
http://lib.uliege.be https://matheo.uliege.be

Recommender system for the billiard game

Auteur : El Mekki, Sélim

Promoteur(s) : Cornélusse, Bertrand

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil électromécanicien, à finalité spécialisée en énergétique

Année académique : 2018-2019

URI/URL : http://hdl.handle.net/2268.2/6725

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège - Faculty of Applied Science
Academic year 2018-2019

Recommender system for the
billiard game

In fulfilment of the requirements for the Degree of Master in
Electromechanical Engineering

El Mekki Sélim

Abstract

This work studies how a recommender system for the billiard game can be treated
as a reinforcement learning problem. The type of billiard game used is carom
billiards. First, the geometry and physics of billiards are studied in order to make
a simulator. Then, the simulator is designed following an event-based method
simulation. This simulation method is the most suitable for this type of problem.
The recommender system is then formalized as a reinforcement learning problem.
It is then treated through different reinforcement learning algorithms such as Q-
learning, Deep-Q-Learning and Deep Deterministic Policy Gradient. The results
shows Deep deterministic policy gradient leads to the best agent behaviour com-
pared to the other two techniques for the billiard game. Some tweaks are finally
added to allow the recommender system to be able to find a solution regardless of
the pool table state.

1

Acknowledgements

I would like to thank all the people who have contributed in some way to this work.

First of all, I would like to thank my academic promoters, Pr. Bertrand
Cornélusse for his continuous follow-up and his suggestions in this work and Pr.
Van Droogenbroeck for his advice on where and how to start this project. I would
like to thank Mr. Quentin Gemine for accepting my internship at BLA and for giv-
ing me the opportunity to work on reinforcement learning based problems. Then, I
thank my friend Selmane for giving me suggestions for this work. Finally, I would
like to thank all my family for their support.

2

3

Contents

1 Introduction 7
1.1 Carom Billiards . 7
1.2 State of the art . 8

1.2.1 Motivation . 9

2 The Physics Of Billiards 10
2.1 Ball Motion . 10

2.1.1 The sliding state . 11
2.1.2 The rolling state . 11
2.1.3 The spinning state . 11

2.2 Collisions . 12
2.2.1 Cue-Ball Collision . 12
2.2.2 Ball-Ball Collision . 16
2.2.3 Rail-Ball Collision . 17

2.3 Billiard Geometry . 18

3 Simulation Modeling 19
3.1 Intuitive Method . 20
3.2 Event-based Method . 22
3.3 Event prediction solver . 23

3.3.1 Cue strike event . 23
3.3.2 Sliding to rolling event . 23
3.3.3 Rolling to stationary event 24
3.3.4 Spinning to non spinning event 24
3.3.5 Ball-rail collision event . 24
3.3.6 Ball-ball collision event . 26

3.4 Simulation Algorithm . 27

4 Reinforcement learning 31
4.1 Decision-Making Problem Formulation 31

4.1.1 Markov Decision Process . 31
4.1.2 State description . 32
4.1.3 Action description . 33
4.1.4 Transition function . 35
4.1.5 Reward function . 35

4.2 Q-learning . 36
4.2.1 Exploration-Exploitation dilemma 37
4.2.2 Application to Carom . 38

4.3 Deep-Q-learning . 40

4

4.3.1 Experience Replay . 41
4.3.2 Fixed Target Network . 41
4.3.3 Application to Carom . 41

4.4 Deep deterministic policy gradient 42
4.4.1 Target Networks Update . 44
4.4.2 Application to Carom . 45

5 Recommender System 51
5.1 Reward Sensitivity . 51
5.2 User Interface . 53

6 Conclusion 56
6.1 Future Work . 56

6.1.1 Hindsight Experience Replay 56
6.1.2 Learning from demonstrations 57
6.1.3 Improvement of simulator physics 57

5

List of Figures

1 Carom table before the first strike. 8
2 Ball Motion. 10
3 Ball in spinning state. 12
4 Cue-Ball collision. 13
5 φ input parameter and reference frames. 14
6 General Ball-Ball Collision. 16
7 Sliding speed vector example with one ball at rest. 18
8 Billiard table geometry and initial state geometry. 18
9 Simulation with an intuitive method. 20
10 Intuitive method drawback. 21
11 A ball collides with both another one and a rail during a same

timestep. 21
12 Simultaneous events move. 23
13 Example case of the general algorithm. 29
14 Example case of the event prediction solver. 30
15 Agent-Environment interaction in Reinforcement learning. 31
16 A ball blocking a particular shot. 34
17 A rail blocking a particular shot. 34
18 Reward shaping for r2 and r4. 37
19 States space discretization. 39
20 Deep-Q-Network. 40
21 DQN - Mean reward using the reward design r1. 43
22 DQN - Mean reward using the reward design r2. 44
23 DDGP - Mean reward using the reward design r1. 46
24 DDGP - Mean Q value using the reward design r1. 47
25 DDGP - Loss using the reward design r1. 47
26 Strategy adopted by the agent with r1. 48
27 Shot difficulty: angle of collision parameter. 48
28 DDGP - Mean reward using the reward design r1 taking into account

the shot difficulty. 49
29 DDGP - Mean reward using the reward design r3. 49
30 DDGP - Mean reward using the reward design r4. 50
31 Effect of initial conditions variation on simple pendulum. 51
32 Effect of initial conditions variation on double pendulum. 52
33 Reward sensitivity. 52
34 User Interface. 54
35 User Interface in recommender system mode. 55

6

1 Introduction

The history of billiards goes back to the 14th century, where the first recognizable
billiard was played outdoors. It was a game really similar to croquet. In the 15th

century, the first indoor pool table was owned by king Louis XI of France. Later,
he refined and developed the rules, popularized the game, and it quickly spread
among the French nobility. Nowadays, billiards sports are popular family of games
of skill played around the world.

There exists several type of billiards games that can be separated into 3 cate-
gories:

• Pool: It is a category of billiards games played on a table with six pockets
along the rails, in which the player has to push the balls. Here are some
examples of Pool games: Eight-Pool, nine-ball, straight-pool.

• Games played on a snooker table which is billiards table with six pockets
and dimensions that are different from Pool. This category of games include
Snooker, English billiards and Russian pyramid.

• Carom billiards: this category of games is completely different from others
since the table has not any pockets. The table also has different dimensions
from others type of billiards games. This category includes: Carambole
(also called Carom billiards or french Carom), cushion caroms, three-cushion
billiards, artistic billiards and four-ball.

1.1 Carom Billiards

In this work, the type of billiards game studied is Carom billiards (french Carom).
The game game is played with three balls and a billiards table without pockets.

A game of French billiards is played by two players, each of whom plays with
his cue ball. The two cue balls are distinguished by their color: one is white and
the other is yellow. With their ball, the players must simultaneously touch the
other two balls. The main goal of the game is to make the longest possible series
of points. As long as the player is successful in the moves, he continues. When
he misses the point, it is his opponent who plays again. The first of the players
to score 300 points wins the game but, in general, this number of goal points can
be adjusted to a lower value according to the level of the players and they play a
limited number of turns.

7

In order to decide which player will start the game, the two opponents simul-
taneously play their ball, placed at the height of the starting marked positions
and must hit the opposite small rail and get as close as possible to the rail behind
the starting position. The player closest to the rail chooses: either he starts or he
decides to let his opponent play the first move. The complete and detailed rules
can be found in [1].

Figure 1: Carom table before the first strike.

1.2 State of the art

First, the physics involved in billiards was analyzed by Coriolis [2]. The analysis
made is very advanced and often serves as a reference for the current studies on
billiards. Later, as knowledge of physics had improved considerably, Coriolis’ work
was updated in some books. Examples include Petit [3] or Marlow [4], books that
focus on the physical laws involved in billiards.

On the simulator side, there are a few. We can mention for example, FooBil-
lard, Coriolis3D or Fastfiz. The reasons to create a simulator in this work are: first,
the fact that most of the known simulators are not open source and second, the
fact of doing it in python, the language in which most libraries related to machine
learning and reinforcement learning are located.

As for billiard agents, there are already some, such as PickPocket [5], PoolMas-
ter [6], DeepGreen [7], RoboShark [8].

8

1.2.1 Motivation

The creation of agents to play games is one of the most important areas of research
in reinforcement learning. Games are suitable devices for reinforcement learning
because they provide simple environment in which agents can quickly interact with
and train on and in several cases, they can be easily simulated. In the case of bil-
liards, a lot of work has been done in the application of AI techniques to this game.

Traditionally, AI techniques used for this game include research and heuristic
methods. More recent works also used image data of the game and supervised
learning. While both types of techniques have worked well in their respective set-
tings, they both have their issues. Heuristics and search require that the agent
has a full understanding and information of its environment and is hard to be
generalized to unknown situations. Image based methods can be generalized but
they require very large amounts of data and computation to train.

Reinforcement learning avoid these issues. It has lower data and computational
needs than supervised learning (deep learning in particular). In addition to this,
RL could still be generalized to unseen states of environments contrary to heuristics
which have to be tuned. Moreover, little work is done for French billiards. Most
of the agents were made for 8-pool.

9

2 The Physics Of Billiards

2.1 Ball Motion

Contrary to what one might think a ball trajectory is not always a straight motion.
A ball can have different types of motion on the pool table: a sliding motion or a
rolling motion. This is due to the friction force with the table which is the only
unbalanced force. The motion of the cue ball when it is struck begins by sliding.
After a while, the ball change its motion to rolling.

Considering a ball with a radius R, these motions are classified using the ball
contact point relative velocity u with the table [1]:

u = v +Rêz ∧ ω (1)

where v and ω are respectively the linear speed and the angular velocity of the
ball and êz is the unit normal vector of the table.

The ball is in a sliding state when u 6= 0. When the ball is in rolling state, the
ball travels completely its perimeter per revolution, this happens when u = 0.

SLIDING STATE ROLLING STATE

Figure 2: Ball Motion.

10

2.1.1 The sliding state

Sliding starts when u 6= 0. In this state the velocities and the displacement
equations are given by [9] :

v = v0 − µsgtû (2)

ω = ω0 +
5

2R
µsgtêz ∧ û (3)

P = P0 + v0t−
1

2
µsgt

2û (4)

Where v0 is the initial speed, ω0 is the initial rotational speed, P is the ball
position and µs is the sliding friction coefficient.

When sliding, the friction coefficient is higher and the trajectory may become
curvilinear. This is the case for example when the ball is struck with an elevated
cue.

2.1.2 The rolling state

The ball begins its rolling motion a time τslide after being struck (when u = 0),
the velocities and displacement equations are given through [9]:

v = v0 −
5

7
µrgtv̂ (5)

ω =
êz ∧ v

R
(6)

P = P0 + v0t−
5

14
µrgt

2v̂ (7)

Where µr is the rolling coefficient. In this case, the time t begins when the
sliding ends and the rolling begins. The ball becomes stationnary when the rolling
state ends. This will occur after a time τrolling. The rolling trajectory is always a
straight line and the friction coefficient is smaller.

2.1.3 The spinning state

As seen above, the rotational speed vector is always perpendicular to the z axis
and therefore has no component along this axis. However, in reality this is not the
case, when one pulls on the side of a ball, it will rotate at a speed whose component
according to z is not zero. This type of spin movement is called spin along the z
axis, it appears when you play a ”left english” or ”right english” move.

Therefore, this type of movement must be added to the previous movements as a
combination. This means that the previously described states (sliding and rolling)

11

can be combined with spinning or not depending on the value of the component
along the z axis of the rotation speed.

The component along the z-axis of the rotational speed is described by [10]:

ωz(t) = ωz(0)− 5gµsp
2R

t (8)

Where µsp is the spinning friction coefficient.

ex

ey

ez

ω

Figure 3: Ball in spinning state.

2.2 Collisions

Collisions are an important part of the billiard game. It is therefore essential to
describe these collisions precisely so that the simulator can produce results that
are close to reality.

There are three types of collision for carom billiards: the collision between a
ball and the cue, the collision between two balls and the collision between a ball
and a side rail. These are described below.

2.2.1 Cue-Ball Collision

The goal here is to be able to transform the input variables applied to the cue into
initial ball variables (initial linear velocity and initial rotational velocity).

12

Assuming a relatively short collision time1 and assuming that the collision
occurs at a single point, it is possible to model the cue inputs into 5 distinct
variables:

• a and b, respectively, the horizontal and the vertical position of the impact
point. Theses inputs are the sources of side, back and top spins.

• θ the elevation angle of the cue with the horizontal plane

• φ the angle the cue make with the vertical plane as can be seen in figure 6.

• V the cue speed just before the stroke.

Figure 4: Cue-Ball collision.

First, the value of the force applied by the cue to the ball can be calculated by
using the conservation of linear momentum and the conservation of energy [11]:

F =
2mV

1 + m
M

+ 5
2R2 (a2 + b2 cos2 θ + c2 sin2 θ − 2bc cos θ sin θ

(9)

1empirically determined, the collision duration is approximately 200 µsec at a speed of 1 m/s
according to [4].

13

ϕ ex

ey

ei

ej

ez

Figure 5: φ input parameter and reference frames.

Where m, M and c are respectively the ball mass, the cue mass and the x co-
ordinate of the impact point. c is determined by using twice the Pythagorean
theorem.

c =
√
R2 − a2 − b2 (10)

by considering a reference frame (êi, êj, êz) such that the cue direction is parallel
to êj.

Using the assumption of a very short duration collision, the force exerted by
the cue on the ball can be considered as a perfectly elastic impulse. Then, by
integrating Newton’s second law, it is possible to express the initial linear velocity
of the ball in this reference frame [11][12].

v =

0

−F
m

cos θ

−F
m

sin θ

 (11)

When the ball is struck by the cue, it also receives an initial angular velocity. The
values of a and b strongly impact this angular velocity. Indeed, as explained above,
when hitting on the right at the center of the ball (a > 0) or on the left (a < 0) it
creates a side spin that influences the component along the z axis of the angular

14

velocity. The same is true for b, when you hit above the center of the ball (b > 0)
or below (b < 0), it creates a top spin or back spin that impacts the component
along the x axis of the angular velocity. These moves have particular names in the
game of billiards: the first two correspond to the ”English”, the third corresponds
to the ”Follow” and the last is the ”Draw”.

By using a method similar to that used to express velocity as a function of
force, i.e. by integrating Newton’s second law in rotation, it is possible to find the
rotational speed in the reference frame (êi, êj, êz).

ω =
1

I

−cF sin θ + bF cos θ
aF sin θ
−aF cos θ

 (12)

Where I is the moment of inertia of the ball. The moment of inertia of a sphere
is equal to 2mR2

5
. However, for the creation of the simulator, it is preferable to

work with a fixed reference frame (êx, êy, êz). The center of this one is the center
of the table, at the height of a radius above the pool table. The x-axis is directed
towards the right rail and perpendicular to the right rail while the y-axis is directed
towards the top rail and perpendicular to it. The reference frame can be seen in
the figure 6.

To do this, the previous reference frame must be rotated by φ + π
2
. The 3-

dimensional rotation matrix Rz(α) around the z-axis is used.

Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 (13)

Replacing α by φ+ π
2
, the matrix becomes:

Rz =

− sinφ − cosφ 0
cosφ − sinφ 0

0 0 1

 (14)

The linear speed and the rotational speed are now calculated in the fixed ref-
erence frame (êx, êy, êz).

v′ = Rzv =

− sinφ − cosφ 0
cosφ − sinφ 0

0 0 1

0

−F
m

cos θ

−F
m

sin θ

 =

F

m
cos θ cosφ

F

m
cos θ sinφ

−F
m

sin θ

 (15)

15

ω′ = Rzω =
1

I

− sinφ − cosφ 0
cosφ − sinφ 0

0 0 1

−cF sin θ + bF cos θ
aF sin θ
−aF cos θ

=

1

I

 cF sin θ sinφ− bF cos θ sinφ− aF sin θ cosφ
−cF sin θ cosφ+ bF cos θ cosφ− aF sin θ sinφ

−aF cos θ

 (16)

2.2.2 Ball-Ball Collision

Figure 6: General Ball-Ball Collision.

In this section, the objective is to determine the ball variables (speed and
rotation speed) immediately after the collision, given these same variables just
before the impact. General collision between two rigid bodies have been analyzed
and put into equations [3]. Then, considering two spheres of same radius and mass

16

instead of general rigid bodies, these equations can be simplified to

v′1 = v1 +
P

m
n̂− 1

7
Vc,i

v′2 = v2 +
P

m
n̂− 1

7
Vc,i

ω′1 = ω1 +
5

7R

(
n̂ ∧ Vc,i

2

)
ω′2 = ω2 +

5

7R

(
n̂ ∧ Vc,i

2

)
(17)

where n̂ is the unit vector going from the collision contact point to the center of
ball 1, P is the percussion vector coming from Coulomb Law for solid friction and
Vc,i is the sliding speed vector of the contact point.

P = P

(
n̂− µ Vc,i

‖Vc,i‖

)
(18)

P = km(v2 − v1) · n̂ (19)

where µ is the friction coefficient between the two balls and k is constant related
to the ball coefficient of restitution e by:

k =
1 + e

2
(20)

The sliding speed vector of the contact point is determined, according to [13],
by :

Vc,i = (v1 − v2)− [(v1 − v2) · n̂] n̂ +Rn̂ ∧ (ω1 + ω2) (21)

A simple example where the second ball is at rest is provided in figure 7.

2.2.3 Rail-Ball Collision

In the case of a rail-ball collision, it is assumed that the mass of the rail is infinitely
greater than that of the ball. In addition, the speeds for the rail are considered to
be zero. As a result, the collision equations of two rigid bodies [3] are simplified
in [13]:

v′1 = v1 +
P

m

(
n̂− µ Vc,i

‖Vc,i‖

)
ω′1 = ω1 +

5Pµ

2Rm

(
n̂ ∧ Vc,i

‖Vc,i‖

) (22)

Where, in the case of a ball-rail collision, n̂ is the unit vector perpendicular to
the rail and going from it to the ball. P can be retrieved from (19). However the
constant k in (19) is calculated through (23) for a rail-ball collision.

k = 1 + e (23)

17

n

v1

v1

ω1

ω1

Vc,i

Figure 7: Sliding speed vector example with one ball at rest.

2.3 Billiard Geometry

The geometry of the table and the initial state is given in figure 8. The introduction
of constant variables like l and L are important for the collision detection with rails
which are introduced in the simulation modeling section.

L

l =
L

2
d

L

2

L

4

L

4

L

4

Figure 8: Billiard table geometry and initial state geometry.

18

Simulator parameters Values
L [m] 2.54
l [m] 1.27
d [m] 0.163
g [m/s2] 9.81
µs 0.2
µr 0.016
µsp 0.044

m [kg] 0.21
M [kg] 0.54
R [m] 0.0305
e 0.3

Table 1: Geometric and physical parameters used for the simulator.

3 Simulation Modeling

There are several ways to simulate a pool game. The first method that comes
intuitively is simply to simulate the game with a constant time step ∆t. At Each
time step, objects move using the previous displacement equations and their cur-
rent velocity. At the end of the time step, the simulator detects if some event such
as a collision happened during this time step.

Another way is to use a simulation by event prediction [11][12]. This type of
simulation does not use a time step. It directly predicts the next event that will
happen using the analytical and deterministic equations of physics.

The different events that can happen and disturb the physics are the following:

• The starting cue stroke

• a ball passing from a sliding state to a rolling state

• a ball passing from a rolling state to a stationary state

• a ball passing from a spinning state to a non-spinning state

• a collision between two balls

• a collision between a ball and a rail

19

Simplifying Assumption

The main simplifying assumption made for the simulation is the freezing of the
z component of the balls position in order to avoid some flying states since the
goal is to make a recommender system for simple shots and not advanced shots.
A flying state, would greatly complicate the problem.

3.1 Intuitive Method

Considering the states of the balls (sliding, rolling or stationary), the displace-
ment equations are provided in section 2.1. Then, they are used by discretizing
the time with a constant time step. For each time step simulated, the simula-
tor checks if an event will occur at the end of this timestep. An example, where
the ball moves using its equations until a collision is detected, is shown in figure 9.

= +Δtt2 t1

= 0t1

= +Δtt3 t2

= +Δtt4 t3

Collision

Figure 9: Simulation with an intuitive method.

20

Due to its logic and simplicity of implementation, this method is used in most
simulations of physical phenomena. However, in the case of billiards, this type
of simulation should be avoided for various reasons [13]. When discretizing, the
speeds and accelerations are considered constant during a particular timestep. This
leads to small numerical errors at each time step. But the main approximation
issue with this simulation method is that choosing a constant time step leads to
large errors when an event is detected. Indeed, an event will never happen exactly
at a moment tx + ∆t. The figure 9 is not totally correct at the last timestep and
should be more like the figure 10.

= + Δtt4 t3

Collision

Figure 10: Intuitive method drawback.

Another approximation issue, is when two events happen in a same time step.
For example a ball collides with another one and a rail at the same time as can be
seen in figure 11.

Figure 11: A ball collides with both another one and a rail during a same timestep.

There are solutions to these approximation problems. However, to apply rein-
forcement learning to billiards, the simulator must be able to play an extremely
large number of games. Learning by simulating at ”real” speed can be very long.
The number of time steps should therefore be minimized in order to simulate more
quickly. However, increasing the time step leads to much higher approximation
errors.

For these various reasons, this type of simulation is avoided for billiards. It
is therefore the event-based simulation that will be applied to our model. This is
described in the following section.

21

3.2 Event-based Method

This method described by [11][12], is a different way to simulate the game. In this
case, there is not any time step. The events are predicted in advance and the game
is simulated through events. For example, here is a simple game described through
events: Cue strike, Sliding to rolling, Rolling to stationary. Between these events,
the ball motion equation does not change: after the cue strike, the ball is in sliding
state until the next event which is ”Sliding to rolling”. After this event, the ball
starts to roll using the equations relative to this motion until the stationary state.
Using this simulation method allows to avoid simulation at each time step which
really speeds up the simulation since its simulated only through events.

Using this method, the simulation can only be done if you know about a given
event, the next event that must happen. That is, find the time when the next
event will take place. Thus it is possible to apply the equations of motion given
by the first event for a period of time calculated in advance. And it is after
this calculated time that the next event can take place. Calculating the time at
which the next event will occur gives the simulator an exact solution contrary to
an intuitive method which gives an approximate solution (in which a ball never
collides at tx + ∆T for example). This type of simulation can be done only under
3 assumptions [13]:

1. All types of event can be predicted.

2. Two or more events cannot be simultaneous.

3. All events are instantaneous.

All assumptions are met, but for some particular moves the simulation fails.
For example, at the beginning of a game. If one strikes the ball with an angle

φ =
3π

4
the ball will collide with the left rail and the down rail at exactly the same

time since the initial distance of the ball to the left and down rail is exactly the
same as can be seen in figure 12. But this happens only for particular moves and
never happens in reality. For example, setting φ = 134.99° instead of φ = 135°
solves the problem.
As said previously, to implement this simulator, it is mandatory to find a way to
calculate the instant at which each type of event can occur. This is done by solving
analytic equations of motion in the next section.

22

ϕ =
3π

4

Figure 12: Simultaneous events move.

3.3 Event prediction solver

3.3.1 Cue strike event

The cue strike event is trivial and always occurs at time t = 0 for any game.
Directly after this event, the ball is in a sliding state until the next event.

3.3.2 Sliding to rolling event

The sliding state ends when u = 0. Using equations (2) and (3) in equation (1),
the time associated to u = 0 can be found.

u = v +Rêz ∧ ω

= v0 − µsgtû +Rêz ∧
(
ω0 +

5

2R
µsgtêz ∧ û

)
= v0 +Rêz ∧ ω0︸ ︷︷ ︸

u0

−µsgtû +Rêz ∧
(

5

2R
µsgtêz ∧ û

)
= u0 − µsgtû +

5

2
µsgt [êz ∧ (êz ∧ û)]

= u0 − µsgtû +
5

2
µsgt

(êz · û)︸ ︷︷ ︸
=0

êz − (êz · êz)︸ ︷︷ ︸
=1

û

= u0 −

7

2
µsgtû (24)

23

The sliding ends at a time τslide that can be found by solving (24) for u = 0.

τslide =
2 ‖u0‖
7µsg

(25)

3.3.3 Rolling to stationary event

The ball becomes stationary when v = 0. Considering t = 0 is the time when the
rolling begins, the time τroll can be found by solving equation (6) for v = 0.

τroll =
7 ‖v0‖
5µrg

(26)

3.3.4 Spinning to non spinning event

The spinning state ends when ωz = 0. Considering t = 0 is the time when the
spinning begins, the time τspin can be found by solving equation (8) for ωz = 0.

τspin =
2Rωz(0)

5µspg
(27)

3.3.5 Ball-rail collision event

The goal here is to find the time the ball will collide with a rail. There exist two
cases, the ball can either be in sliding state or in a rolling state.

• The ball is in sliding state

Using the displacement equation for a ball in sliding state (4), the time
τrb,coll can be found. To detect the collision with the right or the left rail, the
x component of equation (4) is used.

Px = P0,x + v0,xt−
1

2
µsgt

2ûx (28)

The ball collides with the right rail if Px =
L

2
−R since Px is the position of

the ball center. Hence, the time it collides with the right rail τrb,coll can be
found by solving the quadratic equation (33) and taking the smallest positive
solution:

− 1

2
µsgτ

2
rb,collûx + v0,xτrb,coll + P0,x −

L

2
+R = 0 (29)

To find τrb,coll for the left rail, Px must be replaced by −L
2

+R.

24

τrb,coll for the upside rail and downside rail can be found by using the y
component of the displacement equation (4).

Py = P0,y + v0,yt−
1

2
µsgt

2ûy (30)

Then, the ball collides with the upside rail if Py =
l

2
−R and it collides with

the downside rail if Py = − l
2

+ R. the time τrb,coll is found by solving the

quadratic equation (31) and taking the smallest positive solution:

− 1

2
µsgτ

2
rb,collûy + v0,yτrb,coll + P0,y −

l

2
+R = 0 (31)

The time for the collision with the downside rail is found by analogy.

• The ball is in rolling state

Using the displacement equation for a ball in rolling state (7),the time τrb,coll
can be found. To detect the collision with the right or the left rail, the x
component of equation (7) is used.

Px = P0,x + v0,xt−
5

14
µrgt

2ûx (32)

The ball collides with the right rail if Px =
L

2
−R since Px is the position of

the ball center. Hence, the time it collides with the right rail τrb,coll can be
found by solving the quadratic equation (33) and taking the smallest positive
solution:

− 5

14
µrgτ

2
rb,collûx + v0,xτrb,coll + P0,x −

L

2
+R = 0 (33)

To find τrb,coll for the left rail, Px must be replaced by −L
2

+R.

− 5

14
µrgτ

2
rb,collûx + v0,xτrb,coll + P0,x +

L

2
−R = 0 (34)

The time τrb,coll for the upside rail and downside rail can be found by using
the y component of the displacement equation (7).

Py = P0,y + v0,yt−
5

14
µrgt

2ûy (35)

25

Then, the ball collides with the upside rail if Py =
l

2
− R and it collides

with the downside rail if Py = − l
2

+R. the time τrb,coll for the upside rail is

found by solving the quadratic equation (36) and taking the smallest positive
solution:

− 5

14
µrgτ

2
rb,collûy + v0,yτrb,coll + P0,y −

l

2
+R = 0 (36)

The time for the collision with the downside rail is found by analogy :

− 5

14
µrgτ

2
rb,collûy + v0,yτrb,coll + P0,y +

l

2
−R = 0 (37)

3.3.6 Ball-ball collision event

The methodology to find the time τbb,coll when one ball collides with another one
is similar as previously. However, the ball is not at a fixed position like the rail.
Hence, there are several possibilities:

• One ball is in sliding state and the other one is in sliding state.

• One ball is in sliding state and the other one is also in rolling state.

• One ball is in sliding state and the other one is at rest.

• One ball is in rolling state and the other one is also in rolling state.

• One ball is in rolling state and the other one is at rest.

Using (4) and (7), a general displacement equation (38) can be written:

P = P0 + v0t− kt2 (38)

where k =
1

2
µsgû if the ball is in sliding state or k =

5

14
µrgv̂ if the ball is in

rolling state. If one ball is at rest, its displacement equation is reduced to P = P0

and the solution is similar to a ball-rail collision, where the rail position is replaced
by the ball position.

The equation for the first ball is indexed with b1 and the second is indexed
with b2. A ball collides with another when ‖Pb1 −Pb2‖ = 2R. Since, each side of
the equation is positive, one can write ‖Pb1 −Pb2‖

2 = 4R2 . The left-hand side
of the equation can be written as follows:

‖Pb1 −Pb2‖
2 =

[√
(Pb1,x − Pb2,x)

2 + (Pb1,y − Pb2,y)
2

]2
= (Pb1,x − Pb2,x)

2 + (Pb1,y − Pb2,y)
2

= P 2
b1,x

+ P 2
b2,x
− 2Pb1,xPb2,x + P 2

b1,y
+ P 2

b2,y
− 2Pb1,yPb2,y

26

Then, replacing each term by adequate x or y component of equation (38):

‖Pb1 −Pb2‖
2 = at4 + bt3 + ct2 + dt+ e (39)

where:

a = g2
[
(kx,b1 − kx,b2)

2 + (ky,b1 − ky,b2)
2]

b = −2g [(vx,b1 − vx,b2) (kx,b1 − kx,b2) + (vy,b1 − vy,b2) (ky,b1 − ky,b2)]
c = (vx,b1 − vx,b2)

2 + (vy,b1 − vy,b2)
2 − 2g[(Px,b1 − Px,b2) (kx,b1 − kx,b2)

+ (Py,b1 − Py,b2) (ky,b1 − ky,b2)]
d = 2 (Px,b1 − Px,b2) (vx,b1 − vx,b2) + 2 (Py,b1 − Py,b2) (vy,b1 − vy,b2)
e = (Px,b1 − Px,b2)

2 + (Py,b1 − Py,b2)
2

The time τbb,coll the two balls collides can finally be found by solving (40) and
taking the smallest real and positive solution:

aτ 4bb,coll + bτ 3bb,coll + cτ 2bb,coll + dτbb,coll + e− 4R2 = 0 (40)

3.4 Simulation Algorithm

In this section, the simulation is described from the starting cue strike until the 3
balls are stationary. Between theses two moments, several events can occur. The
cue strike starting event is described directly by the five parameters a, b, φ, θ and
V . This strike is translated into the ball initial linear speed and rotational speed
using (15) and (16).

Once the velocities are calculated, the simulator will search directly for the
next event. To do this, for each of the 3 balls, it calculates the time τ for each
event quoted in the previous section. Now that all next events time and type are
known and stored, the simulator isolates the event which has the smallest positive
time to happen.

The next event type and time τ being now determined, the balls moves using
their motion type (sliding, rolling or stationary) until the next event at t = τ .

An example case can be seen in figure 13 and 14. This algorithm repeats until
the three ball states are all stationary.

27

Algorithm 1 Simulation algorithm

Initialize the ball set B =(b1, b2, b3).
Initialize an empty set T .
Initialize cue strike with input parameters : a, b, φ, θ and V .
Transform these parameters into initial impulsion v0 and ω0.
Set the struck ball initial speeds to (v0,ω0) and its state to sliding.
while B contains non-stationary balls do
for b in B do

Calculate the next event τb for ball b using the solver.
τb ∈ T

end for
The next event happens at t = min T .
Simulate until t using each ball motion type (sliding, rolling, stationary).
T ← ∅

end while

28

Ball 1
State : Sliding

Event Prediction
Solver

Ball 2
State : Rolling

Event Prediction
Solver

Ball 3
State : Statonary

Event Prediction
Solver

Sliding to rolling at

τslide

Collision with ball 3 at

τ
,b2 b3

Collision with ball 2 at

τ
,b3 b2

Next event at

t = min (,)τslide τ
,b2 b3

Figure 13: Example case of the general algorithm.

29

Event prediction solver

Ball 1
State: Sliding

Sliding to rolling solver

Collision with ball 2 or ball 3
solver

Collision with each rail solver

End of spinning solver

τslide

τ
,b1 b3

τ
,right−railb1

τend−spin

t = min(, , ,)τslide τ
,b1 b3

τ
,right−railb1

τend−spin

t = τslide

Figure 14: Example case of the event prediction solver.

30

4 Reinforcement learning

In artificial intelligence, reinforcement learning is a part of machine learning. It
consists, for an agent, in learning, from experiences, the actions to be taken in a
particular state, in order to optimize a quantitative reward over time. The agent
acts in an environment, and makes decisions based on his current state. In return,
the environment provides the agent with a reward and a next state. This reward
can be high if the agent took a good action in this particular state or it can be low
if the action was bad.

Through iterative experiences, the agent seeks an optimal decision-making be-
haviour (called optimal policy), which is a function associating the action to be
performed with a each particular state, in the sense that it maximizes the sum of
the rewards over time. In machine learning, the environment is typically formu-
lated as a Markov Decision Process (MDP).

Agent

Environment

ActionNext
State Reward

Figure 15: Agent-Environment interaction in Reinforcement learning.

4.1 Decision-Making Problem Formulation

4.1.1 Markov Decision Process

The problem formulation is in the form of a Markov decision process. MDPs
provide a mathematical model to simulate decision making problem, they can

31

be helpful for studying optimization problems solved with reinforcement learning.
The problem must satisfy the following Markov property. A state st from the
environment satisfies the Markov property if and only if :

P (st+1 | st) = P (st+1 | s1, ..., st−1, st) (41)

This means the future is only determined from the present and not the past. This
equation is discussed in the section 4.1.2 where the states of the problem are
defined.

4.1.2 State description

The states space set S of the problem is made of the state set of each ball b1, b2 and
b3. Each ball state set consists in two continuous variables, where one represents
the x ball coordinate and the other represents the y ball coordinate.

S = Sb1 × Sb2 × Sb3 (42)

A particular state of the set st ∈ S is:

st = (Pb1,x, Pb1,y, Pb2,x, Pb2,y, Pb3,x, Pb3,y) (43)

That means all carom games configurations can be represented by those six vari-
ables which completely characterizes a state of the game.

There are some physical constraints that are applied to the state variables since
the position is limited by the rails around the table surface. Furthermore, two or

32

more balls cannot be at the same place.

Pb1,x ∈
[
−L
2

+R,
L

2
−R

]
Pb2,x ∈

[
−L
2

+R,
L

2
−R

]
Pb3,x ∈

[
−L
2

+R,
L

2
−R

]
Pb1,y ∈

[
−l
2

+R,
l

2
−R

]
Pb2,y ∈

[
−l
2

+R,
l

2
−R

]
Pb3,y ∈

[
−l
2

+R,
l

2
−R

]
‖Pb1 −Pb2‖ ≥ 2R

‖Pb1 −Pb3‖ ≥ 2R

‖Pb2 −Pb3‖ ≥ 2R

Hence, this definition of a state shows it respects the Markov property (41). Indeed,
next state (the position of each ball after a move) is completely characterized by the
current state (the position of each ball before the move) and the shot parameters.
And so, the past states and actions (called history) are entirely described by the
present state.

4.1.3 Action description

The player shot is modeled through the set of actions A. An action at in the set
A models of the continuous cue input parameters.

at = (α, β, φ, θ, V) (44)

where α =
a

R
and β =

b

R
and the other parameters are described in the cue-ball

collision section.

Some physical constraints are applied to these variables. The cue strike must
touch the ball.

a2 + b2 ≤ R2 (45)

This leads to:
α2 + β2 ≤ 1 (46)

33

Sometimes, a ball or a rail can block particular action, a simplifying assumption
is made here and theses shots are allowed. As can be seen in figure 16 and 17, the
shot cannot be performed if the angle θ decreases.

Figure 16: A ball blocking a particular shot.

Figure 17: A rail blocking a particular shot.

34

In order to reduce the actions space size i.e. to simplify the search of an optimal
policy, the parameter θ is set to 10° and the parameters α and β are both set to 0.
Hence, the remaining continuous action variables are the cue speed at the impact
V and the aiming angle direction φ. The maximum speed V is set to 6 [m/s].

4.1.4 Transition function

The transition function f from a state st to a state st+1 is totally described by the
physics of the system. The state st+1 depends only on the previous state st, the
action at and the physics involved in the simulator. The evolution of the system
is described through the relation:

st+1 = f (st, at) (47)

A player cannot apply the precise actions of a recommendation system since he does
not have the exact information of the shots he is playing but only an approximation.
A transition function to model this phenomenon would take into account any noise
added to the action. However, for this work this approach has been simplified to
have a deterministic transition function.

4.1.5 Reward function

Several reward functions r have been designed. They are designed to achieve
increasingly complex objectives. The first reward function is designed to reach a
first goal: choose an action that leads at least to one collision.

r1 =

{
1, if one (or more) collision is detected

0, otherwise
(48)

The collision detection implementation is really facilitated by the event-based
model.

Some variants of this reward function are designed in order to take into account
the shot difficulty. In this case, if a difficult strike leads to a collision, the reward
is equal to 0. The strike difficulty function is defined in a later section.

A shaped reward function r2 is designed in order to help the system to find
solutions. In general for the carom billiards game, the player estimates a table
state which has balls closer to each other better than a table where the balls are
far apart from each others as it is in general easier to strike other balls. To do
this, a distance reward term rd is added to r1. The total distance can be written
as follows:

dtot = ‖Pb1 −Pb2‖+ ‖Pb1 −Pb3‖+ ‖Pb2 −Pb3‖ (49)

35

And the distance rd reward is :

rd = 1− dtot
max

Pb1
,Pb1

,Pb1

dtot
(50)

Defining the distance reward in this way, a distance reward of approximately 1
means the balls are very close and a distance reward of 0 means the balls are far
apart from each other. Thus, r2 is defined as follows:

r2 =

{
1 + rd, if one (or more) collision is detected

rd, otherwise
(51)

Once a model is validated with reward function r1 or r2, it is then tested with
r3 or r4. Reward functions r3 is the boolean reward function similar to r1 but for
two balls collisions.

r3 =

{
1, if the cue ball collides the two other balls

0, otherwise
(52)

And r4 is the shaped reward function similar to r2 but for two balls collisions.

r4 =

{
1 + rd, if the cue ball collides the two other balls

rd, otherwise
(53)

4.2 Q-learning

Q-learning [14][15] is a reinforcement learning technique. This technique is de-
signed for discrete actions and states spaces. The agent policy is represented by a
Q-Table where the rows are the different possible states and the columns are the
different possible actions. Each state-action pair is characterized by a Q-value at
the row of the state and at the column of the action. This Q-value represents an
estimation of the expected sum of discounted rewards by taking the action rep-
resented by the column in the state represented by the row. Hence, the optimal
action to take, for an agent in a particular state, is the action with the maximum q-
value. In reinforcement learning, an episode is the set of the tuples (st, at, rt, st+1)
from the starting state s0 to a terminating state of the MDP.

The goal of Q-learning, after a certain number of episodes, is to find, starting
from a Q-table initialized to 0, a table that leads to the optimal policy. The Q-
learning is a model-free algorithm, the agent has to explore the MDP in order

36

dtot

r

6R

1

0

2

max dtot

No
collision

Collision

Figure 18: Reward shaping for r2 and r4.

to have information about its environment. This algorithm is part of Temporal
difference Off-policy algorithms for control. Contrary to Monte-Carlo learning
that needs a full episode to update the policy, Q-learning is online. That means
Q-table (from which the policy is derived) is updated after each action taken from
the agent. The Q-table update is done through the Bellman equation:

Q(st, at)← (1− α)Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)

)
(54)

where

• α is the learning rate.

• γ is the discount factor.

4.2.1 Exploration-Exploitation dilemma

In a given state, the agent chooses the action with the highest quality (exploita-
tion). However, sometimes the agent must do some random exploration of the

37

environment to see if there are some opportunities to have higher rewards. This is
called the exploration-exploitation dilemma. To allow some exploration to agent,
an ε-greedy approach is used.

This approach says the agent takes a random action (exploration) with a prob-
ability of ε and the agent takes the maximum quality action with a probability
1 − ε. The ε function is tuned in such a way that the agent explores a lot in the
earlier episodes and exploit a lot in the latest episodes. As a result the agent search
a lot high rewards in the environment and after a good exploration, it starts to
exploit the good states and the good actions it founds when exploring.

4.2.2 Application to Carom

As said previously, the Q-learning is a technique made for a discrete actions and
states space to obtain Q-table representation. Since the carom states space and ac-
tions space are continuous, they have been discretized in order to apply Q-learning.
The discretization is done as follows.

Actions space discretization

Considering the input actions a = 0, b = 0 and θ = 10° to be constant, only φ
and V are discretized.

• φ is discretized from −180° to 180° with a step of 5°.

• V is discretized from 0.5 [m/s] to 6[m/s] with a step of 0.5 [m/s].

The number of possible actions nactions i.e. the number of couples (φ, V) is
73× 12 = 876

States space discretization

In order to discretize the state space, the pool table is cut into small squares
as can be seen in figure 20. Hence, using this discretization, the state is defined
by 3 squares which are the ones nearest to the center of each ball.

The states space discretization is quite problematic, it brings many disadvan-
tages. First, two tables with slightly different ball positions can represents a same
state (same squares). While having the same state, a high-reward action in one
configuration could result in a low-reward one in the other one. To solve this prob-
lem, the discretization can be done with smaller squares. But doing this way leads

38

to the high number of states. The number of states can be calculated as follows:

nstates = (nrows × ncol)3 (55)

Using a coarse discretization by setting for example nrows = 6 and ncol = 12 leads
causes the number of states to be 373248. A smaller and refined discretization
leads to a number of states extremely large. This problem cannot be handled by
a Q-learning technique since the Q-table size would be too large.

Some tests have been done with coarse discretization, but as expected, the
results after 50000 episodes, even for one collision reward, are as good as a totally
random policy.

Figure 19: States space discretization.

Algorithm 2 Q-learning algorithm

Initialize Q(nstates, nactions) arbitrarily.
Observe initial state s of the environment.
repeat

Select action a using ε-greedy approach
Carry out the action a
Observe reward r and the next state from the environment
Update Q(s, a) using Bellman equation
Set the current state to the next state

until last episode

39

4.3 Deep-Q-learning

In order to deal with the continuous states space and to avoid states space dis-
cretization, the use of functions approximators are mandatory for this problem.
Hence, there is no more Q-table and the scalability problem is solved by using a
neural network to approximate the Q function [16].

The neural network has as input the states space and it has as output a Q-value
for each action. Instead of a Q-table update after each action, now the weights
of network θi are updated. The optimal policy represented before as an optimal
Q-table Q∗, is now given through optimal weights θi:

Q(s, a; θ) ≈ Q∗(s, a) (56)

State Network

Q-value for action 1

Q-value for action 2

Q-value for action n

Figure 20: Deep-Q-Network.

The neural network weights are updated using backpropagation with a loss
function, this loss function L(θi) represents the mean-squared error in the Bellman
equation where optimal target values rt + γmax

a
Q∗(st+1, at+1) are replaced by

approximate target values rt+γmax
at+1

Q∗(st+1, at+1; θ
−
i) where θ−i are the parameters

of the network at a previous iteration.

L = E

rt + γmax

a
Q∗(st+1, at+1; θ

−
i)︸ ︷︷ ︸

target

−Q(st+1, at+1; θi)

2 (57)

40

The neural network weights update is done as:

• Given the current state, a feedforward pass is done to get Q-values for the
actions.

• Given the next state, a feedforward pass is done and the maximum Q-value
action output is calculated.

• The target (r + γmax
at+1

Q∗(st+1, at+1; θ
−
i)) for the taken action is calculated

using the reward and the value calculated at the previous step.

• The loss function is computed using all previous steps.

• The weights are updated using backpropagation (minimizing the loss func-
tion).

4.3.1 Experience Replay

As the game is played through simulation, sets containing the current state, the
taken action, the reward and the next state (st, at, rt, st+1) are stored in a library
of experiences also called replay memory.

The neural network is not training directly from the current game simulation,
but instead, the training is performed by randomly sampling mini-batches from the
past simulations. The network does not train anymore on a natural continuous
evolution of the system, This technique helps to avoid the system to overfit a
particular evolution of the game.

4.3.2 Fixed Target Network

When updating weights, the loss function have to be computed. To compute
the loss, the target must be calculated. Since the target depends on network
parameters, it changes quickly and can lead to stability issues when training. A
solution to this problem is to update the target at a lower frequency.

4.3.3 Application to Carom

In this case, the states space of the carom environment does not need to be dis-
cretized since neural network is used as a function approximator. However, this
technique still needs discrete actions space. Hence, the actions space is discretized
in the same way as before. The neural network structure and parameters can be
found in the Table 2 and 3.

41

Layers Input Activation Output
Flatten 6 - 16

Fully connected 16 ReLU 16
Fully connected 16 ReLU 16
Fully connected 16 ReLU 16
Fully connected 16 Linear nactions

Table 2: DQN - Neural Network structure used.

Parameters
learning rate 0.001

Target update frequency 10000
Replay Memory size 50000

Discount factor 0.99
Mini-batch size 32

Table 3: DQN - Main parameters used for the training.

The results for the reward design r1 and r2 are respectively shown in figure 21
and 22. The results are better than for the Q-learning. For the reward design r1,
the mean reward is stabilized at 0.4. That means the agent is able to find an action
where the ball collides with another one, two times out of five. Using a reward
shaping function r2 does not help, the results are similar, because in this case the
maximum reward that can be achieved is approximately 2. Here, the agent is also
able to find a good shot two times over five.

The problem is not completely solved for one ball collision reward, it is therefore
useless to evaluate this technique with two balls collision reward functions r3 and
r4. The main problem with the deep-Q-learning is the action space that must be
discrete. And in the case of carom, the discretization leads to a high number of
actions. Yet this type of technique is generally used for small states space size
(usually about 10 discrete actions).

4.4 Deep deterministic policy gradient

The deep deterministic policy gradient algorithm [17][18] overcomes the problem
of continuous action since it is made only for this type of actions space. This
approach is closely connected to deep-Q-learning algorithm. When computing
the loss function (57), finding max

a
Q∗ is easy for the deep-Q-learning since the

number of action is limited. But finding it with continuous action space is hard.
Using an optimization algorithm to find max

a
Qast is really expensive in time since

42

Algorithm 3 Deep-Q-learning algorithm
Initialize network Q with random weights.
Initialize target network with the same random weights.
Initialize replay memory
Observe initial state s of the environment.
repeat

Select action a using ε-greedy approach.
Carry out the action a in the simulator and observe reward and next state.
Store transition (st, at, rt, st+1).
Sample random mini-batch of transitions (st, at, rt, st+1) from replay memory.

Calculate target and compute loss function.
Update network parameters using backpropagation.
Update the network target every 10000 steps
Set the current state to the next state.

until last episode

0 250 500 750 1000 1250 1500 1750 2000
Episode

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Re

wa
rd

Figure 21: DQN - Mean reward using the reward design r1.

the optimization problem needs to be run every time an agent take an action.
The DDGP algorithm assumes max

a
Q∗(s, a) to be differentiable with respect to a.

Using this assumption allows to set up a policy µ(s) based on a gradient learning

43

0 250 500 750 1000 1250 1500 1750 2000
Episode

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
M

ea
n

Re
wa

rd

Figure 22: DQN - Mean reward using the reward design r2.

rule. Hence, instead of using an optimization algorithm to solve the problem, the
following approximation is made:

max
a
Q(s, a) ≈ Q (s, µ(s)) (58)

The DDGP algorithm consists in 2 different types of network: the actor net-
work which produces an action and the critic network which takes this action as
input and produces action Q-value. This type of algorithm is called Actor-Critic
algorithm [19]. The experience replay trick used in the Deep-Q-learning technique
is also used in the DDGP algorithm.

4.4.1 Target Networks Update

For the DDGP algorithm, instead of updating the target networks at a low fre-
quency, it is recommended to be updated at each step using a soft update:{

θactor,target ← kθactor,target + (1− k)θactor

θcritic,target ← kθcritic,target + (1− k)θcritic
(59)

Where k is a parameter between 0 and 1 (close to 1 for a soft update). Hence, the
target values are slowly changing, improving the stability of learning.

44

4.4.2 Application to Carom

The actor network and the critic network structure used can be found in [20]. The
main parameters of the algorithm are shown in Table 4. The results for the re-
ward design r1 are shown in figure 23, 24 and 25. The results are calculated with
intervals of 10000 episodes. The values shown in the results are computed after
each interval by getting the mean of the last 10000 episodes. The shaped reward
design r2 gives approximately the same results. The problem is solved, because
after 70000 episodes the mean reward converges to 0.8 (which is clearly near the
maximum of 1) while still exploring. This means one collision is detected 8 times
out of 10 while training. However, the agent adopts a strategy of striking with
high speed and a more or less horizontal aiming angle. This strategy consists in
scanning a large part of table in order to easily collide with one ball. This strategy
can be seen in figure 26.

Parameters
learning rate 0.001

k 0.999
Replay Memory size 50000

Discount factor 0.99
Mini-batch size 32

Table 4: DDGP - Main parameters used for the training.

In order to avoid this hard strategy, the reward r1 is redesigned to take into
account the shot difficulty [5]. To do this, the reward is reduced when the cue ball
collides with rails before colliding with a ball. The higher the number of rails hit
before the ball collision, the lower the reward is. Another parameter that can affect
the shot difficulty (and consequently the reward), is the angle of collision. As can
be seen in figure 27, the higher the angle of collision, the higher the shot difficulty
is and the lower the reward is. However, currently, only the first component of the
shot difficulty is taken into account to redesign r1.

The result with the reward function r1 redesigned with the shot difficulty is
shown in figure 28. As expected, since the agent cannot adopt the strategy in
figure 26, the learning takes more time. It enables to find a solution 8 times out of
10 after 250000 episodes while still exploring. The strategy adopted in this case is
more natural, it simply tries to aim directly to another ball.

The problem being solved for one ball collision (r1 and r2), the same technique
is applied to the two balls collision problem (r3 and r4). As can be seen in figure

45

Algorithm 4 Deep deterministic policy gradient algorithm.
Initialize actor and critic networks with random weights.
Initialize target networks with the same random weights.
Initialize replay memory.
Observe initial state s of the environment.
repeat

Select action a using actor network.
Carry out the action a in the simulator and observe reward and next state.
Store transition (st, at, rt, st+1) in replay memory.
Sample random mini-batch of transitions (st, at, rt, st+1) from replay memory.

Calculate critic target and compute loss function.
Update critic network parameters using backpropagation by minimizing loss
function.
Update the actor network using the sampled gradient described in [17].
Update the target networks using a soft update (57).

until last episode

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

M
ea

n
Re

wa
rd

Figure 23: DDGP - Mean reward using the reward design r1.

30, the reward is only able to converge to 0.05. Hence, one strike out of 20 leads
to a good shot. For a two collision problem a random policy has been evaluated to

46

20000 40000 60000 80000 100000
Episode

0.3

0.4

0.5

0.6

0.7

0.8
M

ea
n

Q
va

lu
e

Figure 24: DDGP - Mean Q value using the reward design r1.

20000 40000 60000 80000 100000
Episode

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Lo
ss

Figure 25: DDGP - Loss using the reward design r1.

47

Figure 26: Strategy adopted by the agent with r1.

α

Figure 27: Shot difficulty: angle of collision parameter.

make a good strike once out of 1000. The policy found cannot solve the problem
of two balls collision like the one of one ball collision, but it is still 50 times better
than a random policy. For the reward design r4, the policy found is bad. In this
case the algorithm is only trying to make the balls closer to each other. The reward
r4 is overfitting the distance reward rd and forgetting the initial goal to collide with
the two other balls.

48

0 50000 100000 150000 200000 250000 300000
Episode

0.0

0.2

0.4

0.6

0.8
M

ea
n

Re
wa

rd

Figure 28: DDGP - Mean reward using the reward design r1 taking into account
the shot difficulty.

0 50000 100000 150000 200000 250000 300000
Episode

0.00

0.01

0.02

0.03

0.04

0.05

M
ea

n
Re

wa
rd

Figure 29: DDGP - Mean reward using the reward design r3.

49

0 1000 2000 3000 4000 5000 6000

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Figure 30: DDGP - Mean reward using the reward design r4.

50

5 Recommender System

5.1 Reward Sensitivity

In science, it is stated that the same causes lead to the same effects (determinism).
And in general, there is also the idea that similar causes will cause similar effects.
If approximations are made at the beginning, the consequences will be limited. In
a scientific experiment, everything is rarely described perfectly and small approx-
imations can often be made without altering the final result too much. However,
there are physical systems where this idea does not work [21].

For example, the simple pendulum system is not highly sensitive to initial con-
ditions whereas the double pendulum is. That means starting with the simple
pendulum from an angle very close to the initial angle will not have large conse-
quence on the pendulum motion. However, the double pendulum system which
is highly sensitive to initial state, has a completely different motion if the initial
angle is modified a bit. These examples can be seen in figure 31 and 32.

t = 0 t = τ

Figure 31: Effect of initial conditions variation on simple pendulum.

The billiard system is totally analogous to the pendulum system. For the one
ball collision system, changing a bit the position of the cue ball or the action, will
result in a good reward. However, when trying to make 2 balls collision, changing
a bit the position of the cue ball, leads often only to one ball collision. In this
case the reward is highly sensitive to the state and the action. In figure 33, a
learned state/action pair can be seen (red arrow). If a similar state (cue ball in
dotted-line) is provided to the network, it produces an action similar to the one
learned before (blue line). It can be seen the cue ball success to collide with the
first one, but fails to collide with the second one. That is why the system learns

51

t = 0 t = τ

Figure 32: Effect of initial conditions variation on double pendulum.

well to collide with one ball but not with two: r3 is highly sensitive to the action
and to the state while r1 is not.

Figure 33: Reward sensitivity.

To overcome this reward sensitivity issue, the cue inputs a, b and θ that were
constant until then, are now randomly sampled until one strike that produces
r3 = 1 (keeping the same action variables φ and V produced by the network).

52

5.2 User Interface

The recommender system is provided with a graphic interface [22] that can be
seen in figure 34. When developing the simulator, this graphic interface allowed to
check physical errors, to observe strategies adopted by the agent and much more
things. The simulation can be done in two ways. The first way is to enable the
rendering, this is a slow simulation that allows to check errors or testing the agent
after training. The second one, is to only simulate the events, this fast simulation
is done for training the networks.

Different parameters are provided through the interface, such as the speeds
norm, the next found event, the number of episodes if the system is training and
the cue inputs recommended by the simulator. In recommender system mode
(figure 35), the user can adjust the position of the ball in the graphic interface by
simply moving the balls with the mouse. Once this is done, the player can press
the run button and the simulator will provide him successful shot parameters. And
then the simulator will simulate this shot to help the player.

53

Figure 34: User Interface.

54

Figure 35: User Interface in recommender system mode.

55

6 Conclusion

The results of this research show the reinforcement learning approach using deep
deterministic gradient algorithm is good when searching to collide with only one
ball. But, due to a sparse reward, which is highly sensitive to the state of billiard
table and to the taken action, the problem for two balls collision is still hard to
be fully solved by only the reinforcement learning approach. Some suggestions to
solve this problem can be found in the future work section. Using discretization
to apply techniques such as Q-learning or Deep-Q-learning does not improve the
results. However, other algorithms based on continuous actions space and states
space could be tested.

The event-based simulation method applied in this work appears to work very
well. Using this type of simulation makes the application of reinforcement learning
much easier. Indeed when designing the reward, a collision detection implemen-
tation is mandatory. This implementation is done directly with the event-based
simulator.

The recommender system is based on the output of Deep deterministic gradient
policy algorithm where the actions variables a, b and θ are modified using a noise
in order to find successful shot.

6.1 Future Work

In the present work, the goal is solved entirely by reinforcement learning only with
the reward design r1. However, for the reward design r3, the goal is not directly
achieved by reinforcement learning, it needs a search to be done before an output is
produced. Two main problems are encountered, the first one is due to high reward
sensitivity as said previously, the second one is the sparse reward. Indeed, when
training with r3, the system finds a reward of 1 only after a very large number
of episodes. In order to help the system, there exists several techniques that are
presented below. Furthermore, the simulator can be changed by improving the
physics.

6.1.1 Hindsight Experience Replay

Instead of shaping the reward function, hindsight experience replay (HER) [23]
can be used only with a boolean reward (like r1 or r3). Sometimes, when the agent
fails to receive a reward of 1, HER pretends that the agent actually has done a
good action.

56

6.1.2 Learning from demonstrations

Learning from demonstrations [24][25] is an approach that provides the agent with
demonstrations by an expert. In the case of billiard, it would be by filming expert
games of carom and storing all expert game transitions in a data set from which
the agent can learn some particular behaviour with a non-sparse reward.

It is also possible to combine computer vision and reinforcement learning tech-
niques to achieve this goal.

6.1.3 Improvement of simulator physics

An assumption has been made for this work : the balls cannot be in a flying
state. Hence, some equations have been modified to take into account the ball z
component position cannot change distancing us from realistic simulator. Then, it
is possible to improve the simulator by adding a flying state. Furthermore, friction
coefficients are supposed to be constant over the whole surface and rails. This can
be improved by finding empirical values for these coefficients.

57

References

[1] Fédération Française de Billard. Code sportif billard carambole. 2011.

[2] Gaspard-Gustave Coriolis. Théorie mathématique des effets du jeu de billard.
Carilian-Goeury, 1835.

[3] Régis Petit. Billard: théorie du jeu. Chiron, 2004.

[4] Wayland C Marlow. The physics of pocket billiards. MAST, 1995.

[5] Michael Smith. Pickpocket: A computer billiards shark. Artificial Intelligence,
171(16-17):1069–1091, 2007.

[6] Jean-François Landry, Jean-Pierre Dussault, and Philippe Mahey. A robust
controller for a two-layered approach applied to the game of billiards. Enter-
tainment Computing, 3(3):59–70, 2012.

[7] Michael Greenspan, Joseph Lam, Marc Godard, Imran Zaidi, Sam Jordan,
Will Leckie, Ken Anderson, and Donna Dupuis. Toward a competitive pool-
playing robot. Computer, 41(1), 2008.

[8] MT MANZURI SHALMANI. Roboshark: a gantry pool player robot. In
Proc. of the International Symposium on Robotics, 2003.

[9] Christopher Archibald, Alon Altman, and Yoav Shoham. Analysis of a win-
ning computational billiards player. In IJCAI, volume 9, pages 1377–1382,
2009.

[10] Jens-Uwe Bahr. A computer player for billiards based on artificial intelligence
techniques. no. September, 2012.

[11] Will Leckie and Michael Greenspan. Pool physics simulation by event predic-
tion 1: Motion transitions. ICGA Journal, 28(4):214–222, 2005.

[12] Will Leckie and Michael Greenspan. Pool physics simulation by event predic-
tion 2: Collisions. ICGA Journal, 29(1):24–31, 2006.

[13] Julien Ploquin. Simulateur de billard réaliste. PhD thesis, Université de
Sherbrooke., 2012.

[14] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[15] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learn-
ing, volume 135. MIT press Cambridge, 1998.

58

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

[17] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[18] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

[19] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances
in neural information processing systems, pages 1008–1014, 2000.

[20] Sélim El Mekki. Carom recommender system. https://github.com/

elselim2/Recommender-system-for-the-billiard-game, 2018.

[21] David Louapre. Théorie du chaos et effet papil-
lon. https://sciencetonnante.wordpress.com/2018/02/16/

theorie-du-chaos-et-effet-papillon/, 2018.

[22] Bruce Sherwood. Vpython. https://github.com/vpython, 2012.

[23] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. Hindsight experience replay. In Advances in Neural Informa-
tion Processing Systems, pages 5048–5058, 2017.

[24] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and
Pieter Abbeel. Overcoming exploration in reinforcement learning with demon-
strations. In 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 6292–6299. IEEE, 2018.

[25] Matej Veceŕık, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin,
Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin A
Riedmiller. Leveraging demonstrations for deep reinforcement learning on
robotics problems with sparse rewards. CoRR, abs/1707.08817, 2017.

[26] Christopher Archibald, Alon Altman, Michael Greenspan, and Yoav Shoham.
Computational pool: A new challenge for game theory pragmatics. AI Mag-
azine, 31(4):33–41, 2010.

59

https://github.com/elselim2/Recommender-system-for-the-billiard-game
https://github.com/elselim2/Recommender-system-for-the-billiard-game
https://sciencetonnante.wordpress.com/2018/02/16/theorie-du-chaos-et-effet-papillon/
https://sciencetonnante.wordpress.com/2018/02/16/theorie-du-chaos-et-effet-papillon/
https://github.com/vpython

[27] Thomas Nierhoff, Kerstin Heunisch, and Sandra Hirche. Strategic play for a
pool-playing robot. In Proceedings of the IEEE International Workshop on
Advanced Robotics and its Social Impacts (ARSO), 2012.

[28] Michael Smith. Running the table: An ai for computer billiards. In Proceed-
ings of the national conference on artificial intelligence, volume 21, page 994.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

[29] Jean-François Landry and Jean-Pierre Dussault. Ai optimization of a billiard
player. Journal of Intelligent and Robotic Systems, 50(4):399–417, 2007.

[30] Yan-Bin Jia, Matthew T Mason, and Michael A Erdmann. Trajectory of a
billiard ball and recovery of its initial velocities, 2011.

[31] Inhwan Han. Dynamics in carom and three cushion billiards. Journal of
mechanical science and technology, 19(4):976–984, 2005.

[32] Damien Ernst. Optimal decision making for complex problems, course notes,
2018.

[33] Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik.
Learning visual predictive models of physics for playing billiards. arXiv
preprint arXiv:1511.07404, 2015.

[34] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[35] Matthias Plappert. keras-rl. https://github.com/keras-rl/keras-rl,
2016.

60

https://github.com/keras-rl/keras-rl

