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Abstract 

The work deals with the actual necessity of creating optimal ship designs under 

uncertainty, also referred as Robust Design Optimization (RDO). The consideration of 

uncertainties in the optimization process is the future trend of ship design as a more realistic 

scenario is taken into account leading to the development of more efficient vessels and thus 

more environmental friendly.  

Several optimization methods were tested for a hull form improvement concerning the 

total resistance of the vessel at forward speed in calm water condition. The operational profile 

has been taken into account as a single-objective problem in which several operating 

conditions are suitably weighted, as a single-objective problem in which one operating point 

is dominant while others are considered as constraints and as a multi-objective optimization 

task in which the best design is selected from the Pareto-set. Furthermore, a hybrid method 

via Gauss-Markov estimation was also tested. The robustness was considered via sensitivity 

check on slight variation of uncertain operational characteristics. All the processes are 

compared among them and, in addition, with a single objective optimization process for one 

specific operational condition. Each approach merits and drawbacks are pointed out in an 

investigation of which approach is particularly suited for hull form development. The criteria 

to judge pros and cons are quality of the achieved results (e.g. energy efficiency), 

computational effort (e.g. number of Computer Fluid Dynamics (CFD) runs needed) and 

sensitivity to changes (e.g. influence of slight changes on the operational conditions). The 

study case is an existing vessel that had a change in the operation leading to higher fuel 

consumption. In addition, the optimization is focus on changes of the forebody form of the 

vessel (e.g. bulbous bow). 

Finally, the analysis is suitable to assist ship designers regarding the necessity of 

performing a robust optimization or a typical optimization process plus sensitivity analysis 

and thus create in short time optimal ship designs even under uncertainties. 

. 
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CHAPTER I 

1. INTRODUCTION 

This thesis deals with the actual necessity of creating optimal ship designs under 

uncertainty, also referred as Robust Design Optimization (RDO). The optimization process of 

ship hull forms is suffering an increasingly necessity to undertaken several operational 

conditions and slight variations on the navigation and construction definitions. Thus, to 

achieve high-quality results, which kind of optimization process is more suitable? What about 

computer effort? I.e. which approach is particularly suited for hull form development? These 

are the main questions that are investigated in this thesis work. 

The study was carried out based on the FRIENDSHIP-Framework (FFW) software thanks 

to a close cooperation between the EMSHIP European Program in Advanced Ship Design 

with Prof. Dr.-Ing. R. Bronsart from the University of Rostock and the German company 

FRIENDSHP SYSTEMS.  

1.1. Motivation 

Lots of effort are been put into the development of more environmental friendly devices 

for the transport of goods and people. This thesis deals with this actual task, yet in a different 

approach than usually. The optimization applied on ship design process represents a potential 

benefit for environment and great payoffs. A vessel that is optimized, consumes less fuel, 

therefore it is better for the whole chain of the transportation system including the 

environment itself. However, for a good performance uncertainties must be taken in account 

in the design phase. In the other hand, the approach to make it possible, Robust Design 

Optimization (RDO), is very complex and time consuming and finally not yet consider in 

most of the design projects. This work is motivated by the challenge to understand and clarify 

which approach is particularly suited for the development of a robust hull form design and 

thus create in short time optimal ship designs even under uncertainties. 

1.2. Objective 

The objective of this investigation is to study the possibility of performing a roust 

design optimization of a vessel including the operational profiles and yet focus in variations 

of the hull form. In addition, Computational Fluid Dynamic (CFD) is to be used to analyze the 

efficiency and sensitivity of the model. Furthermore, is of the interest to compare several 

optimization approaches and its pros and cons that can be defined by the quality of the 
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achieved results (e.g. energy efficiency), computational effort (e.g. number of CFD runs 

needed) and sensitivity to small changes (e.g. influence of operational conditions). Finally, the 

results could orient ship designer about the necessity/possibility of performing a robust 

optimization or a typical optimization process, sensitivity analysis etc.  

1.3. Methods and Procedures 

A model of an existing vessel is created and evaluated under several different optimization 

approaches with the goal to understand how to deal with optimal ship designs under 

uncertainties and several operational conditions. 

The study output a series of data that possibility the analysis and comparison of every 

different optimization process applied to a same problem basis (model, conditions etc.). 

To proceed with the study regarding different operational conditions, two main operating 

characteristics are taken into account. And, the optimizations focus on local variations of the 

hull form (e.g. bulbous bow, shoulder) and analyzed via CFD regarding the total resistance of 

the vessel. Finally, the robustness of the model is considered by means of sensitivity analysis. 

1.4. Research Overview 

The numerous optimization design process that were performed was done in the order 

presented in the following scheme.  

                  
The scheme summarizes in topics the optimization processes that were used in the study. 

Single-objective problem for each operation condition; single-objective problem in which 

several operating conditions are suitably weighted; single-objective problem in which one 

operating point is dominant while others are considered as constraints; multi-objective 

optimization task in which the best design is selected from the Pareto-set and Hybrid method 

(via Gauss-Markov estimation)   

Parametric model

Single Objective Function

Single Obj. with Weighted Functions

Single Obj. Func. with Constrained Conditions

Multi-Objective Function

Hybrid Optimization 

Results and Analysis
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CHAPTER II 

2. LITERATURE REVIEW 

In the recent years it was possible to see some progress in optimization for ship design 

(Ray el al, 1995 [1], Pinto et al 2004 [2], Papanikolaou 2009 [3]). However, these methods 

are not generally accepted or widely used in practical ship design. The explanation for this is 

not simple. It is definitely true that there are some analytical and computational obstacles that 

still have to be overcome in order to make the optimization process a practice on ship design. 

But, furthermore, robust and automated procedures has shown to be a serious challenge as 

well as the necessity of undertaken several operating conditions (Diez and Peri 2010 [4], 

Nowacki 2009 [5], Zang et al 2004 [6], Diez et al 2010 [7], [8]).  

The optimization applied on ship design process represents a potential benefit and great 

payoffs. However, actual products, such as vessels, must have a good performance under 

uncertain or variable operational conditions. Regarding this aspect Marczyk 2000 [9] states 

that, in a deterministic engineering context optimization is associated to specialization and 

consequently, it is the opposite of robustness. Robust design optimization objective is to 

overcome such drawback, Diez and Peri 2010 [4], Diez et al 2010 [7], to have an optimal 

solution able to keep the good performance characteristics in a wide range of uncertain 

parameters involved in the design process. 

In this literature review some aspects of design optimization and robust optimization is 

presented for the better understanding of the problem and highlight critical aspects that must 

be taken into account. 

2.1.  Design Optimization 

Design optimization, namely the selection of the best solution out of many feasible ones is 

intrinsically coupled with the design process, Papanikolaou 2009 [3]. A ship design may take 

into account several complex functions (cargo storage, propulsion, navigability) and the 

complex integration of those various systems. The optimization of a ship corresponds to the 

interest of the designer, which can lead to conflicting requirements resulting from the design 

constrains and optimization criteria (optimization for cost efficiency, for satisfactory safety of 

the cargo, for the environmental requirements). The way to overcome this difficulties and to 

outcome a compromise is with intensive discussions between highly experiences decision 
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makers, ship designer, ship builders and end-users. Once defined the main objectives and 

proposes of the vessels the design optimization can take place. 

Why optimize? As seen the optimization process can be very complex involving many 

aspects of engineering, computer sources , robust analysis and conflicting interests of clients, 

safety etc. However, an optimized design can diminish the risk associated with new builds 

and moreover because it provides higher profits. In a competitive market a better design 

represents a lot, regarding robust designs, for instance, in the early and mid 80’s Motorola 

applied the Six Sigma Quality strategy, +-σ standard deviations between the mean and the 

nearest specific limit, and documented more than $16 billion in savings, Zang et al 2004 [6]. 

In addition, the time-to-market is constantly decreasing and to push the knowledge gained 

during the early design stages helps in all parties involved (shipyards, consultants, model 

basin, etc) and all team who contribute to the success of the design (managers, naval 

architects etc) to develop a better design, Harries 2007 [10]. The better knowledge in early 

stage acts directly in the complex problem described by Papanikolaou 2009 [3], pointed out 

herein. 

 

Figure 1 – Knowledge accumulation and relevance for decision-making Harries 2007 [10], Harries 

2013 [11].  

The consequence, in cost, due to the early stage knowledge is well explained in the 

Figure 2. The cost reduction is a direct effect of the knowledge gain thanks to the integration 

of ship-design modeling, simulation, and optimization.  
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Figure 2 – Cost in design Harries 2013 [11] 

Finally, the importance of performing an optimization process was cited, as to have a 

better product and increase the profits. Also, was briefly described some intricacies of the 

process, Marczyk 2000 [9], Diez and Peri 2010 [4], Nowacki 2009 [5], concerning computer 

aide and robust design challenges. In addition, some intrinsic complexities of the problem 

presented on Papanikolaou 2009 [3] work, regarding the conflicts of interests and regulations 

of all parts involved in the project. Nevertheless, many works is been done to solve these 

problems in a certain way to make the design optimization process possible to be widely used 

in practical ship design, Harries 2007 [10], Duffy et al [12], Harries 2007 [13], Marinmec 

2008 [14], Kim 2008 [15], Jacquim 2007 [16]. However, robust ship design optimization still 

is a big challenge.  

 

2.2. Generic Ship Design Optimization Problem 

Due to the holistic ship design characteristic it is necessary to undertake multi-

objective and multi-constrained optimization procedures. The generic ship design 

optimization problem and the basic elements are defined by Papanikolaou 2009 [3] as: 

 Optimization criteria (merit functions, goals): This refers to performance/efficiency 

indicators that may be eventually reduced to an economic criterion. The ship design 

optimization criteria are in general complex nonlinear functions of the design 

parameters (vector of design variables) and are in general defined by algorithmic 

routines in a computer-aided design procedure. 
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 Constraints: This refers to a list of mathematically defined criteria resulting from 

safety, market conditions, cost of materials or other case-specific constrains.  

 Design parameters: This refers to a list of parameters as ship's main dimensions 

 Input data: This includes traditional owner's specifications/requirements, initial form 

etc 

 Output: This includes the entire set of design parameters for which the specified 

optimization criteria/merit functions obtain mathematically extreme values (minima or 

maxima); for multi-criteria optimization problems optimal design solutions are on the 

so-called Pareto front and may be selected on the basis of tradeoffs by the decision 

maker/designer.  

Figure 3 resumes schematically the aforementioned optimization problem. 

 

Figure 3 – Generic ship design optimization problem defined by Papanikolaou 2009 [3] 



Robust Design Optimization for Operational Profile 21 

 

“EMSHIP” Erasmus Mundus Master Course, September 2012 – February 2014 

 

Figure 4 – Notional Pareto frontier in two-objective space, with objectives A and B to be minimized. 

(a) Continuous frontier, showing regions where objective B can improve significantly with little 

tradeoff of objective A. (b) Discontinuous frontier, with non-Pareto optima at the concave. (c) 

Discontinuous frontier with two non-Pareto, feasibility-limited regions. (d) Non-conflicting objectives, 
showing local optima. Taken from Thomas 1998 [18]. 

For the exploration and final selection of Pareto design solutions a variety of strategies 

and techniques may be employed as those presented in Harries et al 2003 [17] and Thomas 

1998 [18]. 

2.3. Robust Optimization 

The classical optimization design process do not consider uncertainties and as 

consequence the performance of the final design may significantly drop in off-design 

conditions, when the deterministic assumptions used no longer hold, Diez et al 2010 [7]. The 

probability that the product fail is very high, 50% in accordance with optiSLang [19], due to 

the fact that in many cases the optimal case lies close to a constrain.  

In the last twenty years, various non-deterministic methods have been developed in the 

attempt to consider uncertainties on product design. Zang et al 2004 [6] classified these 

approaches into two classes: reliability-based methods and robust design based method. The 

reliability methods estimate the probability distribution of the system’s response based on the 
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probability distribution of the parameters. However, the variation is not minimized in this 

approach, which is mainly used for risk assessment. In the other hand, robust design improves 

the quality of a product by minimizing the effect of uncertainties without eliminating the 

causes. 

A design is considered robust when it is insensitive to the effects of variability, as 

operational variations, construction uncertainties etc. In Robust design the uncertain 

parameters are taken into account by the usage of probabilistic distributions which is 

somehow included in the definition of the optimal criteria (objective function). The 

foundations of robust design was developed by Taguchi in the 1950’s and has been 

successfully applied to various industrial fields (Zang et al 2004 [6], Beyer et al 2007 [20]). 

 

Figure 5 – Different types of performance variations. Zang et al 2004 [6]. 

The Figure 5 presents different types of performance variations, where the big dot denote 

the target and the small points represents the response distribution and the associated 

distribution density function. The item (d) on the figure represents the aim of robust design, 

which is to make the system response as close as possible to the target with low variations 

without eliminating the noise factors. (Zang et al 2004 [6], Phadke 1989 [21]). 

The typical optimization process aims to minimize the objective functions, differently 

the robust design optimization objective is to minimize both the deviation in the mean value 

and the performance function, subject to constrains. (Jurecka 2006 [22]).  

In order to clarify the concept the application performed by Zang et al 2004 [6] in a 

dynamic system is briefly presented on Figure 6 . Where RD’s are solutions obtained with 
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different weight on the objective function, which considers the mean value and the standard 

deviation. RD1 represents the optimization performed to minimize the elevation in a given 

frequency; TD is a reference solution also optimized for a given frequency but with a higher 

value of the damping coefficient, these results represent the traditional optimization process. 

For RD11 the optimization is performed with the objective to minimize the standard 

deviation. In the results the trade-off between the mean value and standard deviation can 

clearly be observed as the bigger the importance of the standard deviation on the objective 

function the flatter is the response (insensitive to variations on the frequency). Finally, a 

robust design would be RD6, for example, which compromise the good (lower) response for 

the given frequency, but also presents lower response for others frequency as it as an 

uncertainty. 

 

Figure 6 – Robust design results of a mass-spring system compared with traditional solution. Zang et 

al 204 [6] 

Figure 7 illustrate schematically an optimization process that include uncertainties of 

the design variables, objective function and constrains. 

 

Figure 7 – “Sources of uncertainty in design optimization” optiSLang [19] 
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The quantities of mean and standard deviation may be calculated, if the PDF 

(Probability Density Function) is known. However, for the ship design application these 

PDF’s are usually unknown and so often it is assumed that the variables have independent 

normal distributions as in Diez and Peri 2010 [4] and Diez et al 2010 [8]. 

In robust design the management of uncertainties became very important. The source 

of uncertainty might be classified into two main types, external and internal (Diez and Peri 

2010 [4], Du and Chen 2000 [23]). External ones are related to design variables as operating 

conditions. Internal uncertainties are related to the accuracy in computing.  

In accordance to Diez and Peri 2010 [4], the operational profile and environmental 

condition may be considered as intrinsic stochastic functions, which mean values and standard 

deviations are not influenced by the designer. The typical optimization process uses the 

deterministic approach to manage different operating profiles in the design optimization as a 

linear combination of the ship performance regarding different operating conditions. 

However, on robust design the optimization is focus on the uncertain variation of the 

operational profile, undertake on a stochastic point of view. The aim is to minimize the effect 

of the unknown involved, without suppressing it. 

Moreover, in accordance to optiSLang [19] there are two possibilities to solve a RDO 

(Robust Design Optimization) problem, an iterative way or by the usage of response surfaces. 

In the iterative way, the problem is solved by the usage of deterministic methods, and then a 

robustness evaluation at the deterministic optimum is performed. After that, another 

optimization process is performed within different scenarios and the related robustness is also 

achieved. This process is repeated until the wanted robustness value is achieved. This 

approach is similar to the “multi-point optimization” described by Diez and Peri 2010 [4], in 

his work the authors highlighted a drawback of this process, which is that it depends on 

designer experience and sensitivity. Furthermore, no information about the performance 

variation is available to the optimizer. 

Finally, one of the major barriers in the robust optimization application is the 

computational expense of the uncertainty analysis, Jiangtao et al 2010 [24]. Additionally, the 

author propose the surrogate model as a possible solution to overcome this difficulty, the 

same solution is used by Jing et al 2013 [25], both with application on aeronautics. 
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CHAPTER III 

3. CASE OF STUDY 

3.1. The Vessel 

The study relies on an existing RoPax (cargo and passenger ferry) of the shipping 

company Acciona Trasmediterranea. The operational condition of the designed vessel had 

changed and consequently a gap for improvement and fuel saving is expected. On this scope 

hull form optimization specialists engineers of FRIENDSHIP SYSTEMS performed a retrofit 

study of the vessel. A small area of the hull (bulbous bow) was selected to be optimized in 

hydrodynamic terms of total resistance of the vessel and concerning the actual operational 

condition of the ship. 

The robust optimization process, topic of the herein research; should guarantee good 

performance even under uncertainties in operational profile. Thus, the RoPax vessels became 

a natural candidate to demonstrate advantages and disadvantages of the implementation of 

robust optimization method in the ship hull form design versus a typical optimization process. 

Furthermore, it possibility to demonstrate the advantages of an early design optimization, 

even when maintaining the hull form main characteristics. 

 

Figure 8 – Case of Study. RoPax ferry [26]  
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Table 1 – Main dimension of the vessel 

Main Dimensions 

LOA = 172 m 

Lpp = 157 m 

Beam = 26 m 

Draft = 6.2 m 

GT = 26 916 t 

 

3.2. Operational Profile 

The robustness of the hull form is checked regarding the operational profile, more 

precisely the observed variation on draft and speed of the ship during her operation. Sea states 

are also a typical operational variation that can classify a vessel as robust or not, but it is not 

in the scope of this work. 

The average velocity and draft of the vessel during the operations are to be used as the 

main condition for optimization. The RoPax vessel has higher probability of navigation with 

speed above the average than slower. In other words it has to be able to keep schedule even on 

a port delay scene. Consequently, the second velocity condition considered is slightly higher 

than the mean speed. 

 V1: Average velocity. Condition used for typical single objective optimization 

process. 

o Fn1= 0.259. V1= 19.77 Knots.  

 V2: Above average velocity. Together with condition 1 (V1) is used for multi-

objective optimization process 

o Fn2= 0.288. V2= 22.00 Knots 

Finally, the draft of the vessel varies quasi randomly, thus a small plus, minus variation of 

it is used for the robustness check. 

 T: Average draft. Condition used for typical single and multi-objective 

optimization task. 

o T= 6.20 m 

 T ±  ∆𝑡 : plus, minus variation of draft for robustness check. 
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4. PARAMETRIC MODEL 

4.1. Parametric Approach 

Parametric models permits geometry variation defined by a few parameters. For example, 

a design of a cube with 6 sides. 8 vextex points are needed to define the cube, each point has 3 

(X, Y and Z) coordinate information, wich leads to a big amount of data to define and vary 

the cubic geometry. In the other hand, a parametric model of a cube will be the case wich the 

form is defined by a few parameters as, length, width and depth. 

 

Figure 9 – Left Geometric model of a cube defined by its vertexes. Right: Parametric model of a cube 

defined by its main dimensions. 

Finally, a parametric model possibility the automatic form variation, without any 

manual vertex manipulation, by a few parameters keeping the geometry as a cube, or a hull 

form. For further information on parametric design please refer to (Harries 1998) [27] 

The parametrical model of the case of study was created usign FRIENDSHIP-

Framework via advanced features of the software as meta surfaces which allows the user to 

design parametric surfaces based on arbitrarily complex curve descriptions.  

The model agrees with the vessel geometry based on the lines plane of the real vessel 

and provided dimentions. 

 
Figure 10 – Lines plan of the RO-PAX Ferry 
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Figure 11 – Parametric model and its control curves 

 

 
Figure 12 – FRIENDSHIP Framework overview 

 

4.2. Parameters 

The definition of a fully parametric model of an entire hull form is based on a large 

number of parameters. These parameters are the input that defines the geometry and its 

variation can imply on large changes (e.g. the Beam and length of the vessel) or small details 

(e.g. the fullness of the upper part of the bulbous bow). 
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In order to optimize the vessel a few parameters has to be defined as the critical ones. In 

the case of this study only the forebody of the ship is to be optimized thus, some parameters 

are selected to control the changes on the selected area of the geometry. The parameters 

selection was based on an extended study of the influence of each variable regarding it 

optimization improvement i.e. the “capability” of each parameter on reducing the total 

resistance of the vessel. The study was divided in three parts; Study_1, 2 and 3 

 Study_1 

12 Design Variables [5 Bulb, 3 water line, 4 section curve and shoulder] 

 Study_2 

7 Design Variables [3 Bulb, 1 water line, 3 section curve and shoulder] 

 Study_3 

10 Design Variables [4 Bulb, 2 water line, 4 section curve and shoulder] 

It is known from experience that the number of parameters should be kept as 

minimum as possible for an efficient optimization process. Study_1 corroborates this concept 

showing that twelve design variables is a large number leading to a big number of designs to 

cover all possible combination of parameters. Furthermore, the design of experiments (DoE) 

study provides information enough to classify the design variables in order of influence to the 

resistance reduction. It is necessary to mention that this is a tentative classification due to the 

fact that the range (which defines de percentage of parameter variation) is defined by the 

designers and so in the classification. Anyhow, this classification helps on the design variable 

selection. 

Table 2 – Example of design variables influence on the total resistance 

Variation to 0.1% reduction of Rt 

Design Variable Deviation [%] 

Shoulder Position 7 % 

DWL Fullness 10 % 

Bulb Beam 11 % 

Length 27 % 

Entrance Angle 38 % 

… … 

 

The second study, with a small number of parameters, proved that 7 design variables is 

not enough to reach all important form variation that possibility the optimization to derives to 

a geometry with real improvement of the total resistance. 
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Table 3 – Comparison between Studies 1, 2 and 3 regarding number of design variables and 

optimization efficiency 

 Design Var. Feasible Designs CFD runs Performance 

Study_1 12 64% 116 2.03% 

Study_2 7 83% 111 1.57% 

Study_3 10 78% 141 1.87% 

 

Finally, the model with ten parameters (Study_3) was chosen for further studies as it 

presents a good behavior during the optimization process, not limiting much the variety of 

forms (low number of design variables), neither leaving it too free which leads to a large 

number of unfeasible designs (due to the high number of design variables) 

In Figure 13 the optimization results for the three cases is presented. In the abscissa is the 

number of designs and in the ordinate axis the total resistance of the vessel in terms of 

percentage related to the resistance of the base model (base model= 0%). The “dots” 

represents the quasi random search (SOBOL method) and the connected points are the 

optimization process (TSearch).  

 

Figure 13 – Sobol + TSearch for the three cases of Study. 
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4.3. The Model 

The parametric model was created using FFW with a big number of parameter that defines 

and control the shape of the hull. Default values of the parameters generate geometry with 

identical characteristics of the base model vessel. For the optimization process only the 

forebody is changed and this variation is made via 10 parameters that are described in the 

following. 

 
Figure 14 – Parametric model. Diver view created at FFW. 

Bulb variation 

 Bulb beam: Controls the width of the bulb  

 Bulb length: Defines the length (X position) of the forward tip of the bulb 

 Bulb height: Defines the high (Z position) of the forward tip of the bulb 

 Bulb after fairing: Defines the inclination of the after part of the bulb that connects it 

to the hull. 

 
Figure 15 – Bulb quantities given by Kracht 1978 [28]. Bulb Beam = BB/2. Bulb Length=LPR. Bulb 

Height= ZB 
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Figure 16 – Bulb form variation on FFW. 

Water line variation 

 Entrance angle: Controls the entrance angle of the waterline at the bow regarding 

the X-Y plane. 

 Waterline fullness: Controls the area of the waterline (X-Y plane) keeping the 

same angles at both ends. 

 

Others forebody variations: 

 Flare at DWL: defines the inclination of the section curve at water line position. 

 Section area: varies the forebody volume. 

 Section area longitudinal distribution: distribution of volume along x-axis. 

 Shoulder position: Defines the variation of the shoulder X position. 

 
Figure 17 – Illustration of the section area variation (triangle shows the affected area, arrow point the 

variation on the area distribution). 
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4.4. Constraints 

In order to generate, by automatic parameters variation, only desirable and smooth 

surfaces some constraints are used. The design variables range is setup in a way to cover all 

possible variation of each parameter (e.g. from a thin to a wide bulb). However, some 

combination of parameters are not appreciated as a design of a wide bulb combined with a 

narrow slim body just after it could induce some undesirable vortices illustrated in Figure 18 

 
Figure 18 – Top view of the cut bulb at Max Bulb Beam. Illustration of possible fluid separation. 

The “pin head” bulb geometry happens due to the combination of some parameters. 

This shape could be avoided by limiting the range of the related parameters, but then many 

interesting possible designs would be lost. A second solution for this problem could be to co-

relate some of these parameters, in a way that both regions vary in the same “direction” e.g. 

thinner the bulb, slender body. However, by this method the angle highlighted at the Figure 

18, for example, would be fixed, discarding the possibility of optimization of such angle. 

Finally, some constraints are used to avoid unwished designs. For the bulb angle a limit of 16 

degrees is defined, the number is a common sense and don’t rely in any scientific research. 

That constraint and some others are described in the following.  

 Bulb angle: Avoid the “pin head” geometry of the bulb by analyzing the normal of the 

surface at the aft bulb region. 

 
Figure 19 – Normal arrow at specific point on bulb surface to control and avoid “pin head” 

geometries. 
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 Concave bulb: Avoid concave geometries on the top of the bulb. 

 
Figure 20 – Leftt: Pressure coefficient at a “heart shape” bulb. Right: Points “A” and “B” used to 

shape control  

 Aft bulb fairing high: Avoid the aft fairing of the bulb to be higher than the draft, to 

guarantee smooth offsets. 

 

Figure 21 – Illustrate the controls points “A” and “B” used to avoid unwished designs due to the cross 

of the aft fairing of the bulb and the hull form at dwl.  
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5. CFD METHOD 

In order to perform an optimization of a hull-form regarding the resistance, seakeeping etc 

the corresponding value must be somehow estimated, for that CFD is a suitable tool. There 

are several of kinds of solvers and which one has their own pros and cons for each specific 

application regarding accuracy and computational costs. As shown on Figure 22 very accurate 

and detailed methods are very costly, thus it is very important to well select the tool to be 

used in each case in order to achieve results that represents well the phenomena necessary for 

the study within the minimum cost possible. 

 

Figure 22 – CFD methods, CPU time x Accuracy, Ferrant [29] 

Potential flow codes are more commonly used for optimization regarding the wave 

resistance by evaluating the variance of fore and midi body of the hull forms. For the stern 

region, where viscous effects are dominant, the study should be done by the usage of RANS 

solvers. The extended time need to perform a resistance prediction considering the viscous 

effects together to the big amount of designs that must be evaluated in order to perform the 

proposed study, robust optimization, led the authors to concentrate the optimization on the 

forebody region. Thus, potential calculation is suitable for the resistance prediction of the 

vessel and widely used. 

The total resistance of the vessel is estimated by the wave pattern resistance that is 

computed by SHIPFLOW CFD software, SHIPFLOW CFD is jointly developed in Flowtech 

International AB and Chalmers University of Technology.  

To compute the resistance, two techniques are used: pressure integration and transverse 

wave cut obtained by the non-linear panel method (potential-flow). In accordance to Koh et al 
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2005 [30] the transverse wave cut technique is the most robust one. The pressure integration 

method is sensitive to local irregularities of the panels that describe the hull surface; in 

addition the wave pattern is less sensitive to these irregularities, which could explain that the 

wave cut technique is superior to pressure integration. The wave profile plan must be located 

at some distance from the model in order to avoid the non-linear effects and there is no 

requirement for any analytical extension in the transverse wave cut technique, Koh et al 2005 

[30]. In SHIPFLOW, the multiple TWC method (MTWC) is used to predict the wave pattern 

resistance, this technique uses several, non-equidistant transverse wave cut behind the ship. 

Furthermore, TWC’s can be truncated at any length outside Kelvin wedge leading to a lower 

dimensions requirement of the free-surface grid and thus reducing the computational time. 

Further details of the CFD configuration used for total resistance prediction are given in 

the following pages. 

5.1. Mesh 

A fine mesh is auto generated on SHIPFLOW, by XMESH, for both hull and free-

surface based on the offsets of the parametric model, with a number of panels of 10 thousands 

approximately. 

The XMESH module is also executed during the potential flow computation as the 

sinkage, trim and non-linear iterations are performed and the panelization is updated for each 

iteration. Furthermore, XMESH generates the panels used for a sink-disk representation of a 

propeller in the potential flow. The sink-disk agrees with the geometry of the real vessel 

propeller. 

 
Figure 23 – Detail of mesh of free surface auto generated on SHIPFLOW 
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Figure 24 – Detail of mesh on body surface auto generated by SHIPFLOW 

5.2. XPAN 

The potential flow solver used on the SHIPFLOW is the XPAN, which is based on a 

surface singularity panel method. Some of the considerations are listed below: 

 Transom stern is considered 

 Free sinkage and trim condition 

 Non-linear free surface boundary condition 

 Single-model solution as base flow 

5.3. XBOUND 

The viscous resistance is estimated by two different methods, ITTC-57 equation and 

XBOUND which computes a thin boundary layer on the hull (Momentum integral equations 

along streamlines traced from a potential flow computation). 

 

Figure 25 – XBOUND, streamlines traced from the potential flow computation. 
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The method given by ITTC 57 is the Equation 1: 

𝐶𝑓 =  
0.075

 𝐿𝑜𝑔𝑅𝑛 −2 2  (Equation 1) 

The second approximation, XBOUND, has a higher computational cost, but it is 

considered to be more accurate. The difference between both calculations is computed for 

some designs as following. 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  % =   
𝑅𝑡 𝐼𝑇𝑇𝐶   −𝑅𝑡𝑋𝐵𝑜𝑢𝑛𝑑

𝑅𝑡𝑋𝐵𝑜𝑢𝑛𝑑
  (Equation 2) 

Finally, considering all randomly selected designs the average and standard deviation of 

this difference is in Table 4. 

Table 4 – Design of Experiments random selected designs, table presents the statistics of the 

difference between total resistance computed via ITTC and XBOUND methods 

DoE ITTC x XBOUND 

Min 1.60 % Stand. Deviation 

Mean 2.10 % 
0.39 % 

Max 3.19 % 

 

Considering that the best design obtained in the presented DoE presented an improvement 

of only 1.1% relative to the total resistance of the base model and that the difference between 

the calculation using ITTC formula and XBOUND method is around 2.1% with standard 

deviation of 0.39% it is decided to perform the XBOUND calculation for all design on the 

optimization process. Furthermore, the total resistance calculation by XBOUND is used as 

objective function on the optimization process. 

 

Figure 26 – Result example. Pressure on the body surface and free surface elevation for two different 
models displayed simultaneously, one half design at starboard and other design on the port board.  
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6. SINGLE OBJECTIVE OPTIMIZATION 

6.1. Design of Experiments 

The optimization processes applied on this project consist, as first step, to perform a study 

of the design space. Usually the Design of Experiments (DoE) is driven by a random or quasi-

random process and it has a big importance as well to drives the optimization process towards 

the global optimum and not to local minimum when performing deterministic optimization 

process for instance. See Figure 27 for illustration 

 

Figure 27 – Exploration of design space, Harries [11] 

Design of Experiments techniques enables designers to determine simultaneously the 

individual and interactive effects of many factors that could affect the output results of the 

design. This technique was also applied to select the design variable used on the optimization 

in this project as seem in section 4.2 Parameters. 

For this project the DoE is performed using the SOBOL method. SOBOL or also known 

as quasi-random or low discrepancy sequence is a deterministic algorithm that imitates the 

behavior of a random sequence with the aim of performing a uniform sampling of the design 

space.  

The Figure 28 represents the sampling of the design space obtained via SOBOL where 

each column, defined by “dots”, are one design variable and the “dots” represent one single 

design and in the ordinate it is represented in percentage the relation of the design variable in 

the defined range (bounds) obtained by the following: 

𝑖𝑓 𝐷𝑒𝑠𝑖𝑔𝑛  𝑉𝑎𝑟 > 𝑀𝑒𝑎𝑛  𝑉𝑎𝑙𝑢𝑒 : 𝑌 =
𝐷𝑒𝑠𝑖𝑔𝑛  𝑉𝑎𝑟 − 𝑀𝑒𝑎𝑛  𝑉𝑎𝑙

𝐵𝑈𝑝𝑝𝑒𝑟  𝐵𝑜𝑢𝑛𝑑  – 𝑀𝑒𝑎𝑛  𝑣𝑎𝑙𝑢𝑒
   (Equation 3) 

𝑖𝑓 𝐷𝑒𝑠𝑖𝑔𝑛  𝑉𝑎𝑟 < 𝑀𝑒𝑎𝑛  𝑉𝑎𝑙𝑢𝑒 : 𝑌 =
𝑀𝑒𝑎𝑛  𝑉𝑎𝑙 − 𝐷𝑒𝑠𝑖𝑔𝑛  𝑉𝑎𝑟

𝐵𝐿𝑜𝑤𝑒𝑟  𝐵𝑜𝑢𝑛𝑑  – 𝑀𝑒𝑎𝑛  𝑣𝑎𝑙𝑢𝑒
  (Equation 4) 
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Figure 28 - Design space sampling performed using SOBOL 

Finally, the DoE study within 55 feasible designs presented a good result, as it is shown to 

well cover the design space, all range for every design variable. With these results in hands, 

the best design can be selected and on it the optimization technique performed.  

6.2. Optimization Process 

For the optimization itself the TSearch method was chosen. It consists of exploratory 

moves starting from the initial point, selected after performing an exploration on the design 

space, and followed by global moves in the descent search in successful exploratory moves. 

The solver is reliable for small scaled, single-objective optimizations problems with 

inequality constraints. It detects a descent search direction in the solution space, and keeps the 

search in the feasible domain. More information can be found in Hilleary 1966 [31]. 

In the first case: 

 Objective Function is Total Resistance Rt_XBOUND 

With the conditions of speed/draft: 

o V1=19.77 Knots 

o Draft of T=6.2m 

The Figure 29 presents the results for the optimization process together with the designs 

obtained on the DoE study, displayed by their indexes (order of creation) and in the ordinate 

is the total resistance in percentage relative to the base model. 

𝑅𝑒𝑙. 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝐷𝑒𝑠𝑖𝑔𝑛  𝑅𝑡 

− 𝐵𝑀𝑅𝑡

𝐵𝑀𝑅𝑡

  (Equation 5) 
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Figure 29 – Single objective optimization process via TSearch 

The optimized model has a wave resistance reduction of 12.65%, an expressive result. 

However, regarding the total resistance, where the viscous effects are estimated using 

XBOUND (Momentum integral equations along streamlines), the reduction is of 1.87% 

related to the base model. 

 

 
Figure 30 – Wave height comparison between Base model and Optimized model. 
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Figure 31 – Wave cut comparison between base and optimized model. 

The optimized geometry has a longer and wider bulb as can be observed in Figure 32. 

Furthermore, the shoulder was shifted forward, the volume of the front part of the SAC 

increased and the entrance angle a bit wider than the base model. 

 
Figure 32 – Base model and optimized model (shadow/right) comparison. 

Finally, the same process, TSearch optimization, is done for a second operational 

condition in which the objective function is the resistance at speed V2: 

In the second case: 

 Objective Function is Total Resistance Rt_XBOUND 

With the conditions of speed/draft: 

o V2=22.00 Knots 

o Draft of T=6.2m 
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The model optimized for condition 2 (Min: RtV2) presents a reduction of the wave 

resistance of 4.89%, and for total resistance 1.98% of reduction relative to the base model in 

the condition of velocity equals to 22knots. Furthermore, when comparing both models, 

optimized for V1 and V2, in both conditions the tradeoff can be observed in a seesaw behavior 

of the vessel when changing condition, Figure 33. 

 

Figure 33 – Single objective optimization for V1 and V2 

The model optimized for RtV2 in the contrary of the optimized for RtV1 has a shorter, 

slight higher and wider than the base model. The shoulder was slightly shifted forward, the 

volume of the front part of the SAC reduced and the entrance angle a bit wider than the base 

model. Some of the variations and the pressure coefficient can be observed in Figure 34. 

 
Figure 34 – Comparison of base model and optimized (shadow/left) for RtV2 at V1  
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7. SINGLE OBJECTIVE OPTIMIZATION (WEIGHTED FUNCTION) 

A method to perform a multi-objective optimization is the weighting method, where the 

objective function is defined as a weighting function as the barycenter of all the functions 

used as criteria Guillerm and Le Touzé 2013 [32] 

𝑓𝑤𝑒𝑖𝑔 𝑡𝑖𝑛𝑔  𝑥 =   𝛼𝑖𝑓𝑖 𝑥 ,𝑚
𝑖=1   𝛼𝑖 = 1 𝑚

𝑖=1   (Equation 6)  

7.1. Design of Experiments 

The design space was studied by the usage of SOBOL algorithms where both operational 

conditions were considered on the calculation. The designs analyzed were the same as seem in 

6.1 and so the design space coverage is guaranteed as seem in 6.1. The difference is that the 

analysis of each model, via SHIPFLOW, is now done for all conditions and the relative 

resistance to the base model can be seem in Figure 35. 

 

Figure 35 – DoE [SOBOL] 55designs analyzed for 2 different operational conditions 

Finally, the best design concerning the improvement in both operational conditions is 

chosen having as criteria as the model that is better for both equally: 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎: 𝑀𝑖𝑛  𝑅𝑡𝑚         𝑅𝑡𝑚 =  0.5 ∗ 𝑅𝑡𝑉1 + 0.5 ∗ 𝑅𝑡𝑉2  (Equation 7) 

The design selecting for the DoE can be visualized in Figure 35 as the Design 

“DS2.91_V1&2”. For reference the designs selected for the single objective optimization in 6.2 

that were selected by the criteria of minimum resistance regarding to only one velocity are 
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also highlighted on the Figure 35 as “DS2.48_V1” for optimization for regarding the RtV1 and 

“DS2.73_V2” for RtV2. 

7.2. Optimization Process 

For the consideration of two different operational conditions as objective function on the 

optimization process several techniques were used where the conditions are defined by the 

variation of the velocity (V1= 19.77 and V2= 22.00 Knots). A single objective optimization 

method is performed, in this case TSearch was once again used, and the objective function 

(OF) is defined as following: 

𝑂𝐹 =  𝛼 ∗ 𝑅𝑡𝑉1
+  1 − 𝛼 ∗ 𝑅𝑡𝑉2

  (Equation 8) 

Where α is the weight coefficient  

0 <  𝛼 < 1 

If α = 0or α = 1 it is a single objective problem where only one condition is considered 

and the results would be similar to those observed previously (6.2 Optimization Process) 

The optimization was done by the usage of TSearch tool based on the gradient method. 

Three different values for the weight were considered: 

i. α = 0.25 

ii. α = 0.50 

iii. α = 0.75 

7.2.1. α = 0.25 

The weight of 0.25 means that 25% for the objective function is due to the resistance 

of the vessel at velocity V1 and 75% related to the RtV2. 

In the Figure 36 it can be observed a major reduction of the resistance for the velocity 

2 of 22 Knots, as expected from the objective function defined. It can also be observed that in 

both operational conditions the total resistance is reduced by the weighted method where both 

are considered in the optimization process. Finally, it can also be observed that some designs 

during the process present a worse resistance than the base model (some designs present a 

positive relative resistance for V1) as it is not treated as a constraint, but further on the designs 

is once again improved and the final results presents a reduction of resistance for both speed 

conditions. 
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Figure 36 – Weighted function α = 0.25. Values in % rel. to Rt Base Model at respective condition. 

7.2.2. α = 0.50 

The weight of 0.50 means that each 50% for the objective function is driven by one of 

each resistance analysis of the vessel RtV1 and RtV2. 

As expected the optimization process for α=0.5 has an improvement a bit more 

equivalent for both condition when compare with the others weights. The improvement 

tendency is represented by the arrow on Figure 37 

 
Figure 37 – Weighted function α = 0.5. Values in % rel. to Rt Base Model at respective condition. 
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7.2.3. α = 0.75 

When weight is 0.75, 75% of the objective function is related to the resistance of the 

vessel at velocity V1 and only 25% relative to the RtV2. 

The arrow on Figure 38 shows the tendency of the optimization process for a larger 

reduction for RtV1 (abscissa) when compared to the RtV2 (ordinate). 

 
Figure 38 – Weighted function α = 0.75. Values in % rel. to Rt Base Model at respective condition. 

It can also be observed on Figure 38 the comparison between the three optimization 

process with different weights and that the case of α=0.75 has a higher improvement from the 

initial design. It can be justified as the initial selected model has already a lower resistance for 

V2 (-0.22% for RtV1 and -0.73% for RtV2) which gives more possibility for improvement 

when performing an optimization process. 

 
Figure 39 – Weighted function. Comparison of all optimum designs regarding the Rt for both speed 

conditions. 
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Finally, as it can be observed on Figure 39 that the tradeoff characteristic is presented, 

as expected, when varying the weight, once for higher the weight better is the improvement 

regarding RtV1. In addition the weighted method possibility the optimization of the vessel for 

multiple objectives (Min RtV1 and RtV2), as the vessels is optimized for both V1 and V2 

conditions, and yet using the single objective gradient method TSearch. However, the 

improvement is quite reduced when comparing with the previous method, single objective 

optimization. 
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8. SINGLE OBJECTIVE OPTIMIZATION (CONSTRAINED) 

The second approach used to perform a design optimization considering different 

operational conditions and yet single-objective functions, is via constraints. In this case one 

operating point is dominant while others are considered as constraints. 

𝑀𝑖𝑛: 𝑅𝑡𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜 𝑛𝑃𝑜𝑖𝑛𝑡𝑗      

    𝑓𝑜𝑟: 𝑅𝑡𝑂𝑃𝑖 ≤  𝑅𝑡𝐵𝑎𝑠𝑒𝑀𝑜𝑑𝑒𝑙𝑂𝑃𝑖    (Equation 9) 

Where: i ≠ j. 

8.1. Optimization initial design 

For the selection of the initial model to perform the optimization process, it is a common 

practice to perform a DoE to avoid local minimums as explained and applied in 6.1 and 7.1. 

The design of experiments performed using the SOBOL method and the selection of the best 

design, for the optimization via single objective process with constraints, is the same as the 

design selected on 7.1 as it represents the best design for both operational conditions herein 

considered (RtV1 and RtV2). 

However, in addition to the optimization process applied to the selected design 

“DS2.91_V1&2” it was performed a second study for the TSearch taking as initial design the 

base model.  

8.2. Optimization process 

The optimization method is once again the gradient based (TSearch) and was performed 

for the cases:  

𝑀𝑖𝑛: 𝑅𝑡𝑉𝑎
         𝑓𝑜𝑟: 𝑅𝑡𝑉𝑏

≤  𝑅𝑡𝐵𝑀𝑉 𝑏
  (Equation 10) 

Where: a = [1,2] and b= [2,1] 

Finally, the optimizations of the following cases are presented: 

I. Start point: Base Model: 

a. 𝑂𝐹: 𝑅𝑡𝑉1
    𝐶: 𝑅𝑡𝑉2

≤ 𝑅𝑡  𝐵𝑀  𝑉2
 

b. 𝑂𝐹: 𝑅𝑡𝑉2
   𝐶: 𝑅𝑡𝑉1

≤ 𝑅𝑡  𝐵𝑀  𝑉1
 

II. Start Point: Best SOBOL Design 

a. 𝑂𝐹: 𝑅𝑡𝑉1
    𝐶: 𝑅𝑡𝑉2

≤ 𝑅𝑡  𝐵𝑀  𝑉2
 

b. 𝑂𝐹: 𝑅𝑡𝑉2
   𝐶: 𝑅𝑡𝑉1

≤ 𝑅𝑡  𝐵𝑀  𝑉1
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8.2.1. From Base Model 

Figure 40 presents the results of the optimization process using a gradient based 

method starting from the base model (initial design) for both RtV1 as objective and RtV2 for 

the constraint and vice versa. The results are expressed in terms of the relative resistance to 

the base model in percentage. A greater improvement of the model is observed when using 

this method achieving reductions of the total resistance of the vessel greater than 2.5%. 

 

Figure 40 – Single Objective + Constraints. Optimization for condition 1 & 2 beginning from the Base 
Model. Values in % rel. to Rt Base Model at respective condition. 

When comparing the improvement of the model regarding both conditions a slight 

similar behavior of a seesaw can be observed when varying the objective from one condition 

to another, Figure 41. 

 

Figure 41 – Single obj. with constraints and base model as initial design. Comparison of optimum 

designs regarding the Rt for both speed conditions. 
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Furthermore, a larger percentage of resistance reduction is observed when optimizing 

with constraints than the equivalent optimization with weighted function, it might be justified 

as in this case there is no competition among the objectives. Finally, it is nice to observe that 

even with the good improvement, the resistance for the non-objective condition is still lower 

than for the base model, as it is a constraint. 

The behavior of the optimization for a dominant operating point with others 

considered as constraints is double-check by the variation of the start point, as by the usage of 

the gradient based method a large influence of the initial point can be expected. 

8.2.2. From DoE Best Design 

The performance of the selected DoE best design “DS2.91_V1&2” can be observed in 

the Figure 35. The same model is represented by the red dot in the Figure 42 together of the 

results of the TSearch optimization process. 

In Figure 42 a large improvement for the RtV1 can be observed. However, the result 

for optimization taken RtV2 as OF is not as good as. The second case presents very little 

resistance reduction. 

 

Figure 42 – Single objective optimization with constraints start from DoE best design. Values in % rel. 

to Rt Base Model at respective condition. 

Figure 43 presents a comparison of the optimization process for case of single 

objective function with constrains for two different initial designs for the start of the 

optimization process. For the case where the RtV1 is the objective and RtV2 the constraint the 

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

1.0%

-3.0% -2.0% -1.0% 0.0% 1.0%

V1 = 19.77 Knots

V2 = 22 Knots

StartDesign II_ Obj:V1, C:V2

StartDesign II_ Obj: V2, C:V1

Start Design II



52 Hélio Bailly Guimarães 

 

Master Thesis developed at the University of Rostock, Rostock/Germany 

improvement when the start is already a better design, obtained by the DoE study, presents a 

higher reduction of the resistance when compared with the optimization starting from the base 

model design. In other words the objective of performing a DoE beforehand is accomplish, it 

accelerate the process and could avoid local minimums. However, in the other hand the case 

of optimization for RtV2 with RtV1 as constraint the expected results, of a better improvement 

when starting from the best DoE design did not happened. It could be justified as the 

optimization process got trapped in a local minimum in that region when optimizing for the 

RtV2. As can be observed in Figure 40 and Figure 43 the process when starting from the base 

model made a “belly shape” over passing the possible local minimum in which the second 

process could have got trapped. It’s important to mention that the design variables are the 

values to be optimize and then could be stuck in a local minimum of the result analysis and 

not the other way around. 

 

Figure 43 – Comparison of results regarding number of design needed and resistance improvement for 

different starting point of the optimization process. Values in % rel. to Rt Base Model at respective 

condition. 
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9. MULTI-OBJECTIVE OPTIMIZATION 

The multi-objective optimization seeks for the optimization of: 

𝑓 𝑥 =   𝑓1 𝑥 , … , 𝑓𝑖 𝑥     (Equation 11) 

In general there is no design in which all the functions are minimal as there is no unique 

optimum design to a multi-objective optimization problem. However, there is a set of points 

that represents the best compromise between the various objectives called Pareto Frontier.  

Genetic algorithms are used to perform multi-objective optimization. Coming from the 

evolution theory the general principle of a genetic algorithm can be represented by: 

modeFRONTIER [33] 

 

 

9.1. Optimization Process 

The algorithm chosen for the multi-objective optimization process is the non-dominated 

sorting based multi-objective evolutionary algorithm NSGA-II. 

The results presented a low percentage of designs in which both results Rt for V1 and V2 

were achieved. A big number of numerical errors were identified compromising the 

optimization process. Several tests were performed in order to determine the origin of those 

numerical errors. However, besides small details in the calculation set up that were slight 

modified to a better response, no reason for the big number of unfeasible designs were 

identified. 
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Three optimization processes were performed, all using the well known algorithm 

NSGAII. 

i. Case I 

 Generations: 30 

 Population size: 24 

ii. Case II [Start point] 

 Generations: 12 

 Population size:20 

Both with the mutation and crossover probability of 0.9 and 0.01 respectively, these 

values are in accordance to the recommendation of the specialist and developers of the 

FRIENDSHIP-Framework for this study. 

9.1.1. Case I 

In the first case 720 unique designs were created and evaluated; the process took 18 

days and 12 hours approximately running in a local machine with 8 cores, 2.67 Ghz. 

However, only 96 designs, 13.3%, are feasible designs with the results of the total resistance 

for both V1 and V2, 32 designs, 4%, are unfeasible due to the geometry constraints and all the 

others 592 designs, 82%, has a numerical error of some sort for the resistance estimation of 

one speed or both. 

 

Figure 44 – Multi-Objective. Case I large number of Designs 

In Figure 44 each of the 96 feasible designs are represented by a dot distributed by the 
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be observed that most of the designs had a higher resistance when compared to the base 

model (positive values), unfortunately. Small improvements, around 1%, were observed 

leading to the conclusion that the algorithm didn’t worked as expected. 

9.1.2. Case II 

Genetic algorithms as NSGA II are optimization process that should not depend on the 

initial design; the mutation property should cover every possibility of the space design when 

the enough number of designs (generations and populations) is created. However, an 

optimization with a different initial design was performed, not to avoid local minimum, but 

attempting to move the “cloud” of design resistance a bit more towards the wanted area of 

better performance designs. The case II is a multi-objective optimization by the usage of the 

same genetic algorithm as in case I, NSGA II. Nonetheless, using as initial design the best 

DoE design, “DS2.91_V1&2”, which was selected for the consideration of both conditions at 

once, refer to section 7.1 for details. 

Finally, 240 unique designs were generated and evaluated; the process took 5 days and 

16 hours approximately. Nevertheless, once again, only 82 designs, 34%, are feasible designs 

with resistance estimation for both V1 and V2 conditions. 

 

Figure 45 – Multi-Objective. Case II initial design from DoE. 

In Figure 45 the comparison of case I and II is displayed, where both cases are 

presented in the graphic with the relative RtV1 in the abscissa and the RtV2 in the ordinate. 
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Regardless, the difference in number of designs the improvement of the design is very similar 

for both cases. 

In Figure 46 the same results are presented, however with a zoom in the area of 

interest, designs that have reduced resistance when compared to the base model (negative 

values in the graphic). In this image is possible to observe that the optimization starting from 

the best model on the DoE (red squared dots) achieved better results with designs with more 

than 1% of resistance reduction, although the difference is too small and could be 

insignificant when the noise of the CFD results are considered. 

 

Figure 46 – Multi-Objective. Case II initial design from DoE, zoom in the designs of interest. 

Finally, the results presented demonstrate a behavior, for a multi-objective optimization 

by means of genetic algorithms, which differ to the common expectations. The process seams 

not to converge to the global minimum even with a huge amount of designs. The selection of 

an initial design proves to influence the results, given better designs, again not as expected. 

However, these conclusions are based on results of an optimization process in which several 

designs have no response from the CFD calculation. The lack of results could lead to a 

malfunction in the algorithm and the optimization of the model an impossible task. 

  

-2%

-1%

0%

1%

2%

-2% -1% 0% 1% 2%

V2 = 22Knots

V1 = 19.77 Knots

NSGA II

NSGA II _Start DoE Design



Robust Design Optimization for Operational Profile 57 

 

“EMSHIP” Erasmus Mundus Master Course, September 2012 – February 2014 

10. SENSITIVITY ANALYSIS 

In accordance to optiSLang [19] one of the possibilities to solve a RDO problem is the 

iterative way, in which the problem is solved by the usage of deterministic methods and then 

a robustness evaluation at the deterministic optimum is performed. Some deterministic and 

stochastic optimization process was performed and already presented. Optimum designs via 

different methods were defined which allow an analysis of the most suitable one. 

The robustness of the design is evaluated regarding the sensitivity to uncertainties 

variations on the draft of the vessel.  

For the sensitivity analysis the best achieved designs of some of the optimization 

processes were selected and the RtV1 and RtV2 for several draft values studied. All the four 

optimum selected designs are highlighted in Figure 47 in which all the main designs are also 

displayed for comparison. 

 

Figure 47 – Main designs obtained by all optimization process. Relative RtV1 to the base model in the 

abscissa and relative RtV2 in the ordinate axis in percentage. Selected best designs highlighted. 
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The selected designs are: 

 DS3.98_SOV1: The best design obtained via Single Objective Optimization, OF: RtV1 

 Ds5.55_SOV1CV2: Best design obtained via Single Objective Optimization with 

Constraints. OF: RtV1 and C: RtV2≤ RtV2 Base Model 

 DS5.54_SOV2CV1: Best design obtained via Single Objective Optimization with 

Constraints. OF: RtV2 and C: RtV1≤ RtV1 Base Model 

 DS6.64_MOV1&2: Selected design obtained via Multi-objective Optimization. 

 
Figure 48 – Sensitivity analysis of draft variation for selected designs under velocity one condition. 

In Figure 48 the variation of the resistance due to changes in the draft is presented for the 

condition of velocity equal to 19.77Knots (V1), for the selected designs. The draft variation 

from 6.0m to 6.5m is shown in the abscissa and in the ordinate is the Total Resistance. It can 

be observed that the model has an almost linear response to the variation on the draft. 

Moreover, the optimized models for the condition of T=6.2m demonstrate an improvement 

not only for this draft, but also for the others tested (T=6.0 and 6.5) in most of the cases, even 

that the resistance reduction is slightly less for the conditions outside of the optimized one. 

The results leads to the conclusion that the optimization process did not compromised the 

sensitivity of the model regarding variations on the draft as the designs presented a better 

performance than the base model in the design conditions but also for different draft 

conditions. 
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Figure 49 – Sensitivity analysis of draft variation for selected designs under velocity 2 condition 

In addition, the sensitivity to the draft variation for velocity equals 22knots (V2), it can be 

observed that the improvement is mainly the same for the design draft and for the conditions 

of T=6.0m and 6.5m, it can be observed by the parallel regression lines in Figure 49. 

From the presented results it can be concluded that the optimization of the vessel for 

determined conditions didn’t lead to any additional sensitivity of total resistance due to draft 

variation. The conclusion is not exactly what was expected for an optimization process. This 

could be justified by the fact that the initial model, base model, was already good at the tested 

conditions and consequently the improvement after the optimization process is very small and 

finally the expected consequence of robustness reduction could not be well appreciated.  
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11. HYBRID MODEL 

One of the major barriers in the robust optimization application is the computational 

expense to analysis the huge amount of data necessary to undertake uncertainties. This 

difficulty can be easily appreciated on the previous sections where the various optimizations 

process was described. Jiangtao et al 2010 [24] propose the surrogate model as a possible 

solution to overcome this difficulty. Moreover, in accordance to optiSLang [19] the usage of 

response surfaces could be a possibility to solve a RDO problem. In order to test this kind of 

approach a linear prediction is performed by means of Gauss-Markov estimation or Gaussian 

process regression also known as Kriging as a technique named after the South African 

engineer D. G. Krige, Teukolsky et al 2007 [34] 

To perform a linear prediction a base of data is necessary. In order to analyze the 

influence of the necessary input, several tests were done as presented in the following. 

Furthermore, the smoothness of the regression between points can also be controlled. The 

smoothness coefficient was optimized for each case of study, as to give a better response 

using the input data set, as reference for this process the resistance prediction of the base 

model was used. In others words, several designs are used in the input data for the prediction 

of the resistance of the base model and the smoothness coefficient varies until the one that 

better approximate the estimated value to the real resistance of the base model for each 

condition. It is valuable to note that the coefficient is not varying for each input set in the 

input influence study. 

11.1. Input dependency 

The input of data, which is used by Kriging method to estimate the resistance of a new 

design, has a big influence in the results due to the nature of the problem. Thus input sets with 

25, 40 and 50 designs were tested. In the following some analysis considering the quality and 

quantity of input designs are presented. 

In Figure 50 the quality of the inputs with 25 and 40 designs are shown in terms of the 

coverage on the variation of the design variables. Each column in the figure, defined by 

“dots”, is one design variable and the “dots” represents one single design. In the ordinate it is 

represented in percentage the relation of the design variable in the defined range (bounds). It 

can be observed that for 25 designs the complete range of variation of each design variable is 

not as well covered as for the case with 40 designs.  
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Figure 50 – Design space coverage of input for Kriging. Left 25 Designs. Right 40 Designs. 

The resistance of five different designs, randomly chose, were tested using the Kriging 

and further on those models were analyzed using CFD for comparison, see Figure 51.  

The 30 designs (25 input plus 5 test cases) for one case and the 45 designs for the second 

case are displayed in Figure 51 in he left and right respectively. The designs are shown in 

crescent order of resistance (RtV1) for better visualization, in the abscissa a design index is 

used to present the results and in the ordinate is the total resistance of each model. 

Furthermore, the error between the CFD and Kriging estimation is presented for the 5 test 

cases. It is valid to observe that, besides one design, the kriging estimation of the design 

resistance that exists in the input have an error of practically zero. However, when the model 

is not in the input an error from 0.02% to 2.48% for the case with 25 inputs and 0.23% to 

1.37% for the case with 40 designs in the input is observed. 

 

Figure 51 – Interpolation versus CFD resistance estimation. Left 25 input Designs. Right 40 input 

Designs. 
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Considering the reduced number of designs and furthermore, the reduced quality of 

designs it is expected some notable difference between the results using each input set. 

Nevertheless, as can be observed in Figure 51 the relative error of the prediction of the 

resistance via Kriging and CFD are in the same range for both input cases. 

A further study with 50 designs for the input is done. The input designs cover the totality 

of the range of variation for all design variables, as can be observed in Figure 52 

 
Figure 52 – Design space coverage for 50 designs input for Kriging. 

Once again the resistance of five different designs was estimated using the Kriging and 

CFD for comparison. The 55 designs (50 input plus 5 test cases) are displayed in Figure 53 

The error between the CFD and Kriging estimation is presented in the figure for the 5 test 

case, once again besides one model when the kriging is used in the estimation of the 

resistance that exists in the input, the error is zero. However, when the model is not in the 

input an error from 0.10% to 3.01% is observed, which is also in the same range of error for 

the cases with 25 and 40 designs in the input. 

 

Figure 53 – Kriging input set 50D. Interpolation versus CFD resistance estimation. 

-100%

0%

100%

D
e

si
gn

 V
ar

ia
b

le
s 

-
%

 o
f 

va
r.

 t
o

 
u

p
p

er
/l

o
w

er
 li

m
it

s

Input with 50 Designs

Bulb Beam Bulb Height Bulb Length Bulb aftFairing DWL Ent Angle

Flair at DWL DWL Fullness Shoulder SAC Long. Pos. SAC area

5.4

5.5

5.6

5.7

5.8

5.9

0 10 20 30 40 50 60

R
t 

[N
]

x 
10

0
0

00

Design index

Input 50 D

INPUT

CFD 

Kriging

-3.01%

-0.10%

+0.28%

+0.61%

-1.03%



Robust Design Optimization for Operational Profile 63 

 

“EMSHIP” Erasmus Mundus Master Course, September 2012 – February 2014 

In order to double check the importance of the quality of the input data, besides the 

quantity, a second set of input, keeping the same amount of data, is tested as can be viewed in 

Figure 54. It can be observed that the behavior of the estimation for the second set is very 

similar to the first one, thus the input selecting make a different in the response, but yet quite 

small. 

 

Figure 54 – Kriging input set 50D2. Interpolation versus CFD resistance estimation. 

Finally, it can be concluded that the quality of the input data has some influence on the 

results. The most important conclusion is that the error depends on the characteristics of the 

estimated design itself. In other words, besides the number of inputs, an important aspect of 

the input data set is the relationship, characteristics defined by the design variables, between 

the designs in the input and the objective design. These results are somehow in accordance to 

the recommendations of optSLang [19] that mention: “Experiences show, that solving on one 

global response surface doesn’t give good results. Otherwise adaptive approaches work well 

for most problem formulations”. 

11.2. Optimization tests 

Based on the input with 55 designs some optimization process were performed and 

compared with the same process performed using only CFDs. The optimization method is a 

typical DoE plus TSearch with the difference that the resistance analysis is not done by CFD 

calculation, but by linear prediction using the kriging method. 

In Figure 55 the complete process of optimization by CFD and Kriging are displayed. The 

ordinate of the graphic is the relative resistance to the base model and in the abscissa a design 

index is shown. The index is not related to the number of designs created, but assigned to 

each design in order to facility the understanding and interpretation of the results. The dots 
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presented from design index 0 to 45 represent the DoE study by the usage of the SOBOL 

method, for both CFD and Kriging resistance prediction. The best design obtained in the DoE 

is selected and the TSearch performed and presented by the connected dots in Figure 55. The 

selection of the “best design” obtained from the Kriging prediction is not as direct as for the 

CFD analysis, where the design with minimum resistance was chosen. In the linear prediction 

case some “bad designs” with design variables with values equal to the bounds and very low 

or very high resistance response are obtained and should be manually eliminated by the 

designer. 

 

Figure 55 – Optimization via Kriging. DoE + TSearch using CFD versus Kriging plus a CFD check of 
the best model achieved. 

Furthermore, the CFD analysis of the optimum design obtained by the usage of 

Kriging is shown in Figure 55. The linear prediction shows to have underestimated the 

resistance, in 0.88% as show in Table 5, when compared to the CFD estimation. However, the 

optimum design show to have yet a good performance and using a reduced number of CFD 

runs, 55 were used for the input. The reduction of CFD runs leads to a reduction of almost 1/3 

of the necessary time to perform the whole optimization process. 

Table 5 – Comparison between optimization with CFD and Kriging resistance analysis. 

Optimization 

using: 
CFD Runs 

Predicted Rt 

reduction 

CFD Rt 

reduction 
Difference 

CFD 151 -1.87 % -1.87 % zero 

Kriging 55 -2.37 % -1.49 % -0.88 % 

 

In addition, the performance of the optimum design obtained applying the Kriging 

technique and the analysis by CFD are compared regarding the performance in both velocities 
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1 and 2 in Figure 56. The relative resistance of the Kriging design is shown by both linear 

prediction and by the after CFD analysis. 

 

Figure 56 – Comparison of the optimum design obtained using CFD and Kriging plus the CFD check 

of the best design obtained via Kriging. 

Several others tests and processes were done using the kriging prediction which shows 

an average error of 2% in the resistance estimation for improved designs, not existing in the 

input set. The results show a big potential on this method that could lead the designers to an 

optimum combination of design variables, betters models, within a reduced time of 

calculation. However, a good knowledge of the response surface, inputs and outputs, is 

necessary to handle the input data and most important to interpreted the output and perform a 

smart selection and further evaluations on the designs. In addition, the method present yet 

space for improvement as adaptively response surface. 
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CHAPTER IV 

12. RESULTS and ANALYSIS 

12.1. State of the Art in Optimization 

In Table 6 the number of CFD runs necessary to perform the optimization for each method 

is presented side by side with final performance obtained relative to the base model. It is 

important to notice that the number of CFD runs in the table represent only the feasible results 

(error-free), for the Multi-Objective case the number of CFD runs is low due to the high 

number of designs with numerical errors in the CFD analysis as mentioned in 9.1.1. 

Table 6 – Number of CFD runs and rel. resistance to base model (Vel 1= rel. RtV1) for each 

optimization method. 

 

The resistance regarding the condition one, RtV1, represented in the table by the 

column Vel 1 presented the lowest value for the optimization case where the single objective 

with constraints were applied (OF: V1 + zero*V2; C:V2). A reduction of 2.84% in the total 

resistance for condition one and reduction of 0.64% for condition two can be observed. The 

second best improvement was achieved by the application of the single objective method 

(DoE + TSearch for OF: V1 + zero*V2) a reduction of 1.87% is observed for condition one. 

However, an increase in the total resistance of 0.29% is given for the second condition. 

Moreover, for the optimization process using constraints 61 designs were necessary, besides 

the 55 DoEs, which is a lower number of CFD runs when compared to the 96 designs created 

in the single objective optimization process. This result proves that the optimization as a 

single-objective problem in which one operating point is dominant while others are 

considered as constraints presents the best behavior for the example tested. The good results 
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could be justified by the fact that this method combined the high level of reduction of the 

resistance observed for the single-objective case with the multi-objective characteristic 

introduced by the constraints.  

The single-objective with weighted function presented a low level of reduction, from 

0.24% to 0.92%. The low level of improvement could be a consequence of a conflict between 

the two objectives misleading the optimization algorithm to the optimal solution. 

Finally, the multi-objective optimization process, also, presented low level of 

reduction. It can be justified by the high number of designs that have some numerical error on 

its CFD analysis. From the 720 unique designs that were created and evaluated only 96 

designs, 13.3%, are feasible designs with the results of the total resistance for both V1 and V2. 

592 designs, 82%, have a numerical error of some sort for the resistance estimation of one 

speed or both. 

The sensitivity of the models regarding variations on the draft is very low and can be 

neglect as presented in 10.SENSITIVITY ANALYSIS. 

 
Figure 57 – Isolines on the body and free surface. SHIPFLOW/ FRIENDSHIP-Framework. Bar chart 

compares the wave resistance by different optimization methods 
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12.1.1. Geometry Trends 

When comparing the optimum designs obtained by the several optimization processes 

some trends of the form characteristics are observed. 

Table 7 – Geometry trend of the optimized bulbous bow. 

 
In Table 7 it is shown for each optimization process the tendency of the geometry 

characteristic. The analysis if performed by the relative value of the design variable that 

defines the geometry. For example, the bulbous bow for the first case presents a value 55% 

wider which means that the parameter that controls the width of the bulb is in between the 

mean value (base model) and the upper bound, in 55% of that range. 

The optimized bulbous bow for every case is wider than the bulb of the base model 

and mainly longer bulbs are observed. The height of the bulb is in general a little bit less than 

the base model. A few cases present a higher bulb, this second case mainly when the model is 

optimized for the second speed condition (20 knots). The after fairing of the bulbous bow is in 

general flat (horizontal) with the exception for the two cases when the model is optimized 

regarding the velocity condition one. For the case of single-objective function RtV1 with 

constraint for RtV2 the combination of a higher bulb with a low percentage of “flatness” on the 

after fairing leads to the conclusion that besides the flat characteristic of the after fairing in 

these cases the flow at this region is oriented downward as shown in Figure 58.  

 
Figure 58 – Side view of optimized model by OF: V1 + zero*V2; C:V2. 

Expected Flow path 
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Regarding the water line fullness all the optimized models presented a reduction in the 

water line area, Table 8. The shoulder, also in all the cases, is moved forward. Finally, the 

section area of the sections in the forebody presented a reduction in most of the cases leading 

to a reduction of the volume at this region. 

Table 8 – Geometry trend of the optimized forebody. DWL fullness, should position and section area. 

 

12.2. Hybrid Method 

For the Hybrid model several tests were performed with a fixed input set of 55 designs 

obtained from a DoE analysis. 

Table 9 – Number of CFD runs, meta-models, predicted performance and CFD analysis of the optimal 

models obtained using the Hybrid method with Kriging. 

 

 

It is important to observe two main results presented in Table 9. Firstly the reduced 

number of necessary CFD runs to perform the optimization when compared with the classical 

method in Table 6. Secondly is the relative error of the results presented in the lower part of 

Table 9 that indicates that the Gauss-Markov estimation underestimate the resistance of the 

design from 0.42% to 3.99%. This results show a high potential of this method to solve RDO-
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problems in the design of ships due to the reduction of necessary analysis. However, it is also 

necessary to improve the method; a few recommendations are given as the implementation of 

an adaptive surface response for a better interpolation towards the desire results. 

 

12.3. Optimum model 

Considering the good performance of the design obtained with the optimization by single-

objective with constraints some further analysis is performed in this model. The design has an 

improvement of the wave resistance of 8.31% for speed condition one and 6.84% for speed 

two. When the viscous effects are introduced by momentum integration (XBOUND) the total 

resistance reduction is of 2.84% and 0.64% for V1 and V2 respectively, highlighting the 

importance to consider the viscous effects in the optimization process. In Figure 59 the wave 

pattern of the base model, in top, and of the optimum design, bottom, are presented for the 

velocity condition one (V1 = 19.77Knots). It can be easily observed the reduction of the wave 

height generated by the vessel advancing in calm water. 

 

Figure 59 – Wave pattern of the optimize and base hull form 
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Figure 60 – Wave cut. Base and Optimum model. 

The variation of the wave generated by the vessel can also be observed by the wave 

cut far from the body presented in the Figure 60. The differences in the wave pattern and 

wave cut are due to variations on the hull form as presented in Figure 61. In the body plan 

present in Figure 61 the optimum design, in red, is compared with the station lines of the base 

model, in gray. It can be observed that only the forebody of the vessels present some 

differences. The bulbous bow is a bit wider and it can also be observed that the flare in the 

water line is more vertical than the base model. The Figure 61 is obtained by the offset that 

are used for the CFD calculation; it is nice to observe the smoothness of the hull form which 

guarantees a good mesh and finally reliable results. 

 

Figure 61 – Body plan of the optimum model versus base design. 

The optimized geometry when compared with the base model has the shoulder moved 

forward, and less volume in the forebody and a longer bulb, characteristics that can be 

observed in Figure 62. The optimized model is presented in the top part of the figure in 
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shadow for the side view and in the bottom part in the right hand side. The colors in the hull 

form represent the pressure coefficient. 

 

Figure 62 – Base model and optimum design (shadow/right) forebody with isolines and pressure 

coefficient. 

In Figure 63 the total resistance of the vessel is presented for three different drafts at 

velocity one, in the left hand side, and for velocity two, in the right side. The optimization 

process was performed for a fixed draft of 6.2m, however the optimum vessel present a good 

performance not only at this draft but also for different drafts conditions. Leading to the 

conclusion that the optimized model have a level of sensitivity, regarding uncertainties on the 

draft value, similar to the base model. 

 

Figure 63 – Sensitivity for variations of the draft. 
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The behavior of the selected optimum design for the whole operational range of speed is 

presented in Figure 64. It can be observed that the improvement of 2.84% at the velocity one 

(19.77knots) is rapidly lost for a higher resistance, around 1%, when navigating at speed of 

20knots. However, the resistance of the vessel for others velocities around 20 knots also 

present a light reduction, finally the small variation of 1% on the resistance could be related to 

numerical oscillations on the analysis.  

 

Figure 64 – Total resistance of base model and optimum model at whole range of operational speed. In 
the secondary axis the relative difference in percentage is presented. 

In conclusion, the selected design from the optimization presents a good behavior at 

variations on the draft, and also a small improvement in the total resistance for the main 

operational velocities. Furthermore, the improvement observed is yet too light and could be 

affected by oscillation in the CFD calculation, so further analysis should be performed as 

RANS calculations of the model. It is important to conclude that the initial design is already 

very good and not much can be squeezed from this model to improve its performance by 

changing the forebody. 
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CHAPTER V 

13. SUMMARY 

The robust optimization process using Monte Carlo methods requires a vast number of 

solver runs making the task using computational fluid dynamic (CFD) impracticable. 

However, to analyze small variations of the form some precise methods are necessary, usually 

CFD tools can be essential to possibility the analysis and comparison between models 

regarding characteristic of interest. In a tentative to solve robust design optimization (RDO) 

problems and yet using CFDs some techniques were tested in this work. Two kinds of 

approaches for solving RDO-problems with a moderate effort were performed.  

An iterative approach was tested, first solving the deterministic problem and secondly 

performing a sensitivity check at the deterministic optimum. An extended study with all main 

optimization processes was applied in this project using deterministic and genetic methods 

followed by sensitivity analysis of the optimum designs created. The advantages and 

drawbacks of various kinds of optimization methods were presented based on the quality of 

the achieved results (e.g. energy efficiency), computational effort (e.g. number of CFD runs 

needed) and the robustness by the sensitivity to changes (e.g. influence of slight changes on 

the draft). 

The second applied approach to solve RDO-problems was to use response surfaces. This 

method was studied by the application of Gauss Markov estimations (Kriging). A simple 

method that can save a lot of time, however, yet needs numerous improvements for accurate 

results. 

Finally, the results were presented and compared. The numerous of optimization process 

tested and analyzed in this project represent a step towards the robust design optimization for 

operational profile applied to the ship design. This approach should be the future in the ship 

design offices that are working to make better products, for high profits and more 

environmental friendly. 

14. CONCLUSION 

The state of the art in optimization was performed on a typical hull form. Furthermore, an 

uncommon method, using meta-models, was tested for the optimization of ship design. The 

study leads to several conclusions regarding robust optimization techniques applied to 

variations of hull forms and it analysis using CFD as the following. 
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The single objective method leads to a very good improvement for the condition set as 

objective. However, for conditions that are not in the objective suffers a strong degrade, an 

expected conclusion due to the consequently specialization of the product mentioned by 

Marczyk 2000 [9]. 

The optimization with different objective conditions included in the objective function by 

a weight presented a very low degree of improvement. The resistance reduction on a level 

lower than expected could be justified by a conflict between the two conditions misleading 

the gradient method, TSearch, of the global minimum. In addition, it can also be concluded 

that, as expected, the weight is an efficient way to move the objective from one condition to 

another in a smooth way. 

The optimization as a single-objective problem, in which one operating point is dominant 

while others are considered as constraints, presented very good results. This method combines 

the benefits of a single objective optimization, but yet improving the vessels for others 

characteristic, considered as constraints. 

The multi-objective optimization by means of genetic algorithm, NSGAII, didn’t present a 

good improvement. Considering the high number of necessary designs it leads to a very 

expensive method with high cost/benefits.  

Furthermore, the optimization using CFD, have a complication factor due to numerical 

errors of some designs. In other words, some designs that are created and used during the 

optimization process have some errors in their resistance estimation (e.g. non-convergence). 

How the algorithm deals with these erroneous designs could be a key factor that leads to good 

results or not. In addition, when operational conditions are added to the objective of the 

problem the necessary number of CFD runs for each design increases proportionally. The 

higher number of designs could lead to more problematic designs which can compromise the 

optimization process. 

In conclusion, the proper selection of the optimization method for each case of study 

proves to be a key factor in order to achieve good results. For the studied case the single 

objective with constraints prove to be the best method, avoiding objective conflicts and 

achieving good results with the gradient method with a reasonable number of designs. This 

conclusion could be different for another model or form variation as it depends on the 

problem and a brief study of the most suitable method should be performed. 

The usage of the above mentioned methods plus a sensitivity check prove to be an 

efficient way of performing a robust design. Nonetheless, this can be affirmed for the case 

that the model has low levels of sensitivity or yet for the cases which the initial model is 
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already very good and the optimization leads to a small improvement, as in the studied case. 

The necessity of repeating the process to achieve the requested robustness could lead to a very 

long process. To avoid long and unrealistic design time the hybrid method could be a 

solution. 

The hybrid method using Gauss-Markov estimation shows an average error of 2% in the 

resistance estimation for improved designs, not existing in the input set. The results show a 

big potential for this method that could lead designers to an optimum combination of design 

variables, betters models, within a reduced time of calculation. Nevertheless, a good 

knowledge of the response surface, inputs and outputs, is necessary to handle the input data 

and most important to interpreted the output and perform a smart selection and further 

evaluations on the designs. In addition, the method needs several improvements for a good 

and feasible behavior as the auto selection of inputs or adaptively response surface. 

Finally, before applying robust optimization techniques the model most be studied and the 

necessity of performing such kind of study proved, e.g. analysis of sensitivity. In the case that 

the robust optimization is necessary meta-models should be used for the process as a solution 

to perform the calculation in a feasible time. 

15. RECOMMENDATIONS 

An adequate optimization method should be selected for each case of study; tests with 

simplified analyses should be performed for the selection.  

For the optimization processes it is important to have a good initial design that can be 

obtained via DoE (e.g. SOBOL method). 

The necessity of performing robust optimization design should be verified by means of 

potential to improve and sensitivity check. 

Response surfaces method should have not only a global response surface but an adaptive 

approach should work better. 
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