkage Factor
5 - Computing Mew Length
and Width from after welding
=dge points

Results

Part O: Gaussian Treatment 2
5TD {~35%)

Part 1: Bosxplot

Pre-processing
Dataset

¢

Figure 32 — KNIME Model — Pre-processing — Data — General Workflow

In this metanode, the initial removal of columns occurs at the early beginning to reduce the number
of features to be studied which are considered as irrelevant, such as: information about “before
welding” points which is an intermediate part of the process just before the butt welding and there
are already some welded part into the sub-assemblies; Var 1 and Var 2 which are variations
computed between target point and before welding, and, before welding and after welding due to
the reason mentioned for the “before welding”; and finally string variables which are not accepted

by the neural network learning method.
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Figure 33 — KNIME Model — Pre-processing — Data — Metanode

As the training does not allow strings, the material type of the section is converted to integer
number and the section variables have a character “S” removed and then converted to number.

Figure 34 displays the nodes described so far.

Variable type treatment for training the netwaork

Column Filter String Replacer String Replacer

> ik W] {f] >

L] L] B |

Remaoval of Columns Stahl Alu |
String To Number  String Manipulation  String To Numbe
—® 2 P (5] P S e
L] [ ] ]
Type Remaoving S Converting

Figure 34 — KNIME Model — Pre-processing — Data — Treatment for training the network
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Figure 35 — KNIME Model — Pre-processing — Data — Rest of Operations

In order to reduce the number of learning variables and create an easier formula to be manipulated
by the CAM/Nesting team the target points where reduced to average length and width. Next, there
is a node in order to exclude null values. This node was created while developing the model when
not all data was fully keyed in order to assure consistency of data. Nonetheless, now it does not
impact anything in the model, but it is kept as the model can be used to assess different problems
and it can assist in the development of new solutions.

Afterwards, the shrinkage factor is included in the database and applied to average length and
width. On the same pace as average length and width, the reduction of the variables for the final
position of the points has been created based on the total length and width and summing the
variations.

Finally, two different statistical methods where applied: two standard deviations and the

interquartile range. Whereas the two-standard deviation method eliminate the outliers reducing the
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available data from 60 to 45 blocks, the interquartile range reduces from 60 to 48. Hence, the data
which does not behave as most of the data is taken out of the database by using the variations as
the criteria. The formulas applied to compute additional characteristics can be seen in Appendix
I

3.6.4. Pre-processing - Graphing and Clustering

The representations of the metanode are displayed in Figure 36 and Figure 37. While Figure 36 is
the metanode in the general workflow, Figure 37 demonstrates the inner operations of this

metanode.

Graphing/
Clustering

1 - Clustering

2 - Graphing after
welding
measurements

Cluster/Graph

e

Port 1 - Data

Part 2 - P5-Bow
Port 3 - STB-Bow
Paort 4 - P5-Stern
Paort & - STE-Stem
Port & - PCA

Figure 36 — KNIME Model — Pre-processing — Graphing and Clustering — General Workflow

Firstly, the node applies the principal component analysis (PCA) which is a statistical procedure
to convert a set of observations of likely correlated variables into a set of values of linearly
uncorrelated variables. Along with the PCA, k-Means clustering has been applied in order to
identify any possible cluster. Subsequently, the discovered clusters have been shaped and the
different material types highlighted.

Ultimately, as PCA and cluster information may vary according to each database to be studied,
they have been removed before passing the data to the machine learning methods. In addition,

scatter plots for all four corners and the PCA were plotted.
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Figure 38 — KNIME Model — Pre-processing — Graphing and Clustering — Metanode — Bow Portside and Starboard Edges
(Cluster 1 — Cross; Cluster 2 — Circle; Cluster 3 — Rectangle; Type 1 — Steel; Type 2 — Aluminum)

Var3-Stern-PS-X
[ I - B S R R L L I ST, -

] Xm

] x
]

]

x
b
] e m m
] b4
] X °
LI ]
.o
x X E
] X =m
m |
4
[ ]
]
] ]

7 6 5 -4

32 -1 0 i 2 3 4 5 6

Var3-Stern-Ps-Y

o
2
adh]

Var3-Stern-Stb-x
[T T S IV R ST = 1

] ®
®
X
= & " me
m X
x H Bm
= EE X ®m
)(. *® X
X = =
°
I [
X " m
X
x= °
m x
S5 4 3 2 1 a 1 2 3 4 5 (5] 7

Var3-stern-Stb-y

2.00
1.85
1.80
185
1.80
175
170
1.85
1.80
155
1.50
1.45
1.40
135
1.30
125
1.20
1.15
110
1.08
1.00

adiL

Figure 39 — KNIME Model — Pre-processing — Graphing and Clustering — Metanode — Stern Portside and Starboard Edge
(Cluster 1 — Cross; Cluster 2 — Circle; Cluster 3 — Rectangle; Type 1 — Steel; Type 2 — Aluminum)
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Figure 40 — KNIME Model — Pre-processing — Graphing and Clustering — Metanode — PCA (Cluster 1 — Cross; Cluster 2 —
Circle; Cluster 3 — Rectangle; Type 1 — Steel; Type 2 — Aluminum)

3.6.5. Neural Network

A first graphical representation of the Neural Network metanode in the general flow can be seen

in Figure 41. Further details of the metanode are presented from Figure 42 to Figure 50.

Neural Network (Testing normalized data) ]
Port 0 - Numeric Scorer & Results

hidden layers from 1to 3; step 1 (Columns)

hidden neurons from 40 to 100; step 10 (lterations) |

Neural Network

=

Figure 41 — KNIME Model — Processing — Neural Network — General Workflow
Truly, the neural network algorithm is composed by a number of hidden layers and hidden neurons.
In general terms, while the hidden neurons are distributed in each layer providing the weightage
values, the hidden layers constitute how many assessments are going to take place. In order to
better assess our problem, the workflow has been organized so that many different setups could be
verified. Clearly, the default value of hidden layers and neurons are 1 and 10. The interval loop

start nodes are setups where the range and step of testing cases are assigned.
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Range of Meural Metworks to be Tested Different I
Interval Loop Start  Interval Loop Start
> >
Testing
Hidden Layer Hidden Meurons
Maormalizing data betwaen Paritioning of Data
[0:1] Learning - 70%
Testing - 30%
’ Normalizer (PMML) Partitioning Cache
» »
» LI =i >
o oo )
Caching Test Data

Figure 42 — KNIME Model — Processing — Neural Network — Setup

Before initializing the network, it is necessary to normalize the data in the model so that the
learning algorithm takes place. For doing so, it is necessary to have only numbers as string
variables are treated as classification problem. Later, it is elementary to divide the learning and
setup, which in our case 70% of data was reserved for learning whereas 30% was retained for
testing the model. As well, the data partitioning is draw randomly. After, a cache node was used

to make faster access of data. From Figure 42 to Figure 45, the setup screenshots are displayed.

Dialog - 3:104:70 - Interval Loop Start'THidd..  — O X Dialog - 3:104:68 - Interval Loop StartfHidd..  — O X
File File
Standard settings  Flow Variables Job Manager Selection  Memory Policy Standard settings  Flow Variables Job Manager Selection Memary Policy

From 1.0 From 40.0

To 3.0 To 100.0

Step 1.0 Step 10.0

Loop variable is () double Loop variable is () double
(®) integer (@) integer

Variable prefix |h|_ Variable prefix  |pn_

OK Apply Cancel @ OK Apply Cancel @

Figure 43 — KNIME Model — Processing — Neural Network — Setup — Hidden Layer and Hidden Neuron
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Dialog - 0:104:17 - Partitioning had — O b 4
File

First partiion  Flow Variables Job Manager Selection Memory Policy

Choose size of first partition

() Absolute 705
(®) Relative[%4] 0=
() Take from top

() Linear sampling
(®) Draw randomly

Stratified sampling

[] Use random seed 1,512,983,400,:

oK Apply Cancel @

Figure 44 — KNIME Model — Processing — Neural Network — Setup — Data Partitioning

In sequence, there is another loop where we select the variables that the model should learn and
test. Hence, for each variable the flow is going to select one variable, use it to learn, convert the
model to cell and save it in a column.

Different Meural Metwork Model learming

Column List
Loop Start RProp MLP Learner PMML To Cell Loop End
> Er a3 > (o
Testing each Var(x,Y) Point Model MM Converting Model  Saving Model

Learning to cell

[EE— _

Different Meural Network Madel prediction

Chunk Loop Start  Cell To PMML  py4) ayerPerceptron Reference  Loop End {Column

e > E > > “.f.'f'p I Predictor Column Filter Append)
. -_—

o \\ Reading each Converting ® ® C-;?i

est Data Model Row cell to Model Prediction Mode | Leaving just Grouping all

the prediction colVariable Predictions

Figure 45 — KNIME Model — Processing — Neural Network — Learning and Prediction
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Dialog - 0:104:28 - Column List Loop Start (Testing each Var(X,Y) Point) — O e
File

Standard settings  Flow Variables  Job Manager Selection  Memory Palicy

(®) Manual Selection () Wildcard/Regex Selection () Type Selection

Exdude Select - Indude
Column(s): Search add >> Column(s): Search
[ select all search hits [ select all search hits

D ship ~ iz = D Var3-StemnP5X

D Section D Var3-SternP5-Y

D Type D var3-Stern-5th-X

D Length SErIE D var3-stern-Sth-y

D width D var3-Bow-Ps-X

D Height D var3-Bow-Ps-Y

D Volume << remove al D Var3-Bow-Sth-%

D weightage D var3-Bow-5th-¥

D Target-Stern-PSs-X
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(®) Run one iteration

() Fail

0K Apply Cancel @'

Figure 46 — KNIME Model — Processing — Neural Network — Variables to be Learned
At a later stage the model is going to get the column with all the models, create the prediction for
each variable, remove all columns but prediction one and save all predictions into a table. The flow

below actually denormalize the data in order to save the results and enable the plotting later on.

Denormalizing Testing and Prediction Data

Denormalizer (PMML) | Column Rename Denormalizer (PMML) Column Rename
- [ B ' - |
I 3 3
] ] 1S ]
Denormalizing Testing, Eenaming Predictions Denaormalizing  Renaming Predictions
Data to Append to Denormalize Predictions to Save to Save

Figure 47 — KNIME Model — Processing — Neural Network — Denormalization to Save
Then a metanode with numeric scorer, which is presented in Figure 50, is used in order to test all
variables with normalized data. Next, the results of the numeric scorer are joined with the
denormalized data in order to save the statistical and denormalized predictions and the table is

transposed before passing the results.
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Transpose ® Mg 8
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Transposing the
predicted data

Figure 48 — KNIME Model — Processing — Neural Network — Joining Predictions and Numeric Test Results

Based on the results, a rule-based node selects an assigned iteration to plot the results obtained by
the network, and also a joiner is used in order to provide the original value of deformations with

the predictions.

Platting Test Diats and Predictions

Rule-based Scatter Plot Scatter Plot
Row Filter [JFreeChart) [JFreeChart)
- 3 3
L] RowlD - -
Transpose Selecting the Iteration B Bow-F5 Bow-5th
for all the Points ™ | =/
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] Prediction Row 1D [ 3
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) Frediction Data - Scatter Plot Scatter Plot
Selecting the Iteration RowlD Joining Test and Prediction Data.  [JFreeChart) [JFreeChart)
fior 3ll the Points
b ew
Data Row ID Stern-PS Stern-Sth

renaming becsuss
of Iteration numbser

Figure 49 — KNIME Model — Processing — Neural Network — Joining Predictions and Numeric Test Results
The numeric scorer metanode displayed below was developed so all elected variables are tested
and passed back to Neural Network metanode. Another representation of the assigned variables to

be tested can be seen in Figure 51. It can be observed that they are the same as the ones assigned

in the learning process.
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Figure 51 — KNIME Model — Processing — Neural Network — Numeric Test Metanode — Variables to be tested

3.6.6. Polynomial Regression

63

A first graphical image of the Polynomial Regression metanode in the general flow can be noticed

in Figure 52. Moreover, the details of the metanode are given from Figure 53 to Figure 63.
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Polynomial Regression - from 1 to 10
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Polynomial
Regression

L

Figure 52 — KNIME Model — Processing — Polynomial Regression — General Workflow

Actually, the polynomial algorithm is composed by the number of degrees of the equation. Again,
in order to better assess our problem, the workflow has been organized so that many different
setups could be verified. Undoubtedly, the default degree value offered by Knime is two. The

interval loop start node is where the range and step of testing cases are assigned.
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Figure 53 — KNIME Model — Processing — Polynomial Regression — Metanode

Unlikely Neural Network, before initializing the network, it is not mandatory to normalize the data
in the model so that the learning algorithm takes place. On the other hand, it is still necessary to
have only numbers. Next, it is elementary to divide the learning and setup which in our case 70%
of data was reserved for learning whereas 30% was retained for testing the model. As well, the
data partitioning is draw randomly. Then, a cache node was used to make faster access of data. In

Figure 54 and Figure 55, the setup screenshots are displayed.
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Figure 54 — KNIME Model — Processing — Polynomial Regression — Metanode - Setup
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Figure 55 — KNIME Model — Processing — Polynomial Regression — Setup — Number of Degrees and Data Partitioning

In sequence, there are two other metanodes where the variables that the model should learn, and

test are passed to. Once again, for each variable the flow is going to select one variable which

have been divided into two directions “X” and “Y”, use it to learn, convert the model to cell and

save it in a column. This way, at the end it would be possible to come out with two different

formulas.

“EMSHIP” Erasmus Mundus Master Course, period of study September 2016 — February 2018



P66

Marcio Fleming

Pohynomial Regression
Leanming

Polynomial (One
Directicn)

—pe] 1
P

X Variables

Polynomial (One
Direction)

£

' Warizbles

Figure 56 — KNIME Model — Processing — Polynomial Regression — Metanode — Learning and Predicting
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Figure 57 — KNIME Model — Processing — Polynomial Regression — Learning and Predicting — Metanode — X Direction
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Figure 58 — KNIME Model — Processing — Polynomial Regression — Variables to be Learned — X Direction
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Figure 59 — KNIME Model — Processing — Polynomial Regression —Learning and Predicting — Metanode — Y Direction
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Figure 60 — KNIME Model — Processing — Polynomial Regression — Variables to be Learned — Y Direction

On the same pace as the neural network model, the actual values, the predictions and test results

are joined in order to forward the values outside the metanode to the main workflow.
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Figure 61 — KNIME Model — Processing — Polynomial Regression — Joining Predictions and Numeric Test Results

The numeric scorer metanode displayed below was developed so all elected variables are tested
and passed back to Polynomial Regression metanode. Another representation of the assigned

variables to be tested can be seen in Figure 63. It can be observed that they are the same as the

ones assigned in the learning process.
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Figure 62 — KNIME Model — Processing — Polynomial Regression — Numeric Test Metanode
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Figure 63 — KNIME Model — Processing — Polynomial — Numeric Test Metanode — Variables to be tested
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3.6.7. Back Feature Selection

As a lot of variables has been used in order to study the problem, a back-feature selection has been
implemented in order to verify the most significant variables to the problem. A display of the
metanode in the general flow is shown in Figure 64.
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Figure 64 — KNIME Model — Processing — Back Feature Selection — General Workflow

A more detailed picture is presented in Figure 65. In true, the implementation of this method
requires the usage of a prepared metanode model such as neural network but with one setup which

in this case the number of hidden layers was 1 and the number of the hidden neurons 41.
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Figure 65 — KNIME Model — Processing — Back Feature Selection — Metanode

3.6.8. Best-fitting

The best fitting is actually the plot between the design values with the shrinkage factor on Y -axis
with the actual shrink values on X-axis. A demonstration of the nodes in the general workflow is
presented in Figure 66.

Best Fitting

20030 Scatterplot2Di3D Scatterplot

Length Width

Figure 66 — KNIME Model — Processing — Best Fitting — General Workflow
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4. RESULTS AND ANALYSIS

The results are analyzed by considering three main characteristics: the coefficient of determination
(R?), mean absolute error (MAE) and mean squared error (MSE). A brief explanation is given
below.

In addition, the coefficient of determination is the proportion of the variance in the dependent
variable that is predictable from the independent variable(s) and its interpretation is that the values
closest to 1 indicates that the fitted model explains all variability. It is important to highlight that
R? can yield negative values when fitting non-linear functions to data.

Moreover, the mean absolute error is a measure of difference between two continuous variables
and the lowest value should be preferred.

Furthermore, the mean squared error measures the difference between the estimator and what is
estimated, and the lowest value should be promoted.

All in all, the first criterion used is the coefficient of determination, followed by the MAE and then
MSE. Additionally, all plots generated by KNIME do not present the unit. Nonetheless, the unit

should be considered as millimeters (mm).

4.1. Real Variation

Two representations of the variations are presented in Figure 67 and Figure 68.
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Figure 67 — Results — Real Variations — Target vs Actual points — All four corners together
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From Figure 67 it is possible to visually verify that most of the variations occur inside the range
of 10 mm. From the raw data, in the x-axis the maximum absolute variation is 17.2 mm, while in
the y-axis 22 mm which is not displayed above. Nonetheless, the shrinkage factor for the Steel is
1.001 and for the Aluminum 1.002, and the average block length and width are respectively 11.39
m and 18.65 m indicating that the actual factor can handle most of the actual variations, but
production problems might still arise.
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Figure 68 — Results — Real Variations — Target vs Actual points — All four corners separated

Figure 68 gives a better view of each corner. It must be reminded that the lengthwise has an excess
of material which should be enough to avoid any production problem. On the other hand, on the
widthwise direction production problems might occur as there would not be any excess of material.
Ultimately, the comparison was considering the behavior of a single corner. If you take into
account the behavior of two corners the effects on the arise of production problems can be even

greater specially on Y-axis where there is not an excess of material on top of the shrinkage factor.
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4.2. Polynomial Regression
4.2.1. All Features with eight variables

Although the method has been implemented, the attempt to run this trial failed because the number

of features is way too high when compared to the number of data rows. Hence, more data is
required in order to run this model.

4.2.2. All Features with two variables

On the same pace as the previous trial, with eight variables, the number of features is higher than
the number of required data to run the model. Therefore, more rows or the reduction of the features
are elementary so that a trial could be achieved.

4.2.3. One Feature with two variables and PCA Analysis

After running the model for four different methods — two-standard deviation, interquartile range
using variation points when compared to the target and actual points to eliminate outliers and two-
standard deviation, interquartile range using PCA to eliminate outliers varying from 1 to 10
degrees, the following charts from Figure 69 to Figure 72 could be outlined in which solely the
best results were plotted until the first visual difference.
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Figure 69 — Results — Polynomial Regression — One Feature with two variables — from 1 to 4 degrees — 2 STD
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Figure 70 — Results — Polynomial Regression — One Feature with two variables — from 1 to 5 degrees — IQR
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Figure 71 — Results — Polynomial Regression — One Feature with two variables — from 1 to 7 degrees — 2 STD — PCA
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Figure 72 — Results — Polynomial Regression — One Feature with two variables — from 1 to 6 degrees — IQR - PCA
The use of IQR method increased the number of available data when compared to the two-standard
deviation method which can be the reason why we could satisfactory achieve another number of
degree. Analogously, when using PCA in order to eliminate the outliers more data was available

to be evaluated and higher degrees could be achieved with the same method.
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Clearly, the length was the variable that started to deviate first. This can be explained by being
influenced mostly by the given features. Additionally, because its range is lower than the width, it
has more variations inside a lower range. Ultimately, for the polynomial regression method, the
best model was the two-standard deviations observing the variations in order to remove the outliers

and its final statistical information is shown below.

Table 5 — Results — Polynomial Regression — One Feature with two variables — Best Result — 2 STD - 1 degree

. . Number
oy (LZEZ?LCJ'G’QM (Vzrg?t:itlllc:ar\]/v) 5 o P

egrees
RA2 1.00 1.00 1 1.00
MAE 3.23 3.94 1 3.58
MSE 16.84 25.00 1 20.92

4.3. Neural Network

4.3.1. All Features with eight variables

While the polynomial regression method could not handle the number of variables, the neural
network could learn from the features and the results are demonstrated in Table 6. However, due
to the number of non-linearities all coefficients of determination were negatives. Therefore, no

setup for this model was not considered satisfactory and not being plotted or further discussed.

Table 6 — Results — Neural Network — All Features with eight variables — R?

Hidden Layers
1 2 3
@ 40 |- 102 |- 097|- 144
g 50 |- 123 |- 115|- 159
2 60 |- 120 |- 112 |- 149
S 70(- 095|- 121|- 075
8 | 80l- 12[- 114|- 139
= 90 |- 114|- 130|- 044
100 - 1.07 |- 104|- 190
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4.3.2. All Features with two variables

As it had been mentioned for the previous attempt, while the polynomial regression method could
not handle the number of variables, the neural network could learn from the features and present
results. Nonetheless, the coefficients of determination were improved by the reduction of variables
to be studied. Thus, starting with the coefficient of determination and analyzing the errors, a best

configuration was outlined for each outlier removal method.

Table 7 — Results — Neural Network — All Features with two variables — R2 — 2 STD

Hidden Layers

1 2 3

o | 40 0.682 0.727 0.575
2| s0 0.731 0.764 0.582
2| 60 0.900 0.593 0.699
s | 70 0.811 0.725 0.486
B | 80 0.795 0.630 0.502
T 90 0.781 0.719 0.527
100 0.741 0.775 0.484

Table 8 — Results — Neural Network — All Features with two variables — R? — IQR

Hidden Layers
1 2 3
2 | 40 0.861 0.539 0.550
S | 50 0.857 0.690 0.733
2 | 60 0.765 0.801 0.836
§ |0 0.913 0.742 0.902
3 | 80 0.836 0.898 0.803
T 190 0.519 0.830 0.813
90 0.736 0.735 0.812

In order to better assess the networks, just those with R? close to 0.9 were analyzed. Therefore, our
case for the two-standard deviation is a neural network having 1 layer with 60 neurons. Moreover,
for the interquartile range method, the following setups are examined: 1 layer with 70 neuros; 2

layers with 80 neurons; and 3 layers with 70 neurons.
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Table 9 — Results — Neural Network — All Features with two variables — Best Results — Statistics — 2 STD

Hidden | Hidden | Hidden | Hidden
Statistics Neurons | Neurons | Neurons | Neurons
60 70 80 70
Method 2STD IQR IQR IQR
Number of Layers 1 1 2 3
RA2 0.9005 0.9126 0.8979 0.9019
MAE 0.0474 0.0398 0.0407 0.0415
MSE 0.0041 0.0045 0.0054 0.0043

Ultimately, it was chosen the following setup to be plotted: 1 layer with 60 neurons for 2 standard
deviations method. In addition, it had been decided to display the following setup: 1 layers with

70 neurons.
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Figure 73 — Results — Neural Network — All Features with two variables — 1 layer and 60 neurons — 2 STD
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Figure 74 — Results — Neural Network — All Features with two variables — 1 layer and 70 neurons — IQR
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4.3.3. One Feature with two variables and PCA Analysis

As it had been mentioned for the previous attempt, while the polynomial regression method could
not handle the number of variables, the neural network could learn from the features and present
results. Nonetheless, the coefficient of determination was improved by the reduction of variables
to be studied. Thus, starting with the coefficient of determination and analyzing the errors a best

configuration was outlined for each outlier removal method.

Table 10 — Results — Neural Network — One Feature with two variables — RZ—2 STD

Hidden Layers
1 2 3
1 0.750 0.634 0.597
11 0.745 0.829 0.769
g |21 0.837 0.732 0.725
3 |31 0.974 0.895 0.804
< |4 0.979 0.904 0.755
S | 51 0.981 0.767 0.781
T |61 0.952 0.941 0.810
71 0.977 0.868 0.737
81 0.947 0.870 0.677
o1 0.932 0.841 0.762

Table 11 — Results — Neural Network — One Feature with two variables — R — IQR

Hidden Layers
1 2 3
1 0.910 0.755 0.512
11 0.950 0.914 0.949
2|21 0.953 0.966 0.963
S 31 0.961 0.959 0.967
<4 0.971 0.964 0.962
S |51 0.973 0.969 0.952
T |61 0.973 0.965 0.966
71 0.975 0.944 0.984
81 0.972 0.980 0.969
91 0.972 0.965 0.962
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Table 12 — Results — Neural Network — One Feature with two variables — RZ—2 STD - PCA

Hidden Layers
1 2 3
1 0.455 0.472 0.716
11 0.917 0.953 0.916
22 0.923 0.974 0.965
S 31 0.917 0.917 0.913
< |4 0.964 0.885 0.978
S | 51 0.970 | - 5.009 0.892
T |61 0.972 0.970 0.957
71 0.965 0.830 0.728
81 0.955 0.948 0.948
91 0.921 0.952 0.931

Table 13 — Results — Neural Network — One Feature with two variables — R — IQR - PCA

Hidden Layers
1 2 3
1 0.828 0.862 0.706
11 |- 1.364 0.919 0.968
2|2 0.974 0.957 0.969
S 31 0.975 0.956 0.884
= 0.966 0.950 0.963
g |51 0.954 0.938 0.946
T [61]- 1424 0.973 0.984
71 0.963 0.958 0.962
81 0.967 0.954 0.861
01 0.962 0.899 0.946

In order to better assess the networks, just those with R? above 0.95 were analyzed. Therefore, our
initial ranges are neural networks with 1 layer and neurons varying from 31 to 71 for the two-
standard deviation. As well, neural networks varying layers from 1 to 3 and neurons from 11 to 91

for the interquartile range method.

Master Thesis developed at West Pomeranian University of Technology, Szczecin



Accuracy Control and Welding Distortion Prediction in a Deck Plate

Table 14 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — 2 STD — 1 Layer

Statistics Hidden Neurons

31 41 51 61 71
R"2 0.9743 0.9787 0.9807 0.9518 0.9772
MAE 0.0274 0.0234 0.0248 0.0311 0.0247
MSE 0.0017 0.0013 0.0013 0.0029 0.0014

Table 15 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — IQR — 1 Layer

81

Hidden Neurons

Statistics 21 31 a1 51 61 71 81 o1

R"2 0.9500 | 0.9526 | 0.9606 | 0.9715 | 0.9731 | 0.9727 | 0.9745 | 0.9717 | 0.9724
MAE 0.0212 | 0.0262 | 0.0227 | 0.0217 | 0.0204 | 0.0196 | 0.0205 | 0.0207 | 0.0198
MSE 0.0019 | 0.0019 | 0.0015 | 0.0011 | 0.0011 | 0.0010 | 0.0010 | 0.0011 | 0.0011

Table 16 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — IQR — 2 Layers

Hidden Neurons

Statistis |7 21 31 a1 51 61 71 81 o1
R2 ] 0.9659 | 0.9593 | 0.9641 | 0.9691 | 0.9651 | - 0.9797 | 0.9652
MAE i 0.0144 | 0.0155 | 0.0149 | 0.0135 | 0.0156 | - 0.0133 | 0.0174
MSE i 0.0013 | 0.0015 | 0.0013 | 0.0011 | 0.0013 | - 0.0008 | 0.0013

Table 17 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — IQR — 3 Layers

Hidden Neurons

Statistics =7 21 31 a1 51 61 71 81 o1
R"2 i 0.9627 | 0.9666 | 0.9622 | 0.9524 | 0.9660 | 0.9844 | 0.9685 | 0.9625
MAE i 0.0113 | 0.0134 | 0.0111 | 0.0167 | 0.0151 | 0.0092 | 0.0110 | 0.0108
MSE i 0.0013 | 0.0013 | 0.0014 | 0.0017 | 0.0013 | 0.0006 | 0.0011 | 0.0013

Table 18 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — 2 STD — PCA — 1 Layer

Hidden Neurons

Statistics 11 21 31 41 51 61 71 81 91
RA2 . - - 0.9642 | 0.9701 | 0.9724 | 0.9646 | 0.9545 | -
MAE - - - 0.0237 | 0.0262 | 0.0249 | 0.0229 | 0.0269 | -
MSE - - - 0.0010 | 0.0015 | 0.0013 | 0.0011 | 0.0013 | -
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Table 19 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — 2 STD — PCA — 2 Layers

Statistics Hidden Neurons
11 21 31 41 51 61 71 81 91
R"2 0.9529 | 0.9739 | - - - 0.9702 | - - 0.9516
MAE 0.0333 | 0.0244 | - - - 0.0201 | - - 0.0200
MSE 0.0027 | 0.0015 | - - - 0.0011 | - - 0.0008

Table 20 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — 2 STD — PCA — 3 Layers

Hidden Neurons

Statistics 21 31 41 51 61 71 81 o1
R2 ] 0.9655 | - 0.9783 | - 0.9573 | - ] ]
MAE ] 0.0269 | - 0.0236 | - 0.0281 | - i i
MSE ] 0.0016 | - 0.0012 | - 0.0017 | - i i

Table 21 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — IQR — PCA — 1 Layer

Statistics Hidden Neurons
11 21 31 41 51 61 71 81 91
R"2 - 0.9742 | 0.9749 | 0.9656 | 0.9542 | - 0.9626 | 0.9675 | 0.9623
MAE - 0.0234 | 0.0245 | 0.0263 | 0.0270 | - 0.0246 | 0.0256 | 0.0244
MSE - 0.0010 | 0.0012 | 0.0012 | 0.0020 | - 0.0012 | 0.0011 | 0.0011

Table 22 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — IQR — PCA — 2 Layers

Hidden Neurons

Statistics =7 21 31 a1 51 61 71 81 o1
R"2 i 0.9572 | 0.9555 | - ] 0.9730 | 0.9576 | 0.9543 | -
MAE i 0.0268 | 0.0271 | - - 0.0220 | 0.0258 | 0.0238 | -
MSE ; 0.0021 | 0.0018 | - . 0.0012 | 0.0015 | 0.0012 | -

Table 23 — Results — Neural Network — One Feature with two variables — Best Results — Statistics — IQR — PCA — 3 Layers

Hidden Neurons

Statisties = 21 31 a1 51 61 71 81 o1
R"2 0.9678 | 0.9694 | - 0.9634 | - 0.9837 | 0.9624 | - -
MAE 0.0207 | 0.0237 | - 0.0268 | - 0.0165 | 0.0218 | - i
MSE 0.0018 | 0.0018 | - 0.0025 | - 0.0012 | 0.0010 | - -

Finally, it was chosen the following setup to be plotted: 1 layer with 41 neurons for 2 standard

deviations method. Moreover, the following configuration using PCA is displayed below, 3 layers

and 41 neurons. In addition, it had been decided to display the following setup: 3 layers with 71
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neurons. Furthermore, a representation with 3 layers and 61 neurons using PCA as outlier removal

is shown below.
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Figure 75 — Results — Neural Network — All Features with two variables — 1 layer and 41 neurons — 2 STD
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Figure 76 — Results — Neural Network — All Features with two variables — 3 layers and 71 neurons — IQR
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Figure 77 — Results — Neural Network — All Features with two variables — 3 layers and 41 neurons — 2 STD — PCA
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Figure 78 — Results — Neural Network — All Features with two variables — 3 layers and 61 neurons — IQR — PCA

It can be seen from the charts that the prediction curve detaches from the actual values. This can
be explained by the reduced database which does not provide much information to be learn on
those areas. Similarly, on the edges of the curve a gap is generated. This behavior indicates that
the limits of learning database are being reached. Therefore, it is where the model is limited to and

values further on that region will not have any reasonable value.
4.4. Selected Features

A back-feature selection was applied using a neural network model and both two-standard
deviation and interquartile range methods. By using the results of the back-feature selection, a new
round with a neural network and polynomial regression learning took place. The results of the
applied methods are available in Appendix Il1l. However, tree map charts based on the squared

errors and number of features for length and width were plotted in Figure 79 and Figure 80.
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Figure 79 — Results — Polynomial Regression — Back Feature Selection with two variables —2 STD
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Figure 80 — Results — Polynomial Regression — Back Feature Selection with two variables — IQR

As the number of features are reduced the squared error decreases. Additionally, the table below

contains the selected features in order to obtain the lowest squared errors for both outlier removal

methods.
Table 24 — Results — Back feature selection — Selected Features

Direction 2-STD IQR

Length Length_AVG_SF; Length_AVG,;
Elements_Transversal;
Complete_Weld_Transversal

Width Width_AVG_SF Width_AVG_SF;
Spacing_Stiffener; Length_AVG;
Weightage_kg Width_AVG;

Thickness_Main_Plate

4.4.1. Polynomial Regression

In the case of polynomial regression, even though the selected features were introduced the results
were worse by comparing MAE and MSE. It is also noticed that the visual divergence starts in a
lower degree. The best result of Polynomial regression with selected features is shown in Table
25.
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Figure 81 — Results — Polynomial Regression — Back Feature Selection with two variables — from 1 to 3 degrees — 2 STD
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Figure 82 — Results — Polynomial Regression — Back Feature Selection with two variables — 1 degree — IQR

Table 25 — Results — Polynomial Regression — Back Feature Selection with two variables — Best Result — IQR - 1 degree

Row ID Prediction Prediction Nur(?fber Average
(Length_New) | (Width_New) | g
egrees

RN 1.00 1.00 1 1100

MAE 3.61 5.53 1 4.57

MSE 22.04 40.96 1 31.50
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4.4.2. Neural Network

Once again, setups that present coefficient of determination above 0.95 were analyzed.

Table 26 — Results — Neural Network — Back Feature selection with two variables — R2—2 STD

Hidden Layers
1 2 3
1 0.455 0.472 0.716
11 0.917 0.953 0.916
22 0.923 0.974 0.965
S 31 0.917 0.917 0.913
< |4 0.964 0.885 0.978
S | 51 0.970 | - 5.009 0.892
T |61 0.972 0.970 0.957
71 0.965 0.830 0.728
81 0.955 0.948 0.948
91 0.921 0.952 0.931

Table 27 — Results — Neural Network — Back Feature selection with two variables — R? — IQR

Hidden Layers
1 2 3
1 0.956 0.642 0.624
11 0.972 0.918 0.888
g2z 0.971 0.978 0.931
S 31 0.969 0.975 0.965
= 0.968 0.976 0.968
8 |51 0.973 0.971 0.945
T |61 0.969 0.959 0.958
71 0.968 0.974 0.962
81 0.964 0.962 0.984
91 0.962 0.959 0.983
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Table 28 — Results — Neural Network — Back Feature selection with two variables — Best Results — Statistics — 2 STD — 1 Layer

Hidden Neurons

Statistics 7 21 31 a1 51 61 71 81 o1
RA2 i i ] 0.9642 | 0.9701 | 0.9724 | 0.9646 | 0.9545 | -
MAE i i ] 0.0237 | 0.0262 | 0.0249 | 0.0229 | 0.0269 | -
MSE i ] ] 0.0010 | 0.0015 | 0.0013 | 0.0011 | 0.0013 | -

Table 29 — Results — Neural Network — Back Feature selection with two variables — Best Results — Statistics — 2 STD — 2 Layers

R Hidden Neurons
11 21 31 41 51 61 71 81 91
R"2 0.9529 | 0.9739 | - - - 0.9702 | - - 0.9516
MAE 0.0333 | 0.0244 | - - - 0.0201 | - - 0.0200
MSE 0.0027 | 0.0015 | - - - 0.0011 |- - 0.0008

Table 30 — Results — Neural Network — Back Feature selection with two variables — Best Results — Statistics — 2 STD — 3 Layers

Hidden Neurons

Statistics = 21 31 a1 51 61 71 81 o1
R"2 ] 0.9655 | - 0.9783 | - 0.9573 | - ] -
MAE ] 0.0269 | - 0.0236 | - 0.0281 | - i -
MSE ; 0.0016 | - 0.0012 | - 0.0017 | - ] i

Table 31 — Results — Neural Network — Back Feature selection with two variables — Best Results — Statistics — IQR — 1 Layer

Statistics

Hidden Neurons

1 11 21 31 41 51 61 71 81 91
R"2 0.9565 | 0.9723 | 0.9707 | 0.9693 | 0.9675 | 0.9732 | 0.9691 | 0.9684 | 0.9637 | 0.9618
MAE 0.0285 | 0.0196 | 0.0204 | 0.0202 | 0.0201 | 0.0182 | 0.0171 | 0.0197 | 0.0191 | 0.0205
MSE 0.0015 | 0.0008 | 0.0009 | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 0.0009 | 0.0009 | 0.0010

Table 32 — Results — Neural Network — Back Feature selection with two variables — Best Results — Statistics — IQR — 2 Layers

Statistics

Hidden Neurons

1 11 21 31 41 51 61 71 81 91
RM2 - 0.9785 | 0.9753 | 0.9758 | 0.9715 | 0.9589 | 0.9737 | 0.9623 | 0.9589
MAE - 0.0090 | 0.0111 | 0.0104 | 0.0110 | 0.0171 | 0.0156 | 0.0160 | 0.0141
MSE - 0.0004 | 0.0005 | 0.0005 | 0.0006 | 0.0010 | 0.0006 | 0.0009 | 0.0009

Master Thesis developed at West Pomeranian University of Technology, Szczecin




Accuracy Control and Welding Distortion Prediction in a Deck Plate

Table 33 — Results — Neural Network — Back Feature selection with two variables — Best Results — Statistics — IQR — 3 Layers
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Statistics Hidden Neurons

1 11 21 31 41 51 61 71 81 91
R"2 - - - 0.9646 | 0.9684 | - 0.9580 | 0.9621 | 0.9844 | 0.9834
MAE - - - 0.0126 | 0.0113 | - 0.0106 | 0.0111 | 0.0079 | 0.0097
MSE - - - 0.0007 | 0.0006 | - 0.0008 | 0.0008 | 0.0003 | 0.0004

For the two-standards deviation the selected configuration is 3 hidden layers with 41 neurons

whereas for the IQR the optimal setup is 3 hidden layers with 81 neurons.
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Figure 83 — Results — Neural Network — All Features with two variables — 3 layers and 41 neurons — 2 STD
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Figure 84 — Results — Neural Network — All Features with two variables — 3 layers and 81 neurons — IQR
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4.5. Best Fitting

This method was applied in order to come out with simple formulae and to compare with the

current shrinkage factor.

R2 = 10000, y= 1.0011x+ 0.3118 R2 = 1.0000, y= 1.0007x+ 1.7156
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Figure 85 — Results — Best Fitting — Length_ AVG_SF vs Length_New (Left) and Width_AVG_SF vs Width_New (Right) — 2 STD
Lengthuyc,, = 1.0011 X Lengthye,, + 0.3119
Widthyyg,, = 1.0007 x Widthy,,, + 1.7156
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R2 = 1,0000, y= 1.0011x +-0.3628 R2 = 1.0000, y= 1.0007x+ 16440
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Figure 86 — Results — Best Fitting — Length_AVG_SF vs Length_New (Left) and Width_AVG_SF vs Width_New (Right) — IQR
Lengthyyc,, = 1.0011 X Lengthy,,, — 0.3628
Widthayeg, = 1.0007 X Widthye,, + 1.9449
The multiplications and constants are in millimeters. Considering that, the length formula could
disregard the adjustment and by comparing the length factors from both 2 STD and IQR to the
original it indicates the increase the factor by 0.0001.
As well, the average width of a block is 18.65m and if you divide the constant by this value, the
factor could be increased by 0.0001, hence the formula factor could be taken as approximately

1.0008 which is lower than the actual shrinkage factor. Therefore, it would be possible to reduce
it.
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5. CONCLUSIONS

The welding distortions can be caused by three main categories: geometric parameters (design),
material properties and welding process parameters (manufacture process). In this study, the
geometric parameters were examined.

Firstly, all possible features were gathered starting from those available from the design system
and then detailing them manually from technical drawings. These data were divided into: block
main characteristics — estimated values by personnel; features retrieved from the system database;
and features outlined from technical drawing. Subsequently, all possible measurements were
joined to our data. The data treatment took around 4 months to be completed.

The selected program, KNIME, proved to be versatile for allowing the development of many
different setups in an easy manner as detailed in chapter 3. It is a very straight-forwarded
environment with a lot of different methods to analyze data. Even so, the development of the model
took 3 months to achieve its final stage as it had been noticed space for improvement.

Two different outlier removal methods were used. By observing the selected setups, the IQR was
the best one to work together with the neural network whereas the 2 STD was the best one to the
polynomial regression method. It is believed that IQR had better results with neural network due
to higher number of rows which allowed more data to be used in learning.

In this study the polynomial regression had better coefficients of determination when compared to
the neural networks and, also, visually it could be seen a better behavior in the plot.

On the other hand, when coming to analyze non-linear behaviors including a lot of features, the
polynomial regression cannot give any guess if your database is limited. In the same case, the
neural network could give results even with limited data.

On top of that, the reduction of variables was mandatory in order to progress with the study. When
presenting the 8 variables, our dataset was too limited and the nonlinearities too big solely giving
negative coefficients of determination.

After the reduction of variables to be studied, initial results started to be achieved and they had
been improved by the reduction of features. Additionally, it was found that number of transversal
elements and the number of transversal welding seams influence the length while stiffener spacing,

weight and thickness of main plate affect the width.
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It had been noticed that even with the application of various methods that graphically no neural
network was satisfactory even if the coefficient of determination and errors seemed to be low. The
detachments along the way can be explained by the lack of data for the algorithm to learn and also
due to overlearning in the case of setups with higher number of layer and neurons. Again, the gaps
presented on the edges of the curves are due to the upper and lower boundaries of the database
being reach by the predictor which can be improved by providing more data.

Having said that, a best fitting data comparison was performed finding that the factor should be
slightly adjusted for both length and width according to the supplied data.

All in all, more data is elementary to perform firm conclusions and to further learn and test the
model. KNIME is a powerful tool and the developed model can be adjusted and used to assess
distortions in other elements such as sub-assemblies as long as the data is collected. Moreover, it
is still necessary to verify how to integrate the PMML model with the design software used by the
company in order to reduce workload of the nesting/CAM team. Finally, as another topic it could
be assessed if the excess of material which is applied on top of the shrinkage factor could be

reduced.
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APPENDIX | - PRODUCTION PROCESS MAPPING

This appendix should not be distributed outside of the consortium as per de non-disclosure
agreement (NDA —10/01/2018).
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APPENDIX Il - MATHEMATICAL FORMULAS

Pre-processing — Length_ AVG

(($Target-Bow-PS-X$ - $Target-Stern-PS-X$)

+ ($Target-Bow-Sth-X$ - $Target-Stern-Stb-X$))/2

Pre-processing — Width_AVG

(($Target-Stern-Stb-Y$ - if($Target-Stern-PS-Y$>=0,$Target-Stern-PS-Y$*-1,$ Target-Stern-PS-
Y$))+ ($Target-Bow-Sth-Y$ - if($Target-Bow-PS-Y$>=0,$Target-Bow-PS-Y$*-1,$Target-Bow-
PS-Y$)))/2

Pre-processing — Length. AVG_SF

($Length_AVG$/1000 * $SF_Length$)*1000

Pre-processing — Width_AVG_SF

($Width_AVG$/1000 * $SF_Width$)*1000

Pre-processing — Length_New

(($After-Bow-Stb-X$ - $After-Stern-Sth-X$)+

($After-Bow-PS-X$ - $After-Stern-PS-X$))/2

Pre-processing — Width_New

(($After-Stern-Sth-Y$ - if($After-Stern-PS-Y$>=0,$After-Stern-PS-Y $*-1,$After-Stern-PS-
Y$))+($After-Bow-Sth-Y$ - if(SAfter-Bow-PS-Y$>=0,$After-Bow-PS-Y$*-1,$After-Bow-PS-
Y$)))/2
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APPENDIX 11l - BACK FEATURE SELECTION RESULTS

The best results are highlighted in yellow.

Table 34 — Results — Neural Network — Back Feature Selection with two variables — 2 STD — Length

RowlID Nr. of features Squarred Error Removed feature

0 0 Length_AVG_SF
1 1 0.1779 Elements_Transversal
2 2 0.1143 Complete_Weld_Transversal
3 3 0.0301 Elements_Girder
4 4 0.0322 Complete_Weld_Girder
5 5 0.0746 Height
6 6 0.0414 Spacing_Frame
7 7 0.0498 Complete_Weld_Longitudinal
8 8 0.0509 Length
9 9 0.0781 Length_AVG

10 10 0.0549 Complete_Weld_Butt

11 11 0.0654 Elements_Longitudinal

12 12 0.0629 SF_Length

13 13 0.1107 SF_Width

14 14 0.0435 Width_AVG_SF

15 15 0.0958 Weightage_kg

16 16 0.0685 Width_AVG

17 17 0.0993 Spacing_Stiffener

18 18 0.0881 Ship

19 19 0.0757 Elements_Butt

20 20 0.0497 Volume

21 21 0.0949 Width

22 22 0.0585 Type

23 23 0.1196 Section

24 24 0.1012 Width_New

25 25 0.1265 Weightage

26 26 0.1058 Spacing_Girder

27 27 0.0911 Thickness_Main_Plate

28 28 0.0996 Welding_Length

All 29 0.3643
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Table 35 — Results — Neural Network — Back Feature Selection with two variables — 2 STD — Width

Nr. of features Squarred Error

0 0
1 1 0.1519
2 2 0.1168
3 3 0.1379
4 4 0.1073
5 5 0.1285
6 6 0.1225
7 7 0.1193
8 8 0.1415
9 9 0.1745
10 10 0.1286
11 11 0.1698
12 12 0.1630
13 13 0.1548
14 14 0.1143
15 15 0.1262
16 16 0.1233
17 17 0.1632
18 18 0.1539
19 19 0.1626
20 20 0.1586
21 21 0.1515
22 22 0.1092
23 23 0.1512
24 24 0.1912
25 25 0.1269
26 26 0.1487
27 27 0.1448
28 28 0.1511
29 0.2643

Removed feature
Width_AVG_SF
Spacing_Stiffener
Weightage_kg
Thickness_Main_Plate
Length
Complete_Weld_Longitudinal
Complete_Weld_Butt
Volume

Ship

Welding_Length
Elements_Butt
Elements_Girder

Type

Width_AVG
Length_AVG

Height

SF_Length

Section

Length_New
Length_AVG_SF
Elements_Transversal
Weightage
Spacing_Girder
Elements_Longitudinal
SF_Width
Spacing_Frame
Complete_Weld_Girder
Complete_Weld_Transversal
Width
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Table 36 — Results — Neural Network — Back Feature Selection with two variables — IQR — Length

RowlID Nr. of features Squarred Error Removed feature
0 0 Length_AVG
1 1 0.0076 Weightage_kg
2 2 0.1667 Complete_Weld_Transversal
3 3 0.1137 Spacing_Girder
4 4 0.0552 Elements_Transversal
5 5 0.0341 Complete_Weld_Girder
6 6 0.0503 Width_AVG_SF
7 7 0.0599 Length
8 8 0.0631 Elements_Girder
9 9 0.0541 Length_AVG_SF
10 10 0.0806 Weightage
11 11 0.0466 Thickness_Main_Plate
12 12 0.0466 Elements_Longitudinal
13 13 0.0638 Complete_Weld_Butt
14 14 0.0742 Complete_Weld_Longitudinal
15 15 0.0801 Height
16 16 0.0581 Section
17 17 0.0861 SF_Width
18 18 0.0823 Ship
19 19 0.0960 Width_AVG
20 20 0.1034 Elements_Butt
21 21 0.0654 Width_New
22 22 0.0711 Width
23 23 0.0899 Spacing_Frame
24 24 0.1639 Welding_Length
25 25 0.1419 SF_Length
26 26 0.1947 Volume
27 27 0.1320 Type
28 28 0.2039 Spacing_Stiffener
All 29 0.6154
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Table 37 — Results — Neural Network — Back Feature Selection with two variables — IQR — Width

Nr. of features Squarred Error

0 0
1 1 0.0741
2 2 0.0682
3 3 0.0322
4 4 0.0643
5 5 0.0720
6 6 0.1215
7 7 0.0980
8 8 0.0700
9 9 0.0347
10 10 0.0905
11 11 0.0800
12 12 0.0700
13 13 0.1082
14 14 0.1033
15 15 0.1094
16 16 0.1368
17 17 0.1278
18 18 0.1264
19 19 0.1294
20 20 0.1055
21 21 0.1404
22 22 0.1615
23 23 0.1483
24 24 0.1529
25 25 0.1366
26 26 0.1538
27 27 0.1703
28 28 0.1734
29 0.3397

Removed feature
Width_AVG_SF
Length_AVG
Width_AVG
Thickness_Main_Plate
Weightage
Welding_Length

Width

Length_New
Elements_Longitudinal
Complete_Weld_Butt
Elements_Butt
Weightage_kg
Spacing_Frame
Spacing_Stiffener
Complete_Weld_Transversal
SF_Width

SF_Length

Height
Complete_Weld_Girder
Complete_Weld_Longitudinal
Spacing_Girder
Elements_Transversal
Volume
Elements_Girder
Length_ AVG_SF

Type

Section

Ship

Length
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