

Product Analysis and Design of a Superyacht Analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145' Redesign of a "Classic" 121' Yacht

Igor Miskovic

Master Thesis

presented in partial fulfillment

of the requirements for the double degree:

"Advanced Master in Naval Architecture" conferred by University of Liege

"Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion" conferred by Ecole Centrale de Nantes

developed at University of Genoa,

in the framework of the

"EMSHIP"

Erasmus Mundus Master Course

in "Integrated Advanced Ship Design"

Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC

SupervisorProf. Dario Boote, University of GenoaReviewer:Dr. Zbigniew Sekulski, West Pomeranian University of Technology, Szczecin

Genoa, February 2014

CONTENTS

SUMMARY
1. INTRODUCTION
1.1 A Quick Historical Overview
1.2 The Evolution of Yacht Building
1.3 The Superyacht
1.3.1 A quick historical review7
1.3.2 The 24m (80') benchmark
1.3.3 Motor yachts / superyachts
1.3.4 Production, custom and semi-custom yachts
1.4 Benetti – A Quick Overview
1.4.1 Bentti today 11
2. PRODUCT ANALYSIS
2.1 General
2.1.1 Vibrations and noise17
2.2 Structure
2.2.1 Material
2.2.2 Fibre reinforced plastics
2.2.3 Structural arrangements
2.2.4 Production methods
2.3 Outfitting
2.3.1 Structural challenges
2.4 Auxilary Machinery
2.5 Piping
2.6 Ventilation and Air Conditioning
2.7 Electric and Electronic System
2.8 Main Machinery 51
2.9 Interiors
3.THE SUPERYACHT MARKET ANALYSIS
3.1 The Superyacht Industry 57

Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht	
3.1.1 The market	58
3.1.2 The owners	58
3.1.3 The fleet	58
3.1.4 Who build, what, where?	60
3.1.5 Distribution in size, type and age	61
3.1.6 The shipyards	64
3.2 Market Considerations	65
3.2.1 Present time and beyond	66
3.3 Market Strategic Comparison – Classic 121'	66
4. REDESIGN OF M/Y "CLASSIC" 121'	77
4.1 Benetti "Diamond" 121'	77
4.2 Description of a Benetti "Diamond" 121'	80
4.2.1 Exteriors	80
4.2.2 Interiors	81
4.3 Brief Technical Specifications	83
4.4 Technical Drawings	88
5. CONCLUSION.	106
6. ACKNOVLEDGMENTS	107
7. REFERENCES	108
APENDIXES	109

ABSTRACT

The present work consists of two major parts. First is a "Product Analysis" of a complete Benetti semi-custom fiberglass range (10 models – each with 500 items compared), and second part is Redesign of a Benetti "Classic" 121'– the most successful yacht of "Benetti" with 60 boats build in past 10 years. This work provides a 360° overview of a product of superyacht.

In the first part, research is concentrated on technical specification analysis of all the models. Each technical section is shown with relevant areas and examples of comparison done during the internship. Some of the fundamental systems that allows the operation of the yacht have been closely described, depending on availability of data and privacy terms of a company. Apart of textual description and examples of specimens compared, there is also a graphical comparison and onboard pictures during the inspections of different stages in the production, for a different technical areas shown.

Because of highly competitive market, it was necessary to take a closer look at how industry works. By studying the trends in sales, design, technology, future building trends and distribution of the fleet in Superyacht industry determines a direction of future developments. Strategic positioning of a new project is then possible with closer look on direct competitors of a previous model "Classic" 121'. Cross analysis with, "in house" and external competitors, provides initial inputs for concept design. By improving the drawbacks of a previous model, and implementing the advantages of it, proposal is well balanced between building trends, market demands and Shipyard's characteristic style.

Furthermore, in the second part, according to previous analysis of different technological systems inside the superyacht, together with conclusions drawn from the Market analysis, it is decided to make a proposal for a new model of a semicustom GRP yacht. Results of detailed studies are implemented in the proposal.

It is necessary to keep recognizable Benetti lines together with contemporary trends of the industry. Evolving the design imprinted on Benetti yachts with 140 years of history, is an ambitious task, but it was part of innovative Benetti DNA.

For the sake of simplicity of the project, dictated by the limited time, all possible similarities with previous model are implemented in construction and design of a new model.

The study includes a description of a proposal for a new model, together with conceptual research sketches, brief Technical specification and all the necessary technical drawings.

1. INTRODUCTION

1.1. A Quick Historical Overview

Even if the term `yacht' was coined specifically for the sailing world, this word has been associated with the concept of going to sea for pleasure purposes, and extended to include `motor boats' as well.

The term `motor boat' generally refers to a vessel whose main propulsion is provided by a mechanic propulsion system represented, in most cases, by internal combustion engines but can include steam engines or more modern gas turbines. The first motor boats were very simple, small and wooden, and were mostly work boats. The ease of handling and the higher performance of these motor boats with respect to sailing, yachts immediately attracted the attention of the boating public and pleasure motor boats powered by combustion engines soon became very popular. The high demand for bigger, faster and more comfortable vessels made motor boats ever larger and more technologically advanced, culminating in the huge range of pleasure vessels of today, from very simple and small motor boats to highly sophisticated and extremely large motor yachts.

Private motoryachts, which today account for about 80% of the superyacht fleet, came into existence a little later in 1872 when three 15m (50') steam yachts were built by the Camper & Nicholsons (C&N) shipyard in England. The first diesel-powered yacht was the 45m (150') Pioneer, built for Paris E Singer and launched by the C&N shipyard in 1913.

Throughout the 20th century it becames, an international industry where a few major players gradually emerged from the USA, Italy, the Netherlands and Germany, to name the most prominent.

Today there are yacht builders on every continent, and more than 100 shipyards worldwide currently build superyachts over 24m (80'). Although some countries, or shipyards, are still considered more specialised than others, with a stronger market share in, for example, sailing yachts rather than motor yachts, or custom yachts rather than production yachts, there is less clear delineation than there used to be.

1.2 The Evolution of Yacht Building

For a long time motor yachts were designed using an `experience-based' approach by shipyard owners and craftsmen rather than naval architects and designers, and they were considered, in a certain sense, a `second class' category with respect to ships. Nowadays a medium size motor yacht brings with it a huge series of problems to be solved, slightly different from those associated with ships, and these vessels contain a great deal of structural and high tech equipment packed into very concentrated spaces, all aimed at raising passenger comfort and safety to a high level. Whilst, up to very recently, most designers followed tried and tested paths in order to avoid possible mistakes, at present many use advanced design techniques and `high-tech' to make their product stand out from those of the competition. Both attitudes are motivated by the high intrinsic value of the product and a large effort is spent in research and testing.

Thanks to these recent changes, the progress in yacht design and construction has increased significantly, leading to levels of technology equivalent to or exceeding those already existing for ships. Structures in particular have been an important subject of such a development, being heavily influenced by the introduction of new construction materials (such as composites), the increase in performance and size, the need to reduce noise and vibrations, and the continuous search for new shapes and lay outs to acquire new markets. In particular, the length of the yacht represents the main discriminating factor with regard to the technical and commercial typologies of the vessels, which have given rise to the categories `superyachts', `mega yachts', `giga yachts' and `dream yachts'. However, the exact definition of these categories in terms of length are to a certain degree subjective and not clearly defined, and the only objective classification is that which divides the fleet into vessels below 24m in length (`small yachts') or over 24m (`superyachts'). The worldwide pleasure yacht fleet in 2011 consisted of approximately 23;350;000 units in total, of which 5;980 are `superyachts'. The worldwide yearly production (2011) is approximately 550;000 small yachts units and 800 superyachts (values from The Superyacht Intelligence, 2012).

1.3 The Superyacht:

1.3.1 A Quick Historical Review

Superyachts represent the development of cruisers in terms of increasing length, resulting from the requirements of very exigent owners looking for an absolutely exclusive and unrepeatable product. This was once attainable only by royal families and very important industrial or business men. Even if actually closer to ships than to yachts, some excellent historical examples should be mentioned as the first `mega yacht': the Savoia Royal Ship, 133m, built in 1883 in Castellamare di Stabia (Italy), the German imperial yacht Hoenzollern II, 120m, built in 1893 in Stettin and the Victoria and Albert III Royal Yacht, 116m long, built in 1901 by Pembroke Doc shipyards in Scotland. In the USA Herreshov shipyards built more than 200 motor boats between 1878 and 1945, the most famous of which are the steam commuter 81 ft Mirage (1910) built for C. Vanderbilt, and the 114 ft Navette (1917) built for Jack Morgan. In Europe, the Ailsa Shipyard in Scotland built the first steel superyacht Triton in 1902. At 55:4m long, this vessel operated in the British Royal Navy as a Royal Patrol Yacht during World War II.

The size of superyachts changed over the years, with a continuous enlargement until the Second World War, peaking with the construction of Savarona, a 136m yacht built by Blohm & Voss in 1936 and destined to be the biggest yacht boat for nearly 50 years. After the end of World War II there was a sensible reduction in average yacht dimensions, with the only exception being the 125m Royal Yacht Britannia, launched in 1953 by John Brown's Shipyard in Clydebank. Only in the eighties the size of the largest yachts start to increase once more; in 1980 Benetti Shipyards launched Nabila, 86m in length and, few years later, in 1984 the 144m yacht Abdul Aziz built by Helsingor Vaerft in Denmark, became the largest yacht in the world.

1.3.2 The 24m (80') Benchmark

Thirty years ago, the superyacht industry considered that a yacht above 20m (70') was to be classed as a superyacht. There were far fewer harbours in those days and berthing was a real problem even without the yacht building explosion that was to follow.

The first million dollar used superyacht was sold by C&N in the 1960's, but it was a rarity.

The increased port building and yachting infrastructure in general must be considered a catalyst in the post 1970's yachting boom.

Given the evolution in the number of yacht orders as well as the growth in wealth in the 80s to 90s, a new benchmark gradually emerged. Following the example of such builders as the

Rodriguez Group, where a minimum length of 24m (80') was deemed necessary to join the superyacht league, other yards followed suit.

This benchmark is still in use today by MCA (small ships rules apply below 24 meters), the yachting media, yacht brokers and shipyards alike. The benchmark also serves as an indicator separating companies dealing with yachts under 24m (80'), and those concerned with vessels above that length. Within this category the industry's range of activities can further separate players: from those that rent yachts to those that charter superyachts, and from builders of production-only yachts to builders of semi-custom yachts. Only superyachts above the 24m (80') mark may require external yacht management services, whereas those under are usually managed by the captain or skipper.

However, with increases in yacht size – the average yacht is now 30m (100') – should the superyacht benchmark be shifted to new heights, or, rather, a new LOA? Some of the yachting media, and indeed yachting companies, tend to think so as they become increasingly focussed on yachts of 30m (100') and above.

Nowadays a huge number of superyachts and a relatively high number of vessels of over 50m are built every year and the demand for these vessels and for ever increasing dimensions and opulence seems not to slow down, although the current global economic climate has cooled this previously rampant industry in recent years. An emblematic characteristic of superyachts is the large number of decks, giving the superstructures an imposing appearance, and very large internal spaces. The length of a superyacht is the defining characteristic, so the vessel's typology can be any of those previously described; hence, there are very large ying bridge, open and expedition yachts. At present the largest yacht in the world is M/Y Azam, at 180m in length, delivered in 2013 by Lurssen Shipyards in Germany.

1.3.3 Motor yachts / Superyachts today

The majority of motor superyachts are monohulls. They are usually categorised along two sets of technical and manufacturing criteria: the general type of hull, and their level of customisation. Light displacement (Planing), displacement and semi-displacement hulls.

Without going into too much detail, a planing hull is characterised by light displacement and low draft. It is normally used on smaller-sized superyachts, for fast boats that require low

Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

resistance from the water at sea, reaching speeds of up to and above 30 knots, depending on their engine size. A comparison in the motor industry would be a small, low sports car. The downside of a planing hull is that it is generally less stable at anchor and, quite logically, not easy to handle when the sea is rough.

Displacement hulls, meanwhile, move a lot of water when cruising. The displacement is measured in tons and depends as much on the shape of the hull as on the length of the yacht and her draught. Displacement hulls are usually found on larger yachts, for stable, all-weather, long-distance cruising. The yacht's speed is therefore limited, and is usually between 10 to 17 knots, and is very dependent on waterline length.

In between comes the range of semi-displacement hulls. A compromise between speed, stability and comfort at sea, they have become increasingly popular as they provide speeds between 17 to 25 knots, again depending on waterline length and power, and are able to face tougher sea conditions than yachts with a planing hull. They are normally found on superyachts in the medium-size range, that is between 25-45m (83-120').

The above sizes are approximate and only indicative of general trends. There have been many technological developments in recent years that have modified such categoriations, affecting the hulls as well as the devices designed to improve performance at sea, or at anchor.

1.3.4 Production, Custom and Semi-custom yachts

At first glance it seems straightforward. Production yachts are manufactured in larger series, based on standard designs for both the exterior styling and interior fittings. As when ordering a car, one may opt for certain colours and optional equipment; yet the basic components and arrangement are a given. This of course reduces production costs, and therefore the final price of the yacht. It is, to a certain extent, an economical approach to yacht ownership.

Custom yachts are designed and manufactured specifically to the requirements of a future owner, by the designer and naval architect, inside and out. As such, they take much longer to develop, engineer and manufacture; therefore, custom yachts are likely to be the larger ones, usually above 45m (140'), where the impact of the 'made-to-measure' cost is supposedly less

visible. However, as there is no real limit to what can be executed on board, the final price of a custom yacht may vary greatly and, for the same size vessel, can easily be anywhere on a 1:2 scale.

Semi-custom yachts, like semi-displacement hulls, are a compromise. While the hull is based on a set design, the rest of the yacht is adapted to the requirements of the owner, from the type of engines to the number of cabins, to the materials used in the interior styling. There are great variations in the options that shipyards offer when it comes to semi-customisation, which in turn induces great variations in the final price. However, sometimes it is the other way around: the price is set and includes a range of options that will not affect the end figure; in such cases, the line between 'production' and 'semi-custom' is less obvious.

While semi-custom yachts tend to belong to the medium-range of superyachts, from 30m (100') to 40m (120'), there is no fixed rule here either. Over the past three years, a wide range of shipyards have come up with semi-custom designs that have shifted the line to 50m (165'), and even up to 60m (195').

In summary of these categorization: Custom superyachts are designed as a one-off yachts, whilst semi-custom yachts and production vessels are designed and built on the same platform. There is a fine line between a custom project, and a semi-custom project.

In short, depending on the type of hull and level of customisation, a superyacht can be defined by one of the six possible combinations listed above. However, such categorisations far from define the price tag. From the type and quality of materials used inside and out, to the large choice of engines (that can easily cost over a million dollars each), to the craftsmanship and reputation of the shipyard, to the popularity of its builds or the designer, to market behaviour, there are too many components to determine even an approximate price of a superyacht.

ITALIAN EXCELLENCE

1.4 A Quick Historical Review

Today, Benetti is one of the most famous and well-regarded builders of luxury motor yachts in the world, but clearly it did not start out in this way. Lorenzo Benetti opened the first Benetti shipyard in Viareggio, Italy in 1873. At the time, Benetti built large wooden sailing ships, the famous "barcobestia," used for local and international shipping. After Lorenzo's death, his sons Gino and Emilio took over. They changed the shipyard's name to Fratelli Benetti and consolidated the fame of their shipyard in building commercial sailing ships. But the twentieth century was a time of turbulence, upheaval and technological revolution. After the Second World War, commercial sailing vessels built from wood were simply obsolete. The Fratelli Benetti shipyard could have become an industrial oddity or have disappeared. Instead, they adapted to the times, changed direction radically and began producing pleasure crafts from steel.

In the early 1960s Benetti, once again, anticipated the direction of the future and produced its first luxury megayacht, quickly establishing its name as a leader in the 30 to 60 meter range market segment and beyond.

Their success in this area did not mean that the time for change was over. In 1985, the shipyard was acquired by the Turin-based builder Azimut Yachts. New management transformed Benetti into the modern, technologically advanced reality we know today: a forward-looking and innovative boatyard that proudly builds on and adapts its traditional values of experience, skill and passion for fine craftsmanship, not just to keep up with the times, but to always stay ahead of them.

With 140 years of history, close to 300 boats built, production facilities that cover over 300,000 square meters in six boatyards located in Italy and 34 yachts under construction at the present time, including a 90-meter megayacht.

1.4.1 Benetti Today

Luxury brand that stands for excellence in yachting, the first shipyard which introduced the quintessence of Italian ingenuity and creative to the international yachting industry.

A record-breaking shipyard, it holds the record for longevity, with 138 years of uninterrupted production and over 350 yachts sailing. The Benetti shipyard is one of the world's oldest still operating and was one of the first to build yachts. It is also in the technological lead with environmentally friendly solutions such as diesel-electric propulsion, the future prospect for making yachts environmentally friendly.

Now for the sixth consecutive year the Azimut-Benetti Group is the world's biggest shipyard in terms of production of mega-yachts. Over the past twenty-five years more mega-yachts have been launched than in the yard's whole previous history.

Beside these production numbers and of course its financial success, Benetti also has a technological edge that places the brand at the top of the world shipbuilding industry for the pleasure craft sector.

It is sure to continue to amaze the world not only with its numbers but also its increasingly sophisticated technology.

The international yacht market has changed radically in recent years. The Azimut Benetti Group has been conducting a due diligence investigation aimed at optimizing productivity to maintain its leadership in the field.

"The Group's Chairman Paolo Vitelli says: "The yacht is an object of desire, a dream, a myth, and we want to sell this dream, this myth, made in Italy; but to do this, we must make our factories competitive and efficient to counteract the growth of production in emerging nations...To achieve our goal and increase productivity we need to reduce our structural costs, shorten the chain of command...".

The choice has led to changes in the company's organization with the aim of maximizing the efficiency of production while preserving a focus on human capital in order to compete on an increasingly global market. This means defending the product's Italian identity and maximizing efficiency. Having looked at amount of job Benetti is conducting currently it's enough to realize that this kind of business strategy makes them leader on the world market.

Below is the semi-custom fiberglass displacement and fast displacement range of Benetti :

Figure 1. The list of the semi-custom fiberglass displacement and fast displacement range of the Benetti Yachts, compared in analysis. Available from: <u>www.benetiyachts.it</u>

2. PRODUCT ANALYSIS - of the fundamental systems that allow the operation of a vessel.

In this part of the research, main focus will be on the internal documentation provided by "Benetti". It will include large data base of products specification which will be analyzed with attention on details which define the product and establish the quality "tag".

This part of work is in a form of comparative analysis in terms of the fundamental systems that allow the operation of a vessel. It is focused on identifying, studying, analyzing, and adapting best practices and implementing the results.

Some items comparisons require just a picture; other details may require a much deeper technical investigation. Also, the right format, content and depth of analysis is conducted depending on present interest of a shipyard and available technical documentation.

Starting from the list of all equipment parts on the yacht, comparison between models of different range will show if there is some discrepancy which will then be additionally analyzed.

The goal is improving performance by continuously identifying, understanding, and adapting outstanding practices and processes found inside and outside the organization.

For that first is necessary to highlight the areas of practice and performance requiring attention and improvement.

GENERAL STRUCTURE OF COMPARISONS:

The analysis is done at "Benetti" as a part of Internship work and includes internal technical documentations of all models compared. The result of this work is a 200 pages document with 500 items compared for each of 11 Yachts.

Below is shown, a list of every item compared in different technical areas. Some have been closely described, depending on availability of data and privacy terms of a company. In each section, example of table of compared items is shown for semi-custom range (5 yachts) even if comparison is done also for fast displacement range. Apart of textual description and examples of specimens compared, there is also a graphical comparison between two Benetti Models: Classic 121' and Classic Supreme 132'for different technical areas shown.

*Description of technical sections such as General, Structure and Outfitting is mostly inspired by reference text noted in "References" by number 5.

2.1 General

The design philosophy for motor yachts in the sixties and seventies was succinctly summarised in one sentence by Phillips-Birt: *The variety of power yachts found in the yachting waters of the world results from mixing the four basic ingredients of design in different proportions. The ingredients are: accommodation, endurance, seaworthiness and speed. . . . The proportions of the ingredients determine the type of boat; their total amount fixes the size"*. Even if still valid for small and medium size vessels, the `ingredients' for modern motor yachts now also include the present day trends of ever increasing size and opulent comfort and luxury requirements.

Table 1. The list of all items compared in this technical section. Full list is available in appendix 1

00. GENERAL00.10 GENERAL INFORMATION – 2 AREAS00.20 DESIGN AND PERFORMANCES – 6 ITEMS00.30 PROJECT MANAGEMENT – 5 AREAS00.40 DOCUMENTS – 2 AREAS

BENETTI RANGE CLASS - CUSTOM	BENETTI CLASS				
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'
Lenght O.A. :	28.5	32.98	36.9	40.24	41.93
Lenght at W.L @ full load :	22.48	/	31.58	33.25	35.52
Hull moulded beam:					
Max beam :	7.03	7.25	8.18	8.18	9.05
Draft max @full load :	2.05	2	2.26	2.23	2.28
Fresh Water capacity about :	2300	3500	7700	7200	8000
Fuel capacity about :	16000	21500	42500	45000	58000
GRT about:	152	217	299	322	454
PERFORMANCES:					
Max speed @ half load:	13.5	13.5	15.1	15.5	15
Criuse speed @ half load:	12.5	12.5	14.1	14.5	14
Range @ 12 kn @ half load using two engined and one generator:	1500nm @ 10kn	1800nm @ 10kn	3400nm @ 11kn	3500nm @ 11kn	4000nm @ 11kn

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti

* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

2.1.1 Vibrations and Noise

Vibrations and noise are crucial topics for superyachts and they require detailed calculations from the earliest of design stages to verify the dynamic behaviour of hull structures and their response to exciting loads such as propellers, engines and wave encounters. Even if vibrations and noise are more critical for metallic yachts, FRP units are not immune from these phenomena. The problem is increased by higher comfort requirements and constraints imposed by the ISO 6954 (2000) with respect to the previous ISO 6954 (1984) standard, together with CS notations which ask for even lower levels of vibration and noise.

Some examples of maximum vibration levels are reported in Table 1a for BV, LR and RINA.

Yacht length	Notation	Frequency	Acceleration	Maximu	m Level
racht length	Notation	Range	Measurement	Underway	Anchor
	COMF	1 - 80 Hz	a_w	$89.4 mm/s^2$	$53.5 mm/s^2$
$L \le 45 m$	(\mathbf{Y})	1 - 80 11 2	(v)	(2.5mm/s)	(1.5mm/s)
$L \leq 45 m$	COMF	1 - 80 Hz	a_w	$53.5 mm/s^2$	$45.0 mm/s^2$
	+(Y)	1 - 80 11 2	(v)	(1.5mm/s)	(1.25mm/s)
	COMF	1 - 80 Hz	a_w	$71.5 mm/s^2$	$45.0 mm/s^2$
L > 45 m	(\mathbf{Y})	1-00112	(v)	(2.0mm/s)	(1.25mm/s)
L > 45 m	COMF	1 - 80 Hz	a_w	$53.5 mm/s^2$	$35.75 mm/s^2$
	+(Y)	1 - 00 11 2	(v)	(1.5mm/s)	(1.0mm/s)

Table 1a:]	Maximum	vibration	levels a	according to	Classification	Societies.
ruoie ru. i	"iu/illiulli	vioration		lecolumn to	Clubbilleution	booletteb.

 a_w = multi axis acceleration value calculated from the root-sums-of-squares of the weighted root mean square (RMS) acceleration values in each axis (a_{xw}, a_{yw}, a_{zw}) at the measurement point. v = spectral peak of structural velocity in mm/s.

The presence of large openings, in addition, further complicates the dynamic behaviour of the hull lowering its natural frequencies and inducing additional torsion modes.

As a general rule the only way to avoid vibrations is to keep natural frequency very high and this can be achieved only by increasing hull stiffness. In this regard the longitudinal framing system shows higher natural frequencies with respect to the transverse one; this may be ameliorated by reducing the transverse frame distance and the longitudinal stiffener spacing. As a matter of fact any action towards vibration reduction implies an increase in structural weight: as an example, it has been estimated that for a 95m megayacht the weight increase to avoid maddening vibrations amounts to more than 100 tonnes.

The noise abatement for motor yachts is another strategic issue related to onboard comfort and most difficult to achieve because of powerful and high speed propulsion engines, related gear boxes and highly loaded propellers with reduced clearances. The acoustical implications of motor yachts should be taken into account from the earliest of design phases because any subsequent interventions on an already built unit in most cases doesn't give any improvement.

Table 1b: Maximum noise levels for superyachts. Values in dB(A) are provided "in harbor" and "sailing " conditions.

			_				
Spaces	Lalangas (1983)	ABS (COMF(Y))	BV	GL (cruise ship)	LR	RINA	90 m yacht (2011)
	Harb/Sail	Harb/Sail	Harb/Sail	Harb/Sail	Harb/Sail	Harb/Sail	Harb/Sail
Owner cabin	35/73	40/45	40/50	44/52	50/50	45	40/44
Guest cabins	35/73	45/50	40/50	46/54	53/53	45	43/47
Lounges	40/77	50/50	45/55	52/60	55/55	55	45/50
External decks	50/89	60/65	55/75	64/72	63/63	55	65/70

A + 2 dB(A) measurement tolerance will be accepted on the all measured noise levels.

BENETTI RANGE CLASS - CUSTOM		Bl	ENETTI CLAS	5S	
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'
NOISE AND VIBRATION	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
Noise @ Aft Guests Cabins(anch ; nav)	48;65	50;63	47;62	47;72	45;62
Noise @ Fwd guest Cabins(anch ; nav)	45;57	45;58	46;57	46;57	45;58
Noise @ Crew Mess (anch ; nav)	45;55	45;60	48;56	48;56	48;57
Noise @ Crew Cabins (anch ; nav)	45 ; 55	45;60	48;56	48;56	48;56
Noise @ Main Saloon (anch ; nav)	50;63	52;62	45;62	50;62	48;62
Noise @ Dining Area (anch ; nav)	/	52;62	45;58	48;58	/
Noise @ Owner's Cabin (anch ; nav)	45;52	43;50	44;51	44;51	44;51
Noise @ Galley (anch ; nav)	45 ; 55	55;65	52;59	49 ; 59	48;60
Noise @ Sky Lounge (anch ; nav)	/	58;65	46;55	46 ; 55	45;56
Noise @ Captain cabin (anch; nav)	/	/	48;56	48;56	48;55
Noise @ Wheelhouse (anch ; nav)	48;57	50; 55	56;56	56;56	55 ; 55
Noise @ Aft Main Deck (ext. Area) (anch ; nav)	60;78	63 ; 78	58;80	58;80	58 : 79
Noise @ Aft Upper Deck (ext. Area) (anch ; nav)	/	58;73	57 ; 73	57 ; 73	56 ; 74
Noise @ Middle Sun Deck (ext. Area) (anch ; nav)	58;73	55 ; 70	56 ; 70	56 ; 70	55 ; 70
Vibration@ Owner and guests interior	1 RMS	1 RMS	2 RMS	1 RMS	2.5 RMS
lux areas (Nav)	[mm/s]	[mm/s]	[mm/s]	[mm/s]	[mm/s]
Vibration @ Open Deck entertainment	1.5 RMS	1.5 RMS	2.5 RMS	1.5 RMS	3 RMS
areas (Nav)	[mm/s]	[mm/s]	[mm/s]	[mm/s]	[mm/s]
Vibration @ crew Quarters (Nav)	1.5 [mm/s]	1.5 [mm/s]	2.5 [mm/s]	1.5 [mm/s]	3 [mm/s]

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

2.2 Structure

This part is focused on Fibre Reinforced Plastics as a material in Yacht construction. Below are described main characteristics of material, structural arrangement and production methods.

Similar to sailing yachts, the history and development of motor yacht structures can be assessed and described according to various characteristics, such as size, performance, construction materials, interior and external design. The use of wood, steel, aluminium alloys and fiber reinforced plastic for motor yacht construction technological aspects in overall in overall yacht performance..

Other concepts which are extremely important in the world of yachting such as `freedom', `comfort' and `luxury' are determinant in attracting the interest of potential owners. Even if these concepts appear to be completely separate from the practical technical aspects, they must be translated by designers into real features of the yacht, which can be a huge problem for structural designer.

2.2.1 Material

Given that the driving philosophy in designing and building motor yachts is the cost reduction, the choice of the construction material also depends on their specific mission and dimensions. Materials are chosen for their appropriateness in the same way they are for vessels with other missions. As with commercial and government vessels, motor yacht material selection is predominantly based on cost (both initial and life-cycle) and weight. Insulation properties, predominantly noise and thermal, and vibration damping, are often emphasized. Unlike those other vessel types, some yacht materials are chosen for their aesthetic qualities.

In the higher range between 24 and 45m, even if fiber reinforced plastic (FRP) is the most diffused material.

The upper bound of this category represents the FRP dimensional limit owing to its low mechanical properties and elastic modulus; at the same time steel begins to become the standard.

2.2.2 Fibre Reinforced Plastics

After several experiments of partial fiberglass boats (aluminium frames with FRP shell) were started in the forties, the first FRP motor boat was a 41 ft sport fishing boat, built in the USA in 1959 utilising a combination of polyester resin and E-glass fibers manufactured with a hand lay-up procedure in a female mould. Since then great progress has been reached in composite technology applied to vessel construction.

While E-glass fibers remain the basic reinforcement owing to their acceptable mechanical properties and low cost, for more specific applications, where higher strength and stiffness are required, together with lower weight, aramid and carbon fibers are more suitable.

As the distinct advantage of FRP composites is the ability to tailor the property directionally to suit specific applications, a very large number of fabrics have been made available on the market for glass, aramid and carbon fibers..

Sandwich plating, commonly used for decks and then even more often for hull sides as well, are generally built with glass fiber skins and balsa or PVC cores; various densities are available to match different resistance requirements. Where cores are concerned the best solution in terms of weight and stiffness is represented by both Nomex or aluminium honeycomb. In this case particular care is required when bonding skins and core to each other. Sandwich construction is used in place of single skin construction to reduce weight and improve vibration damping and provide greater thermal insulation. When the weight reduction becomes mandatory more sophisticated materials are used for skins such as carbon and aramid. Core selection becomes an important consideration with trade-offs for each of the popular types. Cores are often selected by their shear strengths and the strongest for its density is end-grain balsa wood. Balsa's main drawback is its tendency to rot if exposed to moisture for a long period of time, requiring careful fabrication in the boat and adherence to high quality standards during repair or modification. PVC cores are growing in use with the cross-linked varieties more appropriate for deflection limited designs and the linear PVC cores more suited for impact resistant designs. Polyurethane cores are used when insulation is a primary concern, while honeycomb cores of aramid, aluminium or polyethylene are used when reduced weight is the main goal. Honeycomb cores are often combined with thicker, `cosmetic' face sheets for joinery.

2.2.3 Structural Arrangements

The first structural lay-out consisted in a thick, single skin shell stiffened by `box reinforcements' having a longitudinal framing system with web frame interval between 1000 and 2000mm; in Figure 2 the main section of a typical semi-planing yacht with single skin hull is shown. Reinforcements have top-hat sections (also called `box', or `omega') with empty or PVC cores.

This latter solution is now preferred because of the advantage of a simpler construction (the PVC core works as a male mould on site) and because the empty `top-hat' beams absorbed and trapped water inside. Secondary stiffener sections in FRP constructions are not smaller in scantlings as usually observed for metallic structures where the ratio of web height between secondary versus primary reinforcements must be below 0.5.

In fact, while structural connections or crossing beams represent weak points in steel and aluminium structures because of welding, in the case of FRP joints and crossings the mode of construction requires glass overlapping and extra material and they subsequently become stiffer zone. This helps compensate for FRP's low Young's modulus and achieves higher hull stiffness, avoiding structure deformations when sailing at high speed or in rough seas. In addition the number of stiffeners is reduced, therefore reducing production cost.

The low elastic modulus of this material precluded the building of very long vessels and the effort of designers and engineers was always devoted to increasing stiffness, more than the resistance, of FRP. This task has been partially achieved by `sandwich' construction, which made it possible to obtain more rigid hulls eliminating, at the same time, secondary stiffeners thus achieving a simpler and lighter structure.

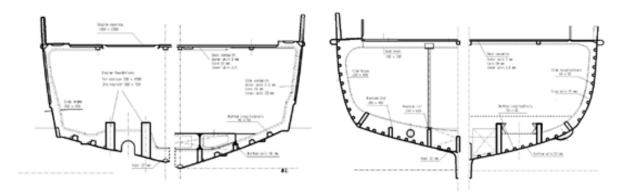


Figure 2: (Left) Main section of a 25m FRP planning yacht with sides and deck in sandwich, (Right) Main section of a 40m FRP displacement yacht with single skin hull

In addition the use of more sophisticated fibers, like carbon and Kevlar, together with new lamination techniques (resin infusion and resin pre-impregnated fiber systems), contributed to obtain stiffer sandwich panels and to increase yacht lengths up to 45m. Nevertheless carbon and epoxy laminates need more sophisticated production technologies based on the availability of large ovens to cure mouldings at high temperatures, not a cost effective production technique.

Classification societies had always been very careful in accepting sandwich for the whole hull shell because of the low resistance of the external thin skins to impacts.

On the other hand shipyards are in favour of sandwich panels because it avoids secondary stiffeners, further simplifying the construction sequence, and because it allows smoother external surfaces without the shrinkage marks of internal frames. At present the use of sandwich plating, while utilised for the entire hull on sailing yachts, is only well accepted for deck and sides for motor yachts; for bottom structures single skin remains mandatory, especially for high speed vessels. In Figure 2 the main section of a planing motor yacht with a single skin bottom and sandwich side and deck is shown.

A further complex point for FRP yachts is the hull to deck joint; this is a critical aspect for boats over 30 feet for which hull girder loads become significant.

Fuel storage on board FRP vessels is generally done in stainless steel tanks or in structural tanks integrated in the hull structure in way of a double bottom. The first solution is now well tested and reliable enough where safety and odour are regarded.

Structural tanks, in principle, showed many problems especially with regards to fuel. This has been solved by specific treatments such as gel-coating or some other impermeable barrier coat on the inside of the tank.

Collision and watertight bulkheads are FRP made with `top-hat' stiffeners; dividing bulkheads are made of plywood sandwich with insulating panels as the core.

2.2.4 Production Methods

Production methods for FRP motor yachts are very similar to those adopted for sailing yachts. The main difference is represented by the more complicated shapes of hull and superstructures which necessitate building the vessel from a higher number of components and, thus, a higher number of moulds. For smaller units, up to six to eight meters, two separate moulds for hull and deck/deckhouse are sufficient. The after body of the hull mould is generally a separate part to allow gangway stern shapes. By this solution, it is possible, at a relatively low cost, to make aesthetic changes to the after body and to obtain slightly longer vessels just by substituting the aft part of the mould.

The present trend to control production cost is represented by modular construction by which the vessel components are moulded separately and then assembled by bonding.

From this perspective an accurate study of the minimum number of moulds and their optimization becomes very important for the industrialization process and cost reduction. The first applications of this method regards the realization of FRP counter-moulds in which the housing for furniture and fittings, and some furniture

For bigger vessels, deck and superstructures are built by separate moulds as well, but the hull mould is preferably divided into two longitudinal shells to avoid lifting operations when extracting the hull. Then a number of minor components are laminated to complete the structure and the internal outfit. The majority of FRP motor boats are built by a hand lay-up technique by which every reinforcement layer is laid into an open, female mould and manually wetted and rolled. As FRP material resistance is a compromise between the as high as possible glass content and complete glass wetting, the final material quality depends heavily on workers experience and shipyard daily environmental conditions (dust, humidity and light conditions). The uncertainty of the material quality is further increased by the need to mix the resin with a catalyst to prime the hardening process: this action, generally carried out manually, heavily influences the material workability time and obliges workers to prepare small quantities of resin before lamination, thus wasting a lot of time. This inconvenience is overcome by the spray lay-up process by which resin and catalyst are sprayed at the same time and with correct proportions on reinforcements by a spray-gun fed by pneumatic air equipment. It is also possible, with a proper gun, to spray cut glass fibres together with resin to obtain an on site chopped strand mat.

However, it is not easy to control the glass volume and the resulting thickness and again the material quality depends on worker skill. Nevertheless spray lay-up has the advantage of

obtaining a constant, optimal resin/catalyst ratio, a longer workability time and yard efficiency in terms of production, but it still requires rolling operations to consolidate the laminate.

Apart from any other technical concerns, the most serious FRP problem is represented by the styrene fumes released in the working environment during the chemical process of the resin hardening in the mould, which have been proved to be toxic for human health. To overcome pollution new lay-up procedures in closed moulds have been developed and/or are under study. The first, well known solution is represented by the vacuum bag or vacuum consolidation procedure in which an airtight sheet, usually nylon, is used to cover the fibre stack in the mould. Reinforcements are wetted out as with hand lay-up. A set of plastic pipes properly placed in the mould and connected to one or more vacuum pumps allow atmospheric pressure to drive out the excess resin thus increasing glass percentage in the laminate with consequent better mechanical properties.

Table 2. List of all items compared in this technical section. Full list is available in appendix 1

01 STRUCTURE
01.10 HULL STRUCTURE – 22 ITEMS
01.20 SUPERSTRUCTURE STRUCTURE- 5 ITEMS
01.40 ASSEMBLING - 1 ITEM

BENETTI RANGE CLASS - CUSTOM		B	ENETTI CLAS	SS	
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'

Hull Materials	GRP	GRP	GRP	GRP	FRP
Windows and portholes frames	FRP porthole flanged collar, FRP window support	GRP porthole flanged collar integrated into the hull side. GRP window support for windows bonding.	FRP porthole flanged collar, FRP window support	FRP porthole flanged collar, FRP window support	FRP porthole flanged collar, FRP window support
Rubbing strake	built in FRP at main deck and WL level	Integrally built in GRP together with the hull, at main deck.	Integrally built in GRP together with the hull, at main deck and WL level.	Integrally built in GRP together with the hull, at main deck and WL level.	Integrally built in FRP together with the hull, at main deck and WL level.

Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

	0		Tuent		
Superstructure materials	GRP	GRP	Cored	Cored	Cored
			sandwich	sandwich	sandwich
			structure in the	structure in the	structure in the
			decks and on	decks and on	decks and on
			the sides	the sides	the sides
			utilising mat,	utilising mat,	utilising mat,
			unidirectional,	unidirectional,	unidirectional,
			biaxial and	biaxial and	biaxial and
			woven E-glass.	woven E-glass.	woven E-glass.
			When	When	When
			necessary	necessary	necessary
			single skin	single skin	single skin
			laminate will	laminate will	laminate will
			be provided.	be provided.	be provided.
Superstructure reinforcements	Local	Local	Local	Local	Local
	reinforcements	reinforcements	reinforcements	reinforcements	reinforcements
	when	when	when	when	when
	necessary	necessary	necessary, to	necessary, to	necessary, to
			support	support	support
			concentrated	concentrated	concentrated
			loads due to	loads due to	loads due to
			heavy parts	heavy parts	heavy parts
			and objects.	and objects.	and objects.

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti

* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

Diferent phases in production of some of the items:

2.3 Outfitting

Outfitting covers the whole fit out of a vessel from the interior to the exterior, engineering to aviation, bridge integration, luxury owner supplied items or toys and stores.

As far as the conventional naval architect is concerned, weight estimates consider machinery separately from outfitting which includes the rest of the engineering systems and interior fitout, the total lightship being made of hull structure, machinery and outfitting.

The issue of outfitting on structural requirements is crucial not only in terms of the fundamental systems that allow the operation of a vessel but in the case of luxury sailing yachts and

superyachts in the features that provide the definition of luxury, including heli-decks, large open volumes, swimming pools and internal harbours and garages. However the complexity of outfitting varies between vessel types and the regulations underpinning vessel design and operation can vary between the very limited applied to a private yacht to those unrestricted charter vessels carrying.

Particular attention in the early outfitting stages is paid to the structural complications referred to in the following sections, but clearly as outfitting progresses there is an increasing focus on systems installation. As stylists and designers become more innovative with materials and furnishings, including the increasing use of glass, dependent on the classification of the superyacht, materials used in outfit must meet SOLAS approval.

2.3.1 Structural Challenges

A typical flow chart of the construction and outfitting process of a superyacht is shown in Figure 3a. Outfitting is by far the longest and most complex process in superyacht production taking typically up to two thirds of the production time and up to 80% of the superyacht production cost. The inclusion of large spaces, maximizing internal volume and integrating systems to accommodate comfort, luxury and toys present significant structural challenges and issues relating to compliance vary from the impact of the International Convention on

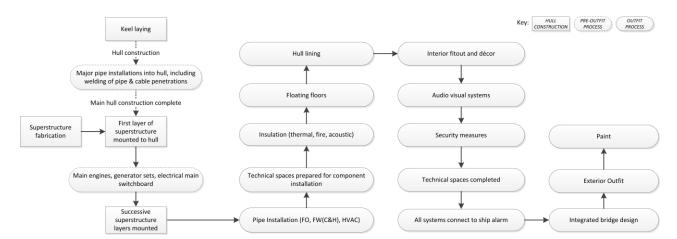
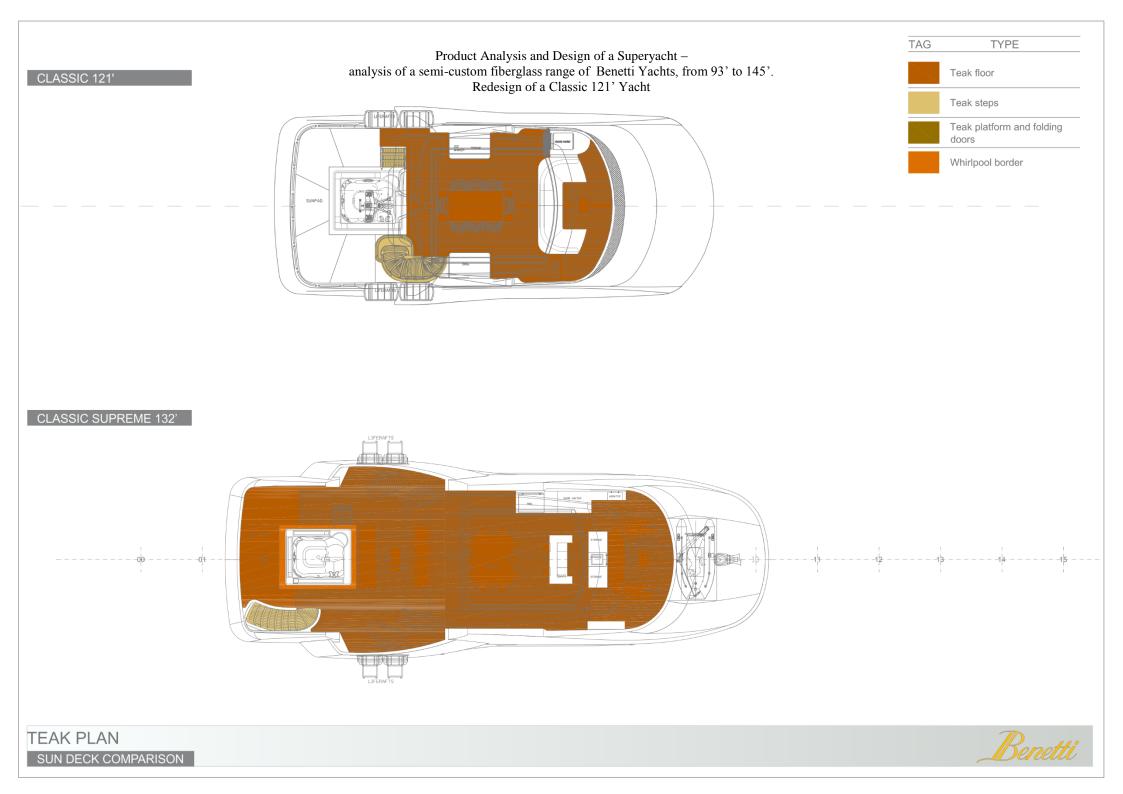


Figure 3a: A typical flow chart of the construction and outfitting process of a superyacht

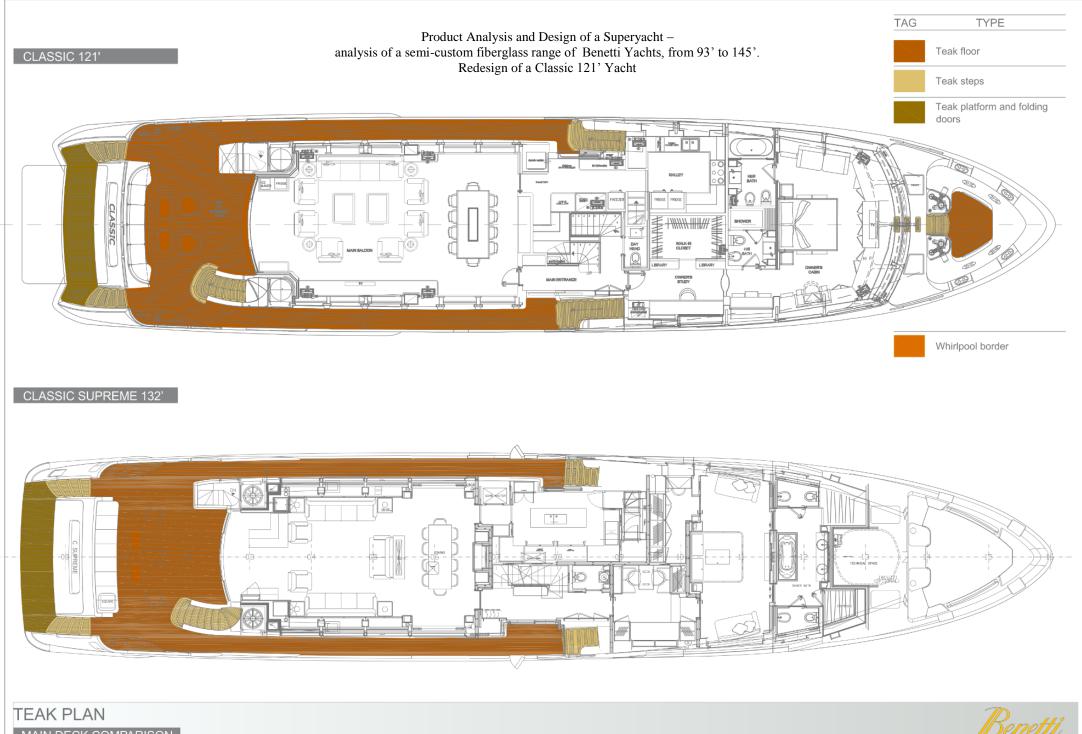
Load Lines upon window sizes, to side shell openings, hybrid material connections (for example, aluminium superstructures explosively welded to steel hulls) and the stowage of toys to discontinuities in primary structure.

To reduce noise and vibration diffusion through the hull and superstructure spaces all the interior technical outfit is arranged with `floating' floors and walls in such a way as to isolate as much as possible passenger areas. Insulating systems consists of paints, filler and panels applied to the internal cabin surfaces. In some cases to reduce the noise from hull wash, some planks are directly applied to the internal shell at the waterline. All these devices heavily influence the final displacement of the ship and a very refined structure scantling becomes mandatory.

Table 3. List of all items compared in this technical section. Full list is available in appendix 1

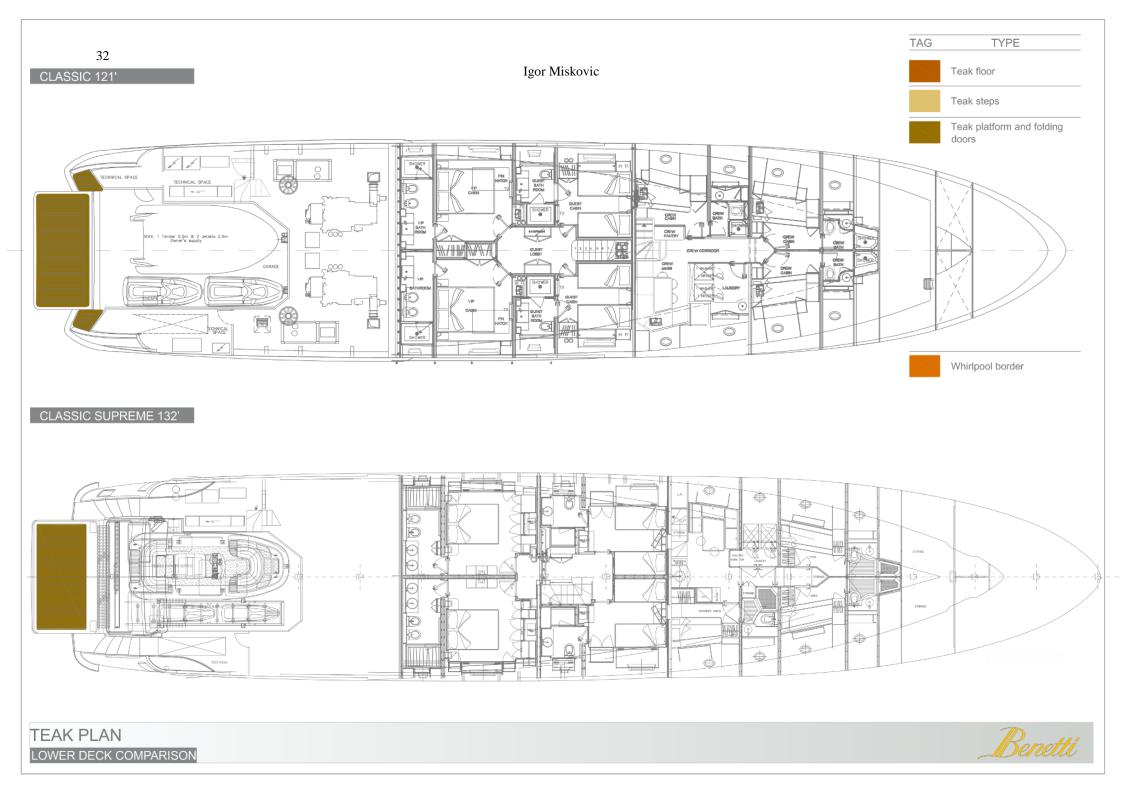

<u>02 OUTFITTING</u>
02.10 EXTERNAL DECKS OUTFITTING- 4 ITEMS
02.20 FAIRING, PAINTING AND INSULATION -
18 ITEMS
02.30 NAUTICAL AND DECK EQUIPMENT – 24
ITEMS
02.40 WINDOWS, DOORS AND HATCHES - 10
ITEMS
02.50 STAIRS, LADDERS, GANGWAYS,
TECHNICAL FLOORS – 7 ITEMS
02.60 HANDRAILS, PILLARS, SUN AND WIND
PROTECTIONS – 4 ITEMS
02.70 LIFTING DEVICES – 3 ITEMS
02.80 VARIOUS OUTFITTINGS – 25 ITEMS
02.90 FIRE & SAFETY APPLIANCES – 12 ITEMS

EXTER. DECKS OUTFITTING					
Deck Lining	planked with teak 12mm	planked with teak 12mm	planked with teak 12mm	planked with teak 12mm	planked with teak 15mm
Teak on hull doors and swimming platforms	/	/	planked with teak 10mm	planked with teak 10mm	/
External stairs lining	planked with external stair covering 12mm. Benetti Standard 21107	planked with teak 12mm.	planked with teak 15mm	planked with teak 12mm	planked with teak 15mm
Bulwark capping rails	12mm	12mm	15mm	12mm	15mm
Anchor windlass	2 EL 230vac/3ph/5 0Hz, 4000W	2 EL 230vac/3ph/5 0Hz, 4000W	2 EL 400V/3ph/550 0W	2 EL 400V/3ph	2 EL 380 VAC/3 phases, 5500W
Capstans	2 EL 230vac/3ph/5 0Hz, 2200W	2 EL 230vac/3ph/5 0Hz, 2200W	2 EL 400V/3ph/220 0W	2 EL 400V/3ph	2 EL foot operated capstans fitted on aft deck. Capable to rotate in both directions.
Anchors	2x SHHP 97 kg	2 Galvanized HHP, each 160 kg	2 Galvanized HHP, each 244 kg	2 Galvanized HHP, each 225 kg	2 Galvanized HHP, each 219 kg
Engine room flooring	Neprane gasket mounted betwen the plating and supporting angle bars. Supporting structure in white painted RAL 9003 aluminium. The plating is in anodized aluminium of the titanium color.	Aluminium knocked plating with raised edge. Removable or hinged sections are fitted in way of valves, filters, etc.	Aluminium knocked plating. Removable or hinged sections are fitted in way of valves, filters, etc. Where maneuvering or access is required.	Aluminium knocked plating. Removable or hinged sections are fitted in way of valves, filters, etc. Where maneuvering or access is required.	Knocked plating with raised edge. Lean on type. Neprane gasket mounted between the plating and supporting angle bars. Removable or hinged sections are fitted in way of valves, filters, etc.

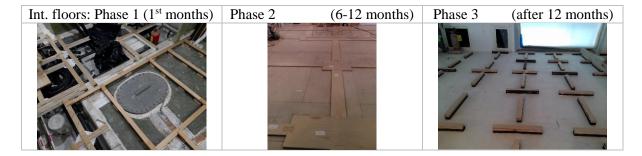

BENETTI RANGE CLASS - CUSTOM	BENETTI CLASS				
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'

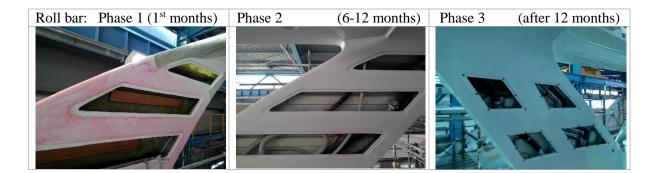
* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti

* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range



MAIN DECK COMPARISON





2.4 Auxilary Machinery

Table 4. The List of all items compared in this technical section. Full list is available in appendix 1

03 AUXILIARY MACHINERY 03.10 BILGE AND FIRE EQUIPMENT – 4 ITEMS

Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

03.20 FUEL OIL AND LUBE OIL EQUIPMENT – 6 ITEMS 03.30 SANITARY EQUIPMENT – 5 ITEMS 03.40 AIR PRESSURE AND HYDRAULIC EQUIPMENT – 5 ITEMS 03.50 FRESH WATER EQUIPMENT – 6 ITEMS 03.60 SEA WATER COOLING EQUIPMENT – 1 ITEM 03.70 AIR VENT AND SOUNDING EQUIPMENT – 4 ITEMS 03.80 GAS EXHAUST EQUIPMENT – 2 ITEMS 03.90 VARIOUS AUXILIARY EQUIPMENT – 2 ITEMS

BENETTI RANGE CLASS - CUSTOM	BENETTI CLASS				
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'
Fuel transfer pumps	1 EL (24Vdc) and 1 emergency hand operated pump, connected to a combined suction delivery manifold.	1 400V/3 phase electric transfer pump, 1 manual transfer pump for emergeny purposes.	Transfer system shall allow to transfer from each tank to each other by means of 1 electric transfer pump.	Transfer system shall allow to transfer from each tank to each other by means of 1 electric transfer pump.	2 El fuel oil transfer pumps (one at 380 VAC and one at 24 V DC) installed, connected to a combined suction delivery manifold.
Smoke water separators	Each generator exhaust system have a muffler and a		Each diesel generator exhaust system have a GRP	Each diesel generator exhaust system have a GRP	Each generator exhaust system have a muffler and a
Bilge, fire and ballast equipment Fire pumps	smoke/water separator. 1 EL 230V/3phase/ 50Hz sea water pump	2 EL self priming pumps (capacity as per Classification Society requirements) are provided for bilge and fire extinguishing system. Pipes are made in cunipress.	gas/water separator. 1 EL self priming pump in the engine room for fire extiguinshing system	gas/water separator. 1 EL self priming pump in the engine room for fire extiguinshing system	smoke/water separator. 1 EL sea water pump, with capacity in accordance with Class. Society requirements.

Igor Miskovic

Bilge pumps	1 EL	2 EL self	1 EL self	1 EL self	1 EL sea water
	230V/3phase/	priming	priming pump	priming pump	pump, with
	50Hz sea	pumps	in the engine	in the engine	capacity in
	water pump	(capacity as	room for	room for	accordance
		per	main bilge	main bilge	with Class.
		Classification	system. 1 EL	system. 1 EL	Society
		Society	pump for	pump for	requirements.
		requirements	garage bilge	garage bilge	
) are provided	system. 1	system. 2	
		for bilge and	automatic	automatic	
		fire	submergible	submergible	
		extinguishing	EL pump for	EL pump for	
		system. Pipes	the forward	the forward	
		are made in	storage.	storages.	
		cunipress.			

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti

* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

2.5 Piping

Table 5: The list of all items compared in this technical section. Full list is available in appendix 1

<u>04 PIPING</u>
04.10 BILGE AND FIRE PIPING - 2 ITEMS
04.20 FUEL OIL AND LUBRICATING OIL PIPES – 2
ITEMS
04.30 SANITARY AND SCUPPERS PIPES – 2 ITEMS
04.40 AIR PRESSURE AND HYDRAULIC PIPES – 2
ITEMS
04.50 FRESH WATER AND AIR CONDITIONING
WATER PIPES – 2 ITEMS
04.60 SEA WATER COOLING PIPES - 1 ITEM
04.70 AIR VENT AND SOUNDING PIPES - 1 ITEM
04.80 GAS EXHAUST PIPES – 2 ITEMS
04.90 VARIOUS SYSTEM EQUIPMENT – 3 ITEMS

Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

BENETTI RANGE CLASS - CUSTOM		BENETTI CLASS						
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'			
Air conditioning system	Pipes made in CuNi in engine room insulated with Armaflex and multilayer Unipipe Type outside engine room insulated with Armaflex.	/	Pipes for air conditioning chilled/heated water are made in CuNi 90-10 in engine room and multilayer outside engine room.	Pipes for air conditioning chilled/heated water are made in CuNi 90-10 in engine room and multilayer outside engine room.	Pipes for air conditioning chilled/heated water are made in CuNi insulated with Armaflex.			
Scupper boxes	FRP scupper boxes, protected by a polished stainless steel grill.	Collecting wells of GRP, scuppers are protected by stainless steel grill. Folowing pipes materials are used: srainless steel AISI 316 inside engine room, Stainless steel 316 outside engine room below main deck. PVc outside engine room above main deck.	Collecting wells of GRP materials are provided in number and position to ensure proper water drainage and discharge from the decks.	Collecting wells of GRP materials are provided in number and position to ensure proper water drainage and discharge from the decks.	FRP scupper boxes, protected by a polished stainless steel grill.			

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti

* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

2.6 Ventilation and Air Conditioning

Table 6. The list of all items compared in this technical section. Full list is available in appendix 1

05 VENTILATION AND AIR CONDITIONING
05.10 ACCOMMODATION VENTILATION AND AIR CONDITIONING – 11 ITEMS
05.30 ENGINE ROOM AND TECHNICAL SPACES VENTILATION SYSTEM69 – 5 ITEMS

Summer conditions:	35°C, 95 F,	35°C, 95 F,	35°C, 95 F,	35°C, 95 F,	35°C, 95 F,
	90% / 22	80% / 22	90% / 22	90% / 22	90% / 22
	°C, 72 F, 55	°C, 72 F, 55	°C, 72 F, 55	°C, 72 F, 55	°C, 72 F, 55
	% / 32 °C, 90	%/ 32 °C,	%/ 32 °C,	%/ 32 °C,	%/ 32 °C,
	F	90 F	90 F	90 F	90 F
Winter conditions:	0°C, 32 F,	0°C, 32 F,	0°C, 32 F,	0°C, 32 F,	0°C, 32 F,
	90% /	90% /	90% /	90% /	90% /
	22 °C, 72 F,	22 °C, 72 F,	22 °C, 72 F,	22 °C, 72 F,	22 °C, 72 F,
	50 % /	50 % /	50 % /	50 % /	50 % /
	10 °C, 50 F	10 °C, 50 F	5 °C, 41 F	5 °C, 41 F	8 °C, 46 F
Air conditioning salt water pumps	2 pumps for		2 pumps for	2 pumps for	2 pumps for
	chiller group.		chiller unit	chiller unit	chiller unit
Engine room fans silencers	Installed in	Equipped	Installed in	Installed in	Installed in
e	the engine	with silencer	the engine	the engine	the engine
	room air	inside the	room air	room air	room air
	extraction and	duct plenum	intake trunks	intake trunks	extraction and
	delivery	in order to	to reduce the	to reduce the	delivery
	trunks	minimize the	noise	noise	trunks
		noise	generated by	generated by	
		transmitted to	air flow.	air flow.	
		the external			
		passage where			
		the outlet is			
		located.			

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti

* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

2.7 Electric and Electronic system:

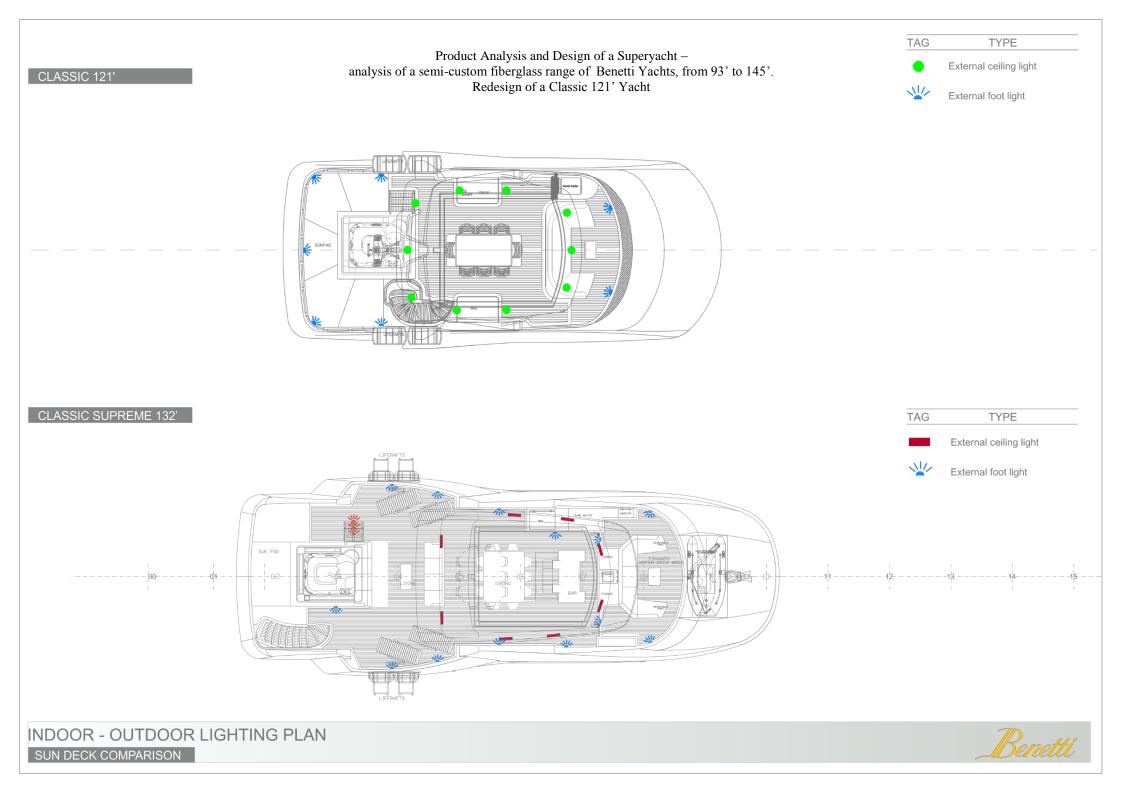
Table 7. List of all items compared in this technical section. Full list is available in appendix 1

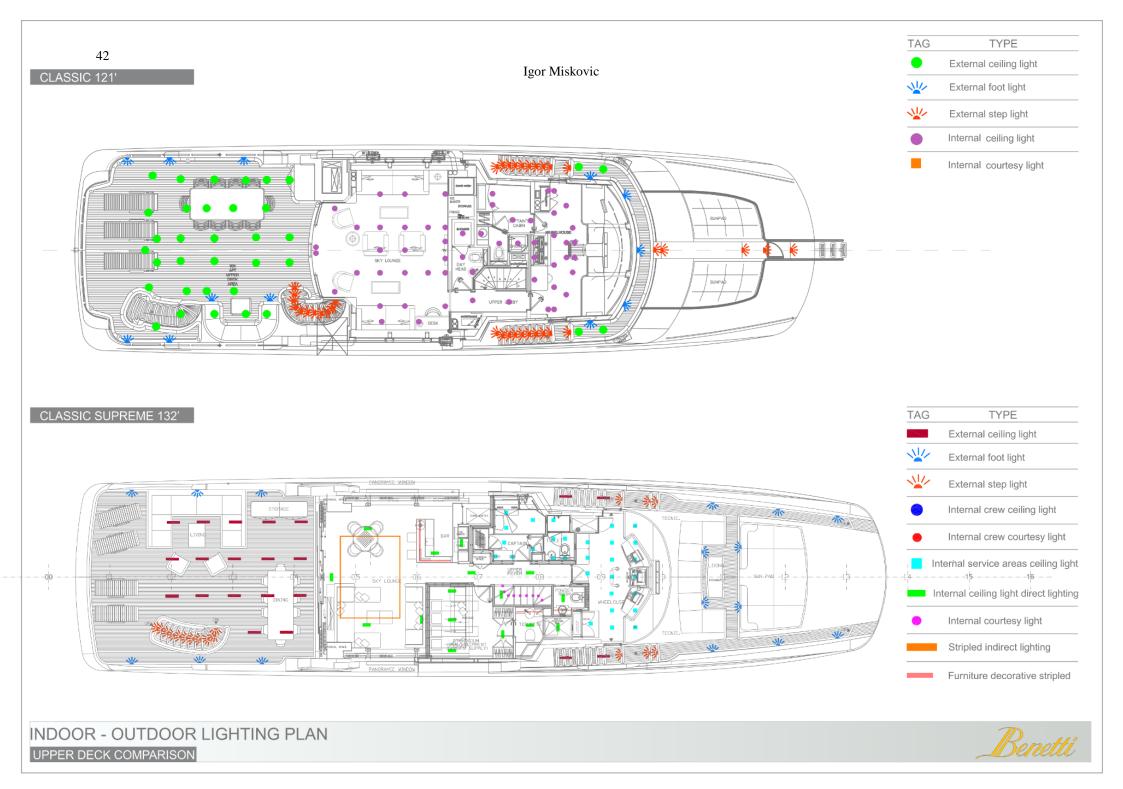
06 ELECTRIC AND ELECTRONIC SYSTEM
06.10 EMERGENCY ELECTRICAL SYSTEM-2
ITEMS
06.20 LOW VOLTAGE SYSTEM – 9 ITEMS
06.40 LIGHTING AND PLUGS – 33 ITEMS
06.70 ENTERTAINMENT EQUIPMENT – 1 ITEM
TV AND STEREO EQUIPMENT – 19 ITEMS

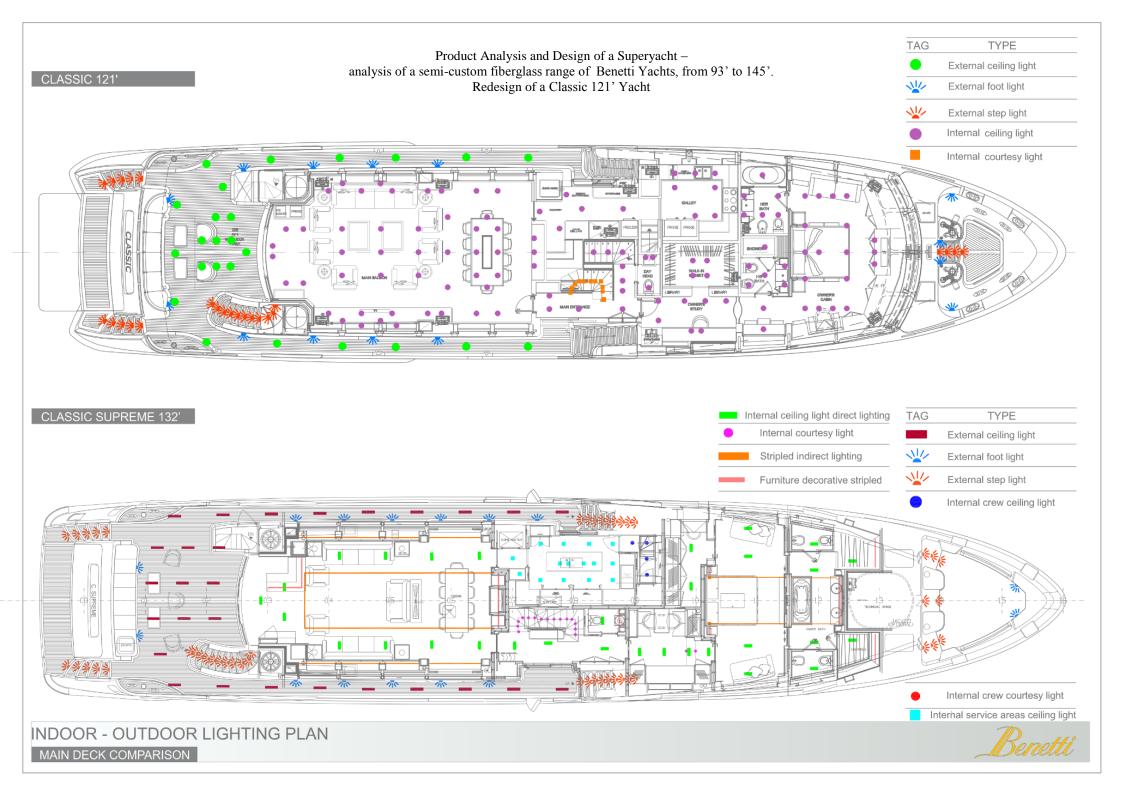
BENETTI RANGE CLASS - CUSTOM	BENETTI CLASS					
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'	

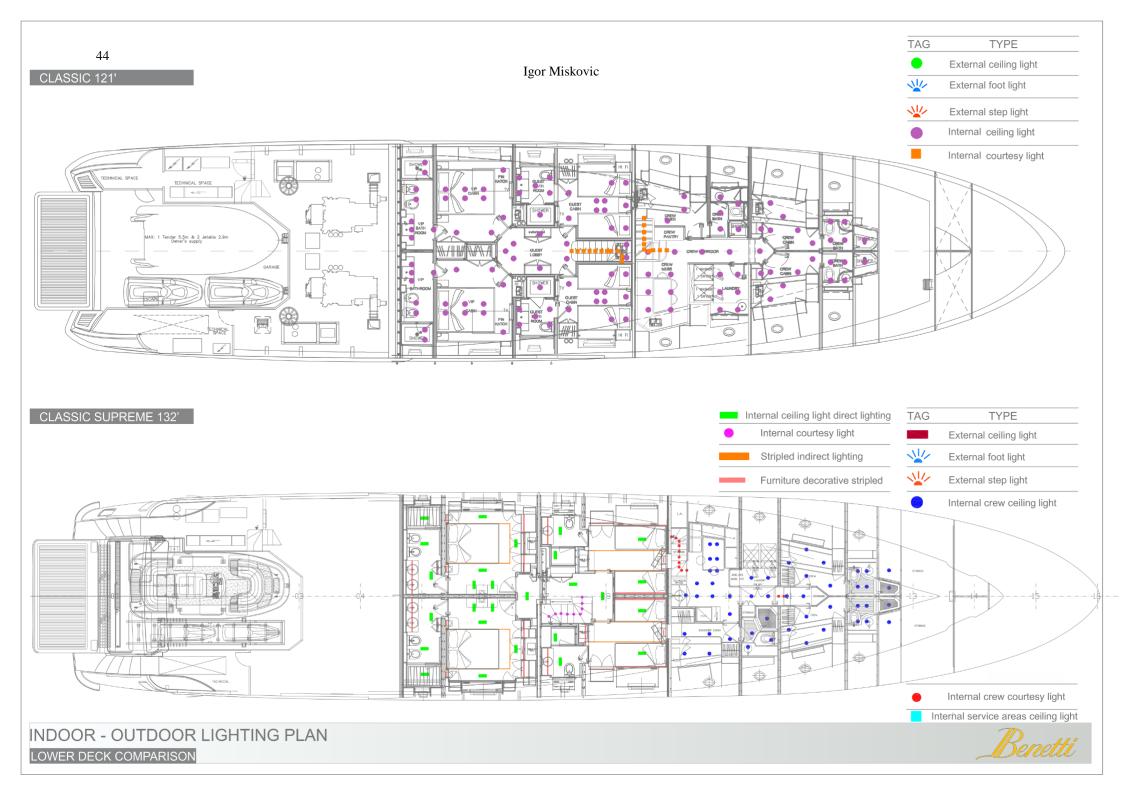
Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

	Recessign of a	Classic 121' Ya	aciit		
Batteries, general	All batteries will be GEL or AGM type according to their usage.	All batteries will be GEL or AGM type according to their usage.	All batteries will be GEL or AGM type according to their usage.	All batteries will be GEL or AGM type according to their usage.	24 V DC batteries are installed for the services. All batteries are GEL type. Installed in battery boxes as per Class. Society requirements
Radio batteries	1 group of 24V DC	1 group of 24V DC	1 group of 24V DC	1 group of 24V DC	Essential comumunica tion and navigation equipment is connected to a dedicated battery bank, according to Class. Society requirements
Service batteries	1 group of 24V DC	1 group of 24V DC	1 group of 24V DC	1 group of 24V DC	1 Group for service systems in the engine room.
Echo sounder	N° 1 BLACKBOX ECHOSOUN DER FURUNO DFF1 with dual frequency triducer (depth, log, water temp)	N° 1 BLACKBOX ECHOSOUN DER FURUNO DFF1 with dual frequency triducer (depth, log, water temp)	<u>N 1 Blackbox</u> <u>graphic</u> echosounder/ Log DFF 1 with dual frequency triducer (depth, log, water temp), <u>N 1 NMEA</u> <u>Depth/Log</u> <u>sensor.</u>	<u>N 1 Blackbox</u> <u>graphic</u> <u>echosounder/</u> <u>Log DFF 1</u> with dual frequency triducer (depth, log, water temp) <u>N 1 NMEA</u> <u>Depth/Log</u> <u>sensor</u>	<u>N 1</u> <u>Blackbox</u> <u>graphic</u> <u>echosounder</u> <u>DFF 1</u> with dual frequency triducer (depth, log, water temp); <u>N 2 Log</u> <u>integrated in</u> <u>NAVNET</u> 3D B744V Transducers
Magnetic compass	N°1 Magnetic compass Riviera White Star BW3 for Wheelhouse. N°1 Magnetic compass Riviera White Star BZ1 for Fly bridge	N°1 Magnetic compass C.Plath Jupiter over head mounting for Wheelhouse N°1 Magnetic compass Riviera for Fly bridge	N 1 Plath Jupiter m, 180 mm Over head installation	N 1 Plath Jupiter m, 180 mm to autosilo connection Over head installation	N 1 Plath Jupiter m, 180 mm to autosilo connection Over head installation


* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti


* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range


Carefully positioned strip lighting, recessed ceiling lights and lamps are controlled by touch switches and can be programmed to create just the right atmosphere, for any time of day and any type of occasion.


Further bellow you can see a graphical way of comparison between two Benetti Yachts, Classic 121' and Classic Supreme 132', comparing the Lighting Plan:

After that is a brief overview of a Benetti Standard Integrated Entertainment System - BEST.

2.7.1 Benetti Classic 121' Standard Integrated Entertainment system

Benetti Exclusive Sea Technology: 'BEST'

General description:

From the challenge launched by Benetti together with its technical partners a real and proper ship assistance has been created on BC121' for communications and entertainment. It is a complete and modular solution for the electronic instruments on board, a real and proper capillary distribution and elaboration system constituted by a sophisticated central server and by various devices locally handling the various functions, from audio/video to communications. A complex system but extremely easy to use that can make life on board much more comfortable both for guests and crew.

In the Saloons in the Owner's stateroom and Guest Cabins of BC121' people gets access to all television, satellite and terrestrial channels or makes a choice from the vast digital media data on board at the touch of just a single remote control.

BEST audio video system on demand can hold up to 750 dvd and hundred of thousands of musical pieces with automatically handled covers and playbills.

Every form of communication, ranging from telephone to data transmission, is handled by BEST to render available to the Owner and his Guests edge cutting services being managed through a simple interface web, such as "call hunting and paging", vocal box, public address, centralised telephone book, automatic calls re-addressing and many more.

The flexibility of the system can be enhanced as an OPTION by allowing a limitless access to internet and optimises navigation on web according to costs and availability criteria chosen by the user.

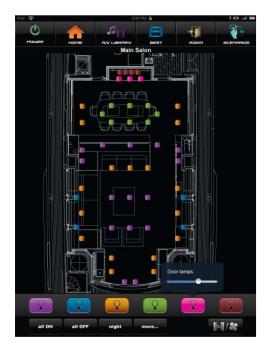
WiFi connection is provided on BC121' in the Owner's Cabin, Main Saloon, Upper Saloon, Guest Accomodation .

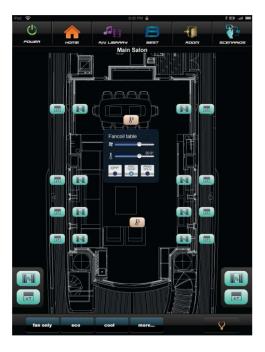
CCTV (option)

Your BEST on board BC121' allows you to manage the CCTV surveillance system which consists of four video-cameras positioned port and stardboard external corridor, in the engine room and on the external aft main deck. The system allows you to call up on the display the

Igor Miskovic

different views from each camera, the motion detection facility triggering off image recording. All the images and the cameras can be controlled by one 17" touch screen placed in the Crew Mess and by the integrated navigation equipment of the Wheelhouse. BEST has been designed to interface with every existing hardware system but with an eye for possible future technologies which may become available. The system allows to be updated through simple upgrading of the software.


"Magic touch":


Best allows also the maximum personalization of the single environments. As a magic set designer, through a simple "touch" on the panel, it would be possible to decide on a scenery ambiance with suffused lights and ambient music, or to transform everything into an exciting disco. Thanks to the independent handling of lighting and air conditioning, of A/V effects and curtaining movement, Best allows you to almost touch a feeling of absolute comfort.

Best has been planned to interface not only with every existing hardware system, but also to be used with whatever technology that might be developed in the future. Best will always be updateable through simple upgrading of the software on board ship.

Apple iTouch/ iPad remote control:

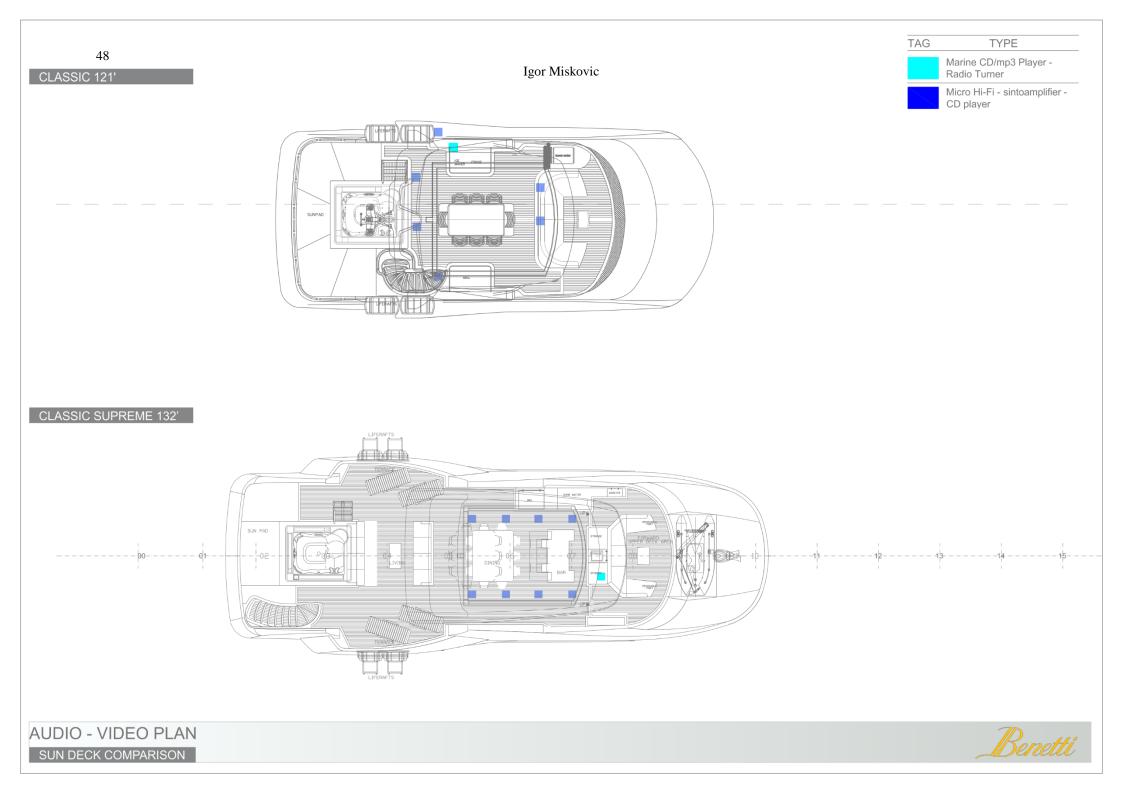
Are the remote controls through which all BEST's functions can be accessed and controlled.

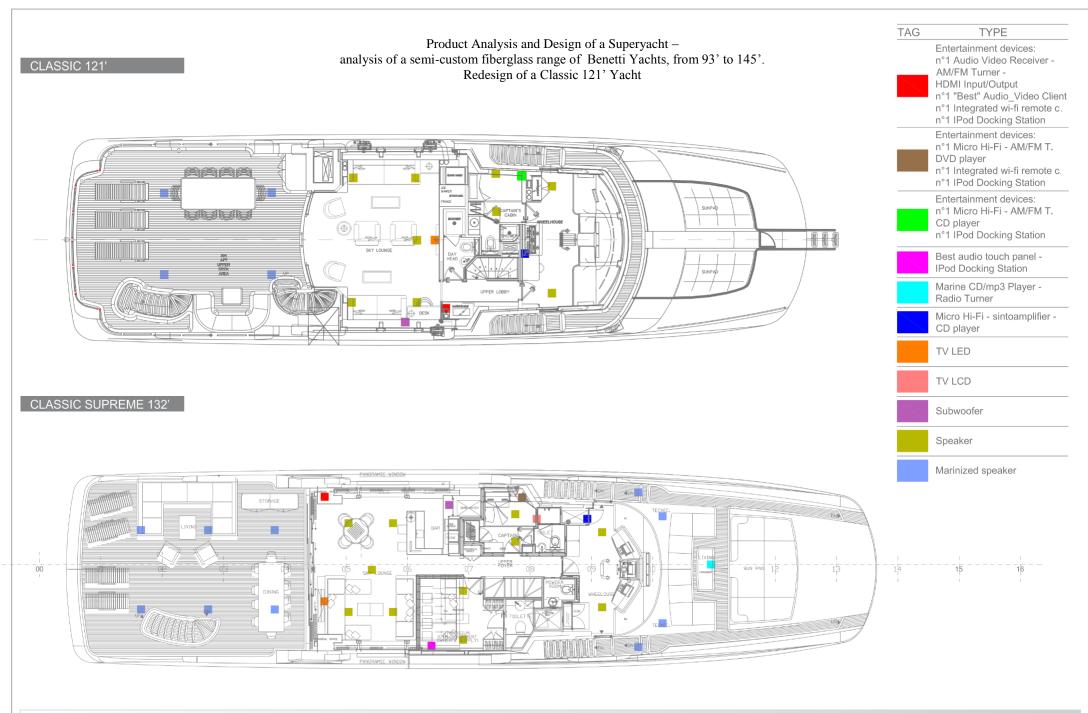
Lights Control

Electrical Curtains and Air Conditioning Control

Figure 4: Graphical Interface of Benetti Exclusive Sea Technology: 'BEST'

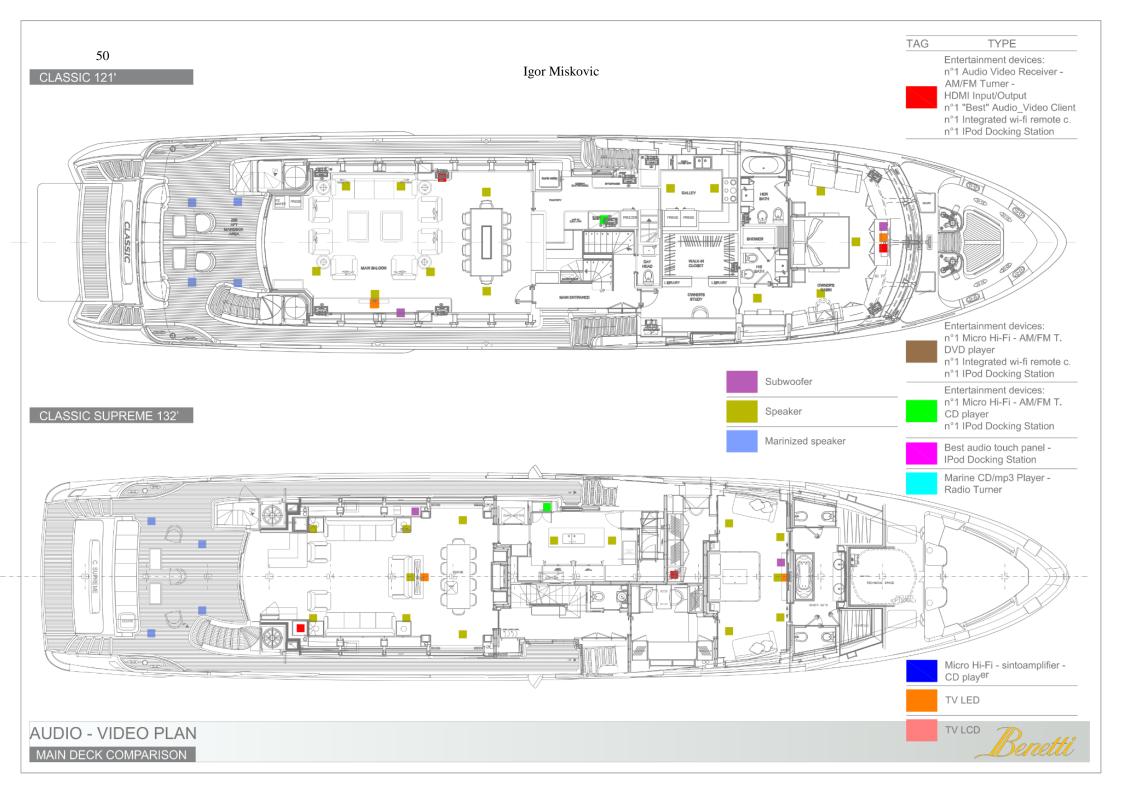
Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

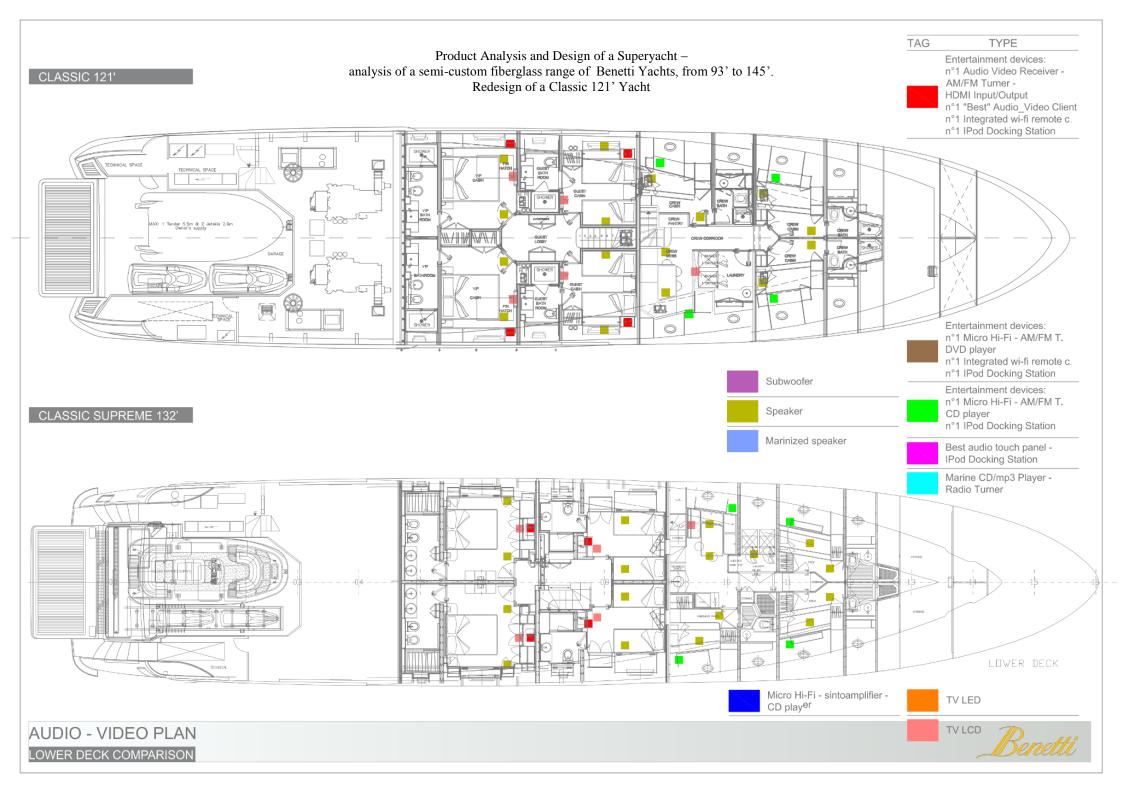

	reacting of a classic 121 fueld						
BENETTI RANGE CLASS - CUSTOM	BENETTI CLASS						
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'		


ENTERTAINMENT EQUIPMENT					
Satellite TV	AERIAL TV	<u>AERIAL TV</u>	<u>AERIAL TV</u>	<u>AERIAL TV</u>	AERIAL TV
	and FM	and FM	ANTENNA	ANTENNA	ANTENNA
	RADIO	RADIO	Model: Mark	Model: Mark	Model: Mark
	Model: Mark	Model: Mark	30	30	30
	30	30	Brand:Naval;	Brand:Naval;	Brand:Naval;
	Brand:Naval;	Brand:Naval;	AERIAL	AERIAL	AERIAL
	<u>N°3 WI-FI</u>	N°4 WI-FI	RADIO	RADIO	RADIO
	ANTENNAS	ANTENNAS	<u>ANTENNA</u>	<u>ANTENNA</u>	<u>ANTENNA</u>
	<u>(NO</u>	(NO	Model: VPA	Model: VPA	Model: VPA
	ROAMING)	ROAMING)	30	30	30
	Model: UniFi	Model: UniFi	Brand:Naval;	Brand:Naval;	Brand:Naval;
	AP	AP	N°6 WI-FI	N°6 WI-FI	N°8 WI-FI
	Brand:	Brand:	ANTENNAS	ANTENNAS	ANTENNAS
	UBIQUITI	UBIQUITI	(NO	(NO	(NO
			ROAMING)	ROAMING)	ROAMING)
			Model: UniFi	Model: UniFi	Model: UniFi
			AP	AP	AP
			Brand:	Brand:	Brand:
			UBIQUITI	UBIQUITI	UBIQUITI

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti
* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

*full Entertainment equipment list, of one of the Benetti models, can be find in the appendix 2


Further bellow is a deck comparison of Audio and Video Plan, onboard *Classic 121*' and *Classic Supreme 132*'.



AUDIO - VIDEO PLAN UPPER DECK COMPARISON

2.8 Main Machinery

Table 8. The list of all items compared in this technical section. Full list is available in appendix 1

07 MAIN MACHINERY 07.10 PROPULSION MACHINERY – 8 ITEMS 07.30 ELECTRIC POWER GENERATORS – 3 ITEMS 07.40 SIDE PROPULSION – 2 ITEMS 07.50 STABILIZERS – 1 ITEM

BENETTI RANGE CLASS - CUSTOM	BENETTI CLASS					
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'	

Main engines	2 x MAN V8 1000, of 735 kW (1000HP) @ 2300 rpm each	2 x MAN V8 1000, of 735 kW (1000HP) @ 2300 rpm each	2x MTU 12V 2000M72 1080 kW (1468 hp) @ 2250 rpm	2x MTU 12V 2000M72 1080 kW (1450 hp) @ 2250 rpm with BlueLine plant automotion	MTU12V2000M72, of 1080 kW (1450 HP) @ 2250 rpm each, with Blue vision NG basic
Main generators	2 Diesel electric generators: No.1 40kW, 230Vac, 3 ph, 50 Hz and No.2 33 kW, 230V, 50 Hz.	2 Diesel generators: Kohler, 2x 50 EOFZD, 50kW, 400V AC/50Hz, 3 phases + Neutral.	2 Diesel generators: Kohler, 2x 80 EOFZD, 80kW, 400V AC/50Hz, 3 phases, 1500 rpm	2 Diesel generators: Kohler, 2x 80 EOFZD, 80kW, 400V AC/50Hz, 3 phases, 1500 rpm	2 Diesel electric generators: 125kW, 380V, 3 ph, 50 Hz. The generators have integrated fresh water cooling systems with integrated fresh water pump, heat exchanger and integrated sea water pump.
Bow thruster	Hydraulic motor of 48 kW (65HP)	Electric motor of 37 kW 400V/3 phase.	Hydraulic motor of 60 kW supplyed by the 2 integrated hydraulic pumps installed on the gearboxes PTO. Integrated with stabilizer fins system.	Hydraulic motor of 60 kW supplied by the 2 integrated hydraulic pumps installed on the gearboxes PTO. Integrated with stabilizer fins system.	Electric motor of 75 kW, controlled from wheelhouse and from wing stations.
Shaft bearings	Arranged with rubber bearings water lubricated.	Brackets fabricated in cast bronze.	Arranged with water lubricated bearings.	Arranged with water lubricated bearings.	Arranged with water lubricated bearings.

* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti

* specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

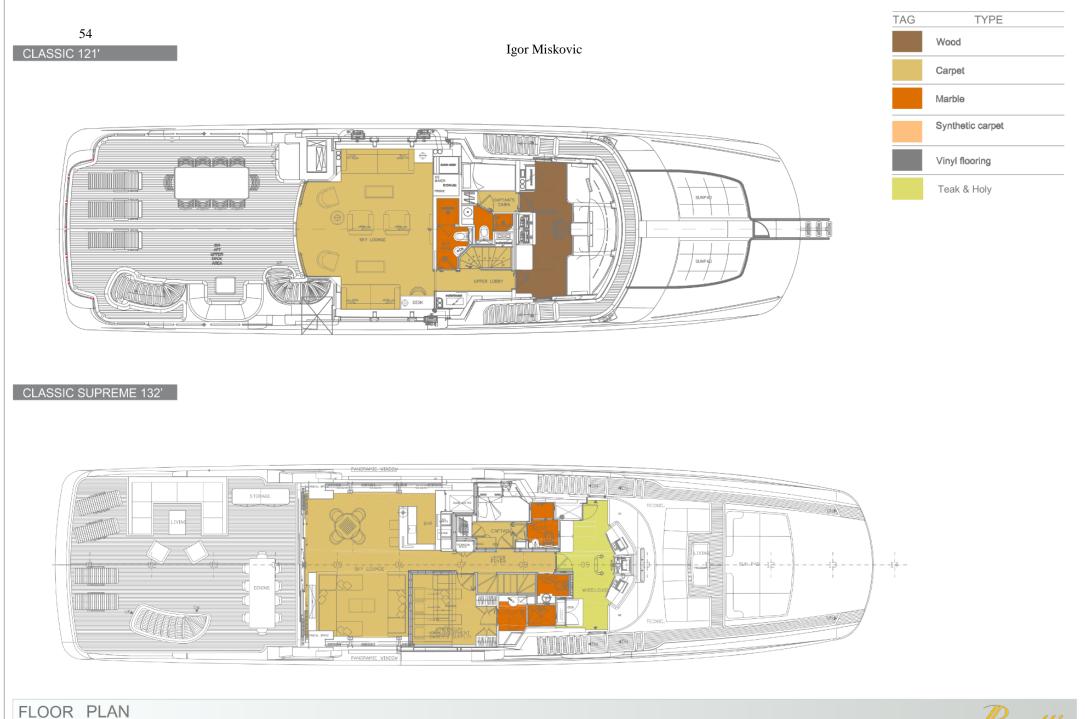
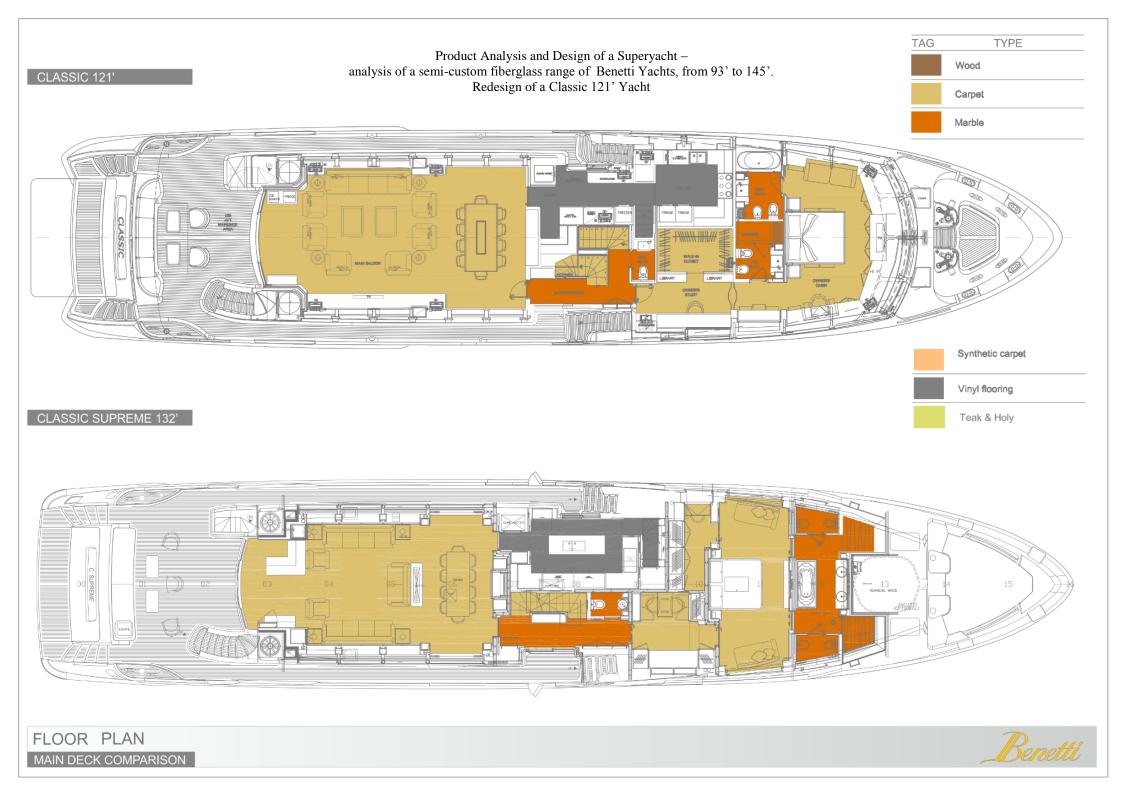

2.9 Interiors

Table 9. The list of all items compared in this technical section. Full list is available in appendix 1

08.10 CREW INTERIOR – 4 ITE	MS				
08.20 GUESTS INTERIOR – 9 IT	EMS				
08.30 VARIOUS ACCESSORIES	– 2 ITEMS				
08.40 DOMESTIC APPLIANCES					
BENETTI RANGE CLASS - CUSTOM		1	BENETTI CLA	SS	
MODEL	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'
Main Saloon:	2x Sofa 3 seats, 1x sofa 2 seats, 1 Coffee table, 10 dining chairs, 1 Dining table.	/	1x Sofa 4seats, 6Armchairs, 2Coffe table,10 diningchairs, 1Dining table,4 side table	2x Sofa 4 seats, 2 Coffe table, 10 dining chairs, 1 Dining table.	2 sofa 3 seat, 2 armchairs, 1 coffe table, 2 bar stool, 10 dining chairs, 1 dining table
Owner's study:				DESK CHAIR 2, DESK 1	DESK CHAIR 2, DESK 1
Owner's cabin:	1 Vanity Chair, 1x 2 seat Sofa.	/	1 Vanity chair, 1 desk chair (in Owner's Study)	1 Vanity chair, 2 Chaise lounge	1 Vanity chair, 1 Chaise loung
UPPER DECK:					
External Aft Area:	DINING TABLE 1, DINING CHAIR 6		1 Coffe table, 3 Sunbed, 1 Dining table, 10 Dining chairs.	2 Sofa 3 seats, 2 Armchairs, 1 Coffe table, 1 Dining table, 10 Dining chairs.	2 Sofa 2 seats 1 Sofa 3 seats 2 Armchairs, 1 Coffe table.
Sky Lounge:			2 Sofa 3 seat, 2 armchair, 2 club chair, 2 Coffe table, 1 desk chair, 1 side table.	2 Sofa 3 seat, 2 Pouff, 2 Coffe table	2 Sofa 4 seat, 3 Bar stools, 2 armchairs, 1 Coffe table.
External Fwd:			/	1 Coffe table	2 Coffe table
Wheelhouse:	1 Backrest	/	1 backrest	1 Backrest, 1 Desk pouff	1 Backrest, 1 Desk chair
SUNDECK: External:	DINING CHAIR 10, DINING TABLE 1, SUNBED 3	/	10 Dining chairs, 1 Dining table,1 Coffe table,	10 Dining chairs, 1 Dining table, 4 Sunbed, 2 Bar stool, 2 Coffe table, 2 Sofa 4 seats, 1 sofa 3 seats	12 Dining chairs, 1 Dining table, 4 Sunbed, 3 Bar stool, 2 Coffe table, 2 Sofa 3 seats, 2 Sofa 4 seats


* specimen of items compared in the Technical Comparisons, conducted during the internship in the Benetti *specimen for semi-custom fiberglass range, even if the comparison is done also for a fast displacement range

Further bellow is a deck comparison of Floor Plan, onboard Classic 121' and Classic Supreme 132'.

UPPER DECK COMPARISON

3. THE SUPERYACHT MARKET ANALYISIS - to explain who does what, where and how, in brief terms.

This area of analysis concentrate on Superyacht Market, part of Luxury goods market. Informations are collected during the visits to Boat Shows such as: Cannes Boat Show 9-14 September 2013; Monaco Yacht Show 24-27 September 2013; and 53rd International Boat Show in Genoa 2-6 October. Also it required close collaboration with Sales department and Product specialists. It main attention is towards a future building trends, and best practices on the market.

3.1 The Superyacht Industry

A booming sector that has evolved from a relatively small niche and cottage industry into one of the world's strongest growing luxury markets.

Along with greater exposure came the underlying idea that yachting epitomizes the ultimate in luxury living. A superyacht is more expensive than a piece of jewelry, real estate or art, as anyone involved with luxury yachts would know, but to anyone else the subject of costs and how the industry operates as a whole has long been kept a secret, a virtually taboo subject to discuss. For some time, the industry has been surrounded by an air of mystery to those 'on the outside' – a lifestyle seen from the distance, like a yacht on the horizon.

The superyacht industry is unique, quite unlike any other industry in the world. As building, selling and operating superyachts is a truly global business, it involves brokers, dealers, builders, yacht managers, and crew.

As well as the volume of yacht orders increasing exponentially over recent years, the average size of yachts has also undergone a dramatic evolution. Twenty years ago a 30m (100') yacht was considered to be very large, today's figures show that yachts of 30m (100') are 'average', with around 50% of superyachts above this length over all (LOA).

The only difference we see now compared to six years ago, is the size of the yachts. While in 2007/8 and the years before this happened in all size ranges up to the very large yachts, it now happens mostly in the 30 to 50 meter size range.

Prices at the shipyards and delivery times for new yachts remain very competitive. While the number of orders in 2012 increased, the number of shipyards who signed these orders decreased, which means the market is very competitive, and shipyards have to think about new strategies for improvement of their production.

3.1.1 The Market

The market is based on superyachts and mainly deals with semi-custom or custom yachts. Each and every superyacht is 'made to measure' partly or in full, to the requirements of a given client. Yacht will meet the future owner's requirements, from interior to exterior design, technical to engineering aspects, and from price to potential resale value, and so forth.

From their sheer size, exuberance and power, to their luxury, design, performance and electronics, superyachts are built and fitted out to extremely rigorous and exacting specifications.

3.1.2 The Owners

Superyacht owners play a crucial role in the development of the superyacht industry; not just because they purchase yachts, but because they take an integral part in the business: investing in new projects and new technology on board, and chartering out their yachts for others to enjoy. Almost all superyachts are privately owned; and therefore are for private use.

In addition, it is important to remember that they are also an invaluable asset to this industry for the business that is directly or indirectly generated from yacht acquisitions – be in terms of employment (crew), business (brokerage or charter) or additional funds spent on all operational aspects (management), as well as the level of spending in the regions where they enjoy cruising.

3.1.3 The Fleet

The past decade has seen over 100 yachts launched every year, with the fleet experiencing a 77 per cent overall growth between 2001 and 2010. Figure 6. shows the progressive growth of the fleet over the last 25 years, whilst Figure 7 shows the number of yachts delivered annually over the past 25 years. Particular growth can be observed between 2006 and 2010 when more than 1,000 yachts were delivered in just five years. This accelerated growth was in response to increasing demand for superyachts and the industry's expansion to meet this demand.

Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

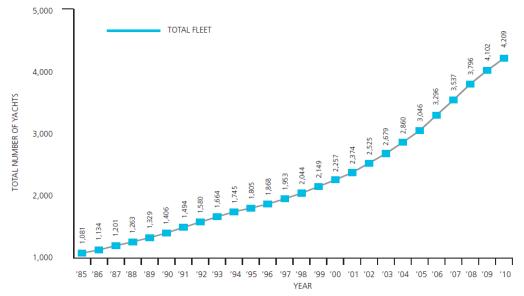


Figure 6: The progressive growth of the Superyacht fleet from 1985-2010 year. Available from: www.superyachtintelligence.com

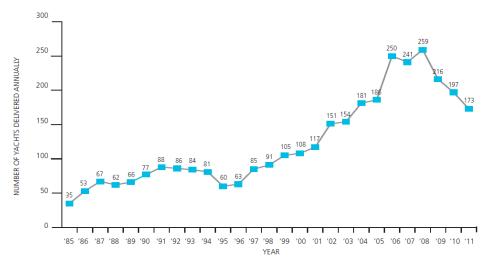


Figure 7: The number of yachts delivered annually from 1985-2010 year. Available from: www.superyachtintelligence.com

The average yacht under construction is a 45.5-metre motoryacht built in a European shipyard. Figure 8. provides a ten-year comparison for order book figures: as the graph shows, the order book figures now are roughly in line with the figures that were seen between 2005 and 2008, having shrunk somewhat following the global economic downturn at the end of 2008.

Igor Miskovic

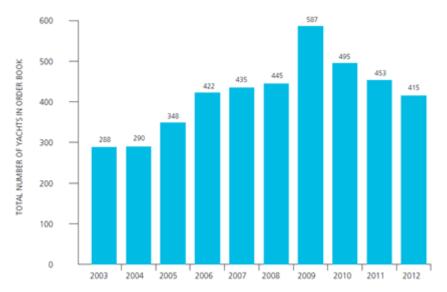


Figure 8: Total order Book 10 year comparison. Available from: www.superyachtintelligence.com

3.1.4 Who Builds What, Where?

Supervacht construction is predominantly focused in Europe, with 69 per cent of delivered yachts originating from European yards. This is followed in numbers by the Americas with 21 per cent, and then the Rest of the World with 10 per cent.

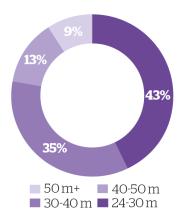
In addition to that we can observe a yacht building activity in terms of distribution by country. The world map of builders has remained largely the same with Italy leading and still running away with top honors in the market with 272 projects.

Figure 9: Yacht building activity in terms of distribution by country. Available from: www.showboats.com

Among the other top building countries, the Netherlands come second to Italy. The next tier comprises the Turkey and USA, as well as England.

2013 GOB RANK	COUNTRY	TOTAL (M)	TOTAL (FT)	PROJECTS	2012 AVG. (FT)	2011 AVG. (FT)	2012 GOB RANK
1	Italy	10,540	34,581	272	127	120	1
2	The Netherlands	3,561	11,684	66	180	165	2
3	Turkey	2,780	9,121	63	143	141	3
4	USA	2,605	8,547	66	131	130	4
5	ик	1,871	6,139	61	99	100	5
6	Taiwan	1,302	4,272	43	99	103	7
7	Germany	1,235	4,052	13	312	279	6
8	China	837	2,747	22	125	129	8
9	UAE	608	1,995	11	222	Not Ranked	Not Ranked
10	France	450	1,476	11	123	128	9

Figure 10: Table of yacht building activity in terms of distribution by country. Available from: www.showboats.com


In summary, Europe still accounts for over two-thirds of superyacht manufacturing, while the Americas and the rest of the world equally share the remaining 33%.

3.1.5 Distribution in Size, Type and Age

Distribution by size:

The current superyacht fleet of vessels over 24m (78') comprises approximately 6,290 superyachts, 267 of which were delivered in 2012. The most notable change in the number of vessels delivered was in the over 50m (164') size segment. In 2012 there were only 26 yachts delivered that were over 50m (164') in length, whilst in 2011 there were 39 yachts delivered in this size category. The 24-30m (78'–98') size segment, which consists almost entirely of semicustom and production vessels, accounts for 43% of the total volume of superyachts with approximately 2,717 yachts. 22% of the 24-30m (78'–98') size segment consists of sailing yachts. This percentage is significantly more than we see in the larger yacht segment.

Igor Miskovic

	24-30m	30-40m	40-50m	50m+	All
Motor yachts	2,127	1,867	654	490	5,138
Sailing yachts	590	362	129	71	1,152
Total	2,717	2,229	783	561	6,290

Figure 11: Yacht building activity in terms of distribution by size. Available from: <u>www.camperandnicholsons.com</u>

97 yachts between 30-40m (98'-131') were delivered in 2012, bringing the number of yachts in this size segment up to a total of 2,229 yachts, equating to a 35% share of the market. In the larger 40-50m (131'-164') size segment there were 46 deliveries in 2012 - six less than were delivered 2011. Interestingly the number of sailing yachts delivered has not gone down, but increased to seven.

The biggest drop in deliveries in 2012 was seen in the over 50m (164') size segment. In 2011 there were 39 deliveries, whilst in 2012 there were only 26 deliveries. The over 50m (164') size segment accounts for 9% of the total fleet of all yachts over 24m (78').

The trend of orders for larger yachts has continued from last year, although there has been a 30% drop in open-style yacht orders from 63 in 2012 to 44 in 2013. The rest of the yacht types are staying within the same range, proving again that yachts consuming a lot of fuel are less in vogue.

LENGTH (IN FEET)	2013	2012	2011	2010	2009	2008	2007	2006
80-89	119	178	158	187	286	253	207	216
90-99	94	70	78	89	117	114	109	86
100-119	142	151	151	144	190	179	155	146
120-149	151	150	155	150	193	175	152	110
150-199	100	109	132	112	145	125	108	90
200-249	47	43	45	41	40	47	28	28
250+	39	27	30	30	21	23	18	12
Total	692	728	749	753**	992*	916	777	688

Figure 12: The table of the Trend of orders from 2006-2013 year. In red: the most active area of yacht orders. Available from: <u>www.showboats.com</u>

On the other side of the spectrum, we note that the category of smallest yachts, mostly series production, continues to suffer, with only 119 projects recorded this year between 80 and 89 feet, compared to 178 last year, a drop of 33.1%. One country, Italy, has particularly suffered in this corner of the market, losing net 45 hulls this year, including 26 from the Ferretti Group alone.

Distribution by age:

45% of the fleet of yachts over 24m (78') in the current superyacht fleet were built during the

past seven years. This equates to 2,840 superyachts aged seven years and under. During the last seven years, an average of 406 superyachts were delivered each year, with 2008 being the best year with approximately 510 deliveries. Over the last 12 years there have been 3,820 yachts over 24m (78') delivered, which equates to 61% of the total fleet of 6,290 superyachts. The average number of deliveries per year in the last 12 years has been 318 vessels per year.

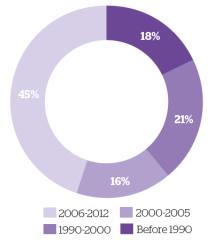


Figure 13: Yacht building activity in terms of distribution by age. Available from: www.camperandnicholsons.com

New construction:

In 2012 there were 41 displacement motor yachts, 40 semi-displacement motor yachts, 49 planning yachts, 3 catamaran motor yachts and 1 trimaran motor yacht. The displacement motor yachts are the largest with an average length of 57.07m (187'), which is a small increase compared to 2011 (56.40m (184')), while the semi-displacement yachts had an average length of 39.72m (128'), which is an increase of more than 2m (7') compared to 2011 (41.82m (135')), and planing yachts an average length of 35.02m (115'), which is a small decrease compared to 2011 (35.46m (115')).

Whilst we do not expect the rapid growth that the fleet encountered in the last decade, there is no question that the fleet will continue to grow. The number of yachts launched annually is likely to continue to far outweigh the number of yachts being written off (whether due to accidental destruction or intentional scrappage) annually for the foreseeable future. Thus, the global economic impact of superyachts seems likely to continue to increase.

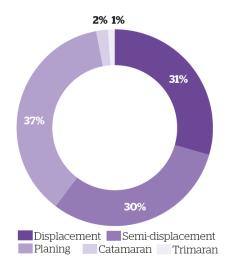


Figure 14: Yacht building activity in terms of type of a yacht. Available from: www.camperandnicholsons.com

3.1.6 The Shipyards

Shipyards, like superyachts, can be categorized by their type of production into two distinct ranges. While many yards now build production or semi-custom yachts in the lower to medium range, up to 50m (165'), other shipyards build semi-custom to fully custom yachts, usually from 40m (130') to 160m (520').

In 2012 the number of new deliveries of superyachts over 30m (98') in length decreased by 5.6% when compared to the previous year (169 compared to 179 in 2011). Yet, even though the number of new yachts delivered in 2012 was lower than 2011, the decrease of 5.6% is a lower decrease than previous years which is a positive sign. During 2010 the number of deliveries were down on the previous year by 8.45%, and in 2011 deliveries were down by 8.2%.

When looking at the shipyards who delivered these yachts, all the regular names are once again seen in the top 10, Azimut - Benetti as the number one on the list, followed by Feretti Group. In comparison to previous years it is interesting to note the rise of Princess Yachts, who, with three models over 30m (98') in length, are taking a more prominent role in the superyacht segment.

Although 5.2 percent fewer yachts are as "under construction" in this year's Global Order Book—692 compared to 728 yachts last year—the orders confirm a future full of activity at most yards, especially for pedigree yards and those building yachts over 40 meters and custom builds.

Product Analysis and Design of a Superyacht – analysis of a semi-custom fiberglass range of Benetti Yachts, from 93' to 145'. Redesign of a Classic 121' Yacht

	TOP 20	BUIL	DER	s	
2013 Rank	Company	Total (m)	Total (ft)	Projects	Avg. (ft)
1	Azimut-Benetti	2,611	8,566	70	122
2	Ferretti Group	1,749	5,738	50	115
3	Sanlorenzo	1,137	3,730	33	113
4	Sunseeker	948	3,110	29	107
5	Feadship	879	2,884	13	222
6	Lürssen	666	2,185	6	364
7	Princess Yachts	634	2,080	22	95
8	Amels	541	1,775	9	178
9	Heesen Yachts	493	1,618	10	162
10	Horizon	449	1,473	15	98
11	Westport	445	1,460	15	97
12	Oceanco	374	1,227	4	307
13	Trinity Yachts	363	1,191	7	170
14	Fipa Group	355	1,165	10	117
15	Overmarine	347	1,139	10	114
16	Perini Navi	340	1,116	6	186
17	KSE / Monte Fino	311	1,020	11	93
18	Palmer Johnson	310	1,017	5	203
19	Cerri-Baglietto	304	997	8	125
20	Christensen	299	981	7	140

The future continues to lean towards fully custom yachts, mostly coming from historically proven yards that give a perceived assurance of quality and a potential boost in lasting value for the yacht on the resale market.

Historically sound yards are recording new orders, giving those yards work until 2015, even 2016 for some

Figure 15: Top 20 yacht builders in the world for 2013 year. . Available from: <u>www.showboats.com</u>

3.2 Market Considerations

The market has been driven by massive rise in semi-custom orders,

The core of the current market is in the 30m (100') to 40m (120') bracket – a market strongly dominated by the Italian shipyards. This segment is also the core of the pre-owned market.

The development of market share with regard to yacht length is indicated which shows the continuous growth of the demand for yachts over 30m from 2000 to 2009 and the slight decrease started in 2010, due to the economic global crisis. The production breakdown among the various producer countries is also reported, which shows the market leadership of Italy and Netherlands and the interesting growth of Turkey.

Although figures for current orders differ slightly depending on criteria and time periods selected, cross-analysis between collected data suggests that the current market and number of orders for yachts above 30m (100') now represents approximately 70% of the market – for an estimated 450-490 orders, against 220 orders for the 24-30m (80'-100') range.

The next step is certainly to look at the evolution of the superyachting business in 2014.

3.2.1 Present time and beyond

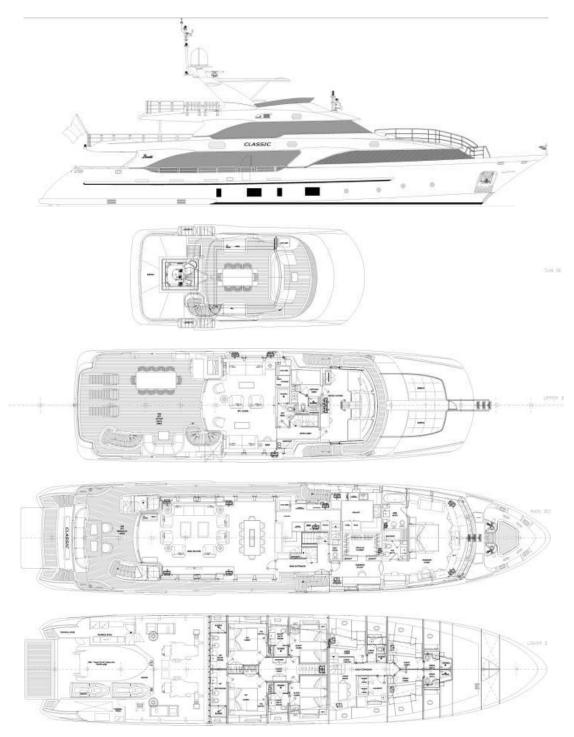
2013 got off to a positive start. The first six months of 2013 have seen approximately 200 yacht sales, 37% up on the first half of 2012, with an asking price value exceeding USD 1.1 billion, which equates to roughly the same value as the first half 2012. The motor yachts sold during the first half of the year represent 91% of the business and 31% were over ten years old whilst 26% of yachts were within 5 years old. 84% of the sailing yachts sold during the first half of the year sold, the remaining 16% were between 5-10 years old.

If there is an upturn, hopefully it will not be solely in terms of value but will also impact on the volume of yachts sold. There are a growing number of Asian HNWIs, although in terms of individual countries, the US reigns supreme when it comes to centa-millionaires, and will do for some years to come. However, US clients do not tend to build the large yachts; these remain the preserve of Russian and Middle Eastern clients. China remains a target market for the yacht industry, as does Latin America, Brazil and Indonesia. Latin America, in particular, is a promising new market as its citizens are culturally more inclined towards sun and yachting than the Chinese. These emerging economies share fuelling the brokerage industry with optimism and this positive vibe is spilling into other sectors of the business.

3.3 Market Strategic Comparison – Benetti "Classic" 121'

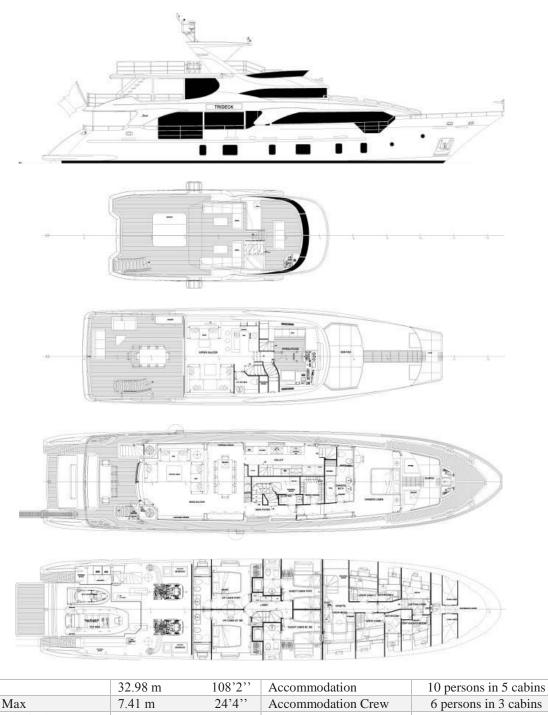
In recent years the luxury Superyacht market (vessels over 24 meters in length) has been undergoing considerable evolution. In particular, a 28% increase in world production is forecast for the next sailing years, with an average annual growth rate of 16.4% over the last 6 years. These figures make the superyacht market a business niche with a growing level of attractiveness. Such evolution could not but result in fierce and growing international competition, marked also by the entry of new players. This change of scenario makes it necessary to carry out a competitive benchmarking analysis.

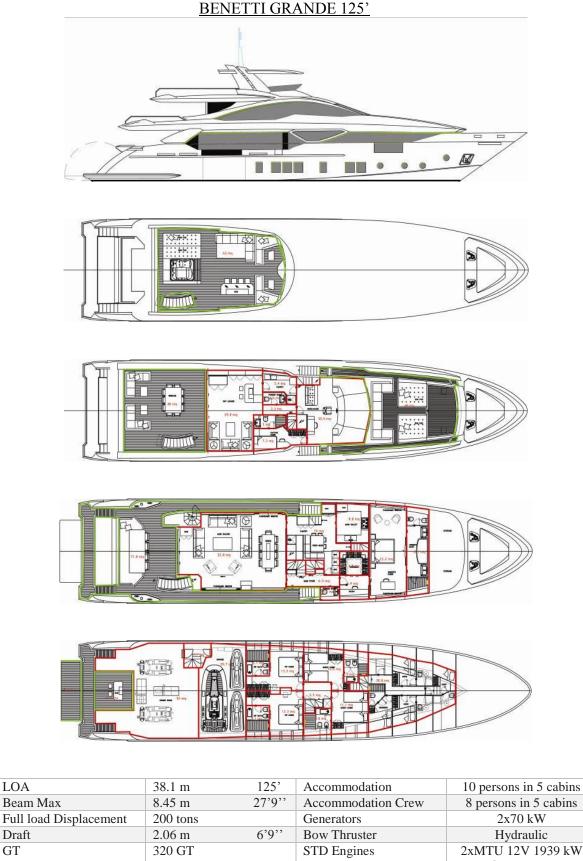
Comparison with competitors and best practices available on the market is in the purpose to be more effective in the selling process and more efficient in the design.


Benchmarking of business processes is usually done with top performing companies in other industry sectors. This is feasible because many business processes are essentially the same from sector to sector.

It focuses on the improvement of any given business process by exploiting "best practices" rather than merely measuring the best performance. Best practices are the cause of best performance. Companies studying best practices have the greatest opportunity for gaining a strategic, operational, and financial advantage.

The systematic discipline of benchmarking is focused on identifying, studying, analyzing, and adapting best practices and implementing the results. It is performed versus competitors and data analysis is done as to what causes the superior performance of the competitor.


Further below are main market competitors for chosen Benetti Yacht "Classic 121'. After overview on their main attributes, evaluation will be presented by comparing them against benchmarked model.


LOA	36.9 m	121'	Accommodation	10 persons in 5 cabins
Beam Max	8.18 m	26'10''	Accommodation Crew	7 persons in 4 cabins
Full load Displacement	259 tons		Generators	2x80 kW
Draft	2.26 m	6'7''	Bow Thruster	Hydraulic 60 kW
GT	299 GT		STD Engines	2xMTU12V 1080 kW @
				2250 rpm
Fuel Capacity	42.5001	11.227 GAL	Cruise Speed	14.1 kn
Fresh Water Capacity	7.7001	2.034 GAL	Max. Speed	15.1 kn
Grey Water Capacity	1.7001	449 GAL	Range	3.400 nm @ 11kn

BENETTI TRADITION SUPREME 108'

LOA	32.98 m	108'2''	Accommodation	10 persons in 5 cabins
Beam Max	7.41 m	24'4''	Accommodation Crew	6 persons in 3 cabins
Full load Displacement	170 tons		Generators	2x50 kW
Draft	2 m	6'7''	Bow Thruster	Electric 37 kW
GT	217 GT		STD Engines	2xMAN V8 735 kW @ 2300 rpm
Fuel Capacity	21.5001	5.680 GAL	Cruise Speed	12.5 kn
Fresh Water Capacity	3.5001	925 GAL	Max. Speed	13.5 kn
Grey Water Capacity	1.5001	396 GAL	Range	1.800 @ 10kn

"EMSHIP" Erasmus Mundus Master Course, period of study September 2012 - February 2014.

LOA

STANDARD SURFACES COMPARISON:

	TRADITION	CLASSIC 121'	GRANDE 125'
LOA	SUPREME 108' 32.98 m	36.9 m	38.1 m
Beam Max		8.18 m	
	7.25 m		8.45 m
Sun Deck	65 m ²	<u>68 m²</u>	63 m ²
AFT Upper Deck	39 m ²	55 m ²	48 m ²
FWD Upper Deck	11 m ²	29 m ²	49 m²
Sky Lounge	26 m ²	35 m ²	30 m ²
Captain's Cabin + head	/	7 m ²	10 m²
Wheelhouse	21 m²	18 m ²	31 m²
Main Deck Ext. Area	70 m ²	62 m ²	72 m^2
Main saloon	<mark>41 m²</mark>	58 m ²	<mark>53 m²</mark>
Main foyer	<mark>6 m²</mark>	8 m ²	<mark>7 m²</mark>
Galley / Pantry	14 m ²	23 m ²	28 m ²
Owners area	32 m ²	57 m ²	46 m²
VIP Cabin Port side	16 m ²	16 m ²	19 m²
VIP Cabin Stbd side	16 m ²	16 m ²	19 m²
Twin Cabin Port side	14 m ²	14 m ²	16 m²
Twin Cabin Stbd side	14 m ²	14 m ²	16 m²
Crew quarter	37 m ²	45 m ²	<mark>39 m²</mark>
Engine room +	<mark>39 m²</mark>	54 m ²	54 m ²
Technical area			
Garage	19 m ²	27 m ²	30 m ²
Swim platform	10 m ²	10 m ²	<mark>9 m²</mark>
Beach Area	N/A	N/A	10 m ²
Crew number	6	7	8
Crew Cabins	6 3	4	<u> </u>

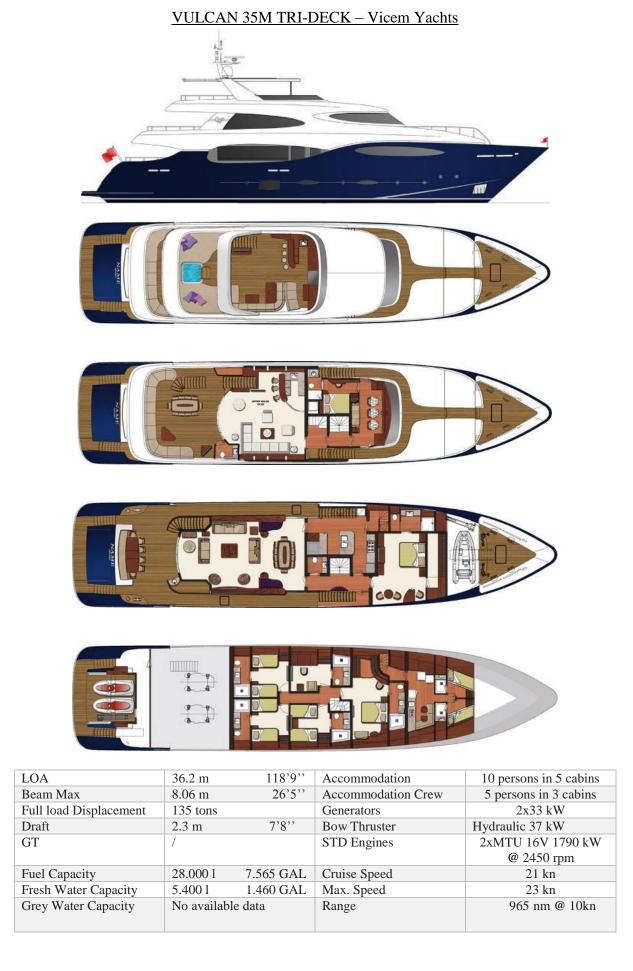
Table 10: Standard surfaces comparison beetwen "in-house" competitors of Benetti Classic 121'

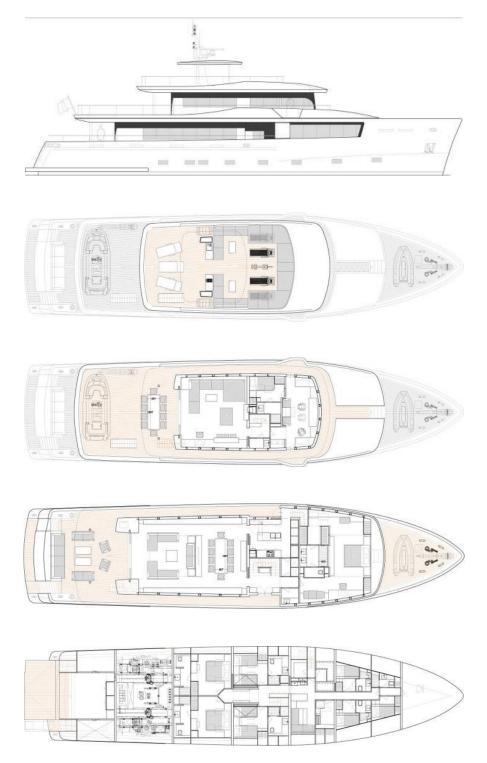
Worse than Classic 121'

B

Better than Classic 121'

EXTERNAL COMPETITORS:


SAN LORENZO SD110 - "San Lorenzo" Shipyard



LOA	33.65 m	110'5''	Accommodation	10 persons in 5 cabins
Beam Max	7.66 m	25'2''	Accommodation Crew	5 persons in 3 cabins
Full load Displacement	170 tons		Generators	2x50 kW
Draft	2 m	6'7''	Bow Thruster	TBD
GT	/		STD Engines	2xMTU 12V 1080 kW
				@ 2250 rpm
Fuel Capacity	23.7001	6.261 GAL	Cruise Speed	11 kn
Fresh Water Capacity	4.0001	1.055 GAL	Max. Speed	17 kn
Grey Water Capacity	2.0001	528 GAL	Range	3.260 nm @ 10kn

LOA	32.62 m	117'	Accommodation	10 persons in 5 cabins
Beam Max	7 m	22'12''	Accommodation Crew	5 persons in 3 cabins
Full load Displacement	147 tons		Generators	2x33 kW
Draft	2.37 m	7'9''	Bow Thruster	Hydraulic 37 kW
GT	/		STD Engines	2xMAN 12V 1029 kW
				@ 2100 rpm
Fuel Capacity	17.0001	4.491 GAL	Cruise Speed	15 kn
Fresh Water Capacity	3.1001	819 GAL	Max. Speed	17 kn
Grey Water Capacity	8001	211 GAL	Range	2.300nm @ 10kn

LOA	35.4 m	116'2''	Accommodation	10 persons in 5 cabins
Beam Max	8.4 m	27'7''	Accommodation Crew	7 persons in 4 cabins
Full load Displacement	350 tons		Generators	2x33 kW
Draft	2.6 m	8'6''	Bow Thruster	/
GT	/		STD Engines	2xCAT 16V 448 kW @
				1800 rpm
Fuel Capacity	70.0001	18.492 GAL	Cruise Speed	11 kn
Fresh Water Capacity	11.0001	2.905 GAL	Max. Speed	13 kn
Grey Water Capacity	3.7001	977 GAL	Range	4900 nm @ 10kn

"EMSHIP" Erasmus Mundus Master Course, period of study September 2012 - February 2014.

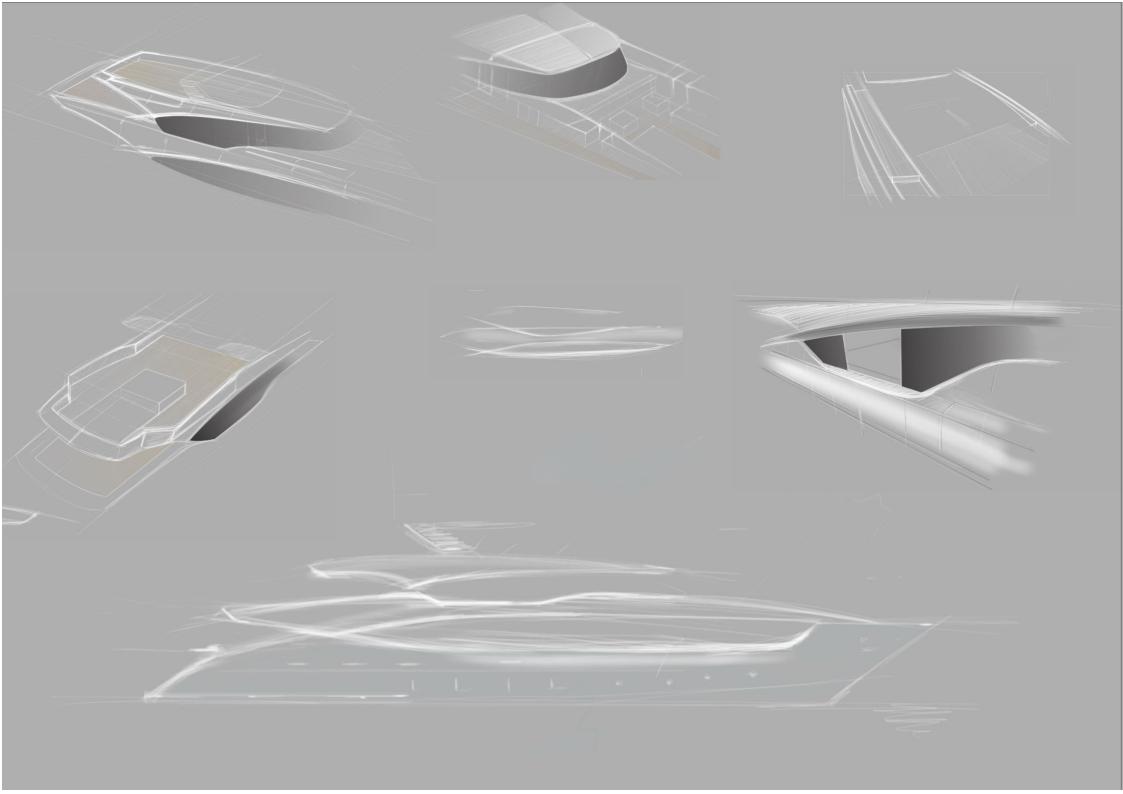
	SAN LORENZO	NAVETTA 33	VULCAN 35M 3	NAUTA AIR
	SD110	CRESCENDO	DECK	115
LOA	<mark>33.65 m</mark>	32.62 m	<mark>36.2 m</mark>	35.40 m
Beam Max	7.66 m	<mark>7 m</mark>	8.06 m	8.40 m
Sun Deck	42 m ²	36 m ²	63 m ²	77
AFT Upper Deck	/	/	/	/
FWD Upper Deck	/	/	/	/
Sky Lounge	/	/	/	/
Captain's Cabin + head	/	/	/	/
Wheelhouse	15 m ²	18 m ²	18 m ²	17 m²
Main Deck Ext. Area	/	/	/	/
Main saloon	50 m ²	40 m²	51 m ²	54 m ²
Main foyer	/	/	/	/
Galley / Pantry	/	/	/	/
Owners area	31 m ²	32 m ²	34 m ²	35 m ²
VIP Cabin Port side	/	/	/	/
VIP Cabin Stbd side	/	/	/	/
Twin Cabin Port side	/	/	/	/
Twin Cabin Stbd side	/	/	/	/
Crew quarter	46 m ²	27 m ²	22 m ²	53 m ²
Engine room + Technical area	<mark>39 m²</mark>	47 m ²	45 m ²	50 m ²
Garage	22 m ²	14 m ²	13 m ²	18 m ²
Swim platform	/	/	/	/
Beach Area	N/A	N/A	/	/
Crew number	5	5	5	7
Crew Cabins	3	5 3	3	4
- 1	Worse than Classic 1	21'	- Better than	Classic 121'

Table 11: Standard surfaces comparison between "external" competitors of a Benetti Classic 121'

Table 12: Main data comparison between all of the competitors of the Benetti Classic 121'

	TRADITION SUPREME 108'	CLASSIC 121'	GRANDE 125'	SAN LORENZO SD110	NAVETTA 33 CRESCENDO	VULCAN 35m 3 DECK	NAUTA AIR 115
LOA	32.98	36.9	38.10	33.65	32.62	36.2	35.4
Beam Max	7.25	8.18	8.45	7.66	7	8.06	8.40
Full load	170 t	259 t	200 t	170 t	147 t	135 t	350 t
Displ.							
Draft	2.00 m	2.25	2.06	2.00	2.37	<mark>2.33</mark>	2.60
STD	2xMAN 8V	2xMTU	2xMTU	2xMTU	2xMTU 12V	2xMTU	2xCAT
Engines	<mark>1000 hp</mark>	12V 1468	12V 2636	12V 1468	1400 hp @	16V 2434	C18 609
	@2300 rpm	hp @	hp @	hp @	2.1000 rpm	hp @	hp @
		2.250 rpm	2.450 rpm	2.250 rpm		2.450 rpm	1800 rpm
Cruise	12.5 kn	14.1	17.5	<mark>11</mark>	15	21	11
Speed							
Max. Speed	13.5 kn	15.1	22	17	17	23	<mark>13</mark>
Range	1800 nm @	3400 nm	1250 nm	3260 nm	2300 nm @	965 nm	4900 nm
	10 kn	@ 11 kn	@ 12 kn	@ 10 kn	10 kn	@ 10 kn	@ 10 kn
Construction	GRP	GRP	GRP	GRP	GRP	GRP	Steel/Alu
material							

4. REDESIGN OF A M/Y "CLASSIC" 121' - the most successful model from Benetti range, with 60 yachts built in the past 10 years


4.1 Benetti "Diamond" 121'

According to previous analysis of different technological systems inside the superyacht, together with conclusions drawn from the Market analysis, it is decided to make a proposal for a new model which will take a place of a "Benetti Classic 121" semicustom GRP yacht. It is necessary to keep recognizable Benetti lines together with contemporary trends of the industry. Evolving the design imprinted on Benetti yachts with 140 years of history, is an ambitious task.

There are two ways to obtain a motor yacht: to choose it from the huge number of available models or to build a new custom (or semicustom) one according to the owner specific requirements.

Despite the fact that the phases of the design for yachts are the same as those for ships and workboats, one major and very important difference exists; the aesthetics (external and interior) together with comfort and luxury requirements drive the concept, design calculation and construction of motor yachts. These qualities appear to have a major impact on the `dreams' of the potential owner, and they often become his strongest motivation to buy a yacht. Nevertheless the boat must also be safe, have high levels of performance, and yet be easily managed and handled by the crew. The basic design process must consolidate these requirements via a feasibility phase (concept design) and a preliminary design, right up to the final design. The concept design is by far the most delicate phase of the entire procedure.

In the text bellow is a description of a proposal for a new model, together with conceptual research sketches. Furthermore, is a Brief Technical Specification and Technical drawings. For the sake of simplicity of the project, dictated by the limited time, all possible similarities with previous model are implemented in construction and design of a new project.

FINAL PROFILE SHAPE OF BENETTI "DIAMOND" 121':

· 1 J 1 J

4.2 Description of Benetti M/Y "Diamond" 121'

Being ahead of design trends and technological innovation is essential to offering the most timeless and elegant yachts.

The Benetti Diamond 121' is the latest model to join the Benetti Class range in composite material.

The standard layout of this triple-deck model has a full-beam Owner's suite on the main deck and four guest cabins, that can comfortably accommodate eight. Additionally, the crew quarters were designed for seven.

The Benetti Diamond 121' operates with the most advanced navigation systems developed internally by Benetti and its precision engineering is demonstrated in the advanced details like the rotating external bridge wing consoles.

This model has an innovative integrated wheelhouse that works as an interface for all instruments and communications ensuring safe, reliable navigation. Plus, it runs on the exclusive BEST technology platform, which combines all onboard electronics and systems in a single, intuitive interface.

4.2.1 Exteriors

Characterized by a harmony between elegance and innovation, between classical and modern, the new Benetti "Diamond" 121' clearly carries the mark of Benetti while divulging a distinct, contemporary twist.

Exterior design was artistically shaped to give the model its suggestive design continuity with Benetti DNA.

This model stretches over 36 m; it boasts ample outdoor spaces, which can be covered for shade and comfort, as well as large openings in the hull and superstructure that both give the exterior a sleek, streamlined profile and maximize the amount of natural light in the interior.

The navigation lights have been designed so as to be flush with the exterior lines of the yacht, enhancing its modern style. At the stern, the garage can house two personal watercrafts and has ample space for storage.

SUN DECK

The Sun Deck is a penthouse suite at sea, a platform between the wind and sun, protected by a hard top featuring a fin in two segments.

The Benetti Diamond 121' has a sun deck that offers both comfort and privacy, while being completely independent from interior areas. It spans over 80 sqm and includes spaces for dining, lounging and sunbathing around the Jacuzzi, one of the two on board.

The central part of the hardtop roof, over the bow section, has a retractable awning that was constructed to provide protection from harsh sun or wind and create the perfect environment for guests, while in harbor or at sea.

UPPER DECK

Additional space for dining lies just outside the sky lounge and, on the flying bridge, there is outdoor seating and a Jacuzzi that can be shaded with an umbrella. Flooring is on all of the bridges is in teak and furnishings, in fiberglass.

4.2.2 Interiors

Here contemporary spaces have elevated surfaces and clean defined lines that create a spacious, open interior. Vertical metal accents, fabric panels and highly polished surfaces make everything appear weightless. Mirrored kick recesses and lacquered surfaces are a striking contrast to the luxurious gloss timber doors and feature walls.

The interior has a subdued, yet elegant coherence made by juxtaposing natural tones of oak with the warmth of wenge and diamond-worked leather. Wenge is also used throughout to create 3D depth for the furnishings and in the overall space.

MAIN SALOON

In the main saloon, full-height windows on both sides of the principle dining table offer panoramic views and the luminous interior space opens out onto a deck area, at the stern, that is perfect for entertaining.

The table is a Benetti design with a geometric top created using the linear grain of wenge and surrounded with a ribbon of satin-finished steel.

SKY LOUNGE

On the upper deck, the full-beam sky lounge is an exclusive area for the Owner and guests to relax.

Igor Miskovic

Here there is an entertainment area next to a panoramic window. Again, special attention during design was attributed to full-height windows on both sides on the upper deck as well as in the main saloon.

The highest quality fabrics and materials are used to create the ideal living space - an environment that is modern and refined, yet warm and welcoming.

The interiors of the Benetti Classic Supreme 132' are designed to optimize space and comfort, while the abundance of natural light seems to bring the outdoor environment inside. After sunset, with a simple touch, the subtle LED lighting gently illuminates the rooms. Carefully positioned strip lighting, recessed ceiling lights and lamps are controlled by touch switches and can be programmed to create just the right atmosphere, for any time of day and any type of occasion.

OWNER'S SUITE

The main deck features the spacious Owner's suite.

The suite includes a studio, ample closet space and spacious bathroom, which have bronze marble counters and are finished with cream champagne marble.

Rising up from the headboard, diamond-shaped panels of natural leather in an ivory color span the ceiling over the berth to create warmth and a fluid cohesion within the cabin.

GUEST CABINS

The four guest staterooms are located on the lower deck, where airy spaces and waterline windows create an incredible cruising experience.

Each room has its own en-suite bathroom finished in limestone, leather panels and colorful mosaic around the countertops.

4.3 Brief Technical Specification - Specification written as a summary of the most important technical aspects of the yacht.

After comparing a 10 Technical Specifications of different Benetti yacht models, with each of them is a 100 pages, for this model is decided to make a theoretical Brief Tech. Specification.

BENETTI DIAMOND 121' 37m GRP Yacht

Brief Specification

1. DESCRIPTION

The vessel described in this specification is a motor yacht with a displacement hull, twin screw propellers and twin diesel engines, two spade rudder and one bow thruster. The hull and superstructure will be built in GRP.

The configuration of this Yacht is a triple deck arrangement plus sun deck.

2. DIMENSIONS AND MAIN CHARACTERISTICS OF THE YACHT

Length overall (LOA):	36.90 m	121'
Length waterline (LWL) at full	31.58 m	103' 7"
load:		
Hull beam (overall):	7.9 m	25' 9"
Draft at full load from	2.26	7' 5"
underside of keel:		
Gross Tonnage:	299 GT	
Fuel oil tanks capacity:	42,500 liters	11,227 USG
Fresh water tanks capacity:	7,700 liters	2,034 USG

Accommodations for Owner & guests: 10 persons in 5 cabins Accommodations for crew: 7 persons in 4 cabins

3. PERFORMANCE AND MAIN MACHINERY

Main engines:	2xMTU 12V 2000M72 1.080kW (1468hp) at
	2250 rpm
Propellers:	2× Fixed pitch propellers, five bladed
Generators:	$2 \times 80 \text{ ekW}$

Igor Miskovic

Watermakers:	1 reverse osmosis water. Nominal capacity
	9000L of water per day at 25 °C sea water
	temperature.
Bow thruster:	$1 \times$ Electric motor driven, 60 ekW
Stabilizers:	Hydraulic Stabilizer system for underway and
	zero speed (at anchor) conditions
Max speed (half load condition):	15.1 knots.
Cruising speed (half load condition, 85%	14.1 knots.
MCR):	
Range at economic speed (12 knots):	3,400 nautical miles.

4. CLASSIFICATION AND CERTIFICATES

The Yacht will be constructed in accordance with the following rules and regulations.

 \cdot "RINA" rules for classification of pleasure yachts C _ HULL \cdot MACH Y.

 \cdot As option, the Code for large yachts (24 m and over in load line length) in commercial use for sport or pleasure, which do not carry cargo and do not carry more than 12 passengers, by the British Maritime and Coastguard Agency (LY2).

· Flag Authority requirements, additional to class notation and to the Specification,

will be evaluated case by case and quoted accordingly if feasible.

5. HULL AND SUPERSTRUCTURE CONSTRUCTION

Hull and Main Deck will be built in Glass Reinforced Plastic (GRP), single skin type and sandwich type, depending on the zone. Single skin structures and sandwich skins will be made of E-glass, in an isophthalic polyester resin.

The superstructure will be built with a cored sandwich structure in the decks and on the sides utilizing mat, unidirectional, biaxial and woven E-glass as shown on the structural drawings approved by the Italian Classification Society "RINA".

Where necessary single skin laminate will be provided.

Superstructure decks and sides will be built in sandwich-type consisting of PVC foam core and GRP skins.

The connection between the superstructure and the GRP hull will be performed by means of bolts and with bonding compound between the two flanges.

6. AIR CONDITIONING SYSTEM

The ship will be fitted with a summer/winter air conditioning system, based upon a water chilling unit, some air handling units, some fan coils and a series of exhausting/supplying fans.

The system will be sized on the basis of following features:

SUMMER TIME External air max Internal air Sea water temperature max	35 °C max 22 °C 32 °C max	95 °F max 8 72 °F R.H. 90 °F	5% R.H. 55%
WINTER TIME External air min Internal air Sea water temperature min	0 °C min 22°C 0 °C min	32 °F 72°F 32 °F	50% R.H.

Each accommodation space will be equipped with a panel, including a thermostat: the panel will enable the user to adjust the desired room temperature.

Anchor windlasses:	2× vertical windlasses, each having a wildcat gypsy and capstan driven by an electric motor (speed will be variable through proper inverter)
Anchors:	n° 2 galvanized steel HHP (high holding power) anchors of 244 kg
Chains:	n° 2 chains made of galvanized steel of 16 mm diameter with stud link DIN 766 for U2 grade of a length of 137.5 m each.
Capstans:	2 EL foot operated vertical capstans fitted on aft deck. 400 V, 3 phases and power 2,200 W
Cranes:	1 electro/hydraulic system with winch and trolley mechanism for the launching and the haulage of the tender. Another one is supplied for the two jet skis. They are locally controlled
Tenders and jet skis (Owner's supply):	1 tender + 2 jet skies
Gangway:	 1× telescopic retractable, hydraulically operated stern gangway (made in polished stainless steel), arranged to be part of the transom when closed, floor in grating teak. max 4.5 meters. m length when fully extended walkway width equal to 550 mm

7. OUTFITTING GENERAL CHARACTERISTICS

Igor Miskovic

Side boarding ladder:	1 removable 8 steps ladder for side access to the main deck through the bulwark doors will be supplied.
Elevators:	1× "service dumbwaiter" from MD up to SD, max load 50 kg

8. ELECTRICAL SYSTEM

Main power system will be 400V AC 50Hz, 3 ph (with neutral) for main equipment, and 230V AC 50Hz, 1 ph for small users.

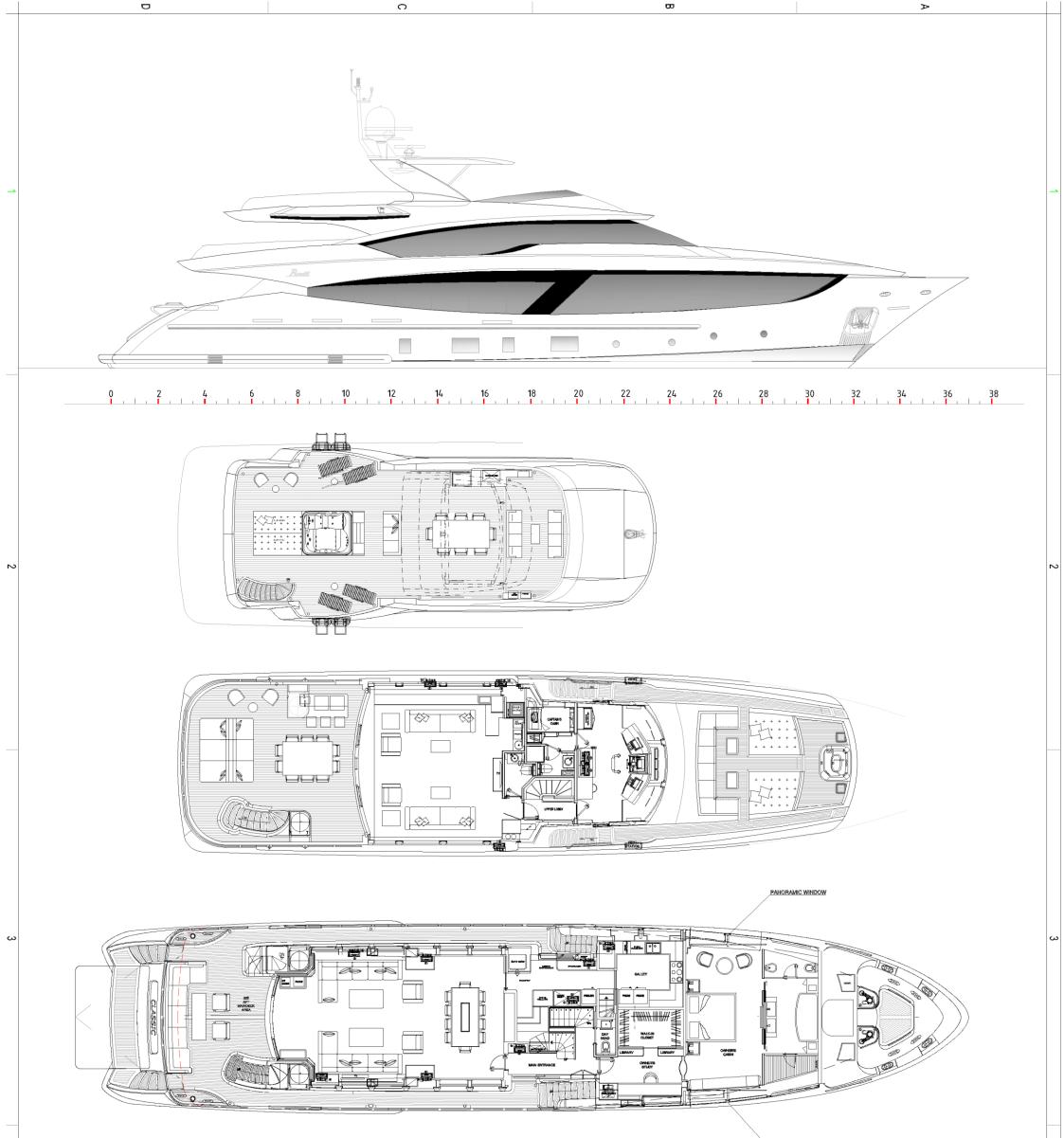
For shore connection, an isolating transformer will be provided (the vessel will be capable to receive shore power supply by means of two shore power 125 A (each) inlet sockets, one on transom and one at bow, and one shore semi-automatic stowing 125 A system in the garage).

1x RADAR/VIDEO Plotter/Chartography Radars: Furuno Navnet 2D MFDBB 1x Navnet 2D control unit 1x Open Antenna FR1944 - 4 ft, 6 Kw, 64 nm 1x Blackbox graphic echosounder/ Log DFF 1 Echosounder: with dual frequency traducer (depth, log, water temp), 1xNMEA Depth/Log sensor. GPS: $1 \times \text{GPS}$ system, with antenna $1 \times \text{GPS}$ switching with NMEA interface 1x Blackbox GPS antenna integrated into wind sensor 1x Navnet 2D BB Cartography system : Chart plotter: Marine processor with VGA output - Charts not included Wind speed & direction: 1x WIND Multi NMEA SYSTEM Gyro compass: 1× Plath Navigat X Mk. 2 gyro compass Magnetic compass: $1 \times$ C-Plath Jupiter magnetic compass 1× autopilot system Navis AP3000 (Wheelmark Autopilot: type) Telephone: Complete internal telephone system, connecting all the cabins and the living areas, integrated with BEST system to allow VoIP functionality and advanced services. 14 VOIP telephones LAN A ship LAN Network, part of the B.E.S.T Entertainment System will be layed. Sockets will be provided in Saloons, Guest cabins, Owner Cabin, Wheelhouse, Crew Mess, Captain Cabin. Access to the internal network in noble areas, will be possible via wi-fi as well.

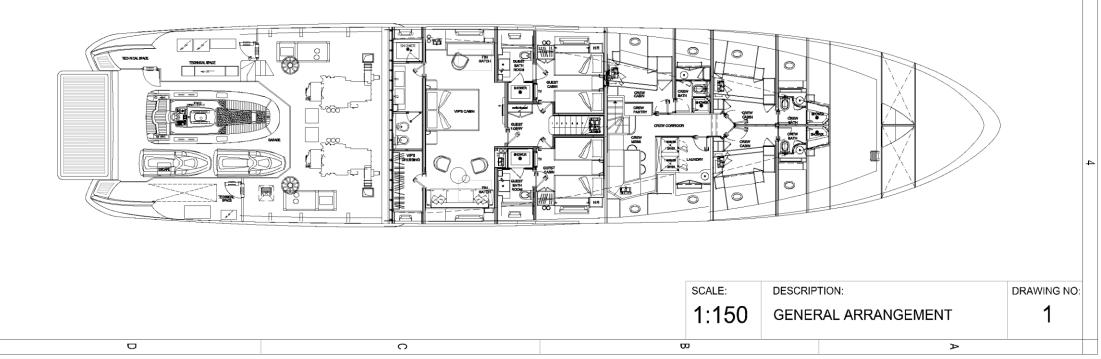
9. NAVIGATION, COMMUNICATION & ELECTRONICS

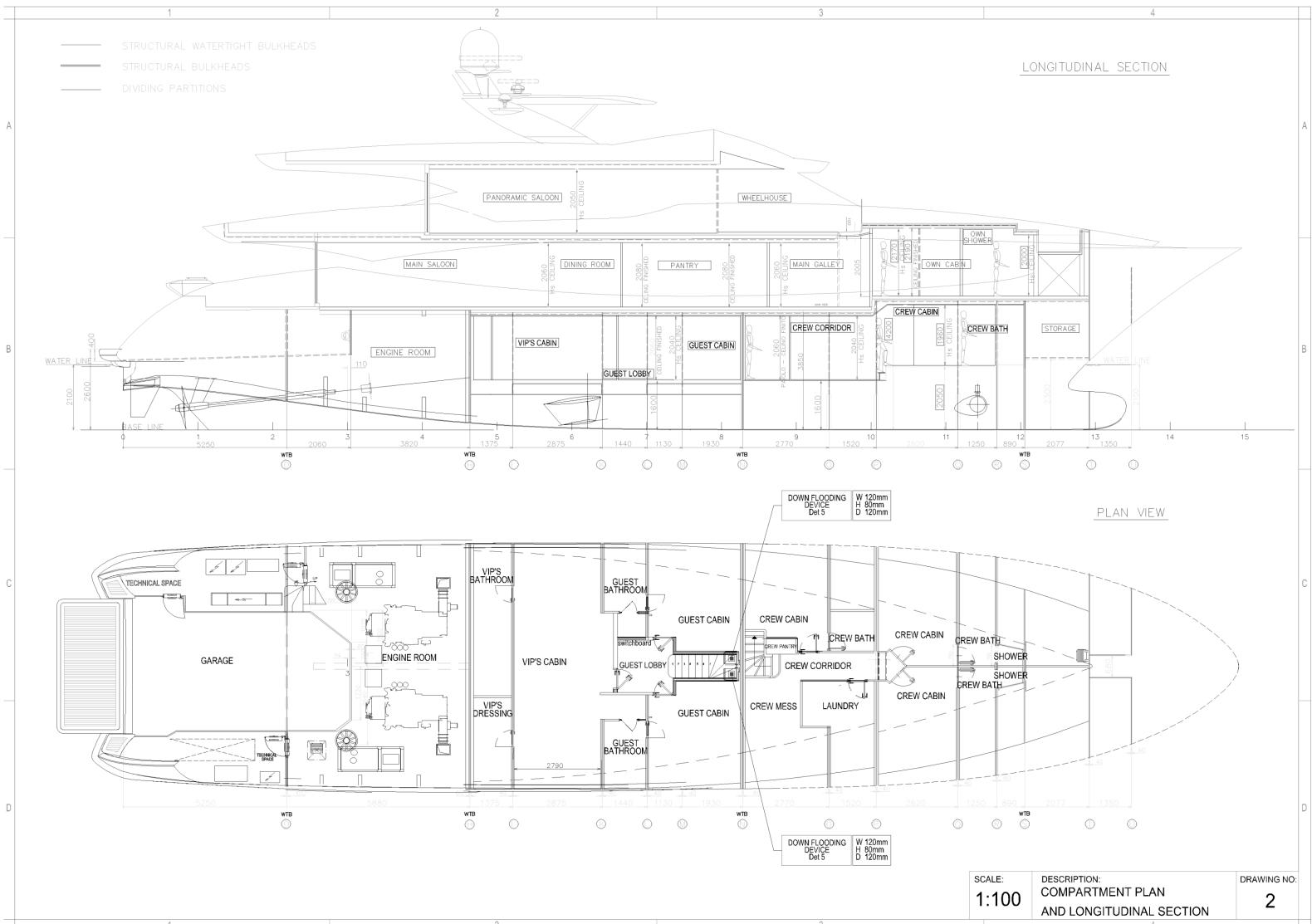
10. INTERIORS

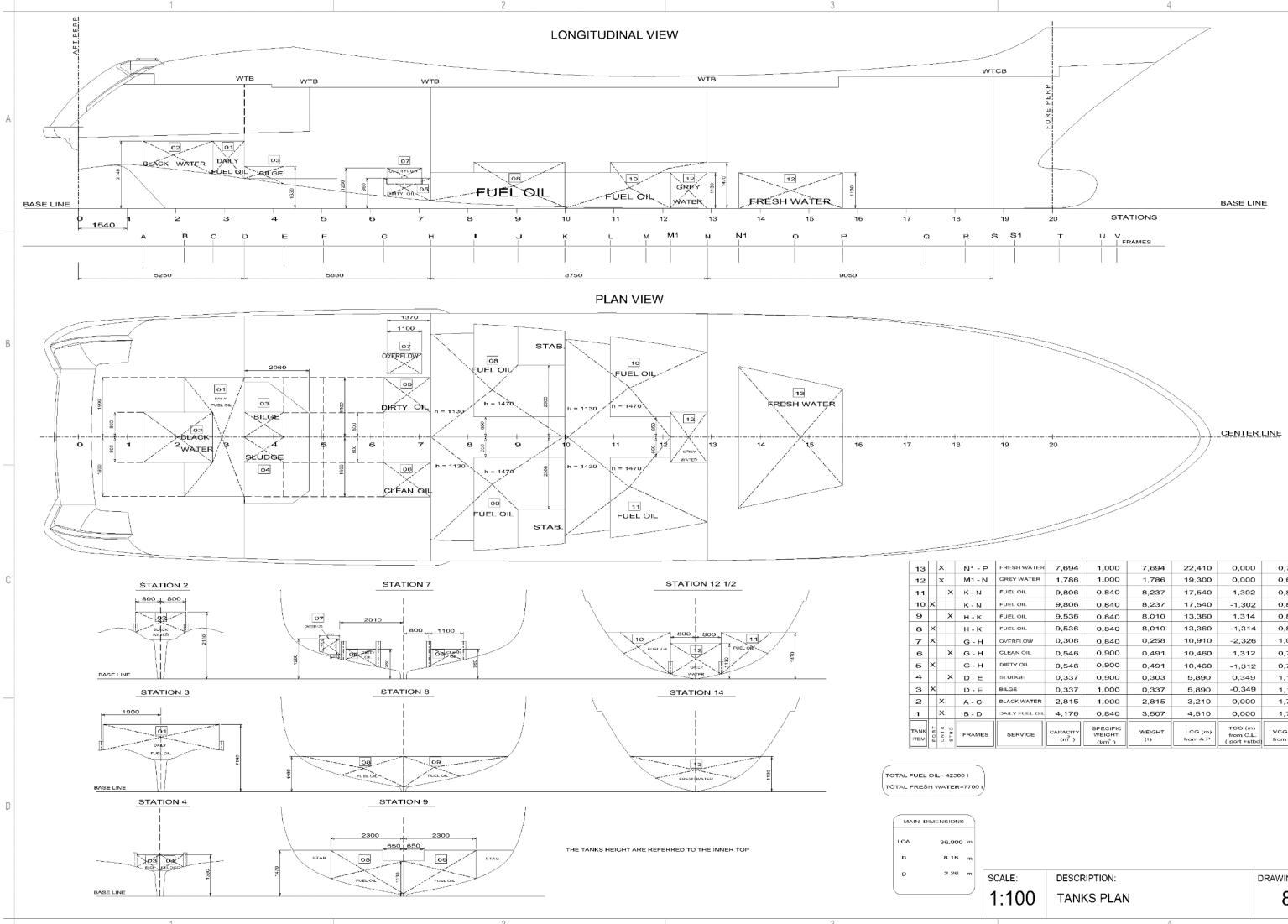
In general, materials and equipment will be purchased according to the present Specification and to the attached documents.


The accommodation layout will be according to the general arrangement which will be part of the building specification.

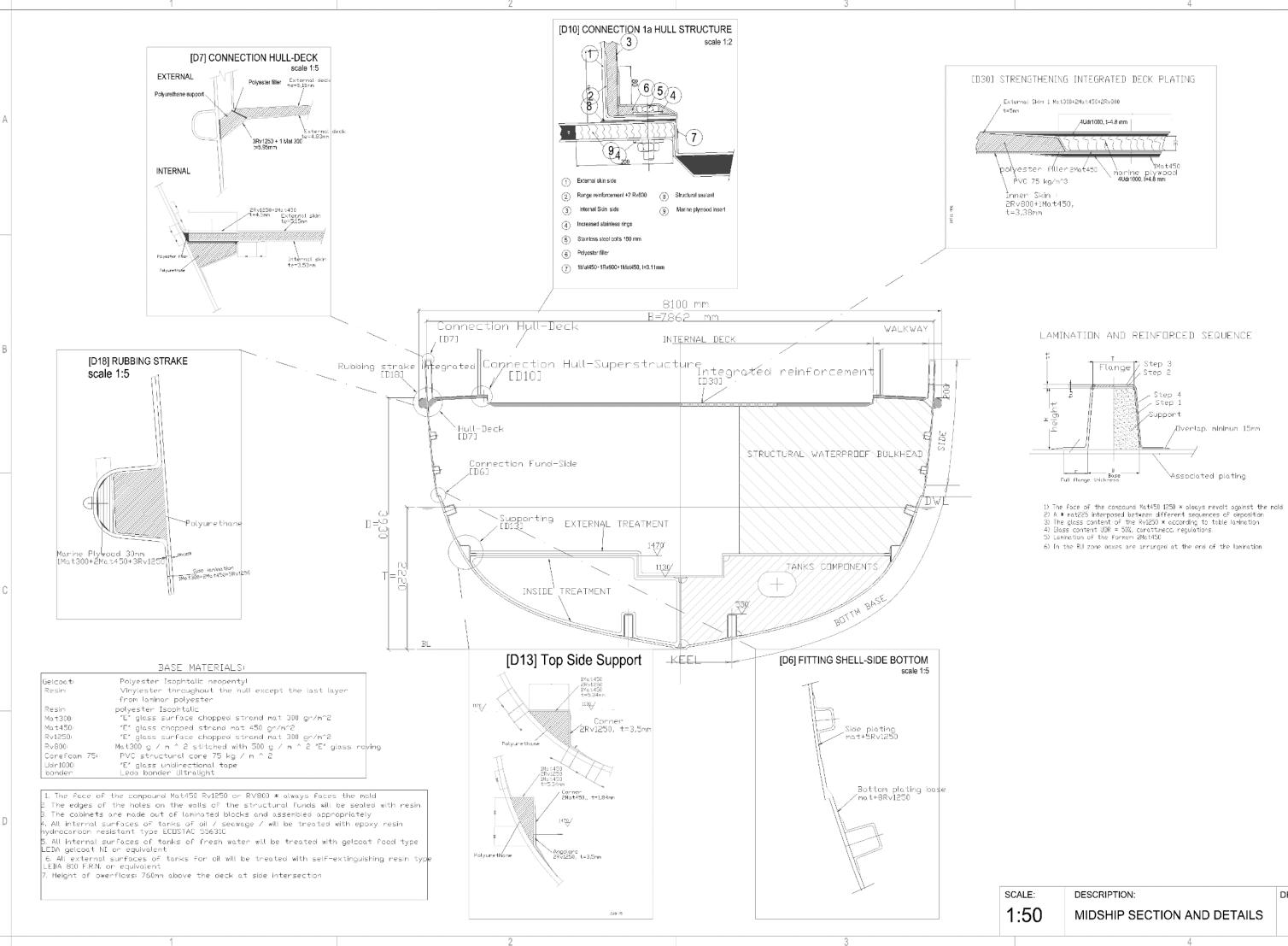
Appliances, TV & stereo equipment, air conditioning and ventilation equipment, light fittings, alarm and fire detection sensors, electrical panels, fixtures and fittings will be integrated with the chosen style.

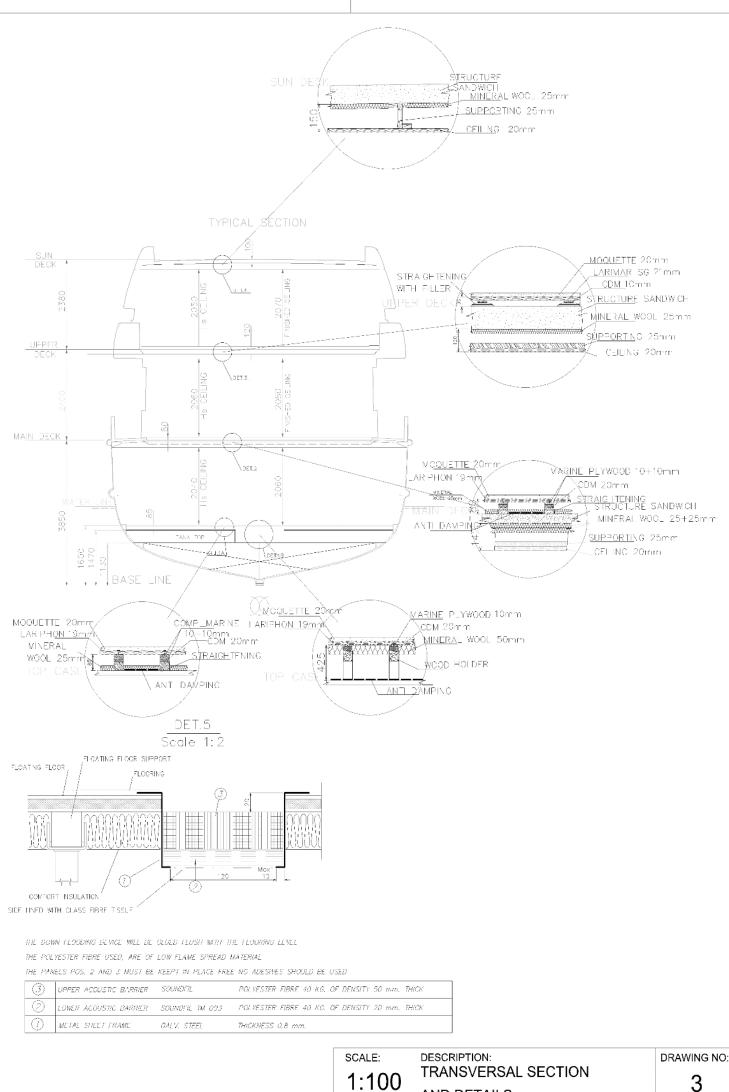

[
Walls:	Guests interior: linings will be veneer or
	lacquered, mirrored, covered with fabric,
	leather.
	Crew interior: linings will be covered with
	"ALPI" oak wood veneer
	Galley: linings will be lacquered, mirrored,
	covered with stainless steel, wood veneer.
Floors:	Guests interior: wood and vinyl floors will be
	fitted; carpets will have underlay and will be
	stretched
	Crew interior: wood and vinyl floors will be
	fitted
Shower floors:	Guests area: lacquered panels will be fitted in
	showers and baths walls,
	except where marble is specified
Ceilings:	Guests interior: ceilings will be made of
	plywood panels fitted with Fit-Lock and will be
	removable where necessary; ceilings panels will
	be
	veneer, lacquered, mirrored, lined with fabric or
	leather
	Crew interior: ceilings will be made of plywood
	panels fitted with screwed hidden plates or Fit-
	Lock and will be removable where
	necessary; ceiling panels will be lined with
	synthetic leather or lacquered
Doors:	Guests interior: doors will be made of double
	plywood sandwich panels (except for fire
	doors), and will be painted, mirrored or
	veneered
	Veneered


4.4 Technical Drawings:


- 1. General Arrangement, scale 1:150
- 2. Compartment plan and Longitudinal section, scale 1:100
- 3. Transversal Section and Details, scale 1:100
- 4. Midship Section and Details, scale 1:50
- 5. Hull and Deck structural details, scale 1:100
- 6. Fashion plates and sections-1st tier, scale 1:100
- 7. Fashion plates and Sections, 2nd tier, scale 1:100
- 8. Tanks plan, scale 1:100
- 9. 1st Tier Layup and Details, scale 1:100
- 10. 2nd Tier layup and Details, scale 1:100
- 11. Superstructure recess plan Profile view, scale 1:100
- 12. Superstructure recess plan Plan view and Details, scale 1:100
- 13. Superstructure recess plan Plan view 2 and Details, scale 1:100
- 14. Roll Bar, scale 1:20

PANORAMIC WINDOW

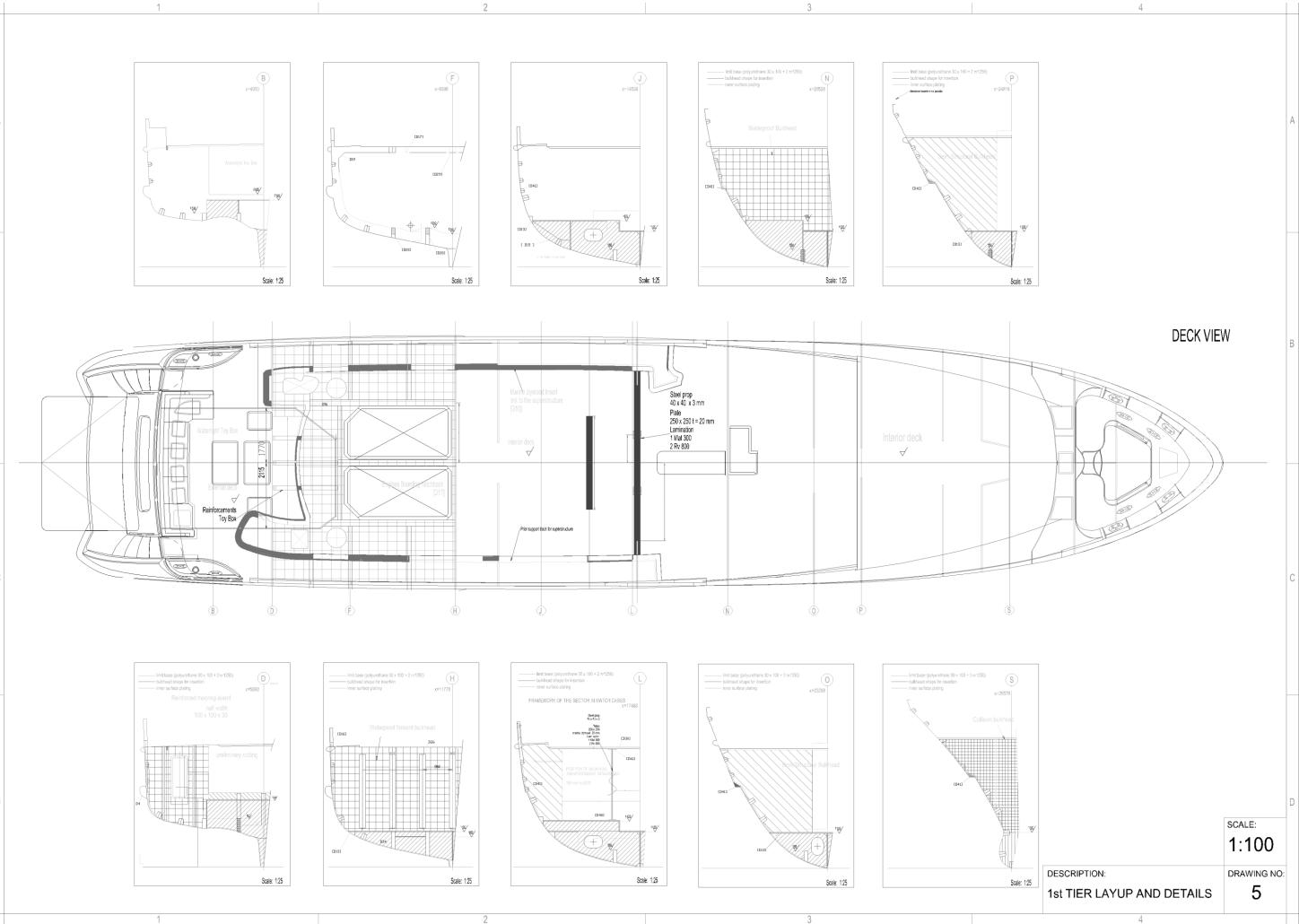



DRAWING NO:

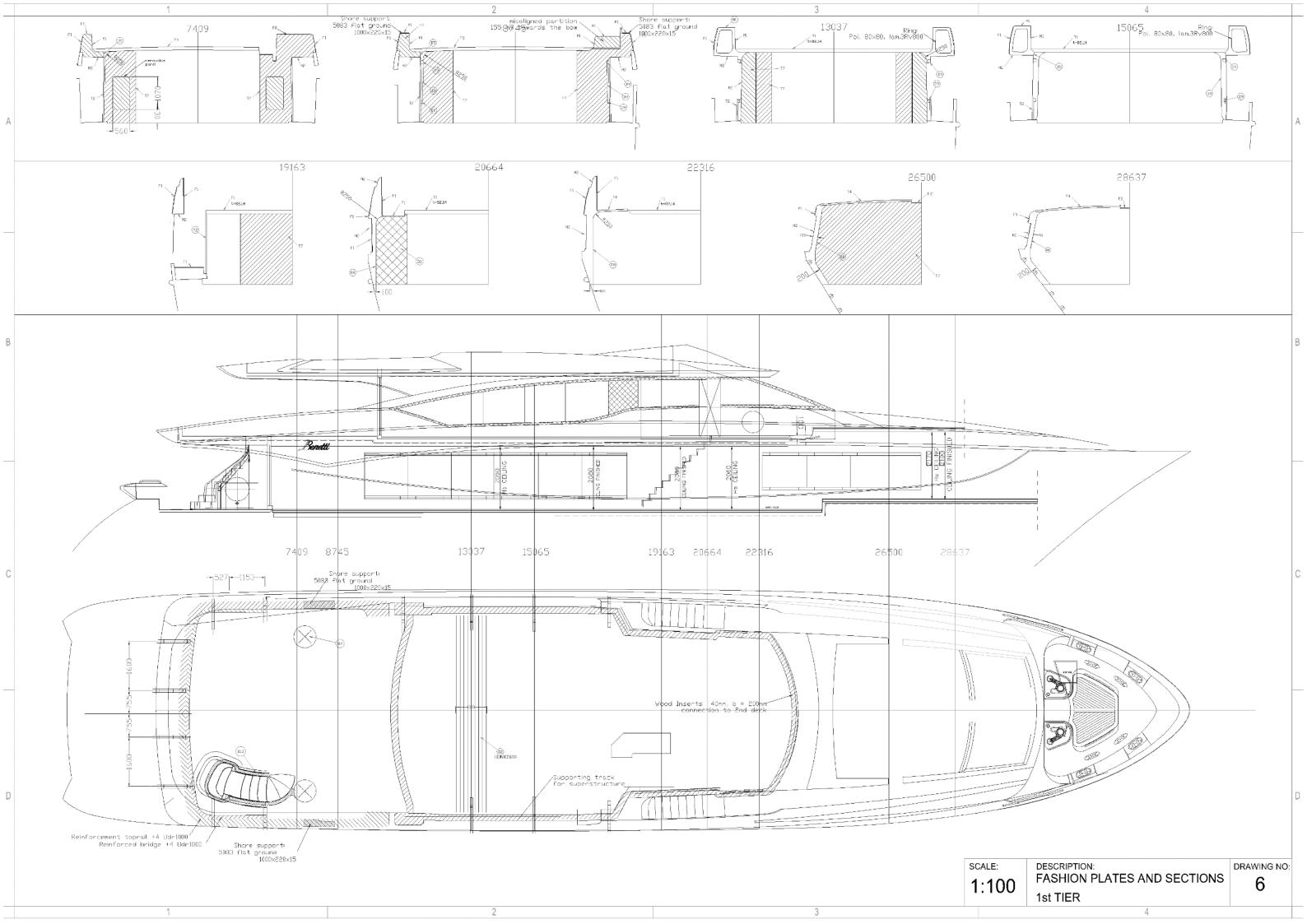
C	5
С	2

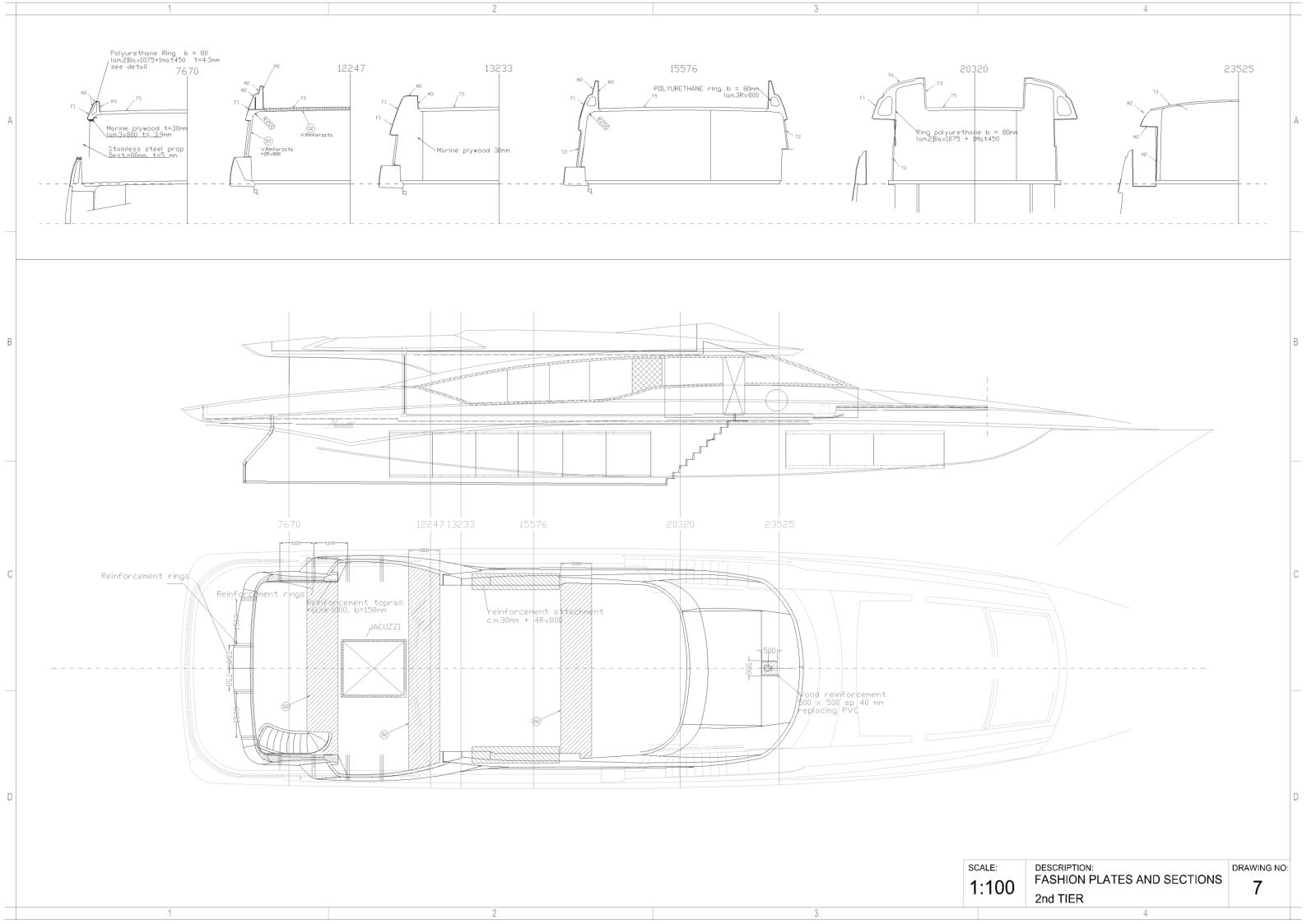
RESH WATER	7,694	1,000	7,694	22,410	0,000	0,717
REY WATER	1,786	1,000	1,786	19,300	0,000	0,620
UEL OIL	9,806	0,840	8,237	17,540	1,302	0,848
UEL OIL	9,806	0,840	8,237	17,540	-1,302	0,848
UEL OIL	9,536	0,840	8,010	13,360	1,314	0,862
UEL OIL	9,536	0,840	8,010	13,360	-1,314	0,862
WERFLOW	0,308	0,840	0,258	10,910	-2,326	1,057
LEAN ÓIL	0,546	0,900	0,491	10,460	1,312	0,750
DIRTY OIL	0,546	0,900	0,491	10,460	-1,312	0,750
LUDGE	0,337	0,900	0,303	5,890	0,349	1,123
BILGE	0,337	1,000	0,337	5,890	-0,349	1,123
BLACK WATER	2,815	1,000	2,815	3,210	0,000	1,715
AILY FUEL OIL	4,176	0,840	3,507	4,510	0,000	1,716
SERVICE	CAPACITY (m ³)	SPECIFIC WEIGHT (1/m ³)	WEIGHT (†)	LCG (m) from A.P.	TCG (m) from C.L. (-port +stbd)	VCG (m) from B.L.

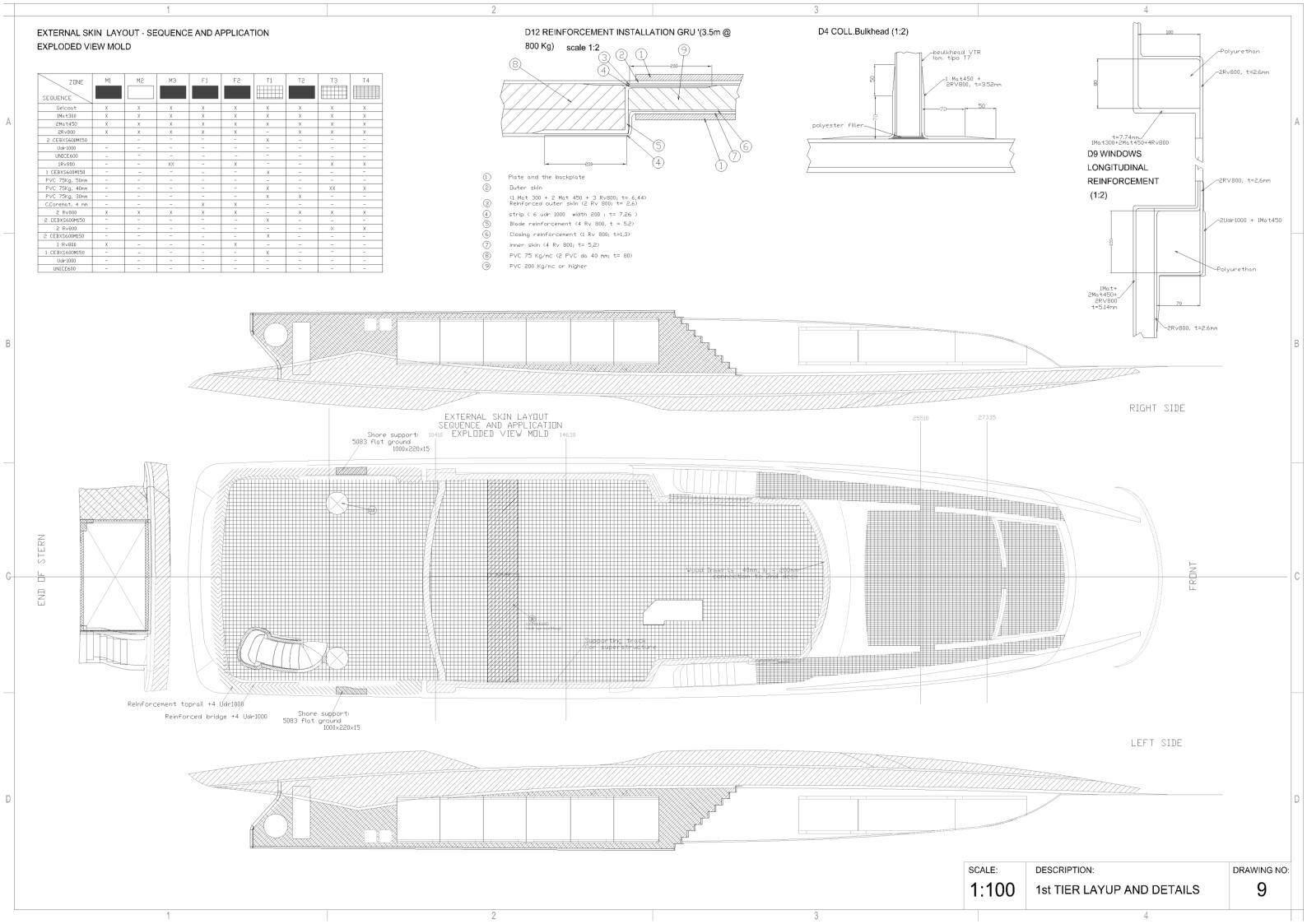
DRAWING NO: 4



AND DETAILS


3




Igor Miskovic

94

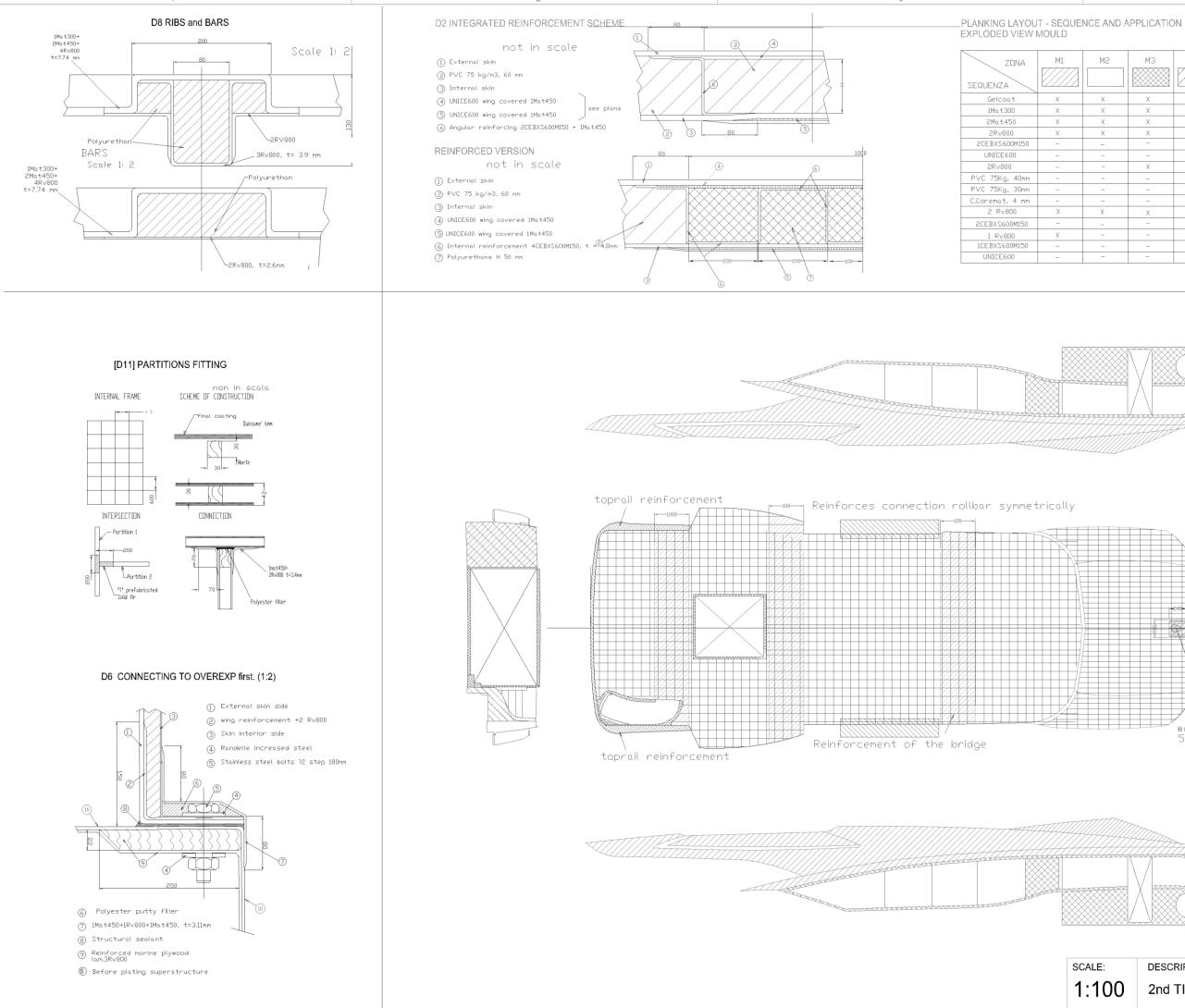


TABLE OF LAMINATION

N#	MATERIAL	Weight Renf.	Ratio	gr	thickness	Veight lam	UP_DECK	UP_DECK	UP_DECK	SIDE	BULKHEAC	SIDE	SIEE	MONOLIT.	MONELIT.	PENUELI.
		gr∕m²	R/V	1	li a	gr∕m ²	11	13	4	15	17	E1	- 2	M	MP	v3
1	Gelcoat					70C	X	X	Х	Х		Х	X	Х	Х	X
2	ma 1300	300	2,33	30,0	0,70	1000	Х	X	Х	X		Х	Х	Х	Х	Х
3	nat450	450	2,00	33,0	0,92	1351	XX	XX	XX	XX		XX	XX	XX	XX	XX
4	^∨800	800	1,50	40,0	1,30	2000		XX	XX	XX	XX	ХХ	XX	XX	XX	XX
5	rv900	800	1,50	40,0	1,30	2000		X	Х				Х	XX	XX	XX
6	AV800	800	1,50	40,0	1,30	2000								Х		XX
7	CEBXS600M150	750	1,50	40,0	1,20	1875	XX									
8	CEBXS600M150	750	1,50	40,0	1,20	1875	Х									
9	800	800	1,50	40,0	1,30	2000										
10	rv800	800	1,50	40,0	1,30	2000										
11	corematā	180	17		5	3240						Х	X			
12	PVC75,30	2250	0		30	2250	X			Х	X					
13	PVC75,40	3000	0		40	3000	Х	XX	Х							
14	PVC75,50	3750	0		50	3750										
15	^∨800	800	1,50	40,0	1,30	2000		XX	XX	XX	XX	XX	XX			
16	~v800	800	1,50	40,0	1,30	2000		XX	XX				XX			
17	CEBXS600M150	750	1,50	40,0	1,20	1875	XX									
	CEBXS600M150	750	1,50	40,0	1,20	1875	XXX									
19	~v800	800	1,50	40,0	1,30	5000										
20	nat450	450	2,00	33,0	0,92	1351										
=	REINFOR	CEMENT T	ITAL V		(g ⊅ m ^e		7200	6800	6800	4400	3200	4400	6800	5200	4400	6000
Q	LAILI	WEIGHT L	- Fll	(g / r	n)		18703	17703	17703	11703	8000	11703	17703	13703	11703	15703
St_est	THICK SKIN EXTERNAL LAM,SANDWICH (mn)				6.14	6,45	6.15	5,15	2.60	5,15	6.45	9,06	7,75	10,36		
St_int	t - THICK SKIN INTERINR LAM.SANDWICH (mm)				6.00	5.22	5.22	2,61	2,60	2,60	5.22	0,00	0,00	00,0		
Sti	TUTAL THICKNESS OF FUIL (mm)				82.14	91.67	51.67	37,75	35,20	12,75	16.67	9,06	7,75	10,36		
Ge=PZQ		S OF REI					37,49%	38,71%	38,41%	37,60%	40.00%	37,60%	38,41%	37,95%	37,63%	38,21%
Ptot	TETAL WE	IGHT (comp	ressed p	dercoar (k termant	:0) (g/m²)	26153	24403	21403	14653	10250	12583	18583	14403	12403	16403

DESCRIPTION: TABLE OF LAMINATION 1st TIER

B

С

D

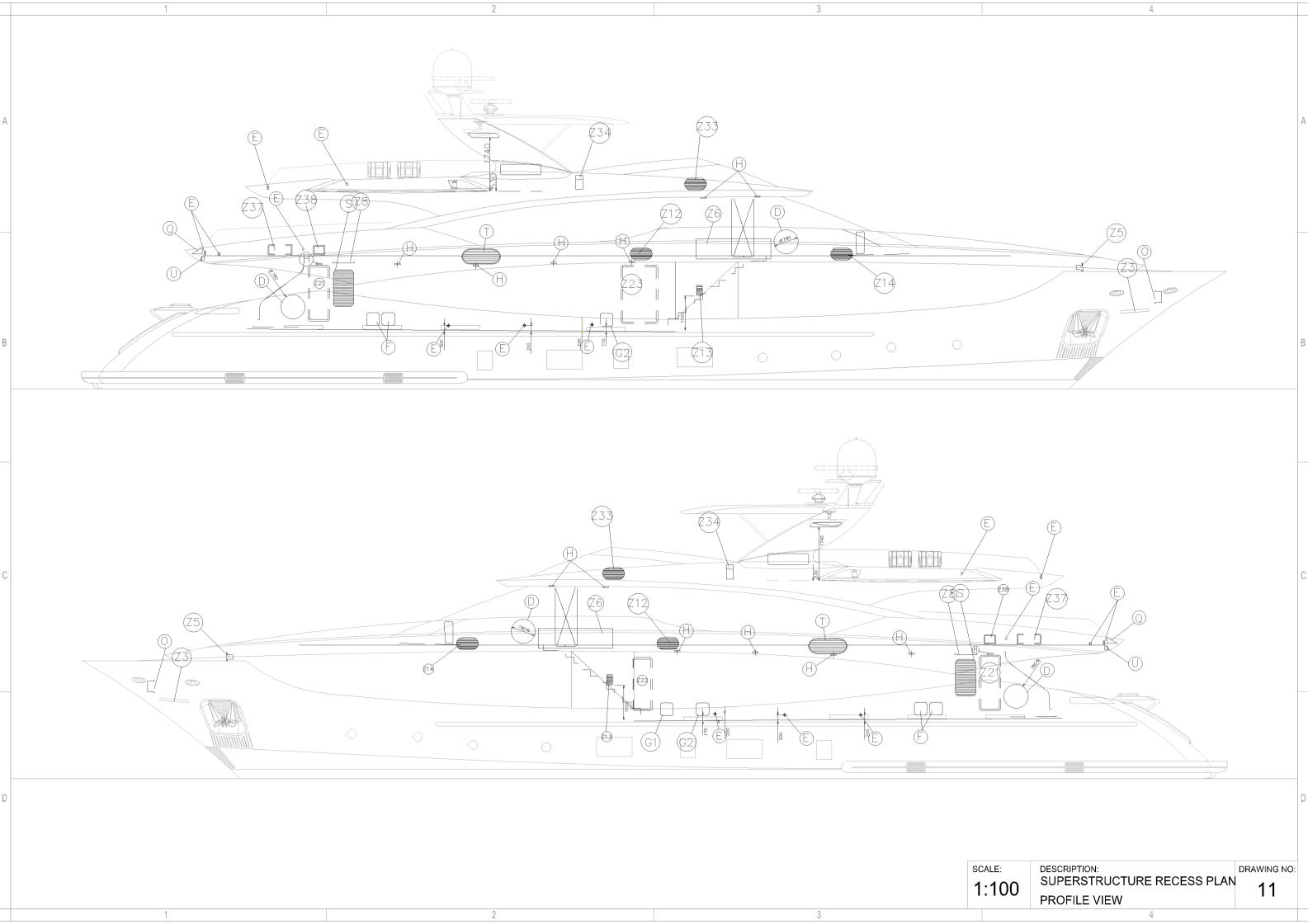
Τ2 Τ5 М2 ΜЗ F1 Τ6 MAGGIORAZIONI A DISEGNO Х Х Х Х Х Х Х X XX Х XX RIGHT SIDE wood reinforcement 500 × 500 sp 40 mm LEFT SIDE

DESCRIPTION:

2nd TIER LAYUP AND DETAILS

4

DRAWING NO:


10

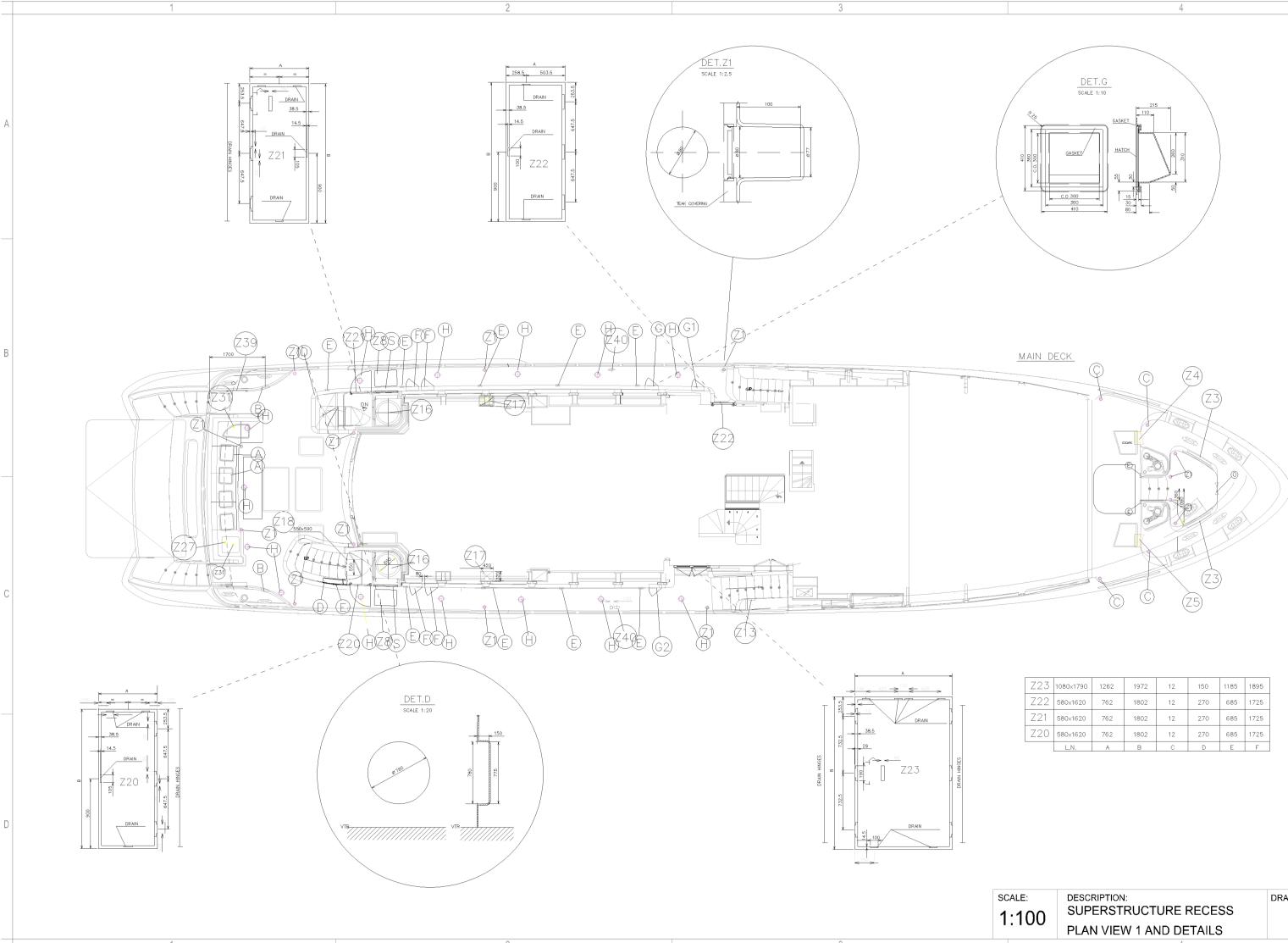
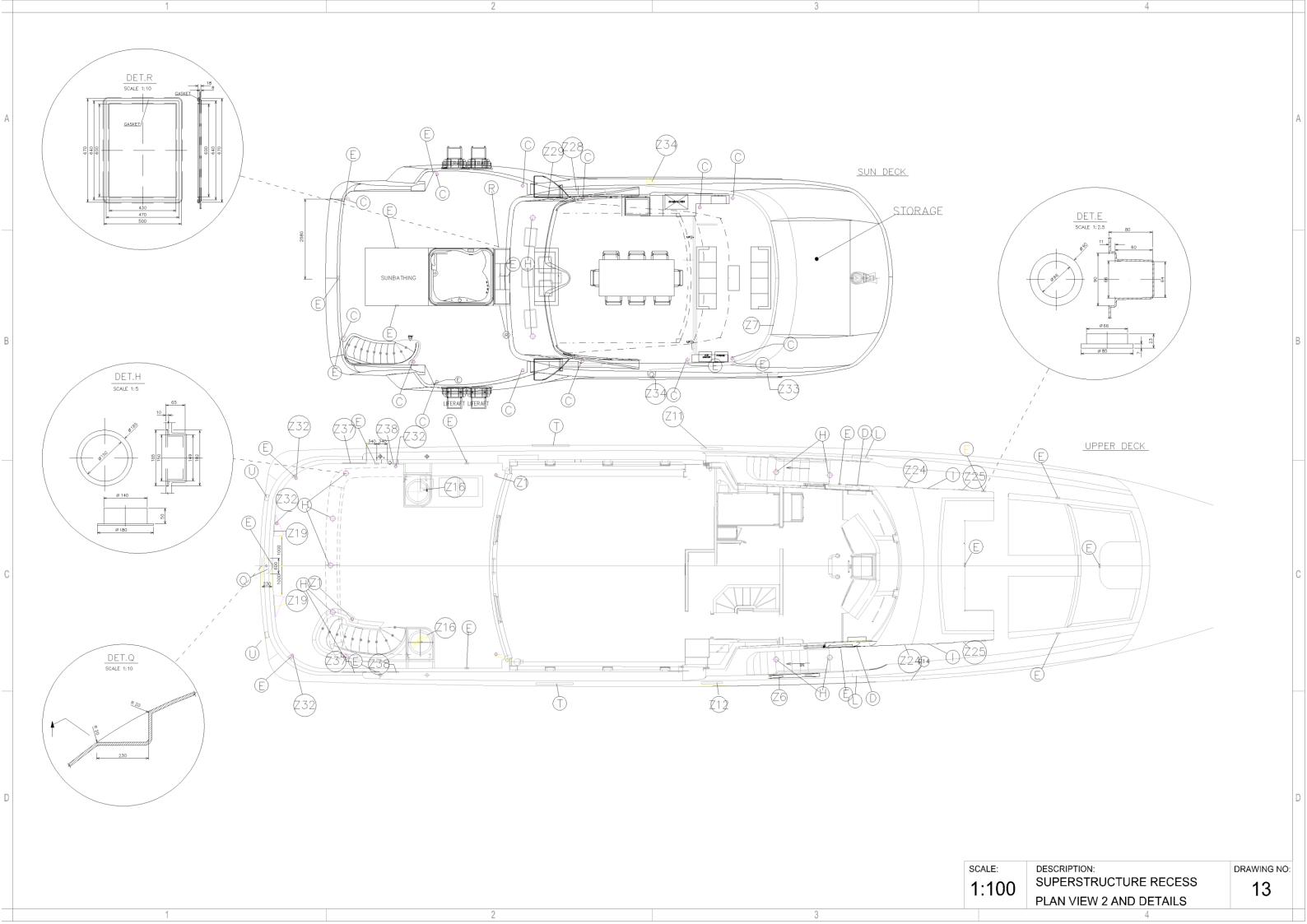
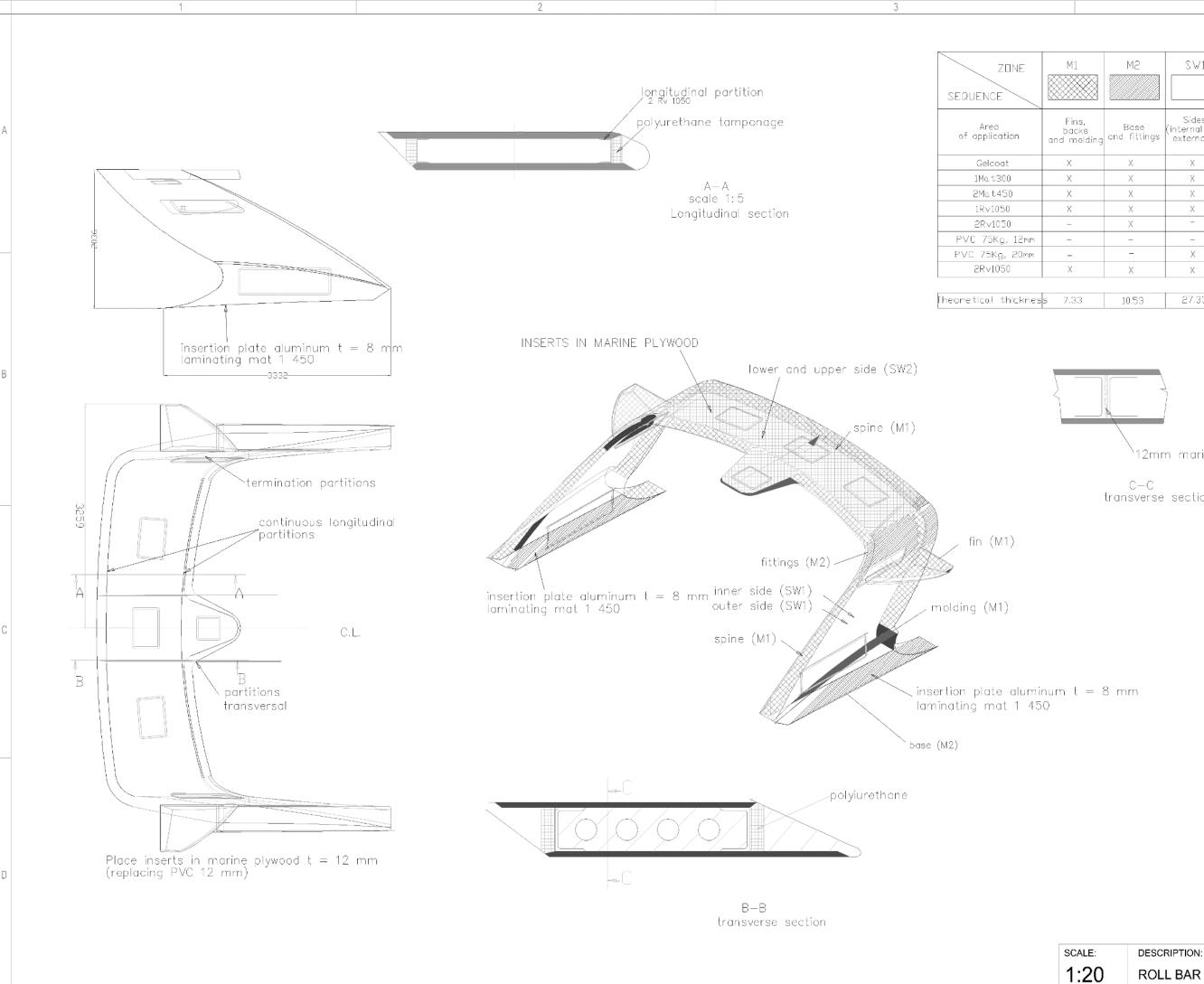

4

TABLE OF LAMINATION

N*	MATERIAL	Weight Rinf.	Rato	9C	thickness	Weight lan	SUN_DECK	CEIVER	SIDE	SIDE	MONOLIT.	MONOLIT	MONDLIT.
		gr/m²	₹/V	I	ויקויק	gr∕m ²	15	T6	Τ2	F1	M1	M2	MЗ
1	Gelcoat					700	X	Х	X	X	Х	Х	X
2	nat300	300	2,33	30,0	0,70	1000	Х	Х	Х	Х	Х	Х	X
3	nat150	450	2,00	33,0	0,92	1351	XX	XX	XX	ХХ	XX	XX	XX
1	nv800	800	1,50	40,0	1,30	2000		XX	XX	XX	XX	XX	XX
5	nv800	800	1,50	40,0	1,30	2000					XX	XX	XX
6	nv800	800	1,50	40,0	1,30	2000					Х		XX
/	CEBXS600M150	/20	1,50	40,0	1,20	1875	XX						
8	CEBX\$500M150	750	1,50	40,0	1,20	1875							
9	CEEXS600M150	750	1,50	40,0	1,20	1875							
10	CEBXS600M150	750	1,50	40,0	1,20	1875							
11	corerat5	180	17		5	3240				Х			
12	PVC75,30	2250	0		30	2250	XX		Х				
13	PVC75,40	3000	0		70	3000		Х					
14	PVC75,50	3750	0		50	3750							
15	rv800	800	1,50	40,0	1,30	2000		XX	XX	XX			
1G	rv800	800	1,50	40,0	1,30	2000		Х					
17	CEBXS600M150	730	1,50	40,0	1,20	1875	XX						
18	CEBXS600M150	750	1,50	40,0	1,20	1875	XX						
19	CEBXS600M150	750	1,50	40,0	1,20	1875							
20	ma.l450	430	2,00	33,0	0,92	1351							
P	REINFE	RCEMENT	TOTAL '	WEIGHT	(g / m ²	>	5700	5200	4400	4400	5200	4400	6000
Q	TOTAL WEIGHT OF FOIL (g / m ²)						14952	13703	11703	11703	13703	11703	15703
St_est							4,94	5,15	5,15	5,15	9,06	7,75	10,36
St_int						4,80	3,91	2,61	P.,61	0,00	0,00	0,00	
Sti		HECKNESS	E F F F	III (mm)			69,74	49,05	37,75	(2,75	9,06	7,75	10,36
Gc=P/Q	CENTENT	S OF REI	NFORCE	MENT IN	LAYER	ED	38,12%	37,95%	37,60%	37,60%	37,95%	37,60%	38,21%
⊃tot	TUTAL W	EIGH Cincl	uding gel	.coat &	termanto)(g / mĴ)	19452	17403	14653	12583	14403	12403	16403


DESCRIPTION: TABLE OF LAMINATION 2nd TIER LAYUP AND DETAIL


Z23	1080×1790	1262	1972	12	150	1185	1895
Z22	580×1620	762	1802	12	270	685	1725
Z21	580×1620	762	1802	12	270	685	1725
Z20	580×1620	762	1802	12	270	685	1725
	L.N.	A	В	С	D	Е	F

DRAWING NO:

POS.	DENOVINATION	QY
740	OVAL SCUPPER	2
Z39	OPENING C.O. 580x320	2
Z38	OPENING C.O. 310x250	2
Z37	OPENING C.O. 710x270	2
Z36	RATING DRYER AIR OUTLET	1
Z34	GRF GLASS FOR MCA CRANE	2
Z33	C700x400 GALLEY AIR OUT ET	1
Z32	SCUPPERS	3
Z31	SOFA OPENING	2
Z30	OPENING FOR ELECT.CONNECT. C.O.550×350	2
Z29	AIR VEN GRID C.C. 930x140	2
Z28	AIR VENT CONNECT OPENING C.O. 1300x350	2
Z27	GARAGE ESCAPE C.O. 550×590	1
Z26	HATCH WITH GRID OPENING C.O. 980×750	1
725	UTA2-UTA3 AIR INLET GRID	2
Z24	HATCH WITH CRID OPENING C.O. 980x750	1
Z23	MAIN ENTR. DOOR OPENING C.O. 1980x1790	1
Z22	GALLEY DOCR CPENING C.O. 580x1620	1
Z21	E.R. DOCR CPENING C.C. 580x1620	1
Z20	STORAGE DOOR OPENING C.C. 580×1620	1
Z19	320x720 STORACE OPENING	2
Z18	E.R. ESCAPE C.C. 550x590	1
717	F.R. VENTIL, OUTLET BUCK OPENING	7
Z16	E.R. EL. BLOWER OPENING	2
Z15	400x400 UTALAR INLET	1
Z′ 4	700x400 E3 - E4 AIR OUTLET	1
Z′ 3	350x180 GRATNS BATTERY AIR DUTLET	1
712	700x400 F1 - F5 AR CUTLET	1
Z11	700x400 UTA4 - UTA5 AR INLET	1
Z10	350×'80 GRATING COLD ROOM COMPR. AIR OUTLET	1
Z9	180x350 GRATING COLD ROOM COMPR. AIR INLET	1

POS.	DENCMINATION	Q, TY
78	GRATING ENGINE ROOM AIR INLET	2
Z7	OPENING FOR TENDER STORAGE	1
Z6	MARQUIPT SEA STAIR	1
Z5	HYDRANT-WASH DOWN-AIR COMFR. BOX	1
Z4	SHORE SUPPLY	1
Z3	LOCKER	2
Z2	LOCKER	2
Z1	SCUPPERS	19
V	SUN DECK WASHING	1
Ų	STERN FLOODLIGHT	2
Т	GRATING ENGINE ROOM AIR CUTLET	2
S	GRATING ENGINE ROOM AIR INLET	2
R	WASHER INSPECTION HANDS HOLE	2
Q	STERN LIGHT BRAKET	2
P	BAR HANDS HOLE	2
С	HYDRANT-AR COMPRWASH DOWN BOX	1
N	LOCKER	1
Ν	STORAGE BOX	1
	CONTROL WING	2
	HATCH WITH GRID OPENING C.O. 496×750	2
\vdash	CEILING LIGHT BOWL	26
G2	EMBARC WATER E MAIN DECK WASHER	1DS
G1	EMBARC WATER AND SOUNDING AIR	151
G	MAIN DECK WASHER-FIRE HYDRANT	2
-	EMBARC GASCLINE SUPPLY BOX	2
Е	FOOTLIGHT	.36
D	LIFEBUCY	∠
С	SCUPPER	13
В	CAPSTAIN CONTROL	2
Α	LOCKER	4

	M2	SW1	SM5	INSERTS
s, ks olding		Sides (internal and external)	Plans (upper and a lower)	According to antennas plans
	Х	Х	Х	X
	Х	Х	Х	X
	Х	Х	Х	X
	Х	Х	Х	X
	Х	-	-	-
	-	-	Х	inserts in
	_	Х	_ r	naryne plywood
	Х	Х	Х	X
				J
3	10.53	27.33	19.33	^{19,33} 27,33

12mm marine plywood

C—C transverse section

DESCRIPTION:

DRAWING NO:

5. CONCLUSION

Being ahead of design trends and technological innovation is essential to offering the most timeless and elegant yachts. The aesthetics (external and interior) together with comfort and luxury requirements drive the concept, design calculation and construction of motor yachts. These qualities appear to have a major impact on the `dreams' of the potential owner, and they often become his strongest motivation to buy a yacht. The basic design process must consolidate these requirements via a feasibility phase (concept design) and a preliminary design, right up to the final design. The concept design is by far the most delicate phase of the entire procedure.

The core of the current market is in the 30m (100') to 40m (120') bracket – a market strongly dominated by the Italian shipyards. The development of market share with regard to yacht length is indicated which shows the continuous growth of the demand for yachts over 30m from 2000 to 2009 and the slight decrease started in 2010, due to the economic global crisis. In short words, the Superyacht market has been driven by massive rise in semi-custom orders.

Making the previous analysis of different technological systems in 10 different yachts, we got insight on Benetti standards, which have to be continued in a new coming models. Spotted discrepencies are subject of further work by technical department and strategic planning of a future models. Getting the insight in the process of building the superyacht was a crucial for further development of a new model. Many components involved in that process testify a complexity of such a work and they must not be forgotten when thinking about a new designs, even in early concept stages.

The Benetti Diamond 121' is the latest model to join the Benetti Class semi-custom range in composite material. She's main features including size, external lines, details in interiors style and main performances were carefully benchmarked by previous analysis.

The standard layout of this triple-deck model has a full-beam Owner's suite on the main deck and four guest cabins, that can comfortably accommodate eight. Additionally, the crew quarters were designed for seven.

Further work would include a closer inspection on costs analysis and basic design development towards a preliminary design, right up to the final design.

6. ACKNOWLEDGMENTS

The author would like to thank to supervision of Nicola Nicolai, Head of Project Management Department of "Benetti"-Viareggio, for mentorship and support during the work.

The thesis was developed in the Project Management department of "Benetti" in close collaboration with Technical Office, Sales department and Product Specialists.

Individuals of important contribution for this work:

Nicola Nicolai - Head of Project Management Department Prof. Dario Boote – University of Genoa Allesandro Gallifuoco – Quality Manager Alberto Perrone da Zara – Head of Sales department Francesca Veneditti – Product Specialist

Main data sources are from the Benetti internal documentation:

Benetti Delfino 93', Technical specification, September 2013
Benetti Tradition Supreme 108', Technical Specification. September 2013
Benetti Classic 121, Technical specification, September 2013
Benetti Classic Supreme 132', Technical specification, September 2013
Benetti Crystal 140', Technical specification, August 2013
Benetti Vision 145', Technical specification, December 2010
Benetti Grande 125', Technical specification, July 2013
Benetti Grande 140', Technical specification, May 2013
Benetti FB700, Technical specification, August 2013
Benetti FB800, Technical Specification, September 2013

This thesis was developed in the frame of the European Master Course in "Integrated Advanced Ship Design" named "EMSHIP" for "European Education in Advanced Ship Design", Ref.: 159652-1-2009-1-BE-ERA MUNDUS-EMMC

7. REFERENCES

<u>1.</u> Robert I. Davis and Roxy A. Davis, 7/15/94, *'How To Prepare For and Conduct a Benchmark Project'*, US Department of Defense, available from: <u>http://www.dtic.mil/c3i/bprcd/0135.htm</u>

<u>2.</u> Price Water House Coopers *,The 1999 European Benchmarking Study for Technology Companies* (up to 250 people), (<u>http://www.pwcglobal.com/uk/eng/inssol/survey-rep/dream.html</u>)

<u>3.</u> MCB University Press, 1999, *Benchmarking for Quality Management & Technology*: An International Journal

<u>4</u>. Perry van Oossanen, Justus Heimann, Juryk Henrichs, Karsten Hochkirch, October 2009, *Motor Yacht hull form design for the displacement to semi-displacement speed range*, 10th International Conference on Fast Sea Transportation FAST 2009, Athens

5. W. Fricke, R. Bronsart, 2012, *Yacht Design*, 18th International Ship and Offshore Structures Congress (ISSC 2012), Hamburg, available on: http://www.stgonline.org/publikationen.html

<u>6.</u> Bogan, Christopher E., and Michael J., 1995, *Benchmarking for Best Practices*, McGrawHill Inc., New York

7. Murielle Gonzalez Oisel, February 2013, *Export driven survival*, International boat industry, available from: <u>www.ibi-plus.com</u>

8. Azimut-Benetti Spa, 2013, BE-Inspired by Italian Genius, 47 pages

9. Lloyds Register, September 2011, Yacht focus, 15 pages

10. Lloyds Register, September 2010, Yacht focus, issue 2, 16 pages

11. Lloyds Register, September 2012, Yacht focus, 15 pages

12. Superyacht Intelligence, February 2012, *Economic Analysis of the Superyacht Industry*, available on: <u>www.superyachtintelligence.com</u>

13. Show boats International, 2013, *Global Order Book 2013*, available on: <u>www.showboats.com</u>

14. Laurent Perignon, May 2008, *The Super Yachting Index,* available from: <u>www.camperandnicholsons.com</u>

15. Laurent Perignon, May 2009, *The Super Yachting Index,* available from: <u>www.camperandnicholsons.com</u>

16. Laurent Perignon, July 2010, *The Super Yachting Index*, available from: www.camperandnicholsons.com

17. Thomas Mee, July 2011, *The Super Yachting Index,* available from: www.camperandnicholsons.com

18. Mirian Cain, Ane Dixon, July 2013, *The Super Yachting Index*, available from: www.camperandnicholsons.com

APENDIXES

APENDIX 1

Full list of all compared items in section Product Analysis.

BEHIND EACH LINE IN THE LIST BELOW IS THIS TYPE OF DATA COMPARISON:

Example 1: Typical engineering data comparison

	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'	FB700	FB800	BV145
Noise and vibration								
Noise @ Aft Guests Cabins (anch ; nav)	48 ; 65	50 ; 63	47 ; 62	47 ; 72	45 ; 62	47 ; 62	50 ; 58	49 60
Noise @ Fwd guest Cabins (anch ; nav)	45 ; 57	45 ; 58	46 ; 57	46 ; 57	45 ; 58	46 ; 57	48 ; 55	47 55
Noise @ Crew Mess (anch ; nav)	45 ; 55	45 ; 60	48 ; 56	48 ; 56	48 ; 57	48 ; 56	52 ; 54	52 57
Noise @ Crew Cabins (anch ; nav)	45 ; 55	45 ; 60	48 ; 56	48 ; 56	48 ; 56	48 ; 56	50 ; 54	51 56
Noise @ Main Saloon (anch ; nav)	50 ; 63	52 ; 62	45 ; 62	50 ; 62	48 ; 62	50 ; 62	52 ; 62	50 62
Noise @ Dining Area (anch ; nav)	/	52 ; 62	45 ; 58	48 ; 58	/	48 ; 60	52 ; 62	50 57
Noise @ Owner's Cabin (anch ; nav)	45 ; 52	43 ; 50	44 ; 51	44 ; 51	44 ; 51	45 ; 51	47 ; 50	47 50
Noise @ Galley (anch ; nav)	45 ; 55	55 ; 65	52 ; 59	49 ; 59	48 ; 60	55 ; 60	56 ; 60	
Noise @ Sky Lounge (anch ; nav)	/	58 ; 65	46 ; 55	46 ; 55	45 ; 56	pan saloon 44 ; 55	upper saloon 50 ; 56	50 57
Noise @ Captain cabin (anch ; nav)	/	/	48 ; 56	48 ; 56	48 ; 55	48;56	50 ; 55	
Noise @ Wheelhouse (anch ; nav)	48 ; 57	50; 55	56 ; 56	56 ; 56	55 ; 55	56 ; 60	50 ; 56	50 ; 54
Noise @ Aft Main Deck (ext. Area) (anch ; nav)	60 ; 78	63 ; 78	58 ; 80	58 ; 80	58 : 79	58 ; 80	55 ; 75	
Noise @ Aft Upper Deck (ext. Area) (anch ; nav)	/	58 ; 73	57 ; 73	57 ; 73	56 ; 74	57 ; 73	55 ; 70	
Noise @ Middle Sun Deck (ext. Area) (anch ; nav)	58 ; 73	55 ; 70	56 ; 70	56 ; 70	55 ; 70	56 ; 70	55 ; 70	
Vibration@ Owner and guests interior lux areas (Nav)	1	1	2	1	2.5	2	2	2
Vibration @ Open Deck entertainment areas (Nav)	1.5	1.5	2.5	1.5	3	2.5		3
Vibration @ crew Quarters (Nav)	1.5	1.5	2.5	1.5	3	2.5		2.5

Example 2: Typical architectural data comparison

	BD 93'	BK 108'	BC 121'	BS 132'	BY 140'	FB700	FB800	BV145'
		1	·		1			
Engine room and	Neon	Neon	Neon lights.	Neon lights.	Neon lights	In the	In the	Neon
technical spaces	lights.	lights.	Technical	Technical	of 2x18 W.	engine	engine	lights of
lights	Technical	Technica	spaces ae	spaces ae	Technical	room neon	room	2x18 W.
	spaces ae	l spaces	fitted with	fitted with	spaces ae	lights of	lights of	Technical
	fitted with	ae fitted	24V DC lights	24V DC lights	fitted with	2x18 W	2x18 kW	spaces ae
	24V DC	with 24V	in IP54	in IP54	24V DC	will be	will be	fitted with
	lights in	DC lights	housing.	housing.	lights in	fitted.	fitted on	24V DC
	IP54	in IP54	Some	Some	IP54	Technical	the in	lights in
	housing.	housing.	emergency	emergency	housing.	spaces will	order to	IP54
	Some	Some	lights will be	lights will be	Some	be fitted	avoid	housing.
	emergenc	emergen	incorporated	incorporated	emergency	with 24 V	hidden	Some
	y lights	cy lights	in the	in the	lights will	DC lights in	areas. Cold	emergenc
	will be	will be	exsiting	exsiting	be	IP54	lights	y lights
	incorporat	incorpor	fixtures.	fixtures.	incorporate	housing.	(neon	will be
	ed in the	ated in	Engine room	Fluorescent	d in the	Some	tubes	incorporat
	exsiting	the	technical	fixtures and	exsiting	emergency	type) will	ed in the
	fixtures.	exsiting	spaces and	waterproof	fixtures.	lights will	be	exsiting
		fixtures.	stores:	sockets will		be	provided	fixtures.
		Fluoresc	fluorescent	be provided.		incorporat	for	
		ent	fixtures and			ed in the	technical	
		fixtures	waterproof			existing	spaces. A	
		and	sockets will			fixtures.	switch will	
		waterpr	be provided.				be fitted	
		oof					on each	
		sockets					line.	
		will be						
		provided						

THE LIST OF ITEMS:

00. GENERAL
00.10 GENERAL INFORMATION - 2 AREAS
00.10.01 GENERAL
00.10.02 PARTIES
00.20 DESIGN AND PERFORMANCES – 6 ITEMS
00.20.01 MAIN CHARACTERISTICS
00.20.02 HULL DESIGN, STABILITY
00.20.03 PERFORMANCES
00.20.04 NOISE & VIBRATION
00.20.05 STANDARD AND WORKMANSHIP
00.20.06 CLASSIFICATION
00.30 PROJECT MANAGEMENT – 5 AREAS
00.30.01 REPRESENTATIVES
00.30.02 CHANGE ORDERS
00.30.03 DISCREPANCIES
00.30.04 ACCEPTANCE AND DELIVERY
00.30.05 SEA TRIALS AND QUAY TESTS

00.40 DOCUMENTS – 2 AREAS

00.40.01 CERTIFICATES 00.40.02 DRAWINGS

01 STRUCTURE
01.10 HULL STRUCTURE
01.11.00 HULL MATERIALS
01.11.01 HULL STERN STRUCTURE
01.11.02 HULL CONSTRUCTION
01.11.03 HULL BOW STRUCTURE
01.11.05 MAIN SEA CHESTS
01.11.08 STRUCTURAL REINFORCEMENTS
01.11.10 KEEL
01.11.11 BULWARK
01.11.12 HULL DOORS
01.11.99 HULL MANUFACTURE
01.13.01 ANODES AND SENSORS HOUSING
01.13.02 PROTECTION FROM ANCHORS AND
CHAINS 01.13.04 REMOVABLE PLATES
01.13.05 WINDOWS AND PORTHOLES FRAMES
01.13.08 PROPELLER SHAFT BRACKETS
01.13.09 DOUBLE PLATES AND INSERTS
01.13.10 MAIN ENGINES OVERBOARD
DISCHARGE
01.13.11 GENERATORS OVERBOARD DISCHARGE
01.13.12 RUBBING STRAKE
01.13.14 HAWSE PIPES AND ANCHORS POCKETS
01.13.17 STRUCTURAL METAL
REINFORCEMENTS (BEAMS AND PILLARS) 01.14.01 HULL BASEMENTS AND SUPPORTS
01.20 SUPERSTRUCTURE STRUCTURE
01.21.00 SUPERSTRUCTURE MATERIALS
01.21.00 SUPERSTRUCTURE MATERIALS
01.21.07 SUPERSTRUCTURE REINFORCEMENTS
01.23.02 MAIN MAST
01.23.05 SUPERSTRUCTURE PILLARS
01.40 ASSEMBLING
01.41.00 SUPERSTRUCTURE TO HULL
FASTENING
02 OUTFITTING
02 OUTFITTING 02.10 EXTERNAL DECKS OUTFITTING
02.10 EXTERNAL DECKS OUTFITTING 02.11.00 DECK LINING
02.14.00 EXTERNAL CEILINGS
02.15.00 EXTERNAL CEILINGS
02.13.00 EATENNAL FUNINITUKE UUTFITTINU

02.15.01 EXTERNAL LOOSE FURNITURE
02.20 FAIRING, PAINTING AND INSULATION
02.21.00 UNACCESSIBLE SPACES TREATMENT
02.22.00 TECHNICAL SPACES FLOORING
02.25.00 PAINT, GENERAL
02.25.01 HULL TOP SIDE PAINTING
02.25.02 UNDERWATER HULL PAINT
02.25.03 SUPERSTRUCTURE PAINT
02.25.04 INTERNAL PAINT
02.25.07 TANK TREATMENT
02.25.08 PIPING PAINT
02.25.09 MACHINERY AND OUTFITTING EQUIPMENT PAINT
02.27.02 GAS EXHAUST PIPES INSULATION
02.27.03 PIPES INSULATION
02.27.04 AIR CONDITIONING DUCTS INSULATION
02.27.05 RESILIENT MOUNTING OF BULKHEADS, CEILINGS AND PARTITIONS
02.27.07 VIBRATION DAMPING TREATMENT
02.27.08 SAND FILLED PILLARS
02.27.09 FIRE AND COMFORT INSULATION
02.27.10 ENGINE ROOM
02.30 NAUTICAL AND DECK EQUIPMENT
02.31.01 RUDDER BLADES AND STOCKS
02.31.02 RUDDER HOLES
02.31.03 RUDDERS BUSHES
02.31.04 RUDDER MACHINERY, PUMPS AND ACCESSORIES
02.32.01 WINDLASSES
02.32.02 CAPSTANS
02.32.03 MOORING BOLLARDS
02.32.06 FAIRLEADS
02.32.07 ROLLER FAIRLEADS
02.32.08 ANCHORS
02.32.09 MOORING LINES
02.32.10 CHAIN ROLLERS
02.32.11 CHAIN STOPPERS
02.32.13 CHAIN QUICK RELEASE
02.32.14 ANCHOR CHAINS
02.33.01 FLAG POLE
02.33.02 FOREMAST
02.33.03 JACK STAFF
02.34.01 BOAT HOOKS
02.34.02 ROPE LADDER
02.34.05 YACHT BELL
02.34.06 SIGNAL SHAPES

Redesign of a Classic
02.34.08 NAUTICAL INSTRUMENTS
02.35.00 PROTECTIVE FABRIC COVERS
02.40 WINDOWS, DOORS AND HATCHES
02.41.01 PORTHOLES AND DEADLIGHTS
02.41.02 WINDOWS
02.41.03 WINDOWS WIPERS
02.43.01 WATERTIGHT DOORS
02.43.02 WEATHERTIGHT DOORS
02.43.04 EXTERNAL SLIDING DOORS
02.44.01 EXTERNAL HATCHES
02.44.02 INTERNAL HATCHES
02.45.01 MANHOLES
02.46.02 HULL DOOR
02.50 STAIRS, LADDERS, GANGWAYS,
TECHNICAL FLOORS
02.51.01 EXTERNAL STAIRS, NOT INTEGRATED IN STRUCTURE
02.51.02 INTERNAL STAIRS
02.52.01 GANGWAY
02.53.02 SIDE BOARDING LADDER
02.53.04 SWIMMING LADDER
02.54.00 FALSE FLOORS
02.54.01 ENGINE ROOM FLOORING
02.60 HANDRAILS, PILLARS, SUN AND WIND PROTECTIONS
02.61.00 EXTERNAL METALLIC HANDRAILS
02.62.00 ENGINE ROOM HANDRAILS
02.63.02 AWNING
02.64.01 WINDSCREEN
02.70 LIFTING DEVICES
02.71.00 DUMBWAITER
02.73.01 TENDER AND JET SKIS HANDLING
SYSTEM
SYSTEM 02.75.01 EXTERNAL RAILS
02.75.01 EXTERNAL RAILS
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS 02.81.01 ZINC ANODES
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS 02.81.01 ZINC ANODES 02.82.01 DRIP TRAYS
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS 02.81.01 ZINC ANODES 02.82.01 DRIP TRAYS 02.82.03 GUARDS
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS 02.81.01 ZINC ANODES 02.82.01 DRIP TRAYS 02.82.03 GUARDS 02.82.05 CHAIN LOCKER LINING AND GRATING
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS 02.81.01 ZINC ANODES 02.82.01 DRIP TRAYS 02.82.03 GUARDS 02.82.05 CHAIN LOCKER LINING AND GRATING 02.82.06 WORK BENCH
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS 02.81.01 ZINC ANODES 02.82.01 DRIP TRAYS 02.82.03 GUARDS 02.82.05 CHAIN LOCKER LINING AND GRATING 02.82.06 WORK BENCH 02.82.07 BATTERY BOXES
02.75.01 EXTERNAL RAILS02.80 VARIOUS OUTFITTINGS02.81.01 ZINC ANODES02.82.01 DRIP TRAYS02.82.03 GUARDS02.82.05 CHAIN LOCKER LINING AND GRATING02.82.06 WORK BENCH02.82.07 BATTERY BOXES02.82.08 NAVIGATION LIGHTS HOUSING
02.75.01 EXTERNAL RAILS02.80 VARIOUS OUTFITTINGS02.81.01 ZINC ANODES02.82.01 DRIP TRAYS02.82.03 GUARDS02.82.05 CHAIN LOCKER LINING AND GRATING02.82.06 WORK BENCH02.82.07 BATTERY BOXES02.82.08 NAVIGATION LIGHTS HOUSING02.82.09 ANTENNAS SUPPORTS
02.75.01 EXTERNAL RAILS 02.80 VARIOUS OUTFITTINGS 02.81.01 ZINC ANODES 02.82.01 DRIP TRAYS 02.82.03 GUARDS 02.82.05 CHAIN LOCKER LINING AND GRATING 02.82.06 WORK BENCH 02.82.06 WORK BENCH 02.82.07 BATTERY BOXES 02.82.08 NAVIGATION LIGHTS HOUSING 02.82.09 ANTENNAS SUPPORTS 02.82.10 ENGINE ROOM SINK

02.82.15 SUPPORTS FOR LIFERAFTS
02.83.01 DRAFT MARKS
02.83.03 YACHT NAME
02.83.07 PIPING SYSTEMS LABELS
02.84.01 FENDERS
02.84.03 FENDERS HOLDERS
02.84.08 STEM PROTECTION
02.85.01 VENTILATION GRIDS
02.85.02 GAS EXHAUST GRIDS
02.85.03 SEA CHESTS GRIDS
02.85.04 VARIOUS GRIDS
02.85.05 SCUPPERS GRIDS
02.86.00 HULL AND SUPERSTRUCTURE
RECESSES 02.87.00 FIXED BALLAST
02.90 FIRE & SAFETY APPLIANCES
02.91.03 FIRE EXTINGUISHERS
02.91.05 FIRE NOZZLES
02.91.05 FIRE HOSES
02.91.06 FIREMAN AXE
02.91.07 FIREMAN SUIT
02.91.08 BREATHING APPARATUS
02.91.09 FIREFIGHTING BLANKET
02.91.10 MEDICAL KIT
02.93.02 LIFE RAFTS
02.93.03 LIFE BUOYS
02.93.04 PARACHUTE FLARES
02.93.06 LIFE JACKETS

03 AUXILIARY MACHINERY
03.10 BILGE AND FIRE EQUIPMENT
03.11.01 FIRE PUMP
03.11.02 BILGE PUMPS
03.12.02 GALLEY HOOD DUCT FIRE
EXTINGUISHING SYSTEM
03.12.03 ENGINE ROOM FIRE EXTINGUISHING
SYSTEM
03.20 FUEL OIL AND LUBE OIL EQUIPMENT
03.21.01 FUEL OIL TRANSFER PUMP
03.21.04 FUEL OIL FILTERS
03.21.06 VARIOUS FUEL OIL PUMPS
03.21.07 FUEL OIL FLOW METER
03.22.01 CLEAN OIL PUMP
03.22.02 DIRTY OIL PUMP
03.30 SANITARY EQUIPMENT

Redesign of a Class
03.31.00 SANITARY SYSTEM
3.31.02 SEWAGE TREATMENT PLANT
03.31.03 GREY WATERS PUMP
03.31.04 BLACK WATERS PUMP
03.31.05 SMELL SYSTEM
03.40 AIR PRESSURE AND HYDRAULIC
EQUIPMENT
03.41.01 AIR COMPRESSOR
03.41.02 COMPRESSED AIR BOTTLE
03.41.04 CONDENSED WATER DISCHARGE
03.42.01 STERN HYDRAULIC POWER UNIT
03.42.06 HULL DOOR MECHANISM
03.50 FRESH WATER EQUIPMENT
03.51.01 FRESH WATER PUMPS
03.51.02 HOT WATER PUMPS
03.51.04 WATER MAKER
03.51.05 WATER HEATERS
03.51.07 FRESH WATER STERILISER, FILTERS
03.51.10 MINIPOOL
03.60 SEA WATER COOLING EQUIPMENT
03.61.01 SEA WATER COOLING PUMPS
03.70 AIR VENT AND SOUNDING EQUIPMENT
03.71.01 LEVEL SWITCHES
03.71.02 LEVEL GAUGES
03.71.03 SIGHT GAUGE
03.71.04 MANUAL SOUNDING
03.80 GAS EXHAUST EQUIPMENT
03.81.03 GAS/WATER SEPARATORS
03.81.04 EXHAUST VALVES
03.90 VARIOUS AUXILIARY EQUIPMENT
03.91.01 RESILIENT MOUNTINGS
03.91.02 VACUUM AND PRESSURE GAUGES
04 PIPING
04.10 BILGE AND FIRE PIPING

04.11.01 BILGE AND FIRE PIPING 04.11.04 GALLEY HOOD DUCT FIRE EXTINGUISHING PIPING 04.20 FUEL OIL AND LUBRICATING OIL PIPES 04.21.01 FUEL OIL PIPING 04.21.02 LUBRICATING OIL PIPING 04.30 SANITARY AND SCUPPERS PIPES 04.31.01 SCUPPERS AND DRAINAGE PIPING 04.31.02 SANITARY PIPING

04.51.02 SANTAKT THING

04.40 AIR PRESSURE AND HYDRAULIC PIPES

04.41.01 COMPRESSED AIR PIPING
04.42.01 HYDRAULIC SYSTEMS PIPING
04.50 FRESH WATER AND AIR CONDITIONING
WATER PIPES
04.51.01 FRESH WATER PIPING
04.52.01 AIR CONDITIONING PIPING
04.60 SEA WATER COOLING PIPES
04.61.01 SEA WATER PIPING
04.70 AIR VENT AND SOUNDING PIPES
04.71.02 AIR VENT LINES
04.80 GAS EXHAUST PIPES
04.81.01 MAIN ENGINES EXHAUST GAS PIPING
04.81.02 GENERATORS PIPING
04.90 VARIOUS SYSTEM EQUIPMENT
04.91.02 SCUPPERS BOXES
04.91.03 PIPES FLEXIBLE CONNECTIONS

05 VENTILATION AND AIR CONDITIONING 05.10 ACCOMMODATION VENTILATION AND AIR CONDITIONING 05.10.00 AIR CONDITIONING SYSTEM GENERAL 05.11.01 ELECTRIC HEATER 05.11.02 FAN COILS 05.11.03 MAIN CHILLER UNIT 05.11.04 AIR CONDITIONING SEA WATER PUMPS 05.11.05 AIR CONDITIONING FRESH WATER **PUMPS** 05.11.06 AIR TREATMENT UNITS 05.11.07 FANS AND EXTRACTORS 05.11.08 AUXILIARY COOLING SYSTEM 05.12.02 AIR CONDITIONING DUCTS 05.21.01 FRIDGE AND FREEZER CELLARS **05.30 ENGINE ROOM AND TECHNICAL SPACES VENTILATION SYSTEM69**

05.31.01 ENGINE ROOM FANS

04.91.04 PIPE CLAMPS

05.31.02 ENGINE ROOM FIRE DAMPERS

05.31.03 ENGINE ROOM FANS SILENCERS

05.31.04 WATER MIST SEPARATORS FOR ENGINE ROOM

05.32.01 VENTILATION OUT OF ENGINE ROOM

06 ELECTRIC AND ELECTRONIC SYSTEM

06.10 EMERGENCY ELECTRICAL SYSTEM

06.11.0 EMERGENCY LIGHTING SYSTEM

06.62.01 FIRE ALARM SYSTEM	
06.62.05 SERVICE CALL	
06.70 ENTERTAINMENT EQUIPMENT	
06.70.00 ENTERTAINMENT SYSTEM	
TV AND STEREO EQUIPMENT	
06.70.01 CREW MESS	
06.70.03 TWIN GUEST CABINS	
06.70.04 VIP CABINS	
06.70.05 CREW CABINS	
06.70.07 OWNER'S CABIN	
06.70.09 GALLEY	
06.70.10 MAIN SALOON	
06.70.11 MAIN SALOON DINING (SLAVE OF MA SALOON)	AIN
06.70.12 EXTERNAL MAIN DECK (SLAVE OF M SALOON)	IAIN
06.70.13 WHEELHOUSE	
06.70.14 CAPTAIN CABIN	
06.70.15 SKY LOUNGE	
06.70.16 GYMN ROOM	
06.70.17 EXTERNAL UPPER DECK AFT (SLAVE SKY LOUNGE)	OF
06.70.18 EXTERNAL UPPER DECK FORWARD	
06.70.19 SUN DECK	
06.70.21 TECHNICAL SPACE	
06.70.22 SERVER RACK	
06.70.24 DISTRIBUTED EQUIPMENT	

07 MAIN MACHINERY
07.10 PROPULSION MACHINERY
07.11.01 MAIN ENGINES
07.11.02 GEAR BOXES
07.11.03 ELASTIC COUPLING
07.11.05 RESILIENT MOUNTS
07.13.01 SHAFT LINES
07.13.03 SHAFT BEARINGS
07.13.04 SHAFT SEALS
07.13.05 PROPELLERS
07.30 ELECTRIC POWER GENERATORS
07.31.01 MAIN GENERATORS
07.31.02 GENERATORS SOUND SHIELDS
07.31.03 GENERATORS MOUNTING
07.40 SIDE PROPULSION
07.41.01 BOW THRUSTER TUNNEL
07.41.02 BOW THRUSTER

07.50 STABILIZERS

07.51.01 STABILIZER FINS

08 INTERIORS

08.10 CREW INTERIOR

08.11.02 CREW INTERIOR LININGS AND

FURNITURE

08.11.03 CREW INTERIOR FLOOR LININGS

08.11.04 CREW LOOSE FURNITURE

08.11.05 CREW INTERIOR HARDWARE

08.20 GUESTS INTERIOR

08.20.00 GUESTS FURNISHING

08.26.00 UPHOLSTERY, MARBLES, CARPET

08.26.01 INTERIOR UPHOLSTERY AND BLINDS

08.26.02 EXTERNAL UPHOLSTERY

08.26.03 MARBLES AND STONES

08.26.04 CARPET

08.28.01 SANITARY EQUIPMENT

08.28.02 TAPS

08.28.03 BATHROOM ACCESSORIES

08.30 VARIOUS ACCESSORIES

08.32.0 MISCELLANEOUS

08.34.01 MATTRESSES

08.40 DOMESTIC APPLIANCES

08.41.00 APPLIANCES

08.50.00 SPECIAL DECORATION