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ABSTRACT

When an oncoming boundary layer flow encounters an appendage fixed on the plate, the flow
separates in front of the body due to the blocking effect. The separated flow forms several vortices
around the body, which are called horseshoe vortices because their top view looks like a horseshoe.
The flow is completely 3D and becomes complicated as the horseshoe vortex interacts with the
boundary layer developed on the body surface. This convoluted three-dimensional flow has been
called a juncture flow. Juncture flow can affect the lift and stability/control characteristics of
appendages through the generation of horseshoe vortices from these appendages. In spite of its en-
gineering importance, there is no established method for estimating the appendage resistance or wake
characteristics since the detailed mechanism of the juncture flow is not fully understood. Although
some systematic experimental studies have been performed through conventional tests, the estimation
of the resistance is hampered by the uncertainty associated with the scale effect. The flow complexity
is due to the number of vortices originating upstream of the strut. These vortices result from the
separation of the boundary layer due to the adverse pressure gradient in front of the strut. Creation of
the vortex system in front of the circular cylinder is clearly seen in the famous photograph taken by
Sutton where an array of vortices is visualized with the injection of smoke. Sutton's photograph has
helped clarify the horseshoe vortex system. The number of vortices increases as the Reynolds number
is increased or the thickness of the oncoming boundary layer decreases. Although many experimental
studies have been conducted to understand the structure of the horseshoe vortex system, the precise
flow topology is still controversial due to the lack of resolution in experimental data. However, rapid
advances in computing technology have cleared the road to simulate the flow by solving the RANS
equations.

The master thesis focuses on the numerical simulation of 3D flow around junctures, in which the
unsteady nature of the flow represents the main point of interest. Various geometries of the juncture
are investigated to grasp a better understanding of the phenomena and develop proper modeling
techniques. Besides, the study also focuses on the free-surface influence on the overall hydrodynamic
field around the juncture.

In the first part of the thesis, the theoretical aspects of the numerical approach are briefly described.
The governing equations and the initial and boundary conditions are presented. In addition, some
quantities which are used to estimate and evaluate the solutions of the governing equations are also
mentioned. Emphasis is put on the turbulence treatment. A comparison between different turbulence
models is performed to motivate the choice for the Spalart-Allmaras model, which proved to be the
most suitable one for this work. The validation of the computed solution is achieved through
comparisons with the experimental data provided by the literature.

The second part of the work discusses the 3D flow around a circular cylinder mounted on a plate. The
characteristics of the flow around a circular cylinder such as Reynolds and Strouhal numbers, vortex
shedding, drag and lift coefficients are also pointed out specifically. In these cases, the free surface
effect is not taken into account. The shape of plate is changed ranging from the flat one to a concave
or a convex one. For each geometric configuration of the plate, the circular cylinder will be inclined
with various aspect angles (10°, 20° and 30°) longitudinally and laterally. All simulation cases are
done for two different Reynolds numbers of 3900, and 1 million, respectively.

In the third part, the unsteady simulation is performed at Reynolds number of 3,900. Only the circular
cylinder mounted on the convex plate and inclined laterally is studied and the numerical solution is
compared with the cases of the steady flow corresponding case. Besides, once again, these simulations
do not take into account the effect of free surface. The mechanism of vortex shedding will be unveiled
by the results of this simulation.

Finally, several conclusions outline the achievements and findings of the work, drawing out the

potential directions for further studies.
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1.  INTRODUCTION

Junction flow occurs when a boundary layer encounters an obstacle mounted on the same

surface. Practically, there are a lot of obstacle-surfaces where junction flow exists, such as

building-ground, pier-riverbed, wing-body of an aircraft and keel-hull of ship. Junction flow

is characterized by three dimensional boundary layer separation and vortices that wrap around

the obstacle. The origin of the boundary layer separation and the vortices formation is caused

by the adverse pressure gradient.

Junction flow determines two kinds of vortices: one is the so-called horseshoe vortex, which

is formed in front of the obstacle, and the other is the free vortex formed at the lee side of it.

The horseshoe vortex is caused by the rotation in the incoming flow: the boundary layer on

the plate, upstream of the strut, undergoes a three-dimensional separation under the influence

of the adverse pressure gradient produced by the strut, and the separated boundary layer rolls

up to form a swirling vortex around the strut, which then trails downstream. The lee-side

vortices, on the other hand, are caused by the rotation in the boundary layer over the surface

of the strut: the shear layers emanating from the side edges of the strut roll up to form these

vortices.

The presence of the horseshoe and the lee-side vortices has usually an unfavorable effect in

the practice of engineering. In civil engineering for instance, soil, sands and rocks in the

upstream vicinity of a pier foundation are scoured away by the horseshoe vortices, which

threaten the safety of the bridge, Ahmed F. et al. (1998). In naval architecture the significant

unsteadiness of the horseshoe vortex system in front of the keel-hull junction of the ship

engenders noise and vibration, which, from the naval viewpoint, should be restricted as much

as possible, Devenport W. J. et al. (1992). Because of such problems, the junction flow has

been investigated quite extensively.

The most studied blunt body is the circular cylinder, so one of the most reported juncture in

literature is the one between a cylinder and a plate. Not only the wide area of applications, but

also and the complex vortex dynamics have stimulated extensive studies on such junction

flow, as reviewed recently by Simpson (2001). Baker (1979) investigated systematically the

laminar junction flow around the cylinder-plate junction and gave the variation of the

horseshoe vortex number with the Reynolds number. Davenport and Simpson (1990) found

the bimodal structure of the turbulent junction flow. Wei et al. (2001) visualized the multiple-

frequency phenomena at Reynolds numbers in the range of 5,000-8,000, and pointed out that

the energy of the horseshoe vortices came mainly from the separated shear layer. Sumner et
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al. (2004) and Pattenden et al. (2005) proved that the wake structure and the power spectrum

of the low aspect-ratio junction flow were different from those of the large aspect-ratio one.

Martinuzzi and Tropea (1993) as well as Chou and Chao (2000) noticed the horseshoe vortex

breached if the aspect-ratio of the cylinder is small enough.

Regarding the lee-wake vortex flow, an extensive volume of knowledge has accumulated over

the past two decades on the two-dimensional vortex flow behind a free cylinder subject to an

oscillatory flow (see e.g. Sarpkaya & Isaacson (1981); Bearman et al. (1981); Williamson

(1985)) and the complex behavior of vortex motions in various regimes is well understood.

Although much effort has been put into the study of the classic juncture flows, it appears that

no consistent studies have been conducted to investigate the influence of the geometry, i.e. the

cylinder inclination or the plate curvature, on the overall pattern of the flow. However, rapid

advances in computing technology have cleared the road to simulate the flow by solving the

RANS equations.

The present study aims at providing a grasp of understanding of the flow structure around

such junctures. In the beginning several numerical simulations are carried out in which

various turbulence treatments are considered to find out the advantages and disadvantages of

each turbulence model, based on comparisons with experimental data. Several configurations

of the circular cylinder mounted straight or inclined at various angles on plane or curved

plates is then carried out to clarify the influence of the geometry on the flow structure.

1.1. Aim of work

The main aim of the work is to investigate numerically the viscous flow around 3D junctures

by using the commercial computer software FLUENT. Comparative analyses between the

numerical solutions and the experimental data are done to validate the accuracy of the

theoretic approach.

1.2. Objectives of work

To achieve the above aims, three principal objectives are targeted:

− Studies of the viscous flow around a 3D circular cylinder mounted on the flat plate. Two

different Reynolds numbers of 3,900 and 1,000,000 have been tested to check the

capability of different turbulent models. Qualitative assertions on the vortex shedding

phenomenon, drag calculation and pressure distribution on the solid boundaries will be

done. To validate the advanced modeling approaches as well as to find the most suitable

turbulent model used in the simulation, the results of research shall be compared with those

of experiment data.
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− Investigation of the viscous flow around a 3D inclined circular cylinder mounted on the

flat plate. The circular cylinder is inclined in the XZ and YZ planes with the different

angles of 10°, 20° and 30°, respectively. Various Reynolds numbers (3,900 and 1,000,000)

will be tested to find out the effect of cylinder inclination on the flat plate. The force

coefficient will be computed. Besides, the numerical results will be compared with

experimental measurements and other numerical results to validate the present work.

− Studies of the viscous flow around a 3D circular cylinder mounted on the curved plate with

the different curvatures, and, the circular cylinder inclined in XZ and YZ planes with the

different angles of 10°, 20° and 30°, respectively. The turbulence model chosen before will

be tested at two Reynolds numbers of 3,900, and 1,000,000 respectively.

1.3. Methodology of work

To reach the above-mentioned objectives, the work will be conducted in several successive

steps, all being based on using the FLUENT solver. Firstly, simulating the viscous flow

around a circular cylinder mounted on the flat plate at different Reynolds numbers will be

done. The behavior of viscous flow will be investigated by inclining and rotating the cylinder

in the different plane with various angles such 10°, 20° and 30°. To verify the modeling

approach, the results of these simulations will be compared with those of the experiment

which was carried out by Moin et al. (1995) and Zdravkovich (1997). This study is regarded

as an initial stage for the further application of CFD on the complex flow at the later stage.

The next stage is represented by the simulation of the steady and unsteady viscous flow

around the circular cylinder mounted on the curved plate, in an attempt to investigate the

vortex shedding mechanism. This stage focuses on the behavior of vortices of the junction

flow when the geometry of the computational domain is modified. An advanced CFD

technique of grid generation is applied to bend the plate. The change of geometry includes the

change of curvature of plate and the change of position of cylinder in the different plane. This

idea was derived from the structure in practice. Obviously, the results of the simulation are

compared with those of first stage and together.

1.4. Thesis structure

The content of the thesis is comprised of six chapters and a reference. The introductory

chapter will introduce to the reader the objectives and the methodology of the research work.

Chapter two discusses the principles of the computational fluid dynamics as well as the

numerical approach of the turbulent flow. The governing equations describing the fluid

motion are introduced. Several turbulent models that model the juncture flow are described.
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The capability and limitations of each model in the applications of flow around juncture will

be discussed. In last part of this chapter, some issues related to the consistency, stability and

convergence will be discussed.

Chapter three describes the principles of grid generation. The steps that govern the problem

are highlighted. Besides, the boundary conditions formulation is treated in there.

Chapter four contains the numerical investigation of the flow around a 3D circular cylinder

mounted on the flat and curved plate based on solving the Reynolds Averaged Navier Stokes

(RANS hereafter) at various Reynolds numbers. The drag and pressure distribution which are

predicted from RANS solution will be compared with the experimental results. Then, this

chapter focuses mainly on the influence of geometrical changes on the flow around a circular

cylinder. This change includes the inclination of cylinder with various angles as well as the

curvature of plate. The detailed comparisons of pressure and velocity profiles in the wake

region of each other and with experimental data are also brought into focus.

Chapter five discusses the unsteady simulation of the flow around the cylinder inclined

laterally and mounted on the convex plate. Throughout this simulation, the generated vortex

shedding will be revealed. The results of this simulations will be presented by plotting the

force coefficient, the contours of pressure distribution and velocity and they are compared

those of the steady simulation.

Finally, chapter six brings out the final conclusions on the work done on this master thesis. It

reiterates the main objectives of the work and the way they were attained. The second part of

this chapter points out some suggestions and recommendations for the further study of the

flow around junctures by using numerical methods.



VU Minh Tuan

Master Thesis developed at the University of Galati 5

2. MATHEMATICAL MODEL

In the followings the background theories of CFD as well as the techniques for solving the

fluid flow problems are presented. The chapter contains of two main parts. The first part

points out the governing equations describing fluid flow and the techniques used for solving

these equations. Additional, the turbulence models which can be used for the study of flow

around junctures will also introduced. The second part discusses how the governing equations

are solved by discretization.

2.1. Overview

Flow always exists in two major regimes. They are either laminar or turbulent, depending on

the Reynolds number. In practice as well as in engineering applications, most of the flows are

turbulent. The laminar flow develops in parallel layers, with no disruption between the layers.

There are no cross currents perpendicular to the direction of flow, nor eddies or swirls of

fluids. Flows in the laminar regime are completely described by the continuity and

momentum equations as it will be mentioned later in this chapter. In simple cases, they can be

solved analytically. More complex flows, however, may have to be tackled numerically by

making use of the CFD techniques. Inversely, turbulent flow is that flow regime which is

characterized by recirculation, chaotic and stochastic property changes. It includes rapid

variation of pressure and velocity in space and time.

Turbulence contains eddies with different dimensions which often rotate in motion. When

observing the turbulence flow, various eddies are found out from large, average and small or

tiny scales. The largest eddies, which are associated with the low frequency range of the

energy spectrum, always transfer momentum and heat in a flow. The largest eddies interact

with the mean flow, thus, they will extract kinetic energy from the mean flow and supply this

energy to the smallest eddies where energy is dissipated by viscosity.

2.2. Numerical approach

In the past, there have been two approaches to uncover the laws of nature: a practical one and

a theoretical one. The practical approach seeks to discover physical laws through observation

aided by experiments and various devices and measuring instruments. The theoretical

approach converts the laws of nature to relationships between mathematical quantities, most

often employing the language of differential and integral calculus to describe how certain

quantities change depending on others.

Both approaches, however, have their shortcomings. In certain areas, performing physical

experiments waste a long time and is very expensive. Furthermore, they can be affected by
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outside factors such as the weather, etc. On the other hand, mathematical equations that

describe the physical world with reasonable accuracy are usually so complex that analytical

solutions can no longer be obtained. Often an exact solution can be found only for

considerably simplified models, such as those resorting to special symmetries or ignoring

couplings between certain quantities.

To overcome these shortcomings of both the experimental and the theoretical approaches,

numerical simulation has established itself in recent years as a third approach connecting the

two traditional ones. Numerical simulation is characterized by the following procedure. From

observations of the real world, mathematical equations are derived to valid at all (infinitely

many) points in space and time. These equations are then discretized, i.e., considered at only a

finite number of selected points. At these points, the underlying continuous equations are

solved approximately.

2.2.1. Governing equations

The starting point of any numerical simulation method is the mathematical model, i.e. the set

of partial differential or integro-differential equations and boundary conditions. This set of

equations constitutes the so called governing equations. They contain the continuity, the

momentum and the energy equations, which represent the conservation laws of physics.

− The mass of a fluid is conserved.

− The rate of change of momentum equals the sum of the forces on a fluid particle (Newton’s

second law).

− The rate of change of energy is equal to the sum of the rate of heat addition to and the rate

of work done on a fluid particle (first law of thermodynamics).

Moreover, the equations of state are also included to solve the set of differential equations

completely and exactly.

2.2.1.1. The continuity equation

Equation based on the law of conservation of mass. Applying this concept to fluid flow, we

ensure that the change of mass in a control volume is equal to the mass that enters through its

faces minus the total mass leaving its faces.

Mass entering per unit

time

= Mass leaving per

unit time

+ Increase of mass in the control

volume per unit time

0=
∂
∂+

∂
∂+

∂
∂

z

w

y

v

x

u
Eq. 2.1
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2.2.1.2. The momentum equation

By applying Newton’s Second Law of Motion, the momentum equation is expressed in terms

of the pressure and viscous stresses acting on a particle in the fluid.  This ensures that the rate

of change of momentum of the fluid particles is equal to the total force due to surface stresses

and body forces acting in an aligned direction of a chosen coordinate axis.

uFpuu
t

u 21
).( ∇++∇−=∇+

∂
∂





Eq. 2.2

Where u is the fluid velocity vector, with components u, v, and w,

p is the pressure,

 is the fluid mass density,

F is the external force per unit mass.

2.2.1.3. The energy equation

Based on the First Law of Thermodynamics, the rate of change of energy of a fluid particle is

taken to be equal to the net rate of work done on that particle due to surface forces, heat and

body forces such as gravitational force. The energy equation describes the transport of heat

energy through a fluid and its effects.

0))(.( =+∇+
∂
∂

pEu
t

E
Eq. 2.3

Where ( )222

2
1

wvueE +++=  is the total energy per unit volume, with e being the internal

energy per unit mass for fluid.

2.2.1.4. Navier-Stokes equations

Combining these fundamental principles, the physics of fluid flow is expressed in terms of a

set of partial differential equations known as the Navier-Stokes equations. By solving these

equations, the pressure and velocity of the fluid can be predicted throughout the flow.

0=
∂
∂+

∂
∂+

∂
∂

z

w

y

v

x

u

uFpuu
t

u 21
).( ∇++∇−=∇+

∂
∂






0))(.( =+∇+
∂
∂

pEu
t

E

Eq. 2.4
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2.2.2. Turbulence models

As aforementioned, the remarkable feature of a turbulent flow is that the molecules move in a

chaotic fashion along complex irregular paths. The strong chaotic motion leads to the various

layers of the fluid to mix together intensely.

Figure 2.1. The classification of turbulence models [14]

LES: Large Eddy simulation

RST: Reynolds stress Transport models

ARS: Algebraic Reynolds-Stress models

Although the chaotic fluctuations of the flow variables are of deterministic nature, the

simulation of turbulent flows still continues to present as a significant problem. A direct

simulation of turbulence by the time-dependent Navier-Stokes equations, called Direct

Numerical Simulation (DNS) has been used to model and solve the turbulent problem.

However, it can only apply for rather simples flow cases at low Reynolds numbers because

some restrictions appear when the number of grid points is too many. This does not that DNS

is fully useless. DNS plays a vital role in the development and calibration of improved

turbulence models. To overcome the shortcomings of DNS, a large variety of turbulence

models was developed. Generally, the turbulence models can be classified as shown in Figure

2.1.
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2.2.2.1. Large Eddy Simulation (LES)

LES is founded on the observation that the small scales of turbulent motion are more

universal in character than the large eddies, which transport the turbulent energy. Therefore,

the idea is to directly compute only the large eddies accurately and approximate the effects of

the small scales, which are not resolved by the numerical scheme.

To classify between the large scales and small scales, LES used a filter function. This filter

function define which eddies are large by introducing a length scale, usually denoted as ∆ in

LES, the characteristic filter width of the simulation. All eddies larger than ∆ are resolved

directly, while those smaller than ∆ are approximated.

By imposing the filter function in the continuity and the Navier-Stokes equations, one obtains

the filtered equations governing the fluid flow in LES

0=
∂
∂

x

ui Eq. 2.5
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Eq. 2.6

where ρ, p and µ represent the air density, pressure and dynamic viscosity of the flow,

respectively.

The unknown stress term jiuu  needs to be approximated to solve the filtered Navier-Stokes

Equations.

( )( ) ''''''
jijijijiiijjji uuuuuuuuuuuuuu +++=++= Eq. 2.7

This above equation can be described as below,

'''' )()( jijijijijiij uuuuuuuuuu +++−= Eq. 2.8

The term τij is known as the subgrid scale (SGS) Reynolds Stress.

To approximate the SGS Reynolds stress τij, a SGS model can be employed. The most

commonly used SGS models in LES is the Smagorinsky model. This model assumed that the

SGS Reynolds stress τij is proportional to the modulus of the strain rate tensor of the resolve

eddies,

i

j

j

i
SGSijSGSkkij x

u

x

u
S

∂
∂

+
∂
∂

=−=− ..2
3

1  Eq. 2.9

Where SGS is the SGS eddy viscosity and S is the train rate tensor,
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[ ]2

1

.2 ijij SSS = Eq. 2.10

2.2.2.2. Reynolds Averaged Navier-Stokes (RANS)

The first approach for the approximate treatment of turbulent flows was presented by

Reynolds in 1895. The methodology is based on the decomposition of the flow variables into

a mean and a fluctuating part. The governing equations are then solved for the mean values,

which are the most interesting for engineering applications. Thus, considering first

incompressible flows, the velocity components in the governing equations are substituted by:

'uUU += Eq. 2.11

where the mean value is denoted by an overbar and the turbulent fluctuations by a prime. The

mean values are obtained by an averaging procedure. The time averaging velocity component

is defined as,

∫=
T

Udt
T

U
0

1
Eq. 2.12

where T is the interval time of the simulation, usually chosen to be large compared to the

typical timescale of turbulent fluctuations.

Figure 2.2. Time averaging of turbulence using RANS models [35]

We replace Eq. 2.11 into the Navier-Stokes equations for time averaging, the time averaged

Navier-Stokes equations will be obtained as,
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Eq. 2.13

where ρ, p and υ represent the density, pressure and kinetic viscosity of the flow respectively.

In the averaged Navier-Stokes equations, the unknown term jiuu , which are the correlation

to the fluctuating velocity components, is known as the Reynolds Stress term.  The existence

of the Reynolds stress means that there is no longer a closed set of equations, and turbulence

model assumptions needed to estimate the unknowns to solve this closure problem.
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RANS models have been developed based on the concept that a velocity scale and a length

scale is sufficient to describe the effect of turbulence in a flow. These models can be divided

into first and second order closures, respectively.

The most complex, but also the most flexible, are second order closure models. The Reynolds

stress transport model (RST) solves modeled transport equations for the Reynolds stress

tensor. The partial differential equations for the six stress components have to be closed by

one additional relation. Normally, an equation for the turbulent dissipation rate is employed.

RSM gives more accurate solutions since it simulates the anisotropic nature of turbulence

more realistically. However, this model is computationally more demanding among the

RANS models.

Closely related to the RST are the ARS models. The ARS models employ only two transport

equations, mostly for the turbulent kinetic energy and the dissipation rate. The components of

the Reynolds stress tensor are related to the transport quantities by non-linear algebraic

equations. The ARS is capable of predicting rotational turbulent flows with accuracy similar

to RST models.

The first order closures can be classified into zero, one and two equation models,

corresponding to the number of transport equations they utilize. Within the zero equation, the

turbulent eddy viscosity is calculated from empirical relations. It limits the prediction of

separated flows. To overcome the shortcomings of the zero equation models, the one equation

models the convection and the diffusion of turbulence by transport equations. The most

widely used one equation turbulence model is S-A model, which is based on an eddy-

viscosity like variable. The model is numerically very stable and easy to implement on

structured as well as unstructured grids.

On the other hand, the two equation models, which require less computer power compared to

RST and ARS, are most often used in engineering applications. These models relate to the

effect of the transport of turbulence quantities by considering the energy transfer in the flow.

Apart from the transport of energy, the calculation of an empirical length scale from a second

transport equation is also involved. Thus, they offer a reasonable compromise between

computational effort and accuracy. In two equation models, the k-ε and k-ω models are the

two most widely used models in CFD.

a. Mixing length models

Mixing length models attempt to describe the stresses by means of simple algebraic formulae

for the turbulent viscosity t as a function of position. To do that, we assume the kinetic
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turbulent viscosity t , which has dimensions m2/s, can be expressed as a product of a turbulent

velocity scale  (m/s) and a turbulent length scale  (m). If one velocity scale and one length

scale suffice to describe the effects of turbulence, dimensional analysis yields,

 Ct = Eq. 2.14

where C is a dimensionless constant of proportionality

Of course the dynamic turbulent viscosity is given by:

 Ct = Eq. 2.15

We can attempt to link the characteristic velocity scale of eddies with the mean flow

properties. This has been found to work well in simple two-dimensional turbulent flows where

the only significant Reynolds stress is τxy = τyx = −ρ ''vu and the only significant mean velocity

gradient is ∂U/∂y. For such flows it is at least dimensionally correct to state that, if the eddy

length scale is  ,

y

U
c

∂
∂=  Eq. 2.16

where c is a dimensionless constant. The absolute value is taken to ensure that the velocity

scale is always a positive quantity irrespective of the sign of the velocity gradient.

Combining (Eq. 2.14) and (Eq. 2.16) and absorbing the two constants C and c into a new

length scale m  we obtain

y

U
mt ∂

∂= 2 Eq. 2.17

With ∂U/∂y is the only significant mean velocity gradient, the turbulent Reynolds stress is

described by:

y

U

y

U
vu myxxy ∂

∂
∂
∂=−== 2''  Eq. 2.18

The mixing length has been found to be very useful in simple two-dimensional flows with

slow changes in the flow direction. In these cases the production of turbulence is in balance

with its dissipation throughout the flow, and turbulence properties develop in proportion with

a mean flow length scale L. This means that in such flows the mixing length m is

proportional to L and can be described as a function of position by means of a simple

algebraic formula.

The most advantage of these models is easy to implement and cheap in terms of computing

resources. Besides, they can predict well for thin shear layers: jets, mixing layers, wakes and
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boundary layers. However, there are some difficulties if we use is that they are completely

incapable of describing flows with separation and recirculation and only calculates mean flow

properties as well as turbulent shear stress.

b. The Spalart-Allmaras one-equation model

These models represent the easiest way to approximate the Reynolds stresses in the Reynolds

averaged Navier-Stokes equations. They employ transport equation for an eddy-viscosity

variable
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In which, eddy-viscosity is obtained from:

1.. vt fv = with
3
1

3

3
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v
Cvv

vv
f

+
≡ Eq. 2.20

It was calibrated using results for 2-D mixing layers, wakes and flat-plate boundary layers.

The Spalart-Allmaras (S-A hereafter) model also allows for reasonably accurate predictions of

turbulent flows with adverse pressure gradients. Furthermore, it is capable of smooth

transition from laminar to turbulent flow at user specified locations. The S-A model has

several favorable numerical features.  It is “local” which means that the  equation  at  one

point  does  not  depend  on  the  solution  at  other  points. Therefore, it can be readily

implemented on structured multi-block or on unstructured grids.  It is also robust, converges

fast to steady-state and requires only moderate grid resolution in the near-wall region.

c. The k-  models

The k-  turbulence models are the most widely employed two-equation eddy-viscosity

model. It is based on the solution of equations for the turbulent kinetic energy k and the

turbulent dissipation rate . The turbulent dissipation rate  is written as,

L

k 2/3

= Eq. 2.21

where k is the kinetic energy of the flow and L is the length scale involved. This is then

related to the turbulent viscosity µ t based on the Prandtl mixing length model,


 

2

.
k

Ct = Eq. 2.22

Where Cµ is an empirical constant and ρ is the density of the flow. Substituting Eq 2.22 into

the equations governing fluid flow, the k equation of the k-ε model is written as,
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and the ε equation,
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Where 3.10.1;44.1;44.1;09.0 21 =====   andCCC k based on extensive examination

of a wide range of turbulent flows.

The rate of change of kinetic energy is involved to the convection and diffusion of the mean

motion of the flow. The production term, which is responsible for the transfer of energy from

the mean flow to the turbulence, is counterbalanced by the interaction of the Reynolds stresses

and mean velocity gradient. The destruction term deals with the dissipation of energy into

heat due to viscous nature of the flow.

These are some following advantages which the k-ε models become the most popular method

among RANS models:

− Simplest turbulence model for which only initial and boundary conditions need to be

supplied.

− excellent performance for many industrially relevant flows,

− Well established, the most widely validated turbulence model,

− Lower computational overhead,

− Robust formulation

Nevertheless, the models also have some restrictions:

− Over prediction of turbulence near stagnation point

− Length scale is too large in adverse pressure gradient flow

− Fails to resolve flows with large strains such as swirling flows and curved boundary layers

flow.

− more expensive to implement than the mixing length model

d. The k-  models

The basic idea of the k-model was originated by Kolmogorov (1942) and was developed by

Wilcox (1988) as an alternative to cope with the deficiencies of the k-  model at the walls.

The k-model is very similar in structure to the k- model but the variable   is replaced by
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the dissipation rate per unit kinetic energy,  . The transport equations for k and  [Wilcox,

1988] may be written as below:
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Where the turbulence k is associated with vorticity, being proportional to k2/  ,



2

.
k

c= Eq. 2.27

where c is a constant. Thus, the eddy viscosity may be written as:

 /kt = Eq. 2.28

The replacement with the variable ω allows solving the flow near wall. Near to the wall, the

boundary layer is affected by viscous nature of the flow. Thus, a very refined mesh is

necessary to appropriately resolve the flow. The k-ε model avoids using fine mesh near wall

by employing empirical formula to predict the flow in order to save computational power.

Despite the k-ε model saves a vast amount of computer power for near wall treatment, it is not

sufficient to represent complex flow accurately. The flow near wall is resolved directly

through the integration of the ω equation in the k- ω formulation. The most advantage of the

k-ω model is that the ω equation is more robust and easier to integrate compared to the ε

equation without the need of additional damping functions.

e. Reynolds stress equation models

The k-e turbulence model is based on the isotropic eddy-viscosity concept for closure of the

Reynolds stresses. In some flow situations, such as when body forces or complex strain fields

are present, this assumption is too simple. To overcome this restriction, RST models allow not

only for both the transport and different development of the individual Reynolds stresses, but

also have the advantage that terms accounting for anisotropic effects are introduced

automatically into the stress transport equations. These non-isotropic characteristics of the

turbulence play a very important role in flows with significant buoyancy, streamline

curvature, swirl or strong recirculation.

Models employing transport equations for the turbulent stresses and fluxes are often called

second-moment closures, and several research groups, most notably by Launder and his

associates, have proposed such models (see for example Launder et al (1975)). The most

complex models in common use today are Reynolds stress models which based on dynamic
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equations for the Reynolds stress tensor ''
jiij uu = itself. These equations can be derived

from the Navier-Stokes equations.

A full RST model closure consists, in general, of 6 transport equations for the Reynolds

stresses, 3 transport equations for the turbulent fluxes of each scalar property (for example

energy) and one transport equation for the dissipation rate of turbulence energy. The solution

of all these complex equations together with those of the mean flow is not a trivial task, and it

is also computation- ally expensive.

In addition there is a considerable numerical disadvantage arising from the use of a RST

model in that the stabilizing effects of an eddy- viscosity field are absent in the mean-flow

equations. Thus, although RST models can provide a more realistic and rigorous approach for

complex engineering flows, they may be too expensive in terms of storage and execution time

for three-dimensional flows.

f. Algebraic stress equation models

The purpose of algebraic Reynolds stress models is to avoid the solution of differential

equations, and to obtain the Reynolds stress components directly from algebraic relationships.

If mean strain rates are ignored in the Reynolds stress transport equations, it follows from the

strain-dependent generalization of nonlinear constitutive relation that the turbulent stress

tensor may be written as Rodi (1976); Gatski and Speziale (1992).
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 Eq. 2.29

With

ijij

ijijij

B

k
k

cD





3

2

3

2*
1

−=






 +=

Eq. 2.30

Thus, if the mean strain rate vanishes, we have,

ijij k
3

2* −= Eq. 2.31

This suggests that the algebraic stress model is confined to isotropic turbulence. Thus, this

model fails to properly account for sudden changes in the mean strain rate. However, it also

have some advantages as below:

− cheap method to account for Reynolds stress anisotropy

− potentially combines the generality of approach of the RSM (good modeling of buoyancy

and rotation effects possible) with the economy of the k- model
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− successfully applied to isothermal and buoyant thin shear layers

− if convection and diffusion terms are negligible the ASM performs as well as the RSM

The restrictions of this model reduce its application.

− only slightly more expensive than the k- model (two PDEs and a system of algebraic

equations)

− not as widely validated as the mixing length and k- models

− same disadvantages as RSM apply

− Model is severely restricted in flows where the transport assumptions for convective and

diffusive effects do not apply - validation is necessary to define the performance limits.

2.2.3. Initial and boundary conditions

Regardless of the numerical methodology chosen to solve the governing equations (2.4), one

has to specify suitable initial and boundary conditions. The boundary conditions may describe

conditions along the boundary dealing with motion, external stresses, rate of mass, and

momentum flux, boundary values of field variables, as well as relations among them. When

the solution involves the time evolution of flow fields, in addition to boundary conditions,

initial conditions are also required.

2.2.3.1. Free and no slip

a. No-slip condition: No fluid penetrates the boundary and the fluid is at rest there; i.e.,

,0),( =yxn 0),( =yxt Eq. 2.32

b. Free-slip condition: No fluid penetrates the boundary. Contrary to the no-slip condition,

however, there are no frictional losses at the boundary; i.e.,

,0),( =yxn 0/),( =∂∂ nyxt Eq. 2.33

The free-slip condition is often imposed along a line or plane of symmetry in the problem,

thereby reducing the size of the domain where the flow needs to be computed by a half.

2.2.3.2. Neumann and Dirichlet conditions

a. Dirichlet boundary condition: the value of a dependent variable, u, is imposed along rs

u(rs,t)= f(rs,t) Eq. 2.34

where f is a known function. Typical Dirichlet boundary conditions are the no-slip boundary

condition for the velocity (i.e., us=0) and the specification of inlet and/or outlet values for the

velocity.

b. Neumann boundary condition: the normal derivative of the dependent variable is specified.

),( trG
n

u
s=

∂
∂

Eq. 2.35
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where G is a known function. Examples of Neumann boundary conditions are symmetry

conditions and free-surface as well as interface stress conditions.

c. Robin boundary condition: it is a combination of the Dirichlet and the Neumann types. The

dependent variable and its normal derivative are related by the general expression

c
n

u
bau =

∂
∂+ . Eq. 2.36

where a, b, c are known functions. The slip boundary condition, the free-surface and interface

stress conditions are typical Robin conditions.

2.3. Discretization

After selecting the mathematical model, one has to choose a suitable discretization method,

e.g. a method of approximating the differential equations by a system of algebraic equations

for the variables at some set of discrete locations in space and time. The main purpose of

discretization is to simplify the fluid flow problems into discrete numerical data. Thus, they

can be solved completely by the computer. Generally, there are two major discretizations in

solving fluid flow:

− Spatial discretization

− Temporal discretization

2.3.1. Spatial discretization

As mentioned in 2.1.1, the mathematical model consists of partial differential equations.

Solving the set of partial differential equation is usually very difficult and time-consuming.

Thus, equation discretization is employed to translate the governing equations into a system

of algebraic equations that can be solved by computer. There are many approaches of

equation discretization, but the most important of which are the finite difference method

(FDM), the finite element method (FEM) or the finite volume method (FVM). Other methods,

like spectral schemes, boundary element methods are used in CFD but their use is limited to

special classes of problems. All of FEM, FVM, and FDM rely on some kind of grid in order

to discretize the governing equations. There exist three main types of grids commonly used in

computational modeling are:

− Structured grid;

− Unstructured grid;

− Hybrid grid.
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a. Structured mesh

The distinguishing feature of structured grids is that the grid points in the physical space are

mapped in a unique way onto a continuous set of three integers i, j, k (one for each coordinate

direction). Neighboring grid points can be connected to form cubes in the computational and

hexahedra (quadrilaterals in 2D) in the physical space. Structured grid generation systems

discretize the boundary surfaces of the flow domain using quadrilaterals -termed the surface

grid - and fill the interior with hexahedra in figure 2.3.

Figure 2.3: An example of structured mesh Figure 2.4: An example of unstructured mesh

Although the element topology is fixed, the grid can be shaped to be body fitted through

stretching and twisting of the block. However, a structured grid performs badly when the

geometry of problem domain is complex, which is quite common in engineering applications.

In this case, the unstructured grid will be employed.

b. Unstructured mesh

In an unstructured mesh, the nodes can be placed accordingly within the computational

domain depending on the shape of the body, such that different kinds of complex

computational boundaries and geometries can be simulated.  Since the arrangement of nodes

has no particular order, neighboring points cannot be directly identified. A numerical

approach has to be imposed to describe how each node is connected to the control volumes.

An unstructured mesh works well around complex geometries but this requires more elements

for refinement compared to a structured mesh on the same geometry, leading to higher

computing cost.

In the case of unstructured grids, nodes and grid cells are quasi randomly ordered, i.e.,

neighboring cells or grid points can not be directly identified by their indices. Unstructured

grids are typically composed of triangles in 2D and of tetrahedral in 3D shown in Figure 2.4.

This results in tremendous geometric flexibility of unstructured grids, since the grid does not

need to conform to any predetermined topology. Furthermore, adaptation of the grid to the

physical solution - grid refinement or coarsening - is much easier to accomplish on

unstructured than on structured grids.
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An unstructured mesh works well around complex geometries but this requires more elements

for refinement compared to a structured mesh on the same geometry, leading to higher

computing cost. Another drawback of this grid is the lack of user control when laying out the

mesh. To compensate between computing cost and flexibility, the hybrid mesh is introduced.

c. Hybrid mesh

Hybrid mesh is designed to take advantage of the positive aspects of the both structured and

unstructured grid. The ability to control the shape and distribution of the grid locally is a

powerful tool which can yield excellent meshes. Hybrid grids utilize some form of structured

grid in local regions while using unstructured grid in the bulk of the domain. This mesh

usually uses the most appropriate cell type in any combination, i.e. triangles and quadrilaterals

in 2D, tetrahedral, prisms and pyramids in 3D (see in Figure 2.5). It can also be non-

conformal. This meant that grids lines don’t need to match at block boundaries.

Figure 2.5: An example of hybrid mesh

The disadvantage of hybrid methods is that they can be difficult to use and require user

expertise in laying out the various structured grid locations and properties to get the best

results. Hybrid methods are typically less robust than unstructured grid. Furthermore, the time

required for grid generation is usually measured in hours or days.

2.3.1.1. Finite difference method

One of the methods used to discretize the equations of flow for computational solution is the

finite difference method. It was first used by Euler, probably in 1768, which obtained

solutions to differential equations by hand calculation. At  each  nodal  point  of the  grid used

to  describe  the  fluid-flow  domain, the Taylor series expansions are used  to generate finite-

difference approximations to the partial derivatives of the governing  equations. These

derivatives, replaced by finite-difference approximations, yield an algebraic equation for the

flow solution at each grid point.

The finite difference methodology is popular and famous because of its simplicity. Another

advantage is the possibility to easily obtain high-order approximations, and hence to achieve
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high-order accuracy of the spatial discretization. On the other hand, because the method

requires a structured grid, the range of application is clearly restricted. Furthermore, the finite

difference method cannot be directly applied in body-fitted (curvilinear) coordinates, but the

governing equations have to be first transformed into a Cartesian coordinate system.

2.3.1.2. Finite element method

The finite element method was originally employed for structural analysis only. It was first

introduced by Turner et al. (1956). Unlike FDM, FEM used unstructured mesh. The domain is

broken into a set of discrete volumes or finite elements that are generally unstructured; in 2D,

they are usually triangles or quadrilaterals, while in 3D tetrahedral or hexahedra are most

often used. Within each element, a certain number of nodes are defined where numerical

values of the unknowns will be computed. The distinguishing feature of FE methods is that

the equations are multiplied by a weight function before they are integrated over the entire

domain.

The most important advantage of finite element methods is its integral formulation and the

use of unstructured grids, which are both preferable for flows in or around complex

geometries. The method is also particularly suitable for the treatment of non-Newtonian

fluids.

In addition the advantage, it also exist the drawbacks. The principal drawback is that the

matrices of the linearized equations are not as well structured as those for regular grids

making it more difficult to find efficient solution methods.

2.3.1.3. Finite volume method

The finite-volume method discretizes the integral form of the conservation equations directly

in the physical space. It was initially introduced  by  researchers such  as McDonald  (1971)

and  MacCormack  and  Paullay  (1972)  for  the  solution  of  two-dimensional  time-

dependent  Euler  equations,  and  was  later  extended  to  three-dimensional flows by Rizzi

and Inouye (1973). The computational domain is subdivided into a finite number of control

volumes. The governing equations of fluid flow problem are integrated and solved iteratively

based on the conservation laws on each control volume. The discretization process leads to a

set of algebraic equations that resolve the variables at a specified finite number of points

within the control volumes, usually the centroid of each of the control volumes. By using an

integration method, the flow around the domain can be completely modeled and computed.
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The main advantage of the finite volume method is that the spatial discretization is carried out

directly in the physical space. Thus, there are no problems with any transformation between

coordinate systems, like in the case of FDM. Compared to the finite differences, one further

advantage of  the finite volume method  is  that  it  is very flexible -  it can be rather easily

implemented on  structured as well  as on unstructured grids. Therefore, FVM is the most

popular and common in recent CFD applications.

2.3.2. Temporal discretization

The last discretization is the temporal discretization. The main idea is that it will divide the

time in the continuous flow into discrete time steps. Hence, we add an additional time variable

t in the governing equations to compare to the steady state analysis. This results in a system of

partial differential equations in time that consists of unknowns at a given time as a function of

the variables of the previous time step. Therefore, unsteady simulation often requires longer

computational time than a steady case. There are two types of temporal discretization. That is

explicit and implicit method. Both explicit and implicit method can be used for unsteady

time-dependent calculation.

2.3.2.1. Explicit method

In an explicit method, each difference equation contains only one unknown and thus can be

solved explicitly for this unknown in a straight forward. That means that a forward difference

in time is taken when calculating the time tn+1 by using the previous time step value (Figure

2.6) where n dedicates state at time t and n + 1 at time t + ∆ t.

Figure 2.6. An explicit finite difference module [6] Figure 2.7. An implicit finite difference module [6]

The main advantage of explicit method is relatively simple to set up and program. However, it

requires a smaller time step ∆ t and a smaller grid step ∆ x to maintain stability. This can leads

to long computer running times to make calculations over a given interval of t.
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2.3.2.2. Implicit method

An implicit method is one where the unknowns must be obtained by means of a simultaneous

solution of the difference equations applied at all the grid points arranged at a given time

level. That means this method calculates values of time step tn+1 at the same time level in a

simulation at different grid points based on a backward difference (figure 2.7). This leads to a

larger system of linear equations in which unknowns at time step tn+1 must be solved

simultaneously.

The main advantage of implicit scheme compared to explicit one is that much larger values of

∆ t can be used, while maintaining the stability of the time integration process. Hence, the

computation uses considerable fewer time steps to make calculations over a given interval of

t. This results in less computer time. Nevertheless, this can results in the large truncation error

and may not be as accurate as an explicit approach. Another drawback is more complicated to

set up and program.

2.3.3. Quality of discretization

There is a certain spatial discretization error because of the approximation of the fluxes across

the boundaries of the control volume. This means that the discretized equations differ from

the exact equations by the discretization error, which results from the numerical scheme

applied. Therefore, some following properties need to estimate how fast the solution of the

discretized equations converges to the exact solution of the governing equations with

increasingly finer grid. These properties interact as in fugure 2.8.

Governing partial
differential

Equation (L(T))

System of
algebraic
Equations

Exact solution

T

Approximate
solution

T

Discretization

Consistency

Convergence

St
ab

ilit
y

Figure 2.8. Relationship between qualities of discretization
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2.3.3.1. Consistency

A discretization scheme is called consistent, if the discretized equations converge to the given

differential equations for both the time step and grid size tending to zero. A consistent scheme

gives us the security that we really solve the governing equations and nothing else.

The consistency of a numerical scheme can be checked by expanding the function values into

Taylor series. The developments are then inserted back into the discretized equations. If we

subtract the differential equations, we obtain terms which represent the numerical error - the

so-called truncation error. For a consistent scheme, the truncation error should go to zero with

decreasing time step and grid size.

2.3.3.2. Stability

A numerical solution method is said to be stable if it does not magnify the errors that appear

in the course of numerical solution process. For temporal problems, stability guarantees that

the method produces a bounded solution whenever the solution of the exact equation is

bounded. Stability can be difficult to investigate, especially when boundary conditions and

non-linearities are present.

2.3.3.3. Convergence

A numerical method is said to be convergent if the solution of the discretized equations tends

to the exact solution of the differential equation as the grid spacing tends to zero. Besides, if

the method is stable and if all approximations used in the discretization process are consistent,

the solution also converges to a grid-independent solution.

2.3.3.4. Accuracy

The accuracy of a discretization scheme is connected to its truncation error. If, for instance,

the leading term of the truncation error is proportional to ∆ x, we speak of first-order accurate

spatial scheme. If the leading term behaves like ( ∆ x), the scheme is second-order accurate,

and so on.  This leads to the condition that the numerical scheme must be at least 1st-order

accurate in order to be consistent. Otherwise, the truncation error cannot be reduced by

decreasing the values of ∆ t and ∆ x.

Besides, the estimation of the truncation error, varying the grid resolution is also used to

obtain what is called grid converged solution. This is achieved if the solution does not change

with further grid refinement. Although the grid convergence studies can be very time

consuming, thus, it is always checked if the solution is grid converged.



VU Minh Tuan

Master Thesis developed at the University of Galati 25

2.4. Summary

This chapter discussed the background of CFD and the mathematical characteristics of

numerical simulation which will be the basic knowledge for studying and understanding the

results of simulation in the next chapters. Besides, a series of turbulence models also

described with the advantages and shortcomings. However, choosing the appropriate

turbulence model will be very difficult and hesitant if we only based on the theoretical

comments, because it depends on the specific problem as well as other boundary conditions.

The most suitable turbulence model will be selected in next chapter.
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3. GRID GENERATION

Grid generation is often considered as the most important and most time-consuming part of

CFD simulation. The quality of the grid plays a key role on the quality of the analysis, even

the flow solved used. In addition, the solver will be more efficient and robust when using a

well constructed mesh.

This chapter will described how the mesh was generated and how to impose the boundary

conditions on the mesh domain by using some specialist tools. At present, there are many

tools, which can be used such as GAMBIT, TGRID, GRIDGEN, etc. However, in this master

thesis, GAMBIT is employed to do that because of its remarkable advantages such as: user-

friendly, easy to implement and popularity.

3.1. Overview of grid

As aforementioned in Section 2.2.1.3, there are three fundamental classes of grid popular in

the numerical solution of boundary value problems in multidimensional regions: structured,

unstructured and hybrid. Each type of mesh has both advantages and disadvantages. The

application of these types depends on the specific problem as well as computational

requirements. In this project, the geometry is not complex, thus, the structured grid is applied

to dicretize the computational domain because it can easily allow for controlling and

improving the grid quality. Moreover, it will help to easily control when laying out the mesh,

especially, useful for the computation of turbulence model.

3.1.1. Grid topology

Before we start to generate any grid, its topology must be considered. This means how many

grid blocks are necessary and how the blocks should be ordered with respect to each other

must be decided. For each grid block, the boundaries in the computational domain will be

assigned to particular boundaries in the physical space. The appearance of the grid in the

physical space will depend strongly on this assignment. In practice, three standard single

block grid topologies are established. These are the C-, H-, and O-grid topology because in a

plane view the grid lines resemble the corresponding capital letter. In the case of the C-

topology the hydrodynamic body is enclosed by one family of grid lines (=const.), which

also form the wake region. The other family of grid lines (=const.) emanates in normal

direction from the body and the wake. The H-topology is quite often employed in turbo-

machinery for grid generation in the bladed flow-path. On contrary to the C-grid, one family

of grid lines (η=const.) closely follows the streamlines. Related to O-topology, one family of

grid lines (η=const.) forms closed curves around the hydrodynamic body. The second family
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of grid lines (ξ=const.) is spanned in radial direction between the body and the outer

boundary.

To be suitable for the computational domain of this project, the combination of two H- and O-

grid topologies is employed The O-grid topology is used inside the inner circle around the

cylinder. A remarkable advantage of the O-topology is the good grid quality around the

circular body. The main purpose is to be fit with the change of the shape of cylinder and

remove the highly skewed cells for the circular cylinder. Then, the H-grid topology can be

applied for surrounding domain. The grid topology of the computational domain is described

in Figure 3.1.

Figure 3.1. Grid topology around the cylinder

3.1.2. Input parameter of grid generation

Successful computations of turbulent flows require some consideration during the mesh

generation. Since turbulence plays a dominant role in the transport of mean momentum and

other parameters, It needs to determine that turbulence quantities in complex turbulent flows

are properly resolved if high accuracy is required. Due to the strong interaction of the mean

flow and turbulence, the numerical results for turbulent flows tend to be more susceptible to

grid dependency than those for laminar flows. Moreover, before generating the mesh, a

problem that must be considered it that how walls affect a turbulent flow. In this case, the wall

is the cylinder.

Experiments and mathematical analysis have shown that the near-wall region can be

subdivided into three layers. In the innermost layer, the so-called “viscous sub-layer”, the

flow is almost laminar-like, and the viscosity plays a dominant role in momentum and heat

transfer. Further away from the wall, in the “logarithmic layer”, turbulence dominates the

mixing process. Finally, there is a region between the viscous sub-layer and the logarithmic

layer called the “buffer layer”, where the effects of molecular viscosity and turbulence are of

equal importance. The Figure 3.2 illustrates these subdivisions of the near-wall region.
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Figure 3.2. Structure of near-wall layers

There are two approaches to the near-the-wall problem. Firstly, wall function approach, where

the flow near the wall is not solved, but given by a semi-empirical function called “wall

function”. Secondly, near-wall model approach, where the mesh is very fine close to the wall,

and the conditions are solved all the way to the wall. To solve the turbulence problem in this

project, the S-A model is employed (why this model is employed will be described in next

part). This model in its complete implementation is near-wall model. This means that it is

designed to be used with meshes that properly resolve the viscous-affected region. Therefore,

to obtain the full benefit of the S-A model, the size of wall-adjacent cells y1 should be defined.

In order to find y1, a dimensionless parameter y+ which is the wall distance is used. Thus,




u
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y

.
1

+

=  with
2

fC
uu ∞= Eq. 3.1

 Where

y+ is the wall coordinate: the distance y to the wall, made dimensionless with the

friction velocity u and kinematic viscosity  ,

∞u is the velocity of free stream flow,

Cf is skin friction coefficient

With plate: 2.0Re.058.0 −= lfC

With duct: 25.0Re.079.0 −= dfC

According to numerical experiments, when S-A model is employed with the intention of

resolving the laminar sub-layer, y+ is well inside the viscous sub-layer (y+ ≤5). In this thesis,

we choose y+ = 4.

After computing y1, the number of interval count of an edge can be determined by using the

regression analysis as follow:
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Where

S is the length of the edge,

n is the number of interval count,

r is the growth ratio,
x

y
r

∆
∆= .

xy ∆∆ , are the grid spacing in y and x axis, respectively.

To ensure the quality of mesh, the growth ratio should be less than 1.2.

3.1.3. The process of grid generation

3.1.3.1. Definition of geometry-Step 1

The first step in any CFD analyses is the definition and creation of geometry of the

computational domain for the CFD calculations. With regard to the flow around a circular

cylinder, there are maybe two flow cases: a fluid flow past a cylinder between two stationary

parallel plates and a fluid flow past a cylinder in a open surrounding. In this work, the second

case is chosen to ensure that the calculation domain is similar to the practice.

One important aspect that should be considered in the creation of the geometry for CFD

calculations is to allow the flow dynamics to be sufficiently developed across the length L of

these computational domains. It meant that we require contain the occurrence of complex

wake-making development that exists behind the cylinder because the flow passes over this

cylinder. The cylinder is simulated with a radius (R) of 0.1m. The distances of 25R and 35R

to the side boundaries and to the downstream boundaries are allowed respectively to prevent

blockage ratio and free end effects on the flow.

Moreover, we should also focus on the area in which the vortex shedding appears, develop

and decay. This area plays an important role on simulation as well as affects the solution of

turbulent problem very much. As usual, the vortices are created in a domain around the

cylinder which the perimeter is approximately five times of cylinder diameter or larger than.

They will grow and decay behind this domain. Therefore, we have the geometry of

calculation domain as Fig. 3.3.
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Figure 3.3. The computational domain

3.1.3.2. Mesh generation-step 2

The second step-mesh generation constitutes one of the most important steps during the pre-

process stage after the domain geometry is created. CFD computation requires the subdivision

of the domain into a number of smaller and non-overlapping sub-domains in order to solve

the flow physics within this domain geometry; this leads to the generation of a mesh of cells

(elements or control volumes) overlaying the whole domain geometry. The necessary fluid

flows that are described in each of these cells are normally solved numerically so that the

discrete values of the flow properties such as velocity, pressure, temperature, and the other

transport parameters are also determined. The accuracy of a CFD solution depends on the

number of cells. This means that the provision of a large number of cells results in the

attainment of an accurate solution. However, it also requires the higher capability of

computers. Herein, we must choose a number of cells based on the computer capacity and the

accuracy can be accepted. Current simulation using the RANS models is based on a single

Pentium Dual Core inside (1.8GHz processor) desktop PC with 1.96 GB of physical RAM.

To be suitable for this computer, the number of cells that is generated is 1.52676 million

elements as illustrated in Fig 3.4. Furthermore, the type of mesh or grid such as hybrid,

structured or unstructured grids also affect the computational time and the precision so much.

With the purpose of computing the turbulence in the boundary layer around cylinder as well

as the simple shape of domain, we select the structured mesh for the domain geometry.



VU Minh Tuan

Master Thesis developed at the University of Galati 31

Figure 3.4. One kind of the meshes of computational domain

3.1.3.3. Imposition of boundary conditions on the computational domain-step 3

Final step of grid generation is to define appropriate conditions that model the real physical

representation of the fluid flow into a solvable CFD problem. Obviously, where there exist

inflow and outflow boundaries within the flow domain, suitable fluid flow boundary

conditions are required to accommodate the fluid behavior entering and leaving the flow

domain. In addition, appropriate boundary conditions are also required to be assigned for

external stationary solid wall boundaries that bound the flow geometry and the surrounding

walls of possible internal obstacles within the flow domain.

For the inflow boundary conditions, the inlet fluid velocity is required to set the fluid entering

into both of these flow domains. Longitudinal uniform velocities of 0.0196m/s and 5.019m/s

are introduced at the inlet correspond to the sub-critical Reynolds number of 3,900 and the

supper-critical Reynolds number of 1,000,000 respectively. In addition to the values of

velocity, turbulence parameters are also required. These parameters will clearly be described

in next section. At the outflow boundaries showing the fluid leave, only one outlet condition,

typically a specified relative pressure is assigned. The use of a pressure outlet boundary

condition instead of an outflow condition often results in a better rate of convergence when

backflow occurs during iteration.

For the side and top boundaries are symmetry conditions. Symmetry boundaries are used to

reduce the extended of computational model to a symmetric subsection of the overall physical
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system. Moreover, they can be used to model zero-shear slip walls in viscous flows. The

cylinder wall and the bottom wall are imposed a normal no slip boundary condition with a

Neumann pressure extrapolation where velocity increases from zero at the wall surface to the

free stream velocity away from the surface.

The applications of boundary conditions are illustrated in Fig.3.5.

3.2. Models of the problem

Based on the aforementioned basic steps, we perform modeling the computational domain.

There are some models which can be used to simulate the problem. However, we can not be

sure that which the model is the best. In order to find the best model, the computation of each

model and comparison with the experimental data are very necessary and believable.

3.2.1. Turbulence parameters of simulation

With regard to the computation of each model, turbulence parameters are used to model as

well as simulate the flow around a circular cylinder. Determining these initial parameters will

help us save the computational time and easily approach the reasonable results of the problem.

In some situations, it is appropriate to specify a uniform value of the turbulence quantity at the

boundary where inflow occurs. The turbulence quantities in terms of more convenient

quantities such as turbulence intensity, hydraulic diameter and turbulence length scale are

specified as the following sections.

3.2.1.1. Turbulence intensity

The turbulence intensity, I, is defined as the ratio of the root-mean-square of the velocity

fluctuations, u’, to the mean flow velocity, uavg. For internal flows, the turbulence intensity at

the inlets is totally dependent on the upstream history of the flow. If the flow upstream is

under-developed and undisturbed, we can use a low turbulence intensity (I ≤1%). If the flow

is fully developed, the turbulence may be as high as a few percent. The turbulence intensity at

the core of a fully-developed duct flow can be estimated from the following derived from an

empirical correlation for pipe flows:

8/1)(Re16.0
' −==

HD
avgu

u
I with


 H

D

Du
H

..
Re = Eq. 3.3

Where: Dh is the hydraulic diameter.

3.2.1.2 The hydraulic diameter

The hydraulic diameter, Dh, is a commonly used term when handling flow in noncircular

tubes and channels. It is defined as the following formula.
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P

A
DH

4= Eq. 3.4

Where A is the cross sectional area:

With rectangular shape: A = L.H with L and H is respectively the width and the height.

With circular shape:
4

2D
A
= with D is the diameter

P is the wetted perimeter of cross section with rectangular shape: P = 2(L+H)

With circular shape: P = D

3.2.1.3. Turbulence length scale

The turbulence length scale, l, is a physical quantity related to the size of the large eddies that

contain the energy in turbulent flows. In fully-developed duct flows, l is restricted by the size

of the duct, since the turbulent eddies cannot be larger than the duct. An approximate

relationship between l and the physical size of the duct is:

l = 0.07L Eq. 3.5

where L is the relevant dimension of the duct.

With the channel of non-circular cross section, L = DH,

With the pipe, L = D.

3.2.2. Choosing the turbulence models and the mesh

As aforementioned in Section 2.1.2, there are many turbulence models to compute the 3D

flow. Choosing the model depends on the specific problem. Each model has both advantages

and disadvantages. By comparison with the experimental data, the most suitable model will

be used in the next study. In the current work, RANS models such as the S-A, k-ε models and

the k- SST model have been first chosen to test the suitability and the applicability of the

models on the flow around a circular cylinder between Reynolds number of 3,900 and

1,000,000. These Reynolds numbers in the sub-critical and super-critical regions of flow have

been chosen mainly because experimental data such as the pressure distribution and drag

coefficient are widely available within these Reynolds numbers for comparative study. The

finite volume method with a structured hexahedral mesh is employed in the RANS models.

3.2.2.1. Computational domains

Based on the comment and advice of the previous researchers, three following domains for

the simulation of the flow around a circular cylinder are built as in Figure 3.5. In all domains,

the cylinder is simulated with a diameter (D) of 0.2m. The computational domain 1 and 2 is

quite the same. Distances of 15R and 35R to the side boundaries and to the downstream

boundaries are allowed respectively to prevent blockage ratio and end effects on the flow,
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these have been chosen based on some similar cases study for initial comparison. There is

only a small difference. That is the circular area of 5R around the cylinder where the vortices

usually appear is divided into small parts in the domain 1. With the computational domain 3,

this circular area is increased up to 20R and the distances from the upstream boundary to the

cylinder also lengthened to 35R.
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Figure 3.5. Domains to model the flow around a circular cylinder
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3.2.2.2. Boundary conditions

Boundary conditions are imposed to the computational domains as Figure 3.5. Longitudinal

uniform velocities of 0.0196m/s and 5.019m/s are introduced at the inlet correspond to the

Reynolds number of 3,900 and 1 million, respectively.  The outlet boundary is defined with

an average static reference pressure of 0Pa.  The rest of the boundaries (side and top) are

symmetry, in which velocity near the wall is not retarded by frictional effects.  The cylinder

wall and the bottom boundary have a normal no slip boundary condition where velocity

increases from zero at the wall surface to the free stream velocity away from the surface.

Besides, some initial turbulent parameter such as the turbulence intensity and length scale also

imposed. With the Reynolds number of 3900, the turbulence intensity is 4.3658% and the

length scale is 0.1167m. On the other hand, with the Reynolds number of 1 million, the

turbulence intensity is 2.1828% and the same length scale is 0.1167m.

3.2.2.3. Modeling near wall flow

In the Reynolds number of 3900 within sub-critical flow region, the flow near the cylinder

surface is laminar and thus viscosity plays an important role. This is known as the boundary

layer region of the flow. The flow has zero velocity at the surface of the wall and starts to

increase radically following a ‘law of wall’ profile until free stream velocity is achieved.

Therefore, a very fine mesh is needed to resolve the flow within the boundary layer. However,

the finer, the mesh can be built, the higher the computer power is required to solve the flow,

and the computational time will also increase.

To satisfy this requirement, the refinement of the mesh in the boundary region is determined

by the dimensionless parameter y+. Physically, y+ represents the normal distance of the grid

points from the cylinder wall. In FLUENT software, the near wall problem can be treated by

two methods. First of all, the S-A and k- models require the fine mesh, hence, the y+ value

needs to be smaller than 5 to maintain mesh consistency and to represent the boundary layer

correctly. Second of all, the k-ε models and other turbulence models use empirical formulas to

represent the “law of wall” region. These models employ the wall function method to model

the flow near to the wall. In the wall function method, the viscosity sub-layer is represented

mathematically by formulas to account for the effect of shear stress.

To find the mechanics of 3D flow within sub-critical region as well as the super-critical

region, y+ which is smaller than 5 applied in this work to model and mesh the domain.
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3.2.2.4. Meshing

A structured hexahedral mesh is employed in this simulation. The structured nature of the

mesh provides the easy availability to control the boundary layer. This is very important for

computing the juncture flow. Near to the cylinder wall, a very fine mesh is required to resolve

the flow parameters in the boundary layer. The mesh becomes increasingly coarse in the

radial direction to maintain computational efficiency. This can be achieved by setting up the

desired growth factor for the coarsening of the mesh away from the wall. In all cases, the

growth factor is 1.1.

The process of meshing domains is performed by using GAMBIT. From three above-

mentioned domains, three kinds of mesh are generated as Figure 3.6.

a) Grid 1 in 2D

b) Grid 2 in 2D

c) Grid 3 in 2D

Figure 3.6. Some types of mesh used to calculate the flow around a circular cylinder
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Table 3.1. The number of cells in each Grid

Number of cells First lengthType of grid

2D 3D y1

Grid 1 15,068 1,356,120 0.0001

Grid 2 21,492 1,934,280 0.0005

Grid 3 16,964 1,526,760 0.0001

3.2.2.5. Discretization

Equation discretization (Section 2.2.1.4) of the RANS models is achieved by using the

upwind differencing scheme. Advection scheme with level of second order accuracy has been

tested and compared for the simulations on the flow around a circular cylinder. Euler implicit

time-stepping scheme is used for the time marching procedure.

3.2.2.6. Computer power

The availability of computer power affects the accuracy of CFD solution so much. The

stronger computer power is, the higher the accuracy is. However, with current condition, the

simulations using the RANS models are based on a single Pentium Dual Core inside (1.8GHz

processor) desktop PC with 1.96GB of physical RAM. Besides, the computing time also

depends very much on the availability of computer power. If the computer power is strong,

the computing time is short. To provide a basic idea on the computing time for the simulation,

current RANS models require approximately 1 or 2 days simulation time for a mesh size of

1.5 to 1.9 million elements of Re = 1,000,000. On the other hand, with Re = 3900, the

computing time will reduce half a day or even less than.

3.2.2.7. Number of iterations and convergence

The residuals of convergence of the solution are always maintained at 10-5 to ensure that the

errors can be acceptable. The number of iterations in the simulation is 8000 iterations, which

has been found to be enough for the flow to develop completely.

3.2.2.8. Results and discussion

The simulations are performed in both 2D and 3D models. The table 3.2, 3.3 and table 3.4

show the changes of the drag coefficient estimated by the RANS models with simulations of

different meshes and second order of accuracy. Results for Reynolds numbers of 3,900 and

1,000,000 are shown. The table 3.1 shows the values of the drag coefficient (Cd) from the

estimation of the RANS models with Re = 3,900 and 2D computational domains. The changes

of drag coefficient against Reynolds number with the refinement of mesh are then compared

with the experimental data from Norberg (1987). Based on this table, it is obvious that the S-
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A model with Grid 3 predicted the drag coefficient very well because the minimum error is

1.77%.

Table 3.2. Drag coefficient of the flow around a circular cylinder using the RANS turbulence models

with 2D computational domain and Re = 3900

Mesh Turbulence models Cd in Simulation Cd in Experiment [46] Error (%)

S-A 1.3266154 34.00156

k-epsilon standard 1.2593802 27.21012

k-epsilon RNG 0.86013162 13.11802

k-epsilon Realiable 0.90806706 8.276055

Grid 1

k-omega SST 1.2533483 26.60084

S-A 1.1225342 13.38729

k-epsilon standard 1.1080558 11.92483

k-epsilon RNG 0.8054877 18.63761

k-epsilon Realiable 0.80758737 18.42552

Grid 2

k-omega SST 1.0967027 10.77805

S-A 1.0078985 1.807929

k-epsilon standard 0.93309421 5.74806

k-epsilon RNG 0.75415646 23.82258

k-epsilon Realiable 0.73152946 26.10814

Grid 3

k-omega SST 0.83614964

0.99

15.54044

RANS turbulence models with Re = 1,000,000 in 2D computational domain. These results are

also compared with experimental data from Zdravkovich (1997). According to Table 3.3, the

best result of drag coefficient is 3.96671. This means that the error is approximately 4%, as

well as is the minimum error which the simulations obtained.
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Table 3.3 Drag coefficient of the flow around a circular cylinder using the RANS turbulence models

with 2D computational domain and Re = 1,000,000

Mesh Turbulence models Cd in Simulation Cd in Experiment [75] Error (%)

S-A 0.47658184 19.14546

k-epsilon standard 0.64576515 61.44129

k-epsilon RNG 0.32909509 17.72623

k-epsilon Realiable 0.39254457 1.863858

Grid 1

k-omega SST 0.57850181 44.62545

S-A 0.508414 27.1035

k-epsilon standard 0.61138035 52.84509

k-epsilon RNG 0.36979109 7.552228

k-epsilon Realiable 0.37590202 6.024495

Grid 2

k-omega SST 0.65419354 63.54839

S-A 0.38413316 3.96671

k-epsilon standard 0.55247034 38.11759

k-epsilon RNG 0.32587821 18.53045

k-epsilon Realiable 0.34463013 13.84247

Grid 3

k-omega SST 0.46161484

0.4

15.40371

To find the most suitable grid and turbulence model, the 3D computational domains have

been tested with Re = 1,000,000. The results of these simulations are shown in the table 3.4.

Once more time, they are compared with experimental data which obtained from Zdravkovich

(1997). In 3D, the drag coefficient in most simulations is changed completely. In particular,

with the same S-A model, the drag coefficient in 3D is smaller than that in 2D about 1.7%.

However, the result in 3D is close to experimental data more than that in 2D (the errors are

3.97% and 2.35%, respectively). This is also the best result.
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Table 3.4. Drag coefficient of the flow around a circular cylinder using the RANS turbulence models

with 3D computational domain and Re = 1,000,000

Mesh Turbulence models Cd in Simulation Cd in Experiment [75] Error (%)

S-A 0.3759 6.025

k-epsilon RNG 0.35183991 12.04002

k-epsilon Realiable 0.34843775 12.89056
Grid 1

k-omega SST 0.45771024 14.42756

S-A 0.48268798 20.672

k-epsilon RNG 0.41781923 4.454807

k-epsilon Realiable 0.36106899 9.732753
Grid 2

k-omega SST 0.55113265 37.78316

S-A 0.39060602 2.348495

k-epsilon RNG 0.35844481 10.3888

k-epsilon Realiable 0.36469221 8.826948
Grid 3

k-omega SST 0.46612037

0.4

16.53009

3.3. Conclusion

The grid generation was viewed as one of the key important considerations during the pre-

process stage following the definition of computational domain geometry. As a result, it

makes up more than 60% effort of simulation. Obviously, it can determine the success or

failure in attaining a computational solution. Next, choosing the turbulence model is also very

important. Among the RANS models tested on the flow around a circular cylinder, the S-A

model demonstrated the ability to predict the drag coefficient similar to experimental data. In

addition, the effect of grid resolution was tested and the Grid 3 predicted the drag coefficient

close to experimental result at both lower Reynolds number of 3,900 and higher Reynolds

number of 1,000,000. Two recirculation bubbles were captured in the near wake. From the

above results, the S-A model and the Grid 3 are respectively the most suitable and appropriate

model and mesh which will be used to simulate the complex cases in next chapter.
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4. FLOW AROUND A CIRCULAR CYLINDER

Flow around a circular cylinder is a basic fluid mechanics problem of practical importance. It

has been applied to many fields such as ship structures, off shore structures, bridge piers,

pipelines, etc. That is why it has been the subject of numerous investigations, of theoretical,

experimental, and more recently numerical variety for the past century. Extensive reviews of

the knowledge accumulated on this flow appear every decade as Morkovin (1964), Berger &

Wille (1972), Norberg (1987), yet our understanding of the subjacent physics in incomplete.

The relevant non-dimensional parameter in the flow is the Reynolds number, but because of

sensitivity to experimental conditions, global statistics such as drag, pressure coefficient, and

Strouhal frequency vary by as much as 25% from one experiment to the next at a fixed

Reynolds number, see Cantwell & Coles (1983). These variations indicate that in addition to

the Reynolds number, several parameters arising from experimental set-ups are important in

the cylinder flow. These include the blockage ratio, the free-stream turbulence intensity, the

cylinder aspect ratio, and the end boundary conditions, each of which has been the subject of

numerous studies. Braza et al. (1986), Countanceau and Defaye (1991), L. Ong and J.

Wallace (1996), E.A. Anderson and A. A. Szewczyk (1997) and recently, Meng Wang et al.

(2001) and Besir Sahin et al. (2006) have investigated the pressure and velocity fields in the

near wake of a circular cylinder. The common points of interest of these works are the

development of the primary unsteady wake behind the circular cylinder and the evaluation of

the drag, lift coefficients, and the separation angle with time.

Most of the experimental studies investigated the steady and unsteady behaviors of vortices in

the wake area. Besides these theoretical and numerical investigations, some experimental

visualization has been done. The work of Tritton (1959) was carried out with the range of low

Reynolds numbers from 0.5 to 100. Later, Roshko (1960) tested with very high Reynolds

number from 106 to 107. Until now, many researchers continue carrying out the experiments

to understand the nature of the flow around the circular cylinder deeply and fully.

This chapter focuses on validating and determining suitable turbulence models in the

application of the flow around a circular cylinder. Afterwards, the validated turbulence model

will be applied to the simulation of flow around the circular cylinder with different inclined

angles. The first step of the validation process relates to the simulation of flow around a

circular cylinder using different turbulence models at some Reynolds number to obtain some

basic parameters of flow and the vortex shedding phenomenon in the wake region. Next, the

comparison between the simulation data and experimental data is conducted to find the most
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appropriate turbulence model at the Reynolds number of 3900. Finally, this model will be

applied to simulate the flow around a circular cylinder mounted the flat plate or curved plate

with various inclined angles.

To do that, the overview of the flow around a circular cylinder and the basic parameters of the

flow such as the drag, lift and pressure coefficients, the Strouhal number and the vortex

shedding are presented.

4.1. Conceptual overview of flow around a circular cylinder

According to Patrick Beaudan and Parviz Moin’s research (1995), the flow field past the

circular cylinder is symmetric at low values of low Reynolds number. This is known as

laminar flow. When the Reynolds number increases, flow begins to separate behind the

cylinder. The flow separation tends to roll up the flow into swirling eddies, resulting in vortex

shedding in the wake region of the flow known as the Von Karman vortex. This is an

unsteady phenomenon.

4.1.1. Reynolds number

The flow over a circular cylinder is very sensitive to the changes of Reynolds number because

the non-dimensional quantities describing the flow around a circular cylinder depend on the

Reynolds number. At low Reynolds number, inertial forces are smaller than viscous forces.

The naturally occurring disturbances are dissipated away and the flow remains laminar. At

high Reynolds number, the inertial forces are sufficiently large to amplify the disturbances,

and a transition to turbulence occurs. Reynolds number of the flow around a circular cylinder

can be defined as follows:


Du.

Re = Eq. 4.1

where D is the diameter of the cylinder, u is the inlet velocity of the flow, and ν is the

kinematic viscosity of the flow.

From the studies of the flow around a circular cylinder, Tritton (1959) and Roshko’s (1960)

were pointed out regions where significant patterns of flow occur as the Reynolds number

changes, especially when the flow changes from laminar to turbulent state. A broad

classification of the cylinder flow behavior in different regimes of Reynolds number is

presented in table (4.1), which also lists some representative experiments for each flow

regime.
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Table 4.1. Summary of cylinder flow regimes

Regime Reynolds

number

Flow characteristics Experiments

0 →∼ 5 Attached boundary layer

∼ 5 Flow convectively unstable

5 →∼ 40 Symmetric, attached twin vorticesSteady

∼ 25
Flow absolutely unstable (Parallel

stability theory)

40 → 150
Stable vortex street, decaying

downstream
Unsteady

Laminar
∼ 90 Oblique vortex shedding

Kovasznay (1949)

Coutanceau &

Bouard (1977)

Tritton (1959),

(1971)

Transitional 150 → 300

Transition to turbulence in the wake.

Fully turbulent wake in 40∼50D

downstream

Williamson (1989)

300 → 2x105 Transition in the free shear layers

Sub-critical
≥ 104

Most of the shear layers is turbulent

Base pressure insensitive to Re

Cantwell & Coles

(1983)

Roshko (1954a)

2x105 → 7x105

Lower transition in Cd from ∼1.2 to

∼0.3

Near wake width decreases to less

than 1D

Separation moves to rear of cylinder

Laminar separation, transition,

reattachment and turbulent separation

of boundary layer

Critical

7x105 → 4.5x106

Upper transition in Cd from ∼0.3 to

∼0.7

Near wake width increases (stay less

than 1D)

Separation point moves forward

Achenbach (1968)

Norberg (1987)

Delaney &

Sorensen (1953)

Post-

Critical
≥ 4.5x106

Turbulent cylinder boundary layer

Regular vortex shedding (St≅0.27),

Cd∼0.7

Transition precedes separation, no

reattachment

Roshko (1961)

Shih et al. (1992)
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a) b)

c) d)

A: Laminar boundary layer separation

e)
A: Laminar boundary layer separation

B: Turbulent boundary layer separation

f)

B: Turbulent boundary layer separation; the

boundary layer partly laminar partly turbulent

g)

C: Boundary layer completely turbulent at

two sides

h)

Figure 4.1. Regimes of flow around a smooth, circular cylinder in steady current

At Reynolds numbers less than approximately 40, the flow is laminar and steady. For For the

small values Re < 3.2, no separation occurs (Figs. 4.1a). The boundary layer on the cylinder

surface separates at a Reynolds number of 3.2 (see Nisi & Porter (1923)) to 5 ( see Taneda

(1956)), and a pair of steady symmetric vortices (Figs. 4.1b) form behind the cylinder. A large

body of early experimental work has documented that range of Reynolds numbers, detailing

the main features of the boundary layer and near wake region, e.g. Tritton (1959), Coutanceau

& Bouard (1977), Thom (1933), Taneda (1956), and Acrivos et al. (1965). Between Reynolds

numbers 10 and 40, the velocity profiles in the wake are self-similar past 10 diameters

downstream of the cylinder; the length of the recirculation zone behind the cylinder grows

linearly with Reynolds number, and the velocity distributions on the rear symmetry axis in the

recirculation zone at different Reynolds numbers exhibit similarity, see Nishioka & Sato

(1974).
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For Reynolds numbers higher than approximately 40, a characteristic frequency expressed in

non-dimensional form as the Strouhal number is associated with the wake. Taneda (1956)

puts the critical Reynolds number at which shedding first occurs at which shedding first

occurs at 30, whereas Homman (1936), Kovasznay (1949) and Roshko (1945b) find that

shedding starts at Reynolds number 40. Local linear parallel stability theory applied to the

cylinder wake ( see Monkewitz (1988)) indicates that the flow becomes absolutely unstable at

Reynolds number 25, approximately two-thirds the value at which a instability cannot by

itself predict a precise Strouhal frequency even at the onset of vortex shedding.

For the range of the Reynolds number 40 < Re < 150, the vortex street is laminar (Figs. 4.1c).

The shedding is essentially two-dimensional, i.e., it does not vary in the span wise direction

For Reynolds numbers up to 150, the flow remains laminar, see Bloor (1964) and Roshko

(1954a), the shed vorticity decays as it convects downstream, and the Strouhal number

increases with Reynolds number. A least-square curve-fit of the Strouhal curve for Reynolds

number between 50 and 180 is given by:

St = A/Re + B + CRe

Where A = -3.3265, B = 0.1816 and C = 1.6.10-4 (Williamson 1991).

Transition to three-dimensionality in the near wake occurs around Re = 180 (Figs. 4.1d), and

is signaled by two discontinuities in the Strouhal-Reynolds number relation. The first, around

Re=180, arises from the generation of vortex loops evolving into pairs of counter-rotation

streamwise vortices in the wake, the second comes from a transition to fine-scale streamwise

vorticity at Re = 230-260.

At Reynolds numbers between 300 and 2x105, the sub-critical range, the flow around the

entire periphery of the cylinder is laminar (Figs. 4.1e), and transition to turbulence occurs in

the separated free shear layers, see Cardell (1993). At the lowest Reynolds numbers in this

range, the wake becomes fully turbulent in 40 to 50 cylinder diameters downstream; see

Uberoi (1969), after which distance the regular vortices have completely decayed. At the

higher end of the Reynolds number range, transition occurs very near the wall surface and the

wake is fully turbulent close downstream of the cylinder, seeing Cantwell & Coles (1983).

For Reynolds numbers larger than 104, transition in the shear layers occurs very close to the

separation points, and the base-pressure coefficient, drag coefficient and Strouhal number are

approximately constant at values of -1.1, 1.2 and 0.2 respectively as Roshko and Fiszdon

(1969).

The critical range of Reynolds numbers, between 2x105 and 4.5x106, displays two transitions

in the drag coefficient, labeled the lower and upper transitions by Roshko (1961). In the lower
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transition range (2x105 <Re< 7x105), the drag coefficient drops abruptly from 1.2 to about 0.3

due to an increase in base pressure at a Reynolds number of approximately 3.6x105. A laminar

separation of the boundary layer is followed by transition to turbulence, reattachment and a

final turbulent separation (Figs. 4.1f). The separation point moves from the front to the

downstream side of the cylinder, and the width of the near-wake decreases to less than 1

diameter. In the upper transition region (7x105≤Re≤4.5x106), the base-pressure coefficient

decreases monotonically from approximately -0.2 to -0.5, while the drag coefficient increases

from 0.3 to 0.7, and remains at that value for Reynolds numbers of up to 107. The boundary

layer is completely turbulent on one side of the cylinder and partly laminar and partly

turbulent on the other side (Figs. 4.1g). With increasing Reynolds number the separation point

moves forward, but it remains on the downstream side of the cylinder, and the wake width

increases but stays smaller than 1 diameter. The sensitivity of the flow to disturbances in the

critical regime, in particular the non-zero mean lift which can develop around the cylinder,

has been experimentally investigated by Schewe (1986).

In the post-critical regime, past Reynolds number 4.5x106, the boundary layer over the

cylinder surface is virtually turbulent everywhere (Figs. 4.1h). The separation-reattachment

bubble present in the critical region disappears. The base-pressure coefficient pursues its

monotonic decrease started at Reynolds number 5x105, reaching -0.6 at Reynolds number

8x106; the drag coefficient is constant at around 0.7, and vortices are shed regularly at an

approximately constant Strouhal frequency of 0.27, see Roshko (1961)).

4.1.2. Vortex shedding

The most important feature of the flow regimes described in Section 4.1.1 is the vortex

shedding phenomenon, which is common to all the flow regimes for Re>40 (Fig 4.1). When

the Reynolds number is increased, the boundary layer over the cylinder surface will separate

due to the adverse pressure gradient imposed by the divergent geometry of the flow at the rear

side of the cylinder. As a result of this, a shear layer is formed. This shear layer contains a

significant amount of vorticity. This vorticity is fed into the shear layer formed downstream

of the separation point and causes the shear layer to roll up into a vortex with a sign identical

to that of the incoming vorticity (Vortex A in Fig. 4.2). Likewise, a vortex, rotating in the

opposite direction, is formed at the other side of the cylinder (Vortex B). This meant that pairs

of eddies form alternatively on the top and bottom part of the cylinder and move into the wake

region resulting in vortex shedding.
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Figure 4.2 Formation and development of vortex shedding in the wake region of the flow around a

circular cylinder

a) Prior to shedding of Vortex A, Vortex B is being drawn across the wake.

b) Prior to shedding of Vortex B, Vortex C is being drawn across the wake.

The larger vortex (Vortex A in Fig. 4.2a) presumably becomes strong enough to draw the

opposing vortex (Vortex B) across the wake, as depicted in Fig. 4.2a. The vorticity in Vortex

A is in the clockwise direction (Fig. 4.2b), while that in Vortex B is in the anti-clockwise

direction. The approach of vorticity of the opposite sign will then cut off further supply of

vorticity to Vortex A from its boundary layer. This is the instant where Vortex A is shed.

Being the free vortex, Vortex A is then convected downstream by the flow.

Following the shedding of Vortex A, a new vortex will be formed at the same side of the

cylinder, namely Vortex C (Fig. 4.2b). This will lead to the shedding of Vortex B. Now,

Vortex B will play the same role as Vortex A, namely it will grow in size and strength so that

is will draw Vortex C across the wake (Fig. 4.2b). This will cause the shedding of Vortex B.

The process will continue each time a new vortex is shed at one side of the cylinder where the

shedding will continue to appear in an alternate manner between the sides of the cylinder.

4.1.3. Strouhal number

The characteristic of vortex shedding is vortex-shedding frequency. It can on dimensional

grounds be seen to be a function of the Reynolds number:

St = St(Re) Eq. 4.2

In which

u

Df
St s= Eq. 4.3

where D is the diameter of the cylinder, fs is the shedding frequency of vortices and u is the

incident velocity. The normalized vortex shedding frequency, namely St, is called the Strouhal

number. In Fig. 4.3, Williamson et al. (1989) showed that how the Strouhal number varies

with the Reynolds number. The vortex shedding first appears at Re = 40. From Fig. 4.3, the

shedding frequency St is approximately 0.1 at this Re. It then gradually increases as Re is
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increased and attains a value of about 0.2 at Re 300, the lower end of the sub-critical flow

regime. From this Re number onwards throughout the sub-critical range (300 < Re < 104), the

vortex shedding frequency at which vortices are shed in the flow around a circular cylinder

tends to remain almost constant.

As seen from Fig. 4.3, the Strouhal frequency experiences a sudden jump at Re=3-3.5x105,

namely in the critical Re number range, where St increases from 0.2 to a value of about 4.5.

This high value of St is maintained over a rather large part of the supercritical Re range,

subsequently it decreases slightly with increasing Reynolds number.

Figure 4.3 Strouhal number for a smooth circular cylinder. Experimental data from: Solid curve:

William (1989). Dashed curve: Roshko (1961). Dots: Schewe (1983).

The large increase in St in the supercritical-flow range is explained as follows: in the

supercritical flow regime, the boundary layer on both sides of the cylinder is turbulent at the

separation points. This results in a delay in the boundary layer separation where the separation

points move downstream, as sketched in Fig. 4.4. This means that the vortices (now being

closer to each other) would interact at a faster rate than in the subcritical flow regime, which

would obviously lead to higher values of the Strouhal number.

Figure 4.4. Sketch showing positions of separation points at different separation regimes

From the experimental data, Williamson built a new formulation for the relationship between

Strouhal number versus the Reynolds number for the cylinder wake as:
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Re

018.1
266.0 −=St  for the range of the Reynolds number Re < 190 Eq. 4.4

Re

349.0
2234.0 −=St for the range of the Reynolds number 190 ≤ Re < 1200 Eq. 4.5

For the range of the Reynolds number 2000 ≤ Re < 105, one might then expect that the

Strouhal number will reach a saturation value equal to the constant of 0.2234.

This relationship is very important for simulating and solving the unsteady flow problem

because we can determine the initial value of time step size t∆ based on the Reynolds number

throughout the Strouhal number.

4.1.4. Drag and lift coefficients

According to Roshko (1994), the Strouhal number is related to the drag coefficient of the

flow. A decrease of the drag coefficient will accompany an increase of the Strouhal number in

the range of Reynolds number (100 <Re <10,000).

Drag coefficient is a dimensionless factor of proportionality between overall hydrodynamic

force vector
→
F on a body in a liquid or gas flow and the product of reference area A of the

body and velocity. Drag coefficient is computed as below:

Au

F
Cd

2

2

1 
=

Eq. 4.6

where the drag force F is the sum of the pressure drag force and the friction drag force

components on the cylinder surface acting in the flow direction (Figure 4.5) and A is the

reference area.

Figure 4.5. Forces acting on the cylinder

Defining the reference area A is very important for calculating the drag coefficient. This area

depends on what type of drag coefficient is being measured. The frontal area of the object

projected on a plane normal to the flow is the most common reference area. Others include the

wetted area, the plan form area, and the two-thirds power of volume. A reference area is often
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selected arbitrarily but can significantly influence the calculated drag coefficient. Vogel

(1984) suggested that:

− Frontal area is most appropriate for streamlined objects at high Re values when drag is

essentially the dynamic pressure times the frontal area of the object.

− Wetted area is most relevant for streamlined objects for which the drag is due to viscosity

and shear;

− Plan area is preferred for objects with significant lift, such as airfoils;

− And the two-thirds volume would be appropriate for objects with lift proportional to

volume, such as airships.

Lift coefficient is calculated similarly but vertical force is considered rather than the flow-

direction force.

In practice, the drag coefficient is calculated in most cases using empirical relations

generalizing experimental data. Figure 4.6 shows the dependence of drag coefficient for a

cylinder and sphere on the Reynolds number. The drag coefficient decreases drastically from

extremely high values at small Reynolds numbers, to unity and lower at Re > 103. With

increasing Reynolds number, inertial forces begin to predominate over viscosity forces and a

laminar boundary layer is originated. Flow beyond the boundary layer is virtually not affected

by viscosity. Flow separation in the stern (point S in Figure 4.6) also occurs. Because

Reynolds number grows, the area of separation increases and attains the highest values at

Re~103; the drag coefficient in this case no longer diminishes and even slightly increases,

remaining close to 0.4 for the range 2.103<Re<2.105.

If Reynolds number continues to increase, the situation arises when the laminar boundary

layer becomes partially turbulent in the non-separating flow region of the cylinder. The

velocity profile in the turbulent boundary layer is fuller and better resists a positive pressure

gradient. The separation is sharply displaced toward the stern, thereby drastically decreasing

the drag coefficient. With further enhancement of the Reynolds number, drag coefficient

remains unchanged.
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Figure 4.6. Drag coefficient for cylinders (1) and spheres (2) as a function of Reynolds number (Re).,

Polezhaev et al. (2003)

For general flow relating to separation, the drag force is changing at twice the frequency of

the lift force for the flow around a circular cylinder. A suction area is created when a vortex is

shed from the top of the cylinder. This results in that the cylinder experiences lift. An

alternate vortex is created at the bottom part of the cylinder in half a cycle later. Throughout

this process, the lift force changes alternately in a complete cycle of vortex shedding but the

cylinder experiences drag constantly.

4.1.5. Pressure coefficient

Like the drag and lift coefficient, the pressure coefficient is also important to study the flow

around a circular cylinder mounted on a plate. Near to the surface of the cylinder, flow

momentum is quite low due to friction effects and thus is sensitive to the changes of the

pressure gradient. The pressure acting on each differential element on the surface of the

cylinder maybe normalized by the dynamic free stream pressure to obtain the pressure

coefficient. In order to compare the variation of pressure around a cylinder for a variety of

flow conditions, it is conventional to use a dimensionless ratio-the pressure coefficient Cp,

which compares the pressure on the surface of the cylinder, Pc, to that at infinity, P. It is

defined by:

2.
2

1
U

PP
C c

p



∞−
=

Eq. 4.7
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A typical pressure distribution plot of the flow around a circular cylinder starting from the

stagnation point is showed in Figure 4.7. Then, the pressure coefficient drops to a negative

value when the flow velocity starts to increase. In this case, decreasing of pressure in the

direction of flow assists the fluid movement and there is no retardation of flow.

Figure 4.7. Experimental pressure coefficient distributions on cylinder surface compared to theoretical

result, Roshko (1960)

When the velocity of the flow reduce to θ = 800, the pressure in the direction of the flow

increases. This results in the adverse pressure gradient situation. Thus, the flow has to move

to against the pressure force in addition to the viscous force. Separation of the flow occurs

when shear stress cannot overcome the adverse pressure gradient, this happens at 800<θ <1200

for sub-critical flow. After the separation point, pressure remains constant in the wake. The

accurate prediction of pressure coefficient distribution around a cylinder is up to how the

turbulence model simulates.

4.2. Flow around a circular cylinder mounted on the flat plate

The simulation of the flow around a circular cylinder mounted on the flat plate based on the

RANS method will be discussed in this section. In addition, numerical studies of the flow

around a circular cylinder from other researchers are also briefly discussed and compared,

followed by the current work employing S-A turbulence model for the computation of the

drag coefficient and pressure distribution around the circular cylinder.

4.2.1. CFD simulation

Based on the results of the previous chapter,  S-A turbulence model have been chosen to test

the suitability and the applicability of the models on the flow around a circular cylinder at



VU Minh Tuan

Master Thesis developed at the University of Galati 53

Reynolds number of 3,900, as well as the flow at Reynolds number of 1,000,000. The low

Reynolds number of 3,900 in the sub-critical region of flow and the high Reynolds number of

1,000,000 in the super-critical region have been chosen mainly due to the experimental data

such as the pressure distribution and drag coefficient are widely available within these

Reynolds numbers for comparative study. The RANS model used here employ a finite

volume method (FVM) with a structured hexahedral mesh.

4.2.1.1. Computational domain and boundary condition

The domain geometry and the boundary conditions for the simulation of the flow at Reynolds

numbers of 3,900 and 1,000,000 are depicted in Figure 3.6.a. The cylinder has the diameter

(D) of 0.2m and a depth of 5D to incorporate the span-wise effects. The domain is tested with

the longitudinal uniform velocities of 0.0196m/s and 5.019m/s correspond to the Reynolds

number of 3,900 and 1,000,000 respectively. In addition, the initial turbulence parameters are

also imposed by the turbulence intensity of 4.3658% and 2.1828% with regard to Reynolds

number of 3,900 and 1,000,000. With both of these Reynolds numbers, only one length scale

of 0.1167m is applied.

4.2.1.2. Meshing

A structured hexahedral mesh is employed in these simulations (Figure 3.7c). The y+ value of

4 around the surface of the cylinder is chosen. With this value, the thickness of boundary

layer can be available for S-A turbulence model to simulate the problem correctly.

4.2.1.3. Discretization

In the RANS model of flow around a circular cylinder, the Navier-Stokes equations are

discretized using the upwind differencing scheme. The time discretization is carried out by

using a second order accuracy scheme.

4.2.1.4. Computer power

The simulation of flow over a circular cylinder at Reynolds numbers of 3,900 and 1,000,000

are performed on the Pentium Dual Core inside PC. Normally, the simulation at Reynolds

number of 3,900 takes 0.5-1 days of computational time (1.5 million elements) compared to

1-2 days for the simulation at Reynolds number of 1,000,000. The residual of the simulation

is set up to the fifth order of the actual values for convergence consideration.

4.2.2. Results and Discussion

4.2.2.1. Reynolds number of 3,900

The application of S-A model on the flow around a circular cylinder at Reynolds number of

3,900 is simulated. This flow is characterized by laminar separation region in which transition

to turbulence happens in the shear layer, producing large-scale vortices and complex flow in
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the near wake region. Counter rotating streamwise vortices which are highly three-

dimensional have been observed in the wake region of flow at this Reynolds number.

The choice of this Reynolds number of simulation depends mainly on the experimental data

available. For the flow around a circular cylinder at Reynolds number of 3,900, two sets of

experimental data provide more details of the time average velocity profiles and Reynolds

stress distributions in the wake region of the flow. Lourenco and Shih (1993) used the particle

image velocimetry (PIV) technique to measure the velocity profiles within three diameters

downstream of the cylinder while Ong and Wallace (1996) documented the distribution

further downstream. These data provide useful information for comparative study with

numerical solutions.

a. The vertical circular cylinder

The flow in the low vicinity of the juncture has a complex structure caused by the interaction

between the plate boundary layer and the horseshoe vortex developed around cylinder. There

are some vortices accompanied by separations and reattachments generated around the

cylinder. Nevertheless, the particle lines in the plane of symmetry depicts the existence of a

large-scale vortex whose kernel is located close to the flat plate at a station of about two third

of  the cylinder radius, as shown in Fig. 4.8. Hung and Kordullar (1984) when computing the

flow around a blunt fin mounted on a flat plate mentioned its appearance. Moreover,

instantaneous velocity and pressure fields can provide some features of the vortices generated

around the juncture.

Figure 4.8 Front view of the horseshoe vortex at Re=3,900

When the flow along the flat plate approaches the juncture surface, the boundary layer will

separate and an array of horseshoe vortices formed due to the large adverse pressure gradient

imposed by the divergent geometry of the flow environment at the rear side of the cylinder.

The horseshoe vortices wrap around the cylinder. This array maybe formed by one or more
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primary horseshoe vortices accompanied by secondary counter-rotating vortex structures is up

to the oscillating flow conditions. The trailing structures degrade gradually and interact with

the downstream flow of the juncture, as Figure 4.9 shows.

Figure 4.9. Rear view of the horseshoe vortex at Re=3,900

A symmetrical configuration was chosen for the numerical simulations in order to isolate, as

much as possible the process of the cyclic horseshoe vortex from the Karman vortex street in

the wake of the cylinder. The computed flow-field structure on the symmetry plane for

Re=3,900 is show in Fig. 4.10a. A primary horseshoe vortex generated in the upstream of the

cylinder. The existence of this horseshoe vortex is compared with Baker’s experiment (Fig.

4.10b) which was performed at Reynolds number of 4370. The position in which the vortex

formed is 0.8D from the cylinder. Thus, this distance is quite similar to that reported by Baker

(1980). This means that the simulation of the flow around the circular cylinder at Re=3,900

describes the practical phenomena correctly.

a. From simulation at Re = 3,900 b. From Baker’s test with Re = 4370

Figure 4.10. The vortex structure in front of the cylinder
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The flow structure on the flat plate behind the cylinder reveals a rather symmetrical topology

as indicated by Fig.4.11a, which describes the flow topology on the plate surface downstream

of the cylinder. The structure here is slightly different from that reported by Visbal (1991)

who could describe on a much finer grid the same point as being a half saddle point and a half

node of attachment. By analyzing the horseshoe generating mechanism, there are obviously

two coexisting structures. The first structure reveals the flow separation from, or attachment

to, the solid wall at one point, which can be a half saddle point in the x-z plane and a half-

nodal point in the y-z plane. Herein, fluid must flow away from the surface of the plate and

the singular point must be a saddle point of separation. The second structure shows a half-

nodal point in the x-z plane and a half saddle point in the y-z plane. In this case, fluid enters

the singular point; therefore, this point is a saddle point of attachment. The saddle separation

point is so-called point S, on the wall from which streamlines appear towards the nodal

separation points N1 and N2 located on each side of the symmetry plane. There is also a nodal

point of separation denoted by N, which lies on the same plane of y = 0 as S. Otherwise, this

nodal separation point is located at the distance of about four diameters from the cylinder.

Moreover, near to the cylinder surface, there are two saddle separation points S1 and S2,

which are located symmetrically on the each side.

On the other hand, limiting streamline patterns on the plate showed in Fig. 4.11b present a

line of conflation lc with the saddle point by Ss and a line of divergence ld associated a node

NA right in front of the cylinder. The surface flow topology shown in Fig.4.11b is of one

classical type reported in the literature except for the second horseshoe vortex mentioned only

Visbal. This second vortex is weaker than the primary one. It is less available than that it has

much effect on the magnitude of the pressures exerted on the cylinder.
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a)

b)

c)

Figure 4.11. Flow topology around the cylinder at Re = 3,900

b. The inclined circular cylinder

When the circular cylinder is inclined, the mechanism of flow around juncture in the wake

region as well as the pressure and velocity distribution also changes. According to Ishima T.

et al. (2008), the inclined angle affects the length of the recirculation zone. Besides, there is a

velocity component in perpendicular to the mainstream direction has large difference by the
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inclined angle. The numerical simulation in this part has been performed at the Reynolds

number of 3,900 aimed not only at clarifying the flow mechanism, but also at providing a

complete description on the forces acting on the juncture. Firstly, a comparative analysis of

the influence of the stream-wise inclination on the pressure distribution on the cylinder is

showed in Figure 4.12. Fig. 4.12a depicts the solution computed on the vertical cylinder, i.e.

the inclined angle is zero. Fig. 4.12b shows the solution computed on the circular cylinder

inclined at 20o upstream, whereas Fig. 4.12c relates to the solution computed on the cylinder

inclined at 20o downstream. The comparison reveals stronger pressure gradients at the root of

the cylinder inclined towards the upstream, a fact that maybe caused by the compression of

flow and the blockage effect. Figure 4.13 shows a comparison between the solutions

computed on the circular cylinder inclined laterally on the flat plate. Fig. 4.13a shows the

cylinder inclined by 10o, Fig. 4.13b depicts the cylinder inclined by 20o while Fig. 4.13c

presents the solution computed on the cylinder inclined by 30o. The lateral inclination

modifies the pressure distribution not only on the cylinder but also on plate. The symmetry of

the solution vanishes when the stagnation point moves on the side, which the cylinder

inclined. In addition, the stronger pressure gradients are observed in the same side.

Figure 4.12. Pressure fields around a circular

cylinder mounted inclined longitudinally on a flat

plate

Figure 4.13. Pressure fields around a circular

cylinder mounted inclined laterally on a flat plate
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4.2.2.2. Reynolds number of 1,000,000

a. The vertical circular cylinder

The increase of the Reynolds number at a value 106 leads to a more complicated flow

topology. The flow in the immediate vicinity of the juncture has a more complex structure

than that in Reynolds number 3,900 see Fig. 4.14. The dimension of the primary vortex

decrease compared with Re=3,900 because effect of viscosity reduce, as well. The horseshoe

vortices in this case fluctuate stronger than those in Re = 3,900, as Fig. 4.15 shows. This is

caused by the augmentation of the adverse pressure gradients. The trailing structures will

decay slowly due to the interaction of the downstream flow.

Figure 4.14. Front view of the horseshoe vortex at

Re=106

Figure 4.15. Rear view of the horseshoe vortex at

Re=106

Figure 4.16 presents the computed flow-field structure on the symmetry plane for Re=106.

There is a primary horseshoe vortex forms in front of the cylinder. It is seen easily that the

primary horseshoe vortex is larger than that in Re = 3,900 case. The streamlines show a

reversed flow as well as a spiraling horseshoe with a point of separation that is far from the

cylinder. The limiting streamline patterns on the plate depicted in Fig 4.16b is similar to that

in Re = 3,900. Nonetheless, the flow structure on the flat plate behind the cylinder, as shown

in Fig. 4.16c, is different from the case of Re = 3,900. The horseshoe vortex system travels

downstream of the cylinder and mixes with the fluid of the wake flow region. There are four

saddle separation points that are S1, S2, S3 and S4, respectively. In addition to the saddle

points, four vortices unveil with the different dimension. F3 and F4 are the main vortices

occupying most of wake flow region. Two smaller scale vortices coalesce to form larger-scale

vortices. The existence of four vortex systems is supported by the works of Baker (1980) and

Hunt et al. (1978).
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a)

b)

c)

Figure 4.16. Streamtraces pattern upstream the cylinder for Re = 106
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b. The inclined circular cylinder

As mentioned in section 4.2.2.1, the stream-wise inclination affects the flow mechanism

around the cylinder very much, especially, the pressure and velocity distribution. To find this

influence, a comparative analysis is firstly proposed in Figure 4.17. Fig. 4.17a shows the

solution computed on the cylinder inclined at 20o upstream, Fig. 4.17b presents the solution

computed on the vertical cylinder; on the contrary Fig. 4.17c refers to the solution computed

on the cylinder inclined at 20o downstream. Like the case of Re = 3,900, the stronger pressure

gradients appears at the root of the cylinder inclined towards. It is resulted in the phenomena

of flow compression. Figure 4.18 shows a comparison between the solutions computed on the

cylinder inclined laterally on the flat plate. Fig. 4.18a shows the cylinder inclined by 10o, Fig.

4.18b depicts the cylinder inclined by 20o while Fig. 4.18c bears the solution computed on the

cylinder inclined by 30o. When the cylinder is inclined laterally, both the pressures on the

cylinder and on the plate change. The symmetrical characteristic of pressure distribution

disappears. Furthermore, the stagnation point also moves on the side that the cylinder is

inclined towards. The stronger pressure gradients are observed on the same side, as well.

Figure 4.17. Pressure fields around a circular

cylinder mounted inclined longitudinally on a flat

plate

Figure 4.18. Pressure fields around a circular

cylinder mounted inclined laterally on a flat plate
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4.3. Flow around a circular cylinder mounted on the curved plate

In the previous part, the simulation of flow around a circular cylinder mounted on the flat

plate has been discussed and investigated. This part investigates the influence of curved plate

on the pressure distribution as well as the forces acting on the cylinder. The results of

simulation will be plotted and presented. However, a comparison can not be performed

because lack of experimental data. As aforementioned, although, the flow past the cylinder

has been subjected to research and study from many recently decades, the effect of curved

plate on the juncture flow is not yet fully understood. There is no established method for

estimating the wake characteristics behind the cylinder which the shape change of plate is

taken into account. Most of experimental studies as well as numerical studies focus on the

inclination of cylinder mounted on the flat plate. Ishima T. et al. (2008) performed and

investigated flow characteristics around an inclined circular cylinder with fin. They use PIV

(Particle image velocimetry) and LDA (Laser Doppler anemometer) to evaluate the flow

characteristics. Nevertheless, the tests were only carried out on the circular cylinder mounted

on the flat plate. With the help of rapid advances in computing technology, this project

strongly propose the road to simulate the flow by solving the RANS equations.

4.3.1. CFD simulation

RANS equations are employed to compute the solution around the juncture. Closure to the

turbulence is done by continually using the S-A one equation model. A FVM technique is

employed to solve the problem numerically. Simulation is performed at two Reynolds

numbers of 3,900 and 1,000,000. A great deal of computed data for the 140 flow

configurations was computed to cover all the geometric combinations. Moreover, one

unsteady simulation is also carried out to depict Karman vortex shedding.

4.3.1.1. Computational domain and boundary condition

The dimensions of the computational domain are similar to the case of the flat plate. The

cylinder has the diameter (D) of 0.2m and a depth of 5D to incorporate the span-wise effects.

Besides, the cylinder is inclined at every 10 degrees, from 0o to 30o laterally, upstream, and

downstream. The plate is changed by the different curvatures, includes the concave and

convex. The different curvature radii (R) of the plate were considered: 30D, 40D, and 50D

respectively.

The each flow configuration is tested with the longitudinal uniform velocities of 0.0196m/s

and 5.019m/s correspond to the Reynolds number of 3,900 and 1,000,000 respectively. In

addition, the initial turbulence parameters are also imposed by the turbulence intensity of
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4.3658% and 2.1828% with regard to Reynolds number of 3,900 and 1,000,000. With both of

these Reynolds numbers, only one length scale of 0.1167m is applied.

4.3.1.2. Meshing

Some techniques of Gambit is used to bend the plate and generate the mesh. A structured

hexahedral mesh is employed in these simulations to ensure that the number of cells is still

1,526,760 cells. The y+ value of 4 around the surface of the cylinder is still chosen. H-O type

grids are used for the PDE discretization, i.e. a boundary fitted O-grid around the cylinder and

an H-typpe grid for the surrounding domain.

4.3.1.3. Discretization

In the RANS model of flow around a circular cylinder mounted on the curved plate, the

Navier-Stokes equations are discretized using the upwind differencing scheme. The time

discretization is carried out by using a second order accuracy scheme.

4.3.1.4. Time step and convergence

In the steady case, at least 8000 iterations are required to ensure the convergence condition

and the flow over the cylinder can develop fully. The residuals of convergence of the

solutions are maintained at 10-5 to keep errors at an acceptable level.

4.3.2. The results and discussions

4.3.2.1. Reynolds number of 3,900

a. The vertical circular cylinder

From the simulation results, a comparative analysis of the influence of the plate curvature on

the pressure distribution on the vertical cylinder is suggested. Figure 4.19 shows a comparison

between the solutions computed on the vertical circular cylinder mounted on the concave

plate. Fig. 4.19a depicts the solution computed on the plate with the curvature radius of 30D,

Fig 4.19b presents the solution computed on the plate with the curvature radius of 40D, and

on the other hand, Fig. 4.19c refers to the solution computed on the plate with the curvature

radius of 50D. The pressure distribution on Fig 4.19 proves that smaller curvatures determine

larger pressure, as expected. However, the difference is very small if the pressure in small

curvature is compared with that in larger curvature.

Similarly, Figure 4.20 depicts the pressure fields computed on the convex plate case, which is

curved at the same radii as the concave plate. Fig. 4.20a bears out the solution computed on

the convex plate with the curvature radius of 30D, Fig. 4.20b relates to the solution computed

on the convex plate with the curvature radius of 40D, whereas Fig. 4.20c describes the

solution computed on the convex plate with the curvature radius of 50D. Once again, the
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pressure distribution reveals that smaller curvatures determine larger pressure, a fact that will

lead to an increase of the total drag coefficient.

Figure 4.19. Curvature influence on the pressure

distribution on a juncture flow in concave plate

case

Figure 4.20. Curvature influence on the pressure

distribution on a juncture flow in convex plate

case

b. The inclined circular cylinder

As above-mentioned, the large adverse pressure gradients induced by the cylinder produce

boundary layer separation as well as the horseshoe vortices formation implies an analysis of

the flow topology in the immediate proximity of the junction between the cylinder and plate is

necessary. In this respect, Figure 4.21 depicts the transversal streamlines drawn around the

juncture. Fig. 4.21a shows the cylinder mounted on a flat plate, whereas Figs. 4.21b and 4.21c

describe the paths for the concave and convex plates, respectively. In all cases, the cylinder is

inclined by 20o laterally. The cylinder inclination determines a significant change of the

particle paths. On the contrary, the plate curvature does not determine a significant change of

the transversal streamlines. It is seen that though the plate curvature changes, the

configuration of particle lines among flat, concave, and convex plate cases is not different at

all. In all cases, there are the occurrence of a weak vortex that develops on the flat and convex

plates.
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Figure 4.21. Transversal streamlines around the juncture

Figure 4.22 shows the influence of the plate curvature on the total drag coefficient of the

cylinder mounted on the concave plate and inclined upstream drawn against the relative

inclination angle. All numerical solutions is drawn for the four curvature radii. Figure 4.22

unveils that an about 67% increase of the curvature determines the increase of the total drag

coefficient of about 1.2%, mostly caused by the augmentation of the drag on the plate. This

conclusion is valid for all the angles between the cylinder and the plate, regardless the

direction of the relative inclination. In addition, Fig. 4.22 also reveals that the increase of

inclination angle results in a reduction of total drag coefficient. The total drag coefficient is

decreased slowly. This comment is correct for all curvature radii, regardless the direction of

the relative inclination. The reduction of total drag coefficient may be caused by the decrease

of pressure gradients behind the cylinder.
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Cylinder mounted on the concave plate and inclined upstream
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Figure 4.22. Curvature influence on the drag coefficient of the cylinder mounted on the concave

plate and inclined upstream

Figure 4.23 describes the modification of the drag coefficient when the plate curvature

changes along with the inclination angle. In all simulation cases, the cylinder is mounted on

the concave plate and inclined downstream. The total drag coefficient reduces sharply when

the inclination angle increases.

Cylinder mounted on the concave plate and inclined downstream
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Figure 4.23. Curvature influence on the drag coefficient of the cylinder mounted on the concave

plate and inclined downstream

Considering the lateral inclination case, figure 4.24 depicts the influence of plate curvature on

the drag coefficient mounted on the concave plate with different inclination angles of 10o, 20o,

and 30o, respectively. In these cases, the drag coefficient is reduced when the inclination angle

increases. This reduction caused by the augmentation of lift force.
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Cylinder mounted on the concave plate and inclined laterally
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Figure 4.24. Curvature influence on the drag coefficient of the cylinder mounted on the concave

plate and inclined laterally

For the convex plate, the influence of plate curvature is presented in Figs. 4.25, 4.26, and

4.27. Fig. 4.15 shows the results computed on the cylinder inclined upstream, Fig. 4.26

expresses the results computed on the cylinder inclined downstream, while Fig. 4.27 plots the

results computed on the cylinder inclined laterally.

Cylinder mounted on the convex plate and inclined upstream
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Figure 4.25. Curvature influence on the drag coefficient of the cylinder mounted on the convex

plate and inclined upstream
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Cylinder mounted on the convex plate and inclined downstream
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Figure 4.26. Curvature influence on the drag coefficient of the cylinder mounted on the convex

plate and inclined downstream

Cylinder mounted on the convex plate and inclined laterally
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Figure 4.27. Curvature influence on the drag coefficient of the cylinder mounted on the convex

plate and inclined laterally

Figure 4.28 shows a comparison between the drag coefficients on the cylinder mounted on the

flat plate drawn at four inclination angles. The graphs depict the variation of the total drag

coefficient (Cd) as well as of its components produced by pressure (Cdp) and by viscosity (Cdv)

for each angle. It is worth mentioning that the increase of the inclination angle determines the

quasi-linear decrease of Cd and Cdp regardless the direction of the cylinder inclination. On the

contrary, the viscosity components of the drag Cdv increase with the angle. The possible

reason resulted in this increase is that when the cylinder is inclined, the wetted area of the

cylinder will also enlarge; thus, the viscosity fore increase appropriately. Similar comments

are valid for the case of the cylinder mounted on a curved plate either concave (Fig. 4.29) or

convex (Fig. 4.30).
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Figure 4.28. Inclination angle influence on the drag coefficient of the cylinder in flat plate case
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Figure 4.29. Inclination angle influence on the drag coefficient of the cylinder in concave plate

case
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Figure 4.30. Inclination angle influence on the drag coefficient of the cylinder in convex plate

case
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In terms of the drag computed on the plate only, Figure 4.31 drawn for the flat plate proves

that the viscous drag (Cdv) decreases almost linearly until the 30o angle in upstream direction.

On the other hand, the viscous drag increases almost linearly in downstream direction

whereas it keeps constant in lateral direction. Hence, the lateral inclination does not affect the

viscous drag of flat plate, but impact so much in upstream and downstream cases. The

increase or decrease of viscous drag is probably caused by the horseshoe vortex around the

juncture. The coefficient of drag produced by pressure (Cdp) is equal to zero in all the

computational cases, regardless the cylinder inclination. Although not shown graphically, the

behavior is similar for the curved plates as the computations have proven.
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Figure 4.31. Viscous drag coefficient variation with the inclination angle in flat plate case

4.3.1.2. Reynolds number of 1,000,000

a. The vertical circular cylinder

When the Reynolds number increases, the mechanism of flow around the juncture becomes

more complicated. All the flow characteristics modify so much, especially, the pressure

distribution. Figure 4.32 shows the pressure fields computed on the vertical circular cylinder

mounted on the concave plate. The solution computed on the plate with the curvature radius

of 30D is presented in Fig. 4.32a, the solution computed on the plate with the curvature radius

of 40D is described in Fig 4.32b, and on the other hand, Fig. 4.32c refers to the solution

computed on the plate with the curvature radius of 50D. The pressure distribution on Fig 4.32

also proves that smaller curvatures determine larger pressure, as the case of Re=3,900.

Similarly, Figure 4.33 depicts the pressure fields computed on the convex plate case, which is

curved at the same radii as the concave plate. Fig. 4.33a shows the solution computed on the

convex plate with the curvature radius of 30D, Fig. 4.33b relates to the solution computed on
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the convex plate with the curvature radius of 40D, whereas Fig. 4.33c describes the solution

computed on the convex plate with the curvature radius of 50D. Once again, the pressure

distribution reveals that smaller curvatures determine larger pressure, a fact that will lead to

an increase of the total drag coefficient.

Figure 4.32. Curvature influence on the pressure

distribution on a juncture flow in concave plate

case

Figure 4.33. Curvature influence on the pressure

distribution on a juncture flow in convex plate

case

b. The inclined circular cylinder

Because of the modification of pressure fields around the juncture, an analysis of the flow

topology in the immediate proximity is very necessary. Figure 4.34 depicts the transversal

streamlines drawn around the juncture. Fig. 4.34a shows the cylinder mounted on a flat plate,

whereas Figs. 4.34b and 4.34c describe the paths for the concave and convex plates,

respectively. In all cases, the cylinder is inclined by 20o laterally. Similar to the Re = 3,900

cases, Fig. 4.34 proves that the plate curvature does not determine a significant change of the

transversal streamlines. It is seen that though the plate curvature changes, the configuration of

particle lines among flat, concave, and convex plate cases is not different at all. In all cases,

there are the occurrence of a weak vortex that develops on the flat and convex plates.

However, there is still the difference compared with Reynolds number of 3,900. That is that

the shape of vortex in front of cylinder becomes larger and more complex. There is one thin

boundary layer along the cylinder.
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Figure 4.34. Transversal streamlines around the juncture

Figure 4.35 shows the influence of the plate curvature on the total drag coefficient of the

cylinder mounted on the concave plate and inclined upstream drawn against the relative

inclination angle. All numerical solutions is drawn for the four curvature radii. Figure 4.35

reveals that a 67% increase of the curvature determines the increase of the total drag

coefficient of about 0.7%, mostly caused by the augmentation of the drag on the plate. This

conclusion is valid for all the angles between the cylinder and the plate, regardless the

direction of the relative inclination. In addition, Fig. 4.35 also shows that the increase of

inclination angle results in a correspond increase of total drag coefficient. This comment is

correct for all curvature radii as well as the convex plate case (Fig. 4.39), regardless the

direction of the relative inclination. According to Baban et al. (1989), an increase in drag

force fluctuations due to highly recirculation flow in the wake region.
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Cylinder mounted on the concave plate and inclined upstream
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Figure 4.35. Curvature influence on the drag coefficient of the cylinder mounted on the concave

plate and inclined upstream

Unlike the upstream case, the influence of plate curvature on the cylinder inclined

downstream is slightly different (Fig. 4.36). The total drag coefficient reduces at the 10o angle

in each curvature radii then it increases. This comment is valid for the convex plate case (Fig.

4.40). Besides, this difference also reported by Ishima T. et al. (2008). It comes from the

modification of the recirculation zone and the separation-reattachment processes. The

recirculation zone of the 10o angle is larger than that of 0o angle (Fig. 4.37), thus, its effect is

also much more. The existence of adverse velocities acting on the cylinder leads to the

reduction of drag coefficient. Otherwise, the large recirculation zone also exists in the 20o and

30o cases. However, the recirculation zone is further from the cylinder and smaller than that in

the 10o case. Herein, the influence of this zone in 20o and 30o cases is not as strong as that in

10o case.

Cylinder mounted on the convex plate and inclined downstream
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Figure 4.36. Curvature influence on the drag coefficient of the cylinder mounted on the concave

plate and inclined downstream
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Y-Z plane

X-Z plane

Figure 4.37. Velocity fields

a) the case of 0o angle

b) the case of 10o angle

c) the case of 20o angle

Figure 4.38 depicts the influence of plate curvature on the cylinder inclined laterally in the

concave case. The drag slightly increases from 0o angle from 10o then it decreases. This

change also appears in the convex plate case (Fig. 4.40). It is seemingly due to the

modification of the recirculation zone behind the cylinder.
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Cylinder mounted on the concave plate and inclined laterally
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Figure 4.38. Curvature influence on the drag coefficient of the cylinder mounted on the concave

plate and inclined laterally

Cylinder mounted on the convex plate and inclined upstream
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Figure 4.39. Curvature influence on the drag coefficient of the cylinder mounted on the convex

plate and inclined upstream

Cylinder mounted on the convex plate and inclined downstream
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Figure 4.40. Curvature influence on the drag coefficient of the cylinder mounted on the convex

plate and inclined downstream
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Cylinder mounted on the convex plate and inclined laterally
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Figure 4.41. Curvature influence on the drag coefficient of the cylinder mounted on the convex

plate and inclined laterally

Figure 4.42 shows a comparison between the drag coefficients on the cylinder mounted on the

flat plate drawn at four inclination angles. The graphs depict the variation of the total drag

coefficient (Cd) as well as of its components produced by pressure (Cdp) and by viscosity (Cdv)

for each angle. It also reveals that the increase of the inclination angle determines the quasi-

linear decrease of Cd and Cdp in upstream case regardless the direction of the cylinder

inclination, whereas the viscosity component of the drag Cdv seems constantly with the every

angle. On the other hand, the Cd and Cdp in lateral and downstream cases slightly decrease

when the inclination angle increases. Similar comments are valid for the case of the cylinder

mounted on a curved plate either concave (Fig. 4.43) or convex (Fig. 4.44).
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Figure 4.42. Inclination angle influence on the drag coefficient of the cylinder in flat plate case
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Figure 4.43. Inclination angle influence on the drag coefficient of the cylinder in concave plate case
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Figure 4.44. Inclination angle influence on the drag coefficient of the cylinder in convex plate case

Figure 4.45 depicts the drag computed on the flat plate only. It is easily seen that the viscous

drag coefficient (Cdv) decreases in upstream case and increases in downstream and lateral

cases. The coefficient of drag produced by pressure (Cdp) is equal to zero in all the

computational cases, regardless the cylinder inclination.
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Figure 4.45. Viscous drag coefficient variation with the inclination angle in flat plate case
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4.4. Conclusion

Investigation of the flow around the circular cylinder began with the comparisons of the drag

coefficient of the vertical cylinder mounted flat plate with relative inclination angle. Details

on the streamlines have been compared with experimental data in the vicinity around the

cylinder at Reynolds number of 3,900.

Next, all the simulated results from the curved plate at both Reynolds numbers of 3,900 and

1,000,000 are presented, compared, and plotted. The change of drag coefficients at Re = 3,900

is different from that at Re = 1,000,000. At Re = 3,900 in sub-critical region, all drag

coefficients decrease, whereas at Re = 1,000,000 in critical region, most of drag coefficients

increases, apart from the case of 10o in downstream. It maybe caused by the separation and

attachment processes. In addition, the detailed modification of flow characteristics that takes

into account the cylinder inclination and plate curvature is described. Hence, the nature as

well as the juncture flow around the cylinder mounted on the curved plate also reveals.
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5. UNSTEADY NUMERICAL SIMULATION

5.1. Introduction

This chapter presents 3-D numerical solutions of unsteady incompressible turbulent flow

around the circular cylinder inclined laterally with an angle of 30o and mounted on the curved

plate. The curved plate has the convex curvature of 50D. This simulation is performed by

using the FLUENT simulation package to solve the unsteady Navier-Stokes equations. The

Reynolds number used is 3,900.

5.2. 3-D computational domain and boundary conditions

The downstream domain extended 35R behind the model to capture vortex shedding in the

wake region, and for upstream boundary is located at 15R. The lateral boundaries determined

far from the centerline through the cylinder is 25R. The cylinder has the depth of 10R to

incorporate the span-wise effect.

The boundaries of the computational domain were set at sufficiently remote distance from the

model to ensure satisfaction of inlet and outlet conditions. The inlet boundary condition on

the computational domain is Velocity-Inlet, and in all cases, the speed is set at 0.0196m/s. The

outlet boundary condition is Pressure-Outlet, and in all cases, this is set at a pressure of

101325 kPa. The top and lateral faces of the computational domain are set to be symmetric,

since the simulated model is symmetric. Finally, the bottom face and the cylinder are set up to

wall boundary conditions.

5.3. 3-D mesh

In this work, a structural hexahedral mesh is employed. The grid used for this simulation is

shown in Figure 5.1. In the boundary layer around the cylinder, the first cell height is

0.0001m and growth factor does not exceed 1.1.

Figure 5.1. Mesh domain
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5.4. Modeling turbulent flow

After meshing the geometry in GAMBIT the meshed file was exported to FLUENT and ready

to be simulated. FLUENT is implicitly simulating the phenomenon by giving an option for

transitional flows correcting when S-A is used as a turbulent flow model. Recent research on

a circular cylinder simulation showed different approached different turbulence models. In the

S-A model, the Turbulence kinetic intensity I is given by the equation of 3.3 and the length

scale l is given by the equation of 3.5. By the calculation, the value of I is 4.3658% and of l is

0.1167m.

According to Huner B. et al. (1977), the time step (∆t) was chose to be small enough to

account for the smallest cell in the computational domain as follows:

velocity

sizecellTypical
t =∆ = 0,005s

The residuum of convergence of the solution is always maintained at 10-6 to ensure that the

errors can be acceptable. The number of time steps in the simulation is 50,000 time steps,

which has been found to be enough for the flow to develop completely.

5.5. Simulation results and discussions

5.5.1. Flow field

Figure 5.2 shows comparisons of the flows at different relative times: 5s, 50s, 100s, 150s,

200s and 500s. It is seen that the high velocities appears two sides of cylinder, but, the highest

velocity reveals on the side which the cylinder inclined. The symmetry of velocity disappears

due to the movement of the stagnation point. The lower velocity region is behind the cylinder.

The vortices spread in downstream and interact with the downstream flow. After t = 200s, the

shape of vortex shedding is stable, the change of velocity is not so much.

Figure 5.2. Comparison of velocity contours at different flow time
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In addition to the modification of velocity field, the pressure field is also changed due to the

inclination of the cylinder, as shown in Figure 5.3. The symmetry of the solution vanishes

when the stagnation point moves in the side, which the cylinder inclined. In addition, the

stronger pressure gradients are observed in the same side.

Figure 5.3. The pressure field around the cylinder

 Figure 5.4 presents the flow topology around the cylinder. There are two main vortices that

generates the vortex shedding behind the cylinder. The first smaller vortex is located near to

the cylinder. This vortex will moves towards the downstream and coalesce to form larger-

scale vortex right behind of the first vortex. Then, the larger-scale vortex interact with the

downstream flow and vanishes. This process repeated following the time results in the vortex

shedding.

Figure 5.4. The flow topology around the cylinder at Re = 3,900

Figure 5.5 depicts close-up of the flow around the cylinder. It also reveals the movement

direction of the flow past the cylinder.
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Figure 5.5. The velocity vectors existing near the cylinder

5.5.2. Drag coefficients

Throughout the numerical simulation, different parameters of interest were monitored and

recorded, the result of drag coefficients are tabulated in Table 5.1. The unsteady simulation

shows that the total drag coefficient of the cylinder is reduced comparing with the steady

simulation.

Table 5.1. The total drag coefficients

Unsteady Steady

Drag coefficient of the cylinder 0.95035344 0.956929

Drag coefficient of the plate 1.0544992 1.115424

Figure 5.6 and 5.7 show respectively the drag and lift as a function of time. With the drag

coefficient plot, additional to reduction of the mean value, fluctuation in the drag is slightly

reduced. On the other hand, the mean value does not change, but the fluctuation in the lift is

sharply increased. The variation becomes large.

Figure 5.6. Drag coefficient
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Figure 5.7. Lift coefficient
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6. FINAL CONCLUSIONS AND FUTURE WORK

This work done in this thesis has validated the application of S-A turbulence model on the

flow around a circular cylinder through comparison study with experimental results. The

study equips the author with proper modeling skills for the simulation of flow around the

inclined cylinder mounted on the curved plate. The following concludes the findings and

achievements on the study of the flow around the circular cylinder, with some suggestions

and recommendations on the future work upon the completion of the thesis.

6.1. Final conclusions and remarks

The work conducted in this research in very subject orientated in achieving the aim and

objectives of the thesis. By the effort in studying some CFD solvers, modeling the problem,

analyzing the results and doing post-processing, some main conclusions have been drawn as

follows:

− Generation of a suitable mesh is the most time-consuming stage of the numerical

simulation. From the study of physical phenomena of the problem, the computational

domain is discretized by using GAMBIT. Depending on the each problem, there are many

ways generating the grid. Before meshing, the aspect ratio and the thickness of boundary

layer must be paid attention carefully. They are main factors which affect the quality of

mesh very much. However, the most difficult is that how to choose the best and the most

appropriate mesh. To do that, only comparison with the experimental data is reliable. The

simple simulation should be chosen to compare. From modeling the juncture flow, the time

spent for mesh generation may go to approximately 60%-70% of the total simulation time.

− Along with choosing the grid, the turbulence model can be chosen at the same time to save

computational time and effort. Even though, there are a lot of comments as well as

suggestions about selecting the model, they are not correct for all cases. For this work, the

S-A turbulence model is the most appropriate model. Thus, it is used to investigate and

simulate all cases from the flat plate case to the curved plate case.

− The direction of cylinder inclination affects the juncture flow so much. It causes the

modification of flow mechanism such as the change of vortex structure including the

horseshoe vortex and Karman vortex, of pressure velocity distribution and the

hydrodynamic force magnitude. The stronger pressure gradients at the root of the cylinder

inclined longitudinally towards to upstream. For lateral inclination, the symmetry of

pressure field vanishes when the stagnation point moves on the side, which the cylinder
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inclined. Additionally, the stronger pressure gradients are observed in the same side. These

comments are valid for both of Reynolds numbers of 3,900 and 1,000,000.

−  If taking into account the plate curvature accompanied with the cylinder inclination, the

pressure fields and the forces acting on the cylinder change strongly. The smaller

curvatures determine the larger pressure. This leads to an increase of the total drag

coefficient. An about 67% increase of the curvature determines the increase of the total

drag coefficient of about 1.2% at Reynolds number of 3,900 and 0.7% at Reynolds number

of 1,000,000.

− Furthermore, at Reynolds number of 3,900, the total drag coefficients decrease when the

inclination angle of cylinder increases, regardless the direction of the cylinder inclination

as well as the plate curvature. On the contrary, at Reynolds number of 1,000,000, the total

drag coefficient mostly increases along with the increase of cylinder inclination angle in

upstream and downstream cases, except for the case of 10o angle in downstream for all

convex and concave cases. It seemingly caused by the modification of recirculation zone

behind the cylinder.

− The pressure fluctuations on the appendage are the result of several mechanisms, including

normal turbulent fluctuations, interactions between horseshoe vortices, and upstream and

downstream separations and reattachments.

6.2. Future work

In this section, some recommendations for further research on the work performed on this

thesis are listed as follows.

i. Carrying out the experiments with the circular cylinder mounted on the curved plate

− The experiments are necessarily performed not only to validate the results of numerical

simulation, but also to apply many cases in practice. Until now, there are many

experiments carried out with the flat plate and the vertical cylinder or the inclined

cylinder. However, no test has been performed so far for the curved plate. Although

these experiments may require much time and special experimental devices, they are

very significant to understand the juncture flow completely.

ii. The simulation of free surface

− All the simulation cases in this work are done without taking into account the effect of

free surface. There are some remain questions. How does the juncture flow behave

under the free surface condition? How do the characteristics of juncture flow change

due to free surface? To answer those questions, the simulation of free surface is very
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useful and necessary. Sadathosseini S. H. et al. (2008) was successful in the simulation

of free surface waves and wave induced separation. The main goal of his simulation is

to investigate the shape effects on the wave-induced separation when compared with the

hydrofoil. However, only vertical circular cylinder in fluid was simulated, but not taking

into account the effect of juncture. The Volume of Fluid method will be used to

simulate the influence of free surface. That means this method will solve RANS

equations simultaneously for both fluid and air. The circular cylinder mounted the

different shape of plate is also used to make the wave induced separation and vortices.
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