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his clear vision about the subject and the purpose of our work helped me to keep the right approach
during the entire research. His enthusiasm gave me the energy to overpass even the most difficult
moments.

I would like also to express my gratitude to my optics teacher, Prof. Serge Habraken, and not
only for the precious advices related to this thesis but also for the entire support during the last five
years of study. Without the deep and passionate incursion in the world of optics through which he
guided us nothing of this would be possible today.
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Introduction

The study of the polarization of light can be a very resourceful instrument in most of the fields
where the light is the key player. Understanding and controlling this phenomenon can open the door
to astonishing devices and instruments in various domains ranging from medicine until to military
as well as to a better knowledge of the emitting bodies, whether they are around us whether they are
extremely remote. And the astronomy is one of the domains that fully realized the importance of
this type of study, taking advantage of it even from its discovering, in the mid of the 18th century.
Since then, it never stopped to push further the development of polarimetry and of its applications,
aside spectroscopy, this field of optics becoming one of the most appropriate instruments to sound
the astronomical objects.

Despite of its capital importance in this type of researches, the polarimetry is not a very appealing
domain: the hardness of the mathematical apparatus, the extreme sensibility of instrumentation as
well as the hard work of interpretation of the results have been a huge hindrance in its development.

Nevertheless, behind all these difficulties lies a wonderful science, that made important steps
ahead during the last decades, if it will be only to count here the Stokes formalism, the Jones calculus
or the Mueller matrices: techniques which are able to completely describe the polarized light today.
Still, the polarimetry didn’t become fully a scientific instrument in the service of astronomy until the
diffraction and the scattering theory were rigorously developed. It was only then that the significance
of certain type of polarization retrieved in astronomical observation was understood and helped to
the description of the sources. Only starting from that moment, the polarization was able to bring
information about magnetic fields, about the presence of certain particles in the atmospheres of the
observed celestial bodies, about their concentration or shape.

Over the time, polarimetry grew into a fully mature domain of optics, finding applications in
countless sectors. Thus, for example, in atmospheric remote sensing, polarimetry allows the study
of aerosols particles, enabling to retrieve capital properties like optical thickness, size distribution
and shape, information which are both relevant for air traffic flow and for climate modeling. Some-
times comparative laboratory studies and modelling enable even the determination of the chemical
structure of the molecules or particles responsible for the polarization. In the defense field, one may
quote the use for target detection. In astronomy, where the degree of precision must be extremely
high due to the tiny intensity of the signals that must be detected, the imaging polarimetry and the
spectropolarimetry have been developed. The first is used to retrieve the circumstellar structures for
example, while the latter can reveal the environment of stars and exoplanets.

Furthermore, the polarization can yield information about the presence of liquid water, of oxygen
and, ultimately about the existence of some complex organic molecules (like amino acids, sugar,
DNA and chlorophyll) which are able to affect on a certain level only the circular polarization.

The aim of this thesis is then to contribute, even if in a tiny measure, to the advance of this field
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of research which is the polarimetry, by the study of a spectropolarimeter concept aimed to the space
use.

Usually satellites and space telescopes which are equipped today with instruments able to reveal
the polarization of light are using a technique that suppose the relative rotation of several components
so that the electromagnetic radiation could be observed through different media, each time a certain
property (or Stokes parameter) being pointed out. Because of its complexity and fragility this type
of polarimeter is not very widespread among space missions. Just by looking to the structure of
payloads from the spacecrafts, whether they are developed by NASA or the European Space Agency
(ESA), we see that they are not very popular: only a few instruments for each Agency in the recent
history. Overall there is an extremely small number compared to the other type of optical devices
and with the importance of information that can be brought by the polarization of light. The solution
is then to try to develop furthermore this instrument so that it becomes ”space reliable”. And the first
steps were already made: a series of studies were conducted in the last years towards the development
of a ”static” polarimeter, a complex device based on the use of birefringent materials.

Our work will come also in this very direction: we will try to analyze one of the proposed
devices from the recent literature, a spectropolarimeter build from a birefringent crystal of MgF2.
The device is supposed to provide simultaneously access to all four Stokes parameters, the intensity
of the emerging light being also modulated spatially and regarding the wavelength. Concretely,
the aim of this thesis is to provide the detailed and the complete deduction and description of the
modulation function of the device and to see the eventual limitations imposed by this function. The
sensibility of the concept will be tested by error analysis and numerical simulations in the presence
of noise. In the end, the off-axis capabilities of the instrument will be also verified, trying to fully
understand its functioning, its limitations and how can be improved.

We will see that this kind of analysis is not an easy task: it will require a lot of computations, a
deep diving into the entire theory of polarization, and a very intensive numerical analysis. It will be
also a great opportunity to better seize difficult concepts like those regarding the distribution of the
refraction indices in the birefringent media, the ray tracing for this type of environment as well as
regarding the usage and importance of polarization for astronomers.

Thus, in the first part of this work we will pass in review the general description of the phe-
nomenon of polarization and of the processes responsible for this which are mostly used in astron-
omy. Briefly we will pass through the description of the Zeeman effect, of the Rayleigh and Mie
scattering and through the Hanle effect. For a better image about the manifestation of the polariza-
tion and its importance we will see then a few results from the Solar System observation and from
the interstellar medium.

In the third chapter we will encounter a few polarimeters and spectropolarimeters designed for
the space use. We will see for example the POLLUX instrument intended to be part of the LUVOIR
payload and SPEX, a project based on birefringent media, recently developed.

Further, the mathematical description of the polarization will be introduced. We will pass through
the Stokes, Muller and Jones formalism with an emphasis on the computations and notions that are
useful for our purpose. In the end of this mathematical incursion we will have the matrices able to
describe the functioning of the spectropolarimeter.

Because the spectropolarimeter studied here uses the property of birefringence ofMgF2, a chap-
ter is dedicated to the description of the propagation of light in this type of crystal. At this occasion
we will see also the principle of Huygens constructions. All the properties presented here will be
used further, in the last chapter, when a series of corrections will be applied to the model from the
scientific literature.

University of Liège -3-
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With the required formalism established we will pass then to the analyze of the polarimeter.
Because all the equations and formulas which surround the working principle of a polarimeter are
often quite extensive and do not allow to see at once the mechanism behind the detection of po-
larization, the example of CLASP instrument will be detailed. Thus, we will see in the Chapter 5
why the rotation is needed to examine all four Stokes parameters. Finally, the design of our instru-
ment will be introduced and described. In the end of the Chapter 6, the modulation function of the
spectropolarimeter is derived.

The functioning of the instrument at different wavelengths forces us to take also into considera-
tion aspects related to the variation of the refraction indices with the wavelength, or the chromaticity.
Two models for this variation will be developed in the Chapter 7: one will be based on the Sellmeier
method and the other on the interpolation of experimental measurements. This variation will be then
integrated into the modulation function of our system and the consequences will be pointed out.

A first series of limitations for the studied design will become visible at this moment: limitations
regarding the transmittance of the material and about the minimal dimensions of the optical device.

The Chapter 8 is completely dedicated to the error analysis. A linear adjustment by least square
method will give us the theoretical error on each Stokes parameter. Secondly, through the simulation
of a noisy signal we will detect new limitations for our design.

In the Chapter 9 we will approach the off-axis problem, trying to understand the behavior of this
device when tilted rays are passing through. Mathematically, this is the most challenging part of the
study. Because of this, in order the simplify the lecture, tedious mathematical developments will be
here often replaced with numerical simulations and graphical analysis. In the end of this chapter we
will be able to present the last series of constraints for the studied spectropolarimeter.

University of Liège -4-



Chapter 1

Polarizing processes in nature

The polarization is a very widespread phenomenon in nature. But because our eyes are not sensible
to it, we must point it out using polarizers.

The polarization is determined by the emission conditions (or re-emission, in the case of disper-
sion and reflection). In a more subtle way, this phenomenon occurs where is a symmetry problem: a
scalar dissymmetry manifested into the concentration of scattering particles or their dimension is ac-
companied for example with the circular polarization, while vectorial dissymmetry like the presence
of a magnetic field is accompanied most often by the linear polarization[42].

Theoretically, the linear polarization corresponds to the situation in which the electric field of an
electromagnetic wave vibrates in a single plane regardless to the moment of observation.

Figure 1.1: Linear (left) and circular (right) polarization.
Representations adapted after Wikipedia.org[8] (circular) and edmundoptics.com[2] (linear)

On the other hand, if the vector describing the electric field rotates in time around the direction of
propagation we are dealing with the circular polarization. A full mathematical description of those
situations will be developed in the Chapter 4.

At the deep level of the quantum physics the light is always circularly polarized. The photons
are presenting all the time with an equal probability a left- or right-handed circular polarization,
according to the orientation of their spin. If we would have the capability to perceive the light photon
by photon it will exhibit always then a circular polarization. But this is far beyond the capability of
the detectors that are dealing with packages of photons. Because of this the detected polarization is
always merely an average property of that packages, average which is governed by the superposition
of the individual states of the photons in the limits of the coherence conditions.

5
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Aside the Rayleigh, Thomson and Mie diffusions that are responsible all the time for a certain
type of polarization and revel to be extremely important for the study of scattering medium, one of
the most important sources of polarization largely studied and used by astrophysicist is the Zeeman
effect. Basically, it is through this phenomenon that we may have access to the projected absolute
value of the magnetic field of a remote body. Nevertheless, we do not have to ignore the Hanle effect,
which open also a door to the determination of the magnetic field in certain situations.

1.1 Zeeman effect
The Zeeman effect is one of the most important phenomena used by astronomers to determine the
projected value of the magnetic field of a star, and which highlights the contribution of polarimetry.
In just a few words, this effect, with a profound quantic origin, is translated by the splitting of the
spectral lines of an atom in the presence of a magnetic field. Besides this, the radiation emitted
during the transition process exhibits all the time a precise polarization.

In order to fully understand the Zeeman effect, we must remember a few basic concepts and
notations from the quantum physic and electromagnetism. Thus, an electron spinning around a
nucleus will generate a magnetic momentum ~µ and as a consequence can be seen as a dipole. Hence,
by placing the atom in a magnetic field ~B, a torque will be exerted upon this dipole. The magnetic
potential energy characterizing the interaction is given by:

U = −~µ · ~B

When the Zeeman effect was firstly discovered the spin of electron was still a mystery, and
because of this the magnetic momentum ~µ was associated only to the angular momentum of the
electron. According to the quantization of the orbital momentum (~L), we have:

~µ = −
( e

2me

)
~L L = h̄

√
l(l + 1)

where ~L is the angular momentum of the electron and l is the angular momentum number (l =
0, 1, ..., n, for n, the principal quantum number).

If we consider a magnetic field oriented along z axis, then the projected orbital angular momen-
tum is:

Lz = mlh̄

in which ml is the number associated to the projection of l:

ml = −l,−l + 1, ...., l − 1, l

An intuitive representation of the projection of ~L is given in the Figure 1.2, where the particular
case of l=2 was depicted.

The quantization of the angular momentum determines the quantization of the potential energy
of the dipole exposed to the magnetic field:

U =
e

2me

LzB =
eh̄

2me

mlB = µBmlB

where µB is the Bohr magneton:

University of Liège -6-
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Figure 1.2: Angular momentum representation and its projection along z axis for l=2. Credits:
https://www.wikipedia.org[7]

µB =
eh̄

2me

= 9.2740154 · 10−24J/T = 5.788382 · 10−5eV/T

Based on this assumptions, the difference in energy with regard to the zero field level is:

∆E = mlµBB

This is known as the Zeeman effect. It tells us that in the presence of a magnetic field the
transition energy is splitted into ml levels uniformly spaced. However, if the spin of the electron is
also considered, then the total magnetic momentum should comprise also the spin momentum (~S):

~µ = −
(1

2

e

me

~L+
e

me

~S
)

= −1

2

e

me

(~L+ 2~S)

By considering ~J = ~L + ~S as the total angular momentum (Figure 1.3), then the last equation
becomes:

~µ = −1

2

e

me

(~L+ ~J)

Once again, we have
∣∣∣ ~J∣∣∣ = h̄

√
j(j + 1), for j = l± s, l+ s− 1, ...|l − s|, and for the projection:

University of Liège -7-
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Jz = mzh̄, mj = −j,−j + 1, ...,+j. In the case of the electron, where the spin number is s = 1
2

we
will have j = l ± 1

2
.

Figure 1.3: Vector cones for the total angular momentum ~J , spin momentum ~S and orbital momen-
tum ~L. Credits: chem.libretexts.org[4]

As a consequence, the difference of energy with regard to the zero field state will take the form:

∆E = µBgmjB

where g is the Landé factor, and is given by:

g =
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)
(1.1.1)

The conclusion is then that by paying attention to the spin of the electron the transition energy
will be splitted not into ml levels, but mj levels. The phenomenon is known as the ”anomalous
Zeeman effect”, just because at the time of observation it was unaccountable. According to the
selection rules of transitions, we may have only ∆mj = 0,±1.

• ∆mj = 0 (π transition): in a transverse view (perpendicular to ~B) the emitted radiation
is linearly polarized in a direction parallel to ~B; in a longitudinal view (parallel to ~B) the
transition is forbidden (see Figure 1.4).

• ∆mj = ±1 (σ transition): in a transverse view the emitted radiation is linearly polarized in a
plane perpendicular to the field; in a longitudinal view the polarization is circular.

In order to explicit the Zeeman effect we may take a look to the transition 1D2 →1 P2 (or,
equivalently, from (L=2,S=0,J=2) to (L=1,S=0,J=1) ) of Cadmium (Figure 1.5).

University of Liège -8-
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Figure 1.4: Intuitive reprezentation of the polarization in the Zeeman effect. The reference frame is
arbitrary chosen and the type of polarization should be considered only with regard to the orientation
of the magnetic field ~B. Looking perpendicular to ~B we will see only linear polarization, while
looking along ~B we will see only circular polarization.

The energy difference between the transition levels is then:

∆E = µB(g′m
′

j − gmj)B

and in this case we have also g = g′ = 1. When ∆mj = 0 we obtain the π transition which is
equivalent to the red ray of Cadmium without magnetic field (λ = 643.8nm). On the other hand,
when ∆mj = ±1 we have a σ transition:

∆E = h∆ν = ±µBB = ± eh

4πme

B

∆ν = ±µBB = ± e

4πme

B = ±1.3995 · 1010B

Concerning the separation of the spectral lines, generally we have:

∆λ = 4.7 · 10−13Bλ2

where λ is expressed in Angströms and B in Gauss. Thus, if ~B is very weak, it will become im-
possible to observe directly the splitting of the spectral lines. But observing the spectrum through a
polarizer can reveal the presence of circular or linear polarization, hereby of all the spectral lines.

Therefore, translated into Stokes parameters, the Zeeman effect can give us access to the value
of the projection of the magnetic field of a star on the plane of the sky and along the line of sight
(Figure 1.6). It can be shown [41] that for a field ~B making an angle γ with the line of sight, we will
have:

University of Liège -9-
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Figure 1.5: Transition 1D2 →1 P2 for Cadmium with ”normal” Zeeman effect (S=0)

{
Q ∝ B2 sin2 γ

V ∝ B cos γ

As a consequence, measuring V will give us access to the projection of B along the line of sight
(B cosψ) while with Q we will have access to the projection on the plane of the sky (B sinψ). It
must stress here that in the Zeeman effect only Q and V parameters are concerned, following the
geometry exposed in the Figure 1.6. The U parameter is not present in this geometry. Generally,
the transverse component (linear) is fainter than the parallel component (circular), reason for which
the linear component is hard to be measured by a selective approach. Using then a birefringent
spectropolarimeter, which requires no selection process, but provides simultaneously access to all
four Stokes parameters it will be of paramount importance in the study of the Zeeman effect and so
in the determination of the magnetic fields of stars.

It is worthy also to be noticed here that the Zeeman effect takes place only at relatively faint
magnetic field. In a very strong one (more than 104G1), it is replaced by the Paschen-Back effect
which suppose that the angular momentum ~L and the spin angular momentum ~S are decoupled and
more coupled to the magnetic field around which they precess separately. For stars, the Paschen-
Back effect is meet mostly for lithium, which requires only 3T to happen. At the same strength of the
field Sodium does not undergo neither the Zeeman effect. For this it requires at least 18T. Generally,

1Alternatively in literature and here also the magnetic flux density (magnetic induction) is expressed in Gauss or
Tesla: 1G = 10−4T

University of Liège -10-
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Figure 1.6: Hypothetical orientation of the ~B with regard to the line of sight (z axis). y and x axes
can be rotated so that ~B to be comprised in the in the (yz) plane.

the magnetic field of stars exhibits strong variations being related to generating mechanism. For
example, the magnetic field of the Sun is of about 1G, but it can reach even 4000G near the massive
sunspots. In brawn dwarfs and ultracool dwarfs it was detected even a field of 17 kG. Meanwhile,
white dwarfs and neutron stars may exhibit even 10 kG. Among the massive stars, the O-type stars
can reach 1 kG, while among Ap and Bp stars the magnetic field varies between 300-300 kG.

1.2 Rayleigh diffusion
Another import source of polarization also of great interest in astronomy, is the Rayleigh scattering.
When the light is absorbed by molecules of gas for example, simultaneously the molecule is start-
ing to vibrate and to radiate an electromagnetic radiation of the same frequency and wavelength as
the incoming one. Closer the incident beam is to the molecule resonance frequency, stronger the
molecule will oscillate, in order to reach a maximum in the UV, where all the molecules have res-
onances2. The shape of the scatterers is not so important in this phenomenon, of more importance
being the dimension of the molecules, because the amount of diffused light is related to the diameter
of molecules via

Q ∝ D

λ
(1.2.1)

where D is the molecule diameter.
In order to understand the relation with the polarization, we may use the the situation depicted

in the Figure 1.7, where a source of unpolarized light lies on the Oy axis, illuminating the molecule

2A very detailed description of the phenomenon can be retrieved in Hecht[16][p.97]
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Master Thesis 1.2. Rayleigh diffusion

from M.

Figure 1.7: Rayleigh diffusion by a molecule: at the base of the phenomenon stays the emission of
a vibrating dipole

If this undetermined state of polarization is represented, in a general manner, by two orthogonal
vibrations, along Oz and Oy, then we see that the vibration along Oy will force the molecule to
vibrate in the same direction and, consequently, to radiate on a plane perpendicular to its vibration.
Thus, a vertical vibration will propagate in the plane (zy). Now, if we look to the case of the
horizontal vibration, then by the same principle we will retrieve a vibration parallel to the incoming
one, in the (xy) plane. Consequently, an observer placed on the x or z direction will receive only one
type of vibration, thus a linearly polarized light. On y, just in front of the source, the light will be
completely unpolarized, while on an intermediary position (as is depicted in the Figure 3.4) we will
receive the projected vibration.

By using the relation (1.3.14), for the degree of polarization, then, in accord with Leroy [26][p.33]
we will have a polarization rate that is given by:

P =
C2 − C2 cos2 α

C2 + C2 cos2 α
=

sin2 α

1 + cos2 α
(1.2.2)

where α is the angle between the line of sight and the illumination direction of the dipole, and C is
the ratio between the amplitude at the observer and the amplitude at the molecule level.

For the Rayleigh scattering, this ratio is proportional to 1
λ2

which means that the diffused intensity
will vary as 1

λ4
. Therefore, smaller is the wavelength, bigger will be the received intensity.

The graphic from the Figure 1.8 shows clearly that at an angle of observation of π
2

the incoming
light is totally polarized, while at 0◦ is unpolarized.

Another type of diffusion which occurs on free electrons (and thus mostly in hot atmospheres)
is the Thomson diffusion. This follows the same mechanism as the Rayleigh diffusion, the degree
of polarization being expressed through the same formula as before. The only difference is the fact
that the constant C does not depend anymore on the wavelength.

The importance of the Rayleigh scattering in the astronomical polarimetry comes from the fact
that measurements at different phase angles allows a relatively fast identification of the phenomenon
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Figure 1.8: Polarization degree in Rayleigh diffusion

through the curve from the Figure 1.8. Observing then at various wavelengths we may have access
to the diameter of molecules. Afterwards, comparative studies may revel even their type.

1.3 Hanle effect
Aside the Zeeman effect, the Hanle effect is also a very used phenomenon that can reveal the value of
a magnetic field of a star. Its advantage comes from the fact that it works mostly when the magnetic
field is relatively weak (compared with the required field for observing the Zeeman effect). At the
base of the Hanle effect is the scattering phenomenon which is manifested this time in the presence
of a magnetic field. Using the previous image of a vibrating dipole excited by an electromagnetic
wave if we add now to the picture a magnetic field, then necessarily we must account also for the
Larmor precession around this field. The dipole will have thus two movements: a vibration and a
precession. Because the emission should be all the time perpendicular to the direction of movement,
will change accordingly.

The best way to see this phenomenon is to consider the situations depicted in the Figure 1.9.
In this simple case the source emits along z axis a linearly polarized light (in the xz plane). In the

absence of a magnetic field, we saw that the observer from y will perceive also a linear polarization
along x, according to the Rayleigh mechanism. Let us consider now that ~B 6= 0. If:

• ~B is along x: no change in the polarization along y (situation b)) is detected;

• ~B is along z: if B is very small or very big then is no effect on y; otherwise the degree of
polarization will decrease until reaching 50% (situation c));

• ~B is along y: if B is weak then the linear polarization along y will be tilted. If B is strong then
we obtain a complete depolarization.
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Figure 1.9: Hanle effect for an incoming linearly polarized light and different orientations of the
magnetic field ~B

The situation along y is determined by the competition between the dumping rate and the preces-
sion rate. The resultant vector will describe a rosette pattern like in the Figure 1.10. Here the field
strength increases from left to right. The net effect of this variation will be then to continuously ro-
tate the plane of vibration. If the magnetic field is strong enough, there will be no dominant direction
of vibration and the light will be completely depolarized.

The polarization degree on z direction is related to the intensity of the magnetic field on z by a
relation derived from the quantum mechanics:

P =
P0

1 + e2

m2
ec

2 g2τ 2B2

where P0 is the polarization degree in the absence of a magnetic field, g is the Landé factor and τ
is the lifetime or the decay time of the particle (about 10−8s). In practice, the Hanle effect is used to
diagnose magnetic fields of the level of a few G and until about 100G. Thus, for the study of the Sun
corona (B¡100G) is the best instrument, and observations have shown that the suitable wavelength
range is the UV and EUV[34].
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Figure 1.10: Rosette pattern of the trajectory of the momentum vector of the dipole in the presence
of a magnetic field. Credits: Stenflo[41]

1.4 Mie diffusion
If the Rayleigh diffusion take place only on molecules, thus for dimensions smaller than λ, the Mie
diffusion is for the domain of particles, with a ”diameter” bigger than the wavelength of the incident
light. The two theories are complementary one to another: below a dimension of about λ/10 they
give the same result. After this level, Rayleigh approach is no more valid and Mie theory should be
used.

Figure 1.11: Scattering process: left - Rayleigh scattering, middle - intermediary scattering, right-
Mie scattering. It is supposed here that the incident wave is coming from the left. WE notice that in
the case of Mie scattering, most of the light is diffused towards the direction of movement. Credits:
www.sesp.esep.pro

The Mie theory is based on the analytic description of the electromagnetic interaction of light
with a particle, using the Maxwell equations. In its pure form is a very complicated tool, reason for
which is always preferred the numerical approach which employs algorithms in order to retrieve the
most important features. One of the principal inputs for the Mie calculus is the shape parameter (x):

x =
2πr

λ
(1.4.1)

in which r is the radius of the particle and λ the wavelength of the incoming radiation. According
to Mie, the degree of polarization will depend, just like in the case of Rayleigh, to the phase angle,
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but also to the shape parameter, x. At small values of x, we will retrieve the curve presented in the
Figure 1.8, corresponding to Rayleigh process. But after this value, the curve will change drastically
from one x to another, presenting even negative values, which signifies that the polarization is radial.

Figure 1.12: When observing extended sources, like the Sun or Jupiter, the polarization is often
cataloged as radial or tangential. In the Mie calculus a negative polarization corresponds to the radial
direction while a positive one to the tangential case. Relative to the scattering plane, if the vibration
of the ~E field is in the scattering plane, we have negative polarization, while to the perpendicular
case a positive polarization is associated.

Finding the variation of the polarization degree with the phase angle between the incident ray
and the diffused one we may have access to the shape parameter and then, after a comparative and
laboratory analyze, even to the type of particles.

It must be stressed here that almost all the time when the scattering theories are used in tandem
with the degree of polarization, is the linear polarization that is invoked. And that happens not
because the circular polarization would be absent in the observed targets, but because the scattering
theories are giving results only for the linear polarization. For the circular polarization we do not
have a similar dependency of the degree of polarization with the phase angle[43]. Nevertheless, that
does not mean that the circular polarization would be poor in information or would be not involved in
scattering processes. On the contrary, the detection of the circular polarization testify usually for the
existence of a multiple scattering process, or, hypothetically, for the presence of organic molecules.
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Figure 1.13: Mie scattering simulations for λ = 0.5µm and r = 0.02µm (up) and r = 1µm(down).
On the left side we have the profile of the diffusion pattern (polar view) while on the right side we
see the graphic for the degree of polarization as a function of the angle between the incoming and
outgoing ray. In the upper part we have the classical situation of Rayleigh scattering: a very small
particle which gives the same evolution of the polarization as in the Figure 1.7. In the lower part we
have a big particle presenting even negative values of the polarization degree. Simulation conducted
with the help of Mie Scattering Calculator (https://omlc.org)
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Chapter 2

Polarization in astronomy

The study of the polarization is an important field in astronomy, this attribute of light being able to
bring valuable information about the atmosphere, magnetic field, distribution of particles or reflec-
tivity, dimension of particles or even shape and nature. Thus, by the study of the polarization we
may have access to the real part of the refractive index, to the distribution of particles in clouds with
regard to their size and to the structure of aerosols layers[29]. Also, the polarization study could help
estimate the concentration of aerosols from the atmosphere as well as the pressure of the atmosphere.
Regarding the type of the perceived polarization, a linear polarization (Q,U) is mainly interpreted
as a first order scattering process in the upper layer of an atmosphere or is correlated to a magnetic
field, while a circular polarization (V) suggest the presence of multiple scattering processes.

The first studies about the polarization effects in astronomy were conducted for the Moon by
Arago, more than a century ago. A that time Arago observed that the shady areas of the Moon were
stronger polarized that the brighter zones. Later, this phenomenon was interpreted as a consequence
of a multiple-order scattering occurring in the brighter areas, which leads to a depolarization effect.

Figure 2.1: Phase angle for an astronomical object

Further, another important discovery
was made by Umov: at large phase angle,
the degree of linear polarization is related
to the albedo of the celestial body:

P ∝ 1

a

where P is the degree of linear polar-
ization and a is the albedo of the observed
body. It has to be stressed here that the
phase angle does not refer to the phase of
the electromagnetic wave, but at the angle
between the incident light and the reflected light, as can be observed in the Figure 2.1.

Overall, this was called the Umov effect and it was observed mostly for the atmosphereless
bodies of the solar system. In the case of the bodies with atmosphere, and under additional conditions
for comets, this effect is observable only at small values of the phase angle.

Another important concept used in polarimetric studies is the inversion angle, which was firstly
noticed by Lyot. According to this, for the atmosphereless bodies of the solar system there is a
certain angle (αi), called the inversion angle, at which the polarization angle of the incoming light is
switched by 90

◦ . As an example, for the Moon, this αi is comprised between 15
◦ and 27

◦ . During the
time, studies have revealed that there is a correlation between the inversion angle and the wavelength,
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even if a precise expression of this dependency was not yet derived. Moreover, the rotation of the
polarization angle is not a sharp process, but rather a gradual one, taking place during a certain ∆αi
interval. Laboratory studies have proved that this interval is strongly related to the composition and
the structure of the reflective surface, and consequently, polarimetric studies can be used to describe
and to understand the surface of the atmosphereless objects.

For the comets, if there is no important gaseous emission, the concept of inversion angle can be
applied, but when the emission starts to become important, this notion cannot be used anymore, and
the theory of the polarization in the continuum should be used.

For the celestial bodies with thick atmosphere it is almost impossible to derive a common po-
larimetric feature, because all the time the polarization of light will depend on the concentration, the
size and the shape of the particles responsible for the scattering process.

Another important concept used in polarimetric studies is the opposition effect (opposition surge),
described by ”the surge in brightness of a particulate medium observed near zero phase angle”[15].
At first, this phenomenon was explained through shadow hiding, which means that for a phase an-
gle near zero the ”quantity” of shadows or the shadowed area reaches a minimum in the case of
non-Lambertian surface. Then, the phenomenon was also interpreted as a coherent backscattering
process (or weak photon localization or time reversal symmetry). According to this theory, if the
scattering particles are comparable in size with the wavelength of the incoming light and the distance
between particles is bigger than λ, then incoming light and scattered light may interfere, giving birth
to an increase of the brightness[9][15].

Figure 2.2: Opposition effect near the shadow of the space probe Hayabusa on the surface of the
asteroid Itokawa. Credits: ISAS/JAXA

Thus, using the polarization opposition effect, important information about the sizes of particles
can be retrieved. Concerning the type of polarization, usually the planets of our solar system exhibit
a linear polarization resulting from single scattering processes. The circular polarization has a very
poor presence, being noticed mostly for Jupiter and Saturn in the polar regions (phenomenon which
is called polar scattering effect, or polar effect), where the degree of circular polarization reaches
0.1% compared with a regular ratio of only 0.001% or 0.01% for the other planets[20].
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2.1 Polarization in the Solar System
Excepting the Sun for which the polarization can also be related to Hanle and even Zeeman effects,
the rest of the bodies of the solar system are analyzed through the scattering processes: Rayleigh or
Mie scattering. And the most common technique is based on the determination of the variation for
the polarization degree with the phase angle. This type of curve says immediately if Rayleigh or Mie
scattering are involved in the polarization process. Once the process is identified, one can go further
towards the determination of the nature and properties of scattering particles.

2.1.1 The Sun

Figure 2.3: Polarization (p ·10−4) inside the limb (arcmins) at four wavelengths. Source: [20][p.713]

Stars can be usually considered as ”standard candles” for the nonpolarized light, more indicated
to be used as calibration targets than an artificial source. And the main reasons for this is the distance
and the symmetry[42][p.27] which nullify the resultant polarization over the disk. But not the same
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is the story with the Sun: in this case we have access to a resolved image and in this way local
features of the polarization and magnetic field can be measured.

Studies started even from the years 1940s have reveled a relatively weak polarization in the limb
which varies with the distance inside the limb and with the wavelength. As an order of magnitude, in
the visible spectrum, the maximum was found around λ = 0.41µm, where the degree of polarization
reaches 9 · 10−4.

The main source of this polarization is a combination of Rayleigh scattering on molecules and
Thomson scattering on electrons occurring in the photospheric environment. Concerning the mag-
netic field diagnose, the most suitable instrument is the Hanle effect. The Zeeman effect remains
poorly resolved in a low magnetic field and because of this is mostly used in the study of sunspots,
where the magnetic flux reaches kG.

2.1.2 Venus
One of the first case studies of polarimetry in astronomy was conducted by Lyot in 1929, through
the observation of Venus. Despite the rudimentary apparatus, the results of Lyot have never received
important corrections. Its measurements can be observed in the Figure 2.4 where the degree of
polarization was plotted as a function of a phase angle for different wavelengths. The entire spectrum
is dominated by a linear polarization oriented in the plane described by the Sun, Venus and the Earth.
The only exception is in the UV region, where a variable orientation was measured with a preference
for the transverse direction.

Currently there is no total agreement about the causes for the ”strange” behavior registered in
the UV. Variations in altitude for the top layer of clouds, variation of the albedo and changes in the
mean-free-path of photons have been advanced as possible explanations.

During the time, the only major improvements of the Lyot measurements were the extension of
the phase angle range and the follow up of the variation for the degree of polarization at different
wavelengths.

The results for degree of polarization, presented in the Figure 2.5, follows closely the multiple
scattering calculations for particles with a radius near the value of the wavelength[20]. The mea-
surements of the polarization allowed the development of a model for the atmosphere of Venus: the
relatively close fitting between the polarization of the planet and the polarization obtained by scatter-
ing on droplets of about 1.2µm have suggested that a good candidate for these droplets is the sulfuric
acid. Also, the rollover of the direction of polarization in UV could be explained by the presence of
a Rayleigh component due to the existence of very fine layer of gas atop of the atmosphere.

We should underline here the tiny values of the polarization, ranging between 0% and 10%, and
which suggest that any attempt to build a spectropolarimeter should refer to this level of sensibility.

2.1.3 Mars
The polarimetric study of Mars know a full advancement in the years 1970s. Almost all the studies
used the assumption that the atmosphere of Mars is thin enough to be neglected in the process of
scattering, at least during the good weather conditions, and above the UV spectral range. Aside the
estimations for the atmospheric pressure who suggested a value of about 5mb at the surface, another
reason to neglect the contribution of the atmosphere was the fact that the evolution of the polarization
with the phase angle was almost the same as for the Moon. The only differences appeared when
weather conditions started to change.
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Figure 2.4: Polarization of Venus for three wavelengths: circles (Lyot, 1929), crosses (Coffeen and
Gehrels, 1969), plus signe (Dolfus and Cofeen, 1970), continuous line (Bailey). Credits: Bailey [10]

Nevertheless, in time astronomers focused also on regional details: elaborate studies were con-
ducted for white clouds, for blue clouds at the limbs, for yellow haze, etc.[20][p.567]. Mostly, the
researches were based on Rayleigh and Mie scattering, the maximal value of the degree of the polar-
ization being of about 2.5%. Among the most important results of the polarimetric studies of Mars
one can count the evidence for the presence of water ice crystals as well as CO2 ice crystals in the
atmosphere, the development of an optical profile of the atmosphere[18].

2.1.4 Gas giants
The polarimetric properties of the outer planets are studied from very long time. A few similarities
were observed but, overall, the conclusions about the scattering medium are still discussed. Before
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Figure 2.5: Variation of the polarization degree of Venus with regard to the phase angle: crosses
(Coffeen and Gehrels, 1969, λ = 0.99µm). Assuming different values of the refraction index n, and
a radius of particles between 0.7 and 1.2µm, six comparison curves were obtained. Credits: Gehrels
[20]

the space missions the data was lacking a relevant phase angle range. From the Earth Jupiter can be
followed for example with phase angle ranging only between 0

◦ and 12
◦ . Thus, aside the resolution,

the space missions improved also this aspect. The probes which have monitored the polarization
features in the outer solar system have been: Pioneers 10 & 11, Voyager 2, Galileo, Cassini and
Huygens[23].

According to gathered data, Jupiter and Saturn present a linear (negative) polarization which
increases from the equator to the poles, to reach 7-8%. Generally, the polarization is negative (i.e.
tangential), but in the polar regions there is a strong variation with the wavelength, so that at 750nm
it becomes positive. Also, circular polarization was spotted into the polar regions. According to
Kolokolova [23][p.324], the main hypothesis explaining this feature are:

• multiple scattering processes in the outer atmosphere because of the presence of a large quan-
tity of aerosols;

• scattering by aligned non-spherical aerosols;
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• scattering by optically active molecules.

Despite all the detailed data about the polarization of the gas giants, the conclusions are contro-
versial. The Mie approaches on spherical scatterers have failed to give a satisfying explanation while
the modeling based on ellipsoids is still discussed [26][pp.72-75], [20][pp.568-571], [23][p.321-
339].

2.1.5 Atmosphereless bodies
Concerning the atmosphereless bodies of the Solar System, how it was stated before, the researches
have started long ago, with the observation of the Moon.

Figure 2.6: Reflectance for a dielectric surface according to Fresnel equations, for parallel and or-
thogonal vibrations

According to Fresnel equations, we see that the perpendicular component is dominant in reflec-
tion (Figure 2.6), and, therefore if a remote body will be only a reflective one, we should observe an
orthogonal polarization. The polarization discovered for the Moon was, nevertheless parallel. Thus,
based only on polarimetry, the first conclusion was that the surface of the Moon behaves more as a
scattering surface than as a reflective one. Using then the Umov effect and a lot of laboratory studies
for the polarization obtained with different types of ground samples, scientists deduced the texture
of the lunar soil long before the Apollo missions.

A common feature that has to be remembered for the atmospherless bodies of the Solar System is
the fact that for small phase angles (generally less than 20◦) the positive polarization (corresponding
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to the vibration perpendicular to the plane of incidence) becomes negative. For the moment, there is
no full theoretical description of this phenomenon, and it is seen as change of the diffraction pattern
with the phase angle as well as a contribution of high order diffusion. The phenomenon was and still
is largely studied in laboratory and helped to the identification of the soil composition for the Moon,
for Mercury, for the satellites of Jupiter and for many asteroids. For the last ones, the polarimetry
could help in the determination of diameter as well as of the composition. Thus, the ISOPHOT
measurements of the subsurface infrared emission of asteroids (6) Hebe and (9) Metis [25] revealed
the existence of a linear polarization at 25µm, with a degree between 0.2% and 1.6%. Because for a
spherical shape the resultant polarization of a non-resolute body should be zero, the manifestation of
the polarization could be then a proof for the non-spherical shape. Further analysis can reveal even
more details about their structure[24].

2.2 Interstellar medium
Even though is very hard to distinguish between the polarization induced by the interstellar medium
and the polarization of the stars itself, astronomers have mapped the polarization of the sky since
1949. The main method employed to differentiate between environmental and stellar polarization is
based on the variation of the degree of polarization with the wavelength. The underlying hypothesis
is the fact that polarization processes taking place into the stars are governed by the Thomson scat-
tering on electrons, which is independent of the wavelength. Thus, establishing a dependence of the
polarization over the wavelength will be enough to prove the interstellar origin of the phenomenon.
The empirical low governing this variation with the wavelength is given by:

p(λ)

p(λmax)
= exp (−1.15 ln2 (

λmax
λ

)) (2.2.1)

in which

• p(λ): is the degree of linear polarization;

• p(λmax): the maximum degree of polarization;

• 1.15: constant that was replaced in more recent studies by k = 0.01 + 1.66λmax[26]

Concerning the type, the polarization is dominated by a linear polarization distributed mostly
in the galactic plane. In a great measure, the phenomenon is due to the diffusion by the dust, thus
being also considered as a proof for the distribution of matter in the interstellar medium. In fact,
the polarization is generated by the alignment of the asymmetrical particles in the galactic magnetic
field, distribution which acts as a dichroic environment. When the pattern of distribution changes
along the line of sight as a result of variations in the magnetic field, the interstellar medium (ISM)
can behave even as a birefringent one, capable to yield a circular polarization. Typically, the circular
polarization rate is 100 times smaller than for the linear polarization.

A phenomenon worthy to be remembered here is the rotation of the polarization with the wave-
length: for many stars it was observed that near λmax a rotation of the plane of vibration take place,
probably because of the birefringence of the interstellar medium [Coyne S.J in [20]].

Meanwhile, any variation of the polarization in time is generally interpreted as a variation of the
source and is used as a method to distinguish between the interstellar polarization and the source
polarization.
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2.3 Polarization and the study of exoplanets
For the most part, stars like the Sun exhibits no polarization when the effect is considered across
the entire disk, but the reflection of this light by a planet can show a high degree of polarization
according to the phase angle and to the scattering processes taking place on the surface or in the
clouds.

The polarization mechanism is based on the idea that the flux received from an exoplanet is
composed by the reflected flux coming from the sun and the own thermal flux of the planet. Or the
reflected flux is polarized due to the scattering.

This reflected flux can be expressed as:

Fs(λ, α) =
R2
p

d2

1

4
S(λ, α)πF0(λ)

where α is the phase angle, Rp is the planet radius, d the distance between the observer and the
star, πF0 the flux received by the planet from the star and S(λ, α), the planetary scattering matrix.
Assuming that the incoming flux F0 is not polarized, the corresponding Stokes vector will have only
F0 as element:

FO(λ, α) =


F0(λ, α)

Q0(λ, α) = 0
U0(λ, α) = 0
V0(λ, α) = 0


Then it can be easely shown1 that the received Stokes vector, at the level of the observer is:

Fs(λ, α) =


Fs(λ, α)
Qs(λ, α)

Us(λ, α) = 0
Vs(λ, α) = 0


with: Fs(λ, α) =

R2
p

d2
1
4
a1(λ, α)πF0(λ)

Qs(λ, α) =
R2

p

d2
1
4
b1(λ, α)πF0(λ)

in which a1(λ, α) is the total flux scattered by the planet during its orbit, and depends on the wave-
length and the phase, while b1(λ, α) is a function reflecting the scattering properties of the planet and
which has to be determined in order to understand the scattering process taking place. By measuring
the polarization degree for an exoplanet we may have access to the ratio b1(λ, α)/a1(λ, α).

Despite its simple mathematical formulation, the main problem of this technique remains the
resolving power of telescopes and the difficulty to separate the faint and polarized flux coming from
the planet from the flux of the star. For this a sensibility above 10−4 is required. Nevertheless,
Sloane[23] cites five cases of measured polarization for exoplanets.

However, the polarimetry can be used combined with other techniques of observations, like
radial velocity or transits. And in these cases, a differential polarimetry can be used as a tool for the
confirmation of an exoplanet.

1The details of this calculus as well as a comprehensive overview of the topic can be found in Kolokolova [23][p.439-
457]
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More than that, recent studies suggest that the search of the circularly polarized light could be
a good instrument for sounding the presence of life, given the fact that homochirals molecules, like
most of the amino acids, have the ability to reflect circularly polarized light [35].

2.4 Polarization at high values of the magnetic field
When the magnetic field is stronger than 104G, then the Zeeman effect is no longer visible, and is
replaced by Paschen-Back effect, in which the angular momentum and the spin will be decoupled.
This phenomenon is visible for Ap and Bp stars, which are remarkable for their strong magnetic
field, usually conceived like a rotating off-axis dipole and rich in elements like strontium, chromium
or europium. Moreover, in stars like the white dwarfs, where the magnetic field is even bigger than
107G, a circular polarization of the entire spectrum can be observed, phenomenon which is called
magnetic circular dichroism.

2.5 Red giants polarization

Figure 2.7: Polarized (◦) and unpolarized (•) stars in HR diagram. Source[20][p.827]

We saw before that generally stars do not exhibit a certain polarization. But there is an exception:
the red giants (late-type stars), which present an intrinsic variable polarization (mostly linear), with
a higher value towards UV. Many theories and observations have been conducted about this objects2

2A comprehensive summary of this work can be found in[20][Shawl, Stephen J: Polarimetry of late-type stars]

University of Liège -27-
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and until now several explanations about the origin of this polarization have been accepted. Thus,
in certain cases it was admitted that the primary source is the scattering from the circumstellar shell
(scattering on gas or on dust particles). In other cases, the hot spots model was advanced, which
presumes that periodically convective cells surge on the surface emitting a highly polarized and
oriented jet of radiation. The degree of linear polarization for this stars may reach even 20-25%,
while the circular polarization can be even 10−3.
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Chapter 3

Photo-polarimeters and spectropolarimeters
in space

Most of the polarimeters and spectropolarimeters used in space are extremely complex instruments,
occupying a relatively large volume and employing moving components. The need for turning parts
is coming mostly from the fact that polarimeters are not able to provide simultaneously access to all
the Stokes parameters. Different configurations are needed in order to cover all the necessary data
and to infer the state of polarization. Is a difficult procedure, exposed to a high risk of failure in space
conditions. Also, another reason to use moving components is related sometimes to the wavelength
range of interest. The limited performance of polarimeters and of detectors with the wavelength is
solved by changing the polarimeters and/or the detectors from one channel to another.

In this chapter we will see a few examples of polarimeters used or proposed for space missions
along with their working procedures. It is merely an introduction in this problematic, with the only
purpose to give a general view about this type of instruments. In detail, for most the them we lack
the information, while for others is so huge that is impossible to be summarized here as a simple
review.

3.1 ISOPHOT
One of the first polarimeters used in space by the European Space Agency was ISOPHOT, designed
for the Infrared Space Observatory (ISO) Mission (1995 - 1998).

According to ESA, ”ISO was one of the most sensitive infrared satellite ever launched”1, aimed
to study the interstellar medium between 2.4 and 240 microns. The ISOPHOT imaging photo po-
larimeter onboard of ISO spacecraft was conceived to cover this entire waveband.

The device used three single detectors which were disposed into three separated subsystems, that
could be selected through the rotation of the wheels. According to the opto-mechanical description[21],
the three sub-systems were:

• ISOPHOT-C: photopolarimeter with imaging capability working in 40-200 µm range;

• ISOPHOT-P: multi-band and multi-aperture photopolarimeter for the range 30-10 µm;

• ISOPHOT-S: dual grating spectrophotometer for the bands 2.5-5 µm, 6-12µm.

1For more details about this mission you may refer to https://www.esa.int/Our Activities/Space Science/ISO overview
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Figure 3.1: The ISOPHOT polarimeter of the Infrared Space Observatory (ISO) (1995-1998). Cred-
its: ESA

The movement was driven by magnetic coils. Three types of detectors were used for this instru-
ment: Si:Ga, Si:P BIB and Ge:Ga.

3.2 CLASP
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is an instrument developed by
NASA Marshall Space Flight Center together with National Astronomical Observatory of Japan
(NAOJ) to observe the polarization in the Lyman-α lines (λ = 121.57nm) and the Hanle effect in
the line core. The device was optimized for sub-orbital missions[19] and operated only during the
short interval of five minutes of flight above the atmosphere.

The purpose of CLASP was to measure only the linear polarization until a degree of 0.1% in the
Lyman-alpha emission lines in order to determine the magnetic field of the Sun. The modulator of
the instrument was a continuously rotating waveplate. In detail, the spectropolarimeter was formed
by:

• Cassegrain telescope;

• Rotating half waveplate;

• Slit jaw imager for pointing verification;

• Spectrograph: two spectra are produced for two orthogonal polarization states;

• Analyzer (x 2);
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Figure 3.2: Optical design of CLASP Spectro-Polarimeter after Song[39]

• Camera

The movement of the waveplate was synchronized with the camera triggering so that the identi-
fication of spectra could be possible. A more detailed discussion about the operating mode of this
instrument will be developed in the Chapter 6.

3.3 POLLUX
Even though the James Webb Space Telescope was not yet released, NASA is already planning the
next mission that will replace this astonishing construction still under test with another even stronger
in performances and dimensions: LUVOIR. Thus, at international level the discussions about this
project have already started, and the biggest tasks have been already assigned to teams from the
scientific community. The launch date of the project: mid 2030s...

For the moment, there are two possible architectures for LUVOIR (Large UV Optical Infrared
Telescope): one with 15.1 m mirror (LUVOIR - A), and another at 9.2 m (LUVOIR - B).

As main structure, LUVOIR at 15.1 m diameter is designed to have four serviceable instruments,
while the version at 9.2 m is planned to operate with 3-4 instruments. The primary mirror of the
first version - and the only studied for the moment - will be a three-mirror anastigmatic system
(TMA), while the secondary mirror will be a fine steering mirror (FSM) located at the exit pupil of
the instrument.

The four instruments of LUVOIR-A are: ECLIPS, HDI, LUMOS and POLLUX.
ECLIPS (Extreme Coronagraph for Living Planetary Systems) will enable for the first time the

direct imaging and spectroscopy of Earth-like exoplanets. It is conceived to work within 3 bands:
UV (200 -400 nm), Vis (400 - 850 nm) and NIR (850 nm - 2.5 µm). And for each channel there will
be two deformable mirrors for adaptive optics maneuvers. Also, the instrument will be provided with
a series of coronagraph masks, with low-order/out-of-band wavefront sensors and separate imagers
and spectrographs.

HDI (High Definition Imager) is the primary imager of the instrument and it will work within
two channels: one covering the UV and the visible spectrum (200 - 950 nm), and another for NIR
(800 nm - 2.2 µm). This instrument will be able to cover a field of view of 2 x 3 arcminute.

LUMOS (LUVOIR Ultraviolet Multi Object Spectrograph) will be a spectrograph working into
100 nm - 400 nm channel and providing a medium-low resolution multi-object imaging spec-
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troscopy. 2

POLLUX it will be a spectropolarimeter component which will be developed by a European
team with support from CNES. The instrument is supposed to cover 3 UV channels (90 -124.5 nm,
118.5 - 195 nm, 195 - 390 nm), with a resolution bigger than 120,000. The device is conceived to
give access to UV circular and linear polarization.

Figure 3.3: POLLUX baseline. Credits: Interim Report[31]

According to the last advancements into this topic[31] each channel will be provided with its
own spectropolarimeter: for NUV wavelength range, a birefringent solution is preferred while for
MUV and FUV the modulator will be based on the use of mirrors (Figure 3.4). A detailed view of
the both solutions is presented in the Figure 3.5. The separation between MUV and NUV is realized
using a dichroic splitter, while for the FUV a flip mirror will be used (because there are no dichroic
materials available for this spectral range).

Because of this technique, only MUV and NUV channels may work simultaneously. Also, for
these two channels, the polarimeters are conceived to be retractable so that a pure spectral sur-
vey mode to be accessible. The path difference will be compensated through the movement of the
parabolic collimator (number 6 - in the Figure 3.4).

The FUV channel is supposed to use three SIC mirrors, while for MUV the best option is
AL+LIF. The analyzer will be a Wollaston prism.

2A multi object spectrograph can provide simultaneously spectra for several hundred objects.
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Figure 3.4: Optical design of MUV(left) and NUV(right) units of the LUVOIR project[30]

3.4 SPEX
SPEX (Spectropolarimeter for Planetary Exploration) is a prototype of stable and multi-angle spec-
tropolarimeter aimed to airborne use developed by a Dutch team, able to cover 350-800nm spectral
range within 3 channels.

Figure 3.5: Ray tracing for SPEX prototype. Credits: www.sron.nl

According to its description[38], the instrument is able to detect simultaneously the spectral
radiance and the degree of linear polarization with a precision of 2 · 10−4. The design is quietly
complex but ergonomic, the total volume being of about 1 liter. In order to cover a large field of
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view extremely useful for identifying the scattering particles (−56
◦ to +56

◦) the instrument uses 9
entries separated by 14

◦ each, acting overall as a push-broom scanner. The corresponding field of
view of a single entry element (or ”finger”) is of 7

◦ across-track and the images provided by the
”fingers” are overlapping at the edges3.

The polarimetric part is the first in the light pathway, being followed by the spectrometer.

Figure 3.6: Schematics of the polarimeter part. Credits: www.sron.nl

How it can be seen in the Figure 9.5, the light passes at first by a Fresnel Rhomb that will
induce a phase difference of π/2, such that any linearly incoming polarization will be converted
into an elliptical one. Then the light passes through a multiple order retarder where will acquire a
wavelength-dependent phase. Finally, the orthogonal states are splitted with the help of a Wollaston
prism in order to ensure the determination of the incoming intensity.

The measurement of the outgoing intensity will provide access to the degree of linear polarization
(DoLP) and to the angle of linear polarization (AoLP) according to:

Iout =
1

2
Iin

[
1±DoLP · cos

(2πδ(λ)

λ
+ 2 · AoLP

)]
where δ(λ) is the phase induced by the multiple order retarder.
Thus, for each entry of the spectropolarimeter two beams will be produced and directed towards

the detector, which means 18 beams for the entire instrument.
3Further technical details can be found on the web-site of the developer, https://www.sron.nl/earth-instrument-

development/spex
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Exactly as in our case, the limitations of this design are represented by sensitivity of the birefrin-
gent media to the off-axis rays, the chromaticity of the material and by the sensitivity to noise. In the
same time, the very big number of elements from the ray paths can be a hindrance in the accurate
determination of the throughput of the system.

3.5 Galileo photopolarimeter (PPR)

Figure 3.7: Optical design of Galileo photopolarimeter/Radiometer (PPR). Credits: Russell[36]

Galileo was the first mission of NASA aimed for the study of Jupiter and its moons. Launched in
1989, the spacecraft traveled for about 14 years, from which eight were spent on orbit around Jupiter.
Among the ten instruments of the payload, the Photopolarimeter/Radiometer (PPR) was designed to
measure the linear degree of polarization and the intensity of the light reflected by Jupiter as well
as the flux of thermal radiation emitted by the planet. The wavelength range used for polarization
measurements was divided in three channels, from 0.410 to 0.945µm, which could be selected with
the help of the filter/retarder wheel. According to the instrumental description[36], the light collected
by the telescope (see Figure 3.8) was focused on a circular field stop subtending 2.5 mrad. Then the
rays were passing through a filter/retarder wheel. In the polarimeter mode the light was then directed
to a half-wave plate and a spectral filter. By passing then through a Wollaston prism which worked
as a polarizing beam-splitter the light was divided into two othogonally polarized outputs beams.
With the help of the detector lenses this two beams were finally focused on silicon photodiodes.
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The accuracy of measurements obtained with the polarimeter instrument was of ±1%, while the
sensibility was below 8% for the degree of linear polarization.

Figure 3.8: Galileo photopolarimeter/Radiometer (PPR) instrument. Credits: Russell[36]
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Chapter 4

Mathematical description of the polarization

The analysis of the spectropolarimeter that makes the subject of our research is based on the Mueller
calculus and Stokes formalism. Each element of the device will be described through the Mueller
matrices and the corresponding output of the system will be calculated with the help of these. For
a proper determination of the matrices we will pass in review the main notions and relations of the
mathematical description of the polarization. At first, the elementary mathematical approach of the
polarization will be revisited. Then the necessary Stokes formalism will be presented. Afterwards,
because in this case we will work with Mueller matrices that are not very common in the specialized
literature, we will have to derive ourselves. The best way to do this will be through the help of the
Jones formalism. Therefore, a few notion and relations from the Jones approach will be used so that,
in the end, the researched Mueller matrices to be established.

4.1 The concept of polarization
Besides its complex quantum behavior, light can be treated as well as an electromagnetic transverse
wave, i.e. a wave for which the electric or the magnetic field vibrates in a direction perpendicular
to the direction of propagation of the wave. Choosing a reference system oriented in such a way
that the z axis coincides with the direction of propagation of the wave, ~k, while the electric field ~E
vibrates in the xy plane (Figure 4.1), we may observe that the oscillation of the electric field may
embrace particular forms. The decomposition of the ~E field in the xy plane is given by:

~E(z, t) = ~Ex(z, t) + ~Ey(z, t) (4.1.1)

where

~Ex(z, t) = ex · E0x cos (kz − ωt) (4.1.2)

is the field component along x axis, and

~Ey(z, t) = ey · E0y cos (kz − ωt+ ε) (4.1.3)

is the field component along y axis. In this two last relationsE0x andE0y are the field amplitudes
on x and y, while ex and ey are the unit vectors describing the two directions. The phase difference
between the vibrations is given by ε. Based now on these notations we can observe that a phase
difference equal to 0 (or a multiple of π) will result in a so called linear polarization: in this case,
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Figure 4.1: Instantaneous view of the ~E field and its decomposition in the plane orthogonal to the
direction of propagation of the wave, ~k

the projection of the electric field ~E in the (xy) plane will be, for any moment (t) and any value of
z, on the same direction (Figure 4.2).

The inclination of the ~E field with regard to x axis will be determined in this case by the ratio E0y

E0x
.

Thereupon, two main subcategories can be described: the horizontal polarization and the vertical
polarization. Thus, the horizontal polarization can be expressed via:

~Ey(z, t) = 0; ~Ex(z, t) = ex · E0x cos (kz − ωt)

while, the vertical will be given by:

~Ex(z, t) = 0; ~Ey(z, t) = ey · E0y cos (kz − ωt+ ε)

By playing with the value of the phase difference ε, and of the ratio E0x

E0y
others types of po-

larization can be described. Thus, if the ε = π then ~Ey becomes − ~Ey, because cos(A + B) =
cos(A)cos(B)− sin(A)sin(B).

Also, if ε = π/2 and if E0x = E0y = E0 then the vector ~Ey will become

~Ey(z, t) = −ey · E0 sin (kz − ωt+ ε)

and totally, the ~E field will describe in time a circle in the (xy) plane, in a clockwise orientation.
We say that the wave is circularly right polarized (RCP). In the same way, a −π

2
phase difference

will induce a circular left polarization (LCP). The entire sitation is depicted in the Figure 4.4 and
4.5.
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Figure 4.2: Schematic view of the linear polarization: at any moment the electric field vibrates in the
same plane orthogonal to (xy) plane. The direction of propagation is given by the ~k, oriented along
z axis.

Figure 4.3: A phase difference of π will change the sign of Ey component

In the most general way, if E0x 6= E0y and the phase difference has an arbitrary value, it can be
shown that the projection of the electric field ~E in the xy plane describes an ellipse according to the
relation:
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Figure 4.4: Circular left (LCP) and circular right (RCP) polarization. The wave is oriented toward
us.

Figure 4.5: Elliptical and circular polarization simulations conducted with Mathematica software.
With green we have the trajectory described by the point of ~E, while in red and blue we have the
two orthogonal components of the ~E field.

 Ey
E0y

2

+

 Ex
E0x

2

− 2

 Ex
E0x

 Ey
E0y

 cos ε = sin2 ε (4.1.4)

This ellipse is making an angle ψ with the x axis (the azimuth angle, or the orientation angle),
given by the relation:

tan (2ψ) =
2E0xE0y

E2
0x − E2

0y

cos ε, ψ ∈ [0;π] (4.1.5)

Of interest is also the ellipticity angle, defined as the ratio between the semi-minor axis and the
semi-major axis, or1:

1The full deduction of this identities is given the Appendix B: Azimuth and ellipticity calculation. Meanwhile, a
more detailed presentation of the polarization parameters can be find in Collett (p.9)[12] and Kliger(p.108 - 116)[22].

University of Liège -40-
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Figure 4.6: Ellipse described by the electric field in the xy plane. We may observe here the azimuth
angle, ψ and the ellipticity angle, χ

sin (2χ) =
2E0xE0y

E2
0x + E2

0y

cos ε, χ ∈ [−π
4

;
π

4
] (4.1.6)

The auxiliary angle of the ellipse is also defined through:

tan (2α) =
E0y

E0x

, α ∈ [0;
π

2
] (4.1.7)

Thus, in a general way we may say that the electrical field is characterized by an elliptical po-
larization, the sens of polarization being dictated by the value of the phase difference. In turn,
the auxiliary angle is imposing the ellipticity of the polarization figure, which may vary between a
straight line and a perfect circle, as can be seen in the Figure 4.7.

Because of this, it is a common practice to say that the light has generally an elliptic state of
polarization, the linear and circular polarization being only particular cases of this.

4.2 Unpolarized light
Normally, the light coming from the sun, from the stars and from most of the artificial sources is not
polarized, which means that the electric field of the radiation does not have a preferential direction
of vibration. Instead we have a countless superposition of vibrations, summarized over a certain
interval of time, which is the integration time of the detector (that can be a photodetector, a CCD or
the eye).

If this integration time could be shrunk to the limit of the persistence of the particular vibrations
(≈ 10−14s, dictated by the temporal coherence) then we would have the possibility to observe all the
time a polarized light. But how this is not possible with the current technique, we must be content
with the statistical result of the integration over a longer period.
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Figure 4.7: Evolution of the elliptical polarization as a function of ε for E0y = 2E0x

Figure 4.8: Unpolarized light: during the integration time of the detector the orientation of the ~E
change continuously and randomly

And of course, the result of this statistical distribution can embrace any of the forms of polariza-
tion described above.

Apparently, the unpolarized light is of no interest for someone studying the polarimetry. The
reality is rather contrary: it is by the presumption of a nonpolarized emission of certain stars that the
polarization effect of interstellar medium is detected for example, or the polarization in the corona
is understood[33].
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Figure 4.9: General representation of the unpolarized light: the projections along x and y, in the
plane perpendicular to the direction of movement, are considered simultaneously.

4.3 Stokes formalism
The Stokes formalism is one of the most elegant way to deal with the polarization phenomenon, that
consider all the transformations that light can endure into a medium, in order to give a representation
of the emergent wave in terms of observables, and more precisely, of intensity.

This formalism is based on the Stokes parameters, a finding that allows us to describe all states
of polarization, even the unpolarized light.

Considering that

~Ex(t) = ex · E0x cos ((kz − ωt) + εx(t)) (4.3.1)
~Ey(t) = ey · E0y cos ((kz − ωt) + εy(t)) (4.3.2)

then we may write the four Stokes parameters as

I = 〈I〉 = 〈E2
0x〉+ 〈E2

0y〉
Q = 〈I0〉 − 〈I90〉 = 〈E2

0x〉 − 〈E2
0y〉

U = 〈I45〉 − 〈I−45〉 = 〈2E0xE0y cos ε〉
V = 〈IRCP 〉 − 〈ILCP 〉 = 〈2E0xE0y sin ε〉

(4.3.3)

in which ε = εy − εx, and the brackets 〈〉 signify the average value over time. The calculus
uses the averaged value in order to reflect the limited capacity of detectors and to encompass the
unpolarized light. This last one corresponds to the case (Q,U,V)=(0,0,0). For the totally polarized
light we have

Q2 + U2 + V 2 = I2 (4.3.4)

while to a partially polarized light:

Q2 + U2 + V 2 < I2 (4.3.5)

Kliger [22](p.77) explains this relation by the fact that the partially polarized light can be imag-
ined as the superposition of two beams: of one which is totally polarized and another that is unpo-
larized. Therefore we can write:
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{
total pol.: Q2 + U2 + V 2 = I2

1

non pol.: I2

Obviously we will have then:

Q2 + U2 + V 2 < (I1 + I2)2 (4.3.6)

because the received intensity is always positive.
From the definition of the Stokes parameters and from the previous description of the polarization

ellipse, a formulation of this parameters in terms of ellipticity (χ) and azimuth (ψ) can be inferred,
the average being implied. Thus, for an ellipticity governed by

sin (2χ) =
2E0xE0y

E2
0x + E2

0y

sin ε

and an azimuth angle

tan (2ψ) =
2E0xE0y

E2
0x − E2

0y

cos ε

it can be shown that the Stokes parameters can be expressed as:

I = E2
0x + E2

0y

Q = (E2
0x + E2

0y) cos (2χ) cos (2ψ)
U = (E2

0x + E2
0y) cos (2χ) sin (2ψ)

V = (E2
0x + E2

0y) sin (2χ)

(4.3.7)

or, by normalizing with the intensity I = E2
0x + E2

0y:

i = 1
q = cos 2χ · cos 2ψ
u = cos 2χ · sin 2ψ
v = sin 2χ

(4.3.8)

where i,q,u,v are the normalized values of Stokes parameters (i=I/I, q=Q/I, etc.).
Those four parameters define the so called Stokes vector

I
Q
U
V

 also notated

∣∣∣∣∣∣∣∣∣
I
Q
U
V

∣∣∣∣∣∣∣∣∣ or {I Q U V }

The degree of polarization is defined as:

pt =

√
Q2 + U2 + V 2

I
∈ [0, 1] (4.3.9)

If the light is nonpolarized, then Q = U = V = 0, and pt = 0. Also, if I2 = Q2 +U2 +V 2, then
pt = 1 and we say that the light is totally polarized. For intermediary values, the light is considered
as partially polarized.

Of great interest is also the degree of linear polarization, defined as:

University of Liège -44-
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pl =

√
Q2 + U2

I
(4.3.10)

and the degree of circular polarization:

pc =
V

I
(4.3.11)

An alternative formulation for the degree of polarization which considers the radial and the tan-
gential polarization as it was described in the first chapter is

P =
I⊥ − I‖
I⊥ + I‖

for the degree of linear polarization, in which I⊥ is the tangential intensity, whereas I‖ stays for
the intensity in the radial orientation.
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4.3.1 Few particular examples
In this notation, I stays for the intensity of the beam, Q and U for the linear polarization and V for
the circular polarization.

Thus, for example we have:

Table 4.1: Stokes vectors for different types of polarization

Stokes vector Unpolarized Parallel (Ox) Perpendicular (Oy)
I
Q
U
V




1
0
0
0




1
1
0
0




1
−1
0
0


+45◦ −45◦ Right circular (RCP) Left circular (LCP)

1
0
1
0




1
0
−1
0




1
0
1
−1




1
0
1
1


An intuitive representation of this polarization states can also be retrieved in the figure below:

Figure 4.10: General representation of the Stokes vectors and corresponding polarization states
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4.4 Mueller formalism
For a given polarized beam which passes through different media, the best way to determine the
polarization state of the outgoing beam is to use the Muller matrices (Mi):

~Sout = M · ~Sin (4.4.1)

where
M = Mn ·Mn−1 · .... ·M1

is the resultant matrix of the system through which the light is passing. Each matrix Mi describes
the passage of light through the element i of the system.

Figure 4.11: Each element of the optics, M1,M2, ...,Mn will affect the intensity of the incoming
beam, the corresponding Stokes vector undergoing multiple transformations during the passage

The underlying assumption of this representation is the fact the original Stokes vector undergoes
a linear transformation through the medium:

Sin −→ Sout

or, mathematically:

Iout = m11I +m12Q+m13U +m14V
Qout = m21I +m22Q+m23U +m24V
Uout = m31I +m32Q+m33U +m34V
Vout = m41I +m42Q+m43U +m44V

the Mueller matrix of the system being then expressed as:

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44
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Even though the Mueller calculus is a very elegant way to deal with any type of polarization able
to give access to the outgoing Stokes vector, the calculation of the elements of the Mueller matrix
can be sometimes a very hard task. Generally, the specialized literature provides all the time the
most common matrices for the largely used optical components. Nevertheless, for more rare optical
structures, like the uniaxial anisotropic medium that we will use for our instrument, the computation
of these matrices must be done. Further we will try then to determine the corresponding Mueller
matrix of such a component.

There exist several methods for the determination of Mueller matrices. For the sake of simplicity
and clarity, we chose here a method based on the Jones calculus. This one is mostly used for
describing phenomena in which the phase or the amplitude of the light plays a significant role (while
the Mueller calculus resumes to the behavior of intensities).

Theoretically the elements of the Mueller matrices are related to the Jones calculus via:

mij =
1

2
Tr[MσjM

†σi] (4.4.2)

where Tr is the trace operator, M is the corresponding Jones matrix of the system, † is the
conjugate transpose operator and σi,j are the Pauli matrices.

As a consequence, first step into the attempt to find the Mueller matrix of the birefringent medium
is to calculate the corresponding Jones matrix. Further on we will briefly pass through this compu-
tation.

According to the Jones representation2, any beam of polarized light can be described via a vector
V:

V =

[
E0xe

−iφ/2

E0ye
+iφ/2

]
where φ is phase difference. Thus, for example, the linear polarization can be described by the

vector:

V =

[
cos θ
sin θ

]
while for the circular polarization we have

L =
1√
2

[
1
i

]
and R =

1√
2

[
1
−i

]
Generally, for any type of polarization, according to the Jones approach we have

V ·V† = V† ·V = I

and the normalization condition,

V11 · V ∗11 + V21 · V ∗21 = 1 (4.4.3)

where † is the conjugate transpose operator, ∗ stays for the conjugate and I is unity matrix.
Moreover, for any anisotropic medium, which interests us most of all, Jones associates a square

matrix of type
2This brief description of Jones calculus and of its relation with the Mueller method is based mostly on Huard[17]
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M =

[
A B
C D

]
which affects the phase of the incident light. According to this theory, the matrix M has two

eigenvalues λ1, λ2 associated to two eigenvectors V1,V2. This two vectors are orthogonal and can
be generally expressed via [17][p.89]:

V1 =

[
u
v

]
V2 =

[
−v∗
u∗

]
Also they verify the normalization condition:

uu∗ + vv∗ = 1

Thereupon we may write:

MV1 = λ1V1

MV2 = λ2V2

And this system can be developed in:
Au+Bv = λ1u

Cu+Dv = λ1v

−Av∗ +Bu∗ = −λ2v
∗

−Cv∗ +Du∗ = λ2u
∗

Solving this system for (A,B,C,D) by keeping in mind that we have a normalization condition,
we find:

M = 1
uu∗+vv∗

·

[
λ1uu

∗ + λ2vv∗ (λ1 − λ2)uv∗

(λ1 − λ2)vu∗ λ2uu
∗ + λ1vv∗

]

⇔M =

[
λ1uu

∗ + λ2vv∗ (λ1 − λ2)uv∗

(λ1 − λ2)vu∗ λ2uu
∗ + λ1vv∗

]

Considering now the case of an incident wave linearly polarized passing through a retarding
waveplate, the V1,V2 can be expressed:

V1 =

[
cos θ
sin θ

]
V2 =

[
− sin θ
cos θ

]
Also, according to Jones method, the eigenvalues λ1 and λ2 can be written as:

λ1 = ein1k0e = eiφ1 λ2 = ein2k0e = eiφ2

in which ni is the corresponding refraction index, k0 is the wave number and e is the thickness
of the plate. Substituting now with this identities into the M formula we will find:
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Figure 4.12: Retarder plate example: XOY is the reference frame of the plate and xOy is reference
of the laboratory

M =

[
eiφ1 cos2 θ + eiφ2 sin2 θ (eiφ1 − eiφ2) cos θ sin θ
(eiφ1 − eiφ2) cos θ sin θ eiφ2 cos2 θ + eiφ1 sin2 θ

]

At this point of computation, a change of variable is useful:{
φ = φ1 − φ2

ψ = φ1+φ2
2

⇔

{
φ1 = ψ + φ

2

φ2 = ψ − φ
2

Thus, replacing with this new notations for the phase into the last form of the M matrix we will
find

M(θ, φ) = eiψ

[
cos φ

2
+ i cos 2θ sin φ

2
i sin 2θ sin φ

2

i sin 2θ sin φ
2

cos φ
2
− i cos 2θ sin φ

2

]

or, by ignoring the phase term that will play no role in the determination of the Mueller matrix:

M(θ, φ) =

[
cos φ

2
+ i cos 2θ sin φ

2
i sin 2θ sin φ

2

i sin 2θ sin φ
2

cos φ
2
− i cos 2θ sin φ

2

]
(4.4.4)

Further, based on the fact that

mij =
1

2
Tr[MσjM

†σi]

and because σi is the Pauli base:

σ1 =

[
1 0
0 1

]
σ2 =

[
1 0
0 −1

]
σ3 =

[
0 1
1 0

]
σ4 =

[
0 −i
i 0

]
(4.4.5)

we can easely calculate the Mueller matrix of any anisotropic media.
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For example, if we consider now the case of a quarter wave plate (QWP), for which φ = π
2

and
for simplification we replace θ by 0 (the orientation of the optical axis with regard to x), then the
corresponding Mueller matrix will be:

M(π
2
) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0


For a half-wave plate (HWP), for which φ = π, the matrix is3:

M(π) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


Generally, for a plate able to induce a total phase difference φ, usually called a wave plate (WP),

the Mueller matrix will be

M(φ) =


1 0 0 0
0 1 0 0
0 0 cosφ sinφ
0 0 − sinφ cosφ


Continuing our analysis, if we consider now the case of a simple linear polarizer, oriented to an

angle θ with respect to x axis, then, because only one direction will be allowed to pass through the
system, the eigenvalues for V1 and V2 will be 1 and 0, and so the Jones matrix will be:

MJ(θ) =

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
(4.4.6)

And then, using the same procedure as before we may compute the corresponding Muller matrix
for any type of linear polarizer:

M(θ) =


1 cos 2θ sin 2θ 0

cos 2θ cos2 2θ cos 2θ sin 2θ 0
sin 2θ cos 2θ sin 2θ sin2 2θ 0

0 0 0 0

 (4.4.7)

In the case of a rotator, the vectors V1 and V2 are given by:

V1 =
1√
2

[
1
i

]
and V2 =

1√
2

[
1
−i

]
The corresponding Jones matrix of this type of element is:

3More examples can be find in the end of this thesis, in the Appendix F
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M(φ) = eiψ

[
cos φ

2
− sin φ

2

sin φ
2

cos φ
2

]
(4.4.8)

Replacing φ/2 by θ, which is the rotation angle, we may compute the Muller matrix of a rotator:

M(θ) =


1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1


Now, if we came back to the problem of a birefringent medium which simultaneously induces

a phase difference and rotates the plane of vibration according to the orientation of the optical axis,
then, the associated Mueller matrix is expressed as:

MWP (θ, φ) = M(−θ) ·MWP (0, φ) ·M(θ) (4.4.9)

where M(θ) is the matrix of a rotator, previously determined. Developing this product we may
finally find:

M(θ, φ) =


1 0 0 0
0 cos2 2θ + cosφ sin2 2θ (cosφ− 1) sin 2θ cos 2θ sinφ sin 2θ
0 (cosφ− 1) sin 2θ cos 2θ sin2 2θ + cosφ cos2 2θ sinφ cos 2θ
0 − sinφ sin 2θ − sinφ cos 2θ cosφ

 (4.4.10)

This final result will be largely used in the next chapters, when optical systems based on rotated
waveplates will be described. At this point it is worthy to mention that the literature in the polar-
ization field could be confusing when it comes to present the general matrices for a wave plate, a
rotator or a general rotator. Depending on how we consider the position of the system with regard to
the reference frame of the laboratory, the rotation matrix can be expressed like

1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1

 or


1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1


As a consequence, the above matrix of a rotated wave plate, will become using the second matrix

of rotation:

M(θ, φ) =


1 0 0 0
0 cos2 2θ + cosφ sin2 2θ (1− cosφ) sin 2θ cos 2θ sinφ sin 2θ
0 (1− cosφ) sin 2θ cos 2θ sin2 2θ + cosφ cos2 2θ − sinφ cos 2θ
0 − sinφ sin 2θ sinφ cos 2θ cosφ


and, obviously, the matrix of a rotator(2.39):
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M(α) =


1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1


the main reason of all this differences being the projection of electrical field on the chosen refer-

ence frame in the Jones method. In order to be consistent with all the results presented above, further
on we will use the identities established by the base of the decomposition illustrated in the Figure
4.12 and which correspond to the formalism used by Huard [17].
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Chapter 5

Anisotropic media and Huygens
constructions

5.1 Birefringence
The birefringence property exhibited by some crystals was discovered by the Danish scientist Ras-
mus Bartholin (or Bartholinus, in the Latinized form), in 1670. At that moment, the scholar observed
that incoming natural light emerged from a piece of calcite crystal in two different directions simul-
taneously as though by a subtle mechanism the ray was split inside the medium.

Figure 5.1: Representation of the vectors describ-
ing the propagation of a wave in an anisotropic
medium: ~k is the direction of propagation of the
incoming wave, ~E is the electric field, ~B the mag-
netic field, ~D the induced electric field, ~H the in-
duced magnetic field and ~S is the Poynting vector.

Even though it was a relatively easy to re-
produce phenomenon, it did not receive a com-
plete explanation but a few hundred years later,
after the formulation of the wave theory of light,
by Fresnel and Arago.

Still, the propagation of light insight a bire-
fringent medium remains a difficult problem re-
quiring for certain cases a vast mathematical
apparatus in order to be described. And this
mostly because in such a medium the Poynting
vector is not anymore oriented along ~k, the elec-
tric field also is not perpendicular to ~k and all
because the refraction index is not the same in
all directions. It is the symmetry of the crys-
tal, the arrangement of atoms inside that dic-
tates all this behaviour: a cubic structure will
ensure for example a homogeneous propagation
of light, reason for which they are considered
as isotropic, while trigonal, tetragonal or hexag-
onal structures will form something which is
called uniaxial crystals. On the same way we
may encounter biaxial crystals, such as mica. In
a intuitive representation, an isotropic medium
has the same index of refraction in all directions,
while a uniaxial crystal for example will have a certain index along the so called optical axis and
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another in the plane perpendicular to this direction.
The mathematical description of the propagation of light in anisotropic media is quite long and

elaborate, representing by itself an independent field of optics [37]. Because of this, we will be
forced to restrain our presentation only to the results which are useful to our analysis.

The most important idea, that governs the description of the propagation of light in an anisotropic
medium (and not only), is the fact that the electric field of the incident wave ~E will generate an elec-
tromagnetic induction ~D that will be adjusted by the permittivity of the medium [ε]. The existence of
this electric induction will make that the POYNTING vector describing the direction of propagation
of the energy flux to be no longer parallel to ~k, who characterized the direction of propagation of the
wave.

By considering that α, β and γ are the components of the unity vector ~u, (~k = k ·~u) in the system
Oxyz in which the tensor [ε] is diagonal, while nx,ny and nz are the main refractive indices, and n
is the refractive index along the propagation direction of the wave, then the relations:

~D =
k2

ω2µ0

[ ~E − (~u · ~E)~u]

and
~D = ε0 · [ε] · ~E

can be translated also into the condition:

n2
xα

2

n2 − n2
x

+
n2
yβ

2

n2 − n2
y

+
n2
zγ

2

n2 − n2
z

= 0

which is the Fresnel equation. It is by the mean of this equation that we may have access to the
refraction index n.

Solving this equation we find four values for n: ±n′ and ±n”, the sign being dictated by the
orientation of ~u. If we consider only the positive values we may associate to them a phase speed:{

v′ = c
n′

v” = c
n”

It is this splitting of the incident wave into two waves travelling at different speeds inside the
medium that explains the phenomenon of birefringence.

Commonly, the mathematical development of the Fresnel equation make use also of something
which is called the indicatrix surface. This is defined as the locus of the points of coordinates

X = nα Y = nβ Z = nγ

Using this notations, the Fresnel equation may also be expressed as:

[n2
xX

2 + n2
yY

2 + n2
zZ

2][X2 + Y 2 + Z2]

−
[
n2
xX

2(n2
y + n2

z) + n2
yY

2(n2
x + n2

z) + n2
zZ

2(n2
x + n2

y)
]

+ n2
xn

2
yn

2
z = 0

In the particular case of an uniaxial crystal, as is the case MgF2 that is proposed for use here, the
main indices nx, ny are equal: nx = ny = no (the ordinary index). Along z axis we have nz = ne
(the extraordinary index).
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Master Thesis 5.1. Birefringence

Under this assumption, the previous equation can be decomposed in the product of a spherical
surface and an ellipsoid of revolution:{

X2 + Y 2 + Z2 = n2
o

X2

n2
e

+ Y 2

n2
e

+ Z2

n2
o

= 1
(5.1.1)

Considering a section in the plane Y = 0 we retrieve the circle of indices, corresponding to the
case X2 + Z2 = n2

o and the ellipse X2

n2
e

+ Z2

n2
o

= 1, as it can be seen in the Figure 5.2.

Figure 5.2: Circle and ellipse of indices in the plane Y=0 for the case ne > no

Using also the relations for X, Y, Z introduced before we have:n
2(α2 + β2 + γ2) = n2

o

n2
(
α2

n2
e

+ β2

n2
e

+ γ2

n2
o

)
= 1

Solving this system for (α2 + β2 + γ2 = 1) we find thatn = n2
o

n = neno√
n2
o(α2+β2)+n2

eγ
2

(5.1.2)

Considering again the case Y=0, and an angle θ between ~u and Z axis (which is also the angle
between the incident wave and the optical axis of the medium), we can write:n = n2

o

n2(θ)
(

sin2(θ)
n2
e

+ cos2(θ)
n2
o

)
= 1

(5.1.3)

This last system tells us that for any incident beam perpendicular to the optical axis, with a
general state of polarization, the component of ~E vibrating into a plane perpendicular to the optical
axis will see a medium of index n(θ = π/2) = no in the direction of propagation. This vibration will
propagate inside the crystal as an ordinary wave. On the other hand, the component of ~E vibrating
parallel to the optical axis will see an index ne. This is called the extraordinary ray. Consequently, a
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phase difference will appear between the two directions of vibration. Generally, for an incidence at
angle θ between the optical axis and the direction of the incoming wave, the extraordinary ray will
see an index of refraction n(θ) given by:

1

n2(θ)
=

sin2(θ)

n2
e

+
cos2(θ)

n2
o

(5.1.4)

This relation is valid only if the optical axis is contained in the plane of incidence (β = 0).
Otherwise we have to use the relation (5.1.2) to derive the value of n.

Based on this short introduction into the anisotropic problematic we may properly define now
the birefringence of medium:

∆n = |no − ne| (5.1.5)

If no > ne, then the crystal is negative, while if no < ne is positive.

5.1.1 Propagation of light: Huygens construction
Another aspect related to the birefringence and that will be largely used in the last part of this
research is the trajectory of the rays of light in a uniaxial crystal. We will present here only the case
of a positive crystal, that corresponds to MgF2. In a first scenario we will suppose that the light is
passing from an isotropic environment of refractive index n, into the crystal whose optical axis is
oriented perpendicular to z axis (Figure 5.3).

Figure 5.3: Huygens construction for the first scenario: optical axis perpendicular to z

If we consider that the incident wave is not polarized, then it can be represented by two orthogo-
nal vibrations: one parallel to the optical axis and another perpendicular. Using the relations (5.1.3)
we infer that the ordinary wave, vibrating perpendicular to the optical axis, will see in the crystal a
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refractive index no in any direction, while the extraordinary will encounter a medium of index ne in
any direction, because the angle θ is 90

◦ here.
Because both waves are traveling into the crystal like in an isotropic medium, the angles made

with the z axis can be found using the Snell-Descartes low:{
n sin i = no sin ro

n sin i = ne sin re

Concerning the geometry of the problem, the simplest way to represent it is to use the Huygens
construction. In the Figure 5.3 it is represented the construction based on the radial speeds. On the
same way, a construction using only the surfaces of indices can be built.

Thus, in this approach, the first step is to represent a circle of radius 1/n centred in the incidence
point and situated in the plane of incidence. Then we draw an extension of the incident wave (dashed
red). From the point of intersection of this extension with the circle of radius 1/n we draw a tangent
to the circle that will intersect the diopter surface in the point J . On the same way we will construct
the circles of radius 1/no and 1/ne. Then, from J we draw the tangents to the new circles: the
tangent points will dictate the direction of the ordinary and extraordinary waves.

Let’s suppose now that the optical axis is oriented along z axis, as in the Figure 5.4.

Figure 5.4: Huygens construction for the second scenario: optical axis along z

In this case, the ordinary wave, corresponding to the vibration perpendicular to the plane of
incidence, will see an isotropic medium in all directions inside the medium. Because of this, just
as before, we can find its orientation by the mean of the Snell-Descartes low. On the other hand,
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the vibration that is parallel to the plane of incidence will be no longer parallel to the optical axis
everywhere inside the medium, like before. Because of this, the extraordinary wave will see an
anisotropic medium of index n(θ), corresponding to the relation (5.1.3). The Snell-Descartes low
will help us to find the angle re :

n sin i = n(θ) sin re (5.1.6)

In a third scenario we will suppose that the optical axis is making an angle α with the z axis, as
it can be seen in the Figure 5.5.

Figure 5.5: Huygens construction for the third scenario

Again, the vibration which is orthogonal to the plane of incidence will be all the time orthogonal
to the optical axis, thus representing the ordinary wave. This ray will follow the Snell-Descartes
low and will be refracted with an index no. On the other hand, the vibration parallel to the plane
of incidence will form the extraordinary ray and will see a variable index inside the medium. If we
consider re the refraction angle of the extraordinary wave, then in this particular situation we have:

θ = π − (α + i)

and

n sin i = n(θ) sin re

Making use again of the relation (4.1.2) we may find re.
An important observation is the fact that if the isotropic medium is characterized by a refraction

index n > max (ne, no) then, for certain values of the incidence angle i, the point J can be situated
inside the surface of radius 1/no or of the ellipse. In this situation the total internal reflection will
occur, and the corresponding wave will not pass into the anisotropic medium.

A situation of this type is depicted in the Figure 5.6 where we can see that for the given angle
i the ordinary wave does not exist into the anisotropic medium. Only the extraordinary wave can
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Figure 5.6: Huygens construction for a total internal reflection

propagate in this case. Consequently, the position of the point J is of paramount importance for this
kind of situations. This position is given by:

yJ =
1

n sin i
(5.1.7)

If yJ > max (1/no, 1/ne) then both rays will propagate through the anisotropic medium. In-
stead, if yJ > 1/ne and yJ < 1/no then only the extraordinary wave will exist, while if yJ <
min (1/no, 1/ne), then both waves will vanish.

Because the device that will be introduced here suppose also the passage from an anisotropic
medium to another, this situation must also be considered here from the point of view of ray tracing.

Thus, let us consider the case depicted in the Figure 5.7 of a ray passing from a medium of index
n into an anisotropic environment with the optical axis along x (orthogonal to the plane of the page).
Then the ray is passing into a second anisotropic medium with optical axis along z. The surface of
separation between the two media is tilted to an angle ξ about y axis as it can be seen in the figure.

If the incoming ray is not polarized, then in the first medium we will have a separation between
ordinary and extraordinary rays. However, both will see this medium as an isotropic one and because
of this will follow the same path, at constant refraction indices. Because of the difference existing
between ne and no, a certain phase difference between the two orthogonal vibrations will be acquired
during the passage through this medium. In order to understand what is happening at the entrance
in the second anisotropic environment, let’s follow at first the ordinary ray (o-ray) from the first
medium. Regarding the optical axis of the second medium, this vibration is still orthogonal. Thus,
the ray will pass in the second medium without deviation and without change in speed. In fact,
the ordinary wave remains ordinary and sees no difference between one medium and another. With
the extraordinary ray from the first bloc the situation is slightly different. This vibration, which is
parallel to the optical axis in the first medium becomes now perpendicular to the optical axis. Thus,
the e-ray is converted into an o-ray. This conversion is accompanied by a small change in orientation
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Figure 5.7: Huygens construction for two anisotropic media

which can be calculated via Snell-Descartes low:

sin ro =
ne
no

sin i =
ne
no

sin ξ

Moreover, we have to pay attention to the angle ξ. The relation (5.1.7) tells us that yJ should be
bigger then 1/no, otherwise the extraordinary ray from the first medium will be totally reflected.
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Chapter 6

Static polarimeter design

The interest of using birefringent media in the construction of polarimeters is coming mostly from
the fact this kind of material can separate different types of polarizations by sending them into
different directions. In this way at least two measurements, of two of the Stokes parameters are
accessible simultaneously.

Meanwhile, for certain configurations, rotating parts are no more needed. Because of this, the
entire design can be drastically simplified. Also, for the space usage, it can prove to be much more
stable, easier to implement and more ergonomic.

Currently, the technique uses mostly a combination of birefringent elements, aimed for the se-
lection of different types of polarization, and turning analyzers or filters. An absolute stable design,
without moving parts was never implemented in the space field. The main reason for this is the fact
this technique is still in the research phase.

In this chapter we will see at first from where is coming the need of rotating components in a
classical approach. For this we will consider the very easy example of the CLASP project, based on
a rotating waveplate and an analyzer.

Then we will introduce the key model of our study: the static spectropolarimeter based on three
birefringent blocs, glued together in a single piece. Therefore, we will see how by the simple mod-
ulation of the phase along the instrument we can keep the track of all four Stokes parameters.

6.1 The basic model: Why do we need rotation?
In the classical approach of a polarimeter based on birefringent media, the outgoing intensity can be
expressed as a linear combination of the Stokes parameters of the incoming beam.

Simply stated, if the incident ray has a state of polarization that can be expressed through the
Stokes vector S:

S =


I
Q
U
V


then the outgoing intensity which can be measured with help of a detector, can be expressed as:

Iout = αI + βQ+ γU + τV
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The coefficients α, β, γ, τ depend on the properties of the system (∆n, thickness) and on the
wavelength of the incoming ray.

As long as α, β, γ, τ are constant in any point of the exist face of the polarimeter, there is no
chance to find the value of I,Q, U and V from a single measurement of Iout. We have four un-
knowns; thus, we need at least four equations. And these equations can be obtained by changing the
orientation of the analyzer or of the modulator.

An easy and good example for the ”rotating” method is the CLASP project. The Chromospheric
Lyman-Alpha Spectro-Polarimeter (CLASP) was a joint project of NASA and the National Astro-
nomical Observatory of Japan, aimed for a sub-orbital mission of observation of the chromosphere
in UV, EUV and soft X-ray field, from 2015.

Among other instruments, CLASP was also provided with a spectropolarimeter, as can be seen in
the Figure 6.1. The main goal of this was to determine I,Q and U parameters of Hydrogen Lyman-
Alpha at 121.60 nm. According to the technical specifications of the design, the polarization was
measured with the help of rotating half-waveplate (HWP) and an analyzer.

Figure 6.1: The CLASP polarimeter was based on a rotating half-wave plate (HWP) and an analyzer.
Source: Clasp project[19]

As it was explained before, the reason of the rotation was to induce a variation of the α, β, γ, τ
coefficients. Thus, for example, if we fix the orientation of the analyzer at 0

◦ , then as a function
α(t), the angle of the rotating HWP, we may write:

α = 0⇒ Iout(0) = 1
2
(I −Q)

α = π
4
⇒ Iout(

π
4
) = 1

2
(I +Q)

α = π
3
⇒ Iout(

π
3
) = (1

2
I + 1

4
Q− 0.433U)

Based on this equations we may find the values of I,Q and U parameters, and then the degree
of linear polarization. More than that, by increasing the number of readings the precision of the
measurement can be also ameliorated.

It has to be noticed here that such a device is not suitable for the determination of the V parameter.
In fact, no matter the incidence angle α(t), the corresponding coefficient τ will be equally zero. In
fact, on the basis of the relation (4.4.10), the Mueller matrix of the rotating HWP is given by:
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M(α) =


1 0 0 0
0 cos2 (2α)− sin2 (2α) −2 cos (2α) sin (2α) 0
0 −2 cos (2α) sin (2α) − cos2 (2α) + sin2 (2α) 0
0 0 0 −1


That means the rotating HWP will alter the degree of linear polarization and it will only change

the handedness of the circular polarization. For example, if α = 0, then a beam linearly polarized at
angle iwith regard to the fast axis will be rotated with 2i, while the elliptical and circular polarization
will endure only a change in the handedness.

Figure 6.2: A HWP does not change the state of polarization but only flip the orientation of the vibra-
tion with regard to the fast axis. At the bottom: the same phenomenon simulated with Mathematica
software

Speaking in therms of Stokes parameters it can be easily shown that the turning HWP changes
the incoming Stokes vector S into:

S ′ =


I

aQ+ bU
bQ− aU
−V
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where a, b coefficients depend on α. Passing then through an analyzer, the circular component V
will be totally lost.

For this configuration, the Stokes vector after passing through an analyzer oriented at angle θ
with regard to x axis will embrace the general form:

Sout =


αI + βQ+ γU
α′I + β′Q+ γ′U
α′′I + β′′Q+ γ′′U

0


where the coefficients before I,Q and U depends on α and θ. We see then that any trace of the V
parameter has been lost. In fact, if the modulator is not able to convert the circular polarization into
a linear one, the linear analyzer will not be able to give any information about this. At an even more
general case, for any wavelength, where the wave plate does not act anymore as an HWP, it can also
be proved that the measured intensity keeps no trace of the V parameter.

In the attempt then to build a polarimeter able to ensure the access to all four Stokes parame-
ters we must conceive a modulator able to convert the circular polarization into linear polarization
without losing the information about the rest of the parameters.

6.2 Static spectropolarimeter concept
One way to build such a device, able to give access to all four Stokes parameters of the incoming
light was suggested by Sparks[40] in 2012.

The design, presented in the figure below (6.3), is not only able to ”conserve” the Stokes param-
eters of the incident light but also to facilitate their measurement without moving components.

Figure 6.3: General representation of the design proposed by Sparks

The concept consider a birefringent bloc of MgF2 divided into three parts: at the entry we have
a wedge with a fast axis oriented at 0

◦ with regard to x axis and an apex ξ; in the middle there is a
prism of the same material with the fast axis along z while at the exit we have again a wedge with
the fast axis oriented at 45

◦ and apex 2ξ. The birefringent bloc is followed by an analyzer with an
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angle θ about x. The impact of all the values as well as of the material will be analyzed in the next
chapters. For the moment we will concentrate to the general behavior of such a device.

In the previous example of the CLASP polarimeter we saw that for a given position of the ana-
lyzer the incoming polarization was modulated about α, the angle of the wave plate. Multiple values
of α were needed to determine the I,Q and U parameters.

In exchange, in the present model the rotation is not required anymore. In fact, if we consider for
example an incoming monochromatic beam of wavelength λ, entering the device at 90

◦ the phase
difference induced between the horizontal and the vertical vibrations of this beam (with regard to
the orientation of the optical axis) will vary on vertical (along y) as a consequence of the variation
of the optical path length.

For the normal incidence, the phase difference (between the ordinary and extraordinary compo-
nents) acquired in the first wedge by an incoming beam characterized by a wavelength λ and Stokes
vector S = [I,Q, U, V ] will be:

∆φ1 =
2π

λ
∆n(λ)(h− y) tan (ξ) (6.2.1)

where ∆n(λ) =
∣∣ne(λ)− no(λ)

∣∣ is the birefringence of the material (which can vary with the wave-
length), h is the height of the wedge and ξ the apex angle. In the middle part of the wedge, because
of the orientation of the optical axis, in the case of a normal incidence no phase will be induced. The
detailed physical reasons for this have been explained in the Chapter 5. However, for this to be true
we have to neglect the impact of the angle ξ. In the last chapter of this thesis we will see how this
angle affects the functioning of the device. Finally, the physicists that have proposed and discussed
this type of spectropolarimeter[40][32] have also assumed that in the last wedge the phase difference
is given by:

∆φ2 =
2π

λ
∆n(λ)(h− y) tan (2ξ) ≈ 2∆φ1 (6.2.2)

As a consequence, the phase difference characterizing in the end a given beam will be ∆φ(y, λ, ξ),
a function varying along vertical, with the wavelength and with apex angle. If it is wide enough, this
continuous variation of the phase difference along y ensure for example the fact that a circular incom-
ing polarization to be converted into a linear polarization thus the V parameter to be ”conserved”. In
fact, because of the angle ξ, we may imagine that at certain values of y the device acts as a quarter
wave plate, then, at another y as a half wave plate and so on. Instead of a modulation obtained by
rotation we obtain a modulation along y.

But for a proper understanding of the device, the corresponding Mueller matrix should be ex-
plored.

Based on (4.4.10), for θ = 0, the Mueller matrix of the first wedge for the present configuration
is:

M1 =


1 0 0 0
0 1 0 0
0 0 cos (∆φ1) sin (∆φ1)
0 0 − sin (∆φ1) cos (∆φ1)

 (6.2.3)

In the middle of the bloc the phase difference is zero and, as a consequence, the corresponding
matrix is the identity matrix. For the last wedge, the fast axis is making an angle π/4 with x axis,
thus in (4.4.10) we have θ = π

4
, and:
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M3 =


1 0 0 0
0 cos (∆φ2) 0 sin (∆φ2)
0 0 1 0
0 − sin (∆φ2) 0 cos (∆φ2)

 (6.2.4)

The total Mueller matrix of this block (without analyzer) can be then easely computed:

Mblock =


1 0 0 0
0 cos (∆φ2) − sin (∆φ1) sin (∆φ2) cos (∆φ1) sin (∆φ2)
0 0 cos (∆φ1) sin (∆φ1)
0 − sin (∆φ2) − cos (∆φ2) sin (∆φ1) cos (∆φ1) cos (∆φ2)

 (6.2.5)

If we look to the transformation of a Stokes vector through such a block we will find that:

S ′ =


I

Q cos (∆φ2) + V cos (∆φ1) sin (∆φ2)− U sin (∆φ1) sin (∆φ2)
U cos (∆φ1) + V sin (∆φ1)

V cos (∆φ1) cos (∆φ2)− U cos (∆φ2) sin (∆φ1)−Q sin (∆φ2)


This result certifies that the device is able to convert all incoming form of polarization into linear

polarization because Q,U, V parameters are determining the value of Q′ and U ′ parameters from the
outgoing vector S ′ = [I ′, Q′, U ′, V ′].

If we consider now, in a general manner, that the analyzer is oriented to an angle θ with regard
to x direction we may compute the entire Mueller matrix of the compound birefringent block +
analyzer:

M = MAnalyzer ·Mblock (6.2.6)

The entire expression of the matrix M can be found in the Appendix D. By multiplying this
matrix with the Stokes vector of the incoming beam we will retrieve the Stokes vector of the outgoing
beam:

Sout = M · S

The entire expression of this vector is far too long to be reproduced here but the first therm,
which represents the detected intensity after the passage through the entire device is given by:

Iout =
1

2
(I +Q cos (∆φ2) cos(2θ) + U(cos (∆φ1) sin(2θ)− sin (∆φ1) sin (∆φ2) cos(2θ))

+V (cos (∆φ1) cos(2θ) sin (∆φ2) + sin (∆φ1) sin(2θ)))
(6.2.7)

Thus, in the received intensity we can see the mark of the entire incoming Stokes vector. All four
Stokes parameters are present here.

From this point it will be useful to introduce separate notations for the modulation terms:
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m(y, λ, ξ, θ) = cos (∆φ2(y, λ, ξ, θ)) cos (2θ)

n(y, λ, ξ, θ) = cos (∆φ1(y, λ, ξ, θ)) sin (2θ)− sin (∆φ1(y, λ, ξ, θ)) sin (∆φ2(y, λ, ξ, θ)) cos (2θ)

p(y, λ, ξ, θ) = cos (∆φ1(y, λ, ξ, θ)) cos (2θ) sin (∆φ2(y, λ, ξ, θ)) + sin (∆φ1(y, λ, ξ, θ)) sin (2θ)

(6.2.8)
or simply 

m(y, λ, ξ, θ) = cos (∆φ2) cos (2θ)

n(y, λ, ξ, θ) = cos (∆φ1) sin (2θ)− sin (∆φ1) sin (∆φ2) cos (2θ)

p(y, λ, ξ, θ) = cos (∆φ1) cos (2θ) sin (∆φ2) + sin (∆φ1) sin (2θ)

(6.2.9)

being implied that ∆φ1 and ∆φ2 are functions depending on y, λ, ξ, θ. With this notation, the de-
tected intensity is:

Iout =
1

2
(I +Q ·m(y, λ, ξ, θ) + U · n(y, λ, ξ, θ) + V · p(y, λ, ξ, θ)) (6.2.10)

Because ξ and θ play a role only in the optimization of the device and for any configuration they
have to be fixed, then for the simplicity of the notations we will ignore for the moment any variation
of the m,n and p with regard to this angles. Thus, in a even more simplified notation we may write:

Iout =
1

2
(I +Q ·m(y, λ) + U · n(y, λ) + V · p(y, λ)) (6.2.11)

By choosing arbitrary values for ξ, θ,∆n, h in agreement with the existing literature[32] we may
attempt to plot m,n and p functions. Thus, for ξ = 1.5

◦ , θ = 65
◦ , ∆n = 0.014, the height of the

wedges, h = 1.3cm and a wavelength λ = 0.9µm we will obtain the graphics below (Figure 6.4):
At this level of analysis the most important observations are that for this particular case (at least),

m,n and p are different functions with only a limited number of points in common and which are
not constant, neither with regard to y, neither with regard to λ.

The very important question that may arise at this moment, and which govern the entire project
by its importance, is related to the unequivocal character of the modulation function Iout. And this
question is: for any incoming vector S can be found another incoming vector S ′, S ′ 6= S, such that
I ′out = Iout for the same values of λ and y? We considered here that Iout is the detected intensity for
an incoming polarization described by S, while I ′out corresponds to S ′. In other words, the question
is if we can have the same profile of the intensity obtained from different polarizations. We will
consider that for both functions Iout and I ′out we look at the same values y and λ simultaneously
because only in this scenario the system may lead to confusions.

In order to properly answer to this question, let us consider that the incoming S vector is:

S =


I
Q
U
V


and the corresponding detected intensity after the passage through the optical device is:

Iout =
1

2
(I +Q ·m(y, λ) + U · n(y, λ) + V · p(y, λ)) (6.2.12)
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Figure 6.4: m(y),n(y) and p(y) for λ = 0.9µm and y varying between 0 and 5mm

Figure 6.5: m(λ), n(λ) and p(λ) for y = 0.5mm and λ varying between 0.2 and 0.3µm

The second vector S ′ is:

S ′ =


I ′

Q′

U ′

V ′
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and the received intensity:

I ′out =
1

2
(I ′ +Q′ ·m(y, λ) + U ′ · n(y, λ) + V ′ · p(y, λ)) (6.2.13)

The hypothesis are that: {
S 6= S ′

Iout = I ′out

But if Iout = I ′out then Iout − I ′out = 0 which means:{
S 6= S ′

∆Iout = Iout − I ′out = 1
2
(∆I + ∆Qm(y, λ) + ∆Un(y, λ) + ∆V p(y, λ)) = 0

Or this last identity is the intensity received by the detector for an incoming Stokes vector ∆S
which is converted into ∆Sout:

∆S =


∆I
∆Q
∆U
∆V

→ ∆Sout =


∆Iout = 0

∆Qout

∆Uout
∆Vout


and tells us that there exists a polarization state that is completely destroyed by the device, at a such
a level that no intensity can pass through. Or this could happen only if m,n, p functions are multiple
one of another or simple constants. But we saw that this is not the case. As a consequence,

∆S =


0
0
0
0


thus, S = S ′, and we may conclude that for the same values of the wavelength and of y the system is
univocal. Moreover, the conclusion is true only as long as y and λ are covering the minimal sampling
distance. Otherwise no relation could be established between the incoming Stokes vector and the
modulated intensity.

In a 2D representation, the variation of all the concerned modulating functions (m,n,p), again
with regard to y and λ and for a normal incidence will have the allure from the Figures 6.6, 6.7,
where an arbitrary spectral range between 4 and 6µm was chosen.

It is worthy to be mentioned that considered alone, each of the concerned functions will describe
a particular incoming polarization, m corresponding to the linear case Sin = [I,Q, 0, 0], n to a 45

◦

polarization, Sin = [I, 0, U, 0], while p will stay for the circular polarization, Sin = [I, 0, 0, V ].
Moreover, the graphics 6.6 and 6.7 shows clearly that this type of optical device is able to gen-

erate simultaneously a spectral and polarization modulation of the outgoing intensity. For each type
of incoming polarization we will have a certain profile for the Iout function, profile that will vary
almost linearly with λ.

In order to better seize the effect of the spectropolarimeter upon of an incoming ray of light with
a certain polarization we will try to visualize a few particular cases.

University of Liège -70-
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Figure 6.6: m(y, λ) behavior in a contour plot on a y scale of 1.2cm and for λ between 400nm -
600nm

Figure 6.7: n(y, λ) and p(y, λ) behavior in a contour plot on a y scale of 1.2cm and for λ between
400nm - 600nm

For example, let us consider at first that the incoming orthogonal ray is totally polarized, the
corresponding Stokes vector being S = [1, 0.55, 0.703, 0.45]. The situation is represented in the
graphics 6.8 and 6.9, where we can see a contour representation of the modulated intensity as well
as a variation with respect to λ and y.

A second example could be a linear polarization (also in normal incidence), with a Stokes vector
S = [1, 0.3, 0.26, 0]. This configuration corresponds to a degree of linear polarization of 0.4. The
m,n, p functions are not affected by this new scenario because they depend only on y and λ. Instead
the received intensity is linearly modulated by the Stokes parameters (Figure 6.10, 6.11).

Comparing the Iout profiles for the two situations (Figure 6.12) we may notice that, as could
be expected, the decrease of the degree of polarization is translated into a general decrease of the
received intensity (all the graphics here keeps the arbitrary units of the intensity: V or W/m2) and
in the change of the pattern.

University of Liège -71-
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Figure 6.8: Iout(λ, y) pattern for a totally polarized beam

Figure 6.9: Iout(λ) (left) and Iout(y)(right) in the same case of a totally polarized beam. The units
of Iout are the units of I (most often W

m2 )

We can extend this comparison also to the circular polarization. Thus, for an incoming normal
ray with S = [1, 0, 0, 0.5] we will obtain the green curve from the graphics below (Figure 6.13).
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Figure 6.10: Pattern of the received intensity for a partially linearly polarized beam

Figure 6.11: Iout(λ) (left) and Iout(y)(right) in the same case of a partially linearly polarized beam.
The units of Iout are the units of I (most often W

m2 )
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Figure 6.12: Comparison between the received intensity of the totally polarized beam and partially
linearly polarized beam under normal incidence condition.

Figure 6.13: Comparison between the three studied cases: totally polarized light (blue), partially
linearly polarized (red) and partially circularly polarized (green)
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6.3 Mathematical optimization
In the most general way, the intensity received by the detector, depends on the position along y
axis, on the apex angle ξ, on the wavelength λ, the analyzer angle θ and on the birefringence of the
material, ∆n(λ).

Hence, for a given wavelength range and a certain material, ∆n(λ), it will be useful to check if
there are optimal values for ξ and θ angles. At this point of our study we will try to figure out which
are the best values for the angle of the analyzer, θ.

In order to do that, we have to come back to the general form of the intensity function, but this
time written as:

Iout(∆φ1,∆φ2, θ) =
1

2
(I+Q ·m(∆φ1,∆φ2, θ)+U ·n(∆φ1,∆φ2, θ)+V ·p(∆φ1,∆φ2, θ)) (6.3.1)

In order to simplify the notations we will consider that the variation with regard to ∆φ1,∆φ2 is
implied:

Iout(θ) =
1

2
(I +Q ·m(θ) + U · n(θ) + V · p(θ)) (6.3.2)

The question about optimal value of θ can be translated then into a more precise one: for which
values of θ the received intensity reaches the maximal value?

That means we have to look for the values of θ so that:

dIout
dθ

= 0 (6.3.3)

Developing this relation in just a few steps we may find that we are looking for an angle theta
such as:

tan (2θ) =
U sin (∆φ1) sin (∆φ2)−Q cos (∆φ2)− V cos (∆φ1) sin (∆φ2)

U cos (∆φ1) + V sin (∆φ1)
(6.3.4)

This identity tells us that θ will depend all the time on the type of polarization. At a first sight
we can say that if the polarization vector is of the type S = [I,Q, 0, 0] then the received intensity
will be maximized only if θ = π

4
. Nevertheless, this is a problematic value, because it will turn the

m function into m = 0, which will erase any attempt to find the Q parameter.
For a better view of the situation we may try to represent the variation of θ that can be computed

from the relation (6.3.4) as a function of λ and y for different types of polarizations.
In order to find the values of θ that are optimizing the functioning we will have to look for the

points of intersection of these curves. Unfortunately, there is no such a point for all the situations.
The most we can do is to find the angles that are maximizing simultaneously the reception of two
states of polarization. Thus, by an inspection of the graphics 6.14 and 6.15 we may find:

• elliptical (total: S = [1, 0.55, 0.703, 0.45]) and linear polarization ( S = [1, 0.3, 0.26, 0]):

– −16.04
◦

– 23.49
◦

– 24.64
◦
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Figure 6.14: Variation of θ (radians) for four configurations of the incoming polarization: total
polarization (S = [1, 0.55, 0.703, 0.45]), linear (S = [1, 0.3, 0.26, 0]), linear(S = [1, 0.55, 0, 0]) and
circular (S = [1, 0, 0, 0.5]) with regard to the wavelength (0.4-0.5)µm

– 32.65
◦

• elliptical (total: S = [1, 0.55, 0.703, 0.45]) and circular polarization (S = [1, 0, 0, 0.5]):

– −19.84
◦

– −18.90
◦

– −17.76
◦

• linear (S = [1, 0.3, 0.26, 0]) and circular polarization (S = [1, 0, 0, 0.5]):

– −24.64
◦

– −9.74
◦

– −8.02
◦

Given the form of the ”function” θ, it can be easily observed that is strongly dependent upon
the Stokes parameters. Therefore, the values presented here are true only for the considered Stokes
vectors. In order to have a reasonable choice of the angle of the analyzer we have thus to relate
to practical purpose of the instrument: we need to have an idea about the expected values of the
polarization.

The optimization of the device about ξ, the apex angle, is another issue that mast be addressed.
This time, the analytic way is no more possible: the ξ angle is present at the level of the phase, as

University of Liège -76-
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Figure 6.15: Variation of θ (radians) for four configurations of the incoming polarization: total
polarization (S = [1, 0.55, 0.703, 0.45]), linear (S = [1, 0.3, 0.26, 0]), linear(S = [1, 0.55, 0, 0]) and
circular (S = [1, 0, 0, 0.5]) with regard to the position along y (0-1)mm

tan (ξ) and tan (2ξ). Because of this, the derivation of the intensity function will not be able to
provide an easy and direct answer. Consequently, the choice of this angle will be based mostly on
physic criteria. First, we saw in the previous chapter that even for the normal incidence an incoming
ray will be split by this device because of the angles ξ and 2ξ coupled with the effect of the orientation
of the optical axis. In order to minimize this effect of splitting, the best strategy is to consider small
angles so that the separation surfaces could be assimilated, at the limit, to parallel planes.

On the other hand, the best scenario will correspond also to an angle ξ that has constant impact
over the entire wavelength range.

Plotting the outgoing intensity as a function of ξ and λ we can notice that an almost constant
profile is obtained for small apex angles (somewhere below 0.03 radians), as can be seen from the
Figure 6.16. And this behavior is symptomatic for the entire range of y. From these observations
we may conclude that the best idea it will be to work with small values of ξ if we want to have a
constant efficiency of the polarimeter all along the spectral range. The value of 1.5

◦ used until is
thus in agreement with these remarks.

Such an assumption, will give us the opportunity to approximate

tan (2ξ) ≈ 2 · tan (ξ)

and, as a direct consequence we will have

∆φ2(ξ) = 2∆φ1(ξ)
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Figure 6.16: Variation of the outgoing intensity, Iout with regard to λ and ξ (radians), in a contour
plot. The assumption of the incoming elliptical polarization was used: S = [1, 0.55, 0.703, 0.45]

Based on this simplifications, the expressions from (6.2.9) will become:
m(θ,∆φ1) = cos (2θ) cos (2∆φ1)

n(θ,∆φ1) = sin (2θ) cos (∆φ1)− cos (2θ) sin (∆φ1) sin (2∆φ1)

p(θ,∆φ1) = cos (∆φ1) cos (2θ) sin (2∆φ1) + sin (2θ) sin (∆φ1)

(6.3.5)

Or for a given value of θ, the Iout function will be modulated according to three frequencies,
which can be reveled through a Fourier analysis. Thus, for the terms cos (∆φ1) or sin (∆φ1) the
specific period will be, obviously, 2π, for cos (2∆φ1) or sin (2∆φ1) we have a period of π, while
the terms in sin (∆φ1) sin (2∆φ1) or cos (∆φ1) sin (2∆φ1) will introduce a period of 2π

3
. But in

order to properly use this new set of information, the concept of birefringence should be thoroughly
explained in a new chapter.
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6.4 Conclusion
The problematic studied in this chapter, based only on the hypothesis of the normal incidence, gives
us the possibility to formulate several ideas extremely important for our research:

• for a ”classical” polarimeter the need of rotation comes from the ”incapacity” of the device to
provide simultaneously access to all the Stokes parameters;

• the model based on three birefringent prisms can ensure a spatial and spectral modulation of
the received intensity and a full determination of the Stokes vector without using turning parts;

• for any given wavelength this type of system is univocal, being impossible to have multiple
different entries with the same output;

• the optimization with regard to the analyzer angle depends on the scientific goal: this choice
is governed by the type of polarization that interests us, and by the mean values of this polar-
ization;

• the optimization with regard to the apex angle ξ suggest the use of values below 1.72
◦;

• the signal of the outgoing intensity exhibits three periods, which are 2π
3

,π and 2π (if we use
the approximation ∆φ2(ξ) = 2∆φ1(ξ)).
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Chapter 7

The impact of the chromaticity

In the previous chapter we saw that the main physical characteristic of the proposed spectropo-
larimeter, that ensure its functioning, is the capacity to entail a certain phase difference between the
orthogonal components of the incoming beam, ∆φ. But this capacity is based on the birefringence
of the medium, ∆n (i.e. the variation of the refraction index with respect to the position towards the
optical axis):

∆n = |no − ne|

where no and ne are the ordinary and extraordinary indices of refraction.
Yet, for all the material used in optics, the indices of refraction are varying with the wavelength,

property which is called chromaticity. Because of this, the correct expression of the birefringence is:

∆n(λ) =
∣∣no(λ)− ne(λ)

∣∣
Therefore, in the study of the behavior of the spectropolarimeter we must pay attention also to

the chromaticity. Withal, the transmittance of the medium is also of paramount importance: we must
be sure that for the desired wavelength range the media exhibit a good transmittance.

Based on this last feature, a good candidate for our device could be Magnesium Fluoride (MgF2).
This material shows a steady and high transmittance for 0.12 until 7µm (Figure 7.1). In the same
time, is very hard and rugged, resistant to mechanical and thermal shocks [3].

According to data available today [13] [6] the ordinary (no) and extraordinary (ne) indexes of
refraction of MgF2 varies like in the Figure 7.2.

Thus, the birefringence ∆n(λ) can be accurately calculated for any wavelength from the avail-
able spectral range. The result for MgF2 is plotted in the Figure 7.3.

The useful span of the birefringence is then comprised between the cut-off wavelength of about
100nm and 9µm which means that MgF2 material can cover most of the UV spectrum, the visible
and mid infrared. However, we must pay attention to the fact that at λ = 0.12µm, the birefringence
of the material is zero, which means the modulation function will be equally zero. In order to avoid
this situation, we can propose to start at 0.125µm.

Nevertheless, in order to fully profit of the capacities of this fluoride, we have to find a good
mathematical description of the experimental data of the birefringence. And two methods are at
hand: a polynomial interpolation and the Sellmeier model. Let’s start with the first.
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Figure 7.1: Magnesium Fluoride (MgF2) has a transmission range of 0.12-7µm at a thickness of
10mm. Source: eksmaoptics.com[3]

Figure 7.2: no and ne of MgF2 for λ ∈ [0.0459; 11.364]µm [5]

University of Liège -81-
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Figure 7.3: Birefringence of the Magnesium Fluoride:∆n(λ) =
∣∣no(λ)− ne(λ)

∣∣
7.1 Interpolation of the birefringence data
Given the allure of the graphic for the variation of the birefringence, the best way to interpolate is to
split the wavelength range in several intervals. Then, for each region we will search for the appro-
priate polynomial interpolation based on the least square method. Looking closely to the available
data, which can be retrieved in Cotter [13], Dodge [6] and also in Appendix A of this thesis, three
regions of interest can be dissociated between 0.125µm and 7µm, according to fitting possibilities:

• 0.125 - 0.17 µm;

• 0.17 - 0.7 µm;

• 0.7 - 7 µm;

The best polynomial results for this intervals are (for the same order):


366087λ5 − 275758λ4 + 83003λ3 − 12482.8λ2 + 938.235λ− 28.1908

−0.376181λ5 + 0.95257λ4 − 0.956983λ3 + 0.481885λ2 − 0.124377λ+ 0.0254522

−8.51 · 10−7λ5 + 1.7075 · 10−5λ4 − 1.3253 · 10−4λ3 + 3.6696 · 10−4λ2 − 8.116 · 10−4λ+ 0.0121

(7.1.1)
In the Figure 7.4 we can see the variation of the birefringence according to experimental data

and the interpolation with the retrieved polynomials between 0.125 - 7µm.
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Figure 7.4: Birefringence data interpolated with three polynomials over the wavelength range 0.125-
7µm

In the end of the last chapter we saw that the modulation of the signal is fallowing three periods,2π
3

,
π, 2π and. Consequently, according to Shannon theorem, the information should be sampled over
an interval twice as long as the longest period (which means 4π) and the sample frequency should
be at least twice the highest frequency, which in our case is 3

2π
, thus 3

π
. That means the signal should

be sampled over 4π, with a minimum phase step of π
3
. Meanwhile, because the phase is expressed

as
∆φ(y, λ, ξ) =

2π

λ
∆n(λ)(h− y) tan (ξ) (7.1.2)

it results that for a total phase difference of 4π, corresponding to the minimal sampling distance we
will need, at an apex angle ξ = 1.5

◦ at least 0.51mm in UV, at 125nm, while observing at 1.4µm,
for example, will require a wedge with a high of at least 9.32mm, according to the experimental
data.

Using the polynomial interpolation described above, we can compute the variation of the minimal
sampling distance with regard λ for different values of the apex angle, ξ. A sample of this evolution
is expressed in Table 7.1, while in Figures 7.5 and 7.6 we can see the general evolution of the
sampling distance with the wavelength.

Even though for certain interpolations and simulations we will still need a large wavelength
range, for calculations meant to provide a realistic view about the studied device we will restrain
the interval of wavelength to 0.125-1.4µm. The main reason for this is that this wavelength range is
the most desirable from an astronomical point of view, the most important polarization phenomenon
taking place into this interval, and because there is no detector able to cover a longer waveband.
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Nevertheless, the same computation and simulations can be conducted as well for another spectral
range within the limitations of MgF2 and of the detectors.

λ = 125nm λ = 1.4µm

ξ = 1.5
◦ 0.513mm 9.32mm

ξ = 3
◦ 0.256mm 4.66mm

Table 7.1: Minimal sampling distances for two values of the apex angle ξ and two values of the
wavelength, λ

Figure 7.5: Minimal sampling distance as a function of the wavelength for an apex angle ξ = 1.5
◦

This general variation of the minimal distance required for retrieving the signal gives us an
important information about the dimension of the optical device, because is nothing else but the
minimal height of the wedge of MgF2. Thus, we may conclude that, in a strong dependence with
the apex angle and the desired range of the wavelength, the minimal height of the wedge is comprised
between 0.2mm and 9.3mm.

7.2 Sellmeier method
Instead of using a polynomial interpolation of the birefringence we can use the empirical method
of Sellmeier, which states that the refraction index of a material varies with the wavelength after a
relation like:

n2 − 1 =
∑ Ai · λ2

λ2 −B2
i

or, sometimes:
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Figure 7.6: Minimal sampling distance as a function of the wavelength for an apex angle ξ = 3
◦

n2 − 1 = C +
∑ Ai · λ2

λ2 −B2
i

The best fitting using this method and for longest wavelength range (0.14−7.5µm) was provided
by Li[27]:

n2
o − 1 =

0.60967λ2

λ2 − 0.086362
+

0.008λ2

λ2 − 182
+

2.14973λ2

λ2 − 252
+ 0.2762 (7.2.1)

For the extraordinary index we have:

n2
e − 1 =

0.66405λ2

λ2 − 0.085042
+

1.0899λ2

λ2 − 22.22
+

0.1816λ2

λ2 − 24.42
+

2.1227λ2

λ2 − 40.62
+ 0.25385 (7.2.2)

where the wavelength is expressed in µm.
In the Figure 7.7 we can see the plot of this fitting.
Both models seem to fit very well to the experimental data, the only difference being represented

by the wavelength range. Nevertheless, a comparative analysis based on the residual values (real
data - interpolated data) shows that there is a small difference in between.

Thus, the comparison of the residuals (see Figures 7.8, 7.9 and 7.10) shows that the fitted model
using the Sellmeier approach works better for λ below 1.9µm. Above this value, the polynomial
interpolation gives the best results. Of course, because the Sellmeier method work only for the
interval 0.14− 7µm the comparison concerned only this wavelength range.

Consequently, for the proposed interval of study, 0.125µm - 1.4µm, the recommendation will be
to use the Sellmeier method with Li coefficients on 0.14− 1.4µm and the polynomial interpolation
(with the first polynomial) for 0.125− 0.14 wavelength range.
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Figure 7.7: Fitting of the experimental data with the Sellmeier method between 0.14 − 7µm using
Li polynomials

Figure 7.8: Residual values (blue dots) for
∣∣∆n(experimental)−∆n(polynomial)

∣∣ between 0.14−
7µm. The blue line corresponds to a linear regression for this set of points
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Figure 7.9: Residual values (blue dots) for
∣∣∆n(experimental)−∆n(Sellmeier)

∣∣ between 0.14−
7µm. The green line corresponds to a linear regression

Figure 7.10: Comparison between the linear regressions in the two cases. The green line corre-
sponds to the linear regression for the Sellmeier residuals while the blue stays for the polynomial
method. Below λ = 1.9µm the model Sellmeier model with the Li parameters has the lowest value
of residuals.
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7.3 Impact of the chromaticity on the modulation function
We established that between λ = 0.14µm and λ = 1.4µm the best model able to describe the
birefringence variation is given by the Sellmeier method and Li coefficients. Meanwhile, because
the Sellmeier method works only for λ ≥ 0.14µm, for the range 0.125 − 0.14µm we should use
the first polynomial from (7.1.1). We have to see now how this variation of the birefringence is
translated at the level of the modulated intensity, Iout(y, λ). Because the term ∆n(λ) is present
at the level of the phase difference it would be expected to alter the periodicity of the outgoing
intensity and the linearity with the wavelength. Both phenomena are certified by the plots from
Figure 7.11 and 7.12, where the same state of polarization was represented by the mean of the
received intensity with respect to the wavelength and with the position on vertical, y. The change of
the periodicity is translated also into the change of sampling distance. According to the new values
of the birefringence we may adjust the Table 7.1.

λ = 125nm λ = 1.4µm

ξ = 1.5
◦ 0.51mm 9.38mm

ξ = 3
◦ 0.255mm 4.68mm

Table 7.2: Minimal sampling distances for two values of the apex angle ξ and two values of the
wavelength, λ in the case of variable birefringence

Figure 7.11: Comparison between the outgoing intensity in the case of a constant ∆n and variable
∆n for λ ∈ [0.14 − 0.17]µm. The hypothesis of normal incidence and elliptical polarization was
used again.

Overall, the effect of the chromaticity is quite negligible. It introduces a slight variation of the
periodicity of the signal but without any effect to the level of the received intensity. This one is
affected only by the values of the Stokes parameters of the incoming light.
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Figure 7.12: The same comparison as in the Figure 7.11, but as a function of y, for y ∈ [0−0.001]m

7.4 Conclusion
This short study of the variation of the birefringence with the wavelength brought several results that
are extremely important for a laboratory implementation of the design.

• A good candidate for the material of the polarimeter is MgF2, with a steady transmittance
between 0.12 - 7µm;

• Nevertheless, the variation of the birefringence with the wavelength shows that MgF2 is suit-
able for λ ≥ 0.125µm;

• The birefringence of the material can be simulated through a polynomial fitting or a Sellmeier
method;

• Based on a residual analysis we may conclude that the Sellmeier method follows better the
experimental data below λ = 4µm;

• depending on the apex angle and the desired range of the wavelength, the minimal height of
the wedge is comprised between 0.2mm and 9.3mm;

• Because 0.125 - 7µm wavelength range is too long for any detector, a shorter interval may be
chosen. Based on practical and theoretical arguments one can propose 0.125 -1.4µm. In this
case, for the spectral range [0.125− 0.14]µm the birefringence will be simulated with the help
of the first polynomial from (7.1.1), while between [0.14− 1.4]µm the Sellmeier method will
be preferred.

• The effect of the variation of the birefringence with the wavelength is quite negligible and is
translated in a small variation of the periodicity of the signal.
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Chapter 8

Uncertainty calculus and error treatment

A spectropolarimeter is a very sensitive instrument. Even though the model presented here over-
comes the problems related to the presence of rotating components, it is still subject to errors and
imprecision.

One part of this errors is generated by the very nature of the device. At the base, this instrument
counts photons, and consequently is exposed to the specific errors of counting processes.

Meanwhile, we saw that in order to infer upon the value of the Stokes parameters we have to
make a fitting of the experimental values with the theoretical expression of the intensity. This fitting
is aimed to provide us the I,Q, U and V parameters, the functions m,n and p being known in the
case of the normal incidence. Or because the measured intensity can exhibit a certain deviation with
regard to the theoretical value, we may apply the theory of the linear adjustment. This will help us
to estimate the error characterizing each parameter as a function of the number of photons in the
context in which we do not know the true values of the Stokes parameters.

During the first part of our analysis from this chapter, which follows closely a development
presented by Sparks[40], we will assume that the received signal deviates from the expected value
with an amount ε, that has a normal distribution of mean zero and variance σ. Physically, ε is nothing
else but the noise affection the signal. Therefore, a series of simulations will be conducted in the
second part of this chapter, regarding the behavior of the device at different values of the noise.

8.1 Theoretical error estimation
Generally speaking we saw that the outgoing intensity of the optical system can be expressed as:

Iout(λ, y) = α(λ, y)I +m(λ, y)Q+ n(λ, y)U + p(λ, y)U (8.1.1)

where α(λ, y),m(λ, y), n(λ, y), p(λ, y) are the modulation functions derived through the Mueller
calculus. These functions are depending on the phase difference induced by the system and on the
position of the analyzer axis. Because in our case the phase varies with the wavelength and with y,
the position on vertical, we kept only this variables as main variables of the system. Meanwhile, the
angle θ of the analyzer remains implied. It is a ”secondary” type of variable, because is constant dur-
ing the measurement of Iout. Just like the apex angle, ξ, this angle influences the overall functioning
of the device.

The last relation can be expressed also as:

90



Master Thesis 8.1. Theoretical error estimation

Iout(λ, y) =
[
α(λ, y) m(λ, y) n(λ, y) p(λ, y)

]
·


I
Q
U
V

 (8.1.2)

or simply stated

Iout(λ, y) = Λ · S

where

Λ =
[
α(y, λ) m(y, λ) n(y, λ) p(y, λ)

]
, S =


I
Q
U
V


and S is the Stokes vector to be determined. In our case, α(λ, y) it was simply given by 1

2
, while

the m,n, p functions represented the modulations endured by each of the Stokes parameters. Now,
because there is no perfect detector, able to register precisely the corresponding mathematical value
of Iout, the intensity will be always measured with a certain fluctuation ε which can take either a
positive or negative value, varying from one point of reading to another:

Id(λ, y) = Iout(λ, y) + ε

where Id is the detected intensity.
The situation is depicted in the Figure 8.1 where we considered that the signal corresponding to

an arbitrary incoming Stokes vector Sin = [1, 0.23, 0.34, 0.15] is altered by a Gaussian noise with a
variance of 0.06, also arbitrary chosen.

For simplification, we will consider that εi follows a normal distribution of mean 0 and variance
σi. The index i suggest that we are working with a set of values read all along y. As a consequence,
Id(λ, yi)− Iout(λ, yi) = εi will follow also a normal distribution. Thus, the sum

n∑
i=1

(
εi
σi

)2

will follow necessarily a χ2 distribution.
Based on this hypothesis we may apply now a linear adjustment by least square method. The

chi-squared distribution associated to this error, for a given lambda will be:

χ2 =
n∑
i=1

(Id(λ, yi)− Iout(λ, yi))2

σ2
i

=
n∑
i=1

(Id(λ, yi)− α(λ, yi)I −m(λ, yi)Q− n(λ, yi)U − p(λ, yi)U)2

σ2
i

the summation taking place over the entire range of sampling points along y, because it is only there
that we can measure Id. Because we want to reach a maximum of likelihood between the theoretical
and the fitted model, the derivatives of the chi-squared distribution with regard to Stokes parameters
of the incoming light should be set to zero (for more details about this method see Magain [28]):
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Figure 8.1: Noisy data and perfect signal (in the absence of noise), corresponding to Iout, for λ =
0.14µm. Here again we use arbitrary units for the intensity



∂χ2

∂I
= −2

n∑
i=1

α(λ, yi) · (Id(λ,yi)−α(λ,yi)I−m(λ,yi)Q−n(λ,yi)U−p(λ,yi)U)

σ2
i

= 0

∂χ2

∂Q
= −2

n∑
i=1

m(λ, yi) · (Id(λ,yi)−α(λ,yi)I−m(λ,yi)Q−n(λ,yi)U−p(λ,yi)U)

σ2
i

= 0

∂χ2

∂U
= −2

n∑
i=1

n(λ, yi) · (Id(λ,yi)−α(λ,yi)I−m(λ,yi)Q−n(λ,yi)U−p(λ,yi)U)

σ2
i

= 0

∂χ2

∂V
= −2

n∑
i=1

p(λ, yi) · (Id(λ,yi)−α(λ,yi)I−m(λ,yi)Q−n(λ,yi)U−p(λ,yi)U)

σ2
i

= 0

And as a consequence, opening the parenthesis and rearranging the therms, we will have the next
system of equations:



n∑
i=1

Id(λ,yi)·α(λ,yi)

σ2
i

=
n∑
i=1

Iα(λ,yi)
2

σ2
i

+
n∑
i=1

Qm(λ,yi)α(λ,yi)

σ2
i

+
n∑
i=1

Un(λ,yi)α(λ,yi)

σ2
i

+
n∑
i=1

V p(λ,yi)α(λ,yi)

σ2
i

n∑
i=1

Id(λ,yi)·m(λ,yi)

σ2
i

=
n∑
i=1

Iα(λ,yi)m(λ,yi)

σ2
i

+
n∑
i=1

Qm(λ,yi)
2

σ2
i

+
n∑
i=1

Un(λ,yi)m(λ,yi)

σ2
i

+
n∑
i=1

V p(λ,yi)m(λ,yi)

σ2
i

n∑
i=1

Id(λ,yi)·n(λ,yi)

σ2
i

=
n∑
i=1

Iα(λ,yi)n(λ,yi)

σ2
i

+
n∑
i=1

Qm(λ,yi)n(λ,yi)

σ2
i

+
n∑
i=1

Un(λ,yi)
2

σ2
i

+
n∑
i=1

V p(λ,yi)n(λ,yi)

σ2
i

n∑
i=1

Id(λ,yi)·p(λ,yi)
σ2
i

=
n∑
i=1

Iα(λ,yi)p(λ,yi)

σ2
i

+
n∑
i=1

Qm(λ,yi)p(λ,yi)

σ2
i

+
n∑
i=1

Un(λ,yi)p(λ,yi)

σ2
i

+
n∑
i=1

V p(λ,yi)
2

σ2
i

In order to simplify the notations, we will let aside (λ, yi) parenthesis, but without forgetting
that only I,Q,U,V are independent of the summation index. Passing then into a matrix form, we will
have:
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n∑
i=1

Idi·αi

σ2
i

n∑
i=1

Idi·mi

σ2
i

n∑
i=1

Idi·ni

σ2
i

n∑
i=1

Idi·pi
σ2
i


=



n∑
i=1

α2
i

σ2
i

n∑
i=1

miαi

σ2
i

n∑
i=1

niαi

σ2
i

n∑
i=1

piαi

σ2
i

n∑
i=1

αimi

σ2
i

n∑
i=1

m2
i

σ2
i

n∑
i=1

nimi

σ2
i

n∑
i=1

pimi

σ2
i

n∑
i=1

αini

σ2
i

n∑
i=1

mini

σ2
i

n∑
i=1

n2
i

σ2
i

n∑
i=1

pini

σ2
i

n∑
i=1

αipi
σ2
i

n∑
i=1

mipi
σ2
i

n∑
i=1

nipi
σ2
i

n∑
i=1

p2i
σ2
i


·


I
Q
U
V

 (8.1.3)

This is a general result characterizing any spectropolarimeter able to modulate the incoming sig-
nal through functions of the type of α,m, n and p. Nevertheless, because we follow the development
of Sparks[40], we will adopt also its notation at this level. Thus, we will consider that :

SI =



n∑
i=1

Idi·αi

σ2
i

n∑
i=1

Idi·mi

σ2
i

n∑
i=1

Idi·ni

σ2
i

n∑
i=1

Idi·pi
σ2
i


SI representing the distribution of the detected intensity, as a function of α,m, n, p. Meanwhile,

B =



n∑
i=1

α2
i

σ2
i

n∑
i=1

miαi

σ2
i

n∑
i=1

niαi

σ2
i

n∑
i=1

piαi

σ2
i

n∑
i=1

αimi

σ2
i

n∑
i=1

m2
i

σ2
i

n∑
i=1

nimi

σ2
i

n∑
i=1

pimi

σ2
i

n∑
i=1

αini

σ2
i

n∑
i=1

mini

σ2
i

n∑
i=1

n2
i

σ2
i

n∑
i=1

pini

σ2
i

n∑
i=1

αipi
σ2
i

n∑
i=1

mipi
σ2
i

n∑
i=1

nipi
σ2
i

n∑
i=1

p2i
σ2
i


is the covariance (or curvature matrix), and

S =


I
Q
U
V


is the Stokes vector of the incoming light. Based of this notations, the system (8.1.3) can be

expressed as:

sI = B · S

Assuming that B is invertible, we have then:

S = B−1 · sI
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the diagonal elements of the B−1 matrix being the variances associated to the Stokes parameters[28].
We have to remember now that in our case α,m, n, p are given by:

α = 1
2

m = 1
2

cos (2θ) cos ρ

n = 1
2
· (cosφ sin (2θ)− cos (2θ) sin ρ sinφ)

p = 1
2
· (cosφ cos (2θ) sin ρ+ sin (2θ) sinφ)

In order to simplify the computation of the B matrix, we may chose a particular case with θ = π
4
,

even if this corresponds to a scenario in which Q is undetermined. This value will drastically simplify
the expressions of m,n and p functions.

Thus, the previous relations will become:
α = 1

2

m = 0

n = 1
2

cosφ

p = 1
2

sinφ

It should be stressed here that an analyzer of θ = π
4

will cancel the effect introduced by the last
wedge of apex 2ξ upon the Q parameter, because the m function is reduced to zero.

For simplification we may consider also that the summation covers an entire number of periods
for n and p. Meanwhile, we may suppose that the variance of the distribution of ε does not varies
from one point to another, but is constant and specific to a Poissonian process of counting:

σ =

√
N

n
where N is the total number of incoming photons and n the number of sampling points. Based on
this assumptions, the first line of the curvature matrix will be:

n∑
i=1

α2
i

σ2
i

=
n∑
i=1

( 1
2

)2

σ2 = 1
4σ2n

n∑
i=1

miαi

σ2
i

=
n∑
i=1

0 1
2

σ
= 0

n∑
i=1

niαi

σ2
i

=
n∑
i=1

1
2

cosφ 1
2

σ2 = 1
4σ2

n∑
i=1

cosφ

n∑
i=1

piαi

σ2
i

=
n∑
i=1

1
2

sinφ 1
2

σ2 = 1
4σ2

n∑
i=1

sinφ

On the same way, for the next lines we have:

n∑
i=1

αimi

σ2
i

= 0

n∑
i=1

m2
i

σ2
i

= 0

n∑
i=1

nimi

σ2
i

= 0

n∑
i=1

pimi

σ2
i

= 0



n∑
i=1

αini

σ2
i

=
n∑
i=1

1
2

cosφ 1
2

σ2 = 1
4σ2

n∑
i=1

cosφ

n∑
i=1

mini

σ2
i

= 0

n∑
i=1

n2
i

σ2
i

= 1
4σ2

n∑
i=1

cos2 φ

n∑
i=1

pini

σ2
i

= 1
4σ2

n∑
i=1

cosφ sinφ



n∑
i=1

αipi
σ2
i

= 1
4σ2

n∑
i=1

sinφ

n∑
i=1

mipi
σ2
i

= 0

n∑
i=1

nipi
σ2
i

= 1
4σ2

n∑
i=1

cosφ sinφ

n∑
i=1

p2i
σ2
i

= 1
4σ2

n∑
i=1

sin2 φ
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and consequently, the covariance matrix will be:

B =
1

4σ2
·



n 0
n∑
i=1

cosφ
n∑
i=1

sinφ

0 0 0 0
n∑
i=1

cosφ 0
n∑
i=1

cos2 φ
n∑
i=1

cosφ sinφ

n∑
i=1

sinφ 0
n∑
i=1

cosφ sinφ
n∑
i=1

sin2 φ


Omitting the Q component from the system we may also write:

1

2σ2



n∑
i=1

Idi
n∑
i=1

Idi cosφ

n∑
i=1

Idi sinφ

 =
1

4σ2
·


n

n∑
i=1

cosφ
n∑
i=1

sinφ

n∑
i=1

cosφ
n∑
i=1

cos2 φ
n∑
i=1

cosφ sinφ

n∑
i=1

sinφ
n∑
i=1

cosφ sinφ
n∑
i=1

sin2 φ

 ·
 I
U
V

 (8.1.4)

Because the summation covers a large amount of data (each pixel or each sampling point), then
according the Riemann definite integral expression, we have:∫ b

a

f(x)dx = lim
‖∆xi‖→0

∆xi ·
n∑
i=0

f(xi)

If we consider that the readings of Id take place on a total height of h, over a total number of
points n covering an integer number of periods, then we may write:∫ h

0

cosφ(y)dy ≈ h

n

n∑
i=1

cosφ

and so:

n∑
i=1

cosφ ≈ n

h

∫ h

0

cosφ(y)dy

Meanwhile, using the fact that∫ h

0

cos2 φdφ =
1

2

[1

2
sin (2φ) + φ

]h
0

we infer that

n∑
i=1

cos2 φ =
n∑
i=1

sin2 φ =
n

2

With these results, the previous system (8.1.4) becomes:
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1

2σ2



n∑
i=1

Idi
n∑
i=1

Idi cosφ

n∑
i=1

Idi sinφ

 =
1

4σ2
·

n 0 0
0 n

2
0

0 0 n
2

 ·
 I
U
V

 (8.1.5)

And then

 I
U
V

 =
2

n
·

1 0 0
0 2 0
0 0 2

 ·


n∑
i=1

Idi
n∑
i=1

Idi cosφ

n∑
i=1

Idi sinφ


Directly, we have: 

I = 2
n
·
n∑
i=1

Idi = 2N
n

U = 4
n
·
n∑
i=1

Idi cosφ

V = 4
n
·
n∑
i=1

Idi sinφ

Here we used the idea that because we are in a Poisson statistic in which the number of photons
counts, then the sum of intensities can be replaced by the total number of received photons, N.
Because B−1 is a correlation matrix between the Stokes parameters and the received intensities, we
may have access then to the variance and the standard deviation for each of the Stokes parameters:

σ2(I) = 4σ2 · 1
n

=
4N

n

n
= 4N

n2

σ2(U) = 8N
n2

σ2(V ) = 8N
n2

(8.1.6)

Coming back to the system (8.1.5), for simplification we may replace the vector from the left
side with S = [S1, S2, S3], where 

n∑
i=1

Idi
n∑
i=1

Idi cosφ

n∑
i=1

Idi sinφ

 =

S1
S2
S3


Consequently, the system (8.1.5) becomes:S1

S2
S3

 =
1

2
·

n 0 0
0 n

2
0

0 0 n
2

 ·
 I
U
V

 (8.1.7)

University of Liège -96-
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In order to find the normalized parameters u and v we divide the last system by I , where I =
(2/n)S1: {

S2 = S1

2
· u

S3 = S1

2
· v

(8.1.8)

Therefore: {
σ2(u) = 2

S1

σ2(v) = 2
S1

Or the therm S1 is nothing else than the total received energy, thus, N , the number of photons:

{
σ2(u) = 2

N

σ2(v) = 2
N

⇒

σ(u) =
√

2
N

σ(v) =
√

2
N

(8.1.9)

From the system (8.1.8) we may infer also immediately the standard deviation for the degree of
polarization :

σ(p =
√
u2 + v2) =

√
2

N
(8.1.10)

It must be stressed here that the results from (8.1.9) and (8.1.10) are true only for the cases
considered. In a general way, if we keep only the assumption that the covariance matrix is invertible,
all what we can say is that the standard deviation for the normalized parameters is proportional to

1√
N

.
In this approach of the errors from the system we considered a compressed scenario, in which

all the sources of errors are in a certain way related only to the counting of photons, without any
question about the source of these photons.

About ε, the variation regarding the expected value of the signal, we considered that is a fluctua-
tion of mean 0 and variance σ.

Nevertheless, ε encapsulates the noise affecting the system and can be related to a very important
property characterizing the detector, which is the signal to noise ratio (SNR):

SNR =
S

N
≈
σ2
signal

σ2
noise

(8.1.11)

where S is the signal andN is the noise, while in the approximate expression σsignal is the amplitude
of the signal in the case of a sinusoidal modulation. Generally, when we calculate the noise, we have
to take care of the dark current noise (NDC), the signal noise (NS) and read-out noise (NRO):

N =
√
N2
S +N2

DC +N2
RO (8.1.12)

The signal noise (NS) is a statistical noise and is given by:

NS =
√
S (8.1.13)

The dark current noise (NDC) which represents the detected signal when no source is observed,
and which is originated in the electronics of the detector, is given by:
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NDC =
IDC
e
ti (8.1.14)

where IDC is the dark current, e is the charge of the electron and ti is the integration time. NRO,
the read-out noise is the noise associated to the transfer of the charge from the detector, or to the
conversion into a digital signal.

It is worthy to be mentioned here that the intensity ”perceived” by the detector should be ex-
pressed like:

Iout(λ) = t(λ) · I0(λ) (8.1.15)

where I0(λ) is the theoretical received intensity, and t(λ) stays for the transmission of the instrument.
Thus, any real implementation of this design should consider this last formula in order to properly
infer upon the true value of received intensity.

8.2 Numeric simulation
During the first part of this chapter we considered that the true value of the intensity Iout is an
unknown and that we have access only to a ”distorted” value Id which varies in every point of
detection, i, with an amount ε relative to the ideal value Iout. And we supposed also that this ε
follows a normal distribution of constant variance during the integration time of the detector.

Another strategy, even more helpful, that can show us the true behavior of the optical device, is to
consider that Iout is known, together with the Stokes vector of the incoming light, Sin. Adding then
different values of noise ε we can generate a number of points n representing the detected signal, Id.
Fitting this points with a curve given by (8.1.1) we will try to infer the values of Sin = [I,Q, U, V ].
And of course, because in this case we know which the true values are, we may compute all the time
the relative error corresponding to each parameter, the impact of the level of noise over this error
and the impact of the other parameters of the system over the relative error.

8.2.1 Impact of noise
The level of noise has a huge impact over the quality and the capacity to extract I,Q, U and V
parameters of the incoming light, and the numeric analysis suggest that this impact is not homoge-
neous and also is not equally distributed among the four parameters. In fact, each configuration of
the optical device (certain value of θ, the analyzer angle, and ξ, the apex angle) will affect more or
less the capacity to extract the Stokes parameters.

In order to properly represent the consequences of the noise we may consider the ideal case of a
normal incident beam having an elliptical state of polarization described by1:

Sin =


1

0.55
0.703
0.45


More than that we will consider in the beginning that the analyzer is optimized for linear (Q,U)

and circular polarization (V), all-together. According to the equation (6.3.4), for a very narrow
1This is only an arbitrary choice, characteristic for a total polarization.

University of Liège -98-
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wavelength range 0.12 - 0.125 µm we will find that the most suitable values of the analyzer angle
are:

• 24.06
◦

• −5.7
◦

• −12.6
◦

• −22.34
◦

Figure 8.2: Simulated data for σ = 0.2 on a 1.2mm range, with a step of 6µm and for λ = 0.125µm

Considering that this values are symptomatic for the entire spectrum 0.125 − 1.4µm, we may
fix θ, the analyzer angle at, let’s say, 24.06

◦ . Meanwhile, because at λ = 0.125µm the minimum
sampling distance is of about 0.51 mm, we may chose a wedge of height 1.27cm.

Thus, after ten simulations of the extraction of Stokes parameters of an incoming beam char-
acterized by the vector Sin we will find that the relative error (Imeasured − I)/I%, (Qmeasured −
Q)/Q%, etc. will vary like in the Figure 8.3. The graphic suggest a relatively slow increase of
the error for Q and V with the level of noise and an almost unacceptable situation for U which is
undetermined in this configuration.

Only for proving the very important role played by the angle of the analyzer we may consider a
second scenario: this time we will chose θ = 18.33

◦ , corresponding to an optimization for elliptic
and circular polarizations. The result is plotted in the Figure 8.4. Again, the U parameter stays above
the limit of a reasonable error.

If we change again the angle θ to a value of 139
◦ , which is an arbitrary point on the curve of θ(y)

for λ = 0.125µm, curve corresponding to the total polarization described by the vector Sin, then the
fluctuation of the relative error with σ will have the allure from the Figure 8.5.
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Figure 8.3: Relative error variation for the fitted Stokes parameters with regard to the level of noise,
for λ = 0.12µm and a system optimized for the linear and circular polarization.

Figure 8.4: Relative error variation for the fitted Stokes parameters with regard to the level of noise,
for λ = 0.12µm and a system optimized for the elliptical and circular polarizations.

This evolution suggests that the impact of noise upon the extraction of the Stokes parameters is
not homogeneous. Changing the angle θ will give us the opportunity to optimize the extraction of a
parameter or another.

As an example, we may take a look to the Figure 8.6, where the relative error for each parameter
was plotted as a function of θ, under the assumption of a normal incidence with the Stokes vector
Sin.

University of Liège -100-
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Figure 8.5: Relative error variation for λ = 0.12µm and a system optimized for the elliptical polar-
ization given by Sin.

Figure 8.6: Error variation for the fitted Stokes parameters with regard to the analyzer angle, θ.

Nevertheless, a detailed study about the Stokes parameters and the analyzer angle, θ, is beyond
the purpose of this thesis.

Based on the limitations imposed by the noise we may also simulate a minimal height of the
wedges. Thus, during the previous chapter we saw that the total sampling distance corresponding to
λ = 0.125µm, was of 0.51 mm, the minimum distance between two points being 0.04 mm. Now, if
we consider the hypothetical case of σ = 0.06 and a maximal relative error of 50%, we will obtain
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Master Thesis 8.2. Numeric simulation

the next situation:

• readings at each pixel (pas=6µm)⇒ minimum height = 0.51 mm;

• at 2 pixels⇒ 2 mm;

• at 3 pixels⇒ 10 cm

It is an almost exponential evolution of the needed total sampling distance if we increase the distance
between the readings. This behavior is imposed only be the noise.

Figure 8.7: More the readings are rare, more the need of a higher prism increases. The relation is
almost exponential: horizontal - sampling distance; vertical - height of the prism

In the same way that the variation of the sampling distance affects the needed total sampling
distance, the value of the later will affect the level of the error. Shorter will be the total sampling
distance, higher will be error and vice versa.

Of paramount importance for the functioning of this spectropolarimeter is also the eventual cor-
relation between the error and the wavelength. A series of simulations were conducted to check this
correlation for the same dimensions of the instrument as before and again under the assumption of
normal incidence of a ray elliptically polarized (Sin). The results for σ = 0.04 (corresponding to an
SNR of about 1002) are plotted in the Figure 8.8.

We may notice a strong dependency of V and U parameters over the wavelength, while for I and
Q the plot is inconclusive. In order to see if I and Q are also related to λ an hypothesis test should be
conducted. For this test, a series of 28 simulations (a number that was arbitrary chosen) at a steady
λ = 0.14µm were realized. In addition, a simulation for n=72 values (again, arbitrary chosen) of
λ between 0.125− 1.4µm was also computed. The entire statistical procedure is represented in the
Figure 8.9.

For the V parameter, the average value during this last simulation was:
2During these simulations we chose values of σ corresponding to levels of SNR currently encountered in practice.
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Figure 8.8: The spectropolarimeter exhibits a stronger sensibility with regard to the noise at lower
wavelengths. The simulations were conducted for σ = 0.04

Figure 8.9: The statistical test for ∆V (intuitive representation): ∆V is the mean value of ∆V for
72 values of λ, while ∆V0 is the mean value of ∆V over 28 readings at λ = 0.14µm

∆V =
1

n

n∑
i=1

(∆Vi) = 7.53

while the variance is estimated by:
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s∗2n =
1

n− 1

n∑
i=1

(∆Vi −∆V )2 = 23.16

The statistic of the test for a risk α = 0.05 (considered as a common value for this type of test)
is given then by:

z =
√
n

∆V −∆V0

s∗n
= −10.34

where ∆V0 is the average value of ∆V for constant wavelength, in this case, 16.93.
Or, because

|z| = 10.34 > 1− α

2
= 0.97

it results that the null hypothesis should be rejected, and so we can say that the available data suggest
a dependency of the relative error of V over the wavelength. The test confirms thus our observations.

The same hypothesis test conducted for I parameter will give a |z| = 0.05 < 0.97, which can be
translated into an independence of the error with regard to the wavelength.

This result is obvious if we remember that I is modulated by a constant in the final expression of
the outgoing intensity and has no dependency about the wavelength.

Meanwhile, the statistic for Q will be 3.43, and for U, 10.49, which proves again that the error
on Q and U parameters is correlated with λ.

The same result about the correlation was obtained also for σ = 0.06 or σ = 0.08, proving that
this behavior characterizes any ratio between the signal and the noise, the only difference being that
for lower SNR the trend of the variation becomes visible mostly for V and U. Moreover, there is no
reason to suppose that this result is dependent over the type of polarization.

Using the same type of simulation as before, with σ = 0.03, we can analyze also the variation of
the relative error on the Stokes parameters with the apex angle, ξ (Figure 8.10).

Figure 8.10: Variation of the relative error on I,Q,U and V with regard to the angle of the wedge, ξ
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Considering an inferior limit of this angle of about 1
◦ , dictated by the fabrication capabilities,

and λ = 0.14µm, we will retrieve the behavior exposed in the Figure 8.10, suggesting a strong
dependence over this angle. More than that, we see that at values of only about 6

◦ we already
reach an imprecision level of 50% for the V parameter, V, Q, and U being again subject of the
strongest variation. And this fact gives us a supplementary reason to choose an apex angle as small
as possible. Again, this result can be more precisely described if multiple simulations, for different
types of incoming polarization are considered.

8.2.2 Uncertainty for partial polarization: the limits of the design
An extremely important aspect in the study of such a device aimed for an astronomical space use is
also its ability to provide access to the Stokes parameters under the assumption of a low degree of
polarization. And this because generally the values of the degree of polarization (p) encountered in
astronomy are very small. Thus, we saw before that a planet like Venus exhibits a linear polarization
below 11%, Mars is characterized also by a linear degree of polarization less than 3%, while Jupiter
reaches a maximum of 7%. Overall, these values suggest that our spectropolarimeter should provide
a very good access to rates between 0.01 and 0.1.

In addition, any attempt to use the spectropolarimeter for the study of exoplanets must consider
a degree of polarization of about 10−5 or even 10−6...

The biggest hindrance for reaching this precision is the noise. Several numerical simulations
were conducted in order to point out the impact of noise over the minimum degree of linear po-
larization that can be retrieved, and the results can be seen in the figures below. At this point we
considered that the V component is 0, and the degree of polarization was calculated using the relation
(4.3.10):

p =

√
Q2 + U2

I

For the degree of circular polarization we will use the relation (4.3.11):

p =
V

I

All these simulations show that in order to work below a degree of polarization of 0.1 at a
wavelength of 0.14µm, the noise should be contained below σ = 0.008 (SNR=625).

Concerning the circular polarization, which in astronomy reaches very small degrees (even 100
times smaller than the linear polarization), the device will require even a higher sensibility. Fortu-
nately, the numerical simulations suggest that the detection of V parameter is not so exposed to the
noise as the rest: at σ = 0.01 we may have a precision on V of more than 70% for a circular degree
of polarization of only 0.001.

8.3 Instrumental polarization
A possible source of error for a space polarimeter is the polarization induced by the telescope it-
self. The best option is to use a Cassegrain structure, which, generally introduces a polarization of
about 0.01%. Otherwise, any other type of telescope that will require tilted mirrors in front of the
polarimeter will induce polarization even until 10%[26][p.55].
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Figure 8.11: Error variation for the fitted Stokes parameters with regard to the polarization degree
for σ = 0.06 and linear incoming polarization

Figure 8.12: Error variation for the fitted Stokes parameters with regard to the polarization degree
for σ = 0.02 and linear incoming polarization
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Figure 8.13: Error variation for the fitted Stokes parameters with regard to the polarization degree
for σ = 0.008 and linear incoming polarization

Figure 8.14: Error variation for the fitted Stokes parameters with regard to the polarization degree
for σ = 0.06 and incoming circular polarization
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8.3.1 Conclusions
• For a given polarization, the level of noise affects differently the extraction of the Stokes

parameters.

• The capacity to infer upon the values of Stokes parameters depends also on the characteristics
of the device: the analyzer angle (θ) and the apex angle (ξ).

• Concerning the analyzer angle, the simulations suggest that there is no value able to minimize
simultaneously the errors for all Stokes terms. But the analyzer can be optimized for the
extraction of at least two parameters.

• The relative error increases at low values of the wavelength.

• The relative error decreases at small values of the apex angle, ξ.

• A degree of linear polarization below 0.1 is achievable for SNR around 625.

• For the circular polarization, with an SNR=700 we may reach a degree of polarization of 10−3.

• In order to reduce the polarization induced by the telescope, a Cassegrain structure is recom-
mended.

• Further studies are needed in order to describe the impact of θ, ξ upon the capacity of the
device. Also the tests for the achievable degree of polarizations should be carried on.
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Chapter 9

Off-axis problem

Even if this kind of instrument is intended mostly for stars observations, with a very precise position-
ing, and parallel rays in the entry, the possibility to encounter off-axis rays should not be neglected.
Can be determined by a misalignment of the polarimeter or, in the case of use of a collimator, by the
chromatic aberrations.

Because of this, we have to understand what is happening with the modulation of the intensity
in this case and if this situation determines a limitation of the system. The study of the off-axis
scenario is even more important in the perspective to convert this instrument into an imaging spec-
tropolarimeter, where the capability to observe extended bodies will depend on its performance in
off-axis conditions.

9.1 Normal incidence revisited
Until now we used the hypothesis that the rays entering the system are normal to the incidence
surface and consequently they travel without deviation through the birefringent bloc of MgF2. For
a better accuracy of the theoretical analysis this situation must be properly represented with the help
of Huygens construction.

The ray tracing for the first two parts of the system was already explained in the Chapter 4 and
is reproduced in the Figure 9.1.

The most important observation coming with this representation is the fact that in the second
medium the light undergoes a splitting. The ordinary (o) and extraordinary (e) ray will have no
longer the same path. Thus, the hypothesis that the normal incident ray will pass as a single beam
trough the system is not valid anymore. For an undetermined incoming state of polarization there
will be a splitting along y axis (see orientation of the axis in Figure 9.1).

For the third wedge the geometrical representation is a little bit more complicated (Figure 9.2).
Because of the fact that the optical axis is tilted to 45

◦ in the (xy) plane, each of the previous e and
o-wave could be now splitted in new e and o-vibrations. If the incidence would be horizontal on the
third surface, the o-wave would propagate without deviation while the e-wave would be deviated as
a consequence of passage from a medium of index no to a medium of index ne. The true trajectory
of the rays in the third medium is very hard to determine analytically because the corresponding
refraction indices must be obtain by ”cutting” the ellipsoid of indices, which is tilted to 45

◦ , with the
(yz) plane, or the plane of incidence. Instead of using the relation (5.1.3) for the determination of ne
we have to use now the system (5.1.1).

Simulations conducted with Mathematica have shown that the separation between the coupled
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Figure 9.1: Ray tracing for the first and second bloc

Figure 9.2: Ray tracing for the third bloc

outgoing points of exit from the third wedge is below 10−9m for any incidence. Because of this we
can neglect the separation of rays in the third wedge.

Overall, for normal incidence the rays’ path inside the spectropolarimeter will follow the de-
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scription from the Figure 9.3, where we neglected the separation between the rays occurring the last
wedge.

Figure 9.3: Ray tracing for the entire spectropolarimeter under normal incidence

The first conclusion of this detailed description that must be pointed out is that the assumption
of a single ray path for the normal incidence is contradicted by the theory. Thus, the middle part of
the instrument cannot be considered as a ”neutral” zone while the last wedge will require a different
approach for the phase calculation. Following its ”activity”, the middle part will introduce a non-zero
phase difference between the ordinary and extraordinary rays. In the end, this will affect the Mueller
calculus, because the corresponding matrix cannot be considered any longer as an identity matrix.
Or changing the value of the Mueller matrix means that the outgoing intensity will be differently
modulated.

Further we will try to calculate the exact deviation of light for the normal incidence in order to
properly determine the phase along the instrument.

For the first wedge, exactly how it was considered before, the length of the ray path for normal
incidence is:

z1 = (h− y) · tan ξ

and the phase difference along this path:

∆φ1(y, λ) =
2π

λ
·∆n(λ)(h− y) tan ξ (9.1.1)

In the second medium, the path length of the e-ray is (see Figure 9.4):

z2e = xC − xB = y(tan ξ + tan 2ξ) (9.1.2)

The o-wave from the second medium corresponds to the e-wave from the first. Thus, by using
the Snell-Descartes law:

ne sinα1 = no sin ro2

Then we will have:

ro2 = arcsin
(ne
no

sinα1

)
(9.1.3)
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In this case of a normal incidence the angle α1 is the angle between the e-ray from the first bloc
and the normal to the surface 2, thus being equal to ξ. On the other hand, ro2 is the corresponding
angle of refraction in the second medium. Therefore, the angle between the e-ray and the horizontal
is:

β = ro2 − ξ

The entire geometry of this problem is depicted in the Figure 9.4.

Figure 9.4: Geometry of the normal incidence

In order to compute the coordinates xD, yD we use the system:{
tan (2ξ) = zC−zD

y−yD
tan β = y−yD

zD−zB

(9.1.4)

Solving this system for (zD, zD) we find easily:zD = h tan ξ + y tan (2ξ) 1−tanβ tan (ξ)
1+tanβ tan (2ξ)

yD = y ·
(

1−tanβ tan (ξ)
1+tanβ tan (2ξ)

) (9.1.5)

With the help of this values we may compute now the distance DB and then the phase difference
induced by the second element of the bloc for the case of a normal incidence:

∆φ2(y, λ) =
2π

λ
(ne(λ) ·BC − no(λ) ·BD) (9.1.6)

In the last wedge the rays follow the same path as in the middle, without deviation. Thus, the
distance CE will be:

CE = (h− y) tan (2ξ) (9.1.7)

Meanwhile, for DF we have:
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{
xF = L = h(tan ξ + tan (2ξ))

yF = y(1− tan β tan (ξ))− h tan β tan (2ξ)
(9.1.8)

Nevertheless, in the third wedge each of the incoming e and o wave is split in two. But the
geometry of this part of the instrument, with an angle of 45

◦ between the optical axis and the plane
of incidence, makes that the exit points E and F to be separated by less than 0.01µm, all along the y
axis, for any λ. The same thing is true on horizontal.

Because of the small angle between the two rays in each case, we decided then to neglect the ge-
ometrical effect of the splitting. But for each path (CE,DF) we have a phase difference. Accordingly,
we will consider that the total phase difference is the average of the two situations:

∆φ3(y, λ) =
∆φ31(y, λ) + ∆φ32(y, λ)

2
(9.1.9)

where

∆φ31(y, λ) =
2π

λ
no(λ)CE (9.1.10)

∆φ3(y, λ) =
2π

λ
no(λ)DF (9.1.11)

Overall, the phase difference from the second medium and the new expression of the phase
difference for the last wedge will alter the shape of the outgoing intensity. A comparison between
the ideal case, of a single beam and a split beam in normal incidence can be seen in the Figure 9.5.

9.2 Tilted rays in (yz) plane
Using the notations from the Figure 9.6 let us consider an incident ray making an angle α with the
normal, the incidence plane being parallel to the (yz) plane. Just as before we will try to calculate
the path length of each ray inside the optical instrument in order to find an expression for the phase
difference corresponding to each element. Thus, in the first wedge the extraordinary ray will follow
an angle re inside the anisotropic medium, while for the ordinary the refraction angle will be ro.

Because the incoming ray is seeing an isotropic medium regardless the value of α (e-wave being
everywhere parallel to the optical axis and o-wave perpendicular), the Snell-Descartes low can be
applied without further considerations:ro = arcsin

[
n
no
· sinα

]
re = arcsin

[
n
ne
· sinα

] (9.2.1)

Just as before we may compute again the phase difference characterizing the first wedge:

∆φ1(y, λ) =
2π

λ

(√1 + tan2 re
tan re + cot ξ

· ne(λ)−
√

1 + tan2 ro
tan ro + cot ξ

· no(λ)
)
· (h− y) (9.2.2)

Is easy to see that this expression is tending towards (9.1.1) for the normal incidence.
In the second medium, the situation is a little bit more complicated and will require a detailed

examination. Taking at first the case of the incoming o-ray that appears as e-ray for the second
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Figure 9.5: Received intensity along y for normal incidence, λ = 0.125µm, for the case ∆φ2 = 0
(red) and for the case ∆φ2 6= 0 (blue). The fact that the second prism induces a phase difference
changes the shape of the outgoing intensity.Just as before, the units of Iout are the arbitrary units of
intensity (most often W/m2 or V )

Figure 9.6: Huygens construction for the tilted scenario in the first medium

medium given the orientation of the optical axis, we will note with r′e the corresponding refraction
angle. Therefore, the total angle between the refracted ray and the horizontal will be r′e + ξ (see
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Figure 9.7). The generalized Snell-Descartes low tells us that:

no · sin (ro − ξ) = n(ro) · sin r
′

e (9.2.3)

where θe is the angle between the refracted ray and the optical axis, thus r′e + ξ. In order to
compute n(ro) we have to use the relation (5.1.4). In this way we infer:

n(ro) =
none√

sin2 ron2
o + cos2 ron2

e

(9.2.4)

Coming back to (9.2.3) we can build the equation for r′e which can be solved by knowing the
values of ro and ξ:

sin (ro − ξ) =
ne√

sin2 ron2
o + cos2 ron2

e

sin r
′

e (9.2.5)

Then it will be enough to calculate θe = r
′
e + ξ to have the angle with the horizontal.

Figure 9.7: Huygens construction for the tilted scenario in the second medium

For the second ray we saw that the extraordinary ray from the first medium becomes ordinary
here, with an electrical field vibrating perpendicular to optical axis everywhere in the plane (yz).
Thus, this ray is passing from an isotropic medium into another, from an index of refraction ne, to
an index no. Simply by using the Descartes low we have:

ne · sin (re − ξ) = no · sin (r
′

o) (9.2.6)

Thus, the angle with the horizontal will be:

θo = ξ + arcsin
(ne
no

sin (re − ξ)
)

(9.2.7)
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Figure 9.8: Schematic view of the ordinary ray in the second medium

A schematic representation of this situation can be retrieved in the Figure 9.8.
Having the values of the angles for each ray we may compute the path length for the ordinary

and extraordinary beam: le2, lo2.
Then the phase difference corresponding to the second body of the system is:

∆φ2(y, λ) =
2π

λ
(n(λ)le2 − no(λ)le2) (9.2.8)

where n(λ) should be determined according to the angle ro.

Figure 9.9: General reprezentation of the wedges

In the last wedge, because we neglect the splitting of each of the incoming rays, we can consider
that the phase difference is expressed again by the relation (9.1.9),(9.1.10) and (9.1.11).

Having now these new values of the phase difference for every element of the optical device we
may properly compute the outgoing intensity (Figure 9.10 and 9.11).

Therefore, we may observe that the main consequence of the off-axis incidence is the shifting
of the intensity pattern in the image plane. Simultaneously, the ”irregularities” exhibited by the
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Figure 9.10: Outgoing intensity for λ = 0.12µm for normal incidence without splitting inside the
optical device (red) and with splitting (blue). In green we have the intensity for an incidence α = 10

◦

Figure 9.11: Outgoing intensity for λ = 0.125µm for normal incidence with splitting (blue), and for
tilted incoming rays: α = 3

◦ (green), α = 6
◦ (orange) and α = 10

◦ (red)

modulation in the normal incidence are erased by a big incidence angle (more than 10
◦
). Because of

the this change of the pattern, the retrieval algorithm used before to compute the value of the Stokes
parameters must be adapted to take into consideration the presence of tilted rays. Moreover, the
adaptation of this algorithm exceeds the objective of this thesis, where we will try only to visualize
the effects of the off-axis incidence.
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9.3 Tilted rays into the horizontal plane (xz)
We may consider now that the incoming ray, traveling in the plane (xz), makes an angle α with
the normal to the left side of the instrument. Again, this ray will be split into an ordinary and
extraordinary ray into the the first wedge. The geometry of this situation is presented in the Figures
9.12 and 9.13. In the second part of the instrument, the rays will follow the paths represented in
the Figure 9.14. Meanwhile, because of the special orientation of the optical axis in the last wedge,
we will neglect again the deviation that happen here (Figure 9.15). Nevertheless, because each ray
entering the last wedge undergoes a new splitting, with a very small angle that can be neglected, we
will consider that over each path the phase difference can be expressed via:

∆φ =
2π

λ
∆n(λ)li (9.3.1)

where li is the distance traveled in the third block by each ray (i: ordinary and extraordinary).
Consequently, the phase difference from the last part of the optical instrument is the average of the
two phase differences existing here. Because the computation of the phase difference is based on the
same type of geometrical and optical considerations as before, we will skip this time the details.

Figure 9.12: Ray tracing and Huygens construction for the first block for an incidence at angle α
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Figure 9.13: Simulation for the first wedge with Mathematica software. At left we have a 2D
projection of the k surface for two indices ne and no arbitrary chosen to point out the difference
between the two surfaces. At left we have the vectorial reprezentation: the incoming ray (black), the
reflected ray (gray), the extraordinary ray (blue), the ordinary (red) and the pointing vector (Se)[1].

Figure 9.14: Simulation for the second wedge with Mathematica software.The notations are the
same as in the previous figure. We notice now the change of the surface of indices.[1].

The numerical simulations for several values of the incidence angle α shows again a shift of the
intensity pattern in the image plane, accompanied by a smoothing of the intensity profile.

The displacement of the outgoing profile of the intensity with the incidence angle requires an
adjustment of the extraction algorithm previously used for the computation of the I, Q, U and V
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Figure 9.15: Simulation for the third wedge with Mathematica software.The extraordinary and or-
dinary ray are almost indistinct as well as the surfaces of indices even if we kept a birefringence of
about 0.1[1].

Figure 9.16: Profile of the received intensity along y with regard to the incidence angle, α

parameters. But this is a new and laborious task which exceeds the purpose of this thesis. It may as
well represent the subject of further research.
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9.4 Extended target
The best results of the studied spectropolarimeter are obtained under the condition of normal inci-
dence. It is only in this case that the device maximizes its capacity and it fulfills its purpose. Once
the normal incidence is put aside, the difficulties start to arise. Thus, in a very simple scenario let
us consider at first the case of an uni-dimensional objected situated along y axis. Instead of having
a normal view of this object, we will consider that all the rays are coming from it with a tilt α. This
scenario corresponds in fact, for example, to the situation of a misalignment between the polarimeter
and the collimator that may come in front, or to a chromatic aberration (Figure 9.15) or simply to
the misalignment with the source. We will suppose that the extended source is homogeneous (Lam-
bertian) and characterized by the same polarization, regardless the angle, this polarization being
represented by the arbitrary state Sin = [1, 0.55, 0.703, 0.45], corresponding to a total polarization.

Figure 9.17: Off-axis uni-dimensional object in the (yz) plane. We consider that all the rays coming
from the object are tilted to an angle α with regard to the normal position. In red we have the normal
rays corresponding to the same exit positions.

The numerical simulations for different values of the angle α shows a continuous variation of
the outgoing intensity with this inclination (Figure 9.18). However, the signal is not totally distorted
and with an appropriate extraction algorithm, able to detect the inclination of the incoming rays,
the Stokes vector of the incident light probably could be determined. Things are not the same on
horizontal. Here the situation is much more easy, at least for this type of simulation. Thus, if we
imagine a similar emitting object, but this time on horizontal (the same figure as 9.17, only with x
instead of y), the deviation from the normal incidence will be translated into a different level of the
received intensity. But this level will be the same for the entire area of reception, because there is no
modulation along x axis as long as α remains constant. The situation is depicted in the figure 9.19,
where aside the normal incidence (blue), an incidence at 10

◦ was also plotted (red).
A last question that can be addressed here is what is happening if we have simultaneously an
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inclination along x and y. To answer, we imagined an object in the plane (xy), making an angle
of 45

◦ with x but received by the spectropolarimeter with an inclination of 10
◦ on x and 10

◦ about
y (see the picture 9.20). The plot of the received intensity along the inclined direction from the
detector plane shows a relatively small variation regarding the normal incidence (Figure 9.21), the
effect of the deviation along x being marked by the variation in amplitude.

All these simulations show an almost steady behavior of the spectropolarimeter in the presence
of tilted but still parallel rays. However, the exploitation of the modulation requires, how it was
mentioned before, a modification of the extraction algorithm so that the inclination of rays to be
considered also.

Nevertheless, the situation seems to be more complicated if in the entry we have multiples angles.
Thus, if we take the case of a simple uni-dimensional object along y seen under a FOV of 10

◦ , then
the modulation of the intensity will become unreadable (Figure 9.22). Consequently, the necessity to
ensure the presence of parallel rays inside the instrument is of paramount importance. This situation
is depicted in the Figure 9.23, where we see in red the very fast modulation of the tilted rays. The
situation can be explained by the fact that the tilt of rays increases the speed of variation of the phase
because of the longer distances traveled inside the medium.
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Figure 9.18: Comparison between the signal received in normal incidence from the uni-dimensional
object situated along y axis, and the same object with tilted incidence, at angle α of 1

◦ , 5
◦ and 10

◦ .
The comparison was realized over a distance of 3mm (in the detector plane).
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Figure 9.19: Received intensity at a high of 6mm (the middle of the considered prism) from a uni-
dimensional object along x with a length of about 3mm. Blue line is for normal incidence, red line
for tilted at 10

◦ .

Figure 9.20: Geometry of an inclination of 10
◦ on x and y. The object is tilted to 45

◦ about x axis
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Figure 9.21: Pattern of the received intensity along the diagonal direction for tilted rays (red) and
normal incidence (blue)

Figure 9.22: Geometry of a FOV α along y. In red we have the corresponding normal incidence.
Many scenarios are possible, but here we considered that the polarimeter is placed at the focal point.
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Master Thesis 9.4. Extended target

Figure 9.23: Received intensity from an object observed under a FOV of 10
◦ (red) and for normal

incidence (blue). Here again, the units of intensity are arbitrary (W/m2 or V usually). In this case
we imposed λ = 0.125µm.
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9.5 Conclusions
• The detailed representation of the ray tracing for the normal incidence proves the splitting

of the rays inside the optical device. Because of this phenomenon the phase difference corre-
sponding to each part of the instrument is different from the approximation used in the Chapter
6. Consequently, the intensity is differently modulated by the birefringent medium.

• The phase difference is bigger than zero in all the parts of the instrument.

• Tilted rays in the (yz) plane (on the vertical) will generate shifted and smoothed profile of the
intensity. The same is true for the rays in (xz) plane.

• An extended target on vertical, source of parallel rays, will generate a profile analogue to the
normal target, but shifted and slightly distorted as a function of the angle of incidence. An
extended target on horizontal will generate a constant signal.

• Parallel rays with the same inclination along x and y will generate also a sinusoidal modulation
shifted and altered.

• Rays coming from a FOV bigger than 1
◦ (along y or x axis) will impose a very fast variation

of the signal.
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Chapter 10

Conclusions and perspectives

Despite the unsophisticated structure, the spectropolarimeter presented here has proved itself to be a
very complex instrument, requiring a deep and large analysis in order to understand its functioning.

Therefore, we saw during this research that every little detail can play a major role in the effi-
ciency of the instrument. First, we observed that analyzer and apex angles (θ and ξ) are dominating
the behavior of the device. Apparently, there is no ”perfect” solution for these angles, able to max-
imize simultaneously the detection of all the types of incoming polarization. Thus, in the future, a
straight classification of the best choices for the angles regarding the desired type of measurement
and sensibility should conducted. Theoretically, the polarimeter can descend far below a degree of
linear polarization of 10−2 and 10−3 for circular polarization. And these results qualify it for the
space use.

On the other hand, in this approach we considered that lateral wedges have an apex of ξ and
2ξ respectively. Nevertheless, in the case of the off-axis incidence, this configuration determines a
very fast variation of the phase difference in the exit wedge. It would be then appropriate to study a
design with apexes of closer values.

Another aspect that should be investigated is also the possibility to use an isotropic medium
between the two wedges or even to separate them, because in the presence of tilted rays this part of
the instrument distorts the signal.

Finally, the most important part that should be studied in detail in the next future is the behavior
in the presence of tilted rays. We observed that non-parallel rays entering the system can drastically
alter the functioning of the device. Therefore, an optical design able to minimize this phenomenon
should also be studied. Simultaneously, for the parallel and tilted rays an extraction algorithm for
the Stokes parameters must be developed.

Overall, the spectropolarimeter presented here is still far for being completely understood and
optimized. It requires even more and deep analyze. But the most important step was made: there
is enough proof that the device can work under normal incidence, and even in certain cases of the
off-axis. From now on the entire effort should be dedicated to the optimization of this spectropo-
larimeter.
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Appendix A

Birefringence of MgF2

Figure A.1: Variation of the ordinary (no) and extraordinary (ne) indexes of refraction ofMgF2 with
regard to wavelength (µm) at 19

◦
C, based on the experimental data from Table A.1
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Figure A.2: Birefringence of MgF2 between 0.04µm and 10µm at 19
◦
C according to the data

presented in Table A.1
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Table A.1: Birefringence of MgF2 between 0.04µm and 10.0µm at 19
◦
C. The data was extracted

from [5][6][11][13][14][27]

λ(µm) no ne ∆n = ne − no
0.0459 0.021 0.832 0.021
0.0468 0.02 0.816 0.02
0.0477 0.019 0.803 0.019
0.0486 0.02 0.79 0.02
0.0496 0.029 0.794 0.029
0.0506 0.043 0.799 0.043
0.0517 0.044 0.807 0.044
0.0528 0.042 0.816 0.042
0.0539 0.037 0.827 0.037
0.0551 0.028 0.837 0.028
0.0577 0.02 0.866 0.02
0.059 0.078 0.881 0.078
0.0605 0.109 0.894 0.109
0.062 0.105 0.905 0.105
0.0636 0.087 0.919 0.087
0.0653 0.017 0.983 0.017
0.067 0.109 1.117 0.109
0.0689 0.071 1.151 0.071
0.0708 0.084 1.264 0.084
0.0729 0.128 1.317 0.128
0.0751 0.167 1.353 0.167
0.0775 0.232 1.416 0.232
0.08 0.321 1.513 0.321
0.0827 0.033 1.387 0.033
0.0855 0.043 1.299 0.043
0.0886 0.015 1.272 0.015
0.0918 0.005 1.348 0.005
0.0954 0.097 1.449 0.097
0.0969 0.142 1.423 0.142
0.0984 0.257 1.419 0.257
0.1 0.248 1.47 0.248
0.1016 0.119 1.346 0.119
0.1033 0.47 1.223 0.47
0.1051 0.58 1.343 0.58
0.1069 0.307 1.636 0.307
0.1088 0.077 1.911 0.077
0.1107 0.287 1.988 0.287
0.1127 0.393 1.931 0.393
0.115 0.02 1.694 0.02
0.12 0 1.626 0
0.125 0.009 1.597 0.009
0.13 0.012 1.567 0.012
0.14 0.014 1.527 0.014
0.15 1.4792 1.4941 0.0149

λ(µm) no ne ∆n = ne − no
0.152 1.4752 1.49 0.0148
0.154 1.4715 1.4863 0.0148
0.156 1.468 1.4827 0.0147
0.158 1.4647 1.4794 0.0147
0.16 1.4616 1.4762 0.0146
0.162 1.4587 1.4732 0.0145
0.164 1.4559 1.4703 0.0144
0.166 1.4532 1.4676 0.0144
0.168 1.4507 1.4651 0.0144
0.17 1.4483 1.4626 0.0143
0.172 1.4461 1.4603 0.0142
0.174 1.4439 1.4581 0.0142
0.176 1.4419 1.456 0.0141
0.178 1.4399 1.454 0.0141
0.18 1.438 1.4521 0.0141
0.182 1.4362 1.4502 0.014
0.184 1.4345 1.4485 0.014
0.186 1.4329 1.4468 0.0139
0.188 1.4313 1.4451 0.0138
0.19 1.4298 1.4436 0.0138
0.192 1.4284 1.4421 0.0137
0.194 1.427 1.4407 0.0137
0.196 1.4256 1.4393 0.0137
0.198 1.4244 1.438 0.0136
0.2 1.4231 1.4367 0.0136
0.202 1.422 1.4355 0.0135
0.204 1.4208 1.4343 0.0135
0.206 1.4197 1.4332 0.0135
0.208 1.4187 1.4321 0.0134
0.21 1.4176 1.431 0.0134
0.212 1.4166 1.43 0.0134
0.214 1.4157 1.429 0.0133
0.216 1.4148 1.4281 0.0133
0.218 1.4139 1.4272 0.0133
0.22 1.413 1.4263 0.0133
0.222 1.4122 1.4254 0.0132
0.224 1.4114 1.4246 0.0132
0.226 1.4106 1.4238 0.0132
0.228 1.4098 1.423 0.0132
0.23 1.4091 1.4222 0.0131
0.232 1.4084 1.4215 0.0131
0.234 1.4077 1.4208 0.0131
0.236 1.4071 1.4201 0.013
0.238 1.4064 1.4194 0.013
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λ(µm) no ne ∆n = ne − no
0.24 1.4058 1.4188 0.013
0.242 1.4052 1.4181 0.0129
0.244 1.4046 1.4175 0.0129
0.246 1.404 1.4169 0.0129
0.248 1.4034 1.4163 0.0129
0.25 1.4029 1.4158 0.0129
0.252 1.4024 1.4152 0.0128
0.254 1.4019 1.4147 0.0128
0.256 1.4014 1.4142 0.0128
0.258 1.4009 1.4137 0.0128
0.26 1.4004 1.4132 0.0128
0.262 1.3999 1.4127 0.0128
0.264 1.3995 1.4122 0.0127
0.266 1.399 1.4118 0.0128
0.268 1.3986 1.4113 0.0127
0.27 1.3982 1.4109 0.0127
0.272 1.3978 1.4105 0.0127
0.274 1.3974 1.4101 0.0127
0.276 1.397 1.4097 0.0127
0.278 1.3966 1.4093 0.0127
0.28 1.3963 1.4089 0.0126
0.282 1.3959 1.4085 0.0126
0.284 1.3956 1.4081 0.0125
0.286 1.3952 1.4078 0.0126
0.288 1.3949 1.4074 0.0125
0.29 1.3946 1.4071 0.0125
0.292 1.3942 1.4068 0.0126
0.294 1.3939 1.4064 0.0125
0.296 1.3936 1.4061 0.0125
0.298 1.3933 1.4058 0.0125
0.3 1.393 1.4055 0.0125
0.305 1.3923 1.4048 0.0125
0.31 1.3917 1.4041 0.0124
0.315 1.391 1.4034 0.0124
0.32 1.3904 1.4028 0.0124
0.325 1.3899 1.4022 0.0123
0.33 1.3893 1.4016 0.0123
0.335 1.3888 1.4011 0.0123
0.34 1.3883 1.4006 0.0123
0.345 1.3878 1.4001 0.0123
0.35 1.3874 1.3996 0.0122
0.355 1.387 1.3992 0.0122
0.36 1.3866 1.3988 0.0122
0.365 1.3862 1.3983 0.0121
0.37 1.3858 1.398 0.0122
0.375 1.3854 1.3976 0.0122

λ(µm) no ne ∆n = ne − no
0.38 1.3851 1.3972 0.0121
0.385 1.3848 1.3969 0.0121
0.39 1.3844 1.3965 0.0121
0.395 1.3841 1.3962 0.0121
0.4 1.3838 1.3959 0.0121
0.41 1.3833 1.3953 0.012
0.42 1.3828 1.3948 0.012
0.43 1.3823 1.3943 0.012
0.44 1.3818 1.3938 0.012
0.45 1.3814 1.3934 0.012
0.46 1.381 1.393 0.012
0.47 1.3807 1.3926 0.0119
0.48 1.3803 1.3923 0.012
0.49 1.38 1.3919 0.0119
0.5 1.3797 1.3916 0.0119
0.51 1.3794 1.3913 0.0119
0.52 1.3792 1.391 0.0118
0.53 1.3789 1.3908 0.0119
0.54 1.3787 1.3905 0.0118
0.55 1.3784 1.3903 0.0119
0.56 1.3782 1.3901 0.0119
0.57 1.378 1.3898 0.0118
0.58 1.3778 1.3896 0.0118
0.59 1.3776 1.3894 0.0118
0.6 1.3775 1.3892 0.0117
0.62 1.3771 1.3889 0.0118
0.64 1.3768 1.3886 0.0118
0.66 1.3765 1.3883 0.0118
0.68 1.3763 1.388 0.0117
0.7 1.376 1.3878 0.0118
0.72 1.3758 1.3875 0.0117
0.74 1.3756 1.3873 0.0117
0.76 1.3754 1.3871 0.0117
0.78 1.3752 1.3869 0.0117
0.8 1.375 1.3867 0.0117
0.82 1.3749 1.3865 0.0116
0.84 1.3747 1.3863 0.0116
0.86 1.3746 1.3862 0.0116
0.88 1.3744 1.386 0.0116
0.9 1.3743 1.3859 0.0116
0.92 1.3741 1.3857 0.0116
0.94 1.374 1.3856 0.0116
0.96 1.3739 1.3855 0.0116
0.98 1.3738 1.3853 0.0115
1 1.3736 1.3852 0.0116
1.05 1.3733 1.3849 0.0116
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λ(µm) no ne ∆n = ne − no
1.1 1.3731 1.3846 0.0115
1.15 1.3728 1.3843 0.0115
1.2 1.3726 1.3841 0.0115
1.25 1.3723 1.3838 0.0115
1.3 1.3721 1.3835 0.0114
1.35 1.3718 1.3833 0.0115
1.4 1.3716 1.383 0.0114
1.45 1.3714 1.3828 0.0114
1.5 1.3711 1.3825 0.0114
1.55 1.3709 1.3822 0.0113
1.6 1.3706 1.382 0.0114
1.65 1.3704 1.3817 0.0113
1.7 1.3701 1.3814 0.0113
1.75 1.3699 1.3812 0.0113
1.8 1.3696 1.3809 0.0113
1.85 1.3694 1.3806 0.0112
1.9 1.3691 1.3803 0.0112
1.95 1.3688 1.38 0.0112
2 1.3686 1.3797 0.0111
2.05 1.3683 1.3794 0.0111
2.1 1.368 1.3791 0.0111
2.15 1.3677 1.3788 0.0111
2.2 1.3674 1.3785 0.0111
2.25 1.3671 1.3782 0.0111
2.3 1.3668 1.3778 0.011
2.35 1.3665 1.3775 0.011
2.4 1.3662 1.3771 0.0109
2.45 1.3658 1.3768 0.011
2.5 1.3655 1.3764 0.0109
2.55 1.3652 1.3761 0.0109
2.6 1.3648 1.3757 0.0109
2.65 1.3645 1.3753 0.0108
2.7 1.3641 1.3749 0.0108
2.75 1.3638 1.3745 0.0107
2.8 1.3634 1.3741 0.0107
2.85 1.363 1.3737 0.0107
2.9 1.3626 1.3733 0.0107
2.95 1.3622 1.3729 0.0107
3 1.3618 1.3724 0.0106
3.05 1.3614 1.372 0.0106
3.1 1.361 1.3716 0.0106
3.15 1.3606 1.3711 0.0105
3.2 1.3602 1.3706 0.0104
3.25 1.3598 1.3702 0.0104
3.3 1.3593 1.3697 0.0104
3.35 1.3589 1.3692 0.0103

λ(µm) no ne ∆n = ne − no
3.4 1.3584 1.3687 0.0103
3.45 1.358 1.3682 0.0102
3.5 1.3575 1.3677 0.0102
3.55 1.357 1.3672 0.0102
3.6 1.3566 1.3667 0.0101
3.65 1.3561 1.3662 0.0101
3.7 1.3556 1.3656 0.01
3.75 1.3551 1.3651 0.01
3.8 1.3546 1.3645 0.0099
3.85 1.3541 1.364 0.0099
3.9 1.3535 1.3634 0.0099
3.95 1.353 1.3628 0.0098
4 1.3525 1.3622 0.0097
4.05 1.3519 1.3616 0.0097
4.1 1.3514 1.361 0.0096
4.2 1.3502 1.3598 0.0096
4.25 1.3497 1.3592 0.0095
4.3 1.3491 1.3585 0.0094
4.35 1.3485 1.3579 0.0094
4.4 1.3479 1.3573 0.0094
4.45 1.3473 1.3566 0.0093
4.5 1.3466 1.3559 0.0093
4.55 1.346 1.3552 0.0092
4.6 1.3454 1.3546 0.0092
4.65 1.3448 1.3539 0.0091
4.7 1.3441 1.3532 0.0091
4.75 1.3434 1.3524 0.009
4.8 1.3428 1.3517 0.0089
4.85 1.3421 1.351 0.0089
4.9 1.3414 1.3502 0.0088
4.95 1.3407 1.3495 0.0088
5 1.34 1.3487 0.0087
5.1 1.3386 1.3472 0.0086
5.2 1.3372 1.3456 0.0084
5.3 1.3357 1.344 0.0083
5.4 1.3341 1.3423 0.0082
5.5 1.3326 1.3406 0.008
5.6 1.331 1.3389 0.0079
5.7 1.3293 1.3371 0.0078
5.8 1.3277 1.3353 0.0076
5.9 1.3259 1.3334 0.0075
6 1.3242 1.3315 0.0073
6.1 1.3224 1.3296 0.0072
6.2 1.3206 1.3276 0.007
6.3 1.3187 1.3256 0.0069
6.4 1.3168 1.3235 0.0067
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λ(µm) no ne ∆n = ne − no
6.5 1.3148 1.3214 0.0066
6.6 1.3128 1.3192 0.0064
6.7 1.3108 1.317 0.0062
6.8 1.3087 1.3147 0.006
6.9 1.3066 1.3124 0.0058
7 1.3044 1.3101 0.0057
7.1 1.3022 1.3076 0.0054
7.2 1.3 1.3052 0.0052
7.3 1.2976 1.3027 0.0051
7.4 1.2953 1.3001 0.0048
7.5 1.2929 1.2975 0.0046
7.6 1.2904 1.2948 0.0044
7.7 1.2879 1.2921 0.0042
7.8 1.2854 1.2893 0.0039
7.9 1.2827 1.2865 0.0038
8 1.2801 1.2836 0.0035
8.1 1.2774 1.2806 0.0032
8.2 1.2746 1.2776 0.003
8.3 1.2718 1.2745 0.0027
8.4 1.2689 1.2714 0.0025
8.5 1.2659 1.2682 0.0023
8.6 1.2629 1.2649 0.002
8.7 1.2598 1.2615 0.0017
8.8 1.2567 1.2581 0.0014
8.9 1.2535 1.2546 0.0011
9 1.2502 1.2511 0.0009
9.1 1.2469 1.2474 0.0005
9.2 1.2435 1.2437 0.0002
9.3 1.24 1.2399 0.0001
9.4 1.2365 1.2361 0.0004
9.5 1.2328 1.2321 0.0007
9.6 1.2292 1.2281 0.0011
9.7 1.2254 1.224 0.0014
9.8 1.2215 1.2198 0.0017
9.9 1.2176 1.2154 0.0022
10 1.2136 1.2111 0.0025
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Azimuth and ellipticity calculation

Despite their apparently obvious character, the equations (4.1.5), (4.1.6) require a certain amount
of calculus. As a matter of fact, in order to deduce this expressions we have at first to consider the
projections Ex and Ey of the ~E for z=0, by introducing specific phases φx and φy:

Ex = E0x cos (ωt+ φx)

Ey = E0y cos (ωt+ φy)

Now we project this relations on the system (η, ξ) according to the Figure B.1:

Eξ = Ex cos (ψ) + Ey sinψ

Eη = −Ex sinψ + Ey cosψ

Meanwhile, in the rotated system (η, ξ) we have

Eξ = a cos (ωt+ φ)

Eη = ±b cos (ωt+ φ)

where a is the semi-minor axis of the ellipse, b is the semi-major axis and φ is a common phase.
From this two last groups of identities we deduce

a cos (ωt+ φ) = Ex cos (ψ) + Ey sinψ

±b cos (ωt+ φ) = −Ex sinψ + Ey cosψ

Substituting now the expression of the field along x and y

a cos (ωt+ φ) = E0x cos (ωt+ φx) cosψ + E0y cos (ωt+ φy) sinψ

±b cos (ωt+ φ) = −E0x cos (ωt+ φx) sinψ + E0y cos (ωt+ φy) cosψ

Using trigonometric identities we may develop the first relation and then, by grouping the terms
in cos (ωt) and sin (ωt) we may find

a cos (φ) = E0x cosφx cosψ + E0y cos (φy) sinψ (B.0.1)

a sin (φ) = E0y sinφx cosψ + E0y sin (φy) sinψ (B.0.2)

And in the same way:
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Figure B.1: Principal angles defining the polarization ellipse. A second reference frame (η, ξ) ori-
ented after the axis of the ellipse is also represented

∓ b sin (φ) = −E0x cosφx sinψ + E0y cos (φy) cosψ (B.0.3)

± b cos (φ) = −E0x sinφx sinψ + E0y sin (φy) cosψ (B.0.4)

Dividing (B.0.1) by (B.0.4) and (B.0.2) by (B.0.3) we find directly:

E0x cosφx cosψ + E0y cos (φy) sinψ

−E0x sinφx sinψ + E0y sin (φy) cosψ
=
E0y sinφx cosψ + E0y sin (φy) sinψ

E0x cosφx sinψ − E0y cos (φy) cosψ

Working on this last relation and making again use of trigonometric identities we will easily find
that:

(E2
0x − E2

0y) sin (2ψ) = 2E0xE0y cos (2ψ) cos (φy − φx)
and then

tan (2ψ) =
2E0xE0y

E2
0x − E2

0y

cos ε (B.0.5)

where ε = φy − φx. Playing again with the relations (B.0.1) - (B.0.4) we may find easily from
(B.0.1) · (B.0.4)− (B.0.2) · (B.0.3) that

±ab = E0xE0y[sinφy cosφx − sinφx cosφy]

which is equivalent to
±ab = E0xE0y sin ε
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Also, from the same set of equations we may infer that

a2 + b2 = E2
0x + E2

0y

Taking now the ellipticity as tanχ = ±b/a we may find that:

sin (2χ) =
2E0xE0y

E2
0x + E2

0y

sin ε (B.0.6)
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Appendix C

Stokes parameters, ellipticity and azimuth

From the definition of the Stokes parameters as it was stated in the the section 4.3 we saw that:

I = 〈I〉 = 〈E2
0x〉+ 〈E2

0y〉
Q = 〈I0〉 − 〈I90〉 = 〈E2

0x〉 − 〈E2
0y〉

U = 〈I45〉 − 〈I−45〉 = 〈2E0xE0y cos ε〉
V = 〈IRCP 〉 − 〈ILCP 〉 = 〈2E0xE0y sin ε〉

(C.0.1)

Based on the expression for the ellipticity (χ)

sin (2χ) =
2E0xE0y

E2
0x + E2

0y

sin ε

we infer that

V = 2E0xE0y sin ε

and then
V = (E2

0x + E2
0y) sin (2χ) (C.0.2)

Using now the fact that for a completely polarized wave we need to have

Q2 + U2 + V 2 = I2 (C.0.3)

and substituting with (C.0.2) and (C.0.1) we obtain:

(E2
0x − E2

0y)
2 + (2E0xE0y)

2 cos2 ε+ (E2
0x + E2

0y)
2 sin2 (2χ) = (E2

0x + E2
0y)

2

⇔ (E2
0x − E2

0y)
2 + (2E0xE0y)

2 cos2 ε+ (E2
0x + E2

0y)
2 − (E2

0x + E2
0y)

2 cos2 (2χ) = (E2
0x + E2

0y)
2

⇔ (E2
0x − E2

0y)
2 = (E2

0x + E2
0y)

2 cos2 (2χ)− (2E0xE0y)
2 cos2 ε

However, in the Chapter 4 we saw that the azimuth angle is given by

tan (2ψ) =
2E0xE0y

E2
0x − E2

0y

cos ε

Replacing now 2E0xE0y cos ε by the corresponding term:

(E2
0x − E2

0y)
2 = (E2

0x + E2
0y)

2 cos2 (2χ)− (E2
0x − E2

0y)
2 tan2 (2ψ)
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⇔ (E2
0x − E2

0y)
2(1 + tan2 (2ψ)) = (E2

0x + E2
0y)

2 cos2 (2χ)

⇒ Q = (E2
0x − E2

0y) = (E2
0x + E2

0y) cos (2χ) cos (2ψ) (C.0.4)

And again because

tan (2ψ) =
2E0xE0y

E2
0x − E2

0y

cos ε

we find directly

U = 2E0xE0y cos ε = (E2
0x + E2

0y) cos2 (2χ) sin (2ψ) (C.0.5)

As a conclusion we may write now

I = E2
0x + E2

0y

Q = (E2
0x + E2

0y) cos (2χ) cos (2ψ)
U = (E2

0x + E2
0y) cos (2χ) sin (2ψ)

V = (E2
0x + E2

0y) sin (2χ)

(C.0.6)
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Appendix D

Mueller matrix of the spectropolarimeter

The birefringent bloc is characterized by the phase differences ∆φ1 and ∆φ2, while the analyzer by the angle θ.

1

2


1 cos(2θ) cos (∆φ2) cos (∆φ1) sin(2θ)− sin (∆φ1) cos(2θ) sin (∆φ2) cos (∆φ1) cos(2θ) sin (∆φ2) + sin (∆φ1) sin(2θ)

cos(2θ) cos2(2θ) cos (∆φ2) cos (∆φ1) cos(2θ) sin(2θ)− sin (∆φ1) cos2(2θ) sin (∆φ2) cos (∆φ1) sin (∆φ2) cos2(2θ) + sin (∆φ1) sin(2θ) cos(2θ)
sin(2θ) cos(2θ) cos (∆φ2) sin(2θ) cos (∆φ1) sin2(2θ)− sin (∆φ1) cos(2θ) sin(2θ) sin (∆φ2) sin (∆φ1) sin2(2θ) + cos (∆φ1)os(2θ) sin (∆φ2) sin(2θ)

0 0 0 0


(D.0.1)
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List of symbols and abbreviations

LHP horizontal polarization
LVP vertical polarization

L+45P polarization at +45
◦

L-45P polarization at −45
◦

RCP right circular polarization
LCP left circular polarization
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Appendix: Useful Mueller matrices

• Linear polarizer making an angle θ with the x axis:

M(θ) = 1
2


1 cos (2θ) sin (2θ) 0

cos (2θ) cos2 (2θ) sin (2θ) cos (2θ) 0
sin (2θ) sin (2θ) cos (2θ) sin2 (2θ) 0

0 0 0 0


• Horizontal polarizer

M(0) = 1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


• 45

◦ polarizer

M(π
4
) = 1

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


• π

2
polarizer

M(π
2
) = 1

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


• Rotator (of angle θ)

R(θ) =


1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1
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• Wave plate (φ)

M(φ) =


1 0 0 0
0 1 0 0
0 0 cosφ sinφ
0 0 − sinφ cosφ


• Quarter wave plate (QWP)

M(π
2
) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0


• Half wave plate (HWP)

M(π) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


• Rotated wave plate (rotation θ, phase φ)

M(θ, φ) =


1 0 0 0
0 cos2 2θ + cosφ sin2 2θ (cosφ− 1) sin 2θ cos 2θ sinφ sin 2θ
0 (cosφ− 1) sin 2θ cos 2θ sin2 2θ + cosφ cos2 2θ sinφ cos 2θ
0 − sinφ sin 2θ − sinφ cos 2θ cosφ
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