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ABSTRACT 

Many industrial processes make use of welding to assemble structural parts. While this is standard 

procedure, the high temperatures encountered during the welding process can generate distortions 

in the base metal. These distortions negatively impact the parts by generating reworks in order to 

overcome them. This detrimental effect cannot be avoided, but it can be controlled. One way of 

performing such control is to add an allowance, which is an accepted amount of distortion. 

However, a prediction tool is elementary to determine the necessary tolerances. 

Nowadays, the prediction methods can be grouped in three main approaches: experimental, 

computational (finite-element method) and machine learning. While the first two methods have 

been well studied, the machine learning approach is not as well understood. 

The aim of this study is to explore machine learning algorithms such as neural networks and 

polynomial regressions in order to come out with a prediction model. Along with this, a best fitting 

study took place so that a simple formula for predicting metal distortion could be outlined. 

In order to create some prediction models, the Knime software was used and main design 

parameters were gathered. The model’s workflow has been organized so that several cases could 

be tested.  

By using the workflow, results for eight variables were obtained. Nonetheless, the results were not 

satisfactory due to limitation of given data. Hence, the problem has its variables reduced to two, 

which increases the accuracy of the model. 

Finally, it was possible to generate some models for the welding distortion prediction and it has 

been proven that these methods can be applied to such problems. Yet, they were not as accurate as 

the best fitting method, which means that more data is required so that the accuracy can be 

improved. 

 

Keywords: Accuracy Control; Welding Distortion; Prediction.  
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1. INTRODUCTION 

 

This first chapter introduces the welding distortion problem. Truly, most of processes in various 

industries make use of welding in order to assemble or join structural parts. The welding process 

of heating and cooling generates distortions which is an issue impossible to avoid but possible to 

be controlled. By trying to restrain such behaviors, the residual stresses are enhanced which can 

reduce the structural resistance.  

Also, the usage of thinner plates causes the material to deform more than thicker plates. These 

distortions can be adjusted by the straightening process with the purpose of either correcting the 

appearance or the structural functionality. Nonetheless, the correction process generates extra cost 

due to reworks and it may also generate schedule delay that can infer in contractual penalties.  

Having said that, it is desirable to have a prediction tool so that preventive actions can be taken 

and the welding distortion controlled within an acceptable limit.  

The second chapter briefs the welding distortion problem along with the sorts of distortions and 

the parameters that have already been identified by other researchers. Even though, transverse, 

longitudinal, buckling, longitudinal bowing and angular were identified, only the transverse and 

longitudinal (in-plane distortions) are analyzed in this study due to the limitation of data available. 

In addition, three main group of influencer parameters have been outlined from the literature 

review: geometric parameters (design); material properties; and welding process parameters 

(manufacturing process). 

Moreover, it was identified three main applications of welding prediction tools which are: formulas 

based on experimental setups; finite element models; and machine learning methods. Whereas 

there are several proposals for analytical and computational methods, there is little exploration of 

the machine learning methods. Another advantage of machine learning methods over analytical 

and computational methods is that it is less time demanding, coming to meet the time frame of this 

study. On top of that, a machine learning method can be reused to learn distortion for other 

elements whenever data is available requiring less time to be implemented. Hence, this study 

focused on offering a solution by making use of machine learning algorithms. Finally, the available 

methods of machine learning are commented and a chart presenting the distribution of found 

articles is displayed. 
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The third chapter describes the methodology used in order to describes the work environment, the 

actual measurement check-up, the selection of the methods to be analyzed, the database 

elaboration, historical data collection, the modelling process and the understanding of the 

contributing factors. 

The chapters four discretizes the case of study by outlining the measurement procedure, the 

selection of a program in order to develop the model and a detailed modelling description. 

Ultimately, chapters five and six present the results, analysis and conclusions. The aim of this 

study is the development of a prediction tool that can provide work-arounds for the welding 

distortions avoiding production problems that might arise during the manufacturing process and, 

additionally, to evaluate contributing factors. 
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2. LITERATURE REVIEW 

 

The first section of this chapter details the welding distortion problem by commenting on how it 

arises, in which processes, what are the sorts of welding distortions and their influencer parameters. 

Additionally, the second section presents the available types of prediction tools that were find in 

the literature. As well, the third section details the machine learning methods. Finally, the fourth 

section presents an overview of the found researches and further state the motivation of selecting 

the machine learning approach. 

 

2.1. Welding Distortion 

 

Welding technology is greatly used in various areas in order to assemble structures of different 

usages due to its high productivity (Deng 2010) (Mahendramani and Swamy 2012) (Deng, 

Murakawa, and Liang 2007) (Deng and Murakawa 2008b). In addition, both low strength and high 

strength materials are used while producing the structural part in shipbuilding. 

Whereas the low strength materials are cheaper, high-strength steels have been preferred to be 

used while producing steel structures in order to handle large amount of stress while having a better 

strength-to-weight ratio and to reduce topside weight, improve fuel consumption and enhance 

mission capability (Yang et al. 2014) (Deng and Murakawa 2008b). Moreover, the thinner 

structures are more likely to deform during welding since they have a lack of rigidity (Yang et al. 

2014). 

Welding distortion is a consequence of the non-uniform expansion and contraction of the welded 

material and the adjacent base material while the heating and cooling cycle of the welding occurs 

(Yang et al. 2014) (Deng, Liang, and Murakawa 2007) (Deng and Murakawa 2008a). 

In addition, the residual stress occurs in a welded joint and this stress reacts to produce internal 

forces, provoking shrinkage or length deficiency of the main plates when comparing to the design 

dimensions (Kim et al. 2015). 

As well, the welding distortion can lead to detrimental during the fabrication and service. Having 

said that, the welding distortion acts an initial imperfection of welded components (Yang et al. 

2014). Any complex structure is subjected to welding deformation and the more complex the 

structure is, the greater the problems which will be inherent (Mahendramani and Swamy 2012). 
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As a matter of fact, it is impossible to avoid the welding-induced distortion during the assembly 

process (Yang et al. 2014) (TAJIMA et al. 2007) (Deng, Murakawa, and Liang 2008). On the other 

hand, it is possible to fabricate the structures with an acceptable level of accuracy to avoid the 

problems in the course of assembly (Deng, Murakawa, and Liang 2007). Thus, it is the designer 

and constructor duty to find the best balance between cost and acceptable limits in order to satisfy 

all stakeholders. As a result, the welding distortion reduces the fabrication accuracy while 

increasing the cost and working time to perform the necessary corrections (Yang et al. 2014). 

One category of the distortions is the shrinkage which generates a difference between the 

dimensions of the actual parent metal and the dimensions of the design (Kim et al. 2015) (Deng, 

Murakawa, and Liang 2008). Additionally, the shrinkage induces to low quality in the production 

of ship blocks and reworking which decreases the productivity (Kim et al. 2015) (Deng and 

Murakawa 2008b). By that it can be inferred, there might be a delay in the project in case of the 

task being under the critical path and there is going to be an increase in the cost due to rework to 

adjust or to redo it. 

Further, correcting unacceptable distortions is extremely costly and sometimes impossible. 

Excessive lateral distortion decreases the buckling strength of the structural members while under 

compressive loading (Mahendramani and Swamy 2012) (Deng, Liang, and Murakawa 2007)  

(Deng and Murakawa 2008b). The straightening process is used to reduce the deformations, mainly 

spot and line heating. However, it is mainly manual, costly and time-consuming (TAJIMA et al. 

2007) (Deng, Murakawa, and Liang 2007) (Deng, Liang, and Murakawa 2007) (Deng and 

Murakawa 2008b).  

Another problem is that, welding deformation and welding residual stresses are effects which 

oppose each other. Hence, while giving restraint to welding material in order to avoid deformation, 

the residual stress is increased. On the other hand, if the material is not restraining larger 

deformations will happen but less residual stress is decreased (Kim et al. 2015). 

As a consequence, these initial imperfections can influence the structural behavior under variable 

loading and they can reduce the buckling strength of the structure (Yang et al. 2014). An additional 

issue, is that these imperfections lead to misalignment of the structural elements which will require 

straightening processes (Mahendramani and Swamy 2012).  
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Correspondingly, the welding shrinkage, distortion, and residual stresses are significant issues 

during the manufacturing process of welded structures made out of steel (Yang et al. 2014) 

(Mahendramani and Swamy 2012).  

While constructing the ship hull, welding is greatly adopted to join stiffeners to plates, build 

subassemblies and blocks, and finally to join these blocks and assemble the ship hull (TAJIMA et 

al. 2007) (Deng, Murakawa, and Liang 2007). Usually, these blocks are all-welded, thin-plate 

structures (Deng, Murakawa, and Liang 2007). The shipbuilding construction can be categorized 

into the following stages: 

 

Figure 1 – Shipbuilding Construction - Flowchart 

2.1.1. Sorts of Welding Distortion 

Truly, the welding process is present in most of the processes and it is used to join the structural 

members. Furthermore, the welding distortions can be classified into: 

• Transverse shrinkage (In-plane mode) (Yang et al. 2014) (Mahendramani and Swamy 

2012) (Deng, Murakawa, and Liang 2007) 

 

Figure 2 – Example of Transverse Shrinkage (Welding Defect 2017). 

 

 

 

 

Processing

•Cutting

•Bending

•Blasting

•Covering

Subassembly

•Material

•Installation

•Welding

•Finishing

Assembly

•Preceding

•Material

•Installation

•Welding

•Inspection

•Finishing

Final 
Assembly

•Setup

•Positioning

•Installation

•Welding

•Finishing

Erection

•Setup

•Positioning

•Installation

•Welding

•Finishing

•Inspecion



P22 Marcio Fleming 

 

Master Thesis developed at West Pomeranian University of Technology, Szczecin 

• Longitudinal shrinkage (In-plane mode) (Yang et al. 2014) (Mahendramani and Swamy 

2012) (TAJIMA et al. 2007) 

 

Figure 3 – Example of Longitudinal Shrinkage (Welding Defect 2017). 

• Buckling (Out-of-plane mode) (Deng 2010) (Yang et al. 2014) (Mahendramani and Swamy 

2012) (TAJIMA et al. 2007) (Deng and Murakawa 2008b) 

 

Figure 4 – Example of Buckling (Deng and Murakawa 2008b). 
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• Longitudinal bowing (Out-of-plane mode) (Yang et al. 2014) 

 

Figure 5 – Example of Longitudinal Shrinkage (Welding Defect 2017). 

• Angular (Out-of-plane mode) (Yang et al. 2014) (Deng, Murakawa, and Liang 2007) 

(Deng, Liang, and Murakawa 2007) 

 

Figure 6 – Example of Angular Distortion (Welding Defect 2017). 

2.1.2. Influencer Parameters 

 

While reading the research papers, the parameters which are most likely to cause those 

deformations can be: 

• geometric parameters (design) (Deng 2010) (Yang et al. 2014) (Mahendramani and Swamy 

2012) (Deng, Murakawa, and Liang 2007);  

o dimensions of the structure (plate thickness; weld length and stiffeners’ spacing) 

o type and size of welded joints 

• material properties (Deng 2010) (Yang et al. 2014);  

• welding process parameters (manufacturing process) (Deng 2010) (Yang et al. 2014) 

(Mahendramani and Swamy 2012) (Deng, Murakawa, and Liang 2007) (Deng, Murakawa, 

and Liang 2008);  
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o heat input; 

o welding sequence; 

o preheating; 

o post heating; 

o gaps; 

o tack welds; 

o the edge preparation; 

o welding conditions; 

o interpass temperature; 

o the shape of penetration; 

o positioning; 

o welding procedure; 

o and the degree of restraint during welding. 

 

2.2. Prediction Tools 

 

According to (Gray, Camilleri, and McPherson 2014), there are two major categories of tools to 

understand the mechanics of welding distortion in order to provide better strategies so that better 

control of this phenomenon can be achieved: Artificial Neural Networks and Computational 

Simulation.  

However, there are two more other applications that can be quite useful for the matter, which are 

Fuzzy Logic and Feature Selection Method. 

Finally, the Feature Selection and Artificial Neural Networks are sub-areas of machine learning 

which are closely related to statistics. Moreover, the fuzzy logic is based on the degrees of truth 

instead of probability prediction. As a matter of fact, these three methods can be seen as approaches 

that do not require fully physical discretization of the material and production processes. On the 

other hand, the computation simulation requires a good discretization of the model, including all 

physical phenomena or satisfactory approximation through analytical or numerical methods. 

 

 



Accuracy Control and Welding Distortion Prediction in a Deck Plate 25 

 

 

 “EMSHIP” Erasmus Mundus Master Course, period of study September 2016 – February 2018 

2.2.1. Artificial Neural Networks (ANNs) 

 

The aim of an ANN is to infer functional relations between the observations and phenomena. When 

used for practical application, the objective could be to establish an empirical model that will relate 

the input of fabrication process to the likely deformation outcomes. As well, the process of 

establishing the relations is mainly statistical. Nonetheless, the methodology has the capability of 

deducing the interactions along the hidden layers and thus revealing influences which may not be 

promptly recognized when studying physical models. 

 

Figure 7 – Example of Artificial Neural Network (Caprace et al. 2007). 

 

2.2.2. Fuzzy Logic 

 

Moreover, another option is to use a fuzzy method which is consists of a system that provides a 

non-linear mapping between crisp input variables and crisp output ones and allow the use of 

linguistic expressions for the rules which define the input-output relationship (Caprace et al. 2009). 

 

2.2.3. Feature Selection Method 

 

According to (Chandrashekar and Sahin 2014), feature selection which can also be understood as 

variable elimination assists on understanding the data, reducing computational time, reducing the 

effect of curse of dimensionality and improving the predictor performance. 

The aim of feature selection is to decide a subset of variables from input that can readily describe 

the input data while minimizing the effects from noise and irrelevant variables and still provide 

good prediction results. 
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Indeed, the variable elimination methods are broadly classified into: filter and wrapper methods. 

As the objective of this report is to briefly present the tools that can be used and as they are a lot 

of literature on the methods, the main concepts, some advantages and drawbacks are going to be 

shortly introduced. 

 

2.2.3.1. Filter Methods 

 

Filter approach makes use of ranking techniques, such as Pearson correlation criteria or mutual 

information (MI), in order to classify the important variables and remove variables below a 

threshold. They are used due to their simplicity and satisfactory success is reported for practical 

applications. 

Some other favorable advantages that can be outlined are: it is computationally light and avoids 

overfitting and is proven to be good for certain databases; and they do not rely on learning 

algorithms.  

On the other hand, the drawbacks are: the selected subset might not be optimal in that a redundant 

subset might be obtained; Some ranking methods do not discriminate the variables in terms of the 

correlation to other variables; Finding a suitable learning algorithm can also become hard since 

the underlying; and there is no ideal method for choosing the dimension of the feature space. 

 

2.2.3.2. Wrapper Methods 

 

Whereas the filter methods make use of a feature relevance criteria, the wrapper methods rely on 

the classification for obtaining a feature subset. Actually, wrapper methods utilize the predictor as 

a black box and the predictor performance as the objective function to evaluate the variable subset. 

They can be classified into Sequential Selection Algorithms and Heuristic Search Algorithms. The 

first one, begin with an empty set (full set) and add features (remove features) until the maximum 

objective function is obtained. A criterion is chosen which incrementally boosts the objective 

function until the maximum with the minimum number of features. On the contrary, the heuristic 

search algorithms evaluate different subsets to optimize the objective function. Different subsets 

are generated either by searching around in a search-space or by generating solutions to the 

optimization problem. 
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The main drawback of wrapper methods is the computational iterations required to obtain a feature 

subset. Another disadvantage is that these methods use classifier performance the objective 

function and by doing so they are prove to overfitting. In order to overcome the last downside, a 

separate holdout test set can be used to guide the prediction accuracy of the search. 

 

2.2.3.3. Embedded Methods 

 

Embedded methods target to shrink the computation time taken up for reclassifying different 

subsets which is performed in wrapper methods. In order to overcome it, the main way is to 

incorporate the feature selection as part of the training process. 

 

2.2.3.4. Other Techniques 

 

The techniques mentioned above are feature selection techniques using supervised learning. For 

instance, the output class labels of the data are known or could be derived. However, there are 

situations where operation details are unknown but their operational data is available. One of the 

mentioned methods is clustering techniques. 

In addition, there are situations where there are partially known and unknown data and the semi-

supervised learning can be applied. They consist of a mixture of unsupervised and supervised 

learning. 

Another mentioned technique is ensemble feature selection where a single feature selection 

algorithm is run on different subsets of data samples obtained from bootstrapping method. The 

results are aggregated to obtain a final feature set. 

 

2.2.4. Computational Simulation 

 

On the contrary of the ANNs, the computational simulation relies on the real physical models in 

order to discretize the complex thermos-mechanical behavior induced by welding. This is being 

more used nowadays because of the rapid development of finite-element analysis (FEA) and the 

availability of more computing resources. However, the experimental results remain invaluable. 
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2.3. Machine learning 

 

Machine learning can be defined as a field of research regarding automated large-scale data 

analysis (Barber 2012). Also, to better enlighten, the machine learning is a mimic of the human 

brain or biological systems where there is not a structured-defined algorithm stating the exact rules, 

but instead data is given to be learnt from. Hence, being possible to construct a better and useful 

approximation (Alpaydın 2014). 

Truly, the machine learning includes many of the traditional areas of statistics, nonetheless, 

focusing on mathematical models and also prediction (Barber 2012). 

Furthermore, there are a lot of methods within machine learning. Inclusive, sometimes, there might 

be difficult to strongly identify each one, since there can be a small-scale difference from one 

method to the other. In this section, we will define the main concepts and then target on the one 

the better suits our problem. 

On the contrary, there are mainly three different categories of machine learning: supervised, 

unsupervised and semi-supervised. Additionally, there are some others which can be understood 

as one or more of them plus some additional features and they will be briefly discussed. 

Finally, some known applications will be expressed in order to advance the details in the topic. 

 

2.3.1. Supervised Learning 

 

According to (Barber 2012), the supervised learning can be defined – Definition 13.1 -  as follows. 

Given the set of data 𝐷 =  {(𝑥𝑛, 𝑦𝑛), 𝑛 = 1, … , 𝑁} the task is to learn the relationship between the 

input  𝑥  and output  𝑦  such that, when given a novel input 𝑥∗ the predicted output  𝑦∗is accurate. 

The pair (𝑥∗, 𝑦∗) is not in D but assumed to be generated by the same unknown process that 

generated D. To specify explicitly what accuracy means one defines a loss function 

𝐿(𝑦𝑝𝑟𝑒𝑑, 𝑦𝑡𝑟𝑢𝑒) or, conversely, a utility function 𝑈 = −𝐿. 

There are two types: classification problem or regression problem. A classification problem occurs 

when the output is one of a discrete number of possible “classes”. For instance, the bank would 

like to analyze good and bad credit costumers when providing them a loan. The other problem, 

regression, is when the output is continuous – numbers. For example, we would like to predict the 

house’s selling prices based on their features. 
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2.3.2. Unsupervised Learning 

 

According to (Barber 2012), the supervised learning can be defined – Definition 13.2 -  as follows. 

Given the set of data 𝐷 =  {(𝑥𝑛, 𝑦𝑛), 𝑛 = 1, … , 𝑁} is unsupervised learning, we aim to find a 

plausible compact description of the data. An objective is used to quantify the accuracy of the 

description. In unsupervised learning, there is no special prediction variable so that, from a 

probabilistic perspective, we are interested in modelling the distribution p(x). The likelihood of 

the model to generate the data is a popular measure of the accuracy of the description. This process 

is also known as density estimation in statistics. 

 

2.3.3. Semi-supervised Learning 

 

The semi-supervised learning is the mixture of both supervised and unsupervised learning. Hence, 

you will have partial data with output outlined and the other part will be only input data. By that, 

you will try to make use of the unsupervised learning to enhance the results that would be made 

only by the supervised learning with partial data. 

 

2.3.4. Reinforcement Learning 

 

According to (Alpaydın 2014), some applications, the output system is a sequence of actions. 

Cleary, a single action does not play a major role, but the sequence of right actions to achieve the 

goal – also known as policy. In addition, there is not a best action in any intermediate step. Yet, an 

action is considered good if it is part of a good policy. Hence, the machine learning program should 

be able to assess the policies and learn from past good action sequences in order to create a policy. 

 

2.3.5. Deep Learning 

 

In simple words, the deep learning is the implementation of the artificial neural network with a 

feature selection method but instead of removing the feature the deep learning will assign weights 

for the features not eliminating them. 
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2.3.6. Data Pre-processing 

 

Which is the process of eliminating the out-of-range values, impossible data combinations, missing 

values, etc. 

 

2.3.7. Online machine learning 

 

In the online learning, the data keeps being updated subsequently when there are new data 

available. It may be for supervised or unsupervised context. 

 

2.3.8. Dimensionality reduction 

 

The dimensionality reduction can be divided into two main categories: feature selection and feature 

extraction. 

 

2.3.8.1. Feature Selection 

 

This is the process of assessing the features and them eliminating them in order to reduce the 

number of variables analyzed. 

 

2.3.8.2. Feature Extraction 

 

Feature extraction is the creation of additional features by combining existing ones and creating 

more meaningful features. 

 

2.4. Research Paper 

 

During the literature research, it was possible to find 51 articles related to welding distortion 

prediction. The Table 1 and Figure 8 below demonstrate their distribution among three main 

categories. 
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Table 1 – Welding Research Papers' Distribution 

Classification Counting Percentage 

Analytical/Experimental 14 27.5% 

Computational  36 70.6% 

Machine Learning 1 2.0% 

Total 51 100.0% 

 

 

Figure 8 – Welding Research Papers' Distribution 

By looking at them, it possible to see that most of the studies are dedicated to Computational 

methods. As well, when reading all papers is possible to see a trend from moving from analytical 

and experimental to Computational. 

As a matter of fact, it is important to highlight that the welding distortion is a non-linear process 

which has a lot of influencer parameters. Due to data limitation, the only evaluated distortions in 

this study are the transverse and longitudinal distortions. 

Additionally, the tool is going to be used by CAM/Nesting department which possesses design 

information only. Due to this fact and to limitation of time, the design parameters that can be 

retrieved were the parameters analyzed. 

As the case of study is performed directly into a company which retains measurement information 

about their own process, computational and learning machine methods are preferred over the 

experimental ones. 
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As it had been said before, the computational method requires a considerable time to setup the 

model due to the need of explicitly stating all physical phenomena, and also to validate it. The 

internship period lasted four months and this time limitation could lead to a non-accurate solution. 

Truly, all methods are restrained within their limitation determined by the range of setups in which 

they are developed. Anyhow, the machine learning models have a strong capability of being reused 

with other set of data, adapting themselves with less effort on the setup procedure for new schemes. 

Another advantage of the machine learning is the validation process. The experimental and 

computational results might require additional subjects to be tested while the machine learning 

methods can separate part of the data to perform their validations. 

As well, the company’s intention is to explore even more the aspects of the welding distortion 

starting from the deck plate and evolving to each structural element. 

Ultimately, due to the time frame, reusability, adaptation to new scenarios and exploration of new 

methods, the machine learning methods were adopted in order to explore solutions that could meet 

all requirements. 
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3. METHODOLOGY 

 

Firstly, when starting the internship, a meeting with all stakeholders took place in order to confirm 

the expectations of the study subject and available resources and data in the company. 

Next, a mapping of the process was developed in order to verify ensure that all possible design 

factors that can influence the process are covered. 

Afterwards, a benchmark study of some available software to develop the prediction tool has been 

performed. Clearly, there are several learning methods available. Anyway, the ones included in 

this study were outlined. 

Following, the database elaboration is detailed. The characteristics can be grouped in three major 

categories: block characteristics which are estimated by a personnel staff of the company; welding 

characteristics which are manually retrieved from the 2D drawing; and the welding characteristics 

which can be gathered directly from the 3D model. 

Subsequently, the collection of the data would take place. Then, the prediction tool was modelled, 

and the contributing factors studied. 

Finally, the results are explored, discussed and analyzed, and the conclusions are drawn. 

 

3.1. Process Mapping 

 

Firstly, a tour around the production facilities has been provided during the first days. 

Subsequently, the measurement team has been shadowed for 1-2 weeks where there was the 

opportunity to get to better know the processes. After this, the process has plotted in a flowchart 

which had been presented through some of the colleagues of various departments in order to assess 

it. After the compliance with the process, a brief description of the activities has taken place. 

Unfortunately, due to a policy, no photographs were taken during the internship period. The 

mapping of processes is detailed in Appendix I and as per non-disclosure agreement is restricted. 
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3.2. Verification/Implementation of monitoring tools 

 

While accompanying the measurement crew, a checkup of the monitoring tools was done. 

However, there is only the verification of the distortions in loco and their records transferred into 

reports. The measurement team is limited and any change to process would require more resources 

which could require more time than the one proposed for the topic. Therefore, it was decided to 

make use of the existing system. Below find the description of the measurement process for 

longitudinal, transverse and angular distortions. 

 

3.2.1. Measurement in (x,y) 

 

The equipment used in order to perform the measurements in the “X, Y” direction is the Sokkia 

total station. Truly, this instrument consists of one optical scanning which is pointed to a prism or 

a cube where the point of the desired data is. As well, the equipment is also integrated with a small 

portable gadget which can allow the used to be away from the optical unit in order to trigger the 

measurement. Finally, the organization of measurements can be inputted inside this computer in 

order to expedite the service onsite, for instance: ship block number, target locations, etc. 

When facing troublesome measurement positions, it is possible to measure additional points to 

create a new reference and then measure the aimed position. Below find an illustration of the 

equipment. 

The procedure in order to measure the points goes as it follows. Firstly, the target points are setup 

into the software. When onsite, the best location in order to measure all points is selected. After 

that, the tripod is mounted, and the total station is attached to it. Next, the leveling of the total 

station must be done in order to achieve satisfactory accuracies. Following, the prism cube or prism 

stick which are the aims of the total station optical unit are placed in one of the positions:  

• Bow – Portside (Vorne – Backbord) 

• Bow – Centerline (Vorne – Mittellinie) 

• Bow – Starboard (Vorne – Steuerbord) 

• Stern – Portside (Hinter – Backbord) 

• Stern – Centerline (Hinter – Mittellinie) 

• Stern – Starboard (Hinter – Steuerbord) 
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Figure 9 – Measurement Device – X, Y direction – Sokkia Total Station (Product_cx_05.Jpg (375×310) n.d.). 

The optical unit is pointed to the cube or stick, the operator indicates in the computer which is the 

point of measurement and the computer is triggered in order to obtain the measurement. The step 

is repeated until all desired points are collected. A representation of the main points is shown 

Figure 10. 

As it had been mentioned before, different shapes or more complex structures might require extra 

points in order to give better view or even as coordinates in order to acquire main points, for 

instance: main plates divided into two heights, main plates with cut-off for doors or other openings, 

etc. 

If there is no possibility to reach all points from the initial position, then reference points are placed 

on the walls of the workshop or nearby structures and then the equipment is unmounted and 

remounted in a more favorable location. 

 

 

 

 

 

 

Figure 10 – Representation of the main measurement points – X, Y direction 
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Ultimately, the data is retrieved by a software in the computer and the data is transferred to an 

Excel spreadsheet which is used only for control and its named “Messprotokoll”. The retrieved 

information is used for the positioning approval and on-site corrections, not being saved as a 

databased nor becoming a feedback to the department which generates the allowance. 

In addition, for each point, the table below is filled-in inside an Excel spreadsheet: 

Table 2 – Input spreadsheet sample 

 X Y 

Ist v.d. Schweißen (before 

welding) 

  

Ist n.d. Schweißen (after 

welding) 

  

Soll (Original DWG Target)   

 

3.2.2. Measurement in (z) 

 

In addition, to check the discrepancies in z direction another equipment is used which consists of 

electronic laser device along with a stick with the receiver of the laser as shown in Figure 11. Some 

points (6-8) are marked along with the walls on the below level and they are checked. Manual 

corrections using hydraulic jack-ups, cutting processes or shimming pieces are used. After the 

corrections the block is released so another can be erected. The data is compiled into a report so 

named “Montageprotokoll”. 

 

 

Figure 11 – Representation of the main measurement points – Z direction (61Z360TshtL._SL1001_.Jpg (1001×1001) n.d.). 
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3.3. Program Selection 

 

As a matter of fact, there are a considerable number of tools available, which have been retrieved 

by searching online, in order to deal with machine learning which some examples are listed in the 

table below. As well, there is a nice review comparing the open source tools for data science which 

is written by (Wimmer and Powell 2016). 

Table 3 – Software suites’ samples 

Free and Open Source Proprietary with free and Open Source Proprietary 

R Knime Google Prediction API 

Weka Rapid Miner MATLAB 

As the company did not have any proprietary software for machine learning implementation, free 

and open source tools were considered in order to solve the proposed problem. Hence, the R, 

Weka, Knime and Rapid Miner were considered as feasible options and they are discussed below. 

 

Figure 12 – Program Selection – R Studio – Screenshot (Maxresdefault.Jpg (1920×1080) n.d.) 

Firstly, R is the simplest one, requiring a good level of programming skills in order to correctly 

setup a model. According to (Wimmer and Powell 2016), by default R does not provide visual 

features turning out to be difficult for a novice to create a workflow. Even though there is R Studio 
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graphical interface for R language, R language is still considered an interpreted language more 

than an environment. A view of the R studio is shown in Figure 12. 

Secondly, Weka provides a more user-friendly environment by providing a more guided way to 

setup the model and being a collection of machine learning algorithms. As well, Weka contains 

tools for data pre-processing, classification, regression, clustering, association rules and 

visualization. It also provides its own packages in order to reduce programing (Wimmer and 

Powell 2016). A screenshot of the GUI is presented in Figure 13. 

 

Figure 13 – Program Selection – Weka GUI  – Screenshot (16_splitandstartrun.Jpg (1018×825) n.d.) 

Thirdly, Rapid Miner has a lot of features to offer however some of them are limited in the free 

open source version. A positive point is the user-friendly workflow environment which allows you 

to create the flow without requiring high level of programming. A drawback of the free version is 

the limitation in memory access being 1 GB only (Wimmer and Powell 2016). Another downside 
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is the limitation of the community edition which grants you to work with only database up to 

10,000 rows (Communications 2017). A glimpse of the software is provided in Figure 14. 

 

Figure 14 – Program Selection – Rapid Miner – Screenshot (Maxresdefault.Jpg (960×720) n.d.) 

Finally, Knime is quite similar to Rapid Miner by offering a graphical workflow which facilitates 

the development of the model by a novice. In this sense, Knime has a slightly advantage on rapid 

miner by making use of a more colorful workflow with clear names for the nodes. Another 

advantage is the traffic lights for each node allowing the user to verify the flow between the model. 

In addition, Knime has integration with R language and Weka while Rapid Miner can only 

integrate with R language (Communications 2017).  A representation of a workflow is 

demonstrated in Figure 15. 
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Figure 15 – Program Selection – Knime – Screenshot (Maxresdefault.Jpg (1440×900) n.d.) 

A quick comparison matrix discussed by (Wimmer and Powell 2016) is partially presented below 

allowing a final overview of all software and their methods. 

Table 4 – Open Source Tools – Comparison Matrix (Wimmer and Powell 2016) 

Method R Weka Rapid Miner KNIME 

K-means Clustering Yes Yes Yes Yes 

Association Rule Mining Yes Yes Yes Yes 

Linear Regression Yes Yes Yes Yes 

Logistic Regression Yes Yes Yes Yes 

Naïve Bayesian Classifiers Yes Yes Yes Yes 

Decision Tree Yes Yes Yes Yes 

Time Series Analysis Yes Yes Some Yes 

Text Analytics Yes Yes Yes Yes 

Big Data Processing Yes Yes No No 

Visual Workflows No Yes Yes Yes 

Ultimately, a free of charge tool should be selected which has driven us to open source solutions 

such as R, Weka, Rapid Miner and Knime. The first criterion in order to choose the software was 

the user-friendliness. Hence, Knime and Rapid Miner were the best options as they offer graphical 
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workflow facilitating the creation and application of the methods and not requiring high level of 

programming. The second criterion was the capability of processing data. While Rapid Miner 

limits the free version around 10,000 rows, Knime does not possess such restriction. The third 

criterion was the integration with other tools. Although both Rapid Miner and Knime offer the 

integration with R, just Knime explicit mention the integration with Weka. Having said that, the 

chosen software was Knime. 

 

3.4. Selection of Method 

 

Truly, Knime offers more than 1,500 modules for data science. Nonetheless, the selected methods 

were Neural Network, Linear Regression and Best Fitting.  

As a matter of fact, the main advantage of the neural network is to deal with the nonlinearities 

which are resulted from a very nonlinear process such as welding.  

As well, the company would like to verify their actual process and maybe to alter for a simple 

formula, therefore the linear regression also takes place.  

Additionally, to complement the linear regression method, the best fitting method is developed. 

 

3.5. Database Elaboration 

 

As the proposed solutions should be oriented to be used by the CAM/Nesting team, main design 

parameters were preferred in order to elaborate the database. Therefore, three main sources of 

information were gathered to compose the database.  

Firstly, the estimation of the main block characteristics which is developed by a personnel staff. 

Secondly, the characteristics that could be outlined from the 2D drawings were analyzed and 

tabulated into a spreadsheet. 

Thirdly, the characteristics which could be inferred from the 3D model database available from 

the company’s design system. 

Finally, all of the information was joined by the ship and section number resulting in 60 available 

blocks to be studied. 
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3.5.1. Block Characteristics 

 

Block characteristics such as section number, main composition (Steel/Aluminum), length, width, 

height, volume and weight were estimated by one personnel and included here. 

 

3.5.2. Welding Characteristics from 2D model – (Manual) 

  

Later, each 2D drawing was verified and its elements classified into:  

 Transversal – Fillet weld of any element placed in the main plate which is positioned in the 

transversal direction (y); E.g. Frames and Carlings. Color: Light Blue 

 Longitudinal - Fillet weld of any element placed in the main plate which is positioned in 

the longitudinal direction (x); E.g. Stiffeners. Color: Green 

 Girder - Fillet weld of any element placed in the main plate which is positioned in the 

longitudinal direction (x) and has its sizing reminding a girder; Color: Pink 

 Butt Weld – Any butt weld. Color: Orange 

 

Figure 16 – Welding Research Papers' Distribution 

In addition, after colors that would be representative, more than 50% of the plate, were counted as 

1 complete element and this information was tabulated along with the spacing of girders, stiffeners 
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and frames. Moreover, the most representative thickness was included in the spreadsheet as well. 

Finally, as the spacing of girders and frames could be different between the blocks, an average 

value was taken for each section so that the machine learning methods could make use of these 

features. 

 

3.5.3. Welding Characteristics from 3D model – (Automated) 

 

This process was developed to outline the information of Plate, Girder, Stiffener and Frame 

automatically from the 3D drawing. It can express the similar information as in the topic above, 

but it cannot give the spacing. It had been created at first when the number of blocks were high, 

however when it dropped it was preferred to do it manually. On the other hand, it can still provide 

estimations of the welding length and weightage. 

 

3.5.4. Collection of historical data 

 

The process started around 2011 and its standards changed over the years. Hence, in order to collect 

all of those data, a common spreadsheet was used to gather all information and the data was 

collected from PDF and excel spreadsheets and, finally, some were directed retrieved from the 

total station files. The compilation and consolidations of these files into one database took around 

2-3 months. 

 

3.6. Modelling the prediction tool 

 

The development of the model tool started in early September being improved to the most until 

December. During the development some study cases were assigned as it follows, at first all 

features were given to the model trying to predict the variables (x, y) in the for edges. As no good 

results were achieved, next the reduction of the variables (x, y) to one length and widthwise 

variables were done and tested again with all features. Better results were achieved, but with poor 

accuracy, hence the same model was tested but with one feature at each time Length and Width 

which were computed from the target points. Ultimately, a back-feature selection method was 
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applied to select the most relevant features and the model was run one more time with the selected 

features. 

As a matter of fact, in order to enhance the learning of the outliers were removed by assessing the 

variation between the target and actual points and by using two different methods: the two-standard 

deviation which give us a 95% of confidence level; and the interquartile range. 

In addition, a different proposal of using the principal component analysis (PCA) had taken place 

in order to reduce most of the features to two virtual features and the model was applied. Another 

difference between this attempt and the other models is that this model takes the outliers based on 

the PCA variables instead of considering the variation between the target and actual points. 

 

3.6.1. General Overview 

 

The model has been divided in three main categories “Loading Data”, “Pre-processing” and 

“Processing and Results” which can be visualized in the Figure 17 and Figure 18. After a first trial 

with all variables and considering X and Y direction, a second attempt reducing the points to 

measurements along X and Y direction were performed. In sequence, a trial with just the length 

and width variables took place in order to try to come up with a simple formula for the 

CAM/Nesting team. Finally, a back-feature selection method was implemented in order to outline 

the most significant geometric features in the design. 
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Figure 17 – KNIME Model – General Overview – Loading and Pre-processing 

 

Figure 18 – KNIME Model – General Overview – Processing and Results 
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3.6.2. Loading Data 

 

All data has been stored in Excel spreadsheets. Hence, the Excel Reader (XLS) node has been used 

so that the data could be load into Knime workflow. There are ten different spreadsheets that were 

loaded into Knime workflow.  

 

3.6.2.1. Blocks’ Main Characteristics 

 

The first spreadsheet to be loaded was the blocks’ main characteristics. This spreadsheet contains 

the ship number, the section number, main material used, average length, average width, estimated 

volume and estimated weight. These characteristics were estimated by a personnel staff from the 

Ship Construction department. The workflow representation is shown below in Figure 19 and 

Figure 20. 

 

Figure 19 – KNIME Model – Loading Data – Blocks’ Main Characteristics – General Workflow 

 

Figure 20 – KNIME Model – Loading Data – Blocks’ Main Characteristics – Metanode 
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Additionally, there is a node converting the ship number into string so that a pie chart could be 

plot in order to demonstrate how many sections could be studied. Truly, the number of sections 

summed up is 452 and the distribution is demonstrated in Figure 21. 

 

Figure 21 – KNIME Model – Loading Data – Blocks’ Main Characteristics – Number of Sections per Ship 

 

3.6.2.2. Measurements 

 

The representation of the metanode in the workflow can be seen in Figure 22, Figure 23 and Figure 

24. The Figure 22 represents the view in the general flow while Figure 23 and Figure 24 represent 

the inside setup of the metanode. 

 

 

Figure 22 – KNIME Model – Loading Data – Measurements – General Workflow 

Firstly, all measurements that where collected during the internship period are loaded into the 

workflow. Then, some numbers which KNIME recognized as string are converted back again into 

number (double) values in order to be used in the machine learning process. 

 

Ship 1 Ship 2 Ship 3 Ship 4 Ship 5 Ship 6 Ship 7 Ship 8 
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Figure 23 – KNIME Model – Loading Data – Measurements – Metanode – Loading and Converting Strings 

Afterwards, there were some columns which were used to consolidate the data that were still being 

recognized by KNIME. Hence, they are excluded by the column filter node. In sequence, all tables 

are concatenated. Finally, along with the selection of good data and its forwarding to the general 

workflow, a plot with the data stratification is performed and it is shown in Figure 25. 
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Figure 24 – KNIME Model – Loading Data – Measurements – Metanode – Eliminating Columns, Concatenating and Selecting 

Data 

 

Figure 25 – KNIME Model – Loading Data – Measurements – Metanode – Number of Measurement by Classification 
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3.6.2.3. Elements’ Characteristics 

 

The elements characteristics is an exportation of all data available inside their current design 

system. Moreover, the features are: Ship, Section, Element, Layer, Geometry and Type of 

Material. Using these data, estimated welding length and weight were outlined based on each 

element existing inside a section. The layout of the elements’ characteristics node is shown in 

Figure 26 and Figure 27. 

 

Figure 26 – KNIME Model – Loading Data – Elements’ Characteristics – General Workflow 

 

Figure 27 – KNIME Model – Loading Data – Elements’ Characteristics – Metanode 

As a matter of fact, this is the biggest database loaded into KNIME workflow, therefore the first 

action was to eliminate solely information rows from the database. This has been achieved by 

eliminating rows without any geometric data and no welding information. Then, the sum of the 
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estimated welding length and weight occurred followed by the renaming of the Sum columns in 

order to facilitate reading and coding at a later stage of the model. 

Furthermore, the sums of the weightage and welding estimative were plotted according to the 

section and defining shapes for the dots representing each ship. The setup and plots are presented 

in Figure 28, Figure 29 and Figure 30. 

 

Figure 28 – KNIME Model – Loading Data – Elements’ Characteristics – Metanode – Shape Manager 

 

Figure 29 – KNIME Model – Loading Data – Elements’ Characteristics – Metanode – Chart Plot – Sum of Weightage 

Ship 1 

Ship 2 

Ship 3 

Ship 4 

Ship 5 

Ship 6 

Ship 7 
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Figure 30 – KNIME Model – Loading Data – Elements’ Characteristics – Metanode – Chart Plot – Sum of Weightage 

 

3.6.2.4. Welding Seam 

 

Based on least number of section which was provided by the measurements database (69), 

additional features based on the technical drawing of the main plate were stated. Features such as: 

Number of Transversal Elements, Number of Significant Welded Transversal Elements, Number 

of Longitudinal Elements, Number of Significant Welded Longitudinal Elements, Number of 

Girders, Number of Significant Welded Girders, Number of Butt Weld Seams, Number of 

Significant Weld Seams, Girder Spacing, Stiffener Spacing, Frame Spacing and Main Thickness 

of the deck plate. A representation of loading data in the general flow is displayed in Figure 31. 

 

Figure 31 – KNIME Model – Loading Data – Welding Seam Counting – General Workflow 
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3.6.2.5. Joining 

 

After loading all data, the joining process among 4 databases was performed and passed to the pre-

processing process. An image is not displayed here as the representation of the joining process can 

be seen in Figure 17. The method used for joining the tables is Inner Join matching ship and 

section. 

3.6.3. Pre-processing – Data 

 

A general view of the pre-processing metanode and its components are demonstrated in Figure 32 

and Figure 33. 

 

Figure 32 – KNIME Model – Pre-processing – Data – General Workflow 

In this metanode, the initial removal of columns occurs at the early beginning to reduce the number 

of features to be studied which are considered as irrelevant, such as: information about “before 

welding” points which is an intermediate part of the process just before the butt welding and there 

are already some welded part into the sub-assemblies; Var 1 and Var 2 which are variations 

computed between target point and before welding, and, before welding and after welding due to 

the reason mentioned for the “before welding”; and finally string variables which are not accepted 

by the neural network learning method.  
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Figure 33 – KNIME Model – Pre-processing – Data – Metanode 

As the training does not allow strings, the material type of the section is converted to integer 

number and the section variables have a character “S” removed and then converted to number. 

Figure 34 displays the nodes described so far. 

 

Figure 34 – KNIME Model – Pre-processing – Data – Treatment for training the network 
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Figure 35 – KNIME Model – Pre-processing – Data – Rest of Operations 

In order to reduce the number of learning variables and create an easier formula to be manipulated 

by the CAM/Nesting team the target points where reduced to average length and width. Next, there 

is a node in order to exclude null values. This node was created while developing the model when 

not all data was fully keyed in order to assure consistency of data. Nonetheless, now it does not 

impact anything in the model, but it is kept as the model can be used to assess different problems 

and it can assist in the development of new solutions. 

Afterwards, the shrinkage factor is included in the database and applied to average length and 

width. On the same pace as average length and width, the reduction of the variables for the final 

position of the points has been created based on the total length and width and summing the 

variations. 

Finally, two different statistical methods where applied: two standard deviations and the 

interquartile range. Whereas the two-standard deviation method eliminate the outliers reducing the 
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available data from 60 to 45 blocks, the interquartile range reduces from 60 to 48. Hence, the data 

which does not behave as most of the data is taken out of the database by using the variations as 

the criteria. The formulas applied to compute additional characteristics can be seen in Appendix 

II. 

 

3.6.4. Pre-processing - Graphing and Clustering 

 

The representations of the metanode are displayed in Figure 36 and Figure 37. While Figure 36 is 

the metanode in the general workflow, Figure 37 demonstrates the inner operations of this 

metanode. 

 

Figure 36 – KNIME Model – Pre-processing – Graphing and Clustering – General Workflow 

Firstly, the node applies the principal component analysis (PCA) which is a statistical procedure 

to convert a set of observations of likely correlated variables into a set of values of linearly 

uncorrelated variables. Along with the PCA, k-Means clustering has been applied in order to 

identify any possible cluster. Subsequently, the discovered clusters have been shaped and the 

different material types highlighted. 

Ultimately, as PCA and cluster information may vary according to each database to be studied, 

they have been removed before passing the data to the machine learning methods. In addition, 

scatter plots for all four corners and the PCA were plotted. 
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Figure 37 – KNIME Model – Pre-processing – Graphing and Clustering – Metanode 

  

Figure 38 – KNIME Model – Pre-processing – Graphing and Clustering – Metanode – Bow Portside and Starboard Edges 

(Cluster 1 – Cross; Cluster 2 – Circle; Cluster 3 – Rectangle; Type 1 – Steel; Type 2 – Aluminum) 

 

  

Figure 39 – KNIME Model – Pre-processing – Graphing and Clustering – Metanode – Stern Portside and Starboard Edge 

(Cluster 1 – Cross; Cluster 2 – Circle; Cluster 3 – Rectangle; Type 1 – Steel; Type 2 – Aluminum) 
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Figure 40 – KNIME Model – Pre-processing – Graphing and Clustering – Metanode – PCA (Cluster 1 – Cross; Cluster 2 – 

Circle; Cluster 3 – Rectangle; Type 1 – Steel; Type 2 – Aluminum) 

 

3.6.5. Neural Network 

 

A first graphical representation of the Neural Network metanode in the general flow can be seen 

in Figure 41. Further details of the metanode are presented from Figure 42 to Figure 50. 

 

Figure 41 – KNIME Model – Processing – Neural Network – General Workflow 

Truly, the neural network algorithm is composed by a number of hidden layers and hidden neurons. 

In general terms, while the hidden neurons are distributed in each layer providing the weightage 

values, the hidden layers constitute how many assessments are going to take place. In order to 

better assess our problem, the workflow has been organized so that many different setups could be 

verified. Clearly, the default value of hidden layers and neurons are 1 and 10. The interval loop 

start nodes are setups where the range and step of testing cases are assigned.  



Accuracy Control and Welding Distortion Prediction in a Deck Plate 59 

 

 

 “EMSHIP” Erasmus Mundus Master Course, period of study September 2016 – February 2018 

 

Figure 42 – KNIME Model – Processing – Neural Network – Setup 

Before initializing the network, it is necessary to normalize the data in the model so that the 

learning algorithm takes place. For doing so, it is necessary to have only numbers as string 

variables are treated as classification problem. Later, it is elementary to divide the learning and 

setup, which in our case 70% of data was reserved for learning whereas 30% was retained for 

testing the model. As well, the data partitioning is draw randomly. After, a cache node was used 

to make faster access of data. From Figure 42 to Figure 45, the setup screenshots are displayed. 

 

Figure 43 – KNIME Model – Processing – Neural Network – Setup – Hidden Layer and Hidden Neuron 



P60 Marcio Fleming 

 

Master Thesis developed at West Pomeranian University of Technology, Szczecin 

 

Figure 44 – KNIME Model – Processing – Neural Network – Setup – Data Partitioning 

In sequence, there is another loop where we select the variables that the model should learn and 

test. Hence, for each variable the flow is going to select one variable, use it to learn, convert the 

model to cell and save it in a column. 

 

Figure 45 – KNIME Model – Processing – Neural Network – Learning and Prediction 
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Figure 46 – KNIME Model – Processing – Neural Network – Variables to be Learned 

At a later stage the model is going to get the column with all the models, create the prediction for 

each variable, remove all columns but prediction one and save all predictions into a table. The flow 

below actually denormalize the data in order to save the results and enable the plotting later on. 

 

Figure 47 – KNIME Model – Processing – Neural Network – Denormalization to Save 

Then a metanode with numeric scorer, which is presented in Figure 50, is used in order to test all 

variables with normalized data. Next, the results of the numeric scorer are joined with the 

denormalized data in order to save the statistical and denormalized predictions and the table is 

transposed before passing the results. 
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Figure 48 – KNIME Model – Processing – Neural Network – Joining Predictions and Numeric Test Results 

Based on the results, a rule-based node selects an assigned iteration to plot the results obtained by 

the network, and also a joiner is used in order to provide the original value of deformations with 

the predictions.  

 

 

Figure 49 – KNIME Model – Processing – Neural Network – Joining Predictions and Numeric Test Results 

The numeric scorer metanode displayed below was developed so all elected variables are tested 

and passed back to Neural Network metanode. Another representation of the assigned variables to 

be tested can be seen in Figure 51. It can be observed that they are the same as the ones assigned 

in the learning process. 
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Figure 50 – KNIME Model – Processing – Neural Network – Numeric Test Metanode 

 

Figure 51 – KNIME Model – Processing – Neural Network – Numeric Test Metanode – Variables to be tested 

 

3.6.6. Polynomial Regression 

 

A first graphical image of the Polynomial Regression metanode in the general flow can be noticed 

in Figure 52. Moreover, the details of the metanode are given from Figure 53 to Figure 63. 
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Figure 52 – KNIME Model – Processing – Polynomial Regression – General Workflow 

Actually, the polynomial algorithm is composed by the number of degrees of the equation. Again, 

in order to better assess our problem, the workflow has been organized so that many different 

setups could be verified. Undoubtedly, the default degree value offered by Knime is two. The 

interval loop start node is where the range and step of testing cases are assigned.  

 

 

Figure 53 – KNIME Model – Processing – Polynomial Regression – Metanode 

Unlikely Neural Network, before initializing the network, it is not mandatory to normalize the data 

in the model so that the learning algorithm takes place. On the other hand, it is still necessary to 

have only numbers. Next, it is elementary to divide the learning and setup which in our case 70% 

of data was reserved for learning whereas 30% was retained for testing the model. As well, the 

data partitioning is draw randomly. Then, a cache node was used to make faster access of data. In 

Figure 54 and Figure 55, the setup screenshots are displayed. 
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Figure 54 – KNIME Model – Processing – Polynomial Regression – Metanode - Setup 

  

Figure 55 – KNIME Model – Processing – Polynomial Regression – Setup – Number of Degrees and Data Partitioning 

In sequence, there are two other metanodes where the variables that the model should learn, and 

test are passed to. Once again, for each variable the flow is going to select one variable which 

have been divided into two directions “X” and “Y”, use it to learn, convert the model to cell and 

save it in a column. This way, at the end it would be possible to come out with two different 

formulas. 
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Figure 56 – KNIME Model – Processing – Polynomial Regression – Metanode – Learning and Predicting 

 

 

Figure 57 – KNIME Model – Processing – Polynomial Regression – Learning and Predicting – Metanode – X Direction 
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Figure 58 – KNIME Model – Processing – Polynomial Regression – Variables to be Learned – X Direction 

 

Figure 59 – KNIME Model – Processing – Polynomial Regression –Learning and Predicting – Metanode – Y Direction 
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Figure 60 – KNIME Model – Processing – Polynomial Regression – Variables to be Learned – Y Direction 

On the same pace as the neural network model, the actual values, the predictions and test results 

are joined in order to forward the values outside the metanode to the main workflow. 

 

Figure 61 – KNIME Model – Processing – Polynomial Regression – Joining Predictions and Numeric Test Results 

The numeric scorer metanode displayed below was developed so all elected variables are tested 

and passed back to Polynomial Regression metanode. Another representation of the assigned 

variables to be tested can be seen in Figure 63. It can be observed that they are the same as the 

ones assigned in the learning process. 
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Figure 62 – KNIME Model – Processing – Polynomial Regression – Numeric Test Metanode 

 

Figure 63 – KNIME Model – Processing – Polynomial – Numeric Test Metanode – Variables to be tested 
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3.6.7. Back Feature Selection 

 

As a lot of variables has been used in order to study the problem, a back-feature selection has been 

implemented in order to verify the most significant variables to the problem. A display of the 

metanode in the general flow is shown in Figure 64. 

 

Figure 64 – KNIME Model – Processing – Back Feature Selection – General Workflow 

A more detailed picture is presented in Figure 65. In true, the implementation of this method 

requires the usage of a prepared metanode model such as neural network but with one setup which 

in this case the number of hidden layers was 1 and the number of the hidden neurons 41. 
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Figure 65 – KNIME Model – Processing – Back Feature Selection – Metanode 

3.6.8. Best-fitting  

 

The best fitting is actually the plot between the design values with the shrinkage factor on Y-axis 

with the actual shrink values on X-axis. A demonstration of the nodes in the general workflow is 

presented in Figure 66. 

 

Figure 66 – KNIME Model – Processing – Best Fitting – General Workflow 
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4. RESULTS AND ANALYSIS 

 

The results are analyzed by considering three main characteristics: the coefficient of determination 

(R2), mean absolute error (MAE) and mean squared error (MSE). A brief explanation is given 

below. 

In addition, the coefficient of determination is the proportion of the variance in the dependent 

variable that is predictable from the independent variable(s) and its interpretation is that the values 

closest to 1 indicates that the fitted model explains all variability. It is important to highlight that 

R2 can yield negative values when fitting non-linear functions to data.  

Moreover, the mean absolute error is a measure of difference between two continuous variables 

and the lowest value should be preferred. 

Furthermore, the mean squared error measures the difference between the estimator and what is 

estimated, and the lowest value should be promoted. 

All in all, the first criterion used is the coefficient of determination, followed by the MAE and then 

MSE. Additionally, all plots generated by KNIME do not present the unit. Nonetheless, the unit 

should be considered as millimeters (mm). 

 

4.1. Real Variation 

 

Two representations of the variations are presented in Figure 67 and Figure 68. 

 

Figure 67 – Results – Real Variations – Target vs Actual points – All four corners together 
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From Figure 67 it is possible to visually verify that most of the variations occur inside the range 

of 10 mm. From the raw data, in the x-axis the maximum absolute variation is 17.2 mm, while in 

the y-axis 22 mm which is not displayed above. Nonetheless, the shrinkage factor for the Steel is 

1.001 and for the Aluminum 1.002, and the average block length and width are respectively 11.39 

m and 18.65 m indicating that the actual factor can handle most of the actual variations, but 

production problems might still arise. 

 

  

Figure 68 – Results – Real Variations – Target vs Actual points – All four corners separated 

Figure 68 gives a better view of each corner. It must be reminded that the lengthwise has an excess 

of material which should be enough to avoid any production problem. On the other hand, on the 

widthwise direction production problems might occur as there would not be any excess of material. 

Ultimately, the comparison was considering the behavior of a single corner. If you take into 

account the behavior of two corners the effects on the arise of production problems can be even 

greater specially on Y-axis where there is not an excess of material on top of the shrinkage factor. 
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4.2. Polynomial Regression 

 

4.2.1. All Features with eight variables 

 

Although the method has been implemented, the attempt to run this trial failed because the number 

of features is way too high when compared to the number of data rows. Hence, more data is 

required in order to run this model. 

 

4.2.2. All Features with two variables 

 

On the same pace as the previous trial, with eight variables, the number of features is higher than 

the number of required data to run the model. Therefore, more rows or the reduction of the features 

are elementary so that a trial could be achieved. 

 

4.2.3. One Feature with two variables and PCA Analysis 

 

After running the model for four different methods – two-standard deviation, interquartile range 

using variation points when compared to the target and actual points to eliminate outliers and two-

standard deviation, interquartile range using PCA to eliminate outliers varying from 1 to 10 

degrees, the following charts from Figure 69 to Figure 72 could be outlined in which solely the 

best results were plotted until the first visual difference. 

  

Figure 69 – Results – Polynomial Regression – One Feature with two variables – from 1 to 4 degrees – 2 STD 
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Figure 70 – Results – Polynomial Regression – One Feature with two variables – from 1 to 5 degrees – IQR 

  

Figure 71 – Results – Polynomial Regression – One Feature with two variables – from 1 to 7 degrees – 2 STD – PCA 

  

Figure 72 – Results – Polynomial Regression – One Feature with two variables – from 1 to 6 degrees – IQR - PCA 

The use of IQR method increased the number of available data when compared to the two-standard 

deviation method which can be the reason why we could satisfactory achieve another number of 

degree. Analogously, when using PCA in order to eliminate the outliers more data was available 

to be evaluated and higher degrees could be achieved with the same method.  
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Clearly, the length was the variable that started to deviate first. This can be explained by being 

influenced mostly by the given features. Additionally, because its range is lower than the width, it 

has more variations inside a lower range. Ultimately, for the polynomial regression method, the 

best model was the two-standard deviations observing the variations in order to remove the outliers 

and its final statistical information is shown below. 

Table 5 – Results – Polynomial Regression – One Feature with two variables – Best Result – 2 STD - 1 degree 

Row ID 
Prediction 

(Length_New) 

Prediction 

(Width_New) 

Number 

of 

Degrees 

Average 

R^2 1.00  1.00  1            1.00  

MAE 3.23  3.94  1            3.58  

MSE 16.84  25.00  1          20.92  

 

4.3. Neural Network 

 

4.3.1. All Features with eight variables 

 

While the polynomial regression method could not handle the number of variables, the neural 

network could learn from the features and the results are demonstrated in Table 6. However, due 

to the number of non-linearities all coefficients of determination were negatives. Therefore, no 

setup for this model was not considered satisfactory and not being plotted or further discussed. 

Table 6 – Results – Neural Network – All Features with eight variables – R2 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

40 -        1.02  -        0.97  -        1.44  

50 -        1.23  -        1.15  -        1.59  

60 -        1.20  -        1.12  -        1.49  

70 -        0.95  -        1.21  -        0.75  

80 -        1.22  -        1.14  -        1.39  

90 -        1.14  -        1.30  -        0.44  

100 -        1.07  -        1.04  -        1.90  
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4.3.2. All Features with two variables 

 

As it had been mentioned for the previous attempt, while the polynomial regression method could 

not handle the number of variables, the neural network could learn from the features and present 

results. Nonetheless, the coefficients of determination were improved by the reduction of variables 

to be studied. Thus, starting with the coefficient of determination and analyzing the errors, a best 

configuration was outlined for each outlier removal method. 

 

Table 7 – Results – Neural Network – All Features with two variables – R2 – 2 STD 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

40         0.682          0.727          0.575  

50         0.731          0.764          0.582  

60         0.900          0.593          0.699  

70         0.811          0.725          0.486  

80         0.795          0.630          0.502  

90         0.781          0.719          0.527  

100         0.741          0.775          0.484  

 

Table 8 – Results – Neural Network – All Features with two variables – R2 – IQR 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

40         0.861          0.539          0.550  

50         0.857          0.690          0.733  

60         0.765          0.801          0.836  

70         0.913          0.742          0.902  

80         0.836          0.898          0.803  

90         0.519          0.830          0.813  

90         0.736          0.735          0.812  

 

In order to better assess the networks, just those with R2 close to 0.9 were analyzed. Therefore, our 

case for the two-standard deviation is a neural network having 1 layer with 60 neurons. Moreover, 

for the interquartile range method, the following setups are examined: 1 layer with 70 neuros; 2 

layers with 80 neurons; and 3 layers with 70 neurons. 
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Table 9 – Results – Neural Network – All Features with two variables – Best Results – Statistics – 2 STD 

Statistics 

Hidden 

Neurons 

Hidden 

Neurons 

Hidden 

Neurons 

Hidden 

Neurons 

60 70 80 70 

Method 2 STD IQR IQR IQR 

Number of Layers 1 1 2 3 

R^2 0.9005 0.9126 0.8979 0.9019 

MAE 0.0474 0.0398 0.0407 0.0415 

MSE 0.0041 0.0045 0.0054 0.0043 

 

Ultimately, it was chosen the following setup to be plotted: 1 layer with 60 neurons for 2 standard 

deviations method. In addition, it had been decided to display the following setup: 1 layers with 

70 neurons. 

  

Figure 73 – Results – Neural Network – All Features with two variables – 1 layer and 60 neurons – 2 STD 

  

Figure 74 – Results – Neural Network – All Features with two variables – 1 layer and 70 neurons – IQR 
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4.3.3. One Feature with two variables and PCA Analysis 

 

As it had been mentioned for the previous attempt, while the polynomial regression method could 

not handle the number of variables, the neural network could learn from the features and present 

results. Nonetheless, the coefficient of determination was improved by the reduction of variables 

to be studied. Thus, starting with the coefficient of determination and analyzing the errors a best 

configuration was outlined for each outlier removal method. 

 

Table 10 – Results – Neural Network – One Feature with two variables – R2 – 2 STD 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

1         0.750          0.634          0.597  

11         0.745          0.829          0.769  

21         0.837          0.732          0.725  

31         0.974          0.895          0.804  

41         0.979          0.904          0.755  

51         0.981          0.767          0.781  

61         0.952          0.941          0.810  

71         0.977          0.868          0.737  

81         0.947          0.870          0.677  

91         0.932          0.841          0.762  
 

Table 11 – Results – Neural Network – One Feature with two variables – R2 – IQR 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

1         0.910          0.755          0.512  

11         0.950          0.914          0.949  

21         0.953          0.966          0.963  

31         0.961          0.959          0.967  

41         0.971          0.964          0.962  

51         0.973          0.969          0.952  

61         0.973          0.965          0.966  

71         0.975          0.944          0.984  

81         0.972          0.980          0.969  

91         0.972          0.965          0.962  
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Table 12 – Results – Neural Network – One Feature with two variables – R2 – 2 STD - PCA 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

1         0.455          0.472          0.716  

11         0.917          0.953          0.916  

21         0.923          0.974          0.965  

31         0.917          0.917          0.913  

41         0.964          0.885          0.978  

51         0.970  -      5.009          0.892  

61         0.972          0.970          0.957  

71         0.965          0.830          0.728  

81         0.955          0.948          0.948  

91         0.921          0.952          0.931  
 

Table 13 – Results – Neural Network – One Feature with two variables – R2 – IQR - PCA 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

1         0.828          0.862          0.706  

11 -      1.364          0.919          0.968  

21         0.974          0.957          0.969  

31         0.975          0.956          0.884  

41         0.966          0.950          0.963  

51         0.954          0.938          0.946  

61 -      1.424          0.973          0.984  

71         0.963          0.958          0.962  

81         0.967          0.954          0.861  

91         0.962          0.899          0.946  

In order to better assess the networks, just those with R2 above 0.95 were analyzed. Therefore, our 

initial ranges are neural networks with 1 layer and neurons varying from 31 to 71 for the two-

standard deviation. As well, neural networks varying layers from 1 to 3 and neurons from 11 to 91 

for the interquartile range method. 
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Table 14 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – 2 STD – 1 Layer 

Statistics 
 Hidden Neurons  

31  41  51  61  71  

R^2      0.9743       0.9787       0.9807       0.9518       0.9772  

MAE      0.0274       0.0234       0.0248       0.0311       0.0247  

MSE      0.0017       0.0013       0.0013       0.0029       0.0014  
 

Table 15 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – IQR – 1 Layer 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 0.9500  0.9526  0.9606  0.9715  0.9731  0.9727  0.9745  0.9717  0.9724  

MAE 0.0212  0.0262  0.0227  0.0217  0.0204  0.0196  0.0205  0.0207  0.0198  

MSE 0.0019  0.0019  0.0015  0.0011  0.0011  0.0010  0.0010  0.0011  0.0011  
 

Table 16 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – IQR – 2 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    0.9659  0.9593  0.9641  0.9691  0.9651  -    0.9797  0.9652  

MAE -    0.0144  0.0155  0.0149  0.0135  0.0156  -    0.0133  0.0174  

MSE -    0.0013  0.0015  0.0013  0.0011  0.0013  -    0.0008  0.0013  
 

Table 17 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – IQR – 3 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    0.9627  0.9666  0.9622  0.9524  0.9660  0.9844  0.9685  0.9625  

MAE -    0.0113  0.0134  0.0111  0.0167  0.0151  0.0092  0.0110  0.0108  

MSE -    0.0013  0.0013  0.0014  0.0017  0.0013  0.0006  0.0011  0.0013  
 

Table 18 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – 2 STD – PCA – 1 Layer 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    -    -    0.9642  0.9701  0.9724  0.9646  0.9545  -    

MAE -    -    -    0.0237  0.0262  0.0249  0.0229  0.0269  -    

MSE -    -    -    0.0010  0.0015  0.0013  0.0011  0.0013  -    
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Table 19 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – 2 STD – PCA – 2 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 0.9529  0.9739  -    -    -    0.9702  -    -    0.9516  

MAE 0.0333  0.0244  -    -    -    0.0201  -    -    0.0200  

MSE 0.0027  0.0015  -    -    -    0.0011  -    -    0.0008  
 

Table 20 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – 2 STD – PCA – 3 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    0.9655  -    0.9783  -    0.9573  -    -    -    

MAE -    0.0269  -    0.0236  -    0.0281  -    -    -    

MSE -    0.0016  -    0.0012  -    0.0017  -    -    -    

 

Table 21 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – IQR – PCA – 1 Layer 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    0.9742  0.9749  0.9656  0.9542  -    0.9626  0.9675  0.9623  

MAE -    0.0234  0.0245  0.0263  0.0270  -    0.0246  0.0256  0.0244  

MSE -    0.0010  0.0012  0.0012  0.0020  -    0.0012  0.0011  0.0011  
 

Table 22 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – IQR – PCA – 2 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    0.9572  0.9555  -    -    0.9730  0.9576  0.9543  -    

MAE -    0.0268  0.0271  -    -    0.0220  0.0258  0.0238  -    

MSE -    0.0021  0.0018  -    -    0.0012  0.0015  0.0012  -    

 

Table 23 – Results – Neural Network – One Feature with two variables – Best Results – Statistics – IQR – PCA – 3 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 0.9678  0.9694  -    0.9634  -    0.9837  0.9624  -    -    

MAE 0.0207  0.0237  -    0.0268  -    0.0165  0.0218  -    -    

MSE 0.0018  0.0018  -    0.0025  -    0.0012  0.0010  -    -    

 

Finally, it was chosen the following setup to be plotted: 1 layer with 41 neurons for 2 standard 

deviations method. Moreover, the following configuration using PCA is displayed below, 3 layers 

and 41 neurons. In addition, it had been decided to display the following setup: 3 layers with 71 
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neurons. Furthermore, a representation with 3 layers and 61 neurons using PCA as outlier removal 

is shown below. 

  

Figure 75 – Results – Neural Network – All Features with two variables – 1 layer and 41 neurons – 2 STD 

  

Figure 76 – Results – Neural Network – All Features with two variables – 3 layers and 71 neurons – IQR 

  

Figure 77 – Results – Neural Network – All Features with two variables – 3 layers and 41 neurons – 2 STD – PCA  
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Figure 78 – Results – Neural Network – All Features with two variables – 3 layers and 61 neurons – IQR – PCA  

It can be seen from the charts that the prediction curve detaches from the actual values. This can 

be explained by the reduced database which does not provide much information to be learn on 

those areas. Similarly, on the edges of the curve a gap is generated. This behavior indicates that 

the limits of learning database are being reached. Therefore, it is where the model is limited to and 

values further on that region will not have any reasonable value. 

 

4.4. Selected Features 

 

A back-feature selection was applied using a neural network model and both two-standard 

deviation and interquartile range methods. By using the results of the back-feature selection, a new 

round with a neural network and polynomial regression learning took place. The results of the 

applied methods are available in Appendix III. However, tree map charts based on the squared 

errors and number of features for length and width were plotted in Figure 79 and Figure 80. 

  

Figure 79 – Results – Polynomial Regression – Back Feature Selection with two variables – 2 STD 
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Figure 80 – Results – Polynomial Regression – Back Feature Selection with two variables – IQR 

As the number of features are reduced the squared error decreases. Additionally, the table below 

contains the selected features in order to obtain the lowest squared errors for both outlier removal 

methods. 

Table 24 – Results – Back feature selection – Selected Features 

Direction 2-STD IQR 

Length Length_AVG_SF; 

Elements_Transversal; 

Complete_Weld_Transversal 

Length_AVG; 

Width Width_AVG_SF 

Spacing_Stiffener; 

Weightage_kg 

Thickness_Main_Plate 

Width_AVG_SF; 

Length_AVG; 

Width_AVG; 

 

4.4.1. Polynomial Regression 

 

In the case of polynomial regression, even though the selected features were introduced the results 

were worse by comparing MAE and MSE. It is also noticed that the visual divergence starts in a 

lower degree. The best result of Polynomial regression with selected features is shown in Table 

25. 
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Figure 81 – Results – Polynomial Regression – Back Feature Selection with two variables – from 1 to 3 degrees – 2 STD 

 

  

Figure 82 – Results – Polynomial Regression – Back Feature Selection with two variables – 1 degree – IQR 

Table 25 – Results – Polynomial Regression – Back Feature Selection with two variables – Best Result – IQR - 1 degree 

Row ID 
Prediction 

(Length_New) 

Prediction 

(Width_New) 

Number 

of 

Degrees 

Average 

R^2 1.00  1.00  1 1.00  

MAE 3.61  5.53  1 4.57  

MSE 22.04  40.96  1 31.50  
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4.4.2. Neural Network 

 

Once again, setups that present coefficient of determination above 0.95 were analyzed. 

 

Table 26 – Results – Neural Network – Back Feature selection with two variables – R2 – 2 STD 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 
  1 2 3 

1         0.455          0.472          0.716  

11         0.917          0.953          0.916  

21         0.923          0.974          0.965  

31         0.917          0.917          0.913  

41         0.964          0.885          0.978  

51         0.970  -      5.009          0.892  

61         0.972          0.970          0.957  

71         0.965          0.830          0.728  

81         0.955          0.948          0.948  

91         0.921          0.952          0.931  

 

 

 

Table 27 – Results – Neural Network – Back Feature selection with two variables – R2 – IQR 

  Hidden Layers 

H
id

d
en

 N
eu

ro
n

s 

  1 2 3 

1         0.956          0.642          0.624  

11         0.972          0.918          0.888  

21         0.971          0.978          0.931  

31         0.969          0.975          0.965  

41         0.968          0.976          0.968  

51         0.973          0.971          0.945  

61         0.969          0.959          0.958  

71         0.968          0.974          0.962  

81         0.964          0.962          0.984  

91         0.962          0.959          0.983  
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Table 28 – Results – Neural Network – Back Feature selection with two variables – Best Results – Statistics – 2 STD – 1 Layer 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    -    -    0.9642  0.9701  0.9724  0.9646  0.9545  -    

MAE -    -    -    0.0237  0.0262  0.0249  0.0229  0.0269  -    

MSE -    -    -    0.0010  0.0015  0.0013  0.0011  0.0013  -    

 

Table 29 – Results – Neural Network – Back Feature selection with two variables – Best Results – Statistics – 2 STD – 2 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 0.9529  0.9739  -    -    -    0.9702  -    -    0.9516  

MAE 0.0333  0.0244  -    -    -    0.0201  -    -    0.0200  

MSE 0.0027  0.0015  -    -    -    0.0011  -    -    0.0008  

 

Table 30 – Results – Neural Network – Back Feature selection with two variables – Best Results – Statistics – 2 STD – 3 Layers 

Statistics 
 Hidden Neurons  

11  21  31  41  51  61  71  81  91  

R^2 -    0.9655  -    0.9783  -    0.9573  -    -    -    

MAE -    0.0269  -    0.0236  -    0.0281  -    -    -    

MSE -    0.0016  -    0.0012  -    0.0017  -    -    -    

 

Table 31 – Results – Neural Network – Back Feature selection with two variables – Best Results – Statistics – IQR – 1 Layer 

Statistics 
 Hidden Neurons  

1  11  21  31  41  51  61  71  81  91  

R^2 0.9565  0.9723  0.9707  0.9693  0.9675  0.9732  0.9691  0.9684  0.9637  0.9618  

MAE 0.0285  0.0196  0.0204  0.0202  0.0201  0.0182  0.0171  0.0197  0.0191  0.0205  

MSE 0.0015  0.0008  0.0009  0.0009  0.0009  0.0008  0.0008  0.0009  0.0009  0.0010  

 

Table 32 – Results – Neural Network – Back Feature selection with two variables – Best Results – Statistics – IQR – 2 Layers 

Statistics 
 Hidden Neurons  

1  11  21  31  41  51  61  71  81  91  

R^2 -    -    0.9785  0.9753  0.9758  0.9715  0.9589  0.9737  0.9623  0.9589  

MAE -    -    0.0090  0.0111  0.0104  0.0110  0.0171  0.0156  0.0160  0.0141  

MSE -    -    0.0004  0.0005  0.0005  0.0006  0.0010  0.0006  0.0009  0.0009  
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Table 33 – Results – Neural Network – Back Feature selection with two variables – Best Results – Statistics – IQR – 3 Layers 

Statistics 
 Hidden Neurons  

1  11  21  31  41  51  61  71  81  91  

R^2 -    -    -    0.9646  0.9684  -    0.9580  0.9621  0.9844  0.9834  

MAE -    -    -    0.0126  0.0113  -    0.0106  0.0111  0.0079  0.0097  

MSE -    -    -    0.0007  0.0006  -    0.0008  0.0008  0.0003  0.0004  

 

For the two-standards deviation the selected configuration is 3 hidden layers with 41 neurons 

whereas for the IQR the optimal setup is 3 hidden layers with 81 neurons. 

 

  

Figure 83 – Results – Neural Network – All Features with two variables – 3 layers and 41 neurons – 2 STD 

 

 

  

Figure 84 – Results – Neural Network – All Features with two variables – 3 layers and 81 neurons – IQR 
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4.5. Best Fitting 

 

This method was applied in order to come out with simple formulae and to compare with the 

current shrinkage factor. 

 

  

Figure 85 – Results – Best Fitting – Length_AVG_SF vs Length_New (Left) and Width_AVG_SF vs Width_New (Right) – 2 STD 

𝐿𝑒𝑛𝑔𝑡ℎ𝐴𝑉𝐺𝑆𝐹
= 1.0011 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑁𝑒𝑤 + 0.3119 

𝑊𝑖𝑑𝑡ℎ𝐴𝑉𝐺𝑆𝐹
= 1.0007 × 𝑊𝑖𝑑𝑡ℎ𝑁𝑒𝑤 + 1.7156 
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Figure 86 – Results – Best Fitting – Length_AVG_SF vs Length_New (Left) and Width_AVG_SF vs Width_New (Right) – IQR 

𝐿𝑒𝑛𝑔𝑡ℎ𝐴𝑉𝐺𝑆𝐹
= 1.0011 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑁𝑒𝑤 − 0.3628 

𝑊𝑖𝑑𝑡ℎ𝐴𝑉𝐺𝑆𝐹
= 1.0007 × 𝑊𝑖𝑑𝑡ℎ𝑁𝑒𝑤 + 1.9449 

The multiplications and constants are in millimeters. Considering that, the length formula could 

disregard the adjustment and by comparing the length factors from both 2 STD and IQR to the 

original it indicates the increase the factor by 0.0001.  

As well, the average width of a block is 18.65m and if you divide the constant by this value, the 

factor could be increased by 0.0001, hence the formula factor could be taken as approximately 

1.0008 which is lower than the actual shrinkage factor. Therefore, it would be possible to reduce 

it. 
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5. CONCLUSIONS 

 

The welding distortions can be caused by three main categories: geometric parameters (design), 

material properties and welding process parameters (manufacture process). In this study, the 

geometric parameters were examined. 

Firstly, all possible features were gathered starting from those available from the design system 

and then detailing them manually from technical drawings. These data were divided into: block 

main characteristics – estimated values by personnel; features retrieved from the system database; 

and features outlined from technical drawing. Subsequently, all possible measurements were 

joined to our data. The data treatment took around 4 months to be completed. 

The selected program, KNIME, proved to be versatile for allowing the development of many 

different setups in an easy manner as detailed in chapter 3. It is a very straight-forwarded 

environment with a lot of different methods to analyze data. Even so, the development of the model 

took 3 months to achieve its final stage as it had been noticed space for improvement. 

Two different outlier removal methods were used. By observing the selected setups, the IQR was 

the best one to work together with the neural network whereas the 2 STD was the best one to the 

polynomial regression method. It is believed that IQR had better results with neural network due 

to higher number of rows which allowed more data to be used in learning. 

In this study the polynomial regression had better coefficients of determination when compared to 

the neural networks and, also, visually it could be seen a better behavior in the plot.  

On the other hand, when coming to analyze non-linear behaviors including a lot of features, the 

polynomial regression cannot give any guess if your database is limited. In the same case, the 

neural network could give results even with limited data. 

On top of that, the reduction of variables was mandatory in order to progress with the study. When 

presenting the 8 variables, our dataset was too limited and the nonlinearities too big solely giving 

negative coefficients of determination. 

After the reduction of variables to be studied, initial results started to be achieved and they had 

been improved by the reduction of features. Additionally, it was found that number of transversal 

elements and the number of transversal welding seams influence the length while stiffener spacing, 

weight and thickness of main plate affect the width. 
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It had been noticed that even with the application of various methods that graphically no neural 

network was satisfactory even if the coefficient of determination and errors seemed to be low. The 

detachments along the way can be explained by the lack of data for the algorithm to learn and also 

due to overlearning in the case of setups with higher number of layer and neurons. Again, the gaps 

presented on the edges of the curves are due to the upper and lower boundaries of the database 

being reach by the predictor which can be improved by providing more data. 

Having said that, a best fitting data comparison was performed finding that the factor should be 

slightly adjusted for both length and width according to the supplied data. 

All in all, more data is elementary to perform firm conclusions and to further learn and test the 

model. KNIME is a powerful tool and the developed model can be adjusted and used to assess 

distortions in other elements such as sub-assemblies as long as the data is collected. Moreover, it 

is still necessary to verify how to integrate the PMML model with the design software used by the 

company in order to reduce workload of the nesting/CAM team. Finally, as another topic it could 

be assessed if the excess of material which is applied on top of the shrinkage factor could be 

reduced. 
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APPENDIX I – PRODUCTION PROCESS MAPPING 

 

This appendix should not be distributed outside of the consortium as per de non-disclosure 

agreement (NDA – 10/01/2018). 
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APPENDIX II – MATHEMATICAL FORMULAS 

Pre-processing – Length_AVG 

(($Target-Bow-PS-X$ - $Target-Stern-PS-X$)  

+ ($Target-Bow-Stb-X$ - $Target-Stern-Stb-X$))/2 

Pre-processing – Width_AVG 

(($Target-Stern-Stb-Y$ - if($Target-Stern-PS-Y$>=0,$Target-Stern-PS-Y$*-1,$Target-Stern-PS-

Y$))+ ($Target-Bow-Stb-Y$ - if($Target-Bow-PS-Y$>=0,$Target-Bow-PS-Y$*-1,$Target-Bow-

PS-Y$)))/2 

Pre-processing – Length_AVG_SF 

($Length_AVG$/1000 * $SF_Length$)*1000 

Pre-processing – Width_AVG_SF 

($Width_AVG$/1000 * $SF_Width$)*1000 

Pre-processing – Length_New 

(($After-Bow-Stb-X$ - $After-Stern-Stb-X$)+ 

($After-Bow-PS-X$ - $After-Stern-PS-X$))/2 

Pre-processing – Width_New 

(($After-Stern-Stb-Y$ - if($After-Stern-PS-Y$>=0,$After-Stern-PS-Y$*-1,$After-Stern-PS-

Y$))+($After-Bow-Stb-Y$ - if($After-Bow-PS-Y$>=0,$After-Bow-PS-Y$*-1,$After-Bow-PS-

Y$)))/2 
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APPENDIX III – BACK FEATURE SELECTION RESULTS 

 

The best results are highlighted in yellow. 

Table 34 – Results – Neural Network – Back Feature Selection with two variables – 2 STD – Length 

RowID Nr. of features Squarred Error Removed feature 

0 0  Length_AVG_SF 

1 1                       0.1779  Elements_Transversal 

2 2                       0.1143  Complete_Weld_Transversal 

3 3                       0.0301  Elements_Girder 

4 4                       0.0322  Complete_Weld_Girder 

5 5                       0.0746  Height 

6 6                       0.0414  Spacing_Frame 

7 7                       0.0498  Complete_Weld_Longitudinal 

8 8                       0.0509  Length 

9 9                       0.0781  Length_AVG 

10 10                       0.0549  Complete_Weld_Butt 

11 11                       0.0654  Elements_Longitudinal 

12 12                       0.0629  SF_Length 

13 13                       0.1107  SF_Width 

14 14                       0.0435  Width_AVG_SF 

15 15                       0.0958  Weightage_kg 

16 16                       0.0685  Width_AVG 

17 17                       0.0993  Spacing_Stiffener 

18 18                       0.0881  Ship 

19 19                       0.0757  Elements_Butt 

20 20                       0.0497  Volume 

21 21                       0.0949  Width 

22 22                       0.0585  Type 

23 23                       0.1196  Section 

24 24                       0.1012  Width_New 

25 25                       0.1265  Weightage 

26 26                       0.1058  Spacing_Girder 

27 27                       0.0911  Thickness_Main_Plate 

28 28                       0.0996  Welding_Length 

All 29                       0.3643   
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Table 35 – Results – Neural Network – Back Feature Selection with two variables – 2 STD – Width 

RowID Nr. of features Squarred Error Removed feature 

0 0  Width_AVG_SF 

1 1                       0.1519  Spacing_Stiffener 

2 2                       0.1168  Weightage_kg 

3 3                       0.1379  Thickness_Main_Plate 

4 4                       0.1073  Length 

5 5                       0.1285  Complete_Weld_Longitudinal 

6 6                       0.1225  Complete_Weld_Butt 

7 7                       0.1193  Volume 

8 8                       0.1415  Ship 

9 9                       0.1745  Welding_Length 

10 10                       0.1286  Elements_Butt 

11 11                       0.1698  Elements_Girder 

12 12                       0.1630  Type 

13 13                       0.1548  Width_AVG 

14 14                       0.1143  Length_AVG 

15 15                       0.1262  Height 

16 16                       0.1233  SF_Length 

17 17                       0.1632  Section 

18 18                       0.1539  Length_New 

19 19                       0.1626  Length_AVG_SF 

20 20                       0.1586  Elements_Transversal 

21 21                       0.1515  Weightage 

22 22                       0.1092  Spacing_Girder 

23 23                       0.1512  Elements_Longitudinal 

24 24                       0.1912  SF_Width 

25 25                       0.1269  Spacing_Frame 

26 26                       0.1487  Complete_Weld_Girder 

27 27                       0.1448  Complete_Weld_Transversal 

28 28                       0.1511  Width 

All 29                       0.2643   
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Table 36 – Results – Neural Network – Back Feature Selection with two variables – IQR – Length 

RowID Nr. of features Squarred Error Removed feature 

0 0  Length_AVG 

1 1                       0.0076  Weightage_kg 

2 2                       0.1667  Complete_Weld_Transversal 

3 3                       0.1137  Spacing_Girder 

4 4                       0.0552  Elements_Transversal 

5 5                       0.0341  Complete_Weld_Girder 

6 6                       0.0503  Width_AVG_SF 

7 7                       0.0599  Length 

8 8                       0.0631  Elements_Girder 

9 9                       0.0541  Length_AVG_SF 

10 10                       0.0806  Weightage 

11 11                       0.0466  Thickness_Main_Plate 

12 12                       0.0466  Elements_Longitudinal 

13 13                       0.0638  Complete_Weld_Butt 

14 14                       0.0742  Complete_Weld_Longitudinal 

15 15                       0.0801  Height 

16 16                       0.0581  Section 

17 17                       0.0861  SF_Width 

18 18                       0.0823  Ship 

19 19                       0.0960  Width_AVG 

20 20                       0.1034  Elements_Butt 

21 21                       0.0654  Width_New 

22 22                       0.0711  Width 

23 23                       0.0899  Spacing_Frame 

24 24                       0.1639  Welding_Length 

25 25                       0.1419  SF_Length 

26 26                       0.1947  Volume 

27 27                       0.1320  Type 

28 28                       0.2039  Spacing_Stiffener 

All 29                       0.6154   
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Table 37 – Results – Neural Network – Back Feature Selection with two variables – IQR – Width 

RowID Nr. of features Squarred Error Removed feature 

0 0  Width_AVG_SF 

1 1                       0.0741  Length_AVG 

2 2                       0.0682  Width_AVG 

3 3                       0.0322  Thickness_Main_Plate 

4 4                       0.0643  Weightage 

5 5                       0.0720  Welding_Length 

6 6                       0.1215  Width 

7 7                       0.0980  Length_New 

8 8                       0.0700  Elements_Longitudinal 

9 9                       0.0347  Complete_Weld_Butt 

10 10                       0.0905  Elements_Butt 

11 11                       0.0800  Weightage_kg 

12 12                       0.0700  Spacing_Frame 

13 13                       0.1082  Spacing_Stiffener 

14 14                       0.1033  Complete_Weld_Transversal 

15 15                       0.1094  SF_Width 

16 16                       0.1368  SF_Length 

17 17                       0.1278  Height 

18 18                       0.1264  Complete_Weld_Girder 

19 19                       0.1294  Complete_Weld_Longitudinal 

20 20                       0.1055  Spacing_Girder 

21 21                       0.1404  Elements_Transversal 

22 22                       0.1615  Volume 

23 23                       0.1483  Elements_Girder 

24 24                       0.1529  Length_AVG_SF 

25 25                       0.1366  Type 

26 26                       0.1538  Section 

27 27                       0.1703  Ship 

28 28                       0.1734  Length 

All 29                       0.3397   

 

 


