

Design of a Common Modular - SWAS(S)H for Offshore and Harbour Support Vessels

Akula Nidarshan

Master Thesis

presented in partial fulfillment of the requirements for the double degree: "Advanced Master in Naval Architecture" conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetics and Propulsion" conferred by Ecole Centrale de Nantes developed at West Pomeranian University of Technology, Szczecin in the framework of the

"EMSHIP" Erasmus Mundus Master Course in "Integrated Advanced Ship Design"

Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC

Prof. Zbigniew Sekulski, West Pomeranian University of Technology Supervisor: Szczecin, Poland

Prof. André Hage, Design Naval & Transport and University of Liège

Reviewer: Prof. Robert Bronsart, University of Rostock

Szczecin, January 2016

DEDICATION

То

Mr. Karnthi Kumar Boina, Naval Architect and Ocean Engineer The only reason I joined EMship, because you kept preaching about it.

&

Audry Cooper My oh my, you are such a pain in my life, I wouldn't have survived EMship without you.

&

La Mujer en Rojo

For being my "friend", when I was 100% sure I didn't need one. Finally someone made me "try" to be a less "frightening" person ;)

DECLARATION OF AUTHORSHIP

I declare that this thesis and the work presented in it are my own and have been generated by me as the result of my own original research. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. This thesis contains no material that has been submitted previously, in whole or in part, for the award of any other academic degree or diploma. I cede copyright of the thesis in favour of the West Pomeranian University of Technology, Szczecin, Poland.

Date: 15 JANUARY 2016

AKULA Nidarshan

ABSTRACT

Design of a Common Modular – SWAS(S)H for Offshore and Harbour Support Vessels

Safety and Environmental sustainability as the key aspects, the thesis predominantly focuses on European shipbuilding business of Windfarm, Harbour and Offshore Support Vessels. The thesis proposes use of SWATH concept to design a Trimaran like Small Water-plane Area Single (Stabilized) Hull popularly termed as SWAS(S)H. As described in literature, the excellent sea-keeping characteristics of this design make it an ideal choice for vessel types selected, but the design present itself with many drawbacks. The objective of this thesis is to eliminate or minimise the effects of these shortcomings.

The first task of this thesis was to design a hull that is not only practical and efficient technically but also economically. To ensure economic and practical feasibility, thesis developed the concept of common modular hull, improving productivity with reduction in production time and cost. Based on market research, it was decided to build modular hulls of lengths 18m, 21m and 24m. The idea being that the forward and aft modules of combined length 15m, are common to all hulls, while parallel middle body like modules of lengths 3m can be added to extend the length of the vessels from 18m to 24m. This resulted in total of five (5) vessel types of three (3) different hull lengths.

A common scantling structure for all the hulls was designed using DNV-GL HSC for the longest vessel length of 24m. The same scantlings are used for all the three hull lengths to ensure modular continuity. The below mentioned optimisation methodology was used with major focus on increasing the operational speed from 14-17 knots to 20 knots while reducing the fuel consumption & emissions, to an extent which is comparable to currently operational catamarans.

OPTIMISATION METHEDOLOGY					
S. No.	Design Element	Sot	Logic/Code		
1	Ship Design/Modelling	Rhino 3DM/AutoCAD/Maxsurf Modeler		Class Rules	
2	Sea-keeping	Maxsurf Motion Advanced		3D Panel Method	
3	Resistance	Optimisation	Maxsurf & modeFrontier	Potential Flow	
		Validation	FineMARINE	RANSE	
		vandation	Towing Tank Test	ITTC 78	
4	Adv. Hybrid DE Plant	MS Excel (Mathematical Model)		MAN Turbo Guide	

The 18m hull was selected for towing tank test to facilitate largest model size with good scaling factor to ensure better results. The resistance of 18m mathematical model hull was successfully validated by towing tank test and with validated mathematical model, the thesis proved a reduction in resistance and power consumption in range of 21% to 25% for the three hull lengths. In conclusion, this thesis provides a design that has power consumption in range of less than 10% variance from the currently operational catamarans, while having superior stability and sea-keeping characteristics.

INTERNSHIP

Design Naval & Transports S.A. Rue de la Belle Jardinière, 256 | 4031 Liège-Angleur Belgium | TVA BE 880.074.961 | RPM Liège Email: info@dn-t.be

INTERNSHIP SUPERVISOR INTERNSHIP PERIOD

PROF. ANDRÉ HAGE 1ST JULY TO 5TH NOVEMBER 2015

The objective of this internship was to design a *Common Modular – Small Water-plane Area Single (Stabilised) Hull, CM-SWAS(S)H* with an intent to be used for three different types of vessels. This hull is to designed to accommodate the vessel size ranging from 18 m to 24 m. Work includes numerical simulation for resistance and stability, optimise the design for resistance reduction by way of bow modification and design of advanced hybrid diesel electric propulsion system. The results for resistance to be validated by way of Towing Tank test at University of Liège, Belgium. The vessel types targeted: Wind-farm Support Vessel, Pilot Boats, Police and Customs Patrol Crafts.

DELIVERABLES

- a) Concept Design of CM-SWAS(S)H Report,
- b) Towing tank model test for resistance,
- c) Master thesis defence at West Pomeranian University of Technology (ZUT), Szczecin,
- d) Publish paper as per internship supervisor's preference

•

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION TO CONCEPT	. 1
1.1 Resistance And Stability	. 3
1.2 Sea-Keeping And Pitch Instability	. 4
1.3 Structure And Stability	. 4
1.4 Financial Aspects	. 4
1.4.1 Production Cost	. 5
1.4.2 Operational And Maintenance Cost	. 5
1.5 Summary Of Problems And Solution	. 6
1.6 The Concept	. 7
CHAPTER 2 - PROBLEM DEFINITION	. 9
2.1 Owners Requirement	10
2.2 Hull Form	10
2.3 Structural Design	10
2.4 Resistance Check And Bow Optimisation	10
2.5 Stability	10
2.6 Propulsion And Manoeuvring	10
2.7 Marine Power Plant	10
2.8 Towing Tank Test	11
2.9 Work Flow	11
CHAPTER 3 - OWNERS & TECHNICAL SPECIFICATION	13
3.1 Multi-Hull Dimensioning Principle	13
3.2 Beam Selection – Resistance And Sea-keeping Characteristics	14
3.2.1 Resistance Analysis – Potential Flow Slender Body	14
3.2.2 Sea-keeping – Potential Flow 3d Radiation And Diffraction	16
3.3 Dimensions And Technical Specifications	17
CHAPTER 4 - GENERAL ARRANGEMENT, TANK & LINES PLAN	19
4.1 Classification Rules And Notation	19
4.2 Axis System, Frame Spacing And Collision Bulkhead	20
4.2.1 Axis System	20
4.2.2 Frame Spacing And Collision Bulkhead	20
4.3 Special Considerations	21
4.3.1 Embarkation / Disembarkation	22
4.3.2 Single And Two Tier Super Structure	22
4.3.3 Single Or Two Cabin System	22
4.3.4 Single Anchor Or Two Anchor System	22
4.4 Tank Capacities	22

CHAPTER 5 - STRUCTURAL DESIGN	27
5.1 Concept Of Modularity	27
5.1.1 Common Modular Hulls	27
5.1.2 Moulded Stiffened Panels Of Aluminium	28
5.1.3 Modularity Effect Of Structural Design	29
5.2 Structural Calculation	29
5.2.1 Load Calculation	30
5.2.2 Overall Strength And Plating	31
5.2.3 Overall Strength And Ordinary Stiffeners	32
5.2.4 Primary Supporting Members	32
5.2.5 Bulkhead Structure	32
5.3 Structural Details	33
5.3.1 Central Tube	33
5.3.2 Central Strut	33
5.3.3 Outriggers	34
5.3.4 Deck	34
5.3.5 Superstructure	34
5.3.6 Bulkheads	35
CHAPTER 6 - HULL FORM OPTIMISATION FOR RESISTANCE	39
6.1 Introduction to Base Hull	41
6.2 Selection Of Optimisation Environment	42
6.2.1 Modelling	42
6.2.2 Resistance Optimisation	42
6.2.3 Optimisation Algorithm	42
6.2.4 Mathematical Validation	43
6.3 Constraint Definition	43
6.3.1 Stability	44
6.3.2 Lengths – Loa, Lwl, Overall Tube Length And Bow Length	44
6.3.3 Displacement	45
6.4 Form Factor For Potential Flow	46
6.5 Potential Flow Optimisation And Pareto Frontier	48
6.5.1 Parametric Modelling	48
6.5.2 Resistance Analysis	49
6.5.3 Optimisation Environment And Results	50
6.6 Data Validation Using Rans Solver	53
6.7 Data Validation Using Towing Tank Test	56
6.8 Final Results	60

CHAPTER 7 - ANCHOR, PROPULSION & MANOEUVRING	65
7.1 Anchor	65
7.2 Propeller	67
7.2.1 Propeller Selection	68
7.2.2 Developed Thrust And Cavitation Test	
7.3 Rudder, Steering Gear And Bow Thruster	
7.3.1 Rudder And Rudder Stock	72
7.3.2 Steering Gear And Bow Thruster System	74
CHAPTER 8 - ADVANCED HYBRID - MARINE POWER PLANT	77
8.1 Principle Of Hybrid Diesel Electric System	
8.2 Electrical Circuits	81
8.3 Electric Load Estimation	82
8.4 Advanced Hybrid AC – DC Marine Power Plant Layout	83
8.5 Summary Of Equipment Details	
CHAPTER 9 - STABILITY CHARACTERISTICS	89
9.1 Special Consideration For Stability	89
9.1.1 GZ Curve Dipping / Flat Lining And Outrigger Flaring	89
9.1.2 Longitudinal Stability And Trim Tanks	
9.2 Intact Stability	
9.3 Damage Stability	
CHAPTER 10 - CONCLUISON AND SCOPE FOR IMPROVEMENT	
10.1 Conclusion	
10.2 Scope for Improvement	
CHAPTER 11 - ACKNOWLEDGEMENTS	101
CHAPTER 12 - REFERENCE & BIBLIOGRAPHY	103

LIST OF FIGURES

Figure 1.1 The Concept: Common Modular-Small Water-plane Area Single (Stabilised) Hull	7
Figure 2.1 Project structure for the proposed concept design	9
Figure 2.2 Project work flow chart	11
Figure 3.1 Resistance values for different beam dimensions 24 m hull	15
Figure 3.2 Power values for different beam dimensions for 24 m Hull	15
Figure 3.3 Pitch RAO for different beam dimensions for 24 m hull (till 3 rad/sec only)	16
Figure 3.4 Heave RAO for different beam dimensions for 24 m hull (till 3 rad/sec only)	16
Figure 4.1 Tank Plan of 18m vessel to illustrate the arrangement of trim tanks	23
Figure 4.2 Tank plan for all three hulls, for detailed plan refer Annex – 1	24
Figure 4.3 Lines plan for 24 m CM - SWAS(S)H, for detailed plan refer Annex – 1	25
Figure 4.4 General arrangement plan for 6 different vessels, for detailed plan refer Annex - 1	26
Figure 5.1 The concept of modular hull	28
Figure 5.2 Sample images of moulded stiffened panels	29
Figure 5.3 Beam loads and bending moment principle of SWATH Vessel, Source: DNV-GL Rules	. 31
Figure 5.4 Common Modular structure plan for 24 m CM-SWAS(S)H, for detailed plan refer Anne	х —
2	36
Figure 5.5 General hull overview with superstructure	37
Figure 5.6 Structural design forward view detailing the stiffened panels	37
Figure 5.7 Structural design aft view detailing the stiffened panels	37
Figure 5.8 Bottom - 3D Illustration of structural model	38
Figure 5.9 Top - 3D Illustration of structural model	38
Figure 6.1 Method of fuel reduction by drag reduction, Source: Marine Insight, July, 2012	39
Figure 6.2 Flow chart for hull form optimisation for calm water resistance	40
Figure 6.3 Longitudinal plan of Chica-Caliente	41
Figure 6.4 Deck plan of Chica-Caliente	41
Figure 6.5 Displacement Module of 3m	45
Figure 6.6 Concept of optimisation equations for central tube by symmetry approach	49
Figure 6.7 Optimisation environment and interfacing data flow	50
Figure 6.8 Extracted Pareto frontier showing selected variant in red dot	51
Figure 6.9 Comparison of Base and Selected hull from optimisation Pareto frontier	51
Figure 6.10 Comparison of Optimised Hull and Fine Tuned Hull	51
Figure 6.11 Comparison of three Hulls Left to Right: Base Hull, Optimised Hull and Fine Tuned H	ull
	52
Figure 6.12 Graphical Comparison of resistance between Base Hull. Optimised Hull and Fine Tune	ed b
	. 52
Figure 6.13 Figures detailing the FineMarine [©] mesh system	54
Figure 6.14 Free surface elevation at 20 knots	55
Figure 6.15 Resistance Comparison: Akulator (Fine Tuned Hull) – Potential Flow Vs RANS	
Figure 6 16 Central hull prepared on CNC milling machine	57
Figure 6 17 Foam based central hull	57
Figure 6.18 Central Hull Outriggers (coated with resin and nainted) along with Wooden Deck	58
Figure 6.19 Left to Right: Model comparison of Chica-Caliente and Akulator Hull	58
Figure 6.20 Extra wooden nlank attached to deck to connect trim guides	59
Figure 6.21 Final arrangement of model on carriage	59
Figure 6.22 Resistance comparison Akulator (Fine-Tuned hull) towing tank test Vs CFD results	60
Figure 6.22 Central strut: Fine-tuned modular hull	61
Figure 6.24 Fine-tuned modular hull: Profile view showing modules of outrigger and central hull	61
Figure 6.25 Fine-tuned modular hull: ISO view showing modules of outrigger and central hull	61
1 igue 0.25 i me-tuneu modulai nun. 150 view showing modules of outrigger and central nun.	01

Figure 6.26 Resistance comparison: 18 m Chica-Caliente (Base Hull) Vs Akulator (Fine Tuned Hu	ll)
	62
Figure 6.27 Resistance comparison: 21 m Chica-Caliente (Base Hull) Vs Akulator (Fine Tuned Hu	11)
	63
Figure 6.28 Resistance comparison: 24 m Chica-Caliente (Base Hull) Vs Akulator (Fine Tuned Hu	11)
	63
Figure 7.1 Transverse area of tunnel existing between hull and water line	66
Figure 7.2 Flow chart for propeller selection for electrically driven propeller	67
Figure 7.3 Burrill's cavitation chart for 18 m LOA vessel	70
Figure 7.4 Burrill's cavitation chart for 21 m LOA vessel	71
Figure 7.5 Burrill's cavitation chart for 24 m LOA vessel	71
Figure 7.6 Steering gear actuators types, Source: DNV-GL Class Rules 2012	74
Figure 8.1 Method of reducing fuel consumption by power plant, Source: Marine Insight, July 2012	2 77
Figure 8.2 Basic layout of Advanced Hybrid AC-DC diesel electric system	78
Figure 8.3 Hybrid electric power plant efficiency, Source: MAN Turbo [15]	80
Figure 8.4 Diesel electric system design work flow, Source: MAN Turbo [15]	80
Figure 8.5 Unidirectional bridge wave pulsating AC-DC rectification circuit	81
Figure 8.6 Bidirectional DC-AC convertor circuit	82
Figure 8.7 Advanced hybrid AC-DC marine power plant layout	84
Figure 9.1 Initial GZ Curves exhibiting flat lining and curve dipping	89
Figure 9.2 Comparison of geometry flared and Non-flared hull	91
Figure 9.3 Tank Plan of 18m vessel illustrating the arrangement of trim tanks	91
Figure 9.4 GZ curves for loaded and light ship condition for three hulls	93
Figure 9.5 GZ Curve 18 m - 2 CENTRAL COMPARTMENT + 50% OUTRIGGER	94
Figure 9.6 GZ Curve 21 m Loaded Hull - 2 CENTRAL COMPARTMENT + 50% OUTRIGGER	95
Figure 9.7 GZ Curve 24 m Loaded Hull - 2 CENTRAL COMPARTMENT + 50% OUTRIGGER	95
Figure 10.1 Resistance reduction at operating speeds for the three hulls	97
Figure 10.2 Installed power consumption reduction at operating speeds for the three hulls	98

LIST OF TABLES

Table 1.1 Comparison of Planing Mono-hull and Catamaran/ SWATH	1
Table 1.2 Comparison of Planing Mono-hull and SWATH (continued from Table 1.1)	2
Table 1.3 Comparison of Planing & Semi-Planing Mono-hull, SWATH, SWAS(S)H hull form	2
Table 1.4 Summary of constraints of SWATH and proposed solutions	6
Table 3.1 Vessel type and length configuration including basic owner's requirements	. 13
Table 3.2 Typical characteristic parameters for multi-hull vessels	. 14
Table 3.3 Resistance and power values for different beam dimensions for 24 m hull	. 15
Table 3.4 Principal dimensions of proposed hulls	. 17
Table 4.1 Description of class notation followed	. 19
Table 4.2 Operating Froude number for all hull lengths	. 20
Table 4.3 Axis system followed for vessel design	. 20
Table 4.4 Frame spacing and position of collision bulkhead for all vessel lengths	. 21
Table 4.5 Selected frame spacing and position of collision bulkhead for modular hull	. 21
Table 4.6 Tank capacities for all vessel configurations	. 22
Table 5.1 Details of central tube scantlings	. 33
Table 5.2 Details of central strut scantlings	. 34
Table 5.3 Details of outrigger scantlings	. 34
Table 5.4 Details of deck scantlings	. 34
Table 5.5 Details of superstructure scantlings	. 35
Table 5.6 Details of bulkhead scantlings	. 35
Table 6.1 Details of resistance optimisation software and model used	. 43
Table 6.2 Optimisation constraints for all three vessels	. 44
Table 6.3 Details of selected optimisation objectives and constraints	. 46
Table 6.4 Resistance comparison between Base, Optimised and Fine Tuned Hull	. 53
Table 6.7 Mesh definition and flow model details	. 54
Table 6.8 Resistance comparison of Potential Flow Vs RANSE Solver	. 56
Table 6.9 Resistance comparison of Potential Flow and Towing Tank Experiment	. 60
Table 6.10 Resistance comparison for the all hulls post optimisation and fine tuning	. 62
Table 7.1 Details of the selected anchors	. 66
Table 7.2 Extents of Waganingen B-Series propeller	. 69
Table 7.3 Details of the selected propeller configurations	. 71
Table 7.4 Details of rudder and rudder stock selected	. 73
Table 7.5 Details of steering gear	. 74
Table 7.6 Specification of bow thruster	. 75
Table 8.1 Comparison between ICE, Battery and hybrid system	. 79
Table 8.2 Summery of electrical load estimation for all vessels	. 83
Table 8.3 Main diesel electric engine, Source: MTU Diesel Electric Engine Program	. 85
Table 8.4 Generating set for electrical supply, Source: FG Wilson	. 85
Table 8.5 Propulsion motor selected, Source: ABB HRX Maine Propulsion Motors	. 86
Table 8.6 Battery configuration, Source: Mastervolt MLI Ultra 24/5000 - LiFePO4	. 87
Table 9.1 Light ship and loaded ship operating parameters	. 92
Table 10.1 Resistance and Power Comparison for Base and Optimised Hull	. 98
Table 10.2 Power comparison of currently operating Catamarans and Akulator hulls	. 98

ABBREVIATIONS AND NOTATIONS

Please note that most technical notations and abbreviations are defined in the main report or the specific annexures for each chapter. The most commonly used abbreviations and noations are mentioned below:

IMO	International Maritime Organisation
UNFCCC	United Nations Framework Convention on Climate Change
DNV-GL	Det Norske Veritas - Germanischer Lloyd
ITTC	International Towing Tank Convention
ULg	University of Liege
ECN	Ecole Centrale de Nantes
LwL	Length at waterline
LBP	Length between perpendiculars
В	Beam
Св	Block coefficient
D	Depth
Fn	Froude number
Т	Draught/ Draft
L/B	Length-beam ratio
ρ	Water density
Δ	Displacement (weight)
TCG	Transversal centre of gravity
LCG	Longitudinal centre of gravity
VCG	Vertical centre of gravity
KT	Thrust coefficient
KQ	Torque coefficient
A_E/A_0	Blade Area Ratio
С	Chord length of the propeller
n	Shaft Speed
Rn	Reynolds number
Rт	Total resistance

Т	Thrust
t	Thrust deduction factor
τ	Thrust loading
VA	Advanced velocity
VR	Resultant velocity
Vs	Ship/Service Velocity
w	Wake fraction
FO	Fuel Oil
LO	Lubricating Oil
FW	Fresh Water
SW	Sea Water
AC	Alternating Current
DC	Direct Current

Today, the two major concerns of Maritime Industry are Safety and Environmental sustainability. The European Shipbuilding business is being predominantly governed by Windfarm, Harbour, Offshore Support Vessels and Yacht/Cruise/Pleasure Craft, this project will focus on design of a safe and eco-friendly common modular vessel that can cater to Wind-farm, Harbour Support Vessels (mainly Pilot, Police/Custom Patrol Boats) and Wind-farm Crew Transfer vessels for 18-24 m segment.

Pilot Boats, Police/Custom Patrol Boats and Wind-farm Support Vessels are designed and operated with an intent to carry personnel at shortest possible time while ensuring safety and comfort of personnel on board, in addition one of the most quintessential requirement is the safety during embarkation and disembarkation to/ from these crafts. Conventionally Mono-Planing Hulls are used for Pilot Boats, Police/Custom Patrol Boats and in latest trends Catamarans and/or SWATH (small water-plane area twin hulls) for wind-farm support vessels. The relative advantages and disadvantages of the same are the mentioned in table 1.1/1.2.

TABLE OF COMPARISON BETWEEN MONO-HULL AND SWATH				
S. NO.	ELEMENT	PLANING MONO- HULL	SWATH	
1	RESISTANCE	Low	HIGHER (Frictional Resistance due to large wetted surface area)	
-				
2	STABILITY	Good	Excellent	
	SEA-KEEPING			
3	Calm Waters	Good	Excellent	
	Higher Sea-States	Poor	Excellent	
	MANOEUVRING	Good	Good	
4	In port / wind-fame		Average	
	area	Average	(As high course stability)	
	· · · · · · · · · · · · · · · · · · ·			
	OPERATIONAL EASE			
5	Deck Area	Small	Large	
	Ease of Deck Work	Average	Excellent	
	Embarkation/			
	Disembarkation	Poor	Excellent	

Table 1.1 Comparison of Planing Mono-hull and Catamaran/SWATH

TABLE OF COMPARISON BETWEEN MONO-HULL AND SWATH						
S. NO.	ELEMENT	PLANING MONO- HULL	SWATH			
	STRUCTURAL DESIGN	STRUCTURAL DESIGN				
6	Weight and Complexity	Lower	HIGHER			
	Class Rule Availability	Widely Available	LIMITED			
	FINANANCIAL ASPECTS					
	Production/Initial Cost	Low	HIGHER			
7	Operational & Maintenance Cost	Low	HIGHER (cost due to high fuel consumption and complex maintenance)			

Table 1.2 Comparison of Planing Mono-hull and SWATH (continued from Table 1.1)

Now we compare the vessels in terms of values in numbers and as per practical application, please note that the data mentioned in table 1.3 represents vessels of different sizes but intended for same operation and similar values of deck area.

COMPARISON OF DIFFERENT HULL FORMS						
S. No.	ELEMENT					
1	Vessel Type	PLANING	SEMI- PLANING	SWATH	SWAS(S)H	
2	Main Dimensions	26 m x 5.8 m	23 m x 8 m	25 m x 13 m	20 m x 12 m	
3	Displacement	75 t	80 t	125 t	70 t	
4	Propulsion Power	2300 kW	1600 kW	1800 kW	1300 kW	
5	Max Speed	20 Knots	20 Knots	14 Knots	15 Knots	
6	Wetted Surface Area	125 m ²	100 m ²	314 m ²	198 m ²	
7	Operation Limit for Boarding	$h_{1/3} < 1.0 \ m$	$h_{1/3} = 1.0 \text{ m}$	$h_{1/3} = 2.5 \text{ m}$	$h_{1/3} = 2.0 \text{ m}$	
8	Vertical Acceleration at $h_{1/3} = 2.5m$	$\approx 1.0 \text{ m/s}^2$	$pprox 0.6 \text{ m/s}^2$	$pprox 0.2 \text{ m/s}^2$	$pprox 0.2 \text{ m/s}^2$	

Table 1.3 Comparison of Planing & Semi-Planing Mono-hull, SWATH, SWAS(S)H hull form

A quick glance through the tables 1.1, 1.2 and 1.3 shows that, while the operational characteristics of SWATH are superior and unmatchable, the design, construction and operation calls for very high investment as compared to a planing mono-hull.

Another very important factor that makes SWAS(S)H hull ideal for crew transfer vessel is the ability to operate at high wave height with low value of vertical acceleration. This provides high passenger/personnel comfort, which means that when crew arrives at destination of operation the crew fatigue is least and the ability to efficiently operate is higher.

To evaluate the constraints at hand let us try to take a detailed look at disadvantage and a possible solution for each of the elements. Later the author will try to combine all the solutions in the best/most optimised manner to propose the new concept hull form.

<u>Note</u>: Hydrostatic stability is an integral and relative parameter that gets affected as we optimise other design parameters, hence while proposing the solution for each element we will discuss how to counter the instability effects that might be introduced by optimising these relative elements.

1.1 RESISTANCE AND STABILITY

High resistance means high installed operating power thus higher emissions. The operational profile of the vessels selected requires them to operate mostly in near coast region. In accordance to UNFCCC Copenhagen 2009, all EU nations have pledged to reduce the CO₂ emissions to a tune of 30% by 2020 and 40% by 2030, *excluding offsets*. To solve this, the first thought that comes to mind is use of LNG as operating fuel. This presents us with two constraints:

- 1) While LNG, the Green Fuel of future does solve the problem of SO_X and NO_X, its ability to reduce greenhouse gasses like CO₂ is limited to 20-25% as compared to MDO,
- In addition, at this point installation of LNG power plant on small vessels like Harbour and Wind-farm support vessels is limited due to large size of installation.

This requires us to look for alternate means of resistance reduction. The major reason for high resistance in SWATH is the large wetted surface area, which causes the increase in the frictional resistance component. In an effort to reduce the wetted surface area, instead of using twin hull, it is proposed to use a trimaran like multihull design with single submerged hull stabilised by two outriggers. This concept is popularly known as Small Water-plane Area Single (Stabilised) Hull - SWAS(S)H. This reduction in hull while reducing the resistance will adversely affect the displacement and stability. To take care of the displacement the design will increase, in an optimised manner the size of the central tube and the strut. And the stability will balanced out by optimising the outriggers, attached passive fin stabilizers and introduction of trim tanks.

1.2 SEA-KEEPING AND PITCH INSTABILITY

The concept of small water plane area combined with smaller length of the crafts reduces the lifting force acting due to the pressure of the wave, especially at high seas states, making this an excellent design for the required operations of the vessel types selected. On the other hand the drawback of pitch instability in terms of two steady-value phenomenon trim and sinkage, this can be controlled or eliminated by selecting correct design of fin stabilisers. Here in addition to the passive fin stabilisers used on outriggers, the central tube will also be provided with two passive stabilisers.

The forward end of central strut and the outriggers will be provided with spray rail system at operating draught line, this not only helps in reduction of spray resistance but also provides a lifting force at the forward end, reducing the pitch instability.

1.3 STRUCTURE AND STABILITY

The advantage of SWATH Hull is high beam to length ratio (B/L), while it provides larger deck area for a given length it introduces complexity in structure. While the longitudinal bending loads do not influence the structure to large extent, the transverse and torsional loads call for the use of mixed framing system, instead of using the convention longitudinal or transverse system. This not only increases the complexity but also the structural weight and thus the lightship displacement. For SWATH vessels like this, it is important to keep the lightship displacement lower, this is to allow movement of cargo in and out of the vessel, as the movement of weight in and out of these vessels is supercritical for the stability. Thus the author proposes use Aluminium alloy for both hull and superstructure to reduce the structural weight and to provide flexibility in movement of weight in and out of the vessel, two/four small trim tanks will be provided, this will also ensure higher stability.

The Class rules for approval are limited to very few classification societies (most comprehensive is DNV-GL), but limited to SWATH only. We can use conservative approach and design the new concept hull and then carry out FEM based structural optimisation/ analysis to prove the structural integrity and compensate for unavailability of Class Rules.

1.4 FINANCIAL ASPECTS

A solution is as good as no solution, if it is not commercially viable. In this section author proposes the use of ideas that can help in reduction of both initial and operational investment.

1.4.1 PRODUCTION COST

The construction of multi-hull ships, in general calls for high cost of production due to the complex structure, in addition the introduction of aluminium alloy increases the raw material and welding cost of the project as well. To reduce this, the author proposes the use of common modular hull (CMH) i.e. not only the superstructure is made in modules that can be added or removed to modify the capability/features as needed, but the hull is designed in modular manner that can accommodate for the weight and stability parameter change by addition of small modules in parallel middle body. In addition this hull will be designed (in shape/structure/displacement) in such a manner that it can accommodate for all three vessel types with common hull, hence the name common modular hull. This will not only help in reduction in production man hours but also the design man hours thus reducing the overall production cost.

To reduce the welding cost of aluminium, the directly extruded stiffened panels will be used. These panels are manufactured in sizes up to 6m x 6m with the desired size of plate and stiffeners. As the welding at web-flange-plate is reduced the relative load bearing strength will increase thus the structure can be optimised to reduce the sizing of stiffened panel. This again results in relative reduction of weight and cost of the production.

1.4.2 OPERATIONAL AND MAINTENANCE COST

The optimisation for resistance as stated above, helps in reducing the fuel consumption and thus the operational cost. To reduce the fuel consumption to even larger extent the design proposes the use of Advanced Hybrid Diesel Electric System. The electric propulsion eliminates the gear box and thus enabling the design and operation of the propeller always at highest efficiency RPM with an accuracy of ± 5 RPM. As the propeller efficiency extracted increases, the power load on engine and the corresponding fuel consumption can be reduced. In a slender body hull like this the maintenance procedures/time becomes complex and critical. Another advantage of the electric propulsion system is elimination of extra auxiliary engine

Another advantage of the electric propulsion system is elimination of extra auxiliary engine dedicated for electrical supply and the mechanically moving parts like gearbox, connecting shafts, etc. the reduction of moving mechanical parts not only reduces the wear and tear but also eliminates the use of access lubricating oil and the cleanliness issues associated and thus provides easy maintenance procedure and less maintenance cost.

The electric system that operates for both AC/DC system. AC as it is a more viable solution in current market and DC to accommodate for use of battery operation in emergency condition thus eliminating emergency diesel engine and more importantly providing the future scope to include *Solar Power Charged Batteries*. The vessel will be installed with Siemens EcoProp

like system which is a modification of ELFA system used on European Bus Transport System to reduce emission.

1.5 SUMMARY OF PROBLEMS AND SOLUTION

The table 1.4 summarises all the limitations and solutions proposed in above sections.

LIMITATION OF SWATH VS PROPOSED SOLUTION								
S. NO.	ELEMENT	LIMITAION IN SWATH	PROPOSED SOLUTION					
1	RESISTANCE	HIGHER (Frictional Resistance due to large wetted surface area)	Reduction In Wetted Surface Area with Single Stabilised Tube Bow Hull Optimisation					
		urou)	Spray rails at draught line					
2	STABILITY	EXCELLENT	Maintained as excellent using Outriggers With Passive Fin Stabilisers Central Tube With Passive Fin Stabilisers					
			Passive Fin Stabilisers					
3	SEA-KEEPING	PITCH INSTABILITY	Spray Rails					
			Trim Tanks					
	STRUCTURAL DESIGN							
		шенер	Use Of Aluminium					
4	weight and complexity	піспек	Modular Hull					
	Class Rule availability LIMITED		FEM Based Analysis and Optimisation					
	FINANANCIAL ASPECTS							
5	Production/Initial cost	HIGHER	Common Modular Hull Extruded Stiffened Panel					
			Resistance reduction					
	Operational & Maintenance cost	HIGHER	Advanced Hybrid Diesel Electric System					

Table 1.4 Summary of constraints of SWATH and proposed solutions

1.6 THE CONCEPT

Amalgamating all the solutions proposed above, the idea of advanced hybrid diesel electric propelled Common Modular-Small Water-plane Area Single (Stabilised) Hull CM-SWAS(S)H is proposed. The vessels will be designed for different configurations for three hull lengths ranging from 18-24m. The figure 1.1 depicts the concept for easy understanding.

Figure 1.1 The Concept: Common Modular-Small Water-plane Area Single (Stabilised) Hull

As any design process, this concept also required multiple iterations as the design of the vessel evolved. For the purpose of this master thesis work, the problem is divided and defined in sections as displayed in figure 2.1:

- Concept Design of CM-SWAS(S)H based on owners requirement (defined by Market Survey),
- 2. Optimisation of bow for resistance in calm waters,
- 3. Design of Advanced Hybrid AC/DC Diesel Electric System,
- 4. Validation of resistance results by way of towing tank test.

Figure 2.1 Project structure for the proposed concept design

2.1 OWNERS REQUIREMENT

Define the requirements of all the vessel as per general market requirement, this is done based on the data survey of the Port and Wind-farm industry.

2.2 HULL FORM

The basic design of general arrangement and tank plan to accommodate for all of owners requirement.

2.3 STRUCTURAL DESIGN

Based on the general arrangement and operating draught condition design the structure of the vessel. Since there are no Class rules available dedicated to his kind of special ships, a conservative approach is used and the class rules for SWATH vessels form the guidelines.

2.4 RESISTANCE CHECK AND BOW OPTIMISATION

The basic models are created in Rhino 3D and were evaluated for resistance in Maxsurf (Potential Flow) with modeFrontier (MOGA) and FineMARINE (RANSE). Since the major contribution of resistance for this hull is due to frictional component, the results of the final optimised hull were first validated with FineMARINE and then the towing tank test was carried out.

2.5 STABILITY

The design of outriggers, passive fin stabilisers (if needed) and trim tanks to ensure the stability of the vessel. Standard IMO stability criteria using the GZ-Curve is used to confirm the stability, this again is carried out using Maxsurf Stability Enterprise.

2.6 PROPULSION AND MANOEUVRING

The work in this section is based on Class/Owners requirements. While the design is done for high efficiency, the work of this master thesis did not focus on optimisation for maximum efficiency.

2.7 MARINE POWER PLANT

The standard AC diesel electric system was selected based on power requirement and was modified to Advanced Hybrid system with PTO/PTI (power take off/take in) units to accommodate for both AC/DC system.

2.8 TOWING TANK TEST

This involved the preparation of foam/resin/wood based scaled down model to be tested at towing tank to validate the numerical model resistance results of the 18 m hull.

2.9 WORK FLOW

The brief overview of workflow intended for this thesis is explained the figure 2.2:

Figure 2.2 Project work flow chart

The owner's requirement is defined based on the market survey of most common vessel size and requirements. The data collection based on market survey for Port and Wind-farm industry showed that the majority of vessels in operation are in the range of 18-28 m length. It should be noted that most Classification Society Rules for vessels less than equal to 24 m length are different from those with length greater than 24m. As the concept proposes the use of common modular hull, it was finalised that the vessels will be designed for lengths ranging from 18-24 m.

It total seven (7) configurations of vessels with three different types and sizes will be designed in common modular hull form, the details of the same are given in table 3.1.

VESSEL TYPE AND LENGTH COVERED UNDER THE CM-SWAS(S)H CONCEPT							
S. NO.	VESSEL TVDE	NO. OF		L.O.A.	PERSONNEL		
	VESSEL I IFE	VESSELS		(approx.)	(+ CREW)		
1			1	24 m	12 (+3)		
2	WINDFARM SUPPORT (WS)	3	1	21 m	10 (+2)		
3			1	18 m	6 (+2)		
4	PIL OT BOAT (PB)	2	1	21 m	10 (+2)		
5	FILOT BOAT (FB)	2	1	18 m	6 (+2)		
6	CUSTOM / PATROL BOAT	2	1	21 m	10 (+2)		
7	(CPB)	2	1	18 m	6 (+2)		
BASIC OWNERS REQUIREMENTS FOR ALL VESSELS							
S.NO.	ELEMENT	QUA	NTITY/	VESSEL TYPE			
1	Max. Operating Speed		20 Knots		All Vessels		
2	Endurance		48 Hrs		All Vessels		
3	Fresh Water	0.5 m^3			18 m Vessel		
3		1.5 m^3			21 m – 24 m Vessel		
			10 m^2		18 m Vessel		
4	Cargo/Free Deck Area	35 m ²			21 m Vessel		
		60 m^2			24 m Vessel		
5	Winch	0.	5 to 5 T a	t 2m	All Vessel		
6	Saloon/Lawatory/Gallay	To accommodate all		All Vessels			
0	Saloon/Lavatory/Ganey	Personnel and Crew			Accordingly		
7	Cabing	1 - 2 Personnel Cabin			24 m WS Vossal		
/		1 - Captain's Cabin					

Table 3.1 Vessel type and length configuration including basic owner's requirements

3.1 MULTI-HULL DIMENSIONING PRINCIPLE

The standard design process involves data collection for parameters like Length/Beam (L/B), Beam/Draft (B/T) etc. to estimate the initial dimensioning of vessels, since this is a concept

hull and no such data is available, we will be using the Multi-Hull Characteristic parameters as proposed in technical paper title "Multihulls: Some results of development and new technical solutions" by Dubrovsky *Viktor Anatolievich, SaintPetersburg* [1]. The same in comparison with mono-hull are mentioned in table 3.2.

CHARACTERISTIC PARAMETERS AND RATIOS FOR MULTI-HULL						
S. NO.	PARAMETERS	NOTATION	MULTI-HULL	MONO-HULL		
1	Overall Breadth/Length Ratio	B _m /L	0.30 - 1.00	0.10 - 0.20		
2	Hull Depth/Overall Length	D/L	0.10 - 0.25	0.07 - 0.20		
3	Depth/Length Ratio	H/L	0.10 - 0.30	0.07 - 0.10		
4	One Hull Breadth/Draft Ratio	B_1/T	0.50 - 2.50	2.00 - 4.00		
5	One Hull Length/Breadth Ratio	L/B_1	3.00 - 30.00	3.00 - 10.00		

Table 3.2 Typical characteristic parameters for multi-hull vessels

As we intend to design a modular hull, parameters like beam, draft, and depth is kept same for all vessels, while the longitudinal dimensions (outrigger, central tube, deck, LOA etc.) will change for different vessels, it was also necessary to analyse sea-keeping and resistance characteristics of the vessel with change in distance between the outrigger and the central hull.

3.2 BEAM SELECTION – RESISTANCE AND SEA-KEEPING CHARACTERISTICS

In order to use the multihull dimensioning rule it's necessary that we fix some dimensions based on the requirements of the owner. In this case the most important factor is the length of the vessel. Keeping in mind the consideration of good hydrodynamic characteristics it was decided to check the variations based on the change of vessel beam. This will allow us to freeze two dimensions one based on owners requirement and the other based on hydrodynamic properties making it a more practical design. Hence it was decided to check resistance based on beam variation to ensure that there is no generated wave interference between the central and outer hulls. Also as per literature study we know that the sea-keeping characteristics of this type of hulls are excellent, in order to ensure that this property translates into the real design also, we decided to carry out preliminary sea-keeping analysis. When we use the length of the vessels and the multi-hull ratios we get a beam variation from 8.0 m to 11.5 m. Hence the analysis was carried out on this hull beams. These tests were carried out on 24 m hull only as the effect would be maximum on the longest hull.

<u>NOTE</u>: Please note though mentioned in this section, these tests were carried out on the optimised hull.

3.2.1 RESISTANCE ANALYSIS – POTENTIAL FLOW SLENDER BODY

Referring to the results of the resistance analysis in table 3.3, it can be seen that there is very little variation in the resistance by changing the beam and when translated in terms of power

this variation further decreases to a very small value. Considering we are taking only 60% hull efficiency for power calculations this variation in resistance is deemed negligible. Hence based on the deck are requirement it was decided to select the 9.0 m beam.

Figure 3.1 Resistance values for different beam dimensions 24 m hull

Figure 3.2 Power values for different beam dimensions for 24 m Hull

RESISTANCE VARIATION WITH BEAM FOR 24m CM-SWAS(S)H							
SPEED	BEAM (meters) / RESISTANCE (kN)						
(Knots)	8 m	9 m	9.5 m	10 m	10.5 m	11 m	11.5 m
20	129.2	128.2	127.5	126.9	126.3	125.8	125.4
POWER VARIATION WITH BEAM FOR 24m CM-SWAS(S)H							
SPEED	BEAM (meters) / POWER (kW)						
(Knots)	8 m	9 m	9.5 m	10 m	10.5 m	11 m	11.5 m
20	2215.08	2199.01	2186.68	2175.94	2165.20	2157.21	2150.42

Table 3.3 Resistance and power values for different beam dimensions for 24 m hull

3.2.2 SEA-KEEPING – POTENTIAL FLOW 3D RADIATION AND DIFFRACTION

The Sea-keeping analysis again were carried out for the same beam of the vessels, encounter frequency from 0.2 rad/sec to 30 rad/sec. Again the variation were very limited. And the resulting graphs are shown in figure 3.3 and 3.4, for details value please refer to the Annex -4.

Figure 3.3 Pitch RAO for different beam dimensions for 24 m hull (till 3 rad/sec only)

Figure 3.4 Heave RAO for different beam dimensions for 24 m hull (till 3 rad/sec only)

From the RAO results of pitch and heave it can be concluded that the natural period of the vessel at both heave and pitch is at 5.2 secs and in pitch RAO there is a hike of values at 2 different periods and smaller being 5.2 secs (wavelength λ =43m) and larger being more than 30 secs. Since there are really less number of waves with higher periods than 25 secs the larger one is not of our concern.

However, the smaller one lies in the time period of most occurring waves and hence further study on this wave period is required.

It could be seen that at this natural period the phase angle of pitch is just 11 degrees and heave is just 4 degrees which shows that the vessel is almost in phase with the wave so slamming of the vessel is less likely to occur. And also it can be seen that the L_{WL}/λ is equal to 0.5 at natural period, so this hike of pitch is just because it's aligning to the wave. Hence this motion is safe even in natural period.

Also waves of 5.2 secs are more seen near the port region and hence the wave height of such waves is really less as it is near the port region so it won't be much of a big issue. Anyhow as this vessel is meant to work in a sea state of higher wave height and wave period it could be seen from the heave and pitch RAO that the vessel either moves along the wave or else the motion is negligible which make it best suited as an offshore support vessel.

Since it is a potential flow solver and the values of roll RAO are inaccurate without the viscous damping coefficient the results of the same are not discussed but are available the in Annex-4 for review.

3.3 DIMENSIONS AND TECHNICAL SPECIFICATIONS

Based on the Multi-Hull dimensioning principle listed in Table 3.2, results of resistance and sea-keeping characteristics shown in figure 3.4, owners requirement for deck area and facilities, the dimensions were fixed as listed in the Table 3.4.

PRINCIPAL DIMENSIONS OF PROPOSED HULLS							
S. NO.	PARAMETERS	VALUE (m)	S. NO.	PARAMETER	VALUE (m)		
1	LENGTH OVER ALL (LOA) 1	24.0	7	MAX. OUTRIGGER WIDTH	0.50		
2	LENGTH OVER ALL (LOA) 2	21.0	8	MIN. OUTRIGGER WIDTH	0.35		
3	LENGTH OVER ALL (LOA) 3	18.0	9	DESIGN DRAFT (T)	3.2		
4	BEAM AT DESIGN DRAFT(B)	9.00	10	LIGHT SHIP DRAFT (T')	2.1		
5	OVERALL BEAM (B _m)	9.50	11	DEPTH (D)	5.75		
6	FENDER WIDTH	0.25	12	MAX TUBE DIAMETER	2.6		

Table 3.4 Principal dimensions of proposed hulls

Once the dimensions were finalised, the next step was to finalise the complete technical specification and list of facilities for all the vessels.

Note: The final specifications of all the vessels are mentioned in Annex-1.
The preliminary goal of any ship designer is to express the entire specification of the desired vessel graphically in terms of General Arrangement. This section presents the general arrangement drawings of all vessel configuration(s). Prior to starting the general Arrangement the first step(s) are to define the Class Rules/Notation that will be followed, the axis system, frame spacing and position of collision bulkhead.

4.1 CLASSIFICATION RULES AND NOTATION

The vessel will be designed as per the class rules under DNV-GL HSC, 2012 section, as

₩ 100 A5 HSDE RSA (200) "Transfer Vessel" ₩ MC AUT

In DNV -	In DNV - GL rules, the notation above is divided into following representations:			
Ā	The Maltese Cross means Hull, machinery and/or special equipment (e.g. refrigerating installation) have been constructed :under the supervision of and in accordance with the Rules of DNV-GL at the shipyard and/or at subcontractors supplying construction components/hull sections – with certification by DNV-GL of components and materials requiring inspection, subject to the GL Construction Rules As for example, hull, which has been constructed under supervision as stated in 2.3, and for which proof of subdivision and damage stability has been furnished, one of the two markings, shown on the left are assigned.			
100 A5	The ship's hull fully complies with the requirements of the Construction Rules of DNV-GL or other rules considered to be equivalent.			
HSDE	Notation for craft which have been constructed by using elements of Part 3 – Special Craft, Chapter 1 – High Speed Craft and which are not subject to the IMO HSC Code. Details regarding rule application are specified in the Class Certificate.			
RSA (200)	This area of service is restricted, in general, to trade along the coast, provided that the distance to the nearest port of refuge as well as the offshore distance do not exceed 200 nautical miles. This applies also to trade in the North Sea and within enclosed seas, such as the Mediterranean, the Black Sea and waters with similar seaway conditions. Trade to Iceland, Spitsbergen and the Azores is exempted.			
МС	MC means that the machinery including electrical installations complies with the requirements of the Construction Rules of DNV-GL or other rules considered to be equivalent.			
AUT	The machinery installation is fitted with equipment for unattended machinery spaces, so that it does not require to be operated and/ or maintained for periods of at least 24 hours.			

Table 4.1	Description	of class	notation	followed
1 0010 1.1	Description	of class	nonunon	jononea

The operating Froude No. (F_n) for all the vessels were calculated as per the equation below and are mentioned in table 4.2.

$$F_n = \sqrt{\frac{V}{g * L_{WL}}}$$

OPERATING FROUDE NUMBER					
S. No.	VESSEL LENGTH	OPERATING SPEED	$\mathbf{L}_{\mathbf{WL}}$	Fn	
1	18 m	20 knots (10.28 m/sec)	15.5 m	0.834	
2	21 m	20 knots (10.28 m/sec	18.5 m	0.763	
3	24 m	20 knots (10.28 m/sec	21.5 m	0.708	

Table 4.2 Operating Froude number for all hull lengths

4.2 AXIS SYSTEM, FRAME SPACING AND COLLISION BULKHEAD

The section details of the general axis system used and the special considerations that have been made to finalise the frame spacing and collision bulkhead position.

4.2.1 AXIS SYSTEM

The design axis system for all purposes will remain same during the project:

AXIS SYSTEM				
DIRECTION	AXIS	ZERO REFERENCE POINT		
Longitudinal	X-Axis	0 point at Aft Perpendicular Centre Line of Rudder Stock		
Athwart	Y-Axis	0 point at Centre Line along the length of the Vessel (Port Side as Positive and Starboard Side as Negative)		
Vertical	Z-Axis	0 point at Keel of the Vessel		

Table 4.3 Axis system followed for vessel design

4.2.2 FRAME SPACING AND COLLISION BULKHEAD

To initiate the design, a conservative approach is followed to fix the frame spacing. This rule to approximate the frame spacing is taken from GL Rules High Speed Crafts: Yacht and Boats less than 24 m, Part 3, Section 1, Chapter 3, Hull Structure B. Glass Fibre Reinforced Plastic Hulls, 5.8. In practical scenario also, for aluminium hulls the frame spacing is not more than 500 mm. We could have taken any other value (let's say 380-450mm) also, all it will do is change the structural calculation with plate thickness and stiffener size to match the required section modulus based on the calculated bending moment and shear force. As future work we intended to do structural optimisation we took this as a starting reference.

Frame Spacing $(s) = 1.2 * (0.35 + 0.005 * L_{wl})$

And the collision bulkhead should be located at from forward perpendicular (FP) at a minimum length of 5% of length at water line to maximum of 3 m from FP i.e.:

Minimum Distance from $FP = 0.05 * L_{wl}$

Maximum Distance from $FP = (0.05 * L_{wl}) + 3$

Since the hull is modular in design, it is essential that, same frame spacing and position be followed for collision bulkhead. Hence a careful calculation of all hull lengths was carried out to arrive final values. The table 4.4 shows the values for different vessels.

FRAME SPACING & COLLISION BULKHEAD (CB)							
24 m - CM-SWAS(S)H							
S. No.	PARTICULAR	FORMULA	VALUE	UNITS			
1	Frame Spacing	1.2*(0.35+0.005L)	0.534	m			
2	CB Min Dist. From FP	0.05 L	0.950	m			
3	CB Max Dist. From FP	0.05 L +3	3.950	m			
	21 m - CM-SWAS(S)H						
S. No.	PARTICULAR	FORMULA	VALUE	UNITS			
1	Frame Spacing	1.2*(0.35+0.005L)	0.516	m			
2	CB Min Dist. From FP	0.05 L	0.800	m			
3	CB Max Dist. From FP	0.05 L +3	3.800	m			
	18 m	- CM-SWAS(S)H					
S. No.	PARTICULAR	FORMULA	VALUE	UNITS			
1	Frame Spacing	1.2*(0.35+0.005L)	0.498	m			
2	CB Min Dist. From FP	0.05 L	0.800	m			
3	CB Max Dist. From FP	0.05 L +3	3.800	m			

Table 4.4 Frame spacing and position of collision bulkhead for all vessel lengths

Based on the values shown table 4.4 it was finalised that the frame spacing will be based on the smallest i.e. 18 m vessel while the minimum distance of collision bulkhead will be based on the longest i.e. 24 m vessel. The selected values are listed in the table 4.5.

SELECTED FRAME SPACING & COLLISION BULKHEAD POSITION						
S. No.	PARTICULAR	REMARK	VALUE	UNITS		
1	Frame Spacing		0.50	m		
2	CB Dist. From FP	From FP	1.00	m		

Table 4.5 Selected frame spacing and position of collision bulkhead for modular hull

4.3 SPECIAL CONSIDERATIONS

With the basic details finalised, the next step was to list any special arrangements that were to be incorporated in the vessel design. Some of the major special consideration are mentioned here from sub-sections 4.3.1 to 4.3.4:

4.3.1 Embarkation / Disembarkation

The pilot boat and the police/custom patrol boats are provided with one side ladder on both Port and Starboard side while the wind-farm Support Vessel is provided with an additional access point in forward to embark/disembark when the vessel positions itself to the windmill tower.

4.3.2 SINGLE AND TWO TIER SUPER STRUCTURE

All the vessels are designed in such a manner that they can accommodate the modular superstructure, which can either be single tier or two tier, in case of two tier structure the second tier will be completely dedicated as the navigation deck. The two tier system is provided to increase the open deck area to ease the operational movement and in special case as deck cargo area.

4.3.3 SINGLE OR TWO CABIN SYSTEM

The 24 m wind-farm support vessel is provided with an option of additional cabin for crew, this is done to accommodate the special owner's requirement that has been observed as the current trend with wind-farm support vessels

4.3.4 SINGLE ANCHOR OR TWO ANCHOR SYSTEM

As per class rules and calculation it has been found that all the vessels will need only one number anchor (though of different specification as per vessel). But as we will be providing a special access point for wind-farm support vessel in forward end, two anchors (one each port and starboard) of 100% capacity are provided as forward anchors.

4.4 TANK CAPACITIES

Post Engine, Generator and Stability Calculations, the tank capacities were computed based on an endurance of 48 Hours of operation and fully loaded condition of cargo and crew. The same have been mentioned in the table 4.6.

TANK CAPACITIES							
C NO		18 m		21 m		24 m	
5. NO.		P.P.C.	WSV	P.P.C.	WSV	P.P.C.	WSV
1	FUEL OIL (F.O.)	5 t	7 t	9 t	10 t	-	12 t
2	F.O. TRIM TANK	5 t	5 t	5 t	5 t	-	5 t
3	LUBE OIL	1 t	1 t	1.5 t	1.5 t	-	2 t
4	FRESH WATER	1.2 t	1.2 t	1.2 t	1.2 t	-	1.2 t
5	WASTE WATER	0.8 t	0.8 t	0.8 t	0.8 t	-	0.8 t
NOTE : P.P.C. : Pilot, Police/Custom Patrol Boat, WSV : Wind-farm Support Vessel							

Table 4.6 Tank capacities for all vessel configurations

Figure 4.1 Tank Plan of 18m vessel to illustrate the arrangement of trim tanks

"EMSHIP" Erasmus Mundus Master Course, period of study September 2014 - February 2016

Figure 4.2 Tank plan for all three hulls, for detailed plan refer Annex – 1

Figure 4.3 Lines plan for 24 m CM - SWAS(S)H, for detailed plan refer Annex – 1

iR. Akula Nidarshan

NOTE - To view the technical specifications of each of the vessels please refer the General Specification ANNEX - 1

Figure 4.4 General arrangement plan for 6 different vessels, for detailed plan refer Annex – 1

Master Thesis developed at West Pomeranian University of Technology, Szczecin

In Chapter 4, mentions the class notation and the details of the rules that will be followed, it should be noted that based on study of multiple Classification Societies member of IACS it was found that there are no specific rules for special hull forms like CM-SWAS(S)H. Hence is was decided to use a conservative approach and use the class rules for SWATH and Trimaran Hulls as applicable. Since as future work we intend to carry out FEM based structural optimisation, the effects of this conservative approach will be nullified.

To limit the structural weight of the vessel to be as minimum as possible it was decided to use aluminium alloy for both main hull and superstructure. Furthermore to have even lesser weight it was decided to use *Aluminium alloy 5083*, *H116*, this is due to the fact that as per DNV-GL Class rules for Special Ships-High Speed Crafts 2012, Chapter 1, Part 3, Section 3, Table C3.2.1 with an un-welded yield strength of H116 is 215 MPa as compared to 125 MPa for H111 for the same weight. For detailed properties of welded/un-welded yield and tensile strength refer to Annex-2. Considering the high beam to length (B/L) ration and the fact that for multi-hulls the transverse loads play dominant role. It was decided to use a mixed framing system in place of convention longitudinal or transverse framing system.

5.1 CONCEPT OF MODULARITY

The structural design involves the study of two levels of modularity one for the modularity of hull and the other for modularity of raw material in terms of stiffened panels. Both aspects have been explained below.

5.1.1 COMMON MODULAR HULLS

Employing the logic of Parallel Middle Body (PMB), used in mono hulls we designed the hull is such a manner that middle body of the vessel remains the same for 3m length in 18m LOA vessel and is termed as module. Thus when designing the 21m and 24 m LOA vessel we add one or two modules of this 3m length to the hull respectively. The concept image can be seen in the figure 5.1:

Figure 5.1 The concept of modular hull

5.1.2 MOULDED STIFFENED PANELS OF ALUMINIUM

We try to emphasise the use of extruded stiffened panels, as these panels are available in size of 6m x 6m (source : *Abeking & Rasmussen Schiffs- und Yachtwerft Aktiengesellschaft*) that can be easily used for any vessel size. The cost of welding is reduced as these are extruded panels which are then stir welded to form blocks. In addition since the stiffeners are part of the extruded plates the initial residuary stress induced due to welding is also minimised. This not only increases the strength of stiffened panel but also reduces the building time and cost. Since we have proposed the use of modular hull these moulded stiffened panel further ease the production for all vessel sizes.

The sample images of this kind of stiffener plans is provided in figure 5.2. It should be noted that these specimen images are from the samples available at University of Liege (ULg) Laboratory provided courtesy of *Abeking & Rasmussen Schiffs- und Yachtwerft Aktiengesellschaft (A&R)* for academic research purposes.

Figure 5.2 Sample images of moulded stiffened panels Source: Abeking & Rasmussen Schiffs- und Yachtwerft Aktiengesellschaft (A&R)

5.1.3 MODULARITY EFFECT OF STRUCTURAL DESIGN

The major concern with a modular hull is the structural design and its continuity for all hull shapes and sizes. Hence we decided to design all the vessels with same structure i.e. we carry out structural calculation for the longest 24m LOA hull as it will be under the maximum expected load and use this hull for all the vessel lengths by removing sections of blocks of 3m length. As we have already arrived at a stiffener spacing of 500mm (refer Table 4.5), to achieve modularity it was very important to make sure that the ordinary frames, strong frames and water-tight bulkheads are placed at distance that are multiples of both 0.5 m, 1.5m and 3.0 m respectively. Based on these limiting constrains the structural calculation as per class rules was carried out.

5.2 STRUCTURAL CALCULATION

As the first step of any calculation it was required to check the use and applicability of the rules. Since we have decided to use the Special Ships-High Speed Crafts rule, as per Classification Rules DNV-GL, Chapter 1, Section 3, Structural details the applicability condition is given as

Vessel Velocity (V), knots $\geq 7.16 * Displacement (\Delta)^{\frac{1}{6}}$

5.2.1 LOAD CALCULATION

In following section(s) we will discuss the consideration and most important equations that are used for the purpose of structural calculation. Based on these equations, the detailed calculation were carried out on spread sheets and the same (including the abbreviations) can be referred in Annex-2.

Material Factor
$$(k) = \frac{100}{R_{p0.2}}$$

Vertical Acceleration at LCG $(a_{CG}) = c_{HSC} * c_{RW} * \frac{V}{\sqrt{L}}$

Longitudinal Distribution of Vertical Acceleration $(a_V) = k_V * a_{CG}$

Transverse Acceleration
$$(a_t) = 2.5 * \frac{H_s}{L} * \left(1 + 5 * \left(1 + \frac{V_X}{6 * \sqrt{L}}\right)^2 * \frac{r}{L}\right)$$

Limisting Significant Wave Height
$$(H_{sm}) = 5 * \frac{a_{CG}}{V} * \frac{L^{1.5}}{6 + 0.14 * L^{1.5}}$$

Due the limitation imposed by vertical acceleration at LCG and based on vessels geometry, the significant wave height is then calculated as:

$$H_{s} = \frac{10.9 * a_{CG} * K_{cat} * K_{H}}{{K_{F}}^{2}}$$

As stated earlier one of the major advantages of small water plane are design is reduced or very limited heave motion of vessel due to wave action, which also plays important role while calculating for section C 3.3.3.4 Limitation imposed by global loads. As per sub-section C 3.3.3.4.3 For SWATH craft, the global loads as given in C3.4.3 are not depending on ship motions. Refer figure 5.3 for load notations.

Beam Side force
$$(F_Q) = 12.5 * T * \Delta^{\frac{2}{3}} * d * L_s$$

$$d = 1.55 - 0.75 * \tanh\left(\frac{\Delta}{11000}\right)$$

$$L_S = 2.99 * \tanh(\lambda) - 0.725$$

$$\lambda = \frac{0.137 * A_{lat}}{T * \Delta^{\frac{1}{3}}}$$

Figure 5.3 Beam loads and bending moment principle of SWATH Vessel, Source: DNV-GL Rules

Lateral Pressure
$$(P_Q) = \frac{F_Q}{A_{lat}}$$

Bending Moment $(M_Q) = h_m * F_Q$

Impact Pressure on Bottom Hull $(p_{sl}) = 100 * T * K_1 * K_2 * K_3 * a_{CG}$

Impact Pressure on Wet Deck
$$(p_{sl}) = 3 * K_2 * K_3 * K_{WD} * V_X * V_{sl} * \left(1 - 0.85 * \frac{H_A}{H_s}\right)$$

Sea Pressure on Bottom and Side Shell $(p_s) = 10 * \left(T_0 + 0.75 * S - \left(1 - 0.25 * \frac{S}{T}\right) * z\right)$

Sea Pressure on Deck House
$$(p_s) = K_{su} * \left(1 + \frac{x_1}{2 * L * C_B} + 0.1\right) * (1 + 0.045 * L - 0.38 * z_1)$$

Pressure acting on Deck $(p_d) = p * (1 + 0.4 * a_v)$

5.2.2 OVERALL STRENGTH AND PLATING

After calculating the pressure and load acting, the next step is to calculate overall strength of the structure by calculating the longitudinal bending strength and the plate thickness based on the bending strength:

Longitudinal Stress
$$(\sigma_{bl}) = \left| \frac{M_{bl}}{I_y} * (z - z_0) * 10^{-3} \right|$$

Plating Thickness (t) = 22.4 *
$$\mu$$
 * s * $\sqrt{\frac{P}{\sigma_{am}}}$

5.2.3 OVERALL STRENGTH AND ORDINARY STIFFENERS

To calculate the stiffener scantling we must calculate the section modulus and the shear area as per the following equations. These equations are then used for different section to evaluate the scantling at each section:

Section Modulus (Z) =
$$1000 * \frac{l^2 * s * p}{m * \sigma_{am}}$$

Shear Area
$$(A_t) = 5 * \frac{l * s * p}{\tau_{am}}$$

5.2.4 PRIMARY SUPPORTING MEMBERS

The primary supporting members (floors, frames, beams) are to form continuous transverse frames. In general, the stiffened frame spacing is not to exceed:

$$S = 1200 + 10 * L$$

Section Modulus (Z) =
$$1000 * \frac{S^2 * b * p}{m * \sigma_{am}}$$

Shear Area
$$(A_t) = 5 * \frac{S * b * p}{\tau_{am}}$$

5.2.5 BULKHEAD STRUCTURE

The proof of buckling strength of longitudinal and transverse bulkhead structures is carried out as per the same guidelines as stated earlier for ordinary and primary members, with the distinction of plating thickness which is given by:

Bulkhead Plating Thickness (t) = 22.4 *
$$f_m * \mu * s * \sqrt{\frac{p_{sb}}{\sigma_{am}}}$$

5.3 STRUCTURAL DETAILS

The most critical step of structural design is selecting the right scantling, here it should be noted that different sizes and shapes of scantling can provide based on the required strength as calculated from the equation and rules stated above, but we have to arrive at a scantling that eases the production and at the same time provides minimum lightship weight. In order to arrive at right shape and size have divided the hull structure into four segments and for each segment the scantlings have been selected accordingly. The segments are divided as below:

- 1. Central tube,
- 2. Central strut,
- 3. Outrigger,
- 4. Deck,
- 5. Superstructure,
- 6. Bulkheads.

In this sub-section(s) we will discuss the required scantlings and any special consideration(s) that have been taken into account for final selection.

3

5.3.1 CENTRAL TUBE

The tube is treated as the bottom shell, provided with one central bottom girder and to side girders, one both Starboard and Port side each. The transverse frames are divided into two elements, one at strong frames of 1.5m apart and one at each ordinary frame at 0.5m. While the entire tube is not provided with double bottom, at intermittent section, there are double bottom tanks provided for bilge and waste water tanks.

DETAILS OF CENTRAL TUBE SCANTLINGS					
S. NO.	ELEMENT	SCANTLING	SCANTLING PROVIDED		
		REQUIRED	VALUES	SHAPE AND SIZE	
1	Outer Plate Thickness	6.258 mm	8 mm	-	
2	DB Plate Thickness	6.258 mm	8 mm	-	
3	Bow Plate Thickness	6.524 mm	8 mm	-	
4	Central Girder	53.309 cm^3	249.63 cm^3	T 300x10 + 40x10	
5	Side Girder	53.309 cm^3	249.63 cm^3	T 300x10 + 40x10	

The details of required and selected scantlings are provided in the table 5.1.

Table 5.1 Details of central tube scantlings

5.3.2 CENTRAL STRUT

The scantling selection for central strut is done using the side shell criteria. The structure is predominantly supported by transverse frames with longitudinal at each side spaced at 0.5m each. The details of required and selected scantlings are provided in the table 5.2.

DETAILS OF CENTRAL STRUT SCANTLINGS					
S NO	EI EMENT	SCANTLING	SCANTLING PROVIDED		
5. NO.		REQUIRED	VALUES	SHAPE AND SIZE	
1	Plate Thickness	2.173 mm	4 mm	-	
2	Longitudinal Member	6.429 cm^3	13.51 cm^3	T 40x10 + 40x10	
3	Transverse Frame	130.4 cm^3	140.84 cm^3	T 200x10 + 40x10	

Table 5.2 Details of central strut scantlings

5.3.3 OUTRIGGERS

The outriggers are considered as outer hulls of a Triamaran and provided with mixed transverse and longitudinal members. To ease the welding/production instead of profiles (T, L, Bulb etc.), the transverse members are provided as plates with perforation holes to reduce the weight while ensuring the required strength.

DETAILS OF OUTRIGGER SCANTLINGS						
S NO	FIFMENT	SCANTLING	SCANTLING PROVIDED			
5.110.		REQUIRED	VALUES	SHAPE AND SIZE		
1	Plate Thickness	2.173 mm	4 mm	-		
2	Longitudinal Member	6.429 cm^3	13.51 cm^3	T 40x10 + 40x10		
3	Transverse Member	130.4 cm^3	140.84 cm^3	T 200x10 + 40x10		

The details of required and selected scantlings are provided in the table 5.3.

Table 5.3 Details of outrigger scantlings

5.3.4 DECK

The lower deck and upper deck calculations were based on the weather deck criteria with cargo loading. The lower and upper deck were provided with similar scantlings as per the rule requirements.

The details of required and selected scantlings are provided in the table 5.4.

DETAILS OF DECK SCANTLINGS						
S NO	ELEMENT	SCANTLING	SCANTLING PROVIDED			
5. NU.		REQUIRED	VALUES	SHAPE AND SIZE		
1	Upper Deck Plate	3.816 mm	8 mm	-		
2	Lower Deck Plate	3.816 mm	8 mm	-		
3	Longitudinal Member	19.822 cm^3	37.90 cm^3	T 80x10 + 40x10		
4	Transverse Member	158.9 cm^3	205.51 cm^3	T 200x10 + 80x10		

Table 5.4 Details of deck scantlings

5.3.5 Superstructure

The single structural calculation based on single deck system is done and the scantling is provided accordingly. It can be seen from the table 5.5 that the required thickness for the

the two deck system of modularity.

 DETAILS OF SUPERSTRUCTURE SCANTLINGS

 SCANTLING

superstructure is taken 0.4 mm higher than the required, this is done taking into consideration

DETAILS OF SUPERSTRUCTURE SCANTLINGS					
S NO	ELEMENT	SCANTLING	SCANTLING PROVIDED		
S. NO. ELEWIEN I		REQUIRED	VALUES	SHAPE AND SIZE	
1	Plate Thickness	5.646 mm	6 mm	-	
2	Longitudinal Member	4.821 cm^3	15.19 cm^3	T 40x10 + 40x10	
3	Transverse Member	142.4 cm^3	189.98 cm^3	T 200x10 + 80x10	

Table 5.5 Details of superstructure scantlings

5.3.6 BULKHEADS

The vessel is provided with one collision bulkhead, and 3/4/5 engine room bulkheads, depending upon the length of the vessel. Since we are using mixed framing, which is predominantly transverse, the thickness of these bulkhead is taken slightly higher than the rule requirement, this also helps us in minimizing the longitudinal scantlings.

The details of required and selected scantlings are provided in the table 5.6.

DETAILS OF BULKHEAD SCANTLINGS					
S NO	ELEMENT	SCANTLING	SCANTLING PROVIDED		
5. NU.		REQUIRED	VALUES	SHAPE AND SIZE	
1	Collision Bulkhead Plate	4.685 mm	6 mm	-	
2	Other Bulkhead Plate	4.062 mm	6 mm	-	

Table 5.6 Details of bulkhead scantlings

It should be noted, though in most ship designs it's a practice to use bulb profiles at stiffening elements, we have used T- bars as we have proposed the use of rolled stiffened panels of aluminium and it had been indicated that these rolled panels of 6m x 6m are produced best with T-bars to have minimum defects.

Based on the design, we first created the preliminary two dimensional structure which can be referred in the structural plan. Though FEM based structural optimisation is not carried out as part of this master thesis, a detailed structural model was designed, that can be later used for structural analysis and optimisation the structural elements, the same can be referred in figure 5.4 to figure 5.8.

21 m

 DISPL. (t)
 99.76 (t)
 DISPL. (t)
 77.56 (t)

 LCG (m)
 9.50 (m)
 LCG (m)
 8.90 (m)

 VCG (m)
 2.00 (m)
 VCG (m)
 2.75 (m)

 TCG (m)
 0.00 (m)
 TCG (m)
 0.00 (m)

LIGHT SHIP

18 m					
LOADI	ED SHIP	LIGHT SHIP			
DISPL. (t)	79.34 (t)	DISPL. (t)	63.97 (t)		
LCG (m)	8.10 (m)	LCG (m)	7.50 (m)		
VCG (m)	2.10 (m)	VCG (m)	2.60 (m)		
TCG (m)	0.00 (m)	TCG (m)	0.00 (m)		

MIXED FRAMING SYSTEM

FRAME SPACING : 500 mm

STRONG FRAME : 1500 mm

LOADED SHIP

24 m						
LOADI	ED SHIP	LIGHT SHIP				
DISPL. (t)	118.6 (t)	DISPL. (t)	93.39 (t)			
LCG (m)	11.50 (m)	LCG (m)	11.0 (m)			
VCG (m)	1.85 (m)	VCG (m)	2.95 (m)			
TCG (m)	0.00 (m)	TCG (m)	0.00 (m)			

Figure 5.4 Common Modular structure plan for 24 m CM-SWAS(S)H, for detailed plan refer Annex – 2

Figure 5.5 General hull overview with superstructure

Figure 5.6 Structural design forward view detailing the stiffened panels

Figure 5.7 Structural design aft view detailing the stiffened panels

Figure 5.8 Bottom - 3D Illustration of structural model Red - Strong Frames, Blue - Water Tight Bulkheads

Figure 5.9 Top - 3D Illustration of structural model Red - Strong Frames, Blue - Water Tight Bulkheads

Safety based design is one aspect, in addition we have to ensure the practicality of design and its implementation. Hence it becomes essential that we employ certain measures that can increase the practical feasibility of design, as discussed in earlier chapters high resistance offered by this design leads to high fuel consumption and higher emission.

Today, European maritime industry faces a problem that is to achieve environmental protection during the economic slowdown. Thus, it requires an integrated solution of multidimensional nature. The idea is to provide a ship design that not only reduces emissions but at the same time provides a practical solution that can be implemented in current volatile market.

In accordance to UNFCCC Copenhagen 2009, all EU nations have pledged to reduce the CO₂ emissions to a tune of 30% by 2020 and 40% by 2030, *excluding offsets*. To solve this, the first thought that comes to mind is use of LNG as operating fuel. This presents us with two constraints:

- 1. While LNG, the Green Fuel of future does solve the problem of SO_X and NO_X, its ability to reduce greenhouse gasses like CO₂ is limited to 20-25% as compared to MDO,
- 2. In addition, at this point installation of LNG power plant on small vessels like Harbour and Wind-farm support vessels is limited due to large size of installation.

Hence we evaluate all the possible methods that can help us reduce fuel oil consumption. The figure 6.1 shows in a broad spectrum the methods of reducing fuel oil consumption.

Figure 6.1 Method of fuel reduction by drag reduction, Source: Marine Insight, July, 2012

The design process involves some of the aspects of all four elements. To reduce drag we will use a modern hull with hull form optimisation. The operation and propulsion parameters will be controlled by power plant design for high efficiency and low maintenance. While the lightship weight will be controlled by structural optimisation.

This chapter will focus on the hull form optimisation of the SWAS(S)H design keeping in mind the modularity constraints. The figure 6.2 illustrates the steps to be followed to achieve the hull form optimisation:

Figure 6.2 Flow chart for hull form optimisation for calm water resistance

6.1 INTRODUCTION TO BASE HULL

The base hull, here on referred as Chica-Caliente is an SWAS(S)H vessel design from the collaborative work as part of Ship Design Project EMship at University of Liege (ULg) by Akula Nidarshan, Martin P.W. & Xu Cheng, 2014.

The vessel was designed as a Pilot vessel of 15.5 m to operate at max service speed of 25 knots. The figure 6.3 and 6.4 depict the general arrangement and tank plan of the original vessel.

Figure 6.3 Longitudinal plan of Chica-Caliente

Figure 6.4 Deck plan of Chica-Caliente

The design presented itself with many errors in stability and resistance prediction by potential flow method. As part of this thesis work, the first step was to rectify the potential flow error and the general arrangement. It was then decided to increase the minimum length of the vessel to 18 m. Hence while doing the analysis, first using the hull form of Chica-Caliente base hulls were designed for 18, 21 and 24 m length. In this thesis these new base hulls will be referred Chica-Caliente.

as of optimisation, the model setup plays a critical role as it not only depends on the accuracy and robustness but also the compatibility between the tools to be used and the time for results convergence based on the support (hardware/software) at hand.

6.2 SELECTION OF OPTIMISATION ENVIRONMENT

As the first step of optimisation, the model setup plays a critical role as it not only depends on the accuracy and robustness but also the compatibility between the tools to be used and the time for results convergence based on the support (hardware/software) at hand.

Based on the practical work carried out in the past, we have selected specific models and methods based on the software availability.

6.2.1 MODELLING

As part of optimisation it was necessary to use a tool with ability to modify the model parameters automatically using inputs from an optimisation process. There are basically two major types of modelling approaches

- 1. Parameter Free Topology optimisation and Adjoint Simulation
- 2. Parameter Based Partially Parametric and Fully Parametric

The parameter free modelling is mostly limited to concept and fine tuning stages of design. While more time consuming parametric modelling provides good results from initial to final design stage. Furthermore we selected fully parametric modelling as it provides for high quality CAD geometry and allows for both local and global changes in modelling.

6.2.2 RESISTANCE OPTIMISATION

As we intended to optimise only the central hull for a limited length of bow it was decided to use potential flow code, using a slender body method. Maxsurf Resistance Module was selected as the desired tool as it has been auto-calibrated for both Small Water-plane area and Trimaran hulls. This gave us the advantage of running faster simulation and avoiding initial convergence test for panel mesh.

6.2.3 Optimisation Algorithm

Considering the multi-objective nature of optimisation we could only had two options either to go for Weighted Simplex or Multi objective genetic algorithm (MOGA). From the practical experience at Ecole Centrale de Nantes (ECN), we had already established that while weighted simplex has faster convergence, MOGA presents much higher robustness and accuracy. And as we had already selected a potential flow optimisation approach higher time of computation over MOGA was an acceptable approach. modeFrontier with auto DOE (design of experiment) was selected the working tool.

6.2.4 MATHEMATICAL VALIDATION

As we know that the design has higher resistance due to large wetted surface area and thus the viscous drag, something that is considered constant in potential flow and is extrapolated using ITTC formula. Hence it we decided that before validating the results with towing tank test a RANS based mathematical validation was an appropriate approach. There are two main models that are employed industry wide for RANS analysis:

- 1. k-epsilon,
- 2. k-omega-SST.

While both provide acceptable results, we chose k-omega-SST based on the results obtained from practical work carried out at ECN as part of EMship.

DETAILS OF SOFTWARE AND MODELS USED					
S. NO.	SOFTWARE	METHOD/LOGIC	MODEL		
1	Rhino3dM Modelling + Grasshopper Plug-in	Parameter Based	Fully Parametric		
2	Maxsurf (Panel Method)	Potential Flow	Slender Body		
3	modeFrontier	MOGA	Automated DOE		
2	Fine Marine	RANSE	k-Omega SST		

Table 6.1 Details of resistance optimisation software and model used.

6.3 CONSTRAINT DEFINITION

Once the optimisation environment and the preliminary modelling is finished, we define the constraints that are going to limit the optimisation algorithm, some of these constrains also act as the desired optimisation outputs. While the objective of the thesis is to minimise resistance at 20 knots speed, it should be noted that harbour support vessels also operate at lower speed of around 5knots, hence an additional optimisation constraint of resistance at 5knots was introduced into the environment. Here we need to take a note that since we are going to design three different vessels, constraints for all three need to be considered. Based on the general arrangements and structural calculation we know the principal dimensions, lightship weight, stability and sea-keeping characteristics for all three vessels. The same under consideration are mentioned in table 6.2.

OPTIMISATION CONSTRAINTS						
S. NO.	PARAMENTER	LOA - 18 m	LOA - 21 m	LOA - 24 m		
1	Resistance at Speed (Operating)	21.875 knots	21.875 knots	21.875 knots		
2	Resistance at Speed (Low Op.)	5 knots	5 knots	5 knots		
3	Constant Overall Length	18 m	21 m	24 m		
4	Constant Waterline length	13	16	19		
5	Minimum Displacement (m ³)	78	95	114		
6	Minimum Value of LCG	Not considered	Not considered	Not considered		
7	GM _{min} greater than	Not considered	Not considered	Not considered		
8	Min. Tube Diameter at ER	2.6	2.6	2.6		
9	Min. Tube Diameter at Bow	2.1	2.1	2.1		
10	Maximum Bow length	6.7	8.2	9.7		
11	Constant Tube Length	15.5	18.5	21.5		

Table 6.2 Optimisation constraints for all three vessels

While it can be seen that the optimisation constraints and objective combined for all three vessels represent a total of 33. But if we pay close attention we can see that we should be taking into consideration the modularity of vessels that is some variables, like diameters of tube, length and displacement can be regulated/eliminated by carefully defining the optimisation logic code. Hence we used a simpler approach, that is we will only optimise one hull form and the constraints that are applicable to other two vessels will be considered in the form of relative equations. As the wetted surface are of 24m vessel will be the largest we will be optimising only the 24m hull and will represent the respective values of 21m and 18m hull as equation.

6.3.1 STABILITY

We know from the basic theory that Trimaran hulls provide greater stability characteristics and as we will be optimising only the bow part of the central tube, it was decided that instead of considering/ testing stability of each optimised model as part of the environment we will test the stability of only the models that from the part of the pareto frontier. In case the stability of the vessel requires improvement we will modify the trim tanks and distribution of other tanks to achieve the desired objective.

6.3.2 LENGTHS – LOA, LWL, OVERALL TUBE LENGTH AND BOW LENGTH

Considering the modularity we know that the difference in length of the three vessel is increment of 3m, hence instead of considering all three vessels at the same time we can simply use the difference in lengths and consider only one vessel.

6.3.3 DISPLACEMENT

The length variables are easier to eliminate as the single numerical value. While the displacement of the vessels depends lightship weight and the endurance which further control the tank capacities. Hence it was decided to add a term called displacement module.

A *displacement module* represents set underwater volume of length Xm which when removed from 24m hull will affect the bow length of 21m vessel by Xm and will still be able to provide the desired displacement for 21m vessel. The same will be done for the 18m vessel with 24m vessel by removing two such displacement modules.

Logic of displacement module, considering that Δ_1 , Δ_2 and Δ_3 represent minimum displacement required for vessel of LOA 24m, 21m and 18m respectively and let Δ_{dm} be the displacement of displacement module of length Xm. We then eliminate the displacement constraint as:

$$\Delta_2 \ge \Delta_1 - \Delta_{dm}$$
$$\Delta_3 \ge \Delta_1 - 2 * \Delta_{dm}$$

When know from the initial weight estimation that

$$\Delta_2 = 95 m^3$$
$$\Delta_3 = 79 m^3$$

Thus the conditions above can be represented as

$$\Delta_1 = \Delta_3 + 2 * \Delta_{dm}$$

and

$$\Delta_1 = \Delta_2 + \Delta_{dm}$$

As we know the values of Δ_1 , Δ_2 and Δ_3 from the two equation above we can calculate the minimum value of Δ_{dm} and the length X for displacement module.

The figure 6.5 depicts the concept of displacement module:

Figure 6.5 Displacement Module of 3m

SELECTED OPTIMISATION OBJECTIVE AND CONSTRAINTS					
S. NO.	PARAMENTER	LOA - 24 m			
1	Resistance at Speed (Operating)	21.875 knots			
2	Resistance at Speed (Low Op.)	5 knots			
3	Constant Overall Length	24 m			
4	Constant Waterline length	19 m			
5	Minimum Displacement (m ³)	118 tonne			
6	Min. Tube Diameter at ER	2.6 m			
7	Min. Tube Diameter at Bow	2.1 m			
8	Maximum Bow length	9.7			
9	Constant Tube Length	21.5 m			
10	Length of displacement module	3 m			
11	Volume of displacement module	20 tonne			

Implementing all the factors we can then define the new constraints as:

Table 6.3 Details of selected optimisation objectives and constraints

6.4 FORM FACTOR FOR POTENTIAL FLOW

We intend to use Maxsurf Resistance package as the resistance calculation program, which uses a potential flow logic with slender body method, this is based on the work of Tuck et al. and Couser et al. and we can only estimate the wave making resistance of the vessel. Using this data we need to extrapolate the viscous resistance via ITTC 78 formula with for factor (1+k). While we have Hultrop and Molland formula for mono-hull and catamaran respectively, there is no empirical formula to evaluate the form factor for Trimaran Hulls. In such condition the best way to find the form factor is using the towing tank model test, which is this case in not a viable option as it will require us to carry out multiple towing tank tests.

According to the paper titled "*Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran by K.A. Hafez, A.A. El-Kot*"[4] in cases like this we can evaluate the calm water viscous resistance of the noninterfered trimaran hulls by calculating the form effect applied to the calm water friction resistance of the individual hulls, and then use the following equations:

$$C_{f-tri} = \frac{1}{A_{S-tri}} * \left[A_{S-Tube} * C_{f-tube} + 2 * A_{S-out} * C_{f-out} \right]$$

Where,

$$C_{f-tube} = \frac{0.075}{(log_{10}R_{e-tube} - 2)^2}$$

$$C_{f-out} = \frac{0.075}{(log_{10}R_{e-out} - 2)^2}$$

and

Wetted Surface area of Trimaran =
$$A_{S-tri} = A_{S-tube} + 2 * A_{S-out}$$

Then to modify this formula to implement the effect of form factor, we treat the tube and outriggers as mono-hull and use Hultrop equation for form factor to calculate the coefficient of viscous resistance using the modified formula below:

$$C_{V-tri} = \frac{1}{A_{S-tri}} * [A_{S-Tube} * C_{V-tube} + 2 * A_{S-out} * C_{V-out}]$$

$$C_{V-tri} = \frac{1}{A_{S-tri}} * \left[A_{S-Tube} * (1+k)_{tube} * C_{f-tube} + 2 * A_{S-out} * (1+k)_{out} * C_{f-out} \right]$$

The coefficient potential flow wave making resistance is given by:

$$C_{W-tri} = \frac{1}{A_{S-tri}} * [A_{S-Tube} * C_{W-tube} + 2 * A_{S-out} * C_{W-out}]$$

The coefficient of residuary resistance is given as:

$$C_{R-tri} = C_{W-tri} + \frac{1}{A_{S-tri}} * \left[A_{S-Tube} * k_{tube} * C_{f-tube} + 2 * A_{S-out} * k_{out} * C_{f-out} \right]$$

And the sum of the calm water total resistance coefficients of the non-interfered trimaran hulls is calculated using the equation:

$$C_{T-tri} = \frac{1}{A_{S-tri}} * [A_{S-Tube} * C_{T-tube} + 2 * A_{S-out} * C_{T-out}]$$

Furthermore the resistance can be calculated as:

$$R_{T-tri} = \frac{1}{2} * \rho * A_{S-tri} * U^2$$

6.5 POTENTIAL FLOW OPTIMISATION AND PARETO FRONTIER

To setup a potential flow optimisation environment, we have to form a bridge between Rhino3D for parametric modelling, Maxsurf Resistance for resistance, power and displacement analysis, modeFrontier for optimisation algorithm.

6.5.1 PARAMETRIC MODELLING

Rhino3DM in itself is just a modelling tool, to enable parametric modelling we added as extra plugin Grasshopper, an open source plugin that allows us to enter mathematical equations that modify the central tube boundary.

While setting up equations it was decided to use a *symmetry approach*, i.e. the central tube will be symmetrical about the buttock plane at the centre line of the vessel, waterline plane at 1.3m above the zero point and any division along the plane that passes through the intersection of the earlier mentioned buttock and waterline plane. This is done to ensure continuity for modular hulls. In addition this enables us to modify only one boundary of the tube, which when revolved about longitudinal axis passing through Y = 0 and Z = 1.3m will result in central tube formation. The constraint definition had provided us with length of engine room and the maximum length of the bow we will optimise. The length of bow for 24m vessel is 9.7m, which was divided into two equations of ellipse.

The modification algorithm for the two sections is given as:

For $21.5m \ge X_a \ge 17.0m$, the conditions and equations are

Section one denoted by a suffix "a",

At $X_a = 21.5m$,

 $Z_a = 1.3m$

Length of Forward bow section $(a_a) = 4.5m$

 $Z_a \ge 1.3m$

for

$$X_{a2} \ge X_{a1}$$
, always $Z_{a2} \ge Z_{a1}$.

$$Z_a = \sqrt{\left(1 - \frac{X_a^2}{a_a^2}\right) * b_a^2}$$

For $17m \ge X_b \ge 11.8m$, the conditions and equations are Section two denoted by a suffix "b",

At $X_b = 17m$

 $Z_b = Z_a$

At $X_b = 11.8m$

$$Z_{b} = 2.6m$$

Length of Aft bow section $(a_b) = 5.2m$

For

$$X_{b2} \ge X_{b1}$$
, always $Z_{b2} \ge Z_{b1}$.

$$Z_b = \sqrt{\left(1 - \frac{X_b^2}{a_b^2}\right) * b_b^2}$$

When entered in modeFrontier environment for section "a", b_a will be DOE and will vary from 1.3m to 2.6m and the same way for section "b", b_b will be DOE and will vary from Z_a at 17m to 2.6m. These values thus imported to Rhino3DM Grasshopper for hull form modification. The exact logic of optimisation can be found in the figure 6.6 indicating the concept of the equations.

Figure 6.6 Concept of optimisation equations for central tube by symmetry approach

6.5.2 RESISTANCE ANALYSIS

Maxsurf Resistance Module is used to evaluate the resistance using the slender body method, which is a potential flow technique. The advantage of using Maxsurf is that the solver is precalibrated auto mesh system for both small water plane area and trimaran hull so we don't have check for mesh convergence and has the ability to directly import Rhino3DM model but at the same time the biggest constraint is integration with modeFrontier.

Again from the paper titled "Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran by K.A. Hafez, A.A. El-Kot" [4] we was

learned about the best possible tools to integrate Maxsurf results. The excerpt for this paper is mentioned below for ready reference.

"Maxsurf CAD package and its downstream analysis modules provide direct automation support that allows the interested user to create, modify and 50analyse many design models over a minimum time span. None of the Maxsurf modules but include an embedded environment to write or record macros, but they accept their interface via the conventional programming languages, e.g., Visual $C++^{\circ}$, Visual Basic^{\circ}, Visual FORTRAN^{\circ}, Java^{\circ}, or Microsoft Windows Scripting^{\circ}, Host^{\circ}, etc. Also, all Maxsurf modules have the ability to interface spreadsheet applications like Microsoft Office^{\circ}, other CAD systems like Autodesk AutoCAD^{\circ}, and other graphing systems like SigmaPlot^{\circ}, to either get more design details or to get more visualization quality."

Based on the above stated approach we selected Visual Basic[©] and Microsoft Office Excel[©] to right a proprietary code that automatically imports the model from Rhino3DM, and runs the analysis. The results of the analysis are then plotted using spread sheet and exported to modeFrontier for output of resistance and displacement for generating the pareto frontier.

6.5.3 Optimisation Environment And Results

As stated earlier the environmental setup requires us to add special Visual Basic Patches to form interface between different modellers and solvers. A simple schematic of the plan is shown in the figure 6.7.

Figure 6.7 Optimisation environment and interfacing data flow

For detailed plan and process of modeFrontiner setup kindly refer to Annex-3. It should be noted that some parts of this Annexure are from Optimisation Lab Work of Akula Nidarshan and Nikhil Mathew as part of Ecole Centrale de Nantes (ECN) EMship studies.

Once the convergence was achieved for global minima of resistance, the pareto frontier was plotted using MS Excel and the final design with least resistance was selected for further analysis. The figure 6.8 shows the pareto frontier resulted:

Figure 6.8 Extracted Pareto frontier showing selected variant in red dot

Though the model is optimised for two different operating speeds, considering the fact that the vessels will majorly operate at speed of 20 knots, we selected the model with least resistance at 21.875 knots this speed. The detailed values of Pareto Frontier can be seen in Annex-3.

Figure 6.9 Comparison of Base and Selected hull from optimisation Pareto frontier

Figure 6.10 Comparison of Optimised Hull and Fine Tuned Hull

Figure 6.11 Comparison of three Hulls Left to Right: Base Hull, Optimised Hull and Fine Tuned Hull

Based on this results the selected model showed a lot of curvature in bow part, as can be seen in the figure 6.11. This curvature is not the best solution from modularity point of view hence a fine tuning using manual distortion method was carried out. In the resistance graph figure 6.12, it can be seen that the direct optimised model and fine-tuned model have very less variation in the resistance which is considered acceptable based on design requirements.

Figure 6.12 Graphical Comparison of resistance between Base Hull, Optimised Hull and Fine Tuned

RESISTANCE COMPARISON BETWEEN THREE HULLS					
S. NO.	SPEED (Knots)	Base Hull (Chica-Caliente)	Optimised Hull	Fine Tuned Hull (Akulator)	
1	5	9.1 kN	6.5 kN	6.6 kN	
2	20	163.0 kN	127.3 kN	128.2 kN	
3	21.875	177.6 kN	136.2 kN	137.3 kN	

Table 6.4 Resistance comparison between Base, Optimised and Fine Tuned Hull

With fine-tuned model as final hull for modularity, we then designed the final hull forms of all the three vessel lengths. Before we could finalise these values it was required that we first validate the potential flow results.

6.6 DATA VALIDATION USING RANS SOLVER

Major contributor to the resistance values of this design is due to the frictional component and hence it was decided to validate the results with a solver based on Reynolds Averaged Navier Stokes Equation (RANSE) before validating it with towing tank test. For this purpose FineMarine[®] was chosen due to licence availability at DN&T, Liege. The modelling was done in Rhino3dM and a parasolid export was carried out in order to import the model into FineMarine[®].

The foam model to be tested in towing tank presented the constraint of producing 24m hull as the scaling effect causes the strut to be very small and thus impractical to produce on the model maker. Even though we have optimised the 24m hull, the idea of result validation if acceptable will be valid for all the three vessel lengths. Hence it was decided to run the RANS analysis and the towing tank test on 18m hull.

Once the model is imported, we need to check continuity of surfaces in HEXPRESS and then prepare the project setup which involves following basic steps:

- 1. Define Domain,
- 2. Grid/Boundary Condition Definition,
- 3. Initial Meshing,
- 4. Free Surface Mesh,
- 5. Global Refinement and Surface Refinement,
- 6. Mesh Snapping,
- 7. Mesh Optimisation,
- 8. Viscous Layer Generation,
- 9. Defining Motion Parameters,
- 10. Setting-up Computational Controls Series / Parallel.

The major parameters and values entered in the program are mentioned in table 6.7 for detailed setup process kindly refer to Annex-3.

MESH DEFINITION							
S. No.	ELEMENT	VALUE	S. No.		ELEMENT	VALUE	
1	X – Axis	20	4	Z – Axis		10	
2	Y – Axis	06	5	No. of	f Cells	1200	
3	N _b Cells	4,397,433	6	N _b Ve	5,167,773		
	VISCOUS LAYER PARAMETERS						
	GLOBAL				SURFACE		
S. No.	ELEMENT	VALUE	S. No.		VALUE		
1	First Layer Thickness	1e-005	1	First Layer Thickness		3.08e-004	
2	Stretching Ratio	1.2	2	Stretc	hing Ratio	1.2	
3	Inflate Viscous Layer	Fixed No.	3	No. of Layers 20			
		FLOW	MODEL				
S. No.	S. No. ELEMENT DESCRIPTION				VALU	E	
1	Turbulence Model				k-omega-SST		
2	Reference Length				15.5 m		
3	Reference Velocity				10.28 m/s		
4	Reynolds Water				1.4808E+008		
5	Froude				0.8336	7	

Table 6.5 Mesh definition and flow model details

The figure 6.13 shows the mesh definition and figure 6.14 free surface elevation for the 20 knots vessel speed.

Figure 6.13 Figures detailing the FineMarine[®] mesh system

Figure 6.14 Free surface elevation at 20 knots

The graph in the figure 6.15 shows the comparison of potential flow and RANS based analysis for 18m vessel.

Figure 6.15 Resistance Comparison: Akulator (Fine Tuned Hull) – Potential Flow Vs RANS

RESULT COMPARISON OF POTENTIAL FLOW VS RANSE FOR 18m LOA HULL				
S. NO.	SPEED (Knots)	POTENTIAL FLOW (kN)	RANS (kN)	% DEVIATION
1	13.60	82.6	83.61	1.23 %
2	21.38	99.4	98.55	0.85 &

Table 6.6 Resistance comparison of Potential Flow Vs RANSE Solver

As it can be seen that the error at high/operating speeds is less than 1.5% which as per industry standards are considered acceptable, thus for further validation we carried out the towing tank test.

6.7 DATA VALIDATION USING TOWING TANK TEST

Any innovative design can only be evaluated in true sense based on its experimental results. In order to validate the mathematical model, we decided to prepare a Foam, Resin, Wood and PVC based 1:13 scale model to be tested at University of Liege (ULg) towing tank.

As explained earlier the Foam model to be tested in towing tank presented the constraint of producing 24m hull as the scaling effect causes the strut to be very small and thus making it impractical to produce on the model maker. Even though we have optimised the 24m hull, the idea of result validation if acceptable will be valid for all the three vessel lengths. Hence it was decided to carry out the towing tank test on 18m hull. The figures 6.16 to 6.21 show various stages of model preparation. The model test was carried out with Roll and Yaw motion arrested. The results of the towing tank experiment were then extrapolated using the ITTC 78 formula. The equations for the same are mentioned below and the form factor (1+k) was calculated from the graph (Refer Annex-3). The detailed spread sheet of model scaling, extrapolation, graphs and form factor calculations are presented in Annex-3.

ITTC Formulation

Fourde No.
$$(F_n) = \frac{V}{\sqrt{gL}}$$

Reynolds No. $(R_e) = \frac{V}{L * v}$
 $C_F = \frac{0.075}{(Log_{10}(R_e) - 2)^2}$

$$\frac{C_T}{C_F} = (1+k) + \alpha * \frac{F_n^n}{C_F}$$

Plotting the graph for above equation on a spread sheet and using regression analysis we obtained the value of (1+k) and α . Then using the form factor and scaling factor the values of

model test were extrapolated to full scale ship. The results of the same are plotted in figure 6.22 and tabulated in table 6.9.

Figure 6.16 Central hull prepared on CNC milling machine

Figure 6.17 Foam based central hull

Figure 6.18 Central Hull, Outriggers (coated with resin and painted) along with Wooden Deck

Figure 6.19 Left to Right: Model comparison of Chica-Caliente and Akulator Hull

Figure 6.20 Extra wooden plank attached to deck to connect trim guides

Figure 6.21 Final arrangement of model on carriage

Figure 6.22 Resistance comparison Akulator (Fine-Tuned hull) towing tank test Vs CFD results

RESULT COMPARISON OF POTENTIAL FLOW VS TOWING TANK FOR 18m LOA HULL					
S. NO.	SPEED (Knots)	POTENTIAL FLOW (kN)	TOWING TANK (kN)	% DEVIATION	
1	13.878	82.6	84.16889488	1.86	
2	17.418	91.9	94.59014702	2.84	
3	18.483	94.1	98.34487473	4.32	
4	20.481	97.9	107.5404989	8.96	

Table 6.7 Resistance comparison of Potential Flow and Towing Tank Experiment

Again it can be seen that the results deviation between potential flow and towing tank experiment are 1.5-9% which is under the acceptable range as per industry standards.

6.8 FINAL RESULTS

With the mathematical models validated, for the next step all the three hulls were modified as per fine-tuned hull keeping in mind the modularity concept. The figures 6.23 to 6.25 show the modified concept of modular hull, where it can be seen that instead of having just one module of 3 m we now have two modules of 1.5 m each one where max diameter of tube is 2.1m and other with 2.6 m.

Figure 6.23 Central strut: Fine-tuned modular hull

Figure 6.24 Fine-tuned modular hull: Profile view showing modules of outrigger and central hull

Figure 6.25 Fine-tuned modular hull: ISO view showing modules of outrigger and central hull

Post modification and fine tuning the final resistance results of all the three hull lengths are shown in the figure 6.26 to figure 6.28. It should be noted that to arrive at power calculations the hull efficiency was considered as 60% only, this is to take into account the effect of appendages, effects of real life variables such as marine growth, painting, wind and wave directions etc. and more importantly the deviation that has been observed between the potential flow and experimental results.

RESISTANCE COMPARISON FOR HULL OPTIMISATION						
	RESISTANCE (KN)					
VESSEL TYPE	CHICA-AKULATORCALIENTE(FINE TUNED(BASE HULL)HULL)					
18 m CM-SWAS(S)H	122.40	96.50	21.16			
21 m CM-SWAS(S)H	141.30	114.50	18.97			
24 m CM-SWAS(S)H	163.00	128.20	21.35			

Table 6.8 Resistance comparison for the all hulls post optimisation and fine tuning

Figure 6.26 Resistance comparison: 18 m Chica-Caliente (Base Hull) Vs Akulator (Fine Tuned Hull)

Figure 6.27 Resistance comparison: 21 m Chica-Caliente (Base Hull) Vs Akulator (Fine Tuned Hull)

Figure 6.28 Resistance comparison: 24 m Chica-Caliente (Base Hull) Vs Akulator (Fine Tuned Hull)

The chapter deals with calculation and specification of propulsion and manoeuvring equipment like rudder, propeller, bow thruster and steering gear. These equipment/elements are selected based on the guidelines and requirements stated by owners and Class/IMO/other regulatory authority. While this thesis will not deal with detailed design and optimisation of these equipment's/elements, they will be selected for each of the vessel specifically based on the above stated criteria.

7.1 ANCHOR

The anchors are selected as per the DNV-GL Class rules 2012, for Special Ships-High Speed Crafts, Chapter 1, Part 3, Section 6, Sub-section 5.2 Multi-Hull Craft. The first Step is to calculate the Equipment Number EN (refer figure 7.1 for reference):

$$EN = K_m * \Delta^{\frac{2}{3}} + 2 * [a * B + \sum_{i} (b_i * h_i * Sin \theta_i) - S_t] + 0.1 * A$$

Where, for craft with one mid hull and $2 \cdot n$ non-identical lateral hulls (N = $2 \cdot n + 1$):

$$K_m = \frac{(B_0 * T_0)^{\frac{2}{3}} + 2 * \sum_{i=1}^n (B_1 * T_1)^{\frac{2}{3}}}{(B_0 * T_0 + 2 * \sum_{i=1}^n B_1 * T_1)}$$

Δ	: Maximum displacement in tonne
a	: Distance from summer load waterline to the upper deck at side (m)
hi	: Height of the deck houses having actual breadth greater than $B/4$ (m)
θ_i	: Angle of Inclination
А	: Area of deck houses above summer load waterline (m2)
St	: Transverse Area of the tunnels existing between hull and waterline
B 0, T 0	: Breadth and draught of the middle hull (m)
B ₁ , T ₁	: Breadth and draught of lateral hulls (m)
Ν	: Total number of craft hulls
n	: Number of lateral hulls on one side

Figure 7.1 Transverse area of tunnel existing between hull and water line

Once the equipment number is calculated, and the number and mass of HHP anchor is finalised, the next step is to select the anchor cable and windlass based on proof/break load and pull duty. All anchor cable and windlass calculations are for K3 grade steel stud less link chain. The same are calculated in "kN" using the formula below:

Proof Load (PL) = $13.73 * d^2 * (44 - 0.08 * d) * 10^{-3}$ Breaking Load (BL) = 2 * PL

The windlass is to be able to supply, for at least 30 minutes, a continuous duty pull P_C , in N, corresponding to the grade K3 of the chain cables, given by the following formula:

$$P_c = 47.5 * d^2$$

where,

d – Diameter of cable selected from Table C6.5.1 Equipment of Class Rules

The detailed calculations based on the above stated principle are listed in Annex-5. The table 7.1 list the major characteristics of all the anchors selected:

DETAILS OF THE ANCHORS SELECTED					
S. NO.	PARAMENTER	LOA - 18 m	LOA - 21 m	LOA - 24 m	
1	Equipment Number (EN)	59.1	64.5	68.5	
2	Anchor Cable Diameter (mm)	8.5	9.5	9.5	
3	Proof Load (kN)	42.97	53.58	53.58	
4	Breaking Load (kN)	85.94	107.16	107.16	
5	Pull Duty of Windlass (N)	3431.88	4286.88	4286.88	
6	Chain cable length (m)	82.5	82.5	82.5	
7	Mass of Anchor (kg)	60	67	67	

Table 7.1 Details of the selected anchors

7.2 PROPELLER

The driving force and at the same time one of the major source for ship vibrations, the selection places very critical role in the efficiency of operation for a vessel. The Wageningen propeller being the most suitable profile for most vessel types, it was decided to select *Bronze made Fixed Pitch Wageningen B Series propeller* for all vessels but based on the configuration best suited for each vessel specifically.

As explained earlier chapters, the vessel uses a diesel electric propulsion system, which gives us the unique advantage of running the propeller at a speed that provides maximum efficiency. But efficiency is not the only factor, Back Cavitation also plays very critical role in selection process. Thus after finalising the diameter, various configurations of propeller profiles were tested for back cavitation based on Burrill's cavitation chart and then the configuration with maximum efficiency was selected.

The flow chart in figure 7.2 shows the work flow of propeller selection:

Figure 7.2 Flow chart for propeller selection for electrically driven propeller

7.2.1 PROPELLER SELECTION

Once the resistance of all the vessels was finalised and validated with Potential Flow and RANSE solves, the next step was to finalise the diameter of the propeller. For the design it is evident that the rules for propeller clearances do not limit the diameter of propeller to a large extent. The maximum possible diameter considering keel clearance is approximately 2.6 m in loaded condition but considering the light ship condition and to ensure 100% propeller immersion the maximum diameter is limited to 2 m.

Based on the design thumb rule of it is said that the maximum diameter of the propeller is estimated by the rule:

$$D_{max} = \frac{2}{3} * Loaded/Design Draft (T)$$

At a design draft of 3.2m,
 $D_{max} = 2.13 m (approximately)$

Considering this diameter was selected as 2.0 m and propeller.

To evaluate the characteristics such as number of blades, BAR, P/D ratio, the propeller design were analysed for thrust, torque, efficiency and cavitation, based on the equation mentioned below in conjunction with KT and KQ curves:

wake fraction (w) =
$$0.5 C_B - 0.05 = 0.3795$$

Velocity of Advance $(V_A), \frac{m}{s} = (1 - w) * V$
Thrust Coefficient $(K_T) = \frac{T}{\rho * n^2 * D^4}$
Advance Ratio $(J) = \frac{V * A}{n * D}$

For potting KT and KQ curves the equations are as follows:

$$KT = \sum_{n=1}^{39} Cn(J)^{S_n} * \left(\frac{P}{D}\right)^{tn} * \left(\frac{A_E}{A_0}\right)^{un} * (Z)^{vn}$$
$$KQ = \sum_{n=1}^{47} Cn(J)^{S_n} * \left(\frac{P}{D}\right)^{tn} * \left(\frac{A_E}{A_0}\right)^{un} * (Z)^{vn}$$

The above equations are for Wageningen B-Series were represented for Reynolds No. (R_n) = $2x10^6$, for other Reynolds numbers with in the range of $2x10^6$ to $2x10^9$ we use the equation as follows:

$$KT(R_n) = KT(R_n = 2 * 10^6) + \Delta KT(R_n)$$

$$KQ(R_n) = KQ(R_n = 2 * 10^6) + \Delta KQ(R_n)$$

To eliminate the unknown quantity rotation per second (n):

$$\frac{K_T}{J^2} = \frac{T}{\rho * D^2 * V * A^2}$$

After plotting the curve of K_T as a function of J, we find the value of J using non-liner solver. Then using that value of J, the rotation per second is calculated as"

$$n = \frac{V * A}{J * D}$$

And the open water efficiency as:

$$\eta_0 = \frac{J * K_T}{2 * \pi * K_O}$$

To optimise the calculation, it was decided to use the extents of Wageningen B Series as mentioned in the table 7.2 :

Extents of Waganingen B-Series Propeller															
No. of Blades (Z)		BLADE AREA RATIO A _E /A ₀													
2	0.30														
3		0.35			0.50			0.65			0.80				
4			0.40			0.55			0.70			0.85		1.00	
5				0.45			0.60			0.75					1.05
6					0.50			0.65			0.80				
7						0.55			0.70			0.85			

Table 7.2 Extents of Waganingen B-Series propeller

Based on the extents mention for different P/D ratios, a total of 200 propeller configurations were obtained. These configurations were then tested to evaluate the ability to provide the required thrust based on the efficiency as assumed and mentioned below.

Two major considerations were made to limit the propeller variables further i.e.:

Range of Developed is,

 $PE \leq Developed PT \leq 1.3 PE;$

Propeller Efficiency (η_0) = 50% or higher.

7.2.2 Developed Thrust And Cavitation Test

The 200 propellers configurations were tested for various RPM. All operating speeds of these 200 propellers which satisfied the condition of

1.1 PE
$$\leq$$
 Developed PT \leq 1.3 PE

were then tested for back cavitation. This was carried out using the Burrill's Cavitation Test, using the equations as mentioned below:

Cavitation number

Cavitation Number
$$(\sigma_{0.7R}) = \frac{P_{atm} - P_v + \rho gh}{0.5 * \rho * [V_A^2 + (0.7 * \pi * n * D)^2]}$$

Thrust loading on blades:

Thrust Loading on Blade
$$(\tau) = \frac{\frac{T}{A_P}}{0.5 * \rho * [V_A^2 + (0.7 * \pi * n * D)^2]}$$

The equation for Burrill's Cavitation Chart are as follows:

For 5% back cavitation	$\tau = 0.11104 * Ln(\sigma) + 0.27104$
For 10% back cavitation	$\tau = 0.1412 * Ln(\sigma) + 0.3506$
For 20% back cavitation	$\tau = 0.1722 * Ln(\sigma) + 0.4494$
For 30% back cavitation	$\tau = 0.1822 * Ln(\sigma) + 0.4985$

The final Burrill's charts in figure 7.3 to 7.5 depict the result of cavitation test for all the three propeller.

Figure 7.3 Burrill's cavitation chart for 18 m LOA vessel

Figure 7.4 Burrill's cavitation chart for 21 m LOA vessel

Figure 7.5 Burrill's cavitation chart for 24 m LOA vessel

A closer look at the charts will show that for all the three vessel lengths there were no propeller configurations with less than 10% back cavitation. For all there were 4 to 5 propellers which had less than 20% back cavitation. Based on that the final configuration for all the propellers was selected and the same are mention in the table 7.3:

DETAILS OF THE FIXED PITCH PROPELLERS SELECTED					
S. NO.	PARAMENTER	LOA - 18 m	LOA - 21 m	LOA - 24 m	
1	Propeller Diameter (D), m	2.0	2.0	2.0	
2	No. of Blades (Z)	5	5	5	
3	Ratio A_E/A_0	1.05	1.05	1.05	
4	Pitch/Diameter Ration (P/D)	1.2	1.4	1.1	
5	RPM	341	313.5	407.2	
6	Open Water Efficiency (η_0)	68.7	66.1	63.09	
7	Back Cavitation	<20%	<20%	<20%	
8	Propeller Type	Fixed Pitch	Fixed Pitch	Fixed Pitch	
9	Material	Bronze	Bronze	Bronze	
	•		•		

Table 7.3 Details of the selected propeller configurations

7.3 RUDDER, STEERING GEAR AND BOW THRUSTER

7.3.1 RUDDER AND RUDDER STOCK

The manoeuvrability of the vessel primarily depends upon the shape and size of rudder, for high speed multihulls this becomes even more critical. Keeping this in mind the selection was based on practical approach which supersedes the Class and IMO requirement. Hence the design was based on "Boat Mechanical Systems Handbook - by Dave Gerr". An aluminium rudder was selected to keep the weight as low as possible.

As per the hand book many High-Speed Displacement Power Multihulls reach high speeds without planing. Such craft are usually round bilged with quite slender hulls and can be powered to go much faster than comparable displacement mono-hulls. Rather than determining the rudder area directly, a good rule for rudder (with a propeller directly ahead of rudder) is that the rudder be entirely under the hull (i.e. not project beyond the transom), with clearance between the top of the rudder and the underside of the hull as close as practical. The rudder blade span or height should be 90 to 95 percent of the maximum hull draft. The mean width of the rudder blade is then 60 percent of the height. It's common for such rudders to be nearly perfect rectangles; however, they can be trapezoidal, in which case the chord at the tip is usually roughly 60 to 65 percent of the chord at the root. Balance is 17 percent. For further rudder multiplying the span times the mean chord.

Note: As it is evident from the General Arrangement that all the vessels have same draft and the hull clearance. Hence based on the explanation above it was decided to select a common rudder for all the vessels.

The governing equations and criteria are mentioned below

Minimum Blade Span $(R_h) = 0.90 * Draft (T)$

Maximum Blade Span $(R_h) = 0.95 * Draft (T)$

Minimum Blade Chord $(C_h) = 0.60 * Draft (T)$

Maximum Blade Span $(C_h) = 0.35 * Draft (T)$

and the detailed calculation can be seen in Annex-5.

 $Rudder \ Plate \ Thickness \ (t), mm = 2.54 + \frac{Stiffener \ Spacing \ (S) * Speed \ (Knots)}{666}$

Max.Stiffener Spacing for Aluminium Rudder = 101.6 + (t * 32)

Force on Rudder, $kg = Lift Coeff.(C_L) * (Propeller Factor (P_f) * Speed)^2 * Area * 52.55$

Twisting Moment (TM) = Force Center * Twisting Arm

Bending Moment (BM) = Force Center * Bending Arm

Combined Moment (CM) =
$$BM + \sqrt{BM^2 + TM^2}$$

Diameter of Solid Rudder Stock, $mm = \sqrt[3]{\frac{16 * CM * 1000}{\pi * (\frac{UTS}{SF})}}$

Where,

UTS : Ultimate Tensile Strength of Material in N/mm²

SF : Safety Factor

Based on the calculations, a parabolic section rudder was selected and the main particulars of the rudder and rudder stock selected are mentioned in the table 7.4.

RUDDER AND RUDDER STOCK DETAILS					
ALUMINIUM RUDDER					
Blade Span	R _h	2.6	m		
Chord	C_h	0.95	m		
Rudder Shape Rectangle					
Rudder Profile Parabolic Section					
Plate Thickness		12	mm		
Max Stiffener Spacing Aluminium	\mathbf{S}_{\max}	485.6	mm		
Weight of Rudder		157.092	kg		
RUDDER STOCK					
Rudder Stock Diameter		200	mm		
Length of Rudder Stock		500	mm		
Weight of Rudder Stock		41.626	kg		
TOTAL WEIGHT OF RUDDER		198.718	Kg		

Table 7.4 Details of rudder and rudder stock selected

It should be noted that for the rudder selected, the stiffener thickness should and is kept same as the plate thickness.

7.3.2 Steering Gear And Bow Thruster System

As per IMO SOLAS and Class rules a work boat should be supplied with a redundant steering gear system. That is if the 100% system fails the redundant system should be able to provide 50% operation. The condition states that in 100% operation the Rudder should be able to turn 35° on one side to 35° on other side. Should be able to turn 35° on one side to 30° on other side within 28 sec at full ahead speed. At 50% operation condition turning the rudder over from 15° on one side to 15° on the other side in not more than 60 seconds with the ship on summer load waterline and running ahead at one half of the maximum ahead service speed or 7 knots, whichever is the greater. The two applicable system that meet the size and load criteria are shown in figure 7.6:

Figure 7.6 Steering gear actuators types, Source: DNV-GL Class Rules 2012

Considering the space constrain and the method of actuation the vessel will be provided with electrically actuated hydraulically operated rotary-vane steering gear system, with rudder stock diameter as 200 mm. Based on the specification above a Rolls Royce steering gear of following specification was selected:

STEERING GEAR DETAILS					
S. NO.	PARAMETER	VALUE	UNITS		
1	Туре	RV 550-2			
2	Max. Stock Diameter	370	mm		
3	Max. Working Torque	568	kNm		
4	Max. Rudder Angle	2 x 71.5			
5	Weight	3500	kg		
6	Max. Radial Load	1400	kN		
7	Max. Axial Load	500	kN		

Table 7.5 Details of steering gear

A common electrically operated bow thruster as per DP1 requirement of 48kN thrust capacity is required. Based on DP1 requirement and space availability we have selected electrically operated Rolls Royce TT-CP Transverse thruster. The specification can be seen in table 7.6.

BOW THRUSTER DETAILS					
S. NO.	PARAMETER	VALUE	UNITS		
1	Version	ICE/DPN/DPD			
2	Diameter	1100	mm		
3	Drive	Electric			
4	Max. Power	350	kW		

Table 7.6 Specification of bow thruster

In earlier chapters we learned that there are different methods to decrease fuel consumption and thus the emissions. This chapter will deal with the operational parameters for fuel reduction i.e.:

- 1. Power plant design,
- 2. Maintenance profile

Figure 8.1 Method of reducing fuel consumption by power plant, Source: Marine Insight, July 2012

The Marine power plant is designed on the principle of Advanced Hybrid Diesel Electric System popularly known as ELFA that is being employed in the Diesel Electric buses in European countries. We know that the transmission losses in diesel electric system are higher than that in direct drive, but due to the fact that diesel electric system allows us to operate both propeller and engine at maximum efficiency, the overall efficiency of the with Diesel Electric System is higher. In order to further enhance the efficiency we will use AC-DC units. In addition the system will use battery as source of power for propulsion during emergency conditions.

The System will be designed to operate with both AC and DC power. Conventionally a pure constant AC-DC rectifier is used in this kind rectification, but here we have proposed a Pulsated DC rectification to minimise the rectification losses. This complete system is easy to install, operate, and can be expanded or modified as per owners needs as it comprises of standardised modules which can be freely arranged on board in the design stage to offer a flexible layout with the best use of space.

8.1 PRINCIPLE OF HYBRID DIESEL ELECTRIC SYSTEM

The system will provide the right propulsion mode for the right situation. Since the drives are always running within their optimum range they have a longer service life. The system will provide three different types of drive mode i.e.:

- Diesel Electric mode Alternating Current (AC) Mode,
- Battery mode Direct Current (DC) Mode,
- Hybrid mode AC/DC Mode.

To understand why we propose a use of Advanced Hybrid Diesel Electric system compared pure battery electric or pure diesel system, we will understand the principle of operation and compare the general properties with the conventional existing systems. The figure 8.2 depicts the basic principle of operation of an Advanced Hybrid AC-DC Diesel Electric System.

Figure 8.2 Basic layout of Advanced Hybrid AC-DC diesel electric system

As it can be seen the system is divided into three parts:

- 1. Power Generation and Conversion System,
- 2. Energy Storage System (In this design it consists of battery terminals and a small generator),
- 3. Transmission System.

And they function differently during different modes of operation.

<u>Diesel Electric Mode – AC</u>: The diesel engine (DM) with generator (G) generates AC power which is directly supplied to AC propulsion motor (M) to rotate the propeller shaft. In case of low loads DM is run at full load and the AC power is converted into DC by unidirectional AC-DC converter and stored in DC battery.

<u>Battery Mode – DC:</u> During low loads the diesel engine (DM) is stopped with power being supplied by Storage Battery. Since the storage battery is DC system a bi-directional DC-AC

converter converts the DC supply from battery to AC before it is supplied to the AC propulsion motor (M).

<u>Hybrid Mode – AC/DC</u>: The hybrid mode operation is when the vessel is operating at full loads during such operations the Diesel engine operates at full load and to supply the additional power the storage batter is used. This enables us to select the best size of engine so that we don't have to select an oversized engine and then operate it at lower loads, especially in cases where the exact kW engine is not available.

DISADVANTAGES OF PURE DIESEL AND PURE BATTERY ELECTRIC SYSTEM					
DIESEL INTERNAL COMBUSTION ENGINE	BATTERY ELECTRIC SYSTEM				
High energy consumption: resources, independent of foreign oilHigh emission, air pollution, global warmingHigh maintenance cost	Recharging takes much longer time than refuelling gasoline – unless infrastructure for instantly replaceable battery cartridges are available Battery pack takes space and weight of the				
Environmental hazards and noisy	vehicle which otherwise can be utilised for other equipment.				
ADVANTAGES OF HYBRID	ELECTRIC SYSTEM				
Optimize the fuel economy	Reduced maintenance because ICE operation is optimized, less hazardous material				
 Optimize the operating point of ICE Stop the ICE if not needed (ultra-low speed and stops) Recover the kinetic energy at braking Reduce the size (hp/kW and volume) of ICE 	 Fewer tune ups, longer life cycle of ICE Fewer oil changes Fewer fuel filters, antifreeze, radiator flushes or water pumps Fewer exhaust repairs or muffler changes 				
Reduce emissions	Quiet Operation				
 Minimize the emissions when ICE is optimized in operation Stop the ICE when it's not needed Reduced size of ICE means less emissions 	 Ultra low noise at low speed because ICE is stopped Quiet motor, motor is stopped when vehicle comes to a stop, with engine already stopped 				

Table 8.1 Comparison between ICE, Battery and hybrid system

Note: To prepare the concept design of this power plant, we have used "Diesel-electric Propulsion Plants – A brief guideline how to engineer a diesel-electric propulsion system - by MAN Turbo" [15] as the basic guideline. But it is to be noted that we may or may not use the equipment by MAN Turbo.

Now to estimate the efficiency, the first step is to make basic reference point, the figure 8.3 depicts the practical efficiency data as described by MAN engines.

Figure 8.3 Hybrid electric power plant efficiency, Source: MAN Turbo [15]

The figure 8.4 shows the basic workflow for design of a diesel electric power plant, which is followed during the model based design.

Figure 8.4 Diesel electric system design work flow, Source: MAN Turbo [15]

8.2 ELECTRICAL CIRCUITS

To select the right equipment we must first work out the load estimation, but for load estimation to work right we must first prepare a circuit plan, this way we can we know the primary elements, the load and their respective efficiency that need to be taken into account. Based on the design shown in figure 8.2 Basic layout of Advanced Hybrid AC-DC Diesel Electric System, there are two components that have been added in addition to the conventional hybrid diesel electric system i.e.

- 1. Unidirectional Pulsating AC-DC rectification,
- 2. Bi-Directional DC-AC convertor.

Here we will explain the circuitry of the two elements before we finalise the layout.

<u>Unidirectional Pulsating AC-DC rectification</u>: This system will employ a bridge rectification with capacitor filter. First a step-down transformer lowers the magnitude of AC voltage (440 VAC) to desired DC voltage of 30 VDC considering rectification losses and the desired output at battery being 26.5 VDC. The 4 diode bridge converts the phase of AC to positive phase wave form. The rectified DC at this point is still in wave form to convert it into pulsating DC we use a capacitor of 4700μ F as smoothing element which works as a temporary storage that charges to its full capacity storing the extra energy and discharging slowly till the next cycle.

Assuming n_1 and n_2 to be number of coils on High voltage side and low voltage side, the step down coil ratio is given as:

$$\frac{n_1}{n_2} = \frac{High \, Voltage \, Value}{Low \, Voltage \, Value} = \frac{440}{30} = \frac{22}{1}$$

The figure 8.5 shows the working principle of an AC-DC rectification system that is used in the unidirectional convertor.

Figure 8.5 Unidirectional bridge wave pulsating AC-DC rectification circuit

<u>Bidirectional DC-AC convertor</u>: Selecting the propulsion motor of same voltage as generator supply i.e. 660 VAC, we will use a step-up transformer for coil ratio 1:22. The circuit also uses two (2) PNP and two (2) NPN transistor in addition to four (4) controlling resistances and two (2) capacitors acting as filtering elements. The system operates with same principle as the residentially used invertors, to have a higher operating capacity the capacitors and resistance are selected accordingly. In this case the values are same as shown in figure 8.5, rectification system.

Figure 8.6 Bidirectional DC-AC convertor circuit

8.3 ELECTRIC LOAD ESTIMATION

With Basic ship data, resistance and propulsion power already finalised, as the next step the electrical load estimation was needed to be done to enable us to carry out engine selection. During this estimation process it is very critical to consider all the energy losses and efficiency factors. Since this design is an advanced hybrid diesel electric system, In addition to the efficiency shown in figure 8.5, the efficiency of energy storage (battery) system needed to be taken into account:

$$\eta_{PT} = \frac{P_T}{P_{Batt,int}}$$

$$\eta_{PT} = \frac{Torque(T_o) * Shaft Speed(\omega_o)}{P_{Batt,int}}$$

Which can be further expanded taking into consideration the effect of engine efficiency:

$$\eta_{PT} = \frac{T_o * \omega_o}{P_{Engg,Fuel} + \frac{P_{Batt,out}}{\eta_{Batt}(P_{Batt,out}) * \eta_{Batt,Chg} * \eta_{Gen}}}$$

Master Thesis developed at West Pomeranian University of Technology, Szczecin

$$\eta_{PT} = \frac{T_o * \omega_o}{P_{Engg,Fuel} + \frac{P_{Batt,out} * \eta_{Batt}(P_{Batt,out}) * \eta_{Batt,DisChg}}{\eta_{Gen}}}$$

Where,

$$\eta_{Batt,Chg} = \frac{E^-{}_{Batt,int}}{E^-{}_{Batt,out}}$$

$$\eta_{Batt,DisChg} = \frac{E^+{}_{Batt,out}}{E^+{}_{Batt,int}}$$

$$\eta_{Gen} = -\frac{E^{-}_{Batt,out}}{E_{fuel,extra}}$$

Taking into account all the factors above, the electric load estimation is carried out for Sailing, harbour, manoeuvring and Emergency system is calculated. The detailed calculation can be seen in Annex-5. The final values for all the vessels is mentioned in the table 8.2.

Note: The electrical load is done for one type of vessel for each length. We have taken into account the vessel with highest number of loads/consumers to do carry out this estimation.

SUMMARY OF ELECTRIC LOAD ESTIMATION								
PILOT / POLICE / CUSTOM PATROL BOAT/ WINDFARM SUPPORT VESSEL								
S. NO.	PARAMENTER	LOA - 18 m		LOA - 21 m		LOA - 24 m		
		kW	kVA	kW	kVA	kW	kVA	
1	Sailing Condition	1608	2412.7	1909	2863.1	2049	3073.4	
2	Harbour Condition	31.14	46.70	39.61	59.41	48.08	72.118	
3	Manoeuvring Condition	1607	2410.9	1909	2863.5	2051	3077.2	
4	Emergency Condition	18.97	28.45	18.97	28.45	18.97	28.45	

Table 8.2 Summery of electrical load estimation for all vessels

8.4 ADVANCED HYBRID AC – DC MARINE POWER PLANT LAYOUT

One critical aspect is the right layout with the selected equipment. We design the final layout of the power plant taking into account all the voltages and frequencies. At this time we have to select the operating layout of equipment so that the engine room spaces can be utilised to the best possible way and the wiring/terminals can be minimised, this not only helps in having more working space but also minimises the heat losses in wiring. The figure 8.7 shows the

common layout for all vessels, the number of engines, gen-sets and battery terminals are different in different vessels and the same is illustrated in the common layout.

In the figure 8.7 it can be observed that power consumers are carefully grouped based on sailing, manoeuvring and harbour condition. This provides higher efficiency as dedicated bus blocks and lines can be installed thus reducing the heat and conversion losses over multiple lines.

Figure 8.7 Advanced hybrid AC-DC marine power plant layout

8.5 SUMMARY OF EQUIPMENT DETAILS

Based on the load estimation, layout and the space requirement it was decided to select continuous duty MTU engines for patrol and harbour support vessel. Even though they are commercially expensive than other engine brands they are more compact and light weight, this gives us the advantage of low light ship weight and sizing of the central tube for easy installation and maintenance.

The details of engine, gen-set, battery and motor model selected are given in the table 8.3.

DETAILS OF MAIN DIESEL ELECTRIC ENGINE									
PILOT / POLICE / CUSTOM PATROL BOAT									
S. NO.	PARAMENTER	LOA - 18 m LOA - 21 m		LOA	LOA - 24 m				
1	Model	16V 20	00 M93	16V 20	00 M94	-			
2	Rated Power (Max.)	1490	kW	1839	kW	-	-		
3	Speed (Max.)	2450	rpm	2450	rpm	-	-		
4	Length (L)	2.285	m	2.310	m	-	-		
5	Width (W)	1.295	m	1.295	m	-	-		
6	Height (H)	1.390	m	1.390	m	-	-		
7	Mass (dry)	3380	kg	3380	kg	-	-		
	WINDFARM SUPPORT VESSEL								
S. NO.	PARAMENTER	LOA	- 18 m	LOA	- 21 m	LOA	- 24 m		
1	Model	16V 20	00 M93	16V 20	00 M94	10V 20	00 M93		
2	Rated Power (Max.)	1490	kW	1839	kW	1020	kW		
3	Speed (Max.)	2450	rpm	2450	rpm	2450	rpm		
4	Length (L)	2.285	m	2.310	m	1.545	m		
5	Width (W)	1.295	m	1.295	m	1.130	m		
6	Height (H)	1.390	m	1.390	m	1.230	m		
7	Mass (dry)	3380	kg	3380	kg	2240	kg		

Table 8.3 Main diesel electric engine, Source: MTU Diesel Electric Engine Program

DETAILS OF GENERATING SET FOR ELECTRICAL SUPPLY									
PILOT / POLICE / CUSTOM PATROL BOAT									
S. NO.	PARAMENTER	LOA - 18 m LOA - 21 m LOA			LOA	- 24 m			
1	Model	FG-P:	55-3 P	FG-P:	55-3 S	-			
2	Rated Power (Max.)	45	kW	50	kW	-	-		
3	Speed (Max.)	1800	rpm	1800	rpm	-	-		
4	Length (L)	1.68	m	1.68	m	-	-		
5	Width (W)	0.76	m	0.76	m	-	-		
6	Height (H)	1.336	m	1.336	m	-	-		
7	Mass (dry)	797	kg	797	kg	-	-		
8	Frequency	60	Hz	60	Hz				
	WINDFAR	M SUPP	ORT VE	SSEL					
S. NO.	PARAMENTER	LOA	- 18 m	LOA	- 21 m	LOA	- 24 m		
1	Model	FG-P:	55-3 P	FG-P:	55-3 S	FG-P:	55-3 S		
2	Rated Power (Max.)	45	kW	50	kW	50	kW		
3	Speed (Max.)	1800	rpm	1800	rpm	1800	rpm		
4	Length (L)	1.68	m	1.68	m	1.68	m		
5	Width (W)	0.76	m	0.76	m	0.76	m		
6	Height (H)	1.336	m	1.336	m	1.336	m		
7	Mass (dry)	797	kg	797	kg	797	kg		
8	Frequency	60	Hz	60	Hz	60	Hz		

Table 8.4 Generating set for electrical supply, Source: FG Wilson

The main reason we selected the ABB HRX motor series is due to the fact that these motors are air cooled and come with inbuilt variable speed drive, which means no need of cooling water lines and excessive space requirements. They also come in both 60 Hz and 50 Hz variants.

DETAILS OF PROPULSION MOTOR								
PILOT / POLICE / CUSTOM PATROL BOAT								
S. NO.	PARAMENTER	LOA - 18 m LOA - 21 m			LOA - 24 m			
1	Model/Type	ABB H	IRX 2P	ABB H	RX 10P	-		
2	Rated Power (Max.)	1500	kW	2000	kW	-	-	
3	Speed (Max.)	3600	rpm	720	rpm	-	-	
4	Length (L)	1.65	m	1.55	m	-	-	
5	Width (W)	1.06	m	1.30	m	-	-	
6	Height (H)	1.12	m	1.34	m	-	-	
7	Mass (dry)	347	kg	382	kg	-	-	
8	Frequency	60	Hz	60	Hz			
WINDFARM SUPPORT VESSEL								
S. NO.	PARAMENTER	LOA	- 18 m	LOA	- 21 m	LOA	- 24 m	
1	Model/Type	ABB H	IRX 2P	ABB H	RX 10P	ABB H	IRX 8P	
2	Rated Power (Max.)	1500	kW	2000	kW	2200	kW	
3	Speed (Max.)	3600	rpm	720	rpm	900	rpm	
4	Length (L)	1.65	m	1.55	m	1.98	m	
5	Width (W)	1.06	m	1.30	m	2.00	m	
6	Height (H)	1.12	m	1.34	m	1.90	m	
7	Mass (dry)	347	kg	382	kg	461	kg	
8	Frequency	60	Hz	60	Hz	60	Hz	

Table 8.5 Propulsion motor selected, Source: ABB HRX Maine Propulsion Motors

The emergency power is provided with the use of battery terminal, based on the electrical load and the space available in emergency battery room. A Parallel System battery configuration is installed in all the vessels with same battery specification. Based on the load requirement of each vessel the number of batteries in parallel is increased.

COMMON SPECIFICATIONS OF THE BATTERY SELECTED							
S. NO.	PARAMETER	VALUE	UNITS				
1	Nominal Battery Voltage	26.5	Volts				
2	Battery Capacity Range	180	Ah				
3	Nominal Battery Power	5	kWh				
4	Battery Monitoring	Integrated	1				
5	Battery Terminal	M8					
6	Masterbus Powering	YES					
7	Max. Dimensions (incl. terminals/grip handles), L x W x H	622 x 197 x 355	mm				
8	Weight	58	kg				

VESSEL SPECIFIC DETAILS OF BATTERY CONFIGURATION									
PILOT / POLICE / CUSTOM PATROL BOAT									
S. NO.	PARAMENTER	LOA - 18 m LOA - 21 m LOA -					- 24 m		
1	Required Load	38	kW	40	kW	-	-		
2	Required Load	46	kVa	60	kVa	-	-		
3	Number of Battery Terminals	8	m	8	m	-	-		
4	Total Load Provided	40	kW	40	kW	-	-		
5	Total Load Provided	60	kVa	60	kVa	-	-		
6	Total Mass	464	kg	464	kg	-	-		
	WINDFARM SUPPORT VESSEL								
S. NO.	PARAMENTER	LOA	- 18 m	LOA	- 21 m	LOA	- 24 m		
1	Required Load	38	kW	40	kW	49	kW		
2	Required Load	46	kVa	60	kVa	72	kVa		
3	Number of Battery Terminals	8	m	8	m	10	М		
4	Total Load Provided	40	kW	40	kW	50	kW		
5	Total Load Provided	60	kVa	60	kVa	75	kVa		
6	Total Mass	464	kg	464	kg	580	Kg		
	•	•	•	•	-				

Table 8.6 Battery configuration, Source: Mastervolt MLI Ultra 24/5000 - LiFePO4

One of the first impressions a person makes is that the shape of the vessel may not provide a good stability characteristics. On the contrary the vessel design actually provides excellent hydrostatic intact and damage stability. When it comes to damage stability the vessel design inherently provides increased stability as the underwater volume increases, provided the design depth of the vessel is carefully selected based on the size of the biggest compartment that can get damaged.

This chapter discusses the stability characteristics of the three hulls for 10% Lightship and 100% loaded ship in both intact and damage condition. These characteristics will be evaluated based on IMO and DNV-GL stability criteria for Multi-Hull high speed crafts by using the GZ curves.

It will also discuss the use and design of trim tanks and passive fin stabilisers. These tests are carried out using Maxsurf Stability Advanced Module.

9.1 SPECIAL CONSIDERATION FOR STABILITY

9.1.1 GZ CURVE DIPPING / FLAT LINING AND OUTRIGGER FLARING

While conducting the intact stability test it was observed that the righting arm (GZ) curve exhibited flat lining and a dip at angles of heel less than 60° , refer the figure 9.1 at 10° to 20° for flat lining and 40° to 60° for curve dipping.

Figure 9.1 Initial GZ Curves exhibiting flat lining and curve dipping Source: Ship Design Project EMship at ULg, Work of Akula Nidarshan, Martin P.W. & Xu Cheng

While the result shown in figure 9.1 is for base hull Chica-Caliente, a similar trend was observed during all the current design as well. Due to this it was found that the vessel did not meet the stability criteria. The heeling angles of the vessel due to beam wind and high speed turning exceeded the criteria. It was realised that this occurred because when the ship heels, one of the outrigger would begin to emerge from the water, causing the loss of water-plane area and inertia. Unlike mono-hulls, the increase of water-plane area at the centre hull due to heeling has little influence on the total transverse inertia of the water-plane because of the narrow beam.

Since the outer hull did not present any flaring, there was little compensation to the water-plane area from the immersed outriggers. This caused the GZ curve to flat line until the watertight cross structure touches the water at a higher heel angle.

Referring to PhD Thesis work titled Design and Hydrodynamic Performance of Trimaran Displacement Ships by Junwu Zhang, Department of Mechanical Engineering, University College London, 1997.

It was found that this flat lining or curve dipping can eliminated by three design approaches

- 1. Increase the beam or length of the outriggers.
- 2. Increasing the beam of the vessel, i.e. by increasing the span of the outriggers.
- 3. Increase the flare of the outriggers, refer to figure 9.2.

It was clear that if we length/beam of outriggers would mean an increase in the displacement of the vessel for the same design draft, this will cause an increase in weight and powering. While increasing the beam dose not adversely affect the resistance performance of the ship, it causes some increase to metacentric heightGM which is not desirable for the rolling motion. Although the absolute value of GM would still be extremely low, but considering the fact that this vessel beam was converged upon using the sea-keeping analysis, this too was not a desirable option.

Increasing the flare of the outriggers however tends to overcomes most of the undesirable features. There would be no increase in GM, and as far as calm water resistance is concerned there will be no increase in resistance and will impose a very little increase in lightship weight weights. Thus, the outrigger flaring was used to make the ship meet the stability criteria. The final outrigger flaring angle was arrived at 30° based on the damaged stability criteria.

The flare on the outriggers is only in the inner side above the design waterline, this to compensate for the water-plane area losses of the other outrigger due the heel of the ship to enable stability requirements.

Figure 9.2 Comparison of geometry flared and Non-flared hull 9.1.2 LONGITUDINAL STABILITY AND TRIM TANKS

As explained earlier in these vessels, the movement of load (consumables/cargo) plays a very critical role. To provide flexibility to operate and to eliminate this drawback it was decided to provide four (4) trim tanks in the central strut, two forward and two aft. This not only gives the operator the flexibility but also provides greater control over the stability characteristics of the vessel. While providing a trim tank does resolve the constraint, it causes the increase in light ship weight with no other potential gain. Industry research revealed that in some design of smaller vessels, instead of water trim tanks, fuel oil trim tanks are used. The advantage of this is that during some conditions when movement of load is not a constraint these tanks can be used for fuel supply. Plus when connected with primary fuel oil supply tanks, give greater control as the fuel can be transferred not only between trim tanks but also between supply tanks. The capacity of these tanks was arrived at using the stability test with desired displacement and centre of gravity. The figure 9.3 shows the tank plan including the trim tank setup.

Figure 9.3 Tank Plan of 18m vessel illustrating the arrangement of trim tanks

in forward and aft of central strut

18 m - CM-SV	VAS(S)H		18 m - CM-SWAS(S)H				
LIGHTSHIP CO	ONDITION	1	LOADED SHIP CONDITION				
ELEMENT	VALUE	UNIT	ELEMENT	VALUE	UNIT		
DRAFT	2.3	m	DRAFT	3.2	m		
DISPLACEMENT	63.97	tonne	DISPLACEMENT	79.34	tonne		
LCG	7.5	m	LCG	8.1	m		
VCG	2.6	m	VCG	2.1	m		
TCG	0	m	TCG	0	m		
21 m - CM-SV	VAS(S)H		21 m - CM-SV	VAS(S)H			
LIGHTSHIP CO	ONDITION	1	LOADED SHIP C	ONDITIO	N		
ELEMENT	VALUE	UNIT	ELEMENT	VALUE	UNIT		
DRAFT	2.3	m	DRAFT	3.2	m		
DISPLACEMENT	77.56	tonne	DISPLACEMENT	99.76	tonne		
LCG	8.9	m	LCG	9.5	m		
VCG	2.75	m	VCG	2	m		
TCG	0	m	TCG	0	m		
24 m - CM-SV	VAS(S)H		24 m - CM-SWAS(S)H				
LIGHTSHIP CO	ONDITION	1	LOADED SHIP CONDITION				
ELEMENT	VALUE	UNIT	ELEMENT	VALUE	UNIT		
DRAFT	2.3	m	DRAFT	3.2	m		
DISPLACEMENT	93.39	tonne	DISPLACEMENT	118.6	tonne		
LCG	11	m	LCG	11.5	m		
VCG	2.95	m	VCG	1.85	m		
TCG	0	m	TCG	0	m		

The details of the lightship and loaded ship conditions are mentioned in table 9.1.

Table 9.1 Light ship and loaded ship operating parameters

9.2 INTACT STABILITY

The design was tested for stability where vessel should oblige with IMO (International Maritime Organization) rules as one of the most important thing is about the minimum stability criteria. The applicable IMO code is IMO Resolution A.749 (18) Code on Intact Stability for All Types of Ships covered by IMO Instruments adopted on 4th of November 1993. The code requires that the GZ curve should meet 6 general minimum stability criteria:

- 1. The area under the righting lever curve (GZ curve) should not be less than 0.055 metersradian up to 300 angle of heel. (1 meter-radian = 57.3 meter degrees)
- 2. The area under GZ curve should not be less than 0.09 meter radian up to 400 or the angle of flooding if this angle is less than 400
- 3. The area under GZ curve between the angles of heel of 300 and 400, or between 300 and if this angle is less than 400, should not be less than 0.03 meter-radian

- 4. The righting lever GZ should be at least 0.2 meters at a heel angle equal to or greater than 300
- 5. The maximum righting lever should occur at an angle of heel not less than 250 and preferably exceeding 300
- 6. The initial metacentric height GM should not be less than 0.15 meters

In addition to this the vessel was also tested for DNV-GL HSC and ISO stability criteria for Multi-Hulls. The graphs in figure 9.4 show that as indicated in literature, all the three vessels show that three pass all stability criteria and the superior characteristics. In addition it can be seen that 21 m and 24 m hulls actually have no negative GZ at any angle. Literature study has shown that in ideal ballast condition (in this case fuel oil trim tanks) and underwater fin keel or bulb keel (as in sail boats) also show no negative GZ condition. The same can be referred in article "MODERN SAILBOAT DESIGN: Quantifying Stability" by Charles Doane 16 May 2013.

Figure 9.4 GZ curves for loaded and light ship condition for three hulls

The detailed report on stability test values and percentage margin of clearance can be referred in Annex-4.

9.3 DAMAGE STABILITY

Guided by IMO rules we determined the extent of damage that needs to be evaluated and this in conjunction with DNV-GL's minimum requirements for sub-division resulted in the determining the number of water tight transverse bulkheads needed to meet the damage stability criteria. In addition to central hull, the outrigger sub-division was also determined by similar criteria.

As evident from design, we can see that the outriggers have a very limited volume that can be flooded, in to that we have subdivided the outriggers with very small compartments to ensure minimum flooding. Hence it was decided that instead of doing standard probabilistic damage study we can consider the worst case scenario in which 50% of outriggers and the two adjacent (with one of them, as the largest) compartment of central hull is flooded at the same time. Based on the compartment time the permeability was selected from Classification rules as mention in Annex-2.

The results of all the damage conditions are illustrated in figure 9.5 to 9.7.

It can be seen that the stability in damaged condition is even superior, this is due to the fact that when the compartments are damaged and loaded the draft of the vessel increases to much higher value, not high enough to sink the hull till deck level. In this case the VCG of the vessel become even lower and this improving the stability characteristics.

Figure 9.5 GZ Curve 18 m - 2 CENTRAL COMPARTMENT + 50% OUTRIGGER

Figure 9.6 GZ Curve 21 m Loaded Hull - 2 CENTRAL COMPARTMENT + 50% OUTRIGGER

Figure 9.7 GZ Curve 24 m Loaded Hull - 2 CENTRAL COMPARTMENT + 50% OUTRIGGER

10.1 CONCLUSION

The objective of this master thesis was to design an eco-friendly safe ship for that can be practically implemented in current market scenario. To do the author proposed use of SWAS(S)H form and then optimise the hull for resistance to reduce the power consumption to values that are comparable to currently operating trimaran. In addition to reduce the production cost the author proposed the use of modular hull, to increase the productivity and reduce production cost making the design more practical.

The design of modular hull was successfully completed in accourdance to the class rules with resistance optimisation that meets industry standards. The combined effect of tests carried out on mathematical and physical model estimate that we have a feasibility of a common modular design which can be practically implemented in current market.

After successfully validating the mathematical model for resistance with towing tank experiment, it is evaluated that the optimisation of hull has reduced the resistance in the range of 18-21% for the three hulls combined with the efficiency of advanced hybrid DE system we have also managed to reduce the total installed power in the range of 21-23%. The same can be seen in the table 10.1 and figure 10.1 and 10.2.

Figure 10.1 Resistance reduction at operating speeds for the three hulls

Figure 10.2 Installed power consumption reduction at operating speeds for the three hulls

	RESULT COMPARISON OF BASE AND OPTIMISED HULLS											
		RESISTA	ANCE OP	TIMISATION	POWER OPTIMISATION (KW)							
S. NO.	HULL LOA	BASE (kN)	FINAL (kN)	% REDUCTION	BASE (kW)	FINAL (kW)	% REDUCTION					
1	18 m	122.40	96.50	21.16	2100.00	1650.00	21.43					
2	21 m 141.30 114.5		114.50	18.97	2550.00	1960.00	23.14					
3	24 m	163.00	128.20	21.35	2800.00	2200.00	21.43					

Table 10.1 Resistance and Power Comparison for Base and Optimised Hull

The final resolution drawn is that the design not only presents excellent stability and seakeeping characteristics but has a resistance magnitude in the range of currently operating catamarans with a deviation of less than 9% as seen in the table 10.2.

POWER COMPARISON FOR ADVANCED HYBRID POWER PLANT									
VESSEL TVDE		Power (kW)							
VESSEL I YPE	CM*	Adv-Hybrid	% Deviation						
18 m CM-SWAS(S)H 1540.00 1650.00 7.14									
21 m CM-SWAS(S)H		1960.00							
24 m CM-SWAS(S)H	2015.00	2200.00	9.18						
*CM : DAMEN CATAM	ARAN :		<u>_</u>						
19.7 m : Fast Crew Suppli	er [®] 2008; 25.6	m : Fast Crew Supplier	[®] 2610						
-									

Table 10.2 Power comparison of currently operating Catamarans and Akulator hulls

10.2 SCOPE FOR IMPROVEMENT

While the practical feasibility of design can be confirmed with the results obtained it is recommended to carry out the RANS based sea-keeping analysis so that an accurate prediction of rolling characteristics can be obtained. In addition it is suggested to carry out a FEM based structural analysis and optimisation to further improve structural design, is will not only reduce the cost of raw material but will also provide the designer to accommodate more owner specific features. Additionally we can also design the fin stabilisers and spray rails to more effectively reduce the resistance of the hulls, making them even more economical to operate.

I would first like to thank my friend Mr. Kranthi Kumar Boina, for encouraging me to join EMship. I would especially like to thank Lloyds Register Foundation for providing me the scholarship that proved to be of great assistance for supporting my studies.

While EMship is a technical study program, the effort that goes into organising oneself from the point of view of administrative works and Erasmus mobility, is enormous. Stating that it is more difficult than the studies would actually be an understatement. The author would like to thank and express his utmost gratitude towards Ms. Christine Reynders and Ms. Emna Belaid for their continued support during entire duration of this course.

Apart from EMship lectures, a great deal of learning takes place in the group work and studies that form intrinsic part of the course. I would specially like to thank Mr. Nikhil Mathew, Mr. Binoy Pilakkat and Mr. Noufal P. Najeeb for providing proper guidance at all times. Special thanks to my dearest friend Mr. Manuel Perez, who's friendship is one of the best take away from this program.

Special thanks to Prof. Andre Hage and staff of DN&T for providing the dream internship that the author could have hoped for. The constant support, both at professional and personal level from EMship co-ordinator Prof. Philippe Rigo is greatly appreciated.

Last but not the least, the ever co-operating and encouraging thesis supervisor one could wish for, Prof. Zbigniew Sekulski. Thanks for his constant feedback on project progress and suggestions for improvement, which contributed to a large extent towards the successful completion of this master thesis.

iR. AKULA Nidarshan akula@greenexponent.com

This thesis was developed in the framework of the European Master Course in "Integrated Advanced Ship Design" named "EMSHIP" for "European Education in Advanced Ship Design", Ref.: 159652-1-2009-1-BE-ERA MUNDUS-EMMC.

CHAPTER 12 - REFERENCE & BIBLIOGRAPHY

- Victor A. Dubrovsky, [2009]. Multihulls: some results of development and new technical solutions, Saint-Petersburg, Navigation and Marine Sciences 2009, RC: 629.511; 629.5.01/.08
- [2] DNV-GL Rules [2012] for Classification and Construction, 1 Ship Technology, 3 Special Craft, 1 – High Speed Craft.
- [3] Apostolos D. Papanikolaou, [2011]. Holistic Ship Design Optimization: Merchant and Naval Ships, Vol 5, No 9, <u>http://www.shipjournal.co/index.php/sst/article/view/48/182</u>, January 21th, 2011.
- [4] K.A. Hafez, A.A. El-Kot, [2012] Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran, Department of Naval Architecture and Marine Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt.
- [5] Vasileios Georgiadis, Kyle Miller, and Leon Faison.[2008] Design and Assessment of a Super-High Speed, Hybrid Hydrofoil/SWATH Crew Boat, Innovative Ship Design Lab, Massachusetts Institute of Technology.
- [6] Luc Bordier [2012], Shape optimization of a ship based on CFD simulations, DCNS RESEARCH, STAR Global Conference 2012.
- [7] Urban buses: alternative powertrains for Europe, A fact-based analysis of the role of diesel hybrid, hydrogen fuel cell, trolley and battery electric powertrains, McKinsey & Company[2011]
- [8] Brizzolara S, [2011]. Hydrodynamic Design and Assessment by CFD Methods of a Hybrid Hydrofoil / SWATH hull for a Super High Speed USV. ONRG-N62909-10-1-7116 final report, Office of Naval Research Global, US Navy.
- [9] Brizzolara S, [2004] Parametric Optimization of SWAT-Hull Forms by a Viscous-Inviscid Free Surface Method Driven by a Differential Evolution Algorithm. Proceedings 25th Symposium on Naval Hydrodynamics, St. John"s, Newfoundland and Labrador, vol. V, 47-64.
- [10] Hoerner, S.F, [1992] Fluid-Dynamic Drag. Great Britain: L.A. Hoerner.
- [11] Brizzolara S, [2013]. Super-cavitating (SC) Surface-Piercing (SP) Hydrofoils: Design and Optimization Methods. ONRG-N62909-11-1-7007 final report. Office of Naval Research Global, US Navy.
- [12] Vernengo G., Brizzolara S. [2012]. A Reformulated Lifting Line Theory for Supercavitating Hydrofoil Design. Proceedings of the Eighth International

Symposium on Cavitation (CAV 2012). Research Publishing Services. ISBN: 978-981-07-2826-7, doi:10.3850/978-981-07-2826-7 281.

- [13] Kuiper, G. [1992]: "The Wageningen Propeller Series", Wageningen, The Netherlands: Maritime Research Institute Netherlands, N^o. 92-001
- [14] J. P. Ghose and R. P. Gokarn [2004] "Basic Ship Propulsion", Allied Publishers Pvt. Limited, 1st Edition, pp. 1-564
- [15] Man Diesel and Turbo [2012]: "Basic principles of ship propulsion", Man Diesel and Turbo, pp. 1-45
- [16] H. W. Lerbs, L. C. Burrill, J. D. Van Manen, L. Mazarredo, A. Silverleaf, M. S. Plesset, H. B. Lindgren and R. Brard [1960], "Propeller cavitation committee report", pp. 1-467
- [17] Bernitsas, M. M., Ray, D. and Kinley, P. [1981] "KT, KQ and Efficiency Curves for the Wageningen B-Series Propellers", Department of Naval Architecture and Marine Engineering, College of Engineering, The University of Michingan Ann Arbor, Michigan 48109, USA, N^o. 237 May 1981, pp 1-102
- [18] D. G. M. Watson [1998]: "Pratical Ship Design", Elsevier Ocean Engineering Book Series, Vol. 1, Elsevier Science Ltd., pp. 1-536
- [19] Kari Valkeejärvi [2006] "*The Ship's Electrical Network, Engine Control and Automation*", Marine Technology, Wärtsilä Corporation
- [20] Apostolos Papanikolaou [2014] "Ship Design Methodologies of Preliminary Design", Springer Dordrecht Heidelberg New York London, 1st Edition, pp. 1-628
- [21] MTU [2015] "Marine Power Products Guide", Catalogue for Propulsion Engine, June 2015
- [22] Molland, A. F., Turnock, S. R. and Hudson, D. A. [2011] "Ship Resistance and Propulsion – Pratical Estimation of Propulsive Power", Cambridge University Press, 1st Edition, pp 1-568
- [23] Sahoo, P. K. [2014] "Propulsion of Ships", EMShip Université de Liége and Florida Institute of Technology College of Engineering Department of Marine and Environmental Systems, pp 96-186
- [24] A. Olivieri, F. Pistano, A. Avanzini and F. Stern [2001] "Towing Tank Experiments of Resistance, Sinkage and Trim, Boundary Layer, Wake, and Free Surface low Around a Naval Combatant Insean 2340 Model", IIHR Technical Report N° 421, pp. 1-43
- [25] M. Gad-el-Hak [1987]: "The Water Towing Tank as an Experimental Facility An Overview", Experiments in Fluids, Vol. 5, pp. 289-297

ANNEXURES

ANNEX - 1

GENERAL SPECIFICATIONS OF ALL VESSELS

GI	ENERAL SPECIFICATION - 18 m P	ILOT / PATROL/CUSTON	ИВОАТ				
	GENERAL	DEC	K LAYOUT				
HULL MATERIAL	Aluminium 5083, H116	ANCHOR EQUIPMENT	1 x 60 kg HHP with chain and line				
SUPERSTRUCTURE	Aluminium 5083, H116	FENDERING	Rubber "D" type and heavy duty foam filled				
BASIC FUNCION	Crew and Pilot/Custom/Patrol Duties	DECK CRANE / WINCH	Aft Winch 0.5 T @ 2 m				
CLASSIFICATION RULES	DNV - GL 100 A5 HSDE RAS (200), Transfer Vessel + MC AUT	MOB RECOVERY SYSTEM	Electrically operated elevation platform				
	MENSIONS						
LENGTH O A	18.0 m		4				
LENGTH W.L.	13.0 m		8				
BEAM O.A.	9.50 m		1 x 16				
DEPTH	5.75 m	FIRE EXTINGUISHER	Hand fire extinguishers				
DRAUGHT	3.20 m	EPIRB + SART	-				
C	APACITIES	DECK LAYOUT n 5083, H116 ANCHOR EQUIPMENT 1 x 60 kg HHP with chain and line n 5083, H116 FENDERING Rubber "D" type and heavy duty foam filled Pilot/Custom/Patrol DECK CRANE / WINCH Aft Winch 0.5 T @ 2 m 100 A5 HSDE RAS nsfer Vessel MOB RECOVERY SYSTEM Electrically operated elevation platform 13.0 m LIFE BUOY 4 13.0 m LIFE BUOY 4 13.0 m LIFE RAT 1 x 16 5.75 m FIRE EXTINGUISHER Hand fire extinguishers Fixed Fi-Fi system 3.20 m EPIRB + SART - AUXILLIARY EQUIPMENT 5 tonne GENERAL SERVICE PUMP Electrically driven, 400V, Azcue CA 50 1 tonne - - 1.2 tonne ACCOMMODATION 0.8 tonne 0.8 tonne LOUNGE / GALLEY 6 People 2 TOILETS 2 6 SEATING AREA 6 CABINS - 100 AS TON SEARCH LIGHT 1x 1000W 230V 5 tonne COMITIONING 49000 BTU 2 tonne					
FUEL OIL	5 tonne	ENGINE ROOM VENTILATION	6380 m3/hr in engine room				
FUEL OIL TRIM TANK	5 tonne	GENERAL SERVICE PUMP	Electrically driven, 400V, Azcue CA 50				
LUBE OIL	1 tonne		·				
FRESH WATER	1.2 tonne	ACCON	IMODATION				
WASTE WATER	0.8 tonne	LOUNGE / GALLEY	6 People				
CREW	2	TOILETS	2				
INDUSTRIAL PERSONNEL	6	SEATING AREA	6				
		CABINS	-				
PEF	RFORMANCE	AIR CONDITIONING	49000 BTU				
SERVICE SPEED	20 Knots						
MAX. RANGE	700 nm at Max Speed	NAUTICAL AND	COMMUNICATION				
		SEARCH LIGHT	1x 1000W 230V				
DIESEL E	LECTRIC SYSTEM	COMPASS	Magnetic				
PROPULSION	1 x MTU 1490 kW	ECHO SOUNDER					
TOTAL POWER	1790 kW	VHF + VHF HAND HELD)				
PROPELLER	Fixed Pitch 5 Blade 2.0 D	RADAR + GPS + NAVTE	Х				
BOW THRUSTER	1 x 48 kW	AIS + MF/HF					
ELECTRICAL	24V d.c.	IMMERSAT / V-SAT					
	230V/400V 50 Hz a.c.	WIFI SYSTEM + CCTV					
BATTERY	68 kVA						

	GENERAL SPECIFICATION - 18 m		/ESSEL			
	GENERAL	DEC	K LAYOUT			
HULL MATERIAL	Aluminium 5083, H116	ANCHOR EQUIPMENT	2 x 60 kg HHP with chain and line			
SUPERSTRUCTURE	Aluminium 5083, H116	FENDERING	Rubber "D" type and heavy duty foam filled			
BASIC FUNCION	Crew, Personnel And Cargo Duties	DECK CRANE / WINCH	Aft Winch 0.5 T @ 2 m			
CLASSIFICATION RULES	DNV - GL 100 A5 HSDE RAS (200), Transfer Vessel + MC AUT	MOB RECOVERY SYSTEM	Electrically operated elevation platform			
	MENSIONS	LIFE SAVI				
LENGTH O A	18.0 m		4			
LENGTH W.L.	13.0 m		8			
BEAM O.A.	9.50 m		1 x 16			
DEPTH	5.75 m	FIRE EXTINGUISHER	Hand fire extinguishers			
DRAUGHT	3.20 m	FPIRB + SART	2			
C	APACITIES	DECK LAYOUT B33, H116 ANCHOR EQUIPMENT 2 x 60 kg HHP with cha and line B33, H116 FENDERING Rubber "D" type and heavy duty foam filled B33, H116 FENDERING Rubber "D" type and heavy duty foam filled B3, H116 FENDERING Aft Winch 0.5 T @ 2 m AS HSDE RAS MOB RECOVERY SYSTEM Electrically operated elevation platform LIFE SAVING EQUIPMENT 0 m LIFE BUOY 4 .0 m LIFE BUOY 4 4 .0 m LIFE ACKETS 8 50 m FIRE EXTINGUISHER Hand fire extinguishers Fixed Fi-Fi system 1 x 16 75 m FIRE EXTINGUISHER Hand fire extinguishers Fixed Fi-Fi system 2 00 m EPIRB + SART 2 2 00 m EPIRB + SART 2 2 00 m GENERAL SERVICE Electrically driven, 400 Azcue CA 50 2 00 nne VENTILATION 6380 m3/hr in engine room 2 00 nne ENGINE ROOM VENTILATION 6380 m3/hr in engine room 2 00 nne ENGINE ROOM VENTILATION 6380 m3/hr in engine room 2 <t< td=""></t<>				
FUEL OIL	7 tonne	ENGINE ROOM VENTILATION	6380 m3/hr in engine room			
FUEL OIL TRIM TANK	5 tonne	GENERAL SERVICE PUMP	Electrically driven, 400V, Azcue CA 50			
LUBE OIL	1 tonne					
FRESH WATER	1.2 tonne	ACCON	IMODATION			
WASTE WATER	0.8 tonne	LOUNGE / GALLEY	6 People			
CREW	2	TOILETS	2			
INDUSTRIAL PERSONNEL	6	SEATING AREA	6			
		CABINS	-			
PEF	RFORMANCE	AIR CONDITIONING	49000 BTU			
SERVICE SPEED	20 Knots					
MAX. RANGE	700 nm at Max Speed	NAUTICAL ANI	COMMUNICATION			
	·	SEARCH LIGHT	1x 1000W 230V			
DIESEL E	ELECTRIC SYSTEM	COMPASS	Magnetic			
PROPULSION	1 x MTU 1490 kW	ECHO SOUNDER				
TOTAL POWER	1790 kW	VHF + VHF HAND HELD)			
PROPELLER	Fixed Pitch XX Blade XX D	RADAR + GPS + NAVTE	X			
BOW THRUSTER	1 x 48 kW	AIS + MF/HF				
ELECTRICAL	24V d.c.	IMMERSAT / V-SAT				
NETWORK	230V/400V 50 Hz a.c.	WIFI SYSTEM + CCTV				
EMERGENCY BATTERY	68 kVA					

GI	ENERAL SPECIFICATION - 21 m P	ILOT / PATROL/CUSTON	ИВОАТ			
	GENERAL	DEC	K LAYOUT			
HULL MATERIAL	Aluminium 5083, H116	ANCHOR EQUIPMENT	1 x 67 kg HHP with chain and line			
SUPERSTRUCTURE	Aluminium 5083, H116	FENDERING	Rubber "D" type and heavy duty foam filled			
BASIC FUNCION	Crew and Pilot/Custom/Patrol Duties	DECK CRANE / WINCH	Aft Winch 0.5 T @ 2 m			
CLASSIFICATION RULES	DNV - GL 100 A5 HSDE RAS (200), Transfer Vessel + MC AUT	MOB RECOVERY SYSTEM	Electrically operated elevation platform			
	21.0 m		4			
	16.0 m		15			
BEAIVI U.A.	9.50 m		I X 10			
DEPTH	5.75 m	FIRE EXTINGUISHER	Fixed Fi-Fi system			
DRAUGHT	3.20 m	EPIRB + SART	-			
С	APACITIES	AUXILLIARY EQUIPMENT				
FUEL OIL	9 tonne	ENGINE ROOM VENTILATION	9560 m3/hr in engine room			
FUEL OIL TRIM TANK	5 tonne	GENERAL SERVICE PUMP	Electrically driven, 400V, Azcue CA 50			
LUBE OIL	1.5 tonne					
FRESH WATER	1.2 tonne	ACCON	IMODATION			
WASTE WATER	0.8 tonne	LOUNGE / GALLEY	10 People			
CREW	2	TOILETS	1			
INDUSTRIAL PERSONNEL	6	SEATING AREA	10			
		CABINS	-			
PEF	RFORMANCE	AIR CONDITIONING	55000 BTU			
SERVICE SPEED	20 Knots					
MAX. RANGE	700 nm at Max Speed	NAUTICAL AND	COMMUNICATION			
		SEARCH LIGHT	1x 1000W 230V			
DIESEL E	ELECTRIC SYSTEM	COMPASS	Magnetic			
PROPULSION	1 x MTU 1839 kW	ECHO SOUNDER				
TOTAL POWER	1960 kW	VHF + VHF HAND HELD)			
PROPELLER	Fixed Pitch 5 Blade 2.0 D	RADAR + GPS + NAVTE	Х			
BOW THRUSTER	1 x 48 kW	AIS + MF/HF				
ELECTRICAL	24V d.c.	IMMERSAT / V-SAT				
NETWORK	230V/400V 50 Hz a.c.	WIFI SYSTEM + CCTV				
EMERGENCY BATTERY	68 kVA					

	GENERAL SPECIFICATION – 21 m		/ESSEL
	GENERAL	DEC	K LAYOUT
HULL MATERIAL	Aluminium 5083, H116	ANCHOR EQUIPMENT	2 x 67 kg HHP with chain and line
SUPERSTRUCTURE	Aluminium 5083, H116	FENDERING	Rubber "D" type and heavy duty foam filled
BASIC FUNCION	Crew, Personnel And Cargo Duties	DECK CRANE / WINCH	Aft Winch 0.5 T @ 2 m
CLASSIFICATION RULES	DNV - GL 100 A5 HSDE RAS (200), Transfer Vessel + MC AUT	MOB RECOVERY SYSTEM	Electrically operated elevation platform
	MENSIONS		
	21.0 m		4
LENGTH W.I	16.0 m		15
BEAM O A	9 50 m		1 x 16
DEAM O.A.	5.50 m		Hand fire extinguishers
DEPTH	5.75 m	FIRE EXTINGUISHER	Fixed Fi-Fi system
DRAUGHT	3.20 m	EPIRB + SART	2
C	APACITIES	AUXILLIA	RY EQUIPMENT
FUEL OIL	10 tonne	ENGINE ROOM VENTILATION	9560 m3/hr in engine room
FUEL OIL TRIM TANK	5 tonne	GENERAL SERVICE PUMP	Electrically driven, 400V, Azcue CA 50
LUBE OIL	1.5 tonne		
FRESH WATER	1.2 tonne	ACCON	IMODATION
WASTE WATER	0.8 tonne	LOUNGE / GALLEY	10 People
CREW	3	TOILETS	1
INDUSTRIAL PERSONNEL	10	SEATING AREA	10
		CABINS	-
PEF	RFORMANCE	AIR CONDITIONING	55000 BTU
SERVICE SPEED	20 Knots		
MAX. RANGE	700 nm at Max Speed	NAUTICAL ANI	COMMUNICATION
	· · · ·	SEARCH LIGHT	1x 1000W 230V
DIESEL E	ELECTRIC SYSTEM	COMPASS	Magnetic
PROPULSION	1 x MTU 1839 kW	ECHO SOUNDER	
TOTAL POWER	1960 kW	VHF + VHF HAND HELD)
PROPELLER	Fixed Pitch 5 Blade 2.0 D	RADAR + GPS + NAVTE	X
BOW THRUSTER	1 x 48 kW	AIS + MF/HF	
ELECTRICAL	24V d.c.	IMMERSAT / V-SAT	
NETWORK	230V/400V 50 Hz a.c.	WIFI SYSTEM + CCTV	
EMERGENCY BATTERY	68 kVA		

G	GENERAL SPECIFICATION – 24 m		/ESSEL
	GENERAL	DEC	K LAYOUT
HULL MATERIAL	Aluminium 5083, H116	ANCHOR EQUIPMENT	2 x 67 kg HHP with chain and line
SUPERSTRUCTURE	Aluminium 5083, H116	FENDERING	Rubber "D" type and heavy duty foam filled
BASIC FUNCION	Crew, Personnel And Cargo Duties	DECK CRANE / WINCH	Deck Crane Heila HLM 20-2S
CLASSIFICATION RULES	DNV - GL 100 A5 HSDE RAS (200), Transfer Vessel + MC AUT	MOB RECOVERY SYSTEM	Electrically operated elevation platform
	MENSIONS		
	24.0 m		
	19.0 m		4
	9.50 m		10 2 x 16
DEAIVI U.A.	9.30 11		2 X 10 Hand fire extinguishers
DEPTH	5.75 m	FIRE EXTINGUISHER	Fixed Fi-Fi system
DRAUGHT	3.20 m	EPIRB + SART	2
C	APACITIES	AUXILLIA	RY EQUIPMENT
FUEL OIL	12 tonne	ENGINE ROOM VENTILATION	12000 m3/hr in engine room
FUEL OIL TRIM TANK	5 tonne	GENERAL SERVICE PUMP	Electrically driven, 400V, Azcue CA 50
LUBE OIL	2 tonne		
FRESH WATER	1.2 tonne	ACCON	IMODATION
WASTE WATER	0.8 tonne	LOUNGE / GALLEY	12 People
CREW	3	TOILETS	2
INDUSTRIAL PERSONNEL	12	SEATING AREA	12
		CABINS	1
PEF	RFORMANCE	AIR CONDITIONING	60000 BTU
SERVICE SPEED	20 Knots		
MAX. RANGE	700 nm at Max Speed	NAUTICAL AND	COMMUNICATION
	· · · ·	SEARCH LIGHT	2x 1000W 230V
DIESEL E	ELECTRIC SYSTEM	COMPASS	Magnetic
PROPULSION	2 x MTU 1020 kW	ECHO SOUNDER	
TOTAL POWER	2200 kW	VHF + VHF HAND HELD)
PROPELLER	Fixed Pitch 5 Blade 2.0 D	RADAR + GPS + NAVTE	Х
BOW THRUSTER	1 x 48 kW	AIS + MF/HF	
ELECTRICAL	24V d.c.	IMMERSAT / V-SAT	
NETWORK	230V/400V 50 Hz a.c.	WIFI SYSTEM + CCTV	
EMERGENCY BATTERY	68 kVA		

GENERAL	SPECIFICATION – 24 m WINDFA	RM SUPPORT VESSEL (W	ith Capt. Cabin)		
	GENERAL	DEC	K LAYOUT		
HULL MATERIAL	Aluminium 5083, H116	ANCHOR EQUIPMENT	2 x 67 kg HHP with chain and line		
SUPERSTRUCTURE	Aluminium 5083, H116	FENDERING	Rubber "D" type and heavy duty foam filled		
BASIC FUNCION	Crew, Personnel And Cargo Duties	DECK CRANE / WINCH	Deck Crane Heila HLM 20-2S		
CLASSIFICATION RULES	DNV - GL 100 A5 HSDE RAS (200), Transfer Vessel + MC AUT	MOB RECOVERY SYSTEM	Electrically operated elevation platform		
DI	MENSIONS	LIFE SAVI	NG EQUIPMENT		
LENGTH O.A.	24.0 m	LIFE BUOY	4		
LENGTH W.L.	19.0 m	LIFE JACKETS	16		
BEAM O.A.	9.50 m	LIFE RAFT	2 x 16		
DEPTH	5.75 m	FIRE EXTINGUISHER	Hand fire extinguishers Fixed Fi-Fi system		
DRAUGHT	3.20 m	EPIRB + SART	2		
C	APACITIES	AUXILLIA	RY EQUIPMENT		
FUEL OIL	12 tonne	ENGINE ROOM VENTILATION	12000 m3/hr in engine room		
FUEL OIL TRIM TANK	5 tonne	GENERAL SERVICE PUMP	Electrically driven, 400V, Azcue CA 50		
LUBE OIL	2 tonne		·		
FRESH WATER	1.2 tonne	ACCON	IMODATION		
WASTE WATER	0.8 tonne	LOUNGE / GALLEY	12 People		
CREW	3	TOILETS	2		
INDUSTRIAL PERSONNEL	12	SEATING AREA	12		
		CABINS	2		
PEF	RFORMANCE	AIR CONDITIONING	60000 BTU		
SERVICE SPEED	20 Knots		·		
MAX. RANGE	700 nm at Max Speed	NAUTICAL ANI	COMMUNICATION		
	·	SEARCH LIGHT	2x 1000W 230V		
DIESEL E	ELECTRIC SYSTEM	COMPASS	Magnetic		
PROPULSION	2 x MTU 1020 kW	ECHO SOUNDER			
TOTAL POWER	2200 kW	VHF + VHF HAND HELD)		
PROPELLER	Fixed Pitch 5 Blade 2.0 D	RADAR + GPS + NAVTE	X		
BOW THRUSTER	1 x 48 kW	AIS + MF/HF			
ELECTRICAL	24V d.c.	IMMERSAT / V-SAT			
NETWORK	230V/400V 50 Hz a.c.	WIFI SYSTEM + CCTV			
EMERGENCY BATTERY	68 kVA				

ANAL SUPPORT 1 CABIN SUPPORT 2 CABIN S		حب		H	Н	Ω	H	E	D	C	B	
ANN SUPPORT 1 CABIN SUPPORT 2 CABIN SU		NIL REV		Ĥ	ALUE (m) 0.50 0.35 3.2 2.1 5.75 2.6						1	1
NRM SUPPORT 1 CABIN SUPPORT 2 CABIN SU	10	1 TAL INFORMATION WHICH ANY MANNER	EMENT MBER	SSEL TYPE M - SWAS(S) PILOT / WSV								
ARM SUPPORT 1 CABIN SUPPORT 2 CABIN SUPPORT 2 CABIN Support 2 CABIN MODULE		MS -	RRANG		PARAMETE RIGGER WIDTH RIGGER WIDTH AFT (T) DRAFT (T') DIAMETER							
ARM SUPPORT 2 CABIN SUPPORT 2 CABIN SUPPORT 2 CABIN SUPPORT 2 CABIN ARCHITECT ARCHITECT ARCHITECT APPROVALS APPROVALS S THE PROPERTY OF AKUA NIMA WHOLY OF IN PART NOF AKUA NIMA SUPPORT OF AKUA NIMA		TO ANY PERSO	ERAL A	NAME ATOR	SED HULLS MAX. OUTF MIN. OUTR DESIGN DR DESIGN DR UIGHT SHIP DEPTH (D) DEPTH (D) MAX TUBE							
ARM SUPPORT 2 MODULE 21.0 VALUE 21.0 9716025852 (NDIA) 9716025852 0.25 9500 9.50 9716025852 0.25 9500 9.50 9500 0.25 9500 9.50	9	: F AKULA NIDAF	TITLE GEN D NUMBEI	vessel AKULA	ONS OF PROPO 5. NO. 7 8 9 10 11 11 12				2	CABIN		
MODULE MODULE MODULE MODULE SUPPORT SUPPORT ARCHITE SUPPORT MODULE MODULE		PROPERTY O		(BELGIUM) (INDIA)	AL DIMENSI VALUE (m) 24.0 21.0 18.0 9.00 9.50 0.25				2 CABI	PORT 1		
		SS WING IS THE I	APPROVALS	497677494 9716025852 sxponent.com ponent.com	PRINCIP	MODULE	1		SUPPORT	FARM SUP		

1				Ħ			<u> </u>	· · · ·	
	REV		[,] [,] [,] [,] [,] [,]						
	DI NAVY WANNER	NUMBER	VESSEL TYPE CM - SWAS(S) PILOT / WSV						
PERSON OR USE	CMS SHEET:-	DRAWING							
9 DISCLOSED TO ANY	: F AKULA NIDARSHAN &	TITLE TANK PI D NUMBER	VESSEL NAME AKULATOR						
IN PAR	PROPERTY OF	YARI	(BELGIUM) 2 (INDIA)						
O WHOLLY OR	ASS WING IS THE	APPROVALS	497677494 9716025852 exponent.com	TANK TANK TANK		VOLUMES TANK TANK TANK	-	VOLUMES TANK TANK	

	ب				-	-	H	କ କ	7	E	Ð	C	B	A
		REV	NIL		H(S)	Ĥ			1		1	1		
10	L INFORMATION WHICH		ယ	IBER	CM-SWAS(\$	EL TYPE - SWAS(S) ILOT / WSV								:
	ONTAINS CONFIDENTIA RSON OR USED IN A	SHEET:-	CMS –	DRAWING NUN	AN 24m	VESS P								_
9	F AKULA NIDARSHAN & C OR DISCLOSED TO ANY PE			D NUMBER	TITLE LINES PL	VESSEL NAME AKULATOR								c
	THE PROPERTY O LY OR IN PART NO	DATE		VALS YAR	HITECT	7494 (BELGIUM) 25852 (INDIA) t.com com					LINES			-
	T/DRAWING IS	CLASS	MMD WNER	APPRO	IAN AVAL ARC	+32- 49767 +91- 97160 greenexponer eenexponent.					TTOCK			

ANNEX – 2 STRUCTURES

CLASS NOTATION 좌 100 A5 HSDE RSA (200) "Transfer Vessel" 좌 MC AUT

In GL rules	the notation above is divided into following representations:					
	The Maltese Cross means Hull, machinery and/or special equipment (e.g. refrigerating installation) have been constru- under the supervision of and in accordance with the Rules of DNV-GL at the shipyard and/or at subcontractors supply construction components/hull sections – with certification by DNV-GL of components and materials requiring inspecti subject to the DNV-GL Construction Rules As for example, hull, which has been constructed under supervision as state 2.3, and for which proof of subdivision and damage stability has been furnished, one of the two markings, shown on t left are assigned.					
100 A5	The ship's hull fully complies with the requirements of the Construction Rules of DNV-GL or other rules considered to be equivalent.					
HSDE	Notation for craft which have been constructed by using elements of Part 3 – Special Craft, Chapter 1 – High Speed Craft and which are not subject to the IMO HSC Code. Details regarding rule application are specified in the Class Certificate.					
RSA (200)	this area of service is restricted, in general, to trade along the coast, provided that the distance to the nearest port of refuge as well as the offshore distance do not exceed 200 nautical miles. This applies also to trade in the North Sea and within enclosed seas, such as the Mediterranean, the Black Sea and waters with similar seaway conditions. Trade to Iceland, Spitsbergen and the Azores is exempted.					
МС	MC means that the machinery including electrical installations complies with the requirements of the Construction Rules of DNV-GL or other rules considered to be equivalent.					
AUT	The machinery installation is fitted with equipment for unattended machinery spaces, so that it does not require to be operated and/ or maintained for periods of at least 24 hours.					

CLASS NOTATION 좌 100 A5 HSDE RSA (200) "Transfer Vessel" 좌 MC AUT

	BASIC PARTICULARS					
S. No.	PARTICULARS	SYMBOL	VALUE	UNITS		
1	Length Over All	Loa	24	m		
2	Length b/w Perpendiculars	Lbp	21	m		
3	Length at Waterline	Lwl	19	m		
4	Depth	D	5.75	m		
5	Draft Amidships	Т	3.2	m		
6	Immersed depth	d	3.2	m		
7	Beam Overall	Воа	9.5	m		
8	Beam max extents on WL	Bwl	9	m		
9	Block coeff. (Cb)	Cb	0.848			
10	Speed	Vs	20	Knots		
11	Speed	Vs	10.28	m/s		
12	Displacement (Volume)	∇	118.5	m3		
13	Displacement (Mass)	Δ	121.4625	Tonne		
14	Applicability of GL-HSC Rule		TRUE			
15	Longitudinal CG	LCG	11.1	m		
16	Vertical CG	VCG	2.1	m		
17	Waterplane Area	Awp	27.7	m2		
18	Operational H1/3	Hs	2	m		

NOTES	
I Part 3	
Chapter 1	
	"Small waterplane area twin hull" (SWATH)
	is a craft for which the weight is substantially supported
C 1.4.63	by a submerged twin hull connected to the
	emerging part of the craft by struts with a small waterplane
	area.
Section 2	Buoyancy, Stability and Subdivision
	Model or full-scale tests and/or calculations (as appropriate) shall also include
C 2.1.6	consideration of the following known stability hazards to which highspeed
	craft are known to be liable, according to craft type:
C 2.1.6.1	directional instability, which is often coupled to roll and pitch instabilities;
62162	broaching and bow diving in following seas at speeds near to wave speed,
C 2.1.0.2	applicable to most types;
	pitch instability of SWATH (small waterplane area twin hull) craft due to the
C 2.1.6.8	hydrodynamic moment developed as a result of the water flow over the
	submerged lower hulls;

CHAPTER 1, SECTION 2 BUOYANCY, STABILITY AND SUBDIVISION

	FRAME SPACING & COLLISION BULKHEAD (CB)					
	24 m - 0	CM-SWAS(S)H				
S. No.	PARTICULAR	FORMULA	VALUE	UNITS		
1	Frame Spacing	1.2*(0.35+0.005L)	0.534	m		
2	CB Min Dist. From FP	0.05 L	0.95	m		
3	CB Max Dist. From FP	0.05 L +3	3.95	m		
	21 m - CM-SWAS(S)H					
S. No.	PARTICULAR	FORMULA	VALUE	UNITS		
1	Frame Spacing	1.2*(0.35+0.005L)	0.516	m		
2	CB Min Dist. From FP	0.05 L	0.8	m		
3	CB Max Dist. From FP	0.05 L +3	3.8	m		
	i					
	18 m - 0	CM-SWAS(S)H				
S. No.	PARTICULAR	FORMULA	VALUE	UNITS		
1	Frame Spacing	1.2*(0.35+0.005L)	0.498	m		
2	CB Min Dist. From FP	0.05 L	0.65	m		
3	CB Max Dist. From FP	0.05 L +3	3.65	m		

APPROXIMATE FRAME SPACING

To initiate the design a conservative approach is followed to fix the frame spacing. This rule to approximate the frame spacing is taken from DNV-GL Rules High Speed Crafts: Yacht and Boats less than 24 m, Part 3, Section 1, Chapter 3, Hull Structure B. Glass Fibre Reinforced Plastic Hulls, 5.8. In practical scenario also, for aluminium hulls the frame spacing is not more than 500 mm. We could have taken any other value (let's say 380-450mm) also, all it will do is change the structural calculation with plate thickness and scantlings to match the required Section modulus based on the calculated bending moment and shear force. As we intended to do structural optimisation we took this as a starting reference.

NOTES				
	At least the following watertight bulkheads are to b	e fitted in all craft:		
C 2 1 8	 one collision bulkhead, 			
C 2.1.8	 one afterpeak bulkhead, 			
	 one bulkhead at each end of the machinery space 			
	For the purpose of making damage stability calculat	ions, the volume and surface	5	
	permeabilities shall be, in general, as follows:			
	SPACE	PERMEABILITY	REMARKS	
	Appropriate to cargo or stores	60		
C 2.6.2	Occupied by Accomposition	95		
	Occupied by Accomodation			
	Intended for Liquids	0 or 95		
	Appropriate to cargo vehicles	00155		
	Neid Spaces	90		
	volu spaces	95		
	The Administration may permit the use of low-dens	ity foam or other media to p	rovide	
C 2.6.4	2.6.4 buoyancy in void spaces, provided that satisfactory evidence is provided that any su			
	nd is:			
C 2.6.4.1	of closed-cell form if foam, or otherwise impervious	s to water absorption;		
C 2.6.4.2	structurally stable under service conditions;			
	chemically inert in relation to structural materials with which it is in contact or other			
C 2.6.4.3	contact (reference is made t	o 7.4.3.7);		
	and			
C 2.6.4.4	property secured in place and easily removable for r	inspection of the volu spaces	•	
		the first of the second second		
C 2.6.5	The Administration may permit void bottom spaces	to be fitted within the water	rtight	
	envelope of the hull without the provision of a bilge	e system or air pipes provided	d that:	
	the structure is capable of withstanding the pressur	e head after any of the dama	ages required	
C 2.6.5.1	by this section:		.800.040.00	
	when carrying out a damage stability calculation in a	accordance with the require	ments of this	
C 2.6.5.2	section, any void space adjacent to the damaged zo	ne shall be included in the ca	alculation and	
	the criteria in 2.6, 2.13 and 2.15 complied with;			
0.2.6.5.2	the means by which water which has leaked into the	e void space is to be remove	d shall be	
C 2.6.5.3	included in the craft operating manual required by S	Section 18; and		
02654	adequate ventilation is provided for inspection of the	ne space under consideration	as required	
C 2.6.5.4	by 2.2.1.2.			
	and an and filled with factor of the b	I		
	void spaces filled with foam or modular buoyancy e	rements or any space withou	it a venting	
C 2.6.5.5	system are considered to be void spaces for the pur	poses of this paragraph, pro	vided such	
	toam or elements fully comply with 2.6.4.			

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

Applicability of DNV-GL-HSC Rule

If V ≥ 7,16*Δ^1/6	15.93	Knots
Applicability of DNV-GL-HSC Rule	TRUE	

<u>C 3.1.3</u> <u>Units</u>

<u>C 3.1.3.1</u>

Unless otherwise specified, the following units are used in the Rules:

- thickness of plating [mm]
- section modulus of stiffeners [cm3]
- shear area of stiffeners [cm2]
- span and spacing of stiffeners [m]
- stresses [MPa]
- concentrated loads [kN]
- distributed loads [kN/m] or [kPa]

Table C 3.2.1 Aluminium alloys for welded construction

	Guaranteed Mechanical Characteristics							
	Alum	inium Alloy		Unwelded	Condition	Welded	Condition	
ALLOY	Products	Temper	Thickness	Rp0.2	Rm	Rp0.2'	Rm'	
			mm	MPa	MPa	MPa	MPa	
5083	Rolled	0/H111/H112	t ≤ 50	125	275	125	275	
		H116/H32/H321	t ≤ 50	215	305	125	275	
Rp0.2 and Rp0.2' are the minimum guaranteed yield stresses								
Rm and Rm	n' are the m	ninimum guarantee	d tensile str	engths				

The heat-affected zone may be taken to extend 25 mm on each side of the weld axis.

C 3.2.3.2	Influence of welding on mechanical characteristics
C 3.2.3.2.5	Aluminium alloys of series 5000 other than condition 0 or H111 are subjected to a drop in mechanical strength in the welded areas. The mechanical characteristics to consider in welded condition are, normally, those of condition 0 or H111, except otherwise indicated in Table C3.2.1. Higher mechanical characteristics may be taken into account, provided they are duly justified.

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

<u>C 3.2.3.3.1</u> Material factor "k" for scantlings of structural members made of aluminium alloy

0.8

C 3.3.1 Vertical acceleration at LCG

k

S. No.	Parameter	Value	Units		REMARKS
1	aCG	2.294	m/sec2		
2	cHSC	0.5		Table C 3.3.1	Pilot Boat Conservative Approach
3	cRW	1			

The longitudinal distribution of vertical acceleration along the hull is given by:

	LCG	11.5	m
S. No.	Position X	Kv	aV
1	0	1	2.294
2	11.5	1	2.294
3	14.125	1.25	2.868
4	16.75	1.5	3.441
5	19.375	1.75	4.015
6	22	2	4.588

C 3.3.2 Transverse acceleration

S. No.	Parameter	Value	Units
1	at	1.605	m/s2
2	r	19	m

<u>C 3.3.3</u> Assessment of limit operating conditions

S. No.	Parameter	Value	Units	REMARKS
1	Hsm	5.485	m	Max Hs
2	Hs	2	m	NOTE : Selected from the General Data Available

C 3.3.3.2 Limitation imposed by vertical acceleration at LCG

S. No.	Parameter	Value	Units
1	Kt	0.879	
2	Kf	5.201	
3	К	5.918	
4	Kh	1.869	
5	Xcg	10.300	m
6	Hs	1.728	m

<u>C 3.3.3.4</u> Limitation imposed by global loads

C 3.3.3.4.3 For SWATH craft, the global loads as given in C3.4.3 are not depending on ship motions.

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

<u>C 3.4.3</u> <u>Small waterplane area twin-hull (SWATH) craft - Forces and moments acting on twin-hull connections</u>

C 3.4.3.1 Side beam force

The design beam side force

S. No.	Parameter	Value	Units
1	Fq	3228.606	kN
2	Т	3.2	m
3	Δ	121.4625	tonne
4	d	1.541719	m
5	Ls	2.134626	m
6	λ	1.901863	
7	Alat	220	m2

S. No.	Parameter	Units		
1	The lateral pressure			
Ţ	Pq	14.67548346	kN/m2	
2	Effective length			
2	Le	68.75	m	
2	The constant lateral force per unit			
3	qQ	46.96154706	kN/m	

C 3.4.3.2 Bending moment

S. No.	Parameter	Value	Units
1	Mq	6941.504	kN.m
2	hM	2.15	m
3	Height of Deck	0.8	m
4	Depth of Vessel	5.75	m

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

<u>C 3.5</u> <u>Local Loads and Design Criteria</u>

C 3.5.2 Load centre

C 3.5.2.1 For plates:

vertical stiffening system:		
stiffener spacing	0.5	m
horizontal stiffening system		
Midpoint of plate field	0.25	m

<u>C 3.5.2.2</u> For stiffeners and girders:

centre of span	0.5	m

C 3.5.3 Impact pressure on the bottom of hull

S. No.	Parameter	Value	Units	
1	Vfr	2.358	m/s	
2	Lwl	19	m	
The impact pressure				
3	Psl	NA	kPa	

Longitudinal bottom impact pressure distribution factor

S. No.	Position X	x/L	K1
1	0	0	0.5
2	1.9	0.1	0.6
3	3.8	0.2	0.7
4	5.7	0.3	0.8
5	7.6	0.4	0.9
6	9.5	0.5	1
7	11.4	0.6	1
8	13.3	0.7	1
9	15.2	0.8	1
10	17.1	0.9	0.75
11	19	1	0.5

Factor accounting for impact area

S. No.	Parameter	Value	REMARKS
1	K2 ≥	0.5	Plating
2	K2 ≥	0.45	Stiffener
3	K2 ≥	0.35	Girder and Floors

PLATING					
S. No.	Parameter	Value	UNITS	REMARKS	
1	К2	0.412			
2	u	2.823			
3	S	0.750			
4	Sr	26.570	m2	Reference Area	
5	Stiffener Spacing	0.5	m		
6	Stiffener Span	1.5	m		
7	Selected K2	0.5			

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

STIFFNER					
S. No.	Parameter	Value	UNITS	REMARKS	
1	К2	0.412			
2	u	2.823			
3	S	0.750			
4	Sr	26.570	m2	Reference Area	
5	Stiffener Spacing	0.5	m		
6	Stiffener Span	1.5	m		
7	Selected K2	0.45			

GIRDERS AND FLOORS						
S. No.	Parameter	Value	UNITS	REMARKS		
1	К2	0.412				
2	u	2.823				
3	S	0.750				
4	Sr	26.570	m2	Reference Area		
5	Stiffener Spacing	0.5	m			
6	Stiffener Span	1.5	m			
7	Selected K2	0.412				

Factor accounting for shape and deadrise of the hull

S. No.	Parameter	Value	Units
1	КЗ	1.1	
2	αd	15	deg
3	αdCG	20	deg

C 3.5.4 Impact pressure on wet deck (including tunnel radius)

S. No.	Parameter	Value	Units	REMARKS
1	psl		kPa	
2	Vsl	2.835	m/s	relative impact velocity

Longitudinal wet deck impact pressure distribution factor

					1.2	
S. No.	Position X	x/L	KWD	psl	1.2	
1	0	0	0.5	-3.918	1	
2	1.9	0.1	0.45	-3.526	0.8	
3	3.8	0.2	0.4	-3.134		
4	5.7	0.3	0.4	-3.134	≥ 0.6	1
5	7.6	0.4	0.4	-3.134	0.4	
6	9.5	0.5	0.4	-3.134		
7	11.4	0.6	0.4	-3.134	0.2	
8	13.3	0.7	0.4	-3.134	0	
9	15.2	0.8	1	-7.836	0 0.2 0.4 0.6	
10	17.1	0.9	1	-7.836	x/L	
11	19	1	1	-7.836		

1.2								
1								
0.8								
DA 0.6								
0.4								
0.2		_						
0								
	0	0.2	0.4	0.6	0.8	1	. 1.	.2
				x/L				

Vx	20	knots	
На	2.55	m	air gap equal to the distance between the waterline at draught T and the wet deck
CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

C 3.5.5	Sea pressures
0.01010	ocu pressures

<u>C 3.5.5.1</u>	Sea	pressure on	bottom	and side	shell

	For Under Water Hull Central Tube							
S. No.	Position X	x/L	Ps min	Ps (kPa)				
1	0	0	7.52	33.17				
2	1.9	0.1	7.52	33.17				
3	3.8	0.2	7.52	33.17				
4	5.7	0.3	7.52	33.17				
5	7.6	0.4	7.52	33.17				
6	9.5	0.5	7.52	33.17				
7	11.4	0.6		33.17				
8	13.3	0.7		33.17				
9	15.2	0.8		33.17				
10	17.1	0.9	15.04	33.17				
11	19	1	15.04	33.17				

	For Over Water Hull Central Tube							
S. No.	Position X	x/L	Ps min	Ps (kPa)				
1	0	0	7.52	7.67				
2	1.9	0.1	7.52	7.67				
3	3.8	0.2	7.52	7.67				
4	5.7	0.3	7.52	7.67				
5	7.6	0.4	7.52	7.67				
6	9.5	0.5	7.52	7.67				
7	11.4	0.6		7.67				
8	13.3	0.7		7.67				
9	15.2	0.8		7.67				
10	17.1	0.9	15.04	7.67				
11	19	1	15.04	7.67				

	For Under Water Hull Outrigger							
S. No.	Position X	x/L	Ps min	Ps (kPa)				
1	0	0	7.52	36.05				
2	1.9	0.1	7.52	36.05				
3	3.8	0.2	7.52	36.05				
4	5.7	0.3	7.52	36.05				
5	7.6	0.4	7.52	36.05				
6	9.5	0.5	7.52	36.05				
7	11.4	0.6		36.05				
8	13.3	0.7		36.05				
9	15.2	0.8		36.05				
10	17.1	0.9	15.04	36.05				
11	19	1	15.04	36.05				

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

	For Over Water Hull Outrigger							
S. No.	Position X	x/L	Ps min	Ps (kPa)				
1	0	0	7.52	10.55				
2	1.9	0.1	7.52	10.55				
3	3.8	0.2	7.52	10.55				
4	5.7	0.3	7.52	10.55				
5	7.6	0.4	7.52	10.55				
6	9.5	0.5	7.52	10.55				
7	11.4	0.6		10.55				
8	13.3	0.7		10.55				
9	15.2	0.8		10.55				
10	17.1	0.9	15.04	10.55				
11	19	1	15.04	10.55				

<u>C 3.5.5.5</u> <u>Sea pressures on deckhouses</u>

S. No.	Parameter	Value	Units
1	Front Wall		
Ţ	pSU	17.9	kPa
2	Side and Aft Wall		
2	pSU	4	kPa
2	Other Walls and Side		
5	pSU	3	kPa
4	Unprotected front wa	lls located at the fo	ore end
4	pSU	NA	kPa

C 3.5.6.2 Pressures on watertight bulkheads

S. No.	Parameter	Value	Units
1	pSB	31.883	kPa
2	h3	3.25	m

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

 C 3.5.8
 Deck loads

 C 3.5.8.1
 General

S. No.	Parameter	Value	Units	REMARKS
1	Pd	12.334	kPa	
2	р	4.350	kPa	uniform pressure due to the load carried [kPa]
3	av	4.588	m/s2	design vertical acceleration, defined in C3.3

C 3.5.8.2 Weather decks and exposed areas

S. No.	Parameter	Value	Units	REMARKS
1	р	4.35	kPa	if 2 < zd < 3
2	zd	2.55	m	vertical distance from deck to waterline at draught T

<u>C 3.5.8.4</u> Enclosed accommodation decks

p 3 kPa

C 3.5.8.6 Platforms of machinery spaces and mooring decks

The minimum value to be considered for platforms of machinery spacesp8kPa

The minimum value to be considered for platforms of mooring decksp6kPa

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

C 3.7	Steel and Aluminium Allov Craft

<u>C 3.7.1</u>

Structural Details

$$\mu = \sqrt{1.1 - 0.5 * \left(\frac{s}{l}\right)^2}$$

S. No.	Parameter	Value	Units	REMARKS
1	μ	1.022		which needs not be taken greater than 1.0
2	S	0.5	m	
3	I	1.5	m	
4	μ	1		Selected

Overall strength (Global) <u>C 3.7.3</u>

Longitudinal strength <u>C 3.7.3.1</u>

$$\sigma_{bl} = \left| \frac{M_{bl}}{I_y} * (z - z_0) * 10^{-3} \right|$$

S. No.	Parameter	Value	Units	REMARKS
1	σam	87.5	MPa	Refer Allowabale Stress Annex
2	Mbl	6941.504	kNm	
3	σbl	58.34	MPa	
4	Structure	TRUE		if σbl < σam

<u>C 3.7.4</u> Effective width of plating

<u>C 3.7.4.1</u> **Stiffeners**

	Plating Width	0.5	m	spacing of stiffeners (secondary members)
--	---------------	-----	---	---

<u>C 3.7.4.2</u> **Girders**

Table C 3.7.1 Effective width "em" of frames and girders

S. No.	Parameter	Value	Units	REMARKS
1	I	1.5	m	
2	е	0.5	m	
3	l by e	3		
4	em1/e	0.82		Selected for Our Case
5	em2/e	0.52		

Plating <u>C 3.7.7</u> <u>C 3.7.7.1</u> <u>Formula</u>

$$t = 22.4 * \mu * s * \sqrt{\frac{p}{\sigma_{am}}}$$

<u>C 3.7.7.2</u> Keel

The thickness of keel plating is to be not less than that required for adjacent bottom plating. This requirement may be waived in the case of special arrangements for dry-docking of craft of unusual hull design in the opinion of GL.

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

C 3.7.7.3 Bottom shell and bilge plating

S. No.	Parameter	Value	Units
1	р	33.17	kPa
2	σam	106.25	MPa
3	μ	1	
4	S	0.5	m
5	t	6.258	mm

<u>C 3.7.7.4</u> Plating of front walls

S. No.	Parameter	Value	Units
1	р	17.9	kPa
2	σam	106.25	MPa
3	μ	1	
4	S	0.5	m
5	t	4.597	mm

<u>C 3.7.7.4</u> <u>Plating of side shell</u>

S. No.	Parameter	Value	Units
1	р	4	kPa
2	σam	106.25	MPa
3	μ	1	
4	S	0.5	m
5	t	2.173	mm

C 3.7.7.6 Deck plating

S. No.	Parameter	Value	Units
1	р	12.33367	kPa
2	σam	106.25	MPa
3	μ	1	
4	S	0.5	m
5	t	3.816	mm

<u>C 3.7.7.8</u> Plating of deckhouse walls

S. No.	Parameter	Value	Units
1	р	3	kPa
2	σam	106.25	MPa
3	μ	1	
4	S	1.5	m
5	t	5.646	mm

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

<u>C 3.7.8</u>	Ordinary stiffeners
<u>C 3.7.8.1</u>	<u>General</u>

$$Z = 1000 * \frac{l^2 * s * p}{m * \sigma_{am}}$$

$$A_t = 5 * \frac{l * s * p}{\tau_{am}}$$

Z cm3 At cm2 section modulus shear area

C 3.7.4

Coefficient "m"	Value
Continuous stiffeners	12
Non-continuous stiffeners and without brackets at	0
the end of span	0

The web thickness is to be not less than				
S. No.	REMARKS			
1	1/15 of the depth, for flat bars			
2	1/35 of the depth, for other sections			
3	The thickness of the face plate is to be not less than 1/20 of its width.			

C 3.7.8.2 Bottom and bilge stiffeners

S. No.	Parameter	Value	Units
1	I	1.5	m
2	S	0.5	m
3	р	33.17	kPa
4	m	8	
5	σam	87.5	MPa
6	тат	56.25	MPa
7	Z	53.309	cm3
8	At	2.211	cm2

<u>C 3.7.8.3</u> <u>Side wall stiffeners</u>

S. No.	Parameter	Value	Units
1	I	1.5	m
2	S	0.5	m
3	р	4	kPa
4	m	8	
5	σam	87.5	MPa
6	τam	56.25	MPa
7	Z	6.429	cm3
8	At	0.267	cm2

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

C 3.7.8.3 Front wall stiffeners

S. No.	Parameter	Value	Units
1	I	1.5	m
2	S	0.5	m
3	р	17.9	kPa
4	m	8	
5	σam	87.5	MPa
6	τam	56.25	MPa
7	Z	28.768	cm3
8	At	1.193	cm2

C 3.7.8.5 Deck stiffeners

S. No.	Parameter	Value	Units
1		1.5	m
2	S	0.5	m
3	р	12.33367	kPa
4	m	8	
5	σam	87.5	MPa
6	τam	56.25	MPa
7	Z	19.822	cm3
8	At	0.822	cm2

<u>C 3.7.8.6</u> Stiffeners of boundary walls of deckhouses

S. No.	Parameter	Value	Units
1	Ι	1.5	m
2	S	0.5	m
3	р	3	kPa
4	m	8	
5	σam	87.5	MPa
6	тат	56.25	MPa
7	Z	4.821	cm3
8	At	0.200	cm2

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

C 3.7.9Primary supporting membersC 3.7.9.1General

$$Z = 1000 * \frac{S^2 * b * p}{m * \sigma_{am}}$$

$$A_t = 5 * \frac{S * b * p}{\tau_{am}}$$

The web thickness is to be not less than			
S. No.	REMARKS		
1	The web thickness is to be not less than 1/35 of web depth.		
2	1/35 of the depth, for other sections		
3	The face plate thickness is to be not less than 1/20 of face plate breadth (1/10 for face plates which are not symmetrical with respect to the web).		

<u>C 3.7.9.2</u> Floors and girders of single bottom

S. No.	Parameter	Value	Units
1	S	0.5	m
2	b	1.5	m
3	р	33.17	kPa
4	m	10	
5	σam	87.5	MPa
6	τam	56.25	MPa
7	Z	14.216	cm3
8	At	2.211	cm2
9	t	3.426	mm

<u>C 3.7.9.3</u> Primary supporting members of sides walls

S. No.	Parameter	Value	Units
1	S	0.5	m
2	b	1.5	m
3	р	4	kPa
4	m	10	
5	σam	87.5	MPa
6	тат	56.25	MPa
7	Z	1.714	cm3
8	At	0.267	cm2

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

<u>C 3.7.9.3</u> Primary supporting members of front walls

S. No.	Parameter	Value	Units
1	S	0.5	m
2	b	1.5	m
3	р	17.9	kPa
4	m	10	
5	σam	87.5	MPa
6	τam	56.25	MPa
7	Z	7.671	cm3
8	At	1.193	cm2

<u>C 3.7.9.5</u> Primary supporting members of decks

S. No.	Parameter	Value	Units
1	S	0.5	m
2	b	1.5	m
3	р	12.33367	kPa
4	m	10	
5	σam	87.5	MPa
6	τam	56.25	MPa
7	Z	5.286	cm3
8	At	0.822	cm2

<u>C 3.7.9.6</u> Primary supporting members of deckhouse boundary walls

S. No.	Parameter	Value	Units
1	S	0.5	m
2	b	1.5	m
3	р	3	kPa
4	m	10	
5	σam	87.5	MPa
6	τam	56.25	MPa
7	Z	1.286	cm3
8	At	0.200	cm2

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

<u>C 3.7.11</u>	Bulkhead Structures
<u>C 3.7.11.1</u>	<u>Plating</u>

$$t = 22.4 * f_m \mu * s * \sqrt{\frac{p_s}{\sigma_{am}}}$$

S. No.	Parameter	Value	Units	REMARKS
1	fm	0.7		for aluminium alloy structures
2	μ	1		
3	S	0.5	m	
4	Psb	31.883	kPa	
5	σam	118.750	MPa	
6	t	4.062	mm	

<u>C 3.7.11.2</u> <u>Stiffeners and girders</u>

The required scantlings of stiffeners and girders are determined according to strength calculations, by applying the following permissible stress Values
Refer Table Allowable Stress

<u>C 3.7.13</u> Bow, Shell Side and Stern Doors

Plating

<u>C 3.7.13.1</u>

$$t = 22.4 * \mu * s * \sqrt{\frac{p_s}{\sigma_{am}}}$$

S. No.	Parameter	Value	Units
1	μ	1	
2	S	0.5	m
3	Psb	36.05	kPa
4	σam	106.25	MPa
5	t	6.524	mm

CHAPTER 1, SECTION 3.7 ALLOWABLE STRESS

BASIC PROPERTIES					
Young's Modulus of aluminium (N/mm2)	E	70000			
Poisson's ratio of aluminium	V	0.33			
material factor k	k	0.8			
	Aluminium Alloy	5083 H116			
In welded condition_table 1 (N/mm2)	R'p0,2	125			
In welded condition_table 1 (N/mm2)	R'm	275			
Proof stress (yield strength) in N/mm2 as indicated by the supplier	Rp0,2	215			
Tensile strength, in N/mm2 as indicated by the supplier	Rm	305			

Type of Stress considered	Structural component considered	Design admissible stress (N/mm2)
	plating	87.5
Clobal stress induced by longitudinal bull girder loads		87.5
Global stress induced by longitudinal null girder loads	stiffeners	87.5
		87.5
PLATING		
C3.7.7.3 Bottom shell and bilge plating	Impact Pressure	
	σam	118.75
	Sea Pressure	
	σam	106.25
C3.7.7.4 Plating of side shell and front walls	σam	106.25
C3.7.7.6 Deck plating	σam	106.25
C3.7.7.8 Plating of deckhouse walls	σam	106.25
ORDINARY STIFFE	NERS	
C3 7 8 2 Bottom and hilge stiffeners	σam	87.5
CS.7.8.2 Dottom and blige stimeners	тат	56.25
b. stiffeners contributing to the longitudinal strength c.	σam	87.5
stiffeners not contributing to the longi. strength	тат	56.25
C3 7 8 3 Side and front wall stiffeners	σam	87.5
	тат	56.25
b. stiffeners contributing to the longitudinal strength c.	σam	87.5
stiffeners not contributing to the longi. strength	тат	56.25
C3 7 8 5 Deck stiffeners	σam	87.5
CS.7.8.5 Deck stilleners	тат	56.25
b. stiffeners contributing to the longitudinal strength c.	σam	87.5
stiffeners not contributing to the longi. strength	тат	56.25
C3 7 8 6 Stiffeners of boundary walls of deckbourgs	σam	87.5
CS.7.8.0 Stilleners of boundary wails of deckhouses	тат	56.25

20

ANNEX – 2 : STRUCTURES

CLASSIFICATION RULES - DNV-GL HSC 2012

CHAPTER 1, SECTION 3.7 ALLOWABLE STRESS

PRIMARY STIFFENERS				
C2 7.0.2 Elegers and girders of single bettom	σam	87.5		
CS.7.9.2 FIOUS and griders of single bottom	τam	56.25		
b. Floor	σam	87.5		
c. Girder	тат	56.25		
C3.7.9.3 Primary supporting members of sides and front	σam	87.5		
walls	тат	56.25		
C2 7 9 5 Drimary supporting members of docks	σam	87.5		
CS.7.9.5 Primary supporting members of decks	τam	56.25		
C3.7.9.6 Primary supporting members of deckhouse	σam	87.5		
boundary walls	тат	56.25		
BULKHEAD STRUC	CTURE			
C3.7.11.1 Plating	σam	118.75		
	σam	112.5		
C3.7.11.2 Stiffeners and girders	τam	68.75		
	σνΜ	118.75		
BOW AND SIDE S	HELL			
C3.7.13.1 Plating	σam	106.25		
C2 7 12 2 Ordinary stiffeners	σam	87.5		
CS.7.15.2 Ordinary stilleners	тат	56.25		
C2 7 12 2 Drimony members, securing and supporting	σam	68.75		
dovisos	тат	43.75		
UEVICES	σνΜ	87.5		

CHAPTER 1, SECTION 3 STRUCTURAL DETAILS

DIRECT CALCUL	ATION
C 3.1.2	Direct calculations
C 3.1.2.1	DNV-GL may require direct calculations to be carried out, if deemed necessary. Such calculations are to be carried out based on structural modelling, loading and checking criteria described below. Calculations based on other criteria may be accepted if deemed equivalent to those laid down by DNV-GL.
C 3.1.2.2	In order to increase the flexibility in the structural design of ships DNV-GL also accepts direct calculations with computer programs. The aim of such analyses should be the proof of equivalence of a design with the rule requirements.
C 3.1.2.3	Direct calculations may also be used in order to optimise a design; in this case only the final results are to be submitted for review.
C 3.1.2.2	General programs
C 3.1.2.2.1	The choice of computer programs according to "State of the Art" is free. The programs may be checked by DNV-GL through comparative calculations with predefined test examples. A generally valid approval for a computer program is, however, not given by DNV-GL.
C 3.1.2.2.2	Direct calculations may be used in the following fields – global strength – longitudinal strength – beams and grillages – detailed strength
C 3.1.2.2.3	For such calculation the computer model, the boundary condition and load cases are to be agreed upon with DNV-GL. The calculation documents are to be submitted including input and output. During the examination it may prove necessary that GL perform independent comparative calculations.
C 3.1.2.2.4	DNV-GL is prepared to carry out the following calculations of this kind within the marine advisory services :
	STRENGTH
C 3.1.2.2.4.1	Linear and/or non-linear strength calculations with the FE-method: For an automated performance of these calculations, a number of effective pre- and post processing programmes is at disposal: – calculation of seaway loads as per modified strip method or by 3 D-panel method – calculation of resultant accelerations to ensure quasi-static equilibrium – calculation of composite structures – evaluation of deformations, stresses, buckling behaviour, ultimate strength and local stresses, assessment of fatigue strength

22

T-PROFILES SECTION MODULUS (Z) CALCULATIONS

CENTRAL TUBE SCANTLINGS												
S. No.	ELEMENT	Plate Thickness	Web Thickness	Web Height	Flange Thickness	Flange Width	В	н	b	h	Z	CLASS (Z)
		mm	mm	mm	mm	mm	mm	mm	mm	mm	cm3	cm3
1	Outer Plate Thickness	8	-	-	-	-	-	-	-	•	-	-
2	DB Plate Thickness	8	-	-	-	-	-	-	-	-	-	-
3	Bow Plate Thickness	8	-	-	-	-	-	-	-	-	-	-
4	Central Girder	8	10	300	10	40	40	318	30	300	249.6317	53.309
5	Side Girder	8	10	300	10	40	40	318	30	300	249.6317	53.309
				CENTRA	L STRUT SCA	NTLINGS						
S. No.		Plate Thickness	Web Thickness	Web Height	Flange Thickness	Flange Width	В	н	b	h	z	
		mm	mm	mm	mm	mm	mm	mm	mm	mm	cm3	
1	Plate Thickness	4	-	-	-	-	-	-	-	-	-	-
2	Longitudinal Member	4	10	40	10	40	40	54	30	40	13.51407	6.429
3	Transverse Frame	10	10	200	10	40	40	220	30	200	140.8485	130.4
			•	OUTR	IGGER SCANT	LINGS	•				•	•
S. No.		Plate Thickness	Web Thickness	Web Height	Flange Thickness	Flange Width	В	н	b	h	z	CLASS (Z)
		mm	mm	mm	mm	mm	mm	mm	mm	mm	cm3	cm3
1	Plate Thickness	4	-	-	-	-	-	-	-	-	-	-
2	Longitudinal Member	4	10	40	10	40	40	54	30	40	13.51407	6.429
3	Transverse Frame	10	10	200	10	40	40	220	30	200	140.8485	130.4
				DE	CK SCANTLIN	IGS						
S. No.		Plate Thickness	Web Thickness	Web Height	Flange Thickness	Flange Width	В	н	b	h	Z	CLASS (Z)
		mm	mm	mm	mm	mm	mm	mm	mm	mm	cm3	cm3
1	Upper Deck Plate	8	-	-	-	-	-	-	-	-	-	-
2	Lower Deck Plate	8	-	-	-	-	-	-	-	-	-	-
3	Longitudinal Member	8	10	80	10	40	40	98	30	80	37.90422	19.822
4	Transverse Member	8	10	200	10	80	80	218	70	200	205.5188	158.9
				SUPERST	RUCTURE SC/	ANTLINGS						
S. No.		Plate Thickness	Web Thickness	Web Height	Flange Thickness	Flange Width	В	н	b	h	z	CLASS (Z)
		mm	mm	mm	mm	mm	mm	mm	mm	mm	cm3	cm3
1	Plate Thickness	6	-	-	-	-	_	-	-	-	-	-
2	Longitudinal Member	6	10	40	10	40	40	56	30	40	15.19238	4.821
3	Transverse Frame	6	10	200	10	80	80	216	70	200	189.9812	142.4

WEIGHT ESTIMATION OF 18m CM-SWAS(S)H

Construction Material Data	Material Density	Aluminium Alloy 5083 2700 kg/m ³
Measurement references	Horizontal Vertical	From frame 0 + Forward Keel (Hull Baseline) + Up
	Transverse	From CL Starboard positive

Number	Item	Quantity	Unit Weight	Total Weight	V.C.G.	L.C.G.	T.C.G.
			(kg)	(kg)	(m)	(m)	(m)
							1
STRUCTURES	Hull Structure	1.00		39670.00	3.45	15.42	0.00
	Margin (5%)			1983.50	3.45	15.42	0.00
	Allowance for weld & mill tolerance (3.5%)			1388.45	3.45	15.42	0.00
	Allowance for paint (2%)			793.40	3.45	15.42	0.00
	Subtotal			43835.35	2.03	8.23	0.00
SYSTEMS	Systems and Mechanical	1.00		21447.50	1.52	16.26	0.02
	Allowance (5%)			1072.38	1.52	16.26	0.02
	Subtotal (Excl. Fluids in pipes and equipment)			22519.88	1.28	9.32	0.02
EXT. OUTFIT	External Fit out	1.00		3027.99	5.29	15.08	-0.09
	Allowance (5%)			151.40	5.29	15.08	-0.09
	Subtotal			3179.39	4.14	8.68	-0.11
INT. OUTFIT	Internal Fit out	1.00		2717.03	5.22	6.72	0.15
	Allowance (5%)			135.85	5.22	6.72	0.15
	Subtotal			2852.88	5.82	8.45	0.16
ELECTRICAL	Electrical Fit out	1.00		2482.43	5.23	4.12	-0.18
	Allowance (5%)			124.12	5.23	4.12	-0.18
	Subtotal			2606.55	2.64	4.82	-0.21
PROPOLSION	Propulsion	1.00		3643.56	1.59	4.62	0.09
	Allowance (5%)			182.18	1.59	6.13	0.09
	Subtotal			3825.74	1.59	4.69	0.09
	PERSON ON BOARD	6	86.00	516.00			
	TOTAL ESTIMATION			79335.78	2.10	8.10	0.00

WEIGHT ESTIMATION OF 21m CM-SWAS(S)H

Construction Material Data	Material Density	Aluminium Alloy 5083 2700 kg/m ³
Measurement references	Horizontal Vertical Transverse	From frame 0 + Forward Keel (Hull Baseline) + Up From CL Starboard positive

image	Number	Item	Quantity	Unit Weight	Total Weight	V.C.G.	L.C.G.	T.C.G.
Image Image <th< th=""><th></th><th></th><th></th><th>(kg)</th><th>(kg)</th><th>(m)</th><th>(m)</th><th>(m)</th></th<>				(kg)	(kg)	(m)	(m)	(m)
STRUCTURES Hull Structure 1.00 49720.00 4.26 18.46 0.00 Margin (5%) C 2486.00 4.26 18.46 0.00 Allowance for weld & mill tolerance (3.5%) C 1740.20 4.26 18.46 0.00 Allowance for weld & mill tolerance (3.5%) C 994.40 4.26 18.46 0.00 Subtotal Subtotal C 994.40 4.26 18.46 0.00 Systems and Mechanical 1.00 Systems and Mechanical 1.00 1.07 1.07 1.03 0.02 System Sind Mechanical 1.00 C 2955.30 1.67 17.34 0.02 Subtotal (Excl. Fluids in pipes and equipment) L G 1477.67 1.67 1.00 0.01 Extra OUFIT External Fit out 1.00 G 3169.72 5.38 17.87 0.09 Subtotal Subtotal 1.00 G 3328.20 3.97 8.68 0.10 Milowance (5%) L 1.00 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Margin (%)Margin (%)Internal FloatInternal Float	STRUCTURES	Hull Structure	1.00		49720.00	4.26	18.46	0.00
Allowance for weld & mill tolerance (3.5%)image: mill tolera		Margin (5%)			2486.00	4.26	18.46	0.00
Allowance for paint (2%)Image: sector of the se		Allowance for weld & mill tolerance (3.5%)			1740.20	4.26	18.46	0.00
Subtral <t< th=""><th></th><th>Allowance for paint (2%)</th><th></th><th></th><th>994.40</th><th>4.26</th><th>18.46</th><th>0.00</th></t<>		Allowance for paint (2%)			994.40	4.26	18.46	0.00
SYSTEMSSystems and Mechanical1.001.001.001.671.7.340.02Allowance (5%)1.01.477.671.6717.340.02Subtotal (Excl. Fluids in pipes and equipment)1.031030.970.9510.900.01Extremal Fit out1.003169.725.3817.87-0.09Allowance (5%)1.001158.495.3817.87-0.09Subtotal1.001.003328.203.978.68-0.01Internal Fit out1.001.002808.415.848.900.15Minomance (5%)1.001.002808.415.848.900.15Internal Fit out1.001.002808.415.848.900.15Subtotal1.001.002808.415.848.900.15Allowance (5%)1.001.002808.415.848.900.15Subtotal1.001.002808.415.848.900.15Allowance (5%)1.001.002808.665.234.12-0.18Allowance (5%)1.001.002821.202.454.62-0.19PROPOLSIONPropulsion1.001.003643.561.594.620.09Allowance (5%)1.001.003825.741.596.130.09Minomance (5%)1.001.001.82.181.596.130.09PROPOLSIONPropulsion1.001.003825.741.594		Subtotal			54940.60	1.76	8.66	0.00
SYSTEMSSystems and Mechanical1.001.0029553.301.6717.340.02Allowance (5%)Subtotal (Excl. Fluids in pipes and equipment)II1477.671.671.670.950.900.01EXT. OUTFITExternal Fit outIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								
Allowance (5%)Image: 6%)Image: 6% markMa	SYSTEMS	Systems and Mechanical	1.00		29553.30	1.67	17.34	0.02
Subtotal (Excl. Fluids in pipes and equipment)Image: Model of the star and equipment		Allowance (5%)			1477.67	1.67	17.34	0.02
Image: Constraint of the start of		Subtotal (Excl. Fluids in pipes and equipment)			31030.97	0.95	10.90	0.01
EXT. OUTFITExternal Fit out1.001.003169.725.3817.87-0.09Allowance (5%)158.495.3817.87-0.09SubtalSubtal3328.203.978.00-0.10Internal Fit out3328.203.978.00-0.10INT. OUTFITInternal Fit out2808.415.848.900.15SubtalSubtal1.00140.425.848.900.15SubtalSubtal1.002948.835.679.800.15ELECTRICALElectrical Fit out1.002686.865.234.12-0.18Subtal1.00134.345.234.12-0.18ELECTRICALSubtal1.002812.022.454.620.09PROPOLSIONPropulsion1.003643.561.594.620.09PROPOLSIONSubtal1.003825.741.594.690.09Allowance (5%)3825.741.594.690.09Subtal860.000.09Allowance (5%)3825.741.594.690.09Subtal860.00 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Allowance (5%)	EXT. OUTFIT	External Fit out	1.00		3169.72	5.38	17.87	-0.09
SubtalImage: Subtal <t< th=""><th></th><th>Allowance (5%)</th><th></th><th></th><th>158.49</th><th>5.38</th><th>17.87</th><th>-0.09</th></t<>		Allowance (5%)			158.49	5.38	17.87	-0.09
INT. OUTFITInternal Fit outInc </th <th></th> <th>Subtotal</th> <th></th> <th></th> <th>3328.20</th> <th>3.97</th> <th>8.68</th> <th>-0.10</th>		Subtotal			3328.20	3.97	8.68	-0.10
INT. OUTFIT Internal Fit out 1.00 2808.41 5.84 8.90 0.15 Allowance (5%) Allowance (5%) 0 140.42 5.84 8.90 0.15 Subtotal Subtotal C 2998.83 5.67 9.80 0.15 C Subtotal Subtotal C 2998.83 5.67 9.80 0.15 C Electrical Fit out C C 200 2.667 9.80 0.15 ELECTRICAL Electrical Fit out 1.00 C 2686.86 5.23 4.12 -0.18 C Allowance (5%) C 1.00 C 2821.20 2.45 4.46 -0.19 PROPOLSION Propulsion 1.00 C 3643.56 1.59 4.62 0.09 C Allowance (5%) 1.00 I 3643.56 1.59 4.62 0.09 PROPOLSION Allowance (5%) C I 182.18 1.59 6.13 0.09 C Subtotal C I I I I I I								
Allowance (5%) Image: 6% Image: 6%<	INT. OUTFIT	Internal Fit out	1.00		2808.41	5.84	8.90	0.15
Subtotal Subtotal Subtotal Sector 9.80 0.16 Image: Subtotal Image: Sub		Allowance (5%)			140.42	5.84	8.90	0.15
Image: black blac		Subtotal			2948.83	5.67	9.80	0.16
ELECTRICAL Electrical Fit out 1.00 2686.86 5.23 4.12 -0.18 Allowance (5%) .								
Allowance (5%) -0.18 Subtoal Subtoal -0.18 PROPOLSION Propulsion Image: Comparison of the state of the s	ELECTRICAL	Electrical Fit out	1.00		2686.86	5.23	4.12	-0.18
Subtotal Subtotal -0.19 Mathematical Image: Mathematical Mathema		Allowance (5%)			134.34	5.23	4.12	-0.18
Image: Mark State		Subtotal			2821.20	2.45	4.46	-0.19
PROPOLSION Propulsion 1.00 3643.56 1.59 4.62 0.09 Allowance (5%) Image: Subtoal Image: Subt								
Allowance (5%) 159 6.13 0.09 Subtotal Subtotal 1.59 6.13 0.09 PERSON ON BOARD 10 86.00 860.00 100 99755.54 2.00 9.50 0.00	PROPOLSION	Propulsion	1.00		3643.56	1.59	4.62	0.09
Subtotal Subtotal 3825.74 1.59 4.69 0.09 Image: Constraint of the system of the sy		Allowance (5%)			182.18	1.59	6.13	0.09
Image: Constraint of the system Image: Constra		Subtotal		<u> </u>	3825.74	1.59	4.69	0.09
PERSON ON BOARD 10 86.00 860.00 99755.54 2.00 9.50 0.00				<u> </u>				
TOTAL ESTIMATION 99755.54 2.00 9.50 0.00		PERSON ON BOARD	10	86.00	860.00			
		TOTAL ESTIMATION			99755.54	2.00	9.50	0.00

WEIGHT ESTIMATION OF 24m CM-SWAS(S)H

Construction Material Data	Material Density	Aluminium Alloy 5083 2700 kg/m ³
Measurement references	Horizontal Vertical	From frame 0 + Forward Keel (Hull Baseline) + Un
	Transverse	From CL Starboard positive

Number	Item	Quantity	Unit Weight	Total Weight	V.C.G.	L.C.G.	T.C.G.
			(kg)	(kg)	(m)	(m)	(m)
STRUCTURES	Hull Structure	1.00		59770.00	1.68	12.28	0.00
	Margin (5%)			2988.50	1.68	12.28	0.00
	Allowance for weld & mill tolerance (3.5%)			2091.95	1.68	12.28	0.00
	Allowance for paint (2%)			1195.40	1.68	12.28	0.00
	Subtotal			66045.85	1.29	11.63	0.00
SYSTEMS	Systems and Mechanical	1.00		35697.90	1.38	19.34	0.02
	Allowance (5%)			1784.90	1.38	19.34	0.02
	Subtotal (Excl. Fluids in pipes and equipment)			37482.80	0.79	12.83	0.01
EXT. OUTFIT	External Fit out	1.00		3761.48	5.64	19.71	-0.09
	Allowance (5%)			188.07	5.64	19.71	-0.09
	Subtotal			3949.55	3.40	10.28	-0.09
INT. OUTFIT	Internal Fit out	1.00		3046.00	5.59	12.60	0.15
	Allowance (5%)			152.30	5.59	12.60	0.15
	Subtotal			3198.30	5.23	11.60	0.15
ELECTRICAL	Electrical Fit out	1.00		2920.50	6.23	4.12	-0.18
	Allowance (5%)			146.03	6.23	4.12	-0.18
	Subtotal			3066.53	2.33	4.12	-0.18
PROPOLSION	Propulsion	1.00		3643.56	1.59	4.62	0.09
	Allowance (5%)			182.18	1.59	6.13	0.09
	Subtotal			3825.74	1.59	4.69	0.09
	PERSON ON BOARD	12	86.00	1032.00			
	TOTAL ESTIMATION			118600.76	1.85	11.50	0.00

	4		H	Η	ନ ଜ	ت	▼ 🖾	Ð	C	B	▶
	REV	RE	Ĥ							40 	
10	- 4	JLAR STRUCTU	VESSEL TYPE CM - SWAS(S) PILOT / WSV							T 80x10 + 40x T 200x10 + 40; 160 10 mm	Flat 200x10
	CMS SHEET:- PERSON OR US	DRAWING			m) (m) (t)		x10 + 40x10 x10 + 40x10 \RAME			N
9	A NIDARSHAN &	JMBER	SSEL NAME I ULATOF		2.95 (r 0.00 (r	T SHIP 93.39		- T 300 - D 150 300NG F	4 mm		
	DATE : PERTY OF AKUL	YARD NU	NDIA) VES		G (m)	$\frac{LIGH}{PL}$		E	Т Т Т Т		
	IS THE PROP	CHITECT	577494 (BEI 5025852 (IN ent.com t.com) VC(B	FRAMI			
	N. OWNER MMD CLASS NT/DRAWING COPIED WHC	HAN NAVAL AF	+32- 4976 +91- 9716 @greenexponen µreenexponen)0 (m)	SHIP 8.6 (t)	0	8 mn (10 + 40x10 VARY	(10 + 40x1(;10 + 40x1(Tat 200x10	
8	AD AKULA 1 HIS DOCUMEN	BR AND	Tel. :: Tel. :: akula@ www.g			DED		тзоох ORDI1	T 160x		
	IGHT – TH ML	DRAWN			(m)	LOA PL. (t					
	СОРҮЯ	AKUL MARINE SCALE							4mm	(10 + 40x10 4 mm (10 + 40x10	r10 + 40×10
										T 80: T 40:	Т 80.
										8	

10	INTAL INFORMATION WHICH IN ANY MANNER	REV	- 4 NIL	AR STRUCTURE	ESSEL TYPE CM - SWAS(S)H PILOT / WSV	H			1	Ŧ		V	R	D		C	T 80x10 + 40x10 -T 200x10 + 40x10 -D 160 B -10 mm	Flat 200x10
	CONTAINS CONFIDEN PERSON OR USED IN	SHEET:	CMS -	MODULA	0 m			<u> </u>						RAME	10 + 40x10			
9	AKULA NIDARSHAN & DISCLOSED TO ANY F		NUMBER	COMMON	VESSEL NAME AKULATOR) 0.00 (n) 2.95 (n	t) 93.39 (HT SHIP				TRONG FI	-T 300x -D 150	-4 mm -T 160x		
	E PROPERTY OF A	DATE :	YARD	TECT	4 (BELGIUM) 52 (INDIA)		TCG (m)	VCG (m)	DISPL. (LIG	m			AME S				
	T/DRAWING IS THE	MMD CLASS	OWNER	IAN IAVAL ARCHI	+32- 49767749 +91- 97160258 greenexponent.com		0 (m)	5 (m)	3.6 (t)	SHIP	24			ARY FR	0 + 40x10	0 + 40x10 0 + 40x10	4 mm	
8	S DOCUMENT		AKULA N. AKULA N.	ARSH R AND N	Tel.: + Tel.: + akula©ç www.gre		0.00	1.8)ED S				ORDIN	T300x1	T 40x1 T 160x1		
	СОРҮКІСНТ – ТНІЗ MUS	CHECKED SEC. HEAD	LE DRAWN TRACED	KULA NID			TCG (m)	VCG (m)	DISPL. (t)	LOAI							40x10 4 mm 40x10 40x10	8 mm 40×10

TCG (m)	VCG (m)	LCG (m)	DISPL. (t)	LOADE	
0.00 (m)	2.00 (m)	9.50 (m)	99.76 (t)	D SHIP	21
TCG (m)	VCG (m)	LCG (m)	DISPL. (t)	LIGHT	m
0.00 (m)	2.75 (m)	8.90 (m)	77.56 (t)	SHIP	

	21	В	
LOADI	ED SHIP	LIGHT	SHIP
DISPL. (t)	99.76 (t)	DISPL. (t)	77.56 (
LCG (m)	9.50 (m)	LCG (m)	8.90 (r
VCG (m)	2.00 (m)	VCG (m)	2.75 (r
TCG (m)	0.00 (m)	TCG (m)	0.00 (r

	18	m	
LOADI	ED SHIP	LIGH	T SHIP
DISPL. (t)	79.34 (t)	DISPL. (t)	63.97 (t)
LCG (m)	8.10 (m)	LCG (m)	7.50 (m)
VCG (m)	2.10 (m)	VCG (m)	2.60 (m)
TCG (m)	0.00 (m)	TCG (m)	0.00 (m)

8	IS DOCUMENT/DRAWING IS THE PROPERT ST NOT BE COPIED WHOLLY OR IN PART	D AKULA N. OWNER CLASS DA	AKULA N. APPROVALS	ARSHAN R and naval architect	Tel.: +32- 497677494 (BELGIU) Tel.: +91- 9716025652 (INDIA) akula©greenexponent.com www.greenexponent.com		0.00 (m) TCG (1.85 (m) VCG) 118.6 (t) DISPL	DED SHIP	24 m		ORDINARY FRAME	T300x10 + 40x10	T 40x10 + 40x10	Flat 200x10		
9	OF AKULA NIDARSHAN & CONTAINS CO NOR DISCLOSED TO ANY PERSON OR INCLUSED TO ANY PERSON ON ANY PERSON OR INCLUSED TO ANY PERSON ON ANY PERSON ANY PERSON ANY PERSON ON ANY PERSON ANY PERSON ON ANY PERSON ANY ANY PERSON ANY PERSON ANY ANY PERSON ANY ANY PERSON ANY ANY ANY ANY ANY ANY ANY ANY ANY AN	TF : SHFFT	ARD NUMBER DRAWIN	TITLE COMMON MODU	0) VESSEL NAME AKULATOR		(m) 0.00 (m)	(m) 2.95 (m)	. (t) 93.39 (t) (m) 11.0 (m)	LIGHT SHIP			STRONG FRAME	T 300x10 + 40x10 D 150	T 160x10 + 40x10		N	
10	ONFIDENTIAL INFORMATION WHICH USED IN ANY MANNER	- 4 NIL	IG NUMBER	ULAR STRUCTURE	VESSEL TYPE CM - SWAS(S)H PILOT / WSV									0		T 200x10 + 40x10 T 200x10 + 40x10 T 200x10 + 40x10 T 0 T 160 T 0 T 10 mm	Flat 200x10	
	4			•	-	Н	ନ			F	V	H	Ð		C	B		A

PROFILE VIEW

STRONG FRAME : 1500 mm

J

N

ω

U

K

о

FRAME SPACING : 500 mm

Ι

Η

G

MIXED FRAMING SYSTEM

Ħ

Ŧ

D

С

T 40x10 + 40x10

в

T 200x10 + 80x10-

8 mm-

A

N

ω

4

U

o

ANNEX – 3 RESISTANCE

STEPS AND PROCEDURE TO CARRY OUT OPTIMISATION IN modeFRONTIER

modeFrontier uses a classic tab based GUI, which enables the used to shift between the Optimisation Window to Design Space with single click. The window is the Tab used for creating the Optimisation layout while the design space is for viewing and plotting optimisation results.

1) ICON DEFINITIONS

ICON	ICON NAME	ICON	ICON NAME
ک ے م	INPUT VARIABLE	⇒⊂x_∽	DOS OPERATOR
↓ ↓ ↓	INPUT FILE		
*	CONSTRAINT	*₩	OUTPUT FILE
	SUPPORT FILE	*	OUTPUT VARIABLE
	EXIT FUNCTION	¢.	MINIMISER/MAXIMISER

2) THE OPTIMISATION CIRCUIT LAYOUT

Though, this master thesis was carried out to test with only multi-objective function here different types of objective functions are explained to understand the process, with different variables and constraints. The first step to initialise the optimisation problem is to define the layout and then provide operating data to each element of the layout.

2.1) SINGLE OBJECTIVE

Figure 1 SINGLE OBJECTIVE LAYOUT

The above layout shows the optimisation circuit for minimising a single objective function with two input variables and a constraint on input X (please note that we can remove the constraint and use the same layout, for constrain free optimisation), the optimisation is for MOGA, but can be used for SIMPLEX buy changing the variables in the scheduler.

2.2) MULTI-OBJECTIVE

Figure 2 MULTI-OBJECTIVE LAYOUT

The above layout shows the optimisation circuit for minimising a two multi objective functions with two input variables and a constraint on input X (please note that we can remove the constraint and use the same layout, for constrain free optimisation), the optimisation is for MOGA, but can be used for SIMPLEX buy changing the variables in the scheduler.

2.3) MULTI-OBJECTIVE WEIGHTED FUNCTION

Figure 3 WEIGHTED FUNCTION LAYOUT

The above layout shows the optimisation circuit for minimising a two multi objective functions with two input variables the optimisation is for SIMPLEX. The weighted function is used to convert the Multi-Objective problem to Simplex to achieve the results faster. As discussed earlier in the report this has its own limitations in certain aspects.

3) INPUTTING VARIABLES INTO DIFFERENT FILES AND FUNCTION

3.1) INPUT VARIABLE

Double Click input variable, to enter properties like Name, Lower Bound Upper Bound etc. The lower bound and Upper bound values limit the variation for the particular variable.

Input Variable Properties	and the second second	DE LACINA	×
Input Variable Properties			-
Name		INPUT_X	
Description			2
Format		0.0000E0	
Variable Type		Variable	•
Range Properties			
Lower Bound	-10.0	Central Value	2.5
Upper Bound	15.0	Delta Value	12.5
Base Properties			
Base		25001	
Step		0.0010	
Tolerance		0.0	
Arrangement		Ordered	•
MORDO Properties			
Distribution	None	- IEmpty	Emnty
Data Output Connector			
			1
		data in	
ОК		Cancel	Help

3.2) INPUT FILE

Double Click input file, to select Input data file by clicking Edit Input File. Load a new File or assign new values using already existing file.

Input File Properties	×
Edit Input File	
Input File Properties	
Input File Node Name	INPUT_DATA
Description	
Input File Name	data.in
Statistics	
Charset	windows-1252
Line Separator	DOS
Data Input Connector	Data Output Connector DOSBatch21
ОК	Cancel Help

Inside Input Editor, select the Input Variable, then select the value, right click on the value to be assigned and select insert variable.

3.3) CONSTRAINT

In the constraint file, select the user expression, select the type of constraint (Less than or Greater than) and enter the limiting value of the constraint.

Constraint Properties		×			
Constraint Properties					
Name	CONSTRAINT				
Description					
Enabled					
Format	0.0000E0				
Constraint Expression Properties					
User Expression	INPUT_X				
Туре	Less Than	•			
Limit	0.0	0.0			
Tolerance	0.0				
Data Input Connector					
PINPUT_X		-			
ОК	Cancel	Help			

3.4) SUPPORT FUNCTION

In support function, click Add File to add all *.exe and other supporting algorithm files necessary to run the optimisation.

Support File Properties		×
□ Support File Properties		
Support File Node Name	SUPPORT_FILE	
Description		
Support Files Connectors Add File Remove File G:Project - All CombinedVonction.exe		
ОК	Cancel	Help

3.5) EXIT FUNCTION

The role of exit function is to exit the optimisation operator in case the desired objective has been achieved. We did not alter any values or variables in the exit function.

3.6) DOS OPERATOR

The dos operator is the main operating variable that receives input from Scheduler, Input Function, provides output to output function and exit function.

The main objective of DOS Operator is to integrate the input function and the support files. Take input of variables from scheduler for a certain optimisation type and process the information.

Click Edit Dos Batch Script to select the supporting functions from both input and output files.

DOS Batch Properties					
Edit DOS Batch Script					
DOS Batch Properties					
Script Name	DOSBatch21				
Description					
Priority	NORMAL				
DOS Batch Advanced Properties					
Timeout (seconds)	0				
Use Grid System					
Keep alive					
Launch as System fork					
Set job directory to variable	APPL_PWD				
Set design ID to variable	DESIGN_ID				
Set user name to variable	ESTECO_USER				
Set project name to variable	PROJECT_NAME				
Output variables file name	dosScript.env				
Statistics					
Charset	windows-1252				
Line Separator	UNIX (LF)				
Length	12				
Last Modified	27 févr. 2015 18:48:35				
Process Input Connector	Process Output Connector				
Scheduler	EXIT_FUNCTION =0				
Data Input Connector	Data Output Connector				
Para data.in	function.out fonction.out				
BUPPORT_FILE fonction.exe	tunctionout2 fonction.out				
OK SUPPORT_FILE: fonction.exe	ncel Help				

DOS Batch Script: DOSBatch21			X
File Edit Options View			
📐 📹 🖶 🎸 😫 🖆 🔍 🖧 🛃	🔳 💝 😒		
🕄 Input Data 🛛 🕂 🗠	1 Fonction.exe		•
ata.in			
honction.exe			
🕄 Output Data 🛛 +×			
a fonction.out			
	4		
		1:1 UNIX	Insert windows-1252
		Cance	1
UK		Cance	

In Dos batch, either we can select the files from the listed ones or we can enter any specific file directory.

3.7) SCHEDULER - DESIGN OF EXPERIMENT (DOE) & OPERATOR SELCTION

There are two parts of selection in a Scheduler one for selecting DOE and Other to select Type of optimisation operator. In DOE selection we have used two options one for RANDOM variables and other USER DEFINED.

3.7 A) SCHEDULER – DESIGN OF EXPERIMENT (DOE)

DOE Properties		×
File Edit		
📲 Space Fillers 🛞	E Random	S (1)
DOE Sequence	The sequence of points is determined by the value of the S	eed
& Random	Three parameters can be defined:	
Sobol	 Number of experiments to be generated; 	
Uniform Latin Hypercube	2) Reject or accept unfeasible designs; 2) Random seed for seguence repeatability	
Incremental Space Filler	S) Nandom seed for sequence repeatability.	
© Constraint Satisfaction	It can be used as initial design population for MOGA and Si limited to 256000.	mplex algorithm. The number of generated designs is
Robustness and Reliability 🛞	Parameters	
Latin Hypercube - Monte Carlo	Number of Designs [1,256000]	10
Taguchi Orthogonal Arrays	Reject Unfeasible Samples	
	Random Generator Seed [0,999]	1
Statistical Designs (8)	System Parameters	
Full Factorial	Reject Repeated Designs	<u> </u>
Reduced Factorial		
Central Composite Designs		
Box-Behnken		
Latin Square		
Plackett Burman		
Poptimal Designs		
Uniform Deducer		
Onlight Reducer		
D-Ontimal		
. D-Opimai	Add DOE Sequence	Stop DOE Sequence
DOE Designs Table DOE Log		
M CATEGORY HINPUT_X HINPUT_Y % C	INST	
0 CRNDDOE 8.2720E0 2.5200E-1 8.	720E0	<u>^</u>
2 RNDDOE -4.8070E0 -1.6820E0 -4.	194E1	
3 RNDDOE 1.4093E1 1.3497E1 1.	093E1	E
4 RNDDOE 1.3680E1 1.3427E1 1.	680E1	
5 URNDDOE -7.1000E-2 -1.3120E0 -7.1	000E-2	
7 PRIDDOE -2.0490E0 2.0020E0 -2.	010E0	T
N. Designs:10	N. Error Des.:0	N. UnFeasible Des.:5
OK	Cancel	Help
	Guicer	ricip

For random variable select random in space filters and number of design and click add DOE sequence.

File Edit Image: Space Files Image: Spa	DOE Properties		×
	File Edit		
Space Fillers Space Fillers Design of speciments based on a custom user sequence. The number of designs and the content of the sequence Constant Space Filler Unform Lain hypercube Incremental Space Filler Constant Satisfaction Robustness and Reliability Constant Satisfaction Taguchi Offbogonal Arrays Statistical Designs Constant Supercube Lain Hypercube-Monte Carlo Taguchi Offbogonal Arrays Statistical Designs Contrained Satisfaction Contrained Satisfactioned Satisfactin Contrained Satisfaction Contrained Sa	📥 🏦 🗲 🚔 🖆 🍓		
DOE Sequence Random Sobil Unform Latin Hypercube In creating Space Filler Constraint Satisfaction Radiom Robustness and Reliability Latin Hypercube Radion Statisfical Designs Bobietheria Bobietheria Radion Bobietheria Bobietheria <td< td=""><td>Reace Fillers</td><td>DOE Sequence</td><td></td></td<>	Reace Fillers	DOE Sequence	
Doco Uniform Latin Hypercube Incremental Space Filer Constant Asstandion Parameters Incremental Space Filer Constant Asstandion Constant Asstandia Constant Assta	DOE Sequence Random Schol	 Design of experiments based on a custom user sequence can be defined by the user. 	. The number of designs and the content of the sequence
Incremental Space Filer Number of Designs 0.255000] 10 Import from File Constant 3 statution Import from File Import from File Constant 3 statution Import from File Import from File Constant 3 statution Import from File Import from File Constant 3 statution Import from File Import from File Constant 3 statution Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Import from File Impo	 Liniform Latin Hunercube 	Parameters	
Constant 3 dafadum Import from File Constant 3 dafadum Import from File Constant 3 dafadum Import from File Import from File Import from File Constant 3 dafadum Import from File Import from File Constant 3 dafadum Constant	Incremental Space Filler	Number of Designs [0,256000]	10
Robustness and Reliability 0 Latin Hypercube - Monte Carlo Taguchi Orthogonal Arrays Taguchi Orthogonal Arrays 0 Statistica Designs 0 Full Fadorial 0 Robustersize 0 Statistica Designs 0 Central Composite Designs 0 Box Getinal Designs 0 Uniform Reducer 0 Dataset Reducer Stop DOE Sequence ODE Designs Table DOE Log 1 M ContraGORY 28208E1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Constraint Satisfaction	Import from File	3
Lalin Hypercube - Monte Carlo Taguchi Ofmogonal Arrays Statistical Designs Oreinal Composite Designs Designs Designs Designs Ocercal Composite Desinder Ocercal Composite Designs Ocercal Composite Designs	Robustness and Reliability (8)]	
Taguchi Othogonal Arays Statistical Designs Opti Padrial Statistical Designs Opti Padrial Central Composite Designs Box-Bennkan Latin Square Placktt Burnan Dataset Reducer Dataset Reducer DoE Designs Table DOE Log Morr Reducer Morr Reducer DoE Designs Table DOE Log Morr Reducer Morr Reducer	Latin Hypercube - Monte Carlo		
Statistical Designs Image: Control of the state of the s	Taguchi Orthogonal Arrays		
• Full Fadorial • • Full Fadorial • • Central Composite Designs • • Dob Cetrington Status • • Dataset Reducer • • Dob Designs Table DOE Log • • ODE Designs Table DOE Log • • Interport • • ODE Designs Table DOE Log • • Interport • • ODE Designs Table DOE Log • • Interport •	Restatistical Designs		
Optimal Designs Image: Control of Con	Full Factorial Reduced Factorial Central Composite Designs Box-Behnken Latin Square Placket Burman	-	
● Uniform Reducer ● Dataset Reducer ● D-Optimal Add DOE Sequence Stop DOE Sequence ODE Designs Table DOE Log	📲 Optimal Designs 🛛 🛞	1	
Add DCE Sequence Stop DOE Sequence DOE Designs Table DOE Log MI CATEGORY & INPUT, X 12: INPUT, X 12: CONST	Uniform Reducer Dataset Reducer Dotimol		
DOE Designs Table DOE Log	w D-Opennai	Add DOE Sequence	Stop DOE Sequence
M CATEOORY % INPUT_X % 20 MNT 0 FINDODE 8270260 1 INDODE 8270260 2 FINDODE 8270261 3 INDODE 4807020 400210 1489251 1499251 4 FINDODE 1340261 5 INDODE 1340261 6 FINDODE 2469020 7 IDDODE 2469020 7 IDDE 2469020 8 IDTODE 2469020 9 IDDE 2469020 9 IDDE 2469020 9 IDDE 2469020 9 IDDE	DOE Designs Table DOE Log		
N. Designs:10 N. Error Des.:0 N. UnFeasible Des::5 OK Cancel Help	III CATEGORY Senuerry Y ≤ INPUTY Y ≤ INPUTY	CNUST 2020E00 3070E00 4198E1 4003E1 3080E1 1000E-2 4400E00 4040E00	
Cancel Help	N. Designs:10	N. Error Des.:0	N. UnFeasible Des.:5
	OK	Cancel	Help

For User Defined Variables select DOE Sequence in space filters and number of design and click DOE sequence. After that we need to enter the user defined values in the DOE Design Table.

3.7 B) SCHEDULER – OPERATOR SELECTION

While selecting the optimisation in Scheduler, when we select SIMPLEX we have the option to select the maximum number of design evaluation.

Scheduler Properties				
Optimization Wizard			SIMPLEX	
Chadulars	8		Scheduler based on a modified single objective SIMPLE	X algorithm.
DOE Sequence			Main features:	
@ MACK			1) Obeys boundary constraints on continuous variable:	к.
Lipschitz Sampling			 a) Enforces user defined discretization (base). a) Enforces user defined constraints by a new compariant 	son operator (see attached technical report-not available in
Basic Optimizers	8	1	this beta version). 4) The n+1 independent points of the initial simplex ca	be evaluated concurrently
MOGA-II				i bo oralidated concarrently.
SIMPLEX		=	The first n+1 (n=number of variables) entries in the DOE problem. Subsequent entries will be considered for res	table are used as the initial simplex for the local optimization arting the algorithm (if requested).
B-BFGS			Parameters	
Levenberg-Marquardt ARMOGA			Maximum Number of Design Evaluations [1,99	99] 500
			Categorize Operators	
Advanced Optimizers	8	-	Advanced Parameters	
MOSA			Final Termination Accuracy [1.0E-10, Check feasibility for convergence	.0] 1.0E-10
MOGT			Check reasibility for convergence	
MOPSO				
FAST				
HYBRID SánGeá				
Shilden				
We Evolution Strategies	8	-		
Evolution Strategy				
W IF 1-E0 M DES		-		
Due Oplices Doll on the				
Run Options RSM Options MORDO Opti	ons	_		
Num. of Concurrent Design Evaluations			1	
Save Error Design in DB				
Evaluate Repeated Designs				
Evaluate Unfeasible Designs				
Clear Design Dir on Exit			Never	
Scheduler Properties				
Scheduler Properties Optimization Wizard			⊟ MOGA-II	
Scheduler Properties Optimization Wizard	8		➢ MOGA-II Scheduler based on Mutti Objective Genetic Algorithm (NOGA) designed for fast Pareto convergence.
Scheduler Properties Optimization Wizard	8		○ MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features:	IOGA) designed for fast Pareto convergence.
Scheduler Properties Optimization Wizard Schedulers ODE Sequence MACK	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search.	IOGA) designed for fast Pareto convergence.
Scheduler Properties Optimization Wizard Schedulers ODE Sequence MACK Lipschitz Sampling	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective func-	NOGA) designed for fast Pareto convergence. ss-over. on penalization.
Scheduler Properties Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Sasic Optimizers	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective funct 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of Independent individ	NOGA) designed for fast Pareto convergence. ss-over. on penalization. Jals.
Cheduler Properties Optimization Wizard Schedulers ODE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective funct 4) Allows Concurrent evaluation of Independent individ Da N (rum of individuals) entries in the DOE table arc	IOGA) designed for fast Pareto convergence. ss-over. on penalization. Jals.
Cheduler Properties Optimization Wizard Contemporation Contemporat	 (a) (b) (c) (c)	• E	MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional cro 2) Implements Eillism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works.	AOGA) designed for fast Pareto convergence. ss-over. on penalization. uals. used as the problem's initial population. Each input variab
Scheduler Properties Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-I SIMPLEX B-BFGS LevenbergMargurar#	8	* E	MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective weight 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of Independent Individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works E Parameters	IOGA) designed for fast Pareto convergence. ss-over. on penalization. uals. used as the problem's initial population. Each input variab nly with discrete variables.
Scheduler Properties Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling MOGA-II SMPLEX B-BFGS Levenberg-Marquardt ARNOGA	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional croc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works 9 Parameters Number of Generations [15,5]	INOGA) designed for fast Pareto convergence. ss-over. on penalization. uals. used as the problem's initial population. Each input variab only with discrete variables. 00] 100 100 5
Control Contr	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional cro: 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Number of Generations [1,50] Probability of Directional Cross-Over [10,0]	AOGA) designed for fast Pareto convergence. ss-over. on penalization. Jals. used as the problem's initial population. Each input variab only with discrete variables. 00] 100 10] 0.5 10] 0.5
Control Contr	 (a) (b) (c) (c)	* E	MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Cenerational or Steady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works: 9 Parameters Number of Generational Cross-Over [10,0] Probability of Mutation [0,0]	AOGA) designed for fast Pareto convergence. ss-over. on penalization. Jals. used as the problem's initial population. Each input variab only with discrete variables. 00] 100 100 0.5 10] 0.5
Control Contr	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective funct 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of Independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Number of Generational Cross-Over 10.0, Probability of Directional Cross-Over 10.0, Probability of Mulation 10.0, Advanced Parameters DNA Other Multicing Datia	NOGA) designed for fast Pareto convergence. ss-over. on penalization. Jals. used as the problem's initial population. Each input variab only with discrete variables. 00] 100 100 0.5 100 0.5 10
Control Contr	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective funct 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of Independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Parameters Insched Generations 11,50 Probability of Directional Cross-Over 10.0, Probability of Mutation Advanced Parameters DNA String Mutation Ratio [0,0, Elitism	NOGA) designed for fast Pareto convergence.
Scheduler Properties Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II SIMPLEX B-B-FGS Levenberg-Marquardt ARMOGA ARMOGA MOSA MOSA MOSA MOSA MOSC	® 		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of Independent Individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Number of Generations 11.55 Probability of Directional Cross-Over 10.0, Probability of Selection 10.0, Probability of Parameters DNA String Mutation Ratio 10.0, Elitism Treat Constraints	INOGA) designed for fast Pareto convergence.
Scheduler Properties Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Source MOGA-II SiMPLEX B-BFGS Levenberg-Marquardt Advanced Optimizers NSGA-II NOSA NOSA MOSA MOST MOSA FAST	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional cror 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Directional Cross-Over 10.0, Probability of Selection 10.0, Probability of Selection 10.0, Probability of Mutation 10.0, Elitism Treat Constraints Algorithm Type	INOGA) designed for fast Pareto convergence. SS-over. on penalization. Jals. Used as the problem's initial population. Each input variab only with discrete variables. OI 100 10.05 00.
Scheduler Properties	® 		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional cro: 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Selection 10.0, Advanced Parameters DNA String Mutation Ratio 10.0, Elitism Treat Constraints Algorithm Type Random Generator Seed [0,5]	AOGA) designed for fast Pareto convergence. ss-over. on penalization. Ials. used as the problem's initial population. Each input variab only with discrete variables. 00 100 10 0.5 10 0.5 10 0.1 10 0.5 Enabled Penalising Objectives MOGA-Generational Evolution 99 1
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II SIMPLEX B-BFGS Levenberg-Marquardt ARMOGA Advanced Optimizers NSGA-II MOGT MOSG FAST FAST SHYBRID SAnGeA	® 		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works. Probability of Directional Cross-Over [10,0] Probability of Selection [10,0] Advanced Parameters DNA Sting Multation Ratio [10,0] Elitism Treat Constraints Algorithm Type Random Generator Seed [0,5] Category Parameters [5]	AOGA) designed for fast Pareto convergence. SS-over. on penalization. Jals. used as the problem's initial population. Each input variab only with discrete variables. 00j 100 10 0.05 00,05 Enabled Penalising Objectives MOGA- Generational Evolution 99] 1
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGAII SIMPLEX B-BFGS Levenberg-Marquardt ARNOGA MOSA-III MOSA MOSF MOSF MOSF MOSF MOSF MOSF MOSA SANGEA Evolution Strategies	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Directional Cross-Over [10, 0] Probability of Selection [10, 0] Probability of Mutation Ratio [10, 0] Advanced Parameters DNA String Mutation Ratio [10, 0] Elitism Treat Constraints Algorithm Type Random Generator Seed [0, 3] Categorize Generations Categorize Operators	AOGA) designed for fast Pareto convergence. SS-over. on penalization. Jals. Used as the problem's initial population. Each input variable only with discrete variables. O0] 100 100 0.5 100 0.5 Enabled Penalising Objectives MOGA-Generational Evolution 99] 1
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGAII SIMPLEX B-BFGS Levenberg-Marquardt ARNOGA Advanced Optimizers MOSA-II MOSA MOGT MOPSO FAST HYBRID SANGEA Evolution Strategies Evolution Strategy	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Directional Cross-Over 10.0, Probability of Selection 10.0, Probability of Mutation 10.0, a Advanced Parameters DNA String Mutation Ratio 10.0, Elitism Treat Constraints Algorithm Type Random Generator Seed 10.3 Category Parameters Categorize Operators	AOGA) designed for fast Pareto convergence. SS-over. on penalization. Jals. Used as the problem's initial population. Each input variable nly with discrete variables. OI 100 0.5 100 0.1 Enabled Penalising Objectives Penalising Objective
Cheduler Properties	 (a) (b) (c) <li(c)< li=""> <li(c)< li=""> <li(c)< li=""> (c)</li(c)<></li(c)<></li(c)<>		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crc 2) Implements Ellism for multiobjective search. 3) Enforces user defined constraints by objective search. 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of Independent individ The N (num. or individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Directional Cross-Over 10.0, Probability of Selection 10.0, Probability of Selection 10.0, Probability of Selection 10.0, Probability of Mutation Ratio 10.0, Probability of Mutation Ratio 10.0, Ellism Treat Constraints Algorithm Type Random Generator Seed 10.1; Categorize Operators	AOGA) designed for fast Pareto convergence. Ss-over. on penalization. Jals. Used as the problem's initial population. Each input variab only with discrete variables. OI 100 0.5 100 0.05 Enabled Penalising Objectives
Cheduler Properties	8		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Steady State evolution. 5) Allows concurrent evaluation of Independent Individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Number of Generations [1.55 Probability of Directional Cross-Over [0.0, Probability of Selection [0.0, Probability of Selection [0.0, Probability of Selection [0.0, Elitism Treat Constraints Algorithm Type Random Generator Seed [0.3] Categorize Generations Categorize Operators	INOGA) designed for fast Pareto convergence.
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II SIMPLEX B-BFGS ARNOGA AAvanced Optimizers NSGA-II MOSA MOSA MOSA MOSA SARBOG SARGA Evolution Strategies Evolution Strategy 1P1-ES nrsc RXM Options RUN Options	© © ©		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional croc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of Independent Individ The N (num. of Individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Number of Generations 11,55 Probability of Selection [0.0, Probability of Selection [0.0, Probability of Autanetor S DNA String Mutation Ratio [0.0, Elitism Treat Constraints Algorithm Type Random Generator Seed [0,3] Categorize Operators	INOGA) designed for fast Pareto convergence.
Scheduler Properties	(8) (8) (8) (8)		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional croc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Directional Cross-Over 10.0 Probability of Selection 10.0 Probability of Selection 10.0 Elitism 17eat Constraints Algorithm Type Random Generators Categorize Operators	INOGA) designed for fast Pareto convergence.
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II SIMPLEX B-BFGS Levenberg-Marquardt ARMOGA MOGA-II NSGA-II NACK WOGST MOGSA MOGT MOPSO FAST HYBRID SanGeA Evolution Strategies Evolution Strategies In Field Nun Options Run Options Swe Error Design Evaluations	© ©		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional cro: 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Directional Cross-Over 10.0, Probability of Selection 00.0, Probability of Selection 00.0, Advanced Parameters DANA String Mutation Ratio 10.0, Elitism Treat Constraints Algorithm Type Random Generator Seed 0,0,0 Category Parameters Categorize Operators	AOGA) designed for fast Pareto convergence.
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGAII SIMPLEX B-BFGS Levenberg-Marquardt ARMOGA Advanced Optimizers NSGA-II MOSA MOGT MOSA FAST FYBRID SANGEA Evolution Strategies Evolution Strategies Evolution Strategies In Equipoins NRM Options Run Options Num of Concurrent Design Evaluations Save Error Design In DB Evaluate Repeated Designs	 (a) (b) (c) <li(c)< li=""> <li(c)< li=""> <li(c)< li=""> (c)</li(c)<></li(c)<></li(c)<>		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Selection 10.0, Advanced Parameters DNA String Mutation Ratio 10.0, Elitism Treat Constraints Algorithm Type Random Generations Categorize Generations Categorize Generations Categorize Generations Categorize Generations Categorize Generations	ADGA) designed for fast Pareto convergence.
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGAII SIMPLEX B-BFCS Levenberg-Marquardt ARMOGA Advanced Optimizers NSGA-II MOGT MOSA MOGT MOPSO FAST Evolution Strategies Evolution Strategies IPUIDIONS Run Options Num. of Concurrent Design Evaluations Save Repeated Designs Save Repeated Designs	 (a) (b) (c) <li(c)< li=""> <li(c)< li=""> <li(c)< li=""> (c)</li(c)<></li(c)<></li(c)<>		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of Independent individ The N (num. or individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Number of Generations [1,55 Probability of Directional Cross-Over [0,0, Probability of Selection [0,0, Probability of Selection [0,0, Probability of Selection [0,0, Probability of Selection [0,0, BAdvanced Parameters DNA String Mutation Ratio [0,1,55 Categorize Generations Categorize Generations Categorize Operators	AOGA) designed for fast Pareto convergence. SS-over. on penalization. Jals. Used as the problem's initial population. Each input variable inj vith discrete variables. 00] 100 100 0.5 Enabled Penalising Objectives MOGA-Generational Evolution 99] 1
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II SIMPLEX B-BFGS Levenberg-Marquardt ARMOGA MOSA-II MOSA MOSA MOSA MOSA MOSA SARGEA Evolution Strategies Evolution Strategies Evolution Strategies Evolution Strategies Run Options Run Options Save Repeated Design in DB Evaluate Repeated Designs Save Repeated Design in DB Valuate Unfeasible Designs Diare Design Dir on Exit	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crc 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective funct 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of Independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Parameters Number of Generations [1.5.7 Probability of Directional Cross-Over [0.0, Probability of Selection [0.0, Probability of Selection [0.0, Probability of Selection [0.0, Elitism Treat Constraints Algorithm Type Random Generator Seed [0.5] Categorize Generations Categorize Operators	INOGA) designed for fast Pareto convergence.
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II SIMPLEX BEPRGS VMOGA-II ARMOGA Advanced Optimizers NSGA-II MOSA MOGT SARGA SARGA Evolution Strategies Evolution Strategies Evolution Strategies IP1-ES Ince Run Options RUN Options MORDO Optivaluations Save Error Design ID B Valuate Repeated Designs Save Repeated Designs Savalate Unfeasible Designs Iear Design Dir on Ext	 (a) (b) (c) <li(c)< li=""> <li(c)< li=""> <li(c)< li=""> (c)</li(c)<></li(c)<></li(c)<>		MOCA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional crr 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Stady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Selection 10.0, Advanced Parameters DNA String Mutation Ratio 10.0, Elitism Treat Constraints Algorithm Type Random Generators Categorize Generators	ADGA) designed for fast Pareto convergence.
Optimization Wizard Optimization Wizard Schedulers DOE Sequence MACK Lipschitz Sampling Basic Optimizers MOGA-II SIMPLEX B-BFGS Levenberg-Marquardt ARMOGA Avanced Optimizers NOGA-II NSGA-II MOGA MOGA MOGT MOPSO FAST HYBRID SANGEA Evolution Strategies Evolution Strategies Evolution Strategies Ince Run Options Run Options Save Error Design in DB Valuate Repeated Designs Save Repeated Designs Save Repeated Designs Save Repeated Designs Start Design Dir on Exit	 (a) (b) (c) (c)		MOGA-II Scheduler based on Multi Objective Genetic Algorithm (Main features: 1) Supports geographical selection and directional cros 2) Implements Elitism for multiobjective search. 3) Enforces user defined constraints by objective fund 4) Allows Generational or Staady State evolution. 5) Allows concurrent evaluation of independent individ The N (num. of individuals) entries in the DOE table are base must be different from zero, since MOGA-II works Probability of Directional Cross-Over 10.0, Probability of Selection 00.0 Probability of Selection 00.0 Elitism Treat Constraints Algorithm Type Random Generator Seed 0.1 Categorize Operators Categorize Operators	AOGA) designed for fast Pareto convergence. SS-over. on penalization. Ials. Used as the problem's initial population. Each input variab only with discrete variables. OII 100 100 100 10 0.5 Enabled Penalising Objectives MOGA- Generational Evolution 99 1

When we select MOGA in scheduler we have the option to select the number of generation and the probability, this effects the no. of iteration MOGA will run before it stops automatically irrespective of whether the desire results are achieved or not.

3.8) OUTPUT FILE

To assign output variables open output file properties and click Open Output file to assign values

(.								
Output File Properties								
Open Output								
File								
Output File Properties								
Output File Node Name					functionout1			
Description								2
Output File Name					fonction.out			
Include Template in Proje	ect							
Charset					windows-1252			
Data Input Connector					Data Output Connector	r		
DOSBatch21						•		
	01/			0.5			Lista	
	OK			Ca	ncei		Heip	
r	Temp	late Output Ed	itor				×	
	File Ed	it Charset						
	1 Res	ultat pour :	x= 1. y=, 2.					
	3 1.	2. 25	Absolute Positio	ו ו				
	4 1.	20.	Relative Position					
	5		Block Variable					
			Select Tag					
			Select Relative					
			Barrova Variable					
				0115				
			Find	Ctrl+F				
			Go To Line	Ctrl+G				
	Row: 2	Col: 11	Len: 79					
		V	ariable Name	Descriptio	on N	lining Rule		
	0	OUTPUT1						
		OK		Car	icel	Help		
							2	

In Output editor select the output variable, right click on the value to be assigned and select absolute position.

3.9) OUTPUT VARIABLE

In output variable we assign the input variable to be optimised.

3.10) MINIMISER / MAXIMISER

This tool is used to select the output to be minimised or maximised. In addition we also have the ability to select a user defined weighted function in case we convert the Multi-Objective problem to be solved using Simplex Method.

Cobjective Properties		×
Objective Properties		
Name	min1	
Description		2
Enabled		
Format	0.0000E0	
Objective Expression Properties		
User Expression	OUTPUT1	
Туре	Minimize	•
	Maximize	
Data Input Connector	Minimize	
COUTPUT1		-
ОК	Cancel	Help

Expression Editor					×
Variables	Expression				
OUTPUT1	1 OUTPUT 2 30*OUTF	1 PUT1+70*OU	ІТРИТ2		
	Basic Fund	tions			Operators
	sin	cos	tan	degToRad	~ & ! (
	asin	acos	atan	radToDeg	
	log	In	exp	sqrt	%,=
	abs	sgn	rand	pow	7 8 9 / CA
	ceil	floor	round	mod	4 5 6 * <-
	min	max	interp	vect	
Apply				c	ancel

The above figure shows the second option where output1 is given 30% weightage and output2 is given 70%. We can test the optimisation for different weightage as long as the total weightage of all function is 1 (or 100%)

8	Logic Log			•×
	Type	Description (0 Errors, 1 Warnings)	Node	
0			SUPPORT_FILE	
	Logic Log	🎦 Input Variable 🖳 Output Variable 🖳 Buffer Variables 📳 Transfer Variable 🐶 Design Objective 👪 Vector Objective % Design Constraint 🗞 Vector Constra	aint 🔀 Vector Input Variable 🙀 Vector Output Variable	
_			the second se	1.000

Check the Logic Log for error, rectify if any (as shown above).

Click RUN at top tool bar to start the optimisation process.

We can then check the Design Space to track the optimisation and then generate Graphs and Plots to analyse the result, in this case we have exported the values of iteration to MS Excel and MATlab to carry out the analysis.

SETUP DETAILS AND REULSTS FOR FINE MARINE ANALYSIS

FineMarine[©] is a solver based on Reynolds Averaged Navier Stokes Equation (RANSE), FineMarine[©] was chosen due to licence availability at DN&T, Liege. The modelling was done in Rhino3dM and a parasolid export was carried out in order to import the model into FineMarine[©]. Once the model is imported we need to check continuity of surfaces in HEXPRESS and then prepare the project setup which involves following basic steps

	BASIC STEP	S TO SETL	JP
S. No.	ELEMENT NAME	S. No.	ELEMENT NAME
1	Defining Domain	7	Surface Refinement
2	Manipulating Domain	8	Mesh Snapping
3	Grid/Boundary Condition Definition	9	Mesh Optimisation
4	Initial Meshing	10	Viscous Layer Generation
5	Free Surface Mesh	11	Defining Motion Parameters
6	Global Refinement	12	Setting-up Computational Controls

4) MODELING MESH WIZARD

1.1) INITIAL MESH DEFINIATION

The initial mesh involved subdividing the domain bounding box along Cartesian coordinates as be details below

		MESH DE	FINITION		
S. No.	ELEMENT	VALUE	S. No.	ELEMENT	VALUE
1	X – Axis	20	4	Z – Axis	10
2	Y – Axis	06	5	No. of Cells	1200
3	N _b Cells	4,397,433	6	N _b Vertices	5,167,773

1.2) MESH REFINMENT AND TRIMING

This involves optimising and snapping the auto generated mesh to adapt to geometry.

	GLOBAL REFINEMENT PARAMETER	RS
S. No.	ELEMENT DESCRIPTION	VALUE
1	Max. No. of Refinement	10
2	Refinement Diffusion	02
3	No. of Cells in Gap	07
4	Max. Cell Size	1e+20

	SURFACE REFINEMENT PARAMETERS					
[DECK CENTRAL AND OUTRI	GGER	ŀ	IULL CENTRAL AND OUTRIG	GGER	
S. No.	ELEMENT	VALUE	S. No.	ELEMENT	VALUE	
1	Max. No. of Refinement	04	1	Max. No. of Refinement	06	
2	Curvature	NO	2	Curvature	YES	
		X: 0;			X: 0.35;	
3	Target Cell Sizes	Y: 0;	3	Target Cell Sizes	Y: 0.35;	
		Z: 0;			Z: 0.35;	
TRANSOM			INTERNAL SURFACES			
	TRANSOM			INTERNAL SURFACES		
S. No.	TRANSOM ELEMENT	VALUE	S. No.	ELEMENT	VALUE	
S. No.	TRANSOM ELEMENT Max. No. of Refinement	VALUE 07	S. No. 1	ELEMENT Max. No. of Refinement	VALUE 08	
S. No. 1 2	TRANSOM ELEMENT Max. No. of Refinement Curvature	VALUE 07 NO	S. No. 1 2	INTERNAL SURFACES ELEMENT Max. No. of Refinement Curvature	VALUE 08 NO	
S. No. 1 2	TRANSOM ELEMENT Max. No. of Refinement Curvature	VALUE 07 NO X: 0;	S. No. 1 2	INTERNAL SURFACES ELEMENT Max. No. of Refinement Curvature	VALUE 08 NO X: 3.1744;	
S. No. 1 2 3	TRANSOM ELEMENT Max. No. of Refinement Curvature Target Cell Sizes	VALUE 07 NO X: 0; Y: 0;	S. No. 1 2 3	INTERNAL SURFACES ELEMENT Max. No. of Refinement Curvature Target Cell Sizes	VALUE 08 NO X: 3.1744; Y: 3.1744;	
S. No. 1 2 3	TRANSOMELEMENTMax. No. of RefinementCurvatureTarget Cell Sizes	VALUE 07 NO X: 0; Y: 0; Z: 0;	5. No. 1 2 3	INTERNAL SURFACES ELEMENT Max. No. of Refinement Curvature Target Cell Sizes	VALUE 08 NO X: 3.1744; Y: 3.1744; Z: 3.1744;	

1.3) VISCOUS LAYER INSERTION

VISCOUS LAYER PARAMETERS							
	GLOBAL		SURFACE				
S. No.	ELEMENT	VALUE	VALUE S. No. ELEMENT VAI				
1	First Layer Thickness	1e-005	1	First Layer Thickness	3.08e-004		
2	Stretching Ratio	1.2	2	Stretching Ratio	1.2		
3	Inflate Viscous Layer	Fixed No.	3	No. of Layers	20		

5) COMPUTATION WIZARD

The computation wizard can be divided into mainly three different elements

- Physical Configuration
- Numerical Model
- Computational Control

The description below will provide the details of each element and their specific sub-elements

2.1) PHYSICAL CONFIGURATION

GENERAL PARAMETERS					
S. No.	ELEMENT DESCRIPTION	VALUE			
1	Time Configuration	Steady			
2	Mono-Fluid	Steady Approach			
3	Multi-Fluid	Time-marching Method			

FLUID MODEL							
S. No.	VALUE						
1	Name	WATER	1	Name	AIR		
2	Dynamic Viscosity	0.001103 Pa-s	2	Dynamic Viscosity	1.85e-005 Pa-s		
3	Density	1025.07 kg/m ³	3	Density	1.2 kg/m ³		

FLOW MODEL					
S. No.	ELEMENT DESCRIPTION	VALUE			
1	Turbulence Model	k-omega-SST			
2	Reference Length	15.5 m			
3	Reference Velocity	10.28 m/s			
4	Reynolds Water	1.4808E+008			
5	Froude	0.83367			

BOUNDRY CONDITION							
	SOLID			EXTERNAL			
S. No.	ELEMENT	VALUE	S. No.	ELEMENT	VALUE		
1	Deck Central and Outrigger	Slip	1	Z-max	Prescribed Pressure (Updated Hydrostatic Pressure)		
2	Hull Central and Outrigger	Wall Function	2	X-min	Far Field		
			3	Far Field Velocity	Constant: 0 m/s (VX, VY and VZ)		
			4	Mass Fraction	Default Value		

BODY MOTION (GEOMETRY : HALF BODY)								
DOF MOTION DEFINITION								
S. No.	S. No. ELEMENT VALUE S. No. ELEMENT VALUE							
1	ТХ	Imposed, ½ Sinusoidal Ramp	1	RX (Roll)	FIXED			
2	ΤY	FIXED	2	RY (Pitch)	FIXED			
3 TZ SOLVED 3 RZ (Yaw) FIXED								

2.2) NUMERICAL MODEL

NUMERICAL SCHEME							
	DISCRETISATION	SCHEME	UNDER-RELAXATION PARAMETERS				
S. No.	No. ELEMENT VALUE S. No. ELEMENT				VALUE		
1	Turbulence	AVLSMART	1	VX, VY, VZ	0.5		
2	Momentum	AVLSMART	2	Pressure	0.3		
3	Multi-Fluid	BRICS	3	Velocity Flux	1.0		
4	Cavitation	None	4	Correction	0.5		
			5	Turbulent KE	0.2		
			6	Turbulent (Hz)	0.2		
			7	Mass-Fraction	0.5		

2.3) COMPUTATION

CONTROL VARIABLES							
	GENERAL PARAMETERS TIME STEP PARAMETERS						
S. No.	D. ELEMENT VALUE S. No. ELEMENT VAL						
1	Max. No. of Non-linear Iteration	6	1	No. of Time Steps	1000		
2	Convergence Criteria	2 orders	2	Time Step Law	UNIFORM		

6) WAVE PROFILE AT 20 knots for FineMarine[©]

7) RESISTANCE RESULTS AT 1 m/s

Design of a Common Modular – SWAS(S)H for Offshore and Harbour Support Vessels 16

8) RESISTANCE RESULTS AT 4 m/s

Design of a Common Modular – SWAS(S)H for Offshore and Harbour Support Vessels 17
9) RESISTANCE RESULTS AT 7 m/s

Design of a Common Modular – SWAS(S)H for Offshore and Harbour Support Vessels 18

10) RESISTANCE RESULTS AT 11 m/s

Extacted Pareto Frontier Iterations		Extacted	d Pareto	Extacted	d Pareto	Extacted Pareto		
Frontier	terations	Frontier I	terations	Frontier I	terations	Frontier I	terations	
21.875	5 knots	21.875 knots	5 knots	21.875 knots	5 knots	21.875 knots	5 knots	
160.642	6 95 2	127.605	6 422	126 752	6 452	127.052	6 424	
170 546	7 261	142 011	6.432	126.062	6.435	137.952	6 422	
179.540	7.301	142.011	6 422	126 749	6.470	120.200	6 422	
150.070	6 0 1 0	127 / 70	6.420	127 152	6 427	120.072	6.423	
170.621	7 261	126 7/2	6.450	127.152	6.437	127.240	6.424	
166 217	7.501	126 516	6 494	157.752	7 574	127.074	6 422	
150.217	6.848	126 / 10	6.479	127 72/	6 / 22	127 195	6.422	
1/7 270	7 1 / /	126.00/	6.478	144 025	6.655	127 800	6 4 2 1	
153 833	6 630	136 566	6.445	137 152	6.437	136.052	6.441	
1/7/152	7 151	126 770	6.461	127 208	6.437	127 91/	6.425	
147.432	6.640	120.775	6.420	120 020	6.433	127 102	6.440	
1/7 216	7 1/19	126 017	6.4429	140 774	6.493	127 927	6.425	
120 527	6 710	120.917	6 427	120.004	6 422	137.027	6.442	
139.527	6 5 20	120.702	6 427	141 720	6.470	120 040	6 422	
137.610	6.569	126.430	6.420	141.739	6.479	127 157	6.443	
137.080	6.404	130.035	0.404 C 495	139.003	6.424	137.137	6.020	
127.247	6.694	130.433	0.465	139.929	6.424	147.247	0.939	
137.347	6.595	120.001	6.432	137.042	6.427	239.300	9.275	
127 157	6.300	139.001	6.423	139.004	6.425	137.000	6.440	
137.137	0.461	130.393	0.402	137.290	6.435	137.115	6.440	
126 222	0.550	130.310	0.501	137.017	6.427	142 467	6.420	
130.222	0.530	130.500	0.405	137.810	0.431	142.407	0.448	
137.065	0.572	139.001	0.425	137.152	0.437	137.115	6.439	
126 222	6.526	130.009	0.455	137.223	6.436	137.102	6.440	
130.222	0.550	130.433	0.337	137.327	6.435	137.295	0.440 6.449	
127.062	6 127	127 /51	6.453	127.225	6.425	127 247	6 426	
126 240	6.401	1/15 272	6 990	100 120	7 115	127.020	6.430	
126 254	6.491	126.000	6.449	127 262	6.421	162 000	6 772	
127 615	6.434	126 752	6.452	127 52/	6.431	127 017	6.422	
126 861	6.494	126 207	6.455	127 920	6.420	127.025	6.440	
126 420	6.484	126 600	6.400	127 206	6.424	127.005	6 428	
190.450	7.026	126 470	6.470	140 122	6 417	137.290	6.420	
126 001	6.440	126 622	6.420	127 004	6.425	127.170	6 4 4 1	
140 208	6.449	126 652	6.461	140 122	6.417	127 217	6.441	
127 104	6.434	126 208	6.401	165 081	6 822	127 179	6 4 2 0	
137.104	6 / 27	136 72/	6 / 56	130 5/0	6 105	137.170	6 / 20	
136 27/	6 / 7 9	136 725	6 /177	137 105	6 / 26	1/0 215	6 / 00	
137 10/	6 1/6	136 550	6 / 65	130 361	6 /01	130 021	6 405	
137.104	6 126	136 350	6 / 97	130 120	6 4 2 4	137.031	6 / 20	
136.274	6 470	136 7/15	6 /5/	137 620	0.424 6.425	1/0 200	6 400	
126 600	6 / 91	120.745	6 422	127.020	6.423	120 201	6 422	
138 215	6 / 25	130.203	6 /66	1/1 7/2	6.4.4	138 222	6/16	
136.062	6 1 1 0	139.333	6 122	127 242	6 126	130.352	6 100	
136 /67	6 170	136.203	6 156	137.243	6 125	137.443	6 / 20	
126 600	6 /01	127 676	6 127	142 022	6 / / 1	127 701	6 121	
120.009	6 420	126 000	6.440	120 600	6 / 20	120 077	6 125	
137 611	6.429	136 350	0.449 6 / 97	137 142	0.43U	136 350	0.425 6 / 97	
1/0 501	6 674	130.330	6 / 22	1/2 0/1	6 / / 0	130.330	6 // 1	
136 564	6 530	136 951	6 4 4 6	138 305	6427	101.401	0.441	
10.004	0.550	120.221	0.440	100.000	0.427			

REULSTS – LAST 200 CYCLES PARETO FRONTIER VALUES

20	122.4	20	96.5
20.625	124.8	20.625	97.9
21.25	127.2	21.25	99.4
21.875	129.7	21.875	101

20	141.3	20	114.5
20.625	144.7	20.625	116.6
21.25	148.1	21.25	118.9
21.875	151.8	21.875	121.3

20	163	20	128.2	20	127.3
20.625	167.7	20.625	131.2	20.625	130.2
21.25	172.6	21.25	134.2	21.25	133.1
21.875	177.6	21.875	137.3	21.875	136.2

	RE	SISTANCE V	ARIATION	WITH BEAN	1 FOR 24m	CM-SWAS(5)H	
SPEED			BEAM	(meters) /	RESISTANC	E (kW)		
(Knots)	7 m	8 m	9 m	9.5 m	10 m	10.5 m	11 m	11.5 m
0	0	0	0	0	0	0	0	0
0.625	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1.25	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
1.875	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
2.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
3.125	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
3.75	3.3	3.3 3.3		3.3	3.3	3.4	3.4	3.4
4.375	4.6	4.5	4.6	4.5	4.5	4.5	4.5	4.5
5	6.6	6.6	6.6	6.6	6.6	6.6	6.6	6.6
5.625	8.8	9.1	9.2	9.3	9.4	9.5	9.6	9.7
6.25	11.3	11.1	10.9	10.7	10.6	10.4	10.3	10.2
6.875	17.3	17.6	17.9	18.3	18.7	19	19.4	19.7
7.5	19.1 20.1		20.5	20.8	21	21	21	20.9
8.125	27.3	27.3 27.1		26.4	25.9	25.5	25.1	24.7
8.75	34	32.9	32.4	31.9	31.5	31.2	31	30.8
9.375	33.4	32.6	32.4	32.3	32.4	32.5	32.6	32.8
10	31.3	31.4	31.6	31.9	32.3	32.6	33	33.4
10.625	33.8	34.5	34.9	35.3	35.8	36.1	36.5	36.7
11.25	41.8	42.6	43	43.3	43.5	43.7	43.8	43.9
11.875	53.2	53.8	53.9	54	54	53.9	53.8	53.6
12.5	65.8	65.8	65.7	65.5	65.2	64.8	64.5	64.1
13.125	77.6	77.1	76.7	76.2	75.7	75.1	74.6	74
13.75	87.9	86.8	86.2	85.5	84.8	84.2	83.4	82.8
14.375	96.5	94.9	94.1	93.3	92.5	91.7	90.9	90.2
15	103.4	101.5	100.6	99.6	98.8	97.9	97.1	96.3
15.625	108.9	106.8	105.8	104.8	103.9	103	102.2	101.4
16.25	113.3	111.1	110	109.1	108.1	107.3	106.5	105.8
16.875	117	114.7	113.6	112.7	111.8	111	110.3	109.6
17.5	120.2	117.9	116.9	116	115.1	114.3	113.6	112.9
18.125	123.2	120.9	119.8	119	118.1	117.4	116.7	116.2
18.75	125.9	123.6	122.7	121.8	121	120.4	119.8	119.2
19.375	128.5	126.3	125.4	124.7	123.9	123.3	122.8	122.2
20	131.2	129.2	128.2	127.5	126.9	126.3	125.8	125.4

		POWER VAI	RIATION WI	ITH BEAM F	OR 24m CN	∕I-SWAS(S)⊦	4	
SPEED			BEA	M (meters)	/ POWER (kW)		
(Knots)	7 m	8 m	9 m	9.5 m	10 m	10.5 m	11 m	11.5 m
0								
0.625	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
1.25	0.378	0.378	0.378	0.378	0.378	0.378	0.378	0.378
1.875	1.232	1.232	1.232	1.232	1.232	1.232	1.232	1.232
2.5	2.92 2.917		2.916	2.917	2.917	2.919	2.92	2.925
3.125	5.795 5.856		5.886	5.919	5.937	5.936	5.892	5.812
3.75	10.64 10.693		10.728	10.67	10.696	10.832	10.934	10.91
4.375	17.14 17.067		17.111	16.987	16.847	16.844	16.949	17.067
5	28.252 28.485		28.348	28.236	28.23	28.251	28.227	28.147
5.625	42.32	43.692	44.236	44.753	45.318	45.885	46.365	46.7
6.25	60.357	59.368	58.557	57.59	56.666	55.832	55.191	54.805
6.875	102.136	103.997	105.623	107.658	109.963	112.219	114.364	116.292
7.5	122.932	129.475	131.971	133.743	134.761	135.075	134.986	134.349
8.125	189.839	188.587	186.306	183.632	180.535	177.518	174.629	171.849
8.75	255.403	246.966	242.859	239.39	236.428	234.193	232.611	231.419
9.375	268.405	262.047	260.563	259.82	260.202	261.086	262.315	263.927
10	268.583	269.29	271.346	273.809	276.769	276.769 279.903		286.095
10.625	307.957	314.387	318.164	321.918	325.685	329.016	332.127	334.227
11.25	402.852	410.721	414.402	417.64	419.741	421.322	422.492	423.255
11.875	541.897	547.811	549.188	549.8	549.748	549.046	547.53	545.546
12.5	704.797	705.264	703.641	701.601	698.366	695.007	690.805	686.534
13.125	873.59	867.461	862.659	857.35	851.568	845.521	839.158	832.713
13.75	1036.648	1023.737	1016.391	1008.56	1000.143	992.084	983.818	975.625
14.375	1188.898	1170.273	1160.202	1150.192	1139.71	1130.081	1120.494	1111.725
15	1329.573	1305.204	1293.366	1281.506	1270.065	1258.849	1248.886	1239.132
15.625	1458.546	1430.568	1416.936	1404.119	1391.723	1380.193	1369.816	1359.109
16.25	1579.148	1548.426	1532.895	1519.716	1506.2	1495.024	1483.97	1473.979
16.875	1693.344	1660.027	1644.37	1630.551	1617.549	1606.487	1595.656	1586.105
17.5	1804.202	1769.11	1753.993	1739.827	1727.48	1715.632	1705.006	1694.699
18.125	1914.164	1878.288	1862.511	1848.961	1835.644	1824.871	1814.131	1805.318
18.75	2023.56	1987.241	1972.086	1958.706	1945.367	1935.385	1925.191	1916.278
19.375	2134.864	2098.47	2083.805	2070.782	2058.904	2047.847	2040.333	2030.729
20	2249.109	2215.081	2199.014	2186.689	2175.947	2165.202	2157.212	2150.422

ITTC 1978 Prediction Method

Scale 13

		MODEL AND	SHIP DETAILS					
MC	DEL		SHIP					
Disp	36.117	Kg	Disp	79.350	t			
LBP	0.962	m	LBP	12.500	m			
LWL	1.000	m	LWL	13.000	m			
Breadth	0.692		Breadth	9.000	m			
Draft	0.246	m	Draft	3.200	m			
Surface Area	1.032	m^2	Surface Area	174.481	m^2			
Cb	0.880		Cb	0.880				
LCG	0.623	m	LCG	8.100	m (AP)			
Density	1.000	t/m^3	Density	1.025	t/m^3			
Kinematic Viscocity	1.14E-06	m^2/s	Kinematic Viscocity	1.188E-06	m^2/s			
			At	13.51	m^2			

INPUT DATA		FORM FACTOR PREDICTION										
Vm (m/s)	Rtm(N)	Fn	Ctm x 10^-3	Rn	Cfm x 10^-3	Ctm/Cfm	Fn^4/Cf					
0.2745	0.48069	0.0876	12.358	241000.878	6.557	1.885	0.009					
0.563	1.48131	0.1798	9.053	494293.240	5.496	1.647	0.190					
0.847	4.29678	0.2704	11.602	743634.767	5.004	2.319	1.069					
1.141	6.73947	0.3643	10.028	1001755.926	4.686	2.140	3.759					
1.472	17.86401	0.4700	15.971	1292361.721	4.437	3.600	10.995					
1.696	29.89107	0.5415	20.131	1489025.461	4.307	4.674	19.961					
1.98	41.37858	0.6322	20.446	1738366.989	4.172	4.901	38.284					
2.485	47.60793	0.7934	14.935	2181738.367	3.984	3.749	99.459					
2.637	49.78575	0.8419	13.869	2315188.762	3.937	3.523	127.623					
2.922	54.85752	0.9329	12.446	2565408.253	3.858	3.226	196.351					

ITTC 1978 Prediction Method

Scale 13

		MODEL AND	SHIP DETAILS					
MC	DDEL		SHIP					
Disp	36.117	Kg	Disp	79.350	t			
LBP	0.962	m	LBP	12.500	m			
LWL	1.000	m	LWL	13.000	m			
Breadth	0.692		Breadth	9.000	m			
Draft	0.246	m	Draft	3.200	m			
Surface Area	1.032	m^2	Surface Area	174.481	m^2			
Cb	0.880		Cb	0.880				
LCG	0.623	m	LCG	8.100	m (AP)			
Density	1.000	t/m^3	Density	1.025	t/m^3			
Kinematic Viscocity	1.14E-06	m^2/s	Kinematic Viscocity	1.188E-06	m^2/s			
			At	13.51	m^2			

1+K	1.9258
Delta Cf	0.00173268
Саа	7.743E-05

		RESISTA	NCE EXTRAPOLATION			
(1+K)*Cfm	Cwx10^-3	Vs (Knots)	Vs(m/s)	Cfs x 10^-3	Cts x 10^-3	Rts (KN)
12.355	0.003	1.924	0.990	5.575	7.388	0.647
10.356	-1.303	3.946	2.030	4.943	5.450	2.009
9.429	2.173	5.937	3.054	4.631	8.615	7.185
8.829	1.199	7.998	4.114	4.421	7.431	11.248
8.360	7.611	10.318	5.308	4.253	13.674	34.449
8.115	12.015	11.888	6.115	4.164	17.989	60.162
7.860	12.586	13.878	7.140	4.070	18.466	84.169
7.507	7.428	17.418	8.960	3.937	13.175	94.590
7.418	6.451	18.483	9.509	3.903	12.164	98.345
7.269	5.177	20.481	10.536	3.846	10.833	107.540

28

ANNEX – 4

SEAKEPING AND STABILITY

SEA-KEEPING ANALYSIS WITH BEAM VARIATION FOR 24 m HULL

_			8.0 m			9.0 m			9.5 m			10.0 m			10.5 m			11.0 m	
Encounter	Wave	Heave	Roll		Heave	Roll		Heave	Roll		Heave	Roll		Heave	Roll		Heave	Roll	
Frequency	Frequency	RAO	RAO	FILLITRAO	RAO	RAO	FILLII KAO	RAO	RAO	FILLINKAU	RAO	RAO	FILCH KAO	RAO	RAO	FILLINAO	RAO	RAO	FILCH KAO
rad/s	rad/s																		
0.2	0.2	0.759	5.797	3.923	0.584	7.68	3.906	0.509	8.985	3.92	0.443	10.56	3.834	0.395	12.808	3.849	0.34	15.788	3.787
0.531	0.531	0.729	0.57	0.79	0.772	1.335	0.818	0.786	3.303	0.832	0.802	12.695	0.835	0.823	2.113	0.851	0.831	1.159	0.854
0.862	0.862	0.819	2.293	0.591	0.893	0.748	0.625	0.923	0.553	0.638	0.954	0.472	0.648	0.991	0.396	0.664	1.015	0.354	0.67
1.193	1.193	2.09	0.448	2.728	2.163	0.318	2.764	2.208	0.273	2.771	2.148	0.249	2.738	2.183	0.222	2.748	2.127	0.204	2.704
1.524	1.524	0.918	0.182	2.25	1.048	0.133	2.391	1.113	0.112	2.451	1.168	0.097	2.498	1.239	0.08	2.562	1.289	0.066	2.593
1.856	1.856	0.678	0.041	0.214	0.814	0.005	0.246	0.89	0.025	0.265	0.968	0.05	0.285	1.052	0.075	0.308	1.116	0.101	0.327
2.187	2.187	0.6	0.131	0.085	0.882	0.298	0.137	0.797	0.34	0.133	0.53	0.292	0.093	0.323	0.223	0.058	0.193	0.173	0.036
2.518	2.518	0.755	0.264	0.301	0.095	0.117	0.08	0.011	0.085	0.02	0.03	0.057	0.028	0.047	0.032	0.065	0.055	0.027	0.091
2.849	2.849	0.008	0.028	0.002	0.007	0.018	0.006	0.011	0.013	0.006	0.014	0.009	0.005	0.014	0.005	0.004	0.013	0.001	0.004
3.18	3.18	0.003	0.01	0.008	0.003	0.001	0.012	0.005	0.005	0.013	0.007	0.01	0.012	0.009	0.019	0.012	0.015	0.064	0.014
3.511	3.511	0.012	0.005	0.003	0.02	0.031	0.003	0.016	0.038	0.003	0.004	0.011	0	0.006	0.006	0.001	0.006	0.004	0.001
3.842	3.842	0.023	0.037	0.001	0.007	0.004	0	0.009	0.003	0	0.008	0.002	0	0.005	0	0	0.005	0.002	0
4.173	4.173	0.009	0.002	0	0.006	0	0	0.005	0.001	0	0.005	0.006	0	0.003	0.026	0	0.004	0.001	0
4.504	4.504	0.006	0	0	0.003	0.025	0	0.004	0.002	0	0.004	0.001	0	0.005	0	0	0.005	0	0
4.836	4.836	0.003	0.016	0	0.003	0.001	0	0.004	0	0	0.005	0.001	0	0.004	0.001	0	0.007	0	0
5.167	5.167	0.003	0	0	0.004	0.001	0	0.006	0.001	0	0.006	0	0	0.006	0	0	0.004	0.003	0
5.498	5.498	0.004	0.002	0	0.006	0	0	0.005	0.002	0	0.004	0.002	0	0.003	0.001	0	0.003	0	0
5.829	5.829	0.005	0	0	0.003	0	0	0.003	0	0	0.003	0	0	0.003	0	0	0.004	0	0
6.16	6.16	0.003	0	0	0.002	0	0	0.003	0	0	0.003	0	0	0.004	0	0	0.003	0	0
6.491	6.491	0.001	0	0	0.003	0	0	0.003	0	0	0.003	0	0	0.002	0	0	0.002	0	0
6.822	6.822	0.002	0	0	0.002	0	0	0.001	0	0	0.001	0	0	0.002	0	0	0.002	0	0
7.153	7.153	0.002	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0
7.484	7.484	0	0	0	0.001	0	0	0.001	0	0	0	0	0	0	0	0	0.001	0	0
7.816	7.816	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.147	8.147	0	0	0	0.001	0	0	0	0	0	0	0	0	0.001	0	0	0	0	0
8.478	8.478	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0
8.809	8.809	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0
9.14	9.14	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0
9.471	9.471	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0
9.802	9.802	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0	0.001	0	0
10.133	10.133	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SEA-KEEPING ANALYSIS WITH BEAM VARIATION FOR 24 m HULL

_			8.0 m			9.0 m			9.5 m			10.0 m			10.5 m			11.0 m	
Encounter Frequency	Wave Frequency	Heave RAO	Roll	Pitch RAO	Heave RAO	Roll	Pitch RAO	Heave RAO	Roll	Pitch RAO	Heave RAO	Roll	Pitch RAO	Heave RAO	Roll	Pitch RAO	Heave RAO	Roll	Pitch RAO
10 464	10 464	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.796	10.796	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11,127	11.127	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.458	11.458	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11.789	11.789	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.12	12.12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.451	12.451	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12.782	12.782	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.113	13.113	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.444	13.444	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13.776	13.776	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.107	14.107	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.438	14.438	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.769	14.769	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.1	15.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.431	15.431	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.762	15.762	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16.093	16.093	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16.424	16.424	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16.756	16.756	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.087	17.087	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.418	17.418	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.749	17.749	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.08	18.08	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.411	18.411	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.742	18.742	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.073	19.073	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.404	19.404	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.736	19.736	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20.067	20.067	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20.398	20.398	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20.729	20.729	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21.06	21.06	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21.391	21.391	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21.722	21.722	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22.053	22.053	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SEA-KEEPING ANALYSIS WITH BEAM VARIATION FOR 24 m HULL

F	14/2012		8.0 m			9.0 m			9.5 m			10.0 m			10.5 m			11.0 m	
Frequency	Frequency	Heave RAO	Roll RAO	Pitch RAO															
22.384	22.384	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22.716	22.716	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23.047	23.047	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23.378	23.378	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23.709	23.709	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24.04	24.04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24.371	24.371	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24.702	24.702	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25.033	25.033	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25.364	25.364	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25.696	25.696	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26.027	26.027	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26.358	26.358	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26.689	26.689	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27.02	27.02	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27.351	27.351	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27.682	27.682	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28.013	28.013	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28.344	28.344	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28.676	28.676	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29.007	29.007	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29.338	29.338	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29.669	29.669	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DEG	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
GZ (m)	0	0.182	0.403	0.604	0.831	1.134	1.416	1.643	1.81	1.94	1.982	1.855	1.548	1.134	0.706	0.267	-0.104	-0.332	0

Code	Criteria	Value	Units	Actual	Status	Margin %
C400. Intact stability with wind heeling.	C402.(a). Ratio of GZ(intersection) / GZ (Max)	60.00	%	0.00	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(b). Angle of Heel at Equilibrium	15.0	deg	0.0	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(c). Range of GZ curve.	70.0	deg	157.1	Pass	+124.41
Intact Stability	C304/404. Intact stability criteria for vessels equipped with cranes.				Pass	
	Angle of steady heel shall not be greater than (<=)	15.0	deg	0.0	Pass	+100.00
	GZ(intersection) / GZ(max) shall not be greater than (<=)	60.00	%	0.00	Pass	+100.00
Intact Stability	C305/404: Intact stability criteria for turning.				Pass	
	Angle of steady heel shall be less than (<)	15.0	dea	11.7	Pass	+21.70
	Area1 / Area2 shall be greater than (>)	40.00	%	93.46	Pass	+133.65
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	11.01	Pass	+81.65
	(
Intact Stability	C306/404: Intact stability criteria with Passengers.			1	Pass	1
	Angle of steady heel shall be less than (<)	15.0	dea	5.7	Pass	+61.72
	Area1 / Area2 shall be greater than (>)	40.00	%	96.89	Pass	+142.22
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	5.01	Pass	+91.65
		00.00			1	
HSC 2000 Annex 7 Multihull, Intact	1.1 Area 0 to 30	3,1510	m.dea	8.8452	Pass	+180.71
HSC 2000 Annex 7 Multihull, Intact	1.2 Angle of max. GZ	10.0	dea	98.2	Pass	+881.82
HSC 2000 Annex 7 Multihull, Intact	1.5 Area between GZ and HTL		9	1	Pass	
	Hpc + Hw	1 6040	m dea	2 0999	Pass	+30.91
	Ht + Hw	1.6040	m.deg	2.0999	Pass	+30.91
			muug		1 200	
HSC 2000 Annex 7 Multibull Intact	3.2.1 Angle of equilibrium with gust wind HI 2	1	1	1	Pass	
	Wind heeling (Hw)	10.0	dea	0.7	Pass	+92.94
	······································			1		1
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)	1		1	Pass	1
	8 2 3 3 Passenger crowding beeling arm	0.040	m	1 940	Pass	+4750.00
	8.2.3.3: Launching heeling moment	0.040	m	1.940	Pass	+4750.00
	8 2 3 3' Wind beeling arm	0.040	m	1 913	Pass	+4682.50
		0.0.0		1.0.0		
SOLAS II-1/8	8 2 4 a Maximum GZ (intermediate stages)	0.050	m	1 985	Pass	+3870.00
SOLAS II-1/8	8 2 4 b Range of positive stability (intermediate stages)	7.0	dea	157 1	Pass	+2144 14
HSC multi Intact	1 1: Area from 0 to 30	3 1513	m dea	8 8452	Pass	+180.69
HSC multi Intact	1.2: Angle of maximum GZ	10.0	dea	98.2	Pass	+881.82
HSC multi Intact	1.5: HTL: Area between G7 and HA	10.0	ucy	00.2	Pass	001.02
	Hpc + Hw	1 6043	m dea	2 4792	Pass	+54 53
	Ht + Hw	1.6043	m deg	2 4793	Pass	+54 54
		1.0045	muey	2.4/ 33	1 433	
ISC multi Intact	3.2.1: HI 1: Angle of equilibrium	+	-	+	Pass	
	Wind beeling (Hw)	16.0	dea	4.6	Page	+71.08
	wind neering (rfw)	10.0	uey	7.0	F 855	11.00

DEG	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
GZ (m)	0	0.226	0.472	0.73	1.091	1.599	2.052	2.387	2.58	2.632	2.505	2.165	1.705	1.374	1.071	0.564	-0.12	-0.584	0

Code	Criteria	Value	Units	Actual	Status	Margin %
C400. Intact stability with wind heeling.	C402.(a). Ratio of GZ(intersection) / GZ (Max)	60.00	%	0.00	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(b). Angle of Heel at Equilibrium	15.0	deg	0.0	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(c). Range of GZ curve.	70.0	deg	158.7	Pass	+126.70
Intact Stability	C304/404. Intact stability criteria for vessels equipped with cranes.				Pass	
	Angle of steady heel shall not be greater than (<=)	15.0	deg	0.0	Pass	+100.00
	GZ(intersection) / GZ(max) shall not be greater than (<=)	60.00	%	0.00	Pass	+100.00
Intact Stability	C305/404: Intact stability criteria for turning.				Pass	
	Angle of steady heel shall be less than (<)	15.0	deg	4.8	Pass	+67.89
	Area1 / Area2 shall be greater than (>)	40.00	%	97.49	Pass	+143.72
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	4.05	Pass	+93.25
ntact Stability	C306/404: Intact stability criteria with Passengers.				Pass	
	Angle of steady heel shall be less than (<)	15.0	deg	5.6	Pass	+62.65
	Area1 / Area2 shall be greater than (>)	40.00	%	97.09	Pass	+142.72
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	4.72	Pass	+92.13
				1		
ISC 2000 Annex 7 Multihull. Intact	1.1 Area 0 to 30	3.1510	m.dea	10.5747	Pass	+235.60
ISC 2000 Annex 7 Multihull, Intact	1.2 Angle of max, GZ	10.0	dea	88.2	Pass	+781.82
SC 2000 Annex 7 Multihull, Intact	1.5 Area between GZ and HTL				Pass	
	Hpc + Hw	1.6040	m.dea	2.5710	Pass	+60.29
	Ht + Hw	1.6040	m.deg	2.5710	Pass	+60.29
SC 2000 Annex 7 Multihull. Intact	3.2.1 Angle of equilibrium with gust wind HL2				Pass	
	Wind heeling (Hw)	10.0	deg	0.8	Pass	+91.64
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0.040	m	2.634	Pass	+6485.00
	8.2.3.3: Launching heeling moment	0.040	m	2.634	Pass	+6485.00
	8.2.3.3: Wind heeling arm	0.040	m	2.595	Pass	+6387.50
					1	
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0.050	m	2.634	Pass	+5168.00
SOLAS, II-1/8	8.2.4.b Range of positive stability (intermediate stages)	7.0	deg	158.7	Pass	+2167.00
ISC multi. Intact	1.1: Area from 0 to 30	3.1513	m.deg	10.5747	Pass	+235.57
HSC multi. Intact	1.2: Angle of maximum GZ	10.0	deg	88.2	Pass	+781.82
HSC multi. Intact	1.5: HTL: Area between GZ and HA				Pass	
	Hpc + Hw	1.6043	m.deg	2.7930	Pass	+74.10
	Ht + Hw	1.6043	m.dea	2.7613	Pass	+72.12
ISC multi. Intact	3.2.1: HL1: Angle of equilibrium				Pass	
	Wind heeling (Hw)	16.0	dea	5.5	Pass	+65.55
				1		

DEG	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
GZ (m)	0	0.295	0.531	0.722	0.785	0.734	0.684	0.67	0.74	0.866	0.942	0.881	0.709	0.48	0.27	0.198	0.158	0.079	0

C400. Intact stability with wind heeling. C402, (a), Ratio of G2(intersection) / GZ (Max) 60.00 % 0.00 C400. Intact stability with wind heeling. C402, (b), Range of G2 curve. 70.0 deg 180.0 Intact Stability C304/404. Intact stability criteria for vessels equipped with cranes. 70.0 deg 180.0 Intact Stability C304/404. Intact stability criteria for vessels equipped with cranes. 70.0 deg 0.0 Intact Stability C305/404. Intact stability criteria for turning. 60.00 % 0.00 Intact Stability C305/404: Intact stability criteria for turning. 60.00 % 93.04 Intact Stability C306/404: Intact stability criteria with Passengers. 15.0 deg 4.0 Intact Stability C306/404: Intact stability criteria with Passengers. 60.00 % 13.02 Intact Stability C306/404: Intact stability criteria with Passengers. 14.00 % 94.13 G2(Intersection) / GZ(max) shall be less than (<) 60.00 % 10.93 HSC 2000 Annex 7 Multihuli. Intact 1.1 Area 0 to 30 3.1510 m.deg	Criteria	Value		lue Units	Actual	Status	Margin %
C400. Intact stability with wind heeling. C402. (b). Angle of Heel at Equilibrium 15.0 deg 18.0 C400. Intact stability with wind heeling. C402. (b). Angle of Seady heel shall not be greater than (<=)	C402.(a).	60.00	ersection) / GZ (Max)	.00 %	0.00	Pass	+100.00
C400. Intact stability with wind heeling. C402.(c). Range of GZ curve. 70.0 deg 180.0 Intact Stability C304404. Intact stability oriteria for vessels equipped with cranes. 15.0 deg 0.0 Intact Stability C305404. Intact stability oriteria for vessels equipped with cranes. 60.00 % 0.00 Intact Stability C305/404: Intact stability oriteria for turning. 60.00 % 0.00 Intact Stability C305/404: Intact stability oriteria for turning. 60.00 % 13.02 Intact Stability C305/404: Intact stability oriteria with Passengers. 40.00 % 93.04 C2(intersection) / GZ(max) shall be less than (<)	C402.(b).	15.0	t Equilibrium	.0 deg	0.0	Pass	+100.00
Intact Stability C304/404. Intact stability criteria for vessels equipped with cranes. C Angle of steady heel shall not be greater than (<=)	C402.(c).	70.0	irve.	.0 deg	180.0	Pass	+157.14
Angle of steady heel shall not be greater than (<=) 15.0 deg 0.0 GZ(intersection) / GZ(max) shall not be greater than (<=)	C304/404.	s.	criteria for vessels equipped with cranes			Pass	
GZ(intersection) / GZ(max) shall not be greater than (<=)	Angle of s	15.0	not be greater than (<=)	.0 deg	0.0	Pass	+100.00
Intact Stability C305/404: Intact stability criteria for turning. Image Angle of steady heel shall be less than (<)	GZ(interse	60.00	x) shall not be greater than (<=)	.00 %	0.00	Pass	+100.00
Intact Stability C305/404: Intact stability criteria for turning. Angle of steady heel shall be less than (<)							
Angle of steady heel shall be less than (<) 15.0 deg 4.0 Area1 / Area2 shall be greater than (>) 40.00 % 93.04 GZ(intersection) / GZ(max) shall be less than (<)	C305/404		criteria for turning.			Pass	
Area1 / Area2 shall be greater than (>) 40.00 % 93.04 GZ(intersection) / GZ(max) shall be less than (<)	Angle of s	15.0	be less than (<)	.0 deg	4.0	Pass	+73.26
GZ(intersection) / GZ(max) shall be less than (<)	Area1 / Ar	40.00	eater than (>)	.00 %	93.04	Pass	+132.60
Intact Stability C306/404: Intact stability criteria with Passengers. Image: Comparison of the comp	GZ(interse	60.00	<) shall be less than (<)	.00 %	13.02	Pass	+78.30
Intact Stability C306/404: Intact stability criteria with Passengers. Image: Case of the case							
Angle of steady heel shall be less than (<) 15.0 deg 3.4 Area1 / Area2 shall be greater than (>) 40.00 % 94.13 GZ(intersection) / GZ(max) shall be less than (<)	C306/404:		criteria with Passengers.			Pass	
Area1 / Area2 shall be greater than (>) 40.00 % 94.13 GZ(intersection) / GZ(max) shall be less than (<)	Angle of s	15.0	be less than (<)	.0 deg	3.4	Pass	+77.61
GZ(intersection) / GZ(max) shall be less than (<)	Area1 / Ar	40.00	eater than (>)	.00 %	94.13	Pass	+135.32
HSC 2000 Annex 7 Multihull. Intact 1.1 Area 0 to 30 3.1510 m.deg 12.0072 HSC 2000 Annex 7 Multihull. Intact 1.2 Angle of max. GZ 10.0 deg 100.9 HSC 2000 Annex 7 Multihull. Intact 1.5 Area between GZ and HTL 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 1.5 Area between GZ and HTL 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 3.21 Angle of equilibrium with gust wind HL2 0 0 0 HSC 2000 Annex 7 Multihull. Intact 3.21 Angle of equilibrium with gust wind HL2 0 0 0 Wind heeling (Hw) 10.0 deg 0.3 0 0 SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1) 0 0.040 m 0.866 8.2.3.3: Passenger crowding heeling arm 0.040 m 0.866 0 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 18.0.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maxi	GZ(interse	60.00	<) shall be less than (<)	.00 %	10.93	Pass	+81.78
HSC 2000 Annex 7 Multihull. Intact 1.1 Area 0 to 30 3.1510 m.deg 12.0072 HSC 2000 Annex 7 Multihull. Intact 1.2 Angle of max. GZ 10.0 deg 100.9 HSC 2000 Annex 7 Multihull. Intact 1.5 Area between GZ and HTL							
HSC 2000 Annex 7 Multihull. Intact 1.2 Angle of max. GZ 10.0 deg 100.9 HSC 2000 Annex 7 Multihull. Intact 1.5 Area between GZ and HTL 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 1.5 Area between GZ and HTL 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 3.2.1 Angle of equilibrium with gust wind HL2 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 3.2.1 Angle of equilibrium with gust wind HL2 10.0 deg 0.3 Wind heeling (Hw) 10.0 deg 0.3 0.866 0.3 SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1) 0.040 m 0.8666 8.2.3.3: Launching heeling arm 0.040 m 0.8666 8.2.3.3: Wind heeling arm 0.040 m 0.8463 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area form 0 to 30 3.1513 m.deg 2.8770 HSC multi. Intact 1.5: HT	1.1 Area 0	3.1510		1510 m.dea	12.0072	Pass	+281.06
HSC 2000 Annex 7 Multihull. Intact 1.5 Area between GZ and HTL m.deg 3.2738 Hpc + Hw 1.6040 m.deg 3.2738 HH + Hw 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 3.21 Angle of equilibrium with gust wind HL2 0 0 Wind heeling (Hw) 10.0 deg 0.3 SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1) 0 0 8.2.3.3: Passenger crowding heeling arm 0.040 m 0.866 8.2.3.3: Vind heeling moment 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.866 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 18.0.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 10.9 HSC multi. Intact 1.2: Angle of equilibrium 0 2.9934 16.043 m.deg HSC multi. Intact<	1.2 Angle	10.0		.0 dea	100.9	Pass	+909.09
Hpc + Hw 1.6040 m.deg 3.2738 H1 + Hw 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 3.2.1 Angle of equilibrium with gust wind HL2 m.deg 0.2738 HSC 2000 Annex 7 Multihull. Intact 3.2.1 Angle of equilibrium with gust wind HL2 m.deg 0.2738 SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1) m.deg 0.3 SOLAS, II-1/8 8.2.3.3: Passenger crowding heeling arm 0.040 m 0.8666 8.2.3.3: Launching heeling arm 0.040 m 0.843 0.040 m 0.843 SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages) 0.050 m 0.942 0.042 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area form 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.5: HTL: Area between GZ and HA 16.043 m.deg 2.9934 16.042	1.5 Area b		HTL			Pass	
Ht + Hw 1.6040 m.deg 3.2738 HSC 2000 Annex 7 Multihull. Intact 3.2.1 Angle of equilibrium with gust wind HL2 Wind heeling (Hw) 10.0 deg 0.3 SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1) 8.2.3.3: Passenger crowding heeling arm 0.040 m 0.866 8.2.3.3: Launching heeling arm 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.846 SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 2.8770 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 2.8770 HSC multi. Intact 1.5: HTL: Area between GZ and HA 16.043	Hpc + Hw	1.6040		3040 m.dea	3.2738	Pass	+104.10
HSC 2000 Annex 7 Multihuli. Intact 3.2.1 Angle of equilibrium with gust wind HL2 Image Image <th< td=""><td>Ht + Hw</td><td>1.6040</td><td></td><td>6040 m.deg</td><td>3.2738</td><td>Pass</td><td>+104.10</td></th<>	Ht + Hw	1.6040		6040 m.deg	3.2738	Pass	+104.10
HSC 2000 Annex 7 Multihull. Intact 3.2.1 Angle of equilibrium with gust wind HL2 Image: Constraint of the second							
Wind heeling (Hw) 10.0 deg 0.3 SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1) 8.2.3.3: Passenger crowding heeling arm 0.040 m 0.866 8.2.3.3: Launching heeling moment 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.843 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA 16.043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium	3.2.1 Angl		with gust wind HL2			Pass	
Numerical (M) Numerica	Wind heel	10.0		.0 dea	0.3	Pass	+96.60
SOLAS, II-1/8 8.2.3.3: Maximum residual GZ (method 1) m 0.640 m 0.866 8.2.3.3: Passenger crowding heeling arm 0.040 m 0.866 0.040 m 0.866 8.2.3.3: Launching heeling moment 0.040 m 0.866 0.040 m 0.843 SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.5: HTL: Area between GZ and HA 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA 2.8770 16.043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 16.043 m.deg 2.9934							
8.2.3.3: Passenger crowding heeling arm 0.040 m 0.866 8.2.3.3: Launching heeling moment 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.843 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA 1.00 deg 2.8770 Ht + Hw 1.6043 m.deg 2.9934 1.6043 m.deg 2.9934 1.6043 1.402 1.402 1.402 1.402 1.402 1.402 1.402 1.402 1.402 1.402 1.402 1.402 1.402 <	8.2.3.3: M		al GZ (method 1)			Pass	
8.2.3.3: Launching heeling moment 0.040 m 0.866 8.2.3.3: Wind heeling arm 0.040 m 0.843 SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA m.deg 2.8770 Hbc + Hw 1.6043 m.deg 2.9934 Ht + Hw 1.6043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 16.0 deg	8.2.3.3: Pa	0.040	ing heeling arm	040 m	0.866	Pass	+2065.00
8.2.3.3: Wind heeling arm 0.040 m 0.843 SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.5: HTL: Area between GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA	8.2.3.3: La	0.040	a moment	040 m	0.866	Pass	+2065.00
SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA 0.942 2.8770 Ht + Hw 1.6043 m.deg 2.8934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 16.0 deg	8.2.3.3: W	0.040	<u>*</u>	040 m	0.843	Pass	+2007.50
SOLAS, II-1/8 8.2.4.a Maximum GZ (intermediate stages) 0.050 m 0.942 SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA m.deg 2.8770 HSC multi. Intact 1.6043 m.deg 2.8934 Ht + Hw 1.6043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 2.4 4							
SOLAS, II-1/8 8.2.4.b Range of positive stability (intermediate stages) 7.0 deg 180.0 HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA 1.6043 m.deg 2.8770 Ht + Hw 1.6043 m.deg 2.9934 1.6043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 16.0 deg 2.4	8.2.4.a Ma	0.050	ermediate stages))50 m	0.942	Pass	+1784.00
HSC multi. Intact 1.1: Area from 0 to 30 3.1513 m.deg 12.0072 HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA	8.2.4.b Ra	7.0	stability (intermediate stages)) dea	180.0	Pass	+2471.43
HSC multi. Intact 1.2: Angle of maximum GZ 10.0 deg 100.9 HSC multi. Intact 1.5: HTL: Area between GZ and HA	1.1: Area 1	3,1513		1513 m.dea	12.0072	Pass	+281.02
HSC multi. Intact 1.5: HTL: Area between GZ and HA m.deg 2.8770 Hpc + Hw 1.6043 m.deg 2.8770 Ht + Hw 1.6043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 16.0 deg	1.2: Anale	10.0	Z	.0 dea	100.9	Pass	+909.09
Hpc + Hw 1.6043 m.deg 2.8770 Ht + Hw 1.6043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 16.0 deg 2.4	1.5: HTL:		Z and HA			Pass	
H1 + Hw 1.6043 m.deg 2.9934 HSC multi. Intact 3.2.1: HL1: Angle of equilibrium 16.0 4 4 Wind beeling (Hw) 16.0 deg 2.4	Hpc + Hw	1.6043		3043 m.dea	2.8770	Pass	+79.33
HSC multi. Intact 3.2.1: HL1: Angle of equilibrium I6.0 deg 2.4	Ht + Hw	1.6043		5043 m.deg	2.9934	Pass	+86.59
HSC multi. Intact 3.2.1: HL1: Angle of equilibrium I6.0 deg 2.4							
Wind beeling (Hw) 16.0 deg 2.4	3.2.1: HL1		ibrium			Pass	
	Wind heel	16.0	bridin	0 dea	24	Pass	+85.03
						1.000	

DEG	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
GZ (m)	0	0.317	0.574	0.687	0.682	0.654	0.628	0.645	0.729	0.809	0.803	0.695	0.536	0.352	0.277	0.311	0.274	0.164	0

Code	Criteria	Value	Units	Actual	Status	Margin %
C400. Intact stability with wind heeling.	C402.(a). Ratio of GZ(intersection) / GZ (Max)	60.00	%	0.00	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(b). Angle of Heel at Equilibrium	15.0	deg	0.0	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(d). Range of GZ curve.	70.0	deg	180.0	Pass	+157.14
Intact Stability	C304/404. Intact stability criteria for vessels equipped with cranes.				Pass	
	Angle of steady heel shall not be greater than (<=)	15.0	deg	0.0	Pass	+100.00
	GZ(intersection) / GZ(max) shall not be greater than (<=)	60.00	%	0.00	Pass	+100.00
Intact Stability	C305/404: Intact stability criteria for turning.				Pass	
	Angle of steady heel shall be less than (<)	15.0	dea	0.0	Pass	+100.00
	Area1 / Area2 shall be greater than (>)	40.00	%	100.00	Pass	+150.00
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	0.00	Pass	+100.00
Intact Stability	C306/404: Intact stability criteria with Passengers				Pass	
inder etability	Angle of steady heel shall be less than $\langle \boldsymbol{\varsigma} \rangle$	15.0	dea	2.5	Pass	+83 58
	Area1 / Area2 shall be greater than (>)	40.00	%	95.11	Pass	+137 77
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	9.75	Pass	+83.75
		00.00	70	0.10	1 435	100.10
HSC 2000 Appex 7 Multibull Intact	1 1 Area 0 to 30	3 1510	m dea	12 5814	Pass	+299.28
HSC 2000 Annex 7 Multihull Intact	1.2 Angle of max GZ	10.0	deg	94.5	Pass	+845.45
HSC 2000 Annex 7 Multihull Intact	1.5 Area between GZ and HTI	10.0	ucg	04.0	Pass	1040.40
TIGE 2000 Annex 7 Mattinuit. Intact	Hoc + Hw	1 6040	m dea	3 5466	Daee	+121 11
		1.6040	m deg	2 5466	Page	+121.11
	HL + HW	1.0040	m.ueg	3.5400	газэ	+121.11
HSC 2000 Appox 7 Multibull Integt	2.2.1 Angle of equilibrium with quet wind HI 2		+		Page	
HSC 2000 Annex 7 Multinuii. Intact	Wind booling (Hw)	10.0	dog	0.2	Pass	+09.20
	Wind neering (riw)	10.0	ueg	0.2	rass	+90.30
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8 2 3 3: Passenger crowding heeling arm	0.040	m	0.809	Pass	+1922 50
	8 2 3 3: Launching beeling moment	0.040	m	0.809	Pass	+1922.50
	8 2 3 3: Wind heeling arm	0.040	m	0.796	Pass	+1890.00
	Ciziolo: Mina noomig ann	0.010		0.100		1000.00
SOLAS II-1/8	8 2 4 a Maximum GZ (intermediate stages)	0.050	m	0.820	Pass	+1540.00
SOLAS II-1/8	8.2.4 b Range of positive stability (intermediate stages)	7.0	dea	180.0	Pass	+2471.43
HSC multi Intact	1 1: Area from 0 to 30	3 1513	m deg	12 5814	Pass	+299.24
HSC multi-Intact	1 2: Angle of maximum GZ	10.0	deg	94.5	Pass	+845.45
HSC multi_Intact	1.5: HTL: Area between GZ and HA	10.0	ueg	34.5	Daee	1043.43
166 maili. Intact		1 6042	m dog	2 2756	Page	+110.41
		1.0043	m dog	2 4017	Page	+117.65
	HL T HW	1.0043	m.ueg	3.4917	rass	+117.05
HSC multi Integt	2.2.1: HI 1: Angle of equilibrium		+		Page	
HSC IIIului. IIItact	Wind basting (Live)	16.0	doa	1.0	Pass	102.25
	wind neeling (nw)	10.0	ueg	1.4	rass	+92.30
<u> </u>			_	ļ	1	J

DEG	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
GZ (m)	0	0.29	0.56	0.831	0.961	0.942	0.919	0.925	1.031	1.179	1.278	1.215	1.014	0.75	0.473	0.369	0.27	0.123	0

Code	Criteria	Value	Units	Actual	Status	Margin %
C400. Intact stability with wind heeling.	C402.(a). Ratio of GZ(intersection) / GZ (Max)	60.00	%	0.00	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(b). Angle of Heel at Equilibrium	15.0	deg	0.0	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(c). Range of GZ curve.	70.0	deg	180.0	Pass	+157.14
Intact Stability	C304/404. Intact stability criteria for vessels equipped with cranes.				Pass	
	Angle of steady heel shall not be greater than (<=)	15.0	deg	0.0	Pass	+100.00
	GZ(intersection) / GZ(max) shall not be greater than (<=)	60.00	%	0.00	Pass	+100.00
Intact Stability	C305/404: Intact stability criteria for turning.				Pass	
	Angle of steady heel shall be less than (<)	15.0	deg	0.0	Pass	+100.00
	Area1 / Area2 shall be greater than (>)	40.00	%	100.00	Pass	+150.00
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	0.00	Pass	+100.00
Intact Stability	C306/404: Intact stability criteria with Passengers.				Pass	
	Angle of steady heel shall be less than (<)	15.0	deg	2.9	Pass	+80.71
	Area1 / Area2 shall be greater than (>)	40.00	%	96.37	Pass	+140.92
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	6.68	Pass	+88.87
HSC 2000 Annex 7 Multihull. Intact	1.1 Area 0 to 30	3.1510	m.deg	12.7179	Pass	+303.61
HSC 2000 Annex 7 Multihull. Intact	1.2 Angle of max. GZ	10.0	deg	101.8	Pass	+918.18
HSC 2000 Annex 7 Multihull. Intact	1.5 Area between GZ and HTL				Pass	
	Hpc + Hw	1.6040	m.deg	3.2405	Pass	+102.03
	Ht + Hw	1.6040	m.deg	3.2405	Pass	+102.03
HSC 2000 Annex 7 Multihull. Intact	3.2.1 Angle of equilibrium with gust wind HL2				Pass	
	Wind heeling (Hw)	10.0	deg	0.4	Pass	+96.32
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0.040	m	1.179	Pass	+2847.50
	8.2.3.3: Launching heeling moment	0.040	m	1.179	Pass	+2847.50
	8.2.3.3: Wind heeling arm	0.040	m	1.156	Pass	+2790.00
SOLAS, II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0.050	m	1.280	Pass	+2460.00
SOLAS, II-1/8	8.2.4.b Range of positive stability (intermediate stages)	7.0	deg	180.0	Pass	+2471.43
HSC multi. Intact	1.1: Area from 0 to 30	3.1513	m.deg	12.7179	Pass	+303.58
HSC multi. Intact	1.2: Angle of maximum GZ	10.0	deg	101.8	Pass	+918.18
HSC multi. Intact	1.5: HTL: Area between GZ and HA				Pass	
	Hpc + Hw	1.6043	m.deg	3.0966	Pass	+93.02
	Ht + Hw	1.6043	m.deg	3.1616	Pass	+97.07
HSC multi_Intact	3.2.1: HL1: Angle of equilibrium			-	Pass	
The e mata. Intalet		· · · ·			 	

DEG	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
GZ (m)	0	0.334	0.671	0.844	0.866	0.871	0.887	0.959	1.082	1.195	1.196	1.053	0.856	0.629	0.477	0.472	0.361	0.185	0

Code	Criteria	Value	Units	Actual	Status	Margin %
C400. Intact stability with wind heeling.	C402.(a). Ratio of GZ(intersection) / GZ (Max)	60.00	%	0.00	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(b). Angle of Heel at Equilibrium	15.0	deg	0.0	Pass	+100.00
C400. Intact stability with wind heeling.	C402.(c). Range of GZ curve.	70.0	deg	180.0	Pass	+157.14
Intact Stability	C304/404. Intact stability criteria for vessels equipped with cranes.				Pass	
	Angle of steady heel shall not be greater than (<=)	15.0	deg	0.0	Pass	+100.00
	GZ(intersection) / GZ(max) shall not be greater than (<=)	60.00	%	0.00	Pass	+100.00
Intact Stability	C305/404: Intact stability criteria for turning.	-			Pass	
· · · · · · · · · · · · · · · · · · ·	Angle of steady heel shall be less than (<)	15.0	dea	0.0	Pass	+100.00
	Area1 / Area2 shall be greater than (>)	40.00	%	100.00	Pass	+150.00
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	0.00	Pass	+100.00
Intact Stability	C306/404: Intact stability criteria with Passengers.	+			Pass	-
	Angle of steady heel shall be less than (<)	15.0	dea	21	Pass	+86 10
	Area1 / Area2 shall be greater than (>)	40.00	%	97.08	Pass	+142.70
	GZ(intersection) / GZ(max) shall be less than (<)	60.00	%	5.55	Pass	+90.75
HSC 2000 Appex 7 Multibull Intact	1 1 Area 0 to 30	3 1510	m dea	14 4719	Dass	+350.28
HSC 2000 Annex 7 Multihull, Intact	1.1 Area 0 to 50	10.0	dog	14.47 19	Pass	+954 55
HSC 2000 Annex 7 Multihull. Intact	1.5 Area between GZ and HTI	10.0	ueg	90.0	Page	+004.00
TISC 2000 ATTIEX / Multinuli: Intact	Hpc + Hw	1 6040	m dea	3 7662	Daee	+134.80
	Ht + Hw	1.6040	m.deg	3.7662	Pass	+134.80
LICC 2000 Append 7 Multibull Intent	2.2.4 Apple of equilibrium with quetwind U.2.2				Deee	
HSC 2000 Annex 7 Multinuli. Intact	3.2.1 Angle of equilibrium with gust white HL2	10.0	daa	0.2	Pass	108.20
		10.0	ueg	0.2	Pass	+90.20
SOLAS, II-1/8	8.2.3.3: Maximum residual GZ (method 1)				Pass	
	8.2.3.3: Passenger crowding heeling arm	0.040	m	1.195	Pass	+2887.50
	8.2.3.3: Launching heeling moment	0.040	m	1.195	Pass	+2887.50
	8.2.3.3: Wind heeling arm	0.040	m	1.181	Pass	+2852.50
SOLAS. II-1/8	8.2.4.a Maximum GZ (intermediate stages)	0.050	m	1.214	Pass	+2328.00
SOLAS, II-1/8	8.2.4.b Range of positive stability (intermediate stages)	7.0	deg	180.0	Pass	+2471.43
SOLAS, II-1/8	8.6.3: Margin line immersion - GZ based (EquilAngle ratio)	100.00	%	2874261492.99	Fail	-2874261392.
HSC multi. Intact	1.1: Area from 0 to 30	3.1513	m.deg	14.4719	Pass	+359.24
HSC multi. Intact	1.2: Angle of maximum GZ	10.0	deg	95.5	Pass	+854.55
HSC multi. Intact	1.5: HTL: Area between GZ and HA				Pass	
	Hpc + Hw	1.6043	m.deg	3.8631	Pass	+140.80
	Ht + Hw	1.6043	m.deg	3.8128	Pass	+137.66
HSC multi. Intact	3.2.1: HL1: Angle of equilibrium	+			Pass	
	Wind heeling (Hw)	16.0	dea	1.3	Pass	+92.18

DEG

GZ (m)

21 m - CM-SWAS(S)H DAMAGE CASE : 50% OUTRIGGER	DRAFT DISPLACEN	MENT	3.48 107	m tonne			0.300 0.200 0.100					•		
21 m - CM-SWAS(S)H 0.800 DAMAGE CASE : 50% OUTRIGGER 0.600 ELEMENT VALUE UNIT 0.400 0.300 0.300			0.40				0.300	P						
21 m - CM-SWAS(S)H DAMAGE CASE : 50% OUTRIGGER	ELEM	IENT	VALUE	UNIT			B 0.400				 			
DAMAGE STABILITY GZ CURVE	DAMAGE ST IMO / DNV 21 m - CM-S DAMAGE CA	TABILITY / HSC CRIT SWAS(S)H ASE : 50% (ERIA DUTRIGGEF	t			0.900 0.800 0.700 0.600 Ē 0.500		_	GZ C				

170

0.190

180

0.000

						1		1	1		1	1	1			
TCG		0.12	m							Angl	e of Heel (De	eg)				
VCG		1.8	m				0.000	0 20	40 6	0 80	100	120 140	160	180 200)	
LCG		11.5	m				0.000									
DISPLACE	EMENT	127.2	tonne				0 100									
DRAFT		3.5	m				0.200	1					<u> </u>			
ELEN	MENT	VALUE	UNIT				^E 0.400 ^B 0.300									
DAMAGE (CASE : 50%	OUTRIGGER	R				<u></u> 0.500				_					
24 m - CM	-SWAS(S)H						0.600									
	/ Hise entit	LNIA					0.800									
		FRIA								02.0	OIIVE					
										GZ C	URVF					

170

0.290

180

0.000

ANNEX – 5

RUDDER, ANCHOR & POWER

RUDDER CALCULATION	AND SELEC	TION		
RUDDER				
Draught	Т		3.2	m
Minimum Budder Blade Span (Height)		0.90 * T	2.88	m
		0.95 * T	3.04	m
Selected Blade Span	Rh		2.6	m
Max Rudder Blade Chord		0.6 * Rh	1.56	m
Min Rudder Blade Chord		0.35 * Rh	0.91	m
Selected Chord	Ch		0.95	m
Rudder Shape			Rectang	gle
Rudder Profile			Parabolic Se	ection
Rudder Area	RA	Rh * Ch	2.47	m2
Stiffener Spacing	S		250	mm
Speed	Vs		20	knots
Speed	Vs		10.28	m/sec
Plate Thickness			10.048	mm
Plate Thickness Selected			12	mm
Max Stiffener Spacing Aluminium	Smax		485.6	mm
Stiffener Thickness (same as plate thickness)			12	mm
Volume of Rudder			0.05928	m3
Weight of Rudder			157.092	kg
Coefficient of Lift	CL		1.2	
Propeller Factor	Pf		1.2	
Force on Rudder			1921.433	kg
Twisting Arm	TA		0.325	m
Bending Arm	BA		2.2	m
Twistin Moment	TM		624.466	Kg.m
Bending Moment	BM		4227.153	Kg.m
Combined Moment	CM		8500.182	Kg.m
Combined Moment	CM		83386.788	N.m
RUDDER STOCK				
Safety Factor	SF		3.34	
Ultimate Tensile Strength (Aluminium 5000 Series)	UTS		245	N/mm2
Rudder Stock Diameter			179.563	mm
Selected Rudder Stock Diameter			200	mm
Length of Rudder Stock			500	mm
Volume of Rudder Stock			15707963	mm3
Volume of Rudder Stock			0.016	m3
Weight of Rudder Stock			41.626	kg
TOTAL WEIGHT OF RUDDER			198.718	Kg

* The Rudder and Rudder Stock Design and Selection is based on

"Boat Mechanical Systems Handbook - by Dave Gerr" ISBN: 978-0-07-164334-4

ANCHOR CACULATION AND SELECTION Aa per DNV-GL Class rules for Special Ships-High Speed Ships, Chapter 1, Part 3, Section 6, Sub-section 5.2 Multi-Hull Craft.

	LOA -	18 m			
EQUIPN	IENT NUME	BER CALCUL	ATIONS		
Displac	cement	79.35	Tonnes		
В	0	1.1	m		
Т	0	3.2	m		
E	Bi	0.5	m		
1	i	2.2	m		
K	m	1.6551	52959		
Displac	cement	79.35	Tonnes		
ä	Э	2.55	m		
E	3	9	m		
ł	ni	2.5	m		
e)i	0	degree		
S	it	9.4325	m2		
Å	4	15	m2		
E	N	59.098	47673		
	LIV				
Anchor C	able Dia	8.5	mm		
Proof Loa	nds	42.97312	kN	4380.542	
Breaking	Loads	85.94623	kN	8761.084	
Pull Duty	of				
Windlass		3431.875	N	349.8344	
Mass of An	chor	60	kg		
Cable Leng	th	82.5	m		
Diameter	K2	10	mm		
Diameter	K3	8.5	mm		

	LOA -	· 21 m			
EQUIPN		BER CALCUL	ATIONS		
Displac	ement	101.3	Tonnes		
В	0	1.1	m		
Т	0	3.2	m		
E	Bi	0.5	m		
T	ï	2.2	m		
K	m	1.6551	52959		
Displac	ement	101.3	Tonnes		
ä	3	2.55	m		
E	3	9	m		
h	ni	2.5	m		
e)i	0	degree		
S	t	9.4325	m2		
ļ	4	15	m2		
E	N	64.502	57008		
Anchor C	able Dia	9.5	mm		
Proof Loa	ıds	53.58009	kN	5461.783	kg
Breaking	Loads	107.1602	kN	10923.57	kg
Pull Duty Windlass	of	4286.875	Ν	436.9903	kg
Mass of An	chor	67	kg		
Cable Leng	th	82.5	m		
Diameter	K2	11	mm		
Diameter	K3	9.5	mm		
]	

	LOA -	24 m			
EQUIPN		BER CALCUL	ATIONS		
Displac	cement	118.6	Tonnes		
В	0	1.1	m		
Т	o	3.2	m		
E	Bi	0.5	m		
٦	Ti	2.2	m		
К	m	1.6551	52959		
Displac	cement	118.6	Tonnes		
i	a	2.55	m		
I	3	9	m		
ł	ni	2.5	m		
e	Ði	0	degree		
9	it	9.4325	m2		
1	4	15	m2		
E	N	68.489	09159		
Anchor C	able Dia	9.5	mm		
Proof Loa	ads	53.58009	kN	5461.783	kg
Breaking	Loads	107.1602	kN	10923.57	kg
Pull Duty Windlass	of	4286.875	Ν	436.9903	kg
Mass of Ar	ichor	67	kg		
Cable Leng	th	82.5	m		
Diameter	К2	11	mm		
Diameter	К3	9.5	mm		

$$\begin{split} EN &= K_m * \Delta^{\frac{2}{3}} + 2 * \left[a * B + \sum_i (b_i * h_i * Sin \theta_i) - S_t \right] + 0.1 * A \\ K_m &= \frac{(B_0 * T_0)^{\frac{2}{3}} + 2 * \sum_{i=1}^n (B_1 * T_1)^{\frac{2}{3}}}{(B_0 * T_0 + 2 * \sum_{i=1}^n B_1 * T_1)} \end{split}$$

kg kg

 $Proof \ Load \ (PL) = 13.73 * d^2 * (44 - 0.08 * d) * 10^{-3}$

Breaking Load (BL) = 2 * PL

d – diameter of cable selected from Table C6.5.1 Equipment of Class Rules Anchor Cable and Windlass Calculatiosn are for K3 studless link chain

NO.	POWER RECEIVERS	QUANTITY INSTALLED	QTY. IN USE	MAX. POWER EACH IN (KW)	INSTALLED POWER (KW)		SAILING	ł	1	IARBOU	R	МА	NOUVR	ING	EN	IERGEN	СҮ
						LOAD FACTOR	UTILITY FACTOR	INPUT POWER (KW)									
1	PROPULSION MOTOR	1	1	1650	1941	0.8	1	1553	0.8	0	0.00	0.8	1	1553	0.8	0	0.00
2	STEERING GEAR	1	1	4.00	4.71	0.8	1	3.76	0.8	0	0.00	0.8	1	3.76	0.8	0	0.00
4	LO STANDBY PUMP FOR ME	2	2	2.57	3.02	0.8	0.2	0.97	0.8	0.2	0.97	0.8	0.2	0.97	0.8	0.2	0.97
6	SEA WATER COOLING PUMP	2	1	2.00	2.35	0.8	0.5	0.94	0.8	0.4	0.75	0.8	0.5	0.94	0.8	0.5	0.94
7	BILGE/GS/FIRE/BALLAST PUMP	2	2	1.50	1.76	0.8	0.2	0.56	0.8	0.2	0.56	0.8	0.2	0.56	0.8	1	2.82
8	FO TRANSFER PUMP	2	1	0.75	0.88	0.8	0.7	0.49	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0.2	0.14
9	FW HYDROPHORE PUMP	2	1	0.50	0.59	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09
10	SW HYDROPHORE PUMP	2	1	0.50	0.59	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09
11	SEWAGE PUMP	1	1	1.50	1.76	0.8	0.4	0.56	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
13	HOT WATER CALORIFIER	1	1	5.00	5.88	0.8	0.2	0.94	0.8	0.2	0.94	0.8	0.2	0.94	0.8	0	0.00
14	HOT WATER CIRCULATING PUMP	1	1	0.40	0.47	0.8	0.2	0.08	0.8	0.2	0.08	0.8	0.2	0.08	0.8	0	0.00
15	ER VENTILATION FANS	2	2	2.50	2.94	0.8	1	4.71	0.8	0.2	0.94	0.8	1	4.71	0.8	1	4.71
16	EXHAUST FAN FOR GALLEY	1	1	0.60	0.71	0.8	1	0.56	0.8	1	0.56	0.8	1	0.56	0.8	1	0.56
17	SUPPLY FAN FOR GALLEY	1	1	0.30	0.35	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28
18	A/C PLANT ACCOMODATION	1	1	25.00	29.41	0.8	0.6	14.12	0.8	0.6	14.12	0.8	0.6	14.12	0.8	0	0.00
19	STEERING GEAR ROOM SUPPLY FAN	1	1	0.30	0.35	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28
20	SUPPLY FAN FOR BOW THRUSTER ROOM	1	1	0.30	0.35	0.8	0.8	0.23	0.8	0.2	0.06	0.8	0.8	0.23	0.8	0.8	0.23
21	SUPPLY FAN FOR DECK STORE FWD	1	1	0.25	0.29	0.8	0.8	0.19	0.8	0.2	0.05	0.8	0.8	0.19	0.8	0.8	0.19
22	SUPPLY FAN FOR DECK STORE AFT	1	1	0.30	0.35	0.8	0.8	0.23	0.8	0.2	0.06	0.8	0.8	0.23	0.8	0.8	0.23
24	EXHAUST FAN FOR TOILETS	1	1	0.40	0.47	0.8	0.8	0.30	0.8	0.2	0.08	0.8	0.8	0.30	0.8	0.8	0.30
25	EXHAUST FAN FOR PROV. STORE	1	1	0.25	0.29	0.8	0.8	0.19	0.8	0.2	0.05	0.8	0.8	0.19	0.8	0.8	0.19
28	GALLEY EQUIPMENT	1	1	20.00	23.53	0.8	0.5	9.41	0.8	0.1	1.88	0.8	0.2	3.76	0.8	0	0.00
30	DIRTY OIL TRANSFER PUMP	1	1	0.74	0.87	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0	0.00
32	BOW THRUSTER	1	1	38.00	44.71	0.8	0	0.00	0.8	0	0.00	0.8	0.4	14.31	0.8	0	0.00
33	WINDLASS	1	1	4.30	5.06	0.8	0	0.00	0.8	0.8	3.24	0.8	0	0.00	0.8	0	0.00
34	GENERAL PURPOSE WINCHES	1	1	32.00	37.65	0.8	0.2	6.02	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
39	BATTERY	1	1	6.00	7.06	0.8	0.2	1.13	0.8	0.2	1.13	0.8	0.2	1.13	0.8	0	0.00
40	EMERGENCY LIGHTING SYSTEM	1	1	4.00	4.71	0.8	0.6	2.26	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
41	NAVIGATIONAL LIGHTS INCL. SEARCH LIGHTS	2	1	1.50	1.76	1	0.9	1.59	1	0.5	0.88	1	0.9	1.59	1	1	1.76
42	NAV AND COMMUNICATION EQUIPMENT	1	1	2.00	2.35	1	0.8	1.88	1	0.4	0.94	1	0.8	1.88	1	1	2.35
43	LIGHTING AND BATTERY CHARGER	2	1	3.00	3.53	1	1	3.53	0.8	1	2.82	0.8	1	2.82	0.8	1	2.82
	TOTAL POWER							1608			31.14			1607			18.97
	LOAD IN KW LOAD IN KVA							1608 2010.61			31.14 38.9218			1607 2009.05			18.9 23.709

NO.	POWER RECEIVERS	QUANTITY INSTALLED	QTY. IN USE	MAX. POWER EACH IN (KW)	INSTALLED POWER (KW)		SAILING	3	I	IARBOU	R	МА	NOUVR	ING	EN	IERGEN	сү
						LOAD FACTOR	UTILITY FACTOR	INPUT POWER (KW)									
1	PROPULSION MOTOR	1	1	1960	2306	0.8	1	1845	0.8	0	0.00	0.8	1	1845	0.8	0	0.00
2	STEERING GEAR	1	1	4.00	4.71	0.8	1	3.76	0.8	0	0.00	0.8	1	3.76	0.8	0	0.00
4	LO STANDBY PUMP FOR ME	2	2	2.57	3.02	0.8	0.2	0.97	0.8	0.2	0.97	0.8	0.2	0.97	0.8	0.2	0.97
6	SEA WATER COOLING PUMP	2	1	2.00	2.35	0.8	0.5	0.94	0.8	0.4	0.75	0.8	0.5	0.94	0.8	0.5	0.94
7	BILGE/GS/FIRE/BALLAST PUMP	2	2	1.50	1.76	0.8	0.2	0.56	0.8	0.2	0.56	0.8	0.2	0.56	0.8	1	2.82
8	FO TRANSFER PUMP	2	1	0.75	0.88	0.8	0.7	0.49	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0.2	0.14
9	FW HYDROPHORE PUMP	2	1	0.50	0.59	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09
10	SW HYDROPHORE PUMP	2	1	0.50	0.59	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09
11	SEWAGE PUMP	1	1	1.50	1.76	0.8	0.4	0.56	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
13	HOT WATER CALORIFIER	1	1	5.00	5.88	0.8	0.2	0.94	0.8	0.2	0.94	0.8	0.2	0.94	0.8	0	0.00
14	HOT WATER CIRCULATING PUMP	1	1	0.40	0.47	0.8	0.2	0.08	0.8	0.2	0.08	0.8	0.2	0.08	0.8	0	0.00
15	ER VENTILATION FANS	2	2	2.50	2.94	0.8	1	4.71	0.8	0.2	0.94	0.8	1	4.71	0.8	1	4.71
16	EXHAUST FAN FOR GALLEY	1	1	0.60	0.71	0.8	1	0.56	0.8	1	0.56	0.8	1	0.56	0.8	1	0.56
17	SUPPLY FAN FOR GALLEY	1	1	0.30	0.35	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28
18	A/C PLANT ACCOMODATION	1	1	40.00	47.06	0.8	0.6	22.59	0.8	0.6	22.59	0.8	0.6	22.59	0.8	0	0.00
19	STEERING GEAR ROOM SUPPLY FAN	1	1	0.30	0.35	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28
20	SUPPLY FAN FOR BOW THRUSTER ROOM	1	1	0.30	0.35	0.8	0.8	0.23	0.8	0.2	0.06	0.8	0.8	0.23	0.8	0.8	0.23
21	SUPPLY FAN FOR DECK STORE FWD	1	1	0.25	0.29	0.8	0.8	0.19	0.8	0.2	0.05	0.8	0.8	0.19	0.8	0.8	0.19
22	SUPPLY FAN FOR DECK STORE AFT	1	1	0.30	0.35	0.8	0.8	0.23	0.8	0.2	0.06	0.8	0.8	0.23	0.8	0.8	0.23
24	EXHAUST FAN FOR TOILETS	1	1	0.40	0.47	0.8	0.8	0.30	0.8	0.2	0.08	0.8	0.8	0.30	0.8	0.8	0.30
25	EXHAUST FAN FOR PROV. STORE	1	1	0.25	0.29	0.8	0.8	0.19	0.8	0.2	0.05	0.8	0.8	0.19	0.8	0.8	0.19
28	GALLEY EQUIPMENT	1	1	20.00	23.53	0.8	0.5	9.41	0.8	0.1	1.88	0.8	0.2	3.76	0.8	0	0.00
30	DIRTY OIL TRANSFER PUMP	1	1	0.74	0.87	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0	0.00
32	BOW THRUSTER	1	1	42.00	49.41	0.8	0	0.00	0.8	0	0.00	0.8	0.4	15.81	0.8	0	0.00
33	WINDLASS	1	1	4.30	5.06	0.8	0	0.00	0.8	0.8	3.24	0.8	0	0.00	0.8	0	0.00
34	GENERAL PURPOSE WINCHES	1	1	32.00	37.65	0.8	0.2	6.02	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
39	BATTERY	1	1	6.00	7.06	0.8	0.2	1.13	0.8	0.2	1.13	0.8	0.2	1.13	0.8	0	0.00
40	EMERGENCY LIGHTING SYSTEM	1	1	4.00	4.71	0.8	0.6	2.26	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
41	NAVIGATIONAL LIGHTS INCL. SEARCH	2	1	1.50	1.76	1	0.9	1.59	1	0.5	0.88	1	0.9	1.59	1	1	1.76
42	NAV AND COMMUNICATION EQUIPMENT	1	1	2.00	2.35	1	0.8	1.88	1	0.4	0.94	1	0.8	1.88	1	1	2.35
43	LIGHTING AND BATTERY CHARGER	2	1	3.00	3.53	1	1	3.53	0.8	1	2.82	0.8	1	2.82	0.8	1	2.82
	TOTAL POWER							1909			39.61			1909			18.97
	LOAD IN KW LOAD IN KVA							1909 2385.9			39.61 49.51			1909 2386.23			18.9 23.709

ROPULSION MOTOR TEERING GEAR O STANDBY PUMP FOR ME EA WATER COOLING PUMP ILGE/GS/FIRE/BALLAST PUMP O TRANSFER PUMP W HYDROPHORE PUMP W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	2 1 3 2 2 3 2 2 1 1 1 1 2 2	2 1 2 1 1 1 1 1 1 1 1 1	1050 4.00 2.57 2.00 1.50 0.75 0.50 1.50 5.00	1235 4.71 3.02 2.35 1.76 0.88 0.59 0.59 1.76	LOAD FACTOR 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	UTILITY FACTOR 1 0.2 0.5 0.2 0.7 0.2	INPUT POWER (KW) 1976 3.76 0.97 0.94 0.56 0.49	LOAD FACTOR 0.8 0.8 0.8 0.8 0.8 0.8	UTILITY FACTOR 0 0.2 0.4 0.2	INPUT POWER (KW) 0.00 0.00 0.97 0.75 0.56	LOAD FACTOR 0.8 0.8 0.8 0.8	UTILITY FACTOR 1 0.2 0.5	INPUT POWER (KW) 1976 3.76 0.97 0.94	LOAD FACTOR 0.8 0.8 0.8 0.8 0.8	UTILITY FACTOR 0 0.2 0.5	INPUT POWER (KW) 0.00 0.00 0.97
ROPULSION MOTOR TEERING GEAR O STANDBY PUMP FOR ME EA WATER COOLING PUMP ILGE/GS/FIRE/BALLAST PUMP O TRANSFER PUMP W HYDROPHORE PUMP W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	2 1 3 2 2 3 2 2 1 1 1 1 2	2 1 2 1 1 1 1 1 1 1 1 1	1050 4.00 2.57 2.00 1.50 0.75 0.50 1.50 5.00	1235 4.71 3.02 2.35 1.76 0.88 0.59 0.59 1.76	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	1 0.2 0.5 0.2 0.7 0.2	1976 3.76 0.97 0.94 0.56 0.49	0.8 0.8 0.8 0.8 0.8 0.8	0 0.2 0.4 0.2	0.00 0.00 0.97 0.75 0.56	0.8 0.8 0.8 0.8	1 1 0.2 0.5	1976 3.76 0.97 0.94	0.8 0.8 0.8 0.8	0 0 0.2 0.5	0.00 0.00 0.97 0.94
TEERING GEAR O STANDBY PUMP FOR ME EA WATER COOLING PUMP ILGE/GS/FIRE/BALLAST PUMP O TRANSFER PUMP W HYDROPHORE PUMP W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	1 3 2 3 2 3 2 1 1 2	1 2 1 2 1 1 1 1 1 1 1 1	4.00 2.57 2.00 1.50 0.75 0.50 1.50 5.00	4.71 3.02 2.35 1.76 0.88 0.59 0.59 1.76	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	1 0.2 0.5 0.2 0.7 0.2	3.76 0.97 0.94 0.56 0.49	0.8 0.8 0.8 0.8	0 0.2 0.4 0.2	0.00 0.97 0.75 0.56	0.8 0.8 0.8	1 0.2 0.5	3.76 0.97 0.94	0.8 0.8 0.8	0 0.2 0.5	0.00
O STANDBY PUMP FOR ME EA WATER COOLING PUMP ILGE/GS/FIRE/BALLAST PUMP O TRANSFER PUMP W HYDROPHORE PUMP W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	3 2 2 3 2 2 1 1 1 1 2 2	2 1 2 1 1 1 1 1 1 1	2.57 2.00 1.50 0.75 0.50 0.50 1.50 5.00	3.02 2.35 1.76 0.88 0.59 0.59 1.76	0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.2 0.5 0.2 0.7 0.2	0.97 0.94 0.56 0.49	0.8 0.8 0.8	0.2 0.4 0.2	0.97 0.75 0.56	0.8	0.2	0.97 0.94	0.8 0.8	0.2 0.5	0.97
EA WATER COOLING PUMP ILGE/GS/FIRE/BALLAST PUMP O TRANSFER PUMP W HYDROPHORE PUMP W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	2 2 3 2 2 1 1 1 2 2	1 2 1 1 1 1 1 1 1	2.00 1.50 0.75 0.50 0.50 1.50 5.00	2.35 1.76 0.88 0.59 0.59 1.76	0.8 0.8 0.8 0.8 0.8	0.5 0.2 0.7 0.2	0.94 0.56 0.49	0.8	0.4 0.2	0.75 0.56	0.8	0.5	0.94	0.8	0.5	0.04
ILGE/GS/FIRE/BALLAST PUMP O TRANSFER PUMP W HYDROPHORE PUMP W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	2 3 2 1 1 1 2	2 1 1 1 1 1 1 1	1.50 0.75 0.50 0.50 1.50 5.00	1.76 0.88 0.59 0.59 1.76	0.8 0.8 0.8 0.8	0.2 0.7 0.2	0.56 0.49	0.8	0.2	0.56	0.8					0.74
O TRANSFER PUMP W HYDROPHORE PUMP W HYDROPHORE PUMP OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	3 2 1 1 1 2	1 1 1 1 1 1	0.75 0.50 0.50 1.50 5.00	0.88 0.59 0.59 1.76	0.8 0.8 0.8	0.7 0.2	0.49				0.8	0.2	0.56	0.8	1	2.82
W HYDROPHORE PUMP W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	2 2 1 1 1 2 2	1 1 1 1	0.50 0.50 1.50 5.00	0.59 0.59 1.76	0.8 0.8	0.2		0.8	0.2	0.14	0.8	0.2	0.14	0.8	0.2	0.14
W HYDROPHORE PUMP EWAGE PUMP OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	2 1 1 1 2	1 1 1	0.50 1.50 5.00	0.59 1.76	0.8		0.09	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09
EWAGE PUMP OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	1 1 1 2	1 1 1	1.50 5.00	1.76		0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09	0.8	0.2	0.09
OT WATER CALORIFIER OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	1 1 2	1	5.00		0.8	0.4	0.56	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
OT WATER CIRCULATING PUMP R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	1 2	1		5.88	0.8	0.2	0.94	0.8	0.2	0.94	0.8	0.2	0.94	0.8	0	0.00
R VENTILATION FANS XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY	2		0.40	0.47	0.8	0.2	0.08	0.8	0.2	0.08	0.8	0.2	0.08	0.8	0	0.00
XHAUST FAN FOR GALLEY UPPLY FAN FOR GALLEY		2	2.50	2.94	0.8	1	4.71	0.8	0.2	0.94	0.8	1	4.71	0.8	1	4.71
UPPLY FAN FOR GALLEY	1	1	0.60	0.71	0.8	1	0.56	0.8	1	0.56	0.8	1	0.56	0.8	1	0.56
	1	1	0.30	0.35	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28
/C PLANT ACCOMODATION	1	1	55.00	64.71	0.8	0.6	31.06	0.8	0.6	31.06	0.8	0.6	31.06	0.8	0	0.00
TEERING GEAR ROOM SUPPLY FAN	1	1	0.30	0.35	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28	0.8	1	0.28
UPPLY FAN FOR BOW THRUSTER ROOM	1	1	0.30	0.35	0.8	0.8	0.23	0.8	0.2	0.06	0.8	0.8	0.23	0.8	0.8	0.23
UPPLY FAN FOR DECK STORE FWD	1	1	0.25	0.29	0.8	0.8	0.19	0.8	0.2	0.05	0.8	0.8	0.19	0.8	0.8	0.19
UPPLY FAN FOR DECK STORE AFT	1	1	0.30	0.35	0.8	0.8	0.23	0.8	0.2	0.06	0.8	0.8	0.23	0.8	0.8	0.23
XHAUST FAN FOR TOILETS	1	1	0.40	0.47	0.8	0.8	0.30	0.8	0.2	0.08	0.8	0.8	0.30	0.8	0.8	0.30
XHAUST FAN FOR PROV. STORE	1	1	0.25	0.29	0.8	0.8	0.19	0.8	0.2	0.05	0.8	0.8	0.19	0.8	0.8	0.19
ALLEY EQUIPMENT	1	1	20.00	23.53	0.8	0.5	9.41	0.8	0.1	1.88	0.8	0.2	3.76	0.8	0	0.00
IRTY OIL TRANSFER PUMP	1	1	0.74	0.87	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0.2	0.14	0.8	0	0.00
OW THRUSTER	1	1	48.00	56.47	0.8	0	0.00	0.8	0	0.00	0.8	0.4	18.07	0.8	0	0.00
VINDLASS	1	1	4.30	5.06	0.8	0	0.00	0.8	0.8	3.24	0.8	0	0.00	0.8	0	0.00
ENERAL PURPOSE WINCHES	1	1	32.00	37.65	0.8	0.2	6.02	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
ATTERY	1	1	6.00	7.06	0.8	0.2	1.13	0.8	0.2	1.13	0.8	0.2	1.13	0.8	0	0.00
MERGENCY LIGHTING SYSTEM	1	1	4.00	4.71	0.8	0.6	2.26	0.8	0	0.00	0.8	0	0.00	0.8	0	0.00
AVIGATIONAL LIGHTS INCL. SEARCH IGHTS	2	1	1.50	1.76	1	0.9	1.59	1	0.5	0.88	1	0.9	1.59	1	1	1.76
AV AND COMMUNICATION EQUIPMENT	1	1	2.00	2.35	1	0.8	1.88	1	0.4	0.94	1	0.8	1.88	1	1	2.35
IGHTING AND BATTERY CHARGER	2	1	3.00	3.53	1	1	3.53	0.8	1	2.82	0.8	1	2.82	0.8	1	2.82
							2049									
	KHAUST FAN FOR PROV. STORE ALLEY EQUIPMENT IRTY OIL TRANSFER PUMP OW THRUSTER INDLASS ENERAL PURPOSE WINCHES ATTERY MERGENCY LIGHTING SYSTEM AVIGATIONAL LIGHTS INCL. SEARCH GHTS AV AND COMMUNICATION EQUIPMENT GHTING AND BATTERY CHARGER TOTAL POWER	KHAUST FAN FOR PROV. STORE 1 ALLEY EQUIPMENT 1 IRTY OIL TRANSFER PUMP 1 DW THRUSTER 1 INDLASS 1 ENERAL PURPOSE WINCHES 1 ATTERY 1 WERGENCY LIGHTING SYSTEM 1 AVIGATIONAL LIGHTS INCL. SEARCH GHTS 2 AV AND COMMUNICATION EQUIPMENT 1 GHTING AND BATTERY CHARGER 2	KHAUST FAN FOR PROV. STORE 1 1 ALLEY EQUIPMENT 1 1 IRTY OIL TRANSFER PUMP 1 1 DW THRUSTER 1 1 INDLASS 1 1 ENERAL PURPOSE WINCHES 1 1 ATTERY 1 1 AVIGATIONAL LIGHTING SYSTEM 1 1 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 GHTING AND BATTERY CHARGER 2 1	KHAUST FAN FOR PROV. STORE110.25ALLEY EQUIPMENT1120.00IRTY OIL TRANSFER PUMP110.74DW THRUSTER1148.00INDLASS11430ENERAL PURPOSE WINCHES1132.00ATTERY116.00MERGENCY LIGHTING SYSTEM114.00AVIGATIONAL LIGHTS INCL. SEARCH GHTS211.50AV AND COMMUNICATION EQUIPMENT112.00GHTING AND BATTERY CHARGER213.00	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 ALLEY EQUIPMENT 1 1 20.00 23.53 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 DW THRUSTER 1 1 48.00 56.47 INDLASS 1 1 4.30 5.06 ENERAL PURPOSE WINCHES 1 1 32.00 37.65 ATTERY 1 1 6.00 7.06 MERGENCY LIGHTING SYSTEM 1 1 4.00 4.71 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 1.50 1.76 AV AND COMMUNICATION EQUIPMENT 1 1 2.00 2.35 GHTING AND BATTERY CHARGER 2 1 3.00 3.53 TOTAL POWER E 1 3.00 3.53	XHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 DW THRUSTER 1 1 48.00 56.47 0.8 INDLASS 1 1 43.00 5.06 0.8 ENERAL PURPOSE WINCHES 1 1 32.00 37.65 0.8 ATTERY 1 1 6.00 7.06 0.8 MERGENCY LIGHTING SYSTEM 1 1 4.00 4.71 0.8 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 1.50 1.76 1 QHTING AND COMMUNICATION EQUIPMENT 1 1 2.00 2.35 1 GHTING AND BATTERY CHARGER 2 1 3.00 3.53 1	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 DW THRUSTER 1 1 48.00 56.47 0.8 0 INDLASS 1 1 4.30 5.06 0.8 0 ENERAL PURPOSE WINCHES 1 1 32.00 37.65 0.8 0.2 ATTERY 1 1 6.00 7.06 0.8 0.2 MERGENCY LIGHTING SYSTEM 1 1 4.00 4.71 0.8 0.6 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 1.50 1.76 1 0.9 GHTS AV AND COMMUNICATION EQUIPMENT 1 1 2.00 2.35 1 0.8 GHTING AND BATTERY CHARGER 2 1 3.00 3.53 1 1	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 DW THRUSTER 1 1 48.00 56.47 0.8 0 0.00 INDLASS 1 1 43.0 5.06 0.8 0 0.00 ENERAL PURPOSE WINCHES 1 1 32.00 37.65 0.8 0.2 6.02 ATTERY 1 1 6.00 7.06 0.8 0.2 6.02 ATTERY 1 1 4.00 4.71 0.8 0.6 2.26 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 1.50 1.76 1 0.9 1.59 GHTS 1 1 2.00 2.35 1 0.8 1.88 GHTING AND BATTERY CHARGER 2 1 3.00 3.53 1 1 3.53	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 OW THRUSTER 1 1 48.00 56.47 0.8 0 0.00 0.8 INDLASS 1 1 43.00 50.66 0.8 0 0.00 0.8 ENERAL PURPOSE WINCHES 1 1 32.00 37.65 0.8 0.2 6.02 0.8 ATTERY 1 1 6.00 7.06 0.8 0.2 1.13 0.8 MERGENCY LIGHTING SYSTEM 1 1 4.00 4.71 0.8 0.6 2.26 0.8 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 1.50 1.76 1 0.9 1.59 1 GHTS AVA OND COMMUNICATION EQUIPMENT 1 1 2.00 2.35 1 0.8	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 OW THRUSTER 1 1 48.00 56.47 0.8 0 0.00 0.8 0 INDLASS 1 1 43.00 5.06 0.8 0 0.00 0.8 0.8 ENERAL PURPOSE WINCHES 1 1 32.00 37.65 0.8 0.2 1.13 0.8 0.2 ATTERY 1 1 6.00 7.06 0.8 0.2 1.13 0.8 0.2 MERGENCY LIGHTING SYSTEM 1 1 4.00 4.71 0.8 0.66 2.26 0.8 0 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 1.50 1.76 1 0.9 1.59 1 0.5 GHTS	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 DW THRUSTER 1 1 48.00 56.47 0.8 0 0.00 0.8 0 0.00 INDLASS 1 1 43.00 5.06 0.8 0 0.00 0.8 0.8 0.2 1.14 NTERY 1 1 43.00 5.06 0.8 0.2 6.02 0.8 0.0 0.00 ATTERY 1 1 6.00 7.06 0.8 0.2 1.13 0.8 0.2 1.13 MERGENCY LIGHTING SYSTEM 1 1 4.00 4.71 0.8 0.6 2.26 0.8 0 0.00 AVIGATIONAL LIGHTS INCL. SEARCH 2 1 1	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.00 0.8 0.00 0.8 0.00 0.8 0.00 0.8 0.00 0.8 0.00 0.8 0.00 0.8 0.00 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.8 0.2 0.14 0.8 0.8 0.2 0.14 0.8 0.8 0.2 0.14 0.8 0.8 0.2 0.14 0.8 0.8 0.2 0.14 0.8 0.8 0.2 0.13 0.8 0.8 0.2 1.13 <td< td=""><td>KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.4 0.4 0.4 0.4 0.4 0.5 0.8 0.2 0.15 0.8 0.2 0.5</td><td>KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.0 0.00 0.8 0.0 0.00 0.8 <td< td=""><td>KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 0.8 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.4 18.07 0.8 0.8 0.2 0.16 0.8 0.2 0.18 0.8 <td< td=""><td>KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 0.8 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 0.8 0 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.16 0.</td></td<></td></td<></td></td<>	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.4 0.4 0.4 0.4 0.4 0.5 0.8 0.2 0.15 0.8 0.2 0.5	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.0 0.00 0.8 0.0 0.00 0.8 <td< td=""><td>KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 0.8 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.4 18.07 0.8 0.8 0.2 0.16 0.8 0.2 0.18 0.8 <td< td=""><td>KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 0.8 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 0.8 0 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.16 0.</td></td<></td></td<>	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 0.8 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.4 18.07 0.8 0.8 0.2 0.16 0.8 0.2 0.18 0.8 <td< td=""><td>KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 0.8 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 0.8 0 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.16 0.</td></td<>	KHAUST FAN FOR PROV. STORE 1 1 0.25 0.29 0.8 0.8 0.19 0.8 0.2 0.05 0.8 0.8 0.19 0.8 0.8 ALLEY EQUIPMENT 1 1 20.00 23.53 0.8 0.5 9.41 0.8 0.1 1.88 0.8 0.2 3.76 0.8 0 IRTY OIL TRANSFER PUMP 1 1 0.74 0.87 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.14 0.8 0.2 0.16 0.