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Abstract

This master thesis has been drawn up for the purpose of obtaining the Master grade in Civil
Engineering in Computer Science. It relates to a research topic on deep learning focusing in
particular to one-shot learning, applied to the face recognition problem. In this work, the face
recognition problem is assimilated to the task consisting in identifying a person on a given picture.
This classification problem fits quite well with the One-Shot learning setting since it’s supported
by a training set containing only few instances of each face, meaning that the model is ex-
pected to quickly integrate new people’s face from few data, which represent the challenge carried
by one-shot learning. In this work, 4 main phases are defined to perform the face recognition task.

First, databases containing face images have to be acquired. Here, the Labeled Faces in the
Wild (LFW), the Celebrities in Frontal-Profile in the Wild (CFP), the FaceScrub cropped and
part of the CASIA-WebFace are exploited, in addition to some other extra smaller databases
representing common (i.e. not famous) people in order to be closer to real conditions.

From those databases, a training set is being built, made up of less than 10000 face pictures,
which represent a quite limited data quantity regarding the standard size of face datasets that
sometimes reach hundreds of millions of face images.

Once the data has been collected, the face images are being processed, which mainly consists
in detecting the face on each picture, aligning it and finally cropping the picture. Notice that
the face detection relies on an external model already trained for.

Next, the focus is on how to efficiently extract features from the face patches and make the
in-class 1 closer and out-class 2 further in some embedding space. To do so, a Siamese Network
is being trained, based on pairs of faces, to perform well on the verification task3.

After a good Siamese Network has been trained, it can support the last step - the classification -
consisting in assigning an identity to an input face image (probe) by leading some similarity compu-
tation between this input picture and identified face images contained in a gallery. Following that,
the final predicted identity is the one the input face was the closest during the comparison process.

Besides those 4 main steps, to support the learning process based on few data, 2 extra steps
are being defined. First, the Siamese network can be pretrained as encoder belonging to an
autoencoder targeting to reproduce input faces. Next, a data augmentation process is defined by
employing a Style GAN to derive synthetic face instances.

Finally, regarding the performance of the face recognition task, a top-10 accuracy of 84% can
be obtained once a probe has been identified in front of a gallery of 200 people4. Besides this,
the Siamese Network can reach a f1-score of 87% on the verification task. The autoencoder and
the definition of synthetic data can improve the performance only in the case where very little
data are initially available (less than 500 face pictures typically).

1picture instances representing the same person
2picture instances representing different people
3consisting in differentiating (resp. assimilating) 2 different (resp. similar) face identities
4where each identity is represented by 8 instances
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Chapter 1

Introduction

1.1 Context and Problem Definition
The process of getting a discriminative embedding space as relevant as possible to support

some specific task is very common in the machine learning area. Related to that process, one
main constraint can be raised referring to the fact that a machine learning based solution often
requires a quite large amount of data to be able to generalize appropriately. This last issue is
overcome when dealing with the face recognition task in cases where:

• The quantity of training data is limited1.

• At test time, correct identity predictions are targeted to be made, given only few examples
(5-10 typically) of each new class (where one class refers to one identity here).

1.2 Global Solution Summary
To support this task, first, a convolutional network is being tuned, learning to differentiate any

face identities at best so that the resulting model is able to generalize to unseen face identities.
More precisely, the similarity concept is applied, bringing the model able to infer if 2 faces are
more or less similar from a physionomic point of view.

After the tuning step, the model can be used in the task predicting the identity of a new
given face picture, based on a gallery namely containing other pictures related to the expected
identity. To perform this task, the probe P is compared to all the available labeled face images
and the predicted identity is the one related to the pictures the probe P is the most similar to.

In addition to this, an autoencoder is being defined to perform unsupervised feature learning
and a data augmentation process based on synthetic data is being designed.

The whole implementation of this solution is available through [2].

1.3 General Structure
Now a very global overview has been exposed, let’s consider how this work is structured to

detail the whole solution process in response to the face recognition task, using one-shot learning.

1which can be assimilated to less than 1000 people, each having about 10 corresponding face pictures typically
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1.3 – General Structure

First, the problem to tackle over this work is formally defined and then specific objectives
around that problem are enumerated through Chapters 2 and 3.

Following that, Chapter 4 exposes the state of the art of both one-shot learning and the face
recognition application, focused on the techniques that are exploited when designing the effective
solution. Besides those 2 points, some words are also dedicated to the procedure implementing a
particular style GAN, employed to generate synthetic data in order to augment the initial dataset.

Next, the way the solution was designed is being exposed and the main implementation
choices are justified. More precisely, over that fifth Chapter, first, the quantity and the nature of
the data supporting all the learning and the evaluating processes is being developed so that the
reader can measure the degree of difficulty the final algorithm can deal with. Then, the data
processing phase is clarified, followed by the data augmentation process relying on synthetic
data creation. After that, the Siamese Network training (supporting the projection of the input
face image to a final discriminative embedding space) is being explained, relating about the
network architecture, the various possible losses to direct at best the learning process and the
hyperparameters setting. In addition to this, an optional pretraining phase is being defined as
well, by using an autoencoder, to get familiar to the human face concept before tackling the
more difficult task consisting in differentiating face identities. Moreover, some extra strategies to
improve the current quality of the feature representation are being proposed. Once the Siamese
Network has been defined, the algorithm exploiting it to perform the face recognition task is
being described. Finally, for a comparison purpose, the classical classification approach is being
discussed.

Once the whole solution framework has been deeply developed, the experimentation phase,
investigating a very large number of possible scenarios, is being discussed. Each scenario is
characterized by a specific parameters and module usage combination. In particular, 2 phases
are being evaluated. The first one refers to the Siamese Network, evaluated on the verification
task. The second one exploits the Siamese Network to identify faces by comparing an input face
picture to labeled pictures stored in a gallery.

After this, before drawing to the conclusion, a retrospective showing both the strong and the
weaker points of that work is provided, also exposing some other interesting tracks that couldn’t
be explored here but would nevertheless be worth examining.

Master Thesis 4



Chapter 2

Definition of the problem

Before providing a review of the literature related to both few-shot learning and face recog-
nition, let’s formalize the face recognition problem that is tackled here. Similarly to classical
classification problems, a learning set LS and a testing set T S (with no overlapping) are de-
fined. They are both composed of labeled samples (P, i) where P represents a face image (that
can be called probe here) and i the corresponding person/set of people on the image. In this
work, only one person states on a given image and the objective consists in identifying that person.

From this point, the complexity of the task can be increased by playing on the size of the
training set (decreasing the number of instances related to each person i and/or the number of
people), namely. Besides this, the performance can be also highly influenced by the external
features related to the pictures composing the testing set. Indeed, it’s important to realize that,
in the context of a face characterization, 2 kinds of features can be derived:

• The high-level (external) features referring to some external characteristics (like the
background, the lightness, the hairstyle, extra accessories like glasses...), the expression of
the face and the orientation.

• The physiognomic features allowing to distinguish one person from another through
the shape of the face, the noise, the mouth, the eyes ...

In the face recognition task, the focus has to be only on the physiognomic features. From
that point, a challenge is extracting those last features and making the impact of the external
ones as "transparent" as possible over the face recognition task. Knowing this, it can be guessed
that the more variable and rich the external features in the testing set, the more difficult it can
be for a model to recognize a person since it has to deal with the 2 kinds of features, and finally
isolate and consider only the physiognomic ones.

Lastly, notice that the complexity of the task is also influenced by the similarity between the
faces belonging to the same dataset. The more distinct the faces, the easier the recognition.

5



Chapter 3

Definition of the objective

The general aim of this work is defining a system able to identify a single frontal1 face having
variable external features (hairstyle, face expressions...) and taken in variable conditions (i.e.
different background, light, size, orientation ...), based on some other identified pictures (where
the quantity varies from 4 to 10 per identity typically).

To do so, an iterative solution is proposed. At each "work iteration", the current solution is
tried to be improved in terms of performance (i.e. accuracy on the face recognition task) and
data quantity support (where this quantity is reduced). To do so, new modules are defined, each
directly referring to the concepts which have been exposed in the state of the art. The procedure
which is planned to be followed is detailed below:

1. Implementation of a system performing well on the face recognition task2, when evaluated
on a dataset sharing people in common with the training set. More precisely, to support
the face recognition task, a matching algorithm is planned to be designed, relying on
similarities between feature representations, rather than explicitly implementing a classifier.
To support it, a Siamese Network is defined, in order to get a feature representation
based on the reasoning that similar (resp. different) persons’ faces should have a very similar
(resp. different) feature representation, whatever the external characteristics. Finally, the
quality of the feature representation can be evaluated through face recognition task relying
on that.

2. Implementation of system based on a dataset Di and used to perform well on another
dataset Dj (such that Di and Dj don’t share any common people on the images they
contain). Notice that it’s related to the meta-learning concept discussed in Section 4.1.2,
consisting in learning to recognize faces in general, independently from any specific
instances.

3. Improvement of the current system that has to be able to perform well from few data3. To
do so:

(a) a data augmentation process is planned to be designed, based on the synthetic
data generation.

(b) a pretraining phase is planned to be defined where the Siamese Network is trained
on another more simple task in order to learn faster when having to learn to perform
well on the verification task.

1where the face can be just a little turned, as shown in Figure 5.2
2"good performance" referring to about 80% of top-5 accuracy, based on a gallery of 100 people
3where 8000 face pictures are exploited at training time typically
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Chapter 4

Background

4.1 One-shot Learning
In many applications requiring Artificial Intelligence, the Neural Network architecture, inspired

from human’s brain, is getting more and more famous because of it’s ability to perform complex
tasks that only human could solve so far.

Basically, the Neural Network concept relies on the fact that learning results from getting
experience. In the context of a Deep Neural Network, this experience is represented by the large
quantity of examples which are used to train it repeatedly. The more general the training set,
the more accurate the resulting trained Neural Network in making prediction from unknown
input objects. However, related to that concept, some current weaknesses can be highlighted.

First, several existing machine learning algorithms learn "without understanding" what’s
true or false, real or imaginary, fair or unfair, only targeting to minimize a loss function. This
point makes more difficult the improvement of the technique because of this black-box aspect
of the model, where it’s difficult to derive the reasoning leading the prediction task... The
interpretability of Neural Networks is still an open subject!

Next, the Neural Network training is very costly. From a mathematical point of view, it’s
like learning a very complex function depending on a huge number of parameters that has to be
optimized from scratch, according to a very large quantity of training examples. Some applications
are even not achievable because they require rapid inference from only small quantities of data.

Finally, deep networks are usually extremely data hungry while data may be scarce and the
data acquisition may appear as being very tedious, especially in the case where a great quantity
of data has to be manually labeled (or tag).

Seeing those weaknesses, the few-shot learning concept raised.1 Fundamentally, it consists in
learning from few examples, using few iterations, like humans are able to learn fast from few
examples and repetitions. Indeed, for instance, in the task of recognizing a banana depicted
on an image, a human doesn’t need to successively see like 5000 images of banana, while it’s
required for a common algorithm using a neural network in image recognition. The few-shot
learning concept is then very challenging! It requires to approach a task differently.

To define this new approach, let’s consider the different concepts which can be used:

1In this report, both one and few shot learning concepts will be employed in a similar way, pointing the fact
of using a limited quantity of data. Strictly, one-shot learning refers to learn from one instance while few-shot
learning requires few instances.

7



4.1 – One-shot Learning

• The Data Augmentation consisting in generating more data in order to get a larger
(and more general) learning set corresponding to the simplest approach. To do so, the
simplest approach is slightly modifying the original examples. It’s a good technique in
the sense that, in practice, the world never offers perfect instances, there’s often noise or
slight differences compared to the theoretical view. A more sophisticate process would be
to generate synthetic images supported by another neural network trained for.

• The Deep Embedding Learning and Matching Network consisting in first repre-
senting the input data in a low-dimensional embedding space and then exploiting the
representation.

• The Meta-learning allowing to reach rapid learning from sparse data. To perform this,
some experience which has been acquired from other related tasks is exploited. Many
methods relying on that concept are developed but not all of them are supporting the final
solution.

Of course, those concepts can be combined together, making the final face recognition algo-
rithm even closer to the human’s behavior during the learning process.

Besides this, other techniques are also relevant to mention, despite they aren’t exploited in
the final solution that is provided at the end of this work:

• The Memory Exploitation where information is stored and used. The information can
model a state or figure some intermediate representations derived from old data. This
technique isn’t detailed here since it’s exploited in the solution design.

• The Hierarchical Classification and multi label classification where intermediate
predictions are implemented in order to get a final one. This approach is quite intuitive
and is easy to interpret. It basically consists in decomposing the problem into simpler ones.

• The Active Learning belonging to the class of the reinforcement learning algorithms.
The idea is defining an agent dealing with the examples provided as input, in order to
train the model. Even if it’s not included in the final solution, it’s developed a bit more in
Subsection 4.1.5.

4.1.1 Data Augmentation

To perform some data augmentation, many approaches can be selected.
A first basic way to generate more image instances is by rotating the initial image,

changing the colors or cropping the image, basically. Notice that this type of data
augmentation may appear as more or less relevant, depending on the data processing phase that
is defined. In the case where it namely consists in aligning the image to some reference points,
generating duplicates by rotating the image would be useless.

A second more sophisticate approach consists in using a generator in order to produce
synthetic different images. The advantage of this second approach is that the training of such a
neural network doesn’t require labeled data, which is much more manageable for some application
like face recognition or text classification where the labelling process may be quite tedious while
just finding unlabeled instances is easier.

The data augmentation method is developed in section 4.2 in the particular case of the face
recognition problem representing the target of all this work.
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4.1 – One-shot Learning

4.1.2 Meta-Learning Exploitation

As humans, when we are learning a new task like word or object recognition, we usually
have already some experience in such kind of task, making this learning process easier and
faster. For instance, when we have to learn some new characters, we have already in mind the
notion of straight line, circle... allowing us to characterize faster what we have to integrate as
new knowledge. In the Neural Network settings, this concept is implemented through a "smart
initialization of the parameters" of the network supporting the knowledge. To do so, several
approaches can be considered.

First, in the literature, meta-learning models is most of the time defined as referring to a
two-levels definition of the learning problem:

• the rapid learning where knowledge is acquired within each task
• the gradual learning extracting knowledge learned across all tasks

Those 2 types of learning are captured by a meta-learner responsible for the parameter
initialization (and updating). For classification problems, it’s trained in order to optimize the
solution given by the learner classifier, on each task. More specifically, the training phase is led
by successively considering episodes, each episode being represented by a pair of training
and testing sets (Dtrain,Dtest). At each iteration, the aim is minimizing the error on the current
testing set by using the current training set and the past experience acquired from the previous
episodes.2 As final step, the aim is performing at best in a new task where new learning and
testing sets are given. This procedure is illustrated in Figure 4.1.

Figure 4.1: Meta-learning Setup

2The order of the episodes impacts on the meta-learner which is derived. Then it would be relevant to build
different meta-learners (by just changing the order of the episodes) and averaging their prediction at test time.
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4.1 – One-shot Learning

Besides this, another approach consists in defining a model which is as general as possible, by
making it very adaptable [3]. Here, contrary to the first approach, there’s no learned update:
the parameters related to the model are updated using the gradient-based method. The idea is
training this model based on a certain set of learning tasks such that it will be able to manage
later new tasks quickly and from few experience, by combining its prior knowledge and the small
amount of new information.

From a mathematical point of view, it consists in maximizing the sensitivity of the loss
function with respect to the parameters. By doing so, the local variations of the parameters
may lead to significant improvement of the loss task [2]. One of the advantages of this concept
compared to the others is that it can be applied to a large range of problems like classification or
reinforcement learning.

Let’s now formalize that last approach by modeling the meta-learning problem and the
algorithm solving it. As usual, the goal is defining a model f θ mapping some instances x to
outputs y. In this perspective where it’s expected to be as general as possible, a generic notion
of a learning task is introduced:

T = {L(x1,y1, ...,xH ,yH), q(x1), q(xt+1|xt,yt), H}

where:

• L refers to the loss function
• q(x1) represents the distribution over initial observation
• q(xt+1|xt,yt) is the transition distribution
• H is the length of an episode3

In a meta-learning scenario, we’re interested in a distribution over tasks p(T ) that we want
to model in order to easily generalize over different tasks.

Then, in k-shot learning setting, the model is trained in order to learn a new task Ti derived
from the task distribution, where the learning set contains k samples drawn from the distribution
qi and the loss function Li to optimize is generated by Ti.

After training, when the model f θ has to be adapted to a new task Ti, the parameters θ
become θ′i. The update of the parameter is given by:

θ′ ← θ − α∆LTi(fθ) (4.1)

where α is the learning rate, a hyperparameter specifying "how much we want to learn" from
the new task.

Equation 4.1 simply illustrates that the new parameter values are given by the parameters
θ (evaluated during the training phase) refined according to the corresponding loss function,
evaluated on the new task i, in order to minimize it. Then, it’s assumed that the loss function
is smooth enough in θ so that the gradient-based method can be applied. The corresponding
algorithm is given in Figure 4.2.

3For a classification problem, H = 1. The episode notion is relevant in the context of reinforcement learning.
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4.1 – One-shot Learning

Figure 4.2: Algorithm:Model-Agnostic Meta-Learning

In the same way, we have transfer learning relying on a pre-training phase on other similar
task (where more data are available). This task supporting the pre-training phase is called the
source task. Then, the values of the parameters are evaluated and can be used as the initial ones
related to another similar task called the transfer task. Thanks to a smart initialization, the
parameters are not expected to change much, making the learning phase faster and potentially the
"input understanding" better. However, the performance of this approach are limited to transfer
tasks which are sufficiently similar to the source task. Moreover, the pretraining conditions (i.e. on
the source task) don’t meet the inference at test time where only few instances are available, mak-
ing less general the learned deep neural network architecture from prior knowledge. To overcome
this lack of generalization, the matching network can be introduced. It’s described in Section 4.1.3.

Finally, another way to deal with few labeled examples consists in exploiting unlabeled
data4 as additional experience [4]. Again, we can think about humans. When we are learning,
we get some "initial knowledge" (that can be assimilated as the one derived from the labeled
data) and then we are able to make links between this initial knowledge and new similar coming
instances (which can be viewed as the unlabeled data).

In this setting, 2 scenarios can be imagined. A first (and more simple) one, where all the
unlabeled data are supposed to be related to the same class as the given labeled data. And a
second (and more realistic) one where some "unknown" examples occurred (i.e. belonging to a
distractor class).

Let’s now formalize the problem. The training phase involves iterations over episodes. Each
episode is made up of:

• A Support Set S (composed of labeled data)
• An Unlabeled Set R
• A Query Set Q (whose instances are aimed to be correctly labeled)

which is a replication of the testing conditions, as illustrated in Figure 4.3.

4assuming that unlabeled data is available.
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4.1 – One-shot Learning

Figure 4.3: Semi-Supervised Few-Shot Learning Setup

During the training phase, a prototypical network is trained in order to derive the best feature
representation from any input. More precisely, it consists in learning an embedding function
parametrized as a neural network. This concept is described later, in Section 4.1.4. To do so,
first the labeled data are exploited, followed by the unlabeled set R, used in order to provide a
refined prototype, since it provides in so way additional experience to complete the current one.

4.1.3 Matching Network

Related to what is described above, let’s develop now the Matching Network class[5]. A
Matching Network relies on good features representations. In classification problems, once the
input is expressed in this new space, a metric considering the deep neural features is applied in
order to match the labels at best with their feature representation. This procedure is illustrated
through Figure 4.4 where gθ and fθ represent the feature extractors5 whose outputs are compared
based on a similarity function in order to get the best matching and derive the label of the test
example. This approach is very interesting because it’s partially non-parametric, allowing the
model to include more examples faster. During the training phase, it’s targeted to match the
test and train conditions. In other words, here in the context of one-shot learning, it means that
the training phase is supported by few instances per classes (composing a support set S), moving
the task from one minibatch to another, similarly to the testing phase where few examples are
available for a new task.

A typical task that Matching Networks could deal with is image recognition where a small
labeled support set is defined and one unlabeled example is aimed to be labeled. To perform this
task, a classifier cS(x̂) has to be derived from the support set S. Then, a mapping is defined as
followed:

S → cS(x̂) expressing P (ŷ|x̂, S)

where S = {(xi, yi)}ki=1 and P is parameterised by a neural network and represents the
conditional probability of labelling the test example x̂ with label ŷ, taking into account the
support set.

5and g = f , potentially
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Then, once a new support set S′ is provided in order to lead the labelling of a new test
example, we simply use the parametric neural network defined by P to predict from x̂ the correct
label ŷ according to:

argmaxyP (ŷ′|x̂′, S)

Concerning the model itself, the output is represented as a linear combination of the labels
in the support set:

ŷ =
k∑
i=1

a(x̂, xi)yi (4.2)

where a is an attention mechanism represented by a kernel on X × X. This attention
mechanism fully specifies the classifier and the cosine distance function, typically, in order to
measure the matching between its input.

Figure 4.4: Matching Network

The model that is obtained can also be viewed as a function bounding some particular
examples of the support set to a given input x̂, in order to finally retrieve the associated label of
the given input.

This algorithm can be extended to the Memory Matching Network where a memory module
is added, allowing to compress and generalize the instances of S under slots in memory, leading
to a better generalization and then higher performance [6]. Once the memory slots are derived,
they are provided as inputs to a RNN, playing the role of contextual learning. It aims to predict
the parameters of the CNN dedicated to the test instances6. By doing so, the contextual learner
ensures long-term memory over all the classes occurring in the learning set and short-memory
dedicated to the knowledge related to the classes at test time. Moreover, here, it’s important to
underline that parameters are computed on the fly.

4.1.4 Deep Embedding Learning

Let’s focus now on the Deep Embedding Learning setting supporting a classification task.
This setting consisting in creating a low-dimensional space to represent the input data, such that
the resulting feature representation is more discriminative, making easier the classification, as
typically developed in [7].

6This concept of learning a learner whose goal is inferring parameters is typical of meta-learning, again.
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To do so, several procedures can be led by implementing a loss function according to. A first
reasoning consists in encouraging the representation of examples belonging to the same class to be
as close as possible to each others. In the same way, a lower-bound can be imposed on the distance
between the representation of instances related to different classes in order to differentiate them
at best and then making easier the class prediction from the feature representation. Those
conditions are expressed through the contrastive loss, basically optimizing the differentiation
between the representations of 2 different subjects. A more simple version of this loss function is
the margin-based loss, only targeting to minimize the distance between feature representation of
instances of the same class. Finally, another very interesting loss function following the same
reasoning is the triplet loss. It considers 3 images:

• an anchor instance A (considered as the reference)
• a positive instance P (belonging to the same class of instance A)
• a negative instance N (belonging to a class different from A)

From this setting, the idea is training a feature embedding making closer instance A to the
instance P compared to instance N . It can be expressed through:

L(A,P,N) = max(0, ||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α) (4.3)

where α represents the margin and f(.) is the embedding function. Here the Euclidian
distance metric was selected.

This reasoning is illustrated through Figure 4.5.

Figure 4.5: Triplet Loss Reasoning

At this stage, it’s also important to raise the influence of sampling! Indeed, for a fixed loss
function, it was observed that different accuracies were computed, depending on the way the
training set was built. More specifically, 3 sampling methods can be employed:

• Random Approach where the samples are simply selected randomly.

• Semi-Hard Approach consisting in imposing: ||f(A)− f(N)||2 < ||f(A)− f(P )||2
in order to make "harder" the training phase (and then increasing the computation efficiency).
In that case, it’s assumed that some embedding function f has already been evaluated.

• Distance-Weight Approach selecting more informative and stable examples by con-
straining the distance between pairs (A,N) to follow a specific distribution.

An overview of deep embedding learning is provided through Figure 4.6. First, the batches
supporting learning are built, following a specific sampling strategy. Then the images are
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represented through some features. Finally, a loss function measures the quality of the embeddings
according to some criteria depending on the loss function itself.

Figure 4.6: Deep Embedding Learning

Finally, once evaluated, in general, the deep Convolutional Neural Network has demonstrated
high performance in feature representation, especially for image recognition. However, high
performance achievement requires a quite large quantity of annotated data in order to define
a relevant deep feature representation generalizing well... That’s why here, in the context of
one-shot learning, the CNN architecture is used, coupled with other modules stimulating the
learning phase or a specific reasoning.

Siamese Network

Related to the global approach described above, the Siamese Network is developed. This
network targets to learn a deep relevant feature representation by relying on a similarity function
[8] [9], based on pairs of images. Indeed, instead of directly learning to classify its input, the neural
network learns to differentiate two inputs related to different classes. It’s illustrated through
Figure 4.7. First, the input images are given to a Convolutional Neural Network (sharing the same
parameters values) transforming them into their corresponding feature representation. After this,
the feature representations of both inputs are compared through a distance function measuring
how similar they are. During training, the objective function is minimized when the distance
between the representations of similar (resp. different) objects is small (resp. large). After
training, the resulting Convolutional Neural Network can be used for classification, supported by
a Matching algorithm for instance.

Figure 4.7: Siamese Network

One recent paper [10] extended the use of the Siamese Network by combining it with the
attention mechanism, which demonstrated quite high performance. Again, contrary to the basic
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approach, there’s no conditioning on class identities (i.e. no explicit label which is defined).
The algorithm just relies on similarities between objects’ parts in a weakly supervised manner,
using both Siamese similarity and attention mechanism. This technique allows to reach better
generalization.

More specifically, the algorithm takes one exemplar x representing an instance of a class A7

and one target example T including or not an instance of class A. Moreover, the target example
is supposed to be larger such that it contains different target locations l. From this setting, a
model is defined through a similarity function sl(x, T ) computed in a specific location l in the
target example T . This similarity function is as large as the example x is similar to the content
at locations l of T .

This approach is particularly interesting in the context of face recognition where no labelling
is required and where a face may have first to be detected on the picture, before being identified.

4.1.5 Active Learning

Finally, let’s consider a last concept related to few-shot learning. As briefly mentioned above,
machine learning applications design may require lots of human resources in the task consisting
in collecting and labelling the instances supporting the learning phase. To alleviate this weakness,
active learning can be implemented. It consists in defining an intelligent agent managing the
collected examples provided as input, in order to train the model [11][12]. These examples are
treated online. For each of them, the agent has to decide to predict the corresponding label or
to request the true label of the example, if it considers that the uncertainty is too large. The
associated reward is maximal for correct labeling, minimal for incorrect labeling and intermediate
for labels that have been requested. By doing so, it’s targeted to learn from the least possible
instances, and maximizing the accuracy at the same time. This illustrates the Few-Shot Learning
concept.

4.2 Face Recognition Problem [1]
In this One-Shot learning setting, the focus is on deep face recognition. Basically, it refers

to learn a hierarchical architecture of features discriminating at best the faces that have to be
differentiated.

Nowadays, face recognition has become one of the most researched topics in computer vision
and biometrics. Here, the Face Recognition task is tackled by exploiting deep neural network
abilities.

Face recognition may refer to 2 categories of problem. First, the goal can be just verifying
that a specific face represents a given person. In this case, a one-to-one similarity is computed
between the gallery (containing instances related to a specific identity) and the probe (i.e. the
picture that has to be checked). In the other hand, the aim can be identifying a person on
a picture, based on a gallery containing labeled pictures of several people. In this last case,
the identity is derived after computing some one-to-many similarities. A more complete view
on the different possible scenarios included in the FR problem class is exposed through Figure 4.8.

7which is not explicitly defined in the algorithm
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Figure 4.8: Different Training Protocols

4.2.1 Terminology

First and foremost, let’s define some specific terms employed all over this report.

• The Face Recognition task here refers to the identification of a person on a given
picture. It doesn’t include the face detection process, meaning that all the given pictures
have to illustrate one and only one face. Over all this work, both the face recognition and
the face identification processes refer to the same task.

• The Face Verification Task consists in predicting from 2 face pictures if they represent
the same person or not. This task is performed by the Siamese Network and can be used
as sub-task to design a face recognition system.

• A gallery G represents a set of labeled face pictures Gij , where i and j respectively refer
to person i and the index of the pictures related to person i.

• A probe P represents an unlabeled face picture that has to be identified by being compared
to the pictures contained in the gallery.

• The matching phase, also called classification phase, refers to the process where the
probe is compared to each instance contained in the gallery to be finally associated to the
most similar ones whose identities are known.

• The external (i.e. view) features refer to the features that can be derived from a face
picture but that don’t characterize the identity of the face, in opposition to the physionomic
feature.

• A synthetic image Isynt is a face image created by a generator. It can be either a variant
of a given face picture or a synthetic person.
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• The disturbance refers here to the distance between the feature representations of 2
instances of the same person.

• Siamese Network S is a specific kind of network that takes as input pairs of face images
and compute for each of them comparable output vectors derived after propagating each
picture through the same network.

Let’s now get an overview on the different components of face recognition system.

4.2.2 Face Processing

As specified before, in this work, the reasoning consists in deriving a high level abstraction
representing the facial identity, in a stable way, such that the features that are derived are
invariant to face pose, light and expression changes. Focusing on the poses, 2 kinds of
image processing can be mentioned:

• One-to-many Augmentation where, from a single image, many pictures are generated.
Notice that this processing is very relevant in the context of one-shot learning where few
instances are available.
To do so, first, some simple transformation can be applied, like mirroring or rotating the
image.
Second, some 3D-face reconstruction can be performed in order to compensate for low
resolution, poor contrast and non-frontal pose.
Third, to avoid building 3D representation and then projecting the image back to a 2D
domain, some CNN can be directly used in order to synthesize images with different poses.
Here, 2 types of neurons can be defined: the deterministic hidden ones, learning the identity
features, and the random hidden ones capturing the view features.
Lastly, some GAN can also be exploited in order to get synthesized images. This last
approach is developed in a deeper way in the following section since it’s investigated and
exploited in this work.

• Many-to-one Augmentation where, on the contrary, from several images representing
a same person, one single view is generated, so that it’s more representative of the person,
in some way, because it’s not related to any specific "condition" (like the luminosity, the
pose ...). In terms of implementation, a stacked autoencoder can be used, mapping a set of
non-frontal faces to a single frontal view. Moreover, as before, a CNN or a GAN can be
exploited to reconstruct a single representation of the person.

4.2.3 Deep Feature Extraction

Following the processing face, a very important and challenging step is the deep feature
extraction, providing the feature representation of a given image that supports after the face
recognition task itself. To lead this phase, a neural network (with some specific structure) is
trained under a defined loss function that direct the variation of the parameters of the network.

First, about the network architecture, Convolution Neural Network (i.e. CNN) was revealed
as being the most popular in the area of image recognition, because if its ability to extract
relevant features from images. Some famous CNN architectures are the AlexNet, the VGGNet
the GoogleNet and the ResNet. Some architecture variants were also designed, relying on
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the definition of a max-feature-map activation function (to reduce the computational cost) or
combining the output of 2 CNNs to obtain bilinear representations.

To go further, some joint alignment-representation networks were also experimented. They
refer to an end-to-end system made up of different modules, each of them optimizing the
performance of the the main face recognition problem. The different modules can be responsible
for face alignment, face representation or face recognition itself.

Following the same multi-modules reasoning, multiple networks solutions were also designed
and could bring some improvement to the basic backbone network approach. In this context, 2
kinds of networks can be defined:

• Multi-Input Networks leading one-to-many augmentation.

• Multi-Task Learning Networks working on some side tasks for identity classification
like pose, illumination or expression estimation, but also face detection, gender estimation
...

Next to this, considering the loss functions, many ways can be explored. A very common
one relies on the softmax loss whose objective is maximizing the probability attached to correct
class. However, for the face recognition problem, this simple approach has limited performance in
feature derivation. As alternative, other losses are are exploited, all of them explicitly optimizing
the difference in feature representations corresponding to different identities. Here are those
different losses:

• The Euclidian-distance-based loss both minimizing the intra-variance and maximizing
the inter-variance related to the classes. More precisely, the loss functions that are defining
in this setting are the contrastive loss, the triplet loss (explained before in the context of the
Siamese Network) and the center loss. Notice that this function overcome the instability
problem that may occur with the 2 first functions.

• The Angular/Cosine-margin-based loss in the same way enforcing similarity (resp.
dissimilarity) between feature representation of same (resp. different) labeled images. More
specifically, in this setting, the L-softmax and the A-softmax can be implemented, both
inspired from the softmax loss but including also the (dis)similarity optimization concept.

• Some improved versions of the softmax loss mainly consisting in normalizing features (or
weights) or enforcing the norm of samples to be some specific value R. This last method
refers to the Ring Loss.

An illustration of some of the losses mentioned above is shown through Figure 4.9.

Figure 4.9: Center Loss, Feature and Weight Normalization and Large Margin Loss

4.2.4 Face Matching

Once an optimized feature representation is derived from a given input image, it can be
exploited in order to perform:
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• Face Verification relying on a metric that has to make 2 different classes as separable as
possible. This task can be typically performed based on a Siamese Network by additionally
defining a threshold. This threshold is compared to the distance between the embeddings
of the 2 input images so that it can finally output a boolean value telling if the 2 input
faces represent the same identity or not.

• Face Identification relying on a voting system, where the probe is compared to each
picture of the gallery and some similarity score is outputted from each comparison. In
this setting, it’s important to mention that in practice, most of the time, it’s not realistic
to get a training set containing images of all the people the model will be used for as
recognizer, meaning that some transfer learning is "naturally" introduced to deal with the
face recognition task in a practical context. Some faces (belonging to the source domain)
are used to train a model so that it can represent any particular faces at best. Then faces
of new people (belonging to the target domain) are given as input to the model that derive
a corresponding feature representation.

4.2.5 Data Resources

The samples composing the database support the learning process of the face recognition
model, meaning that the choice of those samples is very important. Those samples have to
be as much representative as possible to reduce at best sample bias (due to over-represented
environments, specific expressions, specific poses...) In practice, acquiring face databases isn’t an
easy task. Most of the available ones contain pictures of celebrities (because of privacy issues),
which isn’t so representative of all the faces a FR system could encounter in the future...

Moreover, as specified before, the "conditions" of the picture may impact on the performance
because of some variational aspects like the pose, the age, the Makeup the person or the resolution
of the picture, namely.

4.2.6 Face Recognition State-of-the-art Performance

Currently, by approaching the face recognition task as first a verification problem (i.e. 2
labels can be predicted: "same" or "different"), an accuracy of 98.63% can be reached when
the training is directed by the center loss function, based on the 10,575 subjects and 494,414
images, relying on the VGG16 Architecture whose training takes around 7 days to reach such
performances [13]. More generally, all the best performance on the verification task could be
obtained by relying on deep learning solution and large datasets. Getting accuracies related to
one-shot learning conditions (i.e. limited training set) appeared as difficult...

In the same way, when searching for performances related to the face identification task,
all the results were related to very powerful algorithms relying on models that were trained on
more millions of face images. In this setting, for a gallery size containing tens of thousands of
identities, an accuracy around 97% can be obtained.

Finally, especially in the face recognition problem, it has to be realized that the performance
highly depends on many factors like the expression of the faces, how specific the faces are, how 2
faces are similar to each other, how diverse the testing set is, how the background of the picture
looks like ... Knowing that, the reader has to understand that the results comparison isn’t as
relevant as it could be in other straighter applications.
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4.3 Style-Based Generator Architecture for Generative Adver-
sarial Networks

In this last section, the data augmentation process employed in this work is developed. It
is supported by a Style-Based Generator. Basically, this model represents high level attributes
in an embedding space after having been trained as a generator. In particular, the feature
representation z in this embedding space can be adapted (under some distribution constraints)
so that once projected back into the initial "real space", the high level attributes (like the pose
...) have changed while the physiognomy of the initial face remains the same.

First, regarding the structure supporting the generator, a baseline is defined and a constant
is provided as input. Then, over this baseline, some adaIN modules are added in order to capture
the style of an external input A and transfer it to the current representation that was progressively
built from the input constant. By doing so, it’s possible to understand the mapping between the
network layers and the high-level feature modelling by observing which image characteristics are
impacted.

Concerning this input A, it’s also important to notice that it results from the latent code z
having been turned through a mapping network into another representation w.

Finally, in addition to that input A, some stochastic noise is introduced (pixel per pixel) to
impose small variations and allow the network to learn to use it to control stochastic variations.

The overall structure is illustrated in Figure 4.10.

Figure 4.10: Style-based generator

This Style-Based Generator may be used for different applications like mixing several faces,
generating synthetic person faces or generating synthetic pictures from a given one, where only
high-level features have changed. Here, the interest is on the last point extending the instances
related to a given person. By generating new instances, first, a Siamese Network, responsible for
distinguishing different people, can become more robust to high-level features variation. Next, it
can also appear as useful during the face recognition task: rather than comparing the probe to
each picture in the gallery, several instances of the probe are compared, making the final result
more robust, again. The bad side of that process is the cost, both in terms of time and space.
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Chapter 5

Solution Implementation

Basically, in order to recognize a person represented on a picture, a good approach consists
in designing this problem through 2 main phases.

During the first one, the input image is projected into a discriminative feature space. That
refers to the embedding definition phase. To do so, a deep neural network can be trained
to map the input picture to a more discriminative feature representation having the property
of highlighting similar identities and separating different ones. In other words, once a feature
representation is derived from a picture, the aim is that it remains quite invariant once another
picture with the same person is given and, on the opposite, that it appears as as different as
possible once a picture with another person is provided. Knowing that, The embedding network
can be trained, being supported by a loss function reasoning on the distance between the feature
representation of pairs of faces. This is developed in Section 5.3.

Next, during the second phase deeply exposed over Section 5.4, a probe has to be identified.
To do so, the feature of that given probe face is compared against a gallery and the most similar
gallery faces give the identity of the probe face. This is assimilated to the classification phase.

Besides those 2 phases representing the heart of the solution, some other modules have
to be defined. A first one is responsible for the the data processing phase all the data have
to go through. This step is explained in Subsection 5.2.2. A second one refers to the triplet
definition supporting the training phase. In addition to this, a data augmentation module is
implemented as well, where synthetic instances are generated from images representing real
people. Then, those synthetic instances can be optionally used as training data (or during the
face recognition task as extension for the probe). Moreover, the embedding network can be op-
tionally pretrained by being included in an autoencoder so that it can learn how to represent a face.

Finally, a model evaluation structure is defined to get the performance of the Siamese Network
that is exploited during the classification phase. All this process is illustrated through Figure
5.11.

1Where the doted components refers to optional modules, defined to improve the current basic solution
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Figure 5.1: Global Structure of the solution
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5.1 Implementation Details and Libraries
From a pure implementation point of view, as it can be guessed, the whole pipeline was

written in Python.

In addition to this, regarding all the deep learning solution part, at the very beginning of
that work, a first very important choice has been the library that would support it. The main
deep learning python libraries that were candidates are the following:

• Keras that can be considered as a high-level neural networks API and that uses TensorFlow
in backend.

• TensorFlow that also provides a certain level of abstraction (in terms of computational
graph, namely). It’s also popular because it offers distributed training support, scalable
production deployment options and support for various devices like Android.

• Pytorch which can be defined as a lower level framework for deep learning, allowing to
write custom layers for instance or look under the hook of optimization tasks. Moreover, it
observes strong GPU acceleration and efficient memory usage. However, contrary to Keras,
managing implicitly the GPU use, PyTorch requires us to specify when to transfer data
between the CPU and GPU.

Finally, after having consulting different posts and platforms where the choice of a python
library for neural networks were discussed, Pytorch was selected since it appears as the best
in a research context because of its flexibility and low level of abstraction, allowing a better
understanding of all what’s happening during the learning process.

However, later over this work, some external models and codes have been used, implemented
in tensorflow, so that the final solution relies on both pytorch and tensorflow libraries. That
final situation mixing different deep learning libraries appeared as problematic at the end, once a
sophisticate optimization procedure was imagined, requiring to join both pytorch and tensorflow
networks for training. This point is discussed a bit later over Subsection 5.3.5.

5.2 Data
Let’s consider now the solution content, by first describing all the data processes. This first

step, despite not being the most attractive, remains very important since the data that is used
directly impact on the robustness and the accuracy of the final solution.

5.2.1 Databases

As a first step, data has to be collected. Different databases could be found, each of them
containing labeled pictures, taken in different conditions (with colored background, with different
resolution, more or less cropped ...) and with different kinds of people (with variational gender,
age, nationality, with potentially glasses ...). Moreover, some databases also contain some
non-frontal pictures. An exhaustive view on the databases that are used is exposed through
Table 5.1 and additional comments are given about them.

First, the databases[14] "Aberdeen", "Iranian", "Pain expressions" and "Utrecht ECVP" provide
1240 pictures in total. Despite the quite limited quantity of data, the data source combination
setting is expected to lead to some models generalizing better. Moreover, in the context of the
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Database #People #Images per Person Quantity Resolution x× y

"Aberdeen" 90 [1; 18] (10 on average) 678 [336× 480; 624× 544]
"Iranian" 34 11 231 1200× 900
"Pain expressions" 12 7 84 720× 576
"Utrecht ECVP" 69 2 129 900× 1200
Georgia Tech face 50 15 750 640× 480
Yale face 15 11 159 320× 243
Faces94 153 20 2556 180× 200
Labeled Faces in
the Wild

1192 [2; 20] (6 on average) 13 155 250× 250

Celebrities in
Frontal-Profile in
the Wild

500 10 frontal and 4 profile 4948 [90× 90; 600× 600]

CASIA-WebFace 241 [5; 30] (20 on average) 2336 250× 250
FaceScrub
cropped

530 [6; 12] (10 on average) 5217 300× 300

In Total: 2652 / 30243 200× 150

Table 5.1: Databases

Siamese Network, data images are combined to form pairs or triplets to support the training and
testing sets, meaning that the final quantity of instances can become very large, as detailed in
Section 5.3.3. Next, the Georgia Tech face[15], the Yale face[16] and the Faces94 [17] databases
are selected as well, all containing colored cropped images with very different people. Those are
illustrated through Figure 5.4.

Figure 5.2: "Iranian" and Georgia Tec Face
Databases

Figure 5.3: "Utrecht ECVP", "Pain Ex-
pressions" and "Aberdeen" Databases

Besides those databases, other bigger ones have been found thereafter. A first one is the
Labeled Faces in the Wild database[18], containing 11,507 images of faces collected from the web.
However, only 1192 people have 2 or more related pictures meaning that only 4493 pictures
could finally be exploited in classification phase since at least 2 pictures per person are required
to match a probe with a person (except if those pictures are prevented from being picked as
probe but still, representing an identity by 1 or 2 instances in the gallery remains quite poor).
Nevertheless, all the "single instance" face identities (i.e. the unique ones representing a person)
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can be used in the pre-training phase, when the target is learning a good feature representation
of a human face, independently from an label. In the same way, those can represent the Negative
N in a triplet. Those considerations encourage the LLW database to be exploited during the
first phase, where the Siamese Network is trained. Concerning the content of the pictures itself,
it can be assimilated to a medium level of difficulty since the background isn’t uniform and may
even include (part of) other faces, as illustrated through Figure 5.5.

Figure 5.4: Yale and Facd94 Databases Figure 5.5: Labeled Faces in the Wild

Two other quite large databases are the Celebrities in Frontal-Profile in the Wild database
[19], containing both frontal and profile views of each person and Face Scrub cropped. Each
image is cropped and the quality of the pictures varies. Typical pictures they contain are shown
through Figures 5.6 and 5.7.

Figure 5.6: Celebrities in Frontal-Profile in
the Wild

Figure 5.7: Face Scrub cropped

Finally, the CASIA-WebFace[20] database is also used to support the experiments. Contrary
to all the previous databases, this last one has the advantage of containing a huge amount of
images. However, a non-negligible drawback is the poor quality of some pictures. In addition to
this, several picture instances related to the same person are sometimes very difficult to associate,
due to different positions, light or hairstyle, age..., as illustrated through Figure 5.8, or even
wrong. That’s why this database was partially checked manually and only 2336 pictures were
kept to be use for testing, so that the testing data are reliable.

5.2.2 Data Processing

Now a clear view on the data has been provided, let’s detail how those data have to be
pre-processed before being exploited in the training and testing phases.
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Figure 5.8: Casia Web Face Database Figure 5.9: Sample of pictures where
faces are not detected

First, as illustrated from the Figures showing some instances contained in the different
databases, the faces are depicted in different scales, orientations and positions from one picture
to another, which makes more difficult the capture of the faces physiologic features. To overcome
this weakness, some alignment processing is applied on each picture in order to ensure each
image to be well-centered on the face. More specifically, first a LandmarksDetector model
is used in order to locate precisely the face and its high level features. The use of this model
is pretty interesting since it also allows to catch the pictures of poor quality corresponding to
the pictures whose landmarks can’t be derived. Such pictures are illustrated through Figure 5.9
to get an idea about the robustness of the LandmarksDetector model. Those pictures were
removed from the database.

After this step, the face picture can be re-oriented, potentially shrinked (where a pad is then
defined) and cropped so the focus is mainly on the face. The final chosen dimensions of the
input images are 150× 200. In this way, whatever the initial dimensions of the input images, the
processed image feeding the neural network remains manageable (i.e. the input isn’t too large)
while the amount of information (i.e. the image content) is still complete enough (the facial
characteristics still stand out). The evolution carried by the alignment processing is illustrated
through Figure 5.10.

Figure 5.10: Alignment Process

Finally following this, once the RGB images have been turned into tensors, each value (in [0,
255]) is standardized following the formula:
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input = (input−mean)
std

where here the mean is set to 0.5 and the standard deviation to 1.

5.2.3 Data Augmentation supported by synthetic images

As a reminder, the main goal of this work is learning from few data, which appears as quite
challenging since the main issue of deep learning methods is that they need to be trained from a
large amount of data so that enough variations can be captured to generalise to unseen samples.
In front of this, as mentioned before, a quite intuitive way to proceed is generating new data
from the current ones, where those new data are variant of the ones contained in the initial
databases. Here, in particular, 2 approaches can be considered:

• Instances Generation where from a given real picture of a given person some variants
are generated by playing on the smiling expression, the age and the gender, in a limited
extent. The result of this process is illustrated through Figure 5.11.

Figure 5.11: Synthetic Images: The first column contains the real initial
pictures and the rest illustrates the synthetic images

• Person Generation where synthetic faces are created by the generator and several
instances of those synthetic people can be generated following the instance generation
procedure discussed just before. More specifically, a synthetic person is defined from a
"random" latent representation vector, derived under some distribution constraints, and
projected back to initial space pictures are represented in.

Regarding the implementation of this data augmentation module, it was supported by the
open-source software given by [21]. More specifically, here are the steps that were followed in
order to generate synthetic images from a real given one preal:
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1. Get Latent Representation z from preal. To do so, a pretrained perceptual model is
optimized considering preal over a certain number of iterations. Concerning that number
of iterations, it has to be mentioned that it must be set to at least 500 in order to get a
relevant latent representation, proper to the current person. To fix it, there’s a tradeoff
that has to be considered between;

• A large computation time but generated pictures with higher-quality and more robust
to external feature variations

• A limited computation time but also generated pictures with a limited quality

Here, the number of iterations was finally set to 1200.

2. Application of variations on z. Once z is derived, some variation can be applied to some
specific values zi with respect to a specific distribution in order to preserve the physiognomy
of the current person, by only playing on "external features" like the face expression. The
latent direction leading the values changes were already learnt from previous experiment
by the author of the open-source software [21]. Right now, 3 external feature variations
can be applied (more or less intensively, depending on some coefficient setting):

• Smiling Expression
• Age
• Gender

After some testing experiments, a good scenario was generating 4 synthetic images, 3
referring to different smiling expression and 1 to different ages.

3. Integration of the new synthetic pictures in the database

From Figure 5.11, it can be observed that for some initial picture, the generated instances
are quite "bad", at least from a human perspective, even after the number of iterations and
the coefficients measuring the intensity of the variations have been tuned. That raises some
questions about how relevant synthetic images, poor from a human point of view, can be for
a machine. This question is answer in chapter exposing the results obtained across different
scenarios where synthetic data are exploited. In addition to that, it obviously also open the door
to some improvement over this synthetic data generation phase.
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5.3 Optimal Feature representation for the Face Recognition

5.3.1 Training Choices: Hyperparameters

In this part, the focus is on the setting of the weight decay, the learning rate, the number
of epochs and the batch size. It can be very tricky to choose the best combination of all those
hyperparameters. Many scenarios have been experimented, each hyperparameter varying on a
specific range of values. After this experimental phase, the final selected values are:

• batch_size= 32
• weight_decay= 10−3

• (initial) learning_rate= 10−3

• nb_epochs2 ∈ [30; 70]

In particular, concerning the learning rate, a learning rate scheduler is defined. Three
scenarios have been studied:

• A first basic one with a constant learning rate
• A second one with a linear-decreasing learning rate
• A third one with an exponential-decreasing learning rate

After the experimentation session, the linear-decreasing learning rate appears as providing
both the best result and learning behavior (with few instability).

Besides the learning rate, the number of epochs was set in order to avoid the overfitting
phase.

Around those 2 hyperparameters tuning, many scenarios, with a variable data quantity, have
been experimented and for each of them, the epoch where the highest f1-measure was reached
has been registered. From those data, as you can guess, it could be observed that the optimal
number of epochs highly depends on the size of the training set. Here, in a work based on
one-shot learning, this aspect has to be kept in mind since the quantity of data is discussed (and
then may be different from one experiment to the other). For a very small number of input
pairs, the number of epochs has to be reduced to avoid any overfitting while it’s increased for
large training sets. Typically, 30 epochs are sufficient once training a network on 3000 triplets
while 70 epochs may be required for a training set of about 15000 triplets. In the same way,
the optimal learning rate management has to take the quantity of data into account. Typically,
when training is based on more than 10000 triplets, a constant learning rate set to 0.001 leads to
a better learning process since the data are more diverse, meaning that there’s "more to learn"
from. In addition to the data quantity impact, it’s important to highlight the fact that both the
number of epochs and the learning rate should be tuned together. More precisely, for a small
number of epochs, a constant learning rate is preferred while for a larger number of epochs, the
learning rate should be decreased to avoid overfitting.

Finally, notice that the complexity of the architecture of the network impacts on those
observations. Here, the quantitative information that are mentioned refers to the results related
to the basic architecture. All the architectures that were experimented are developed in the next
section.

2This is adapted depending on the size of the training set, as discussed below
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5.3.2 Training Choices: Embedding Network Structure

When designing a network structure, a balance has to be found between network depth, model
performance, training time and memory use. Here, 3 architectures were experimented:

• "Basic" Net (inspired from the simple architecture given in [22] that represented the start
point of this work)

• AlexNet

• VGG16

A more detailed view on the architecture is exposed through Tables 5.2, 5.3 and 5.4. From
those Tables, it can be noticed that from the Basic Net to the VGG16 Net, the architecture is
more and more complex. The target behind the experimentation of those 3 architectures was
to see how much the performance can be improved by using a more sophisticate structure of
network. The corresponding results are shown in the next chapter.

From Table 5.2, it can be seen that the Basic Net produces a 512-dimensional output feature
vector which appeared as being able to capture the stable individual features. Similarly, an
output vector size of 1024 was tested as well, since 512 features may appear as incomplete, but
no improvement is brought in this setting.

Regarding the 2 other architectures exposed in Tables 5.3 and 5.4, 3 scenarios have been
explored, where the final feature representation contained respectively 1024, 2048 and 4096
features. The best performances are reached with the smallest embedding vector for both
architectures.

Layer Feature Map Size Kernel Size Stride Acti-
vation

Input Image 1 200× 150× 3 / / /
1 Convolution 64 194× 144× 64 7× 7 1 relu

Dropout (0.2) 64 194× 144× 64 / / /
Pool 64 48× 36× 64 4× 4 1 /

2 Convolution 128 44× 32× 128 5× 5 1 relu
Dropout (0.2) 128 44× 32× 128 / / /

Pool 128 11× 8× 128 4× 4 1 /
3 Convolution 256 7× 4× 256 5× 5 1 relu

Dropout (0.2) 256 7× 4× 256 / / /
Pool 256 1× 1× 256 4× 4 1 /

Output Linearization / 512 / / relu

Table 5.2: Basic Net
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Layer Feature Map Size Kernel Size Stride Acti-
vation

Input Image 1 200× 150× 3 / / /
1 Convolution 64 48× 35× 64 11× 11 4 relu

Pool 64 23× 17× 64 5× 5 2 /
2 Convolution 192 23× 17× 192 5× 5 1 relu
3 Convolution 384 19× 13× 384 7× 7 1 relu

Pool 256 8× 5× 384 5× 5 2 /
4 Convolution 256 6× 3× 256 5× 5 1 relu
5 Convolution 256 6× 3× 256 3× 3 1 relu

Pool 256 2× 1× 256 3× 3 2 /
Dropout (0.5) 256 2× 1× 256 / / /

Output Linearization / 1024 / / relu

Table 5.3: Alex Net

Layer Feature
Map

Size Kernel
Size

Stride -
Padding

Acti-
vation

Input Image 1 200× 150× 3 / / /
1 2 × Convolution 64 200× 150× 64 3× 3 1 - 1 relu

Pool 64 100× 175× 64 2× 2 2 - 0 /
2 2 × Convolution 128 100× 175× 128 3× 3 1 - 1 relu

Pool 128 50× 37× 128 2× 2 2 - 0 /
3 3× Convolution 256 50× 37× 256 3× 3 1 - 1 relu

Pool 256 25× 18× 256 2× 2 2 - 0 /
4 3× Convolution 512 25× 18× 512 3× 3 1 - 1 relu

Pool 512 12× 9× 512 2× 2 2 - 0 /
5 3× Convolution 512 12× 9× 512 3× 3 1 - 1 relu

Pool 512 6× 4× 512 2× 2 2 - 0 /
avgPool 512 7× 7× 512 / / /

6 Linearization / 512 / / relu
Dropout (0.5) 512 512 / / /

7 Linearization / 1024 / / relu
Dropout (0.5) 1024 1024 / / /

Output Linearization / 1024 / / relu

Table 5.4: VGG16 Net

5.3.3 Siamese Network: Distance-based approach

Triplet Definition

In order to identify a person, a Siamese Network is defined, based on the distinction between
2 faces on 2 given images. More precisely, as expressed in Section 4.1.4, the network is trained
based on triplets (A,P,N), where A is the anchor, P is another picture representing the same
person and N a picture representing another person. Notice that, depending on the loss, the
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triplets can be split into pairs (A,P ) and (A,N).

In the particular context of one-shot learning, relying on triplets rather than single input
images really represents a strength because it allows to significantly increase the number of
samples composing the training set. Typically, imagine you have on your disposal a dataset of I
people, each one having J corresponding pictures. If each picture is defined once as the anchor
and some corresponding "positive" and "negative" pictures are picked from the image dataset, a
set of (I ∗J) triplets is defined, corresponding to the number of pictures. However, it’s important
to realize that for each person i, C2

J different pairs (A,P ) can be generated. Knowing that, in
the case where a database of 20 people is provided, each person having 8 corresponding instances,
560 different pairs3 (A,P ) can be defined.

Besides this, regarding the total number of different triplets that can be built, it’s given by:

I.((I − 1).J).
J∑
j=2

(j − 1)

where:

• the first factor I is the total number of people

• the second one (I − 1).J represents the number of possible negatives N

• the last one (j − 1) refers to the number of possible positives P , considering successively
each instance j related to the current person so that there’s no duplicate.

Applying this to the last example, 85120 different triplets4 can be derived.

At this step, in the case where several databases are used and knowing the large number of
possible triplets that can be defined, it can be relevant to ensure that N is picked a sufficient
number of times among the pictures coming from the same database, especially in the case where
databases are small and very specific (i.e. where the external features are the same). In this way,
the differentiation is more difficult and the learning phase is more relevant because the focus is
constrained to be on the face itself since the background and other extra characteristics related
to the "external conditions" the picture was taken in are the same.

Triplet Loss

Concerning the loss functions to employ, first, the triplet loss function was experimented to
support the model training. It’s given by:

L(A,P,N) = max(0, d(f(A), f(P ))− d(f(A)− f(N)) + α)

In this setting, 3 hyperparameters choices have to be made.

First, seeing the expression of the triplet loss, a distance metric and a margin α have to
be set. For the distance metric, as for the classification phase, the Manhattan distance, the
mean-square distance and the cosine distance were experimented and the final picked one was the
mean-square distance, giving the best model performance. Next, for the margin, again different

3where 560 = 20.C2
8

4where 85120 = I.((I − 1).J).
∑J

i=2(i − 1) = 20.(19.8).
∑8

i=1(i − 1)
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scenarios were tested and no significant difference was observed around the common value 0.2.
This last value was then selected.

In addition to this, a threshold allowing the model to support a final boolean prediction
has to set so that the model can be evaluated on the verification task during both the training
process and later. The tuning strategy for this threshold consists in computing the median Mp of
the distances related to all pairs (A,P ) and the median Mn of the distances related to all pairs
(A,N) belonging to the training set. Then, from those medians, the threshold is determined
after the last iteration as followed:

t← Mp +Mn

3
Another more sophisticate approach to tune the threshold and understand the model’s

behavior consists in representing the the False Acceptance Rate (FAR) and the False Rejection
Rate (FRR) expressed according to the threshold, as illustrated through Figure 5.12. In this
setting, the selected threshold value t∗ is such that FRR(t∗) = FAR(t∗), where there’s a perfect
performance balance on the 2 classes ("same" and "different", referring to people identities).
Notice that here, the FAR refers to the proportion of face pictures that were assimilated as
representing the same person as the anchor, while it’s not the case. Similarly, the FRR represent
the proportion of face pictures predicted as representing the same identity as the one related to
the probe, while they are not.

Figure 5.12: Equal Error Rate = 0.16

In addition to this, the intersection gives the Equal Error Rate (EER) (= FRR(t∗) = FAR(t∗))
that could be used as metric to evaluate the model performance for the distance loss based
models. However, since all the losses that are experimented are not distance-based, the classical
f1-score is preferred.

Contrastive Loss

Next to the triplet loss, the contrastive loss is defined to be compared to the previous loss
function. Like the triplet loss, it’s based on distances. However, it considers pairs of images
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rather than triplets. The contrastive loss is given by:

L(A,X) = 1
2 .(1− Y ).d(F(A),F(X)) + 1

2 .Y.max(0, α− d(F(A),F(X)))

where A is the anchor, X is the second picture of the pair (that can be positive P or negative
N), Y is the expected output (being 0 if X is a positive instance with respect to A and 1
otherwise) and α is the margin.

Finally, similarly to the triplet loss, at the end of the training process, a threshold t is defined
in the same way so that the model can output a final boolean prediction telling if the 2 pictures
are predicted as representing the same person.

Cross Entropy Loss

Besides those 2 first "pure" distance-based losses, a cross entropy loss function is experimented
as well, relying on the certainty of the final prediction related to the verification task. In this
case, 2 classes have to be explicitly defined so that a score can be assigned to for leading the final
prediction and supporting the loss. Knowing this, each triplet is split into 2 samples [(A,P ), 0]
and [(A,N), 1], where 0 (resp. 1) is the label specifying that A and P (resp. N) represent the
same (resp. different) people. To employ this loss, as before, the input images from the input
pair are projected into an embedding space. 2 vectors are obtained from this first step and the
element-wise difference d(F (A), F (X)) between them is computed. Then, the resulting difference
vector goes through a linear layer connected to 2 final neurons, each being associated to the 2
classes, as illustrated through Figure 5.13. A score s[.] is associated to each of those two classes
and the target is maximizing the score of the true class.

Figure 5.13: Cross Entropy Loss

5.3.4 Pretraining using an Auto-Encoder

Now the global conditions the Siamese Network can be trained in have been described, let’s
explain how the training phase could be reinforce.

In general, when designing a deep learning solution, it has to be realized that directly learning
to perform well on some task from only samples composed of input images and a corresponding
expected output may be very tricky! As an intermediate step in the learning process, an
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interesting approach consists in pretraining a network, where the aim is just making it "familiar"
to the concept of interest (the face in this case). More precisely, the goal is to train a network
able to derive a relevant feature representation of a face.

To do so, an auto-encoder can be defined. It’s composed of 2 main components - an encoder
and a decoder - that are connected together and works as followed. First, an image is provided
as input to the encoder which derives a feature representation corresponding to this image. Then,
from this feature representation, the decoder has to retrieve this initial image at best. So the
overall structure is trained in order to minimize the difference between the output of the decoder
and the initial input image. This is illustrated through Figure 5.14.

Figure 5.14: Autoencoder Structure5

This process can be assimilated as acquiring pre-knowledge by performing a simple task (here
consisting in defining a good feature representation of the image so that it’s easy to get it back)
in order to exploit it later for a more complex task (here referring to differentiate faces of different
people, which requires a good embedding system). By doing so, the network isn’t trained from
scratch: it has "already an idea about what a face looks like" and how it can be represented.

Here in particular, 3 autoencoders have been defined, one for each architecture specified in
subsection 5.3.2, and for each of them the decoder has the sequence of layers composed of a
linear layer followed by 3 transposed convolutional layers alternated by maxpool layers. All that
sequence is ended by a sigmoid activation function.

After a training over 180 epochs based on about 17500 face images, the outputs resulting
from one face instance provided as input to each autoencoder are illustrated through Figure 5.15.

For all the three structures, it can be noticed that the results are pretty similar. In addition
to that, it has to be mentioned that in any case the output is quite invariant to the specific
face that is given, meaning that the structure is able to represent a face in general, but not the
features characterizing the identity of a person. This can be due to the simple structure of the
decoder or to the limited quantity of data. Since unlabelled data can be exploited here, it could
have been relevant and not too costly to collect some additional ones (still independent from the
ones belonging to the data used for testing) and train the autoencoder on.

5Notice that the notations on that figure don’t match with the ones used in this report. The target of that
figure is only to illustrate the autoencoder concept.
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Figure 5.15: Result from the autoencoder based on Basic Net,
Alex Net and VGG16

5.3.5 Iterative Solution Improvement

In this subsection, some strategies are considered in order to improve the performance of a
current model that has been trained. In all the following strategies, the basic idea is trying to
identify where the current solution is bad and then retraining the models on the face triplets
detected as currently not well-understood. In particular, here are the 2 procedures that have
been defined:

• Retraining on triplets where d(F(A),F(N)) < d(F(A),F(P ))
This first solution typically exploits the fact that from the same database, a large number of
triplet datasets can be derived based on the same set of images. Knowing this, the idea here
is constraining the triplets that are built by reasoning on the distances between features
representations computed from the current Siamese Network. That can be assimilated to
the first meta-learning approach reflected through Figure 4.1, where an iterative process is
defined over different training set to lead the training phase.

• Adversarial Siamese Network where synthetic data are defined so that the Siamese
Network can be retrained on and learns from cases that couldn’t be well captured in the
past. To do so, the following main steps are followed:

1. Predefinition of consistent directions w. The aim here is to enforce the variation of
some specific external features (gender, smiling ...) without altering the physionomic
ones. As a reminder, right now, 3 have been defined in the solution proposed in [21].
Those were established by using tagged data. Here, the procedure that is employed is
much more simpler since no tagged data have been collected. The idea is only applying
little variations to z by experimenting different directions w whose components are
randomly picked, constrained to follow the normal distribution N (0, ε), where epsilon
is set to a small value (0.005 typically).
That first step has been implemented and experimented, giving as expected some
slight variation of the initial real picture and still preserving the physionomic features
since the variation are limited.

2. Optimization of a specific consistent direction w. To do so, a training set made up of
pairs of face pictures (A,B) is defined. Then, for one specific iteration, the encoding
zB (related to picture B) is computed and the current variation w is applied. After
that, the resulting synthetic picture Bsynth is derived and given as input, joined to A,
to the current Siamese Network outputting a distance d(F(A),F(Bsynth)).
Over one epoch, w is updated in order to:
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– maximize the distance if A and B represent the same person (since a bad result
corresponds to a large distance when the same person is represented)

– minimize the distance if A and B represent different people
This process is repeated over 50 epochs and supported by 1000 pairs of faces.

3. Once a final direction w is obtained after training, it’s applied to generate synthetic
data supporting a new training set that can be used to retrain the Siamese Network
that appeared as very poor when dealing with them in the previous step.

All this process is illustrated through Figure 5.16.

Figure 5.16: Adversarial Siamese Network structure, where iA 6= iB
(iA referring to the identity of the face on picture A)

Unfortunately, that remains a piece work in progress since that idea was raised quite late
over this work and a big issue was encountered, referring to the association of networks based
on different libraries. A quite tedious but safer approach would have been to reimplement
all the pytorch datasets, network and loss function in the tensorflow framework to make
compatible all the system. However, to avoid that big redundancy and modification process
all over the current solution, it was preferred to explore a way to turn a pytorch model into
a tensorflow one. To support this, the best seemed to pass through the onnx intermediate
form. However, the final tensorflow model that could be derived wasn’t trainable... Seeing
that and knowing that this approach would also require non-negligible extra time to be
tuned, evaluated and discussed properly, that part of the solution was put on hold.

In both cases, notice that the process can be repeated a certain number of times and based
on the same initial data, depending on the expected final performance. However, in the first
strategy, this number of repetitions has to be bounded, otherwise the model ends up overfitting.
This number of repetitions has to be tuned with respect to the initial quantity of data and the
number of triplets related to each face picture.
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5.4 Classification (i.e. Face Identification)
Right now, the focus was really on getting the most relevant feature representation as possible.

After this step, the classification still has to be performed by defining an algorithm deriving the
identity of a probe P by comparing it to the pictures in the gallery G. After the comparison
process, the final selected label is the one whose corresponding faces were predicted as the most
similar.

To perform this comparison process, for one particular probe P, each person i in the gallery
is considered. Then, for each person, each corresponding picture Gij is compared to the probe.
At this step, 2 procedures can be followed: a boolean approach or a distance approach.

5.4.1 Boolean Approach6

In this first approach, the pair of pictures (P,Gij) is given as input to the Siamese Network S
outputting 0 if both pictures are predicted as representing the same person and 1 otherwise. As
a reminder, whatever the loss that has been used during the training phase (soft-max or distance-
based), the model is always able to derive a final boolean answer, resulting from the embedding
of the 2 input pictures, predicting if they represent the same identity. In this setting, a score
si is associate to each person i in the gallery and this score is incremented each time S(P,Gij) = 0.

For a given probe, once a score has been computed and attached to each person in the gallery,
the final predicted identity is the one corresponding to the the person in the gallery whose score
is the highest. This can be translated through:

iP = argmax
i
{
∑
j

1(S(P,Gij) == 0)}

where iP is the index of the predicted person.

In addition to this, in order to save some computation time, a tolerance parameter t is defined
to limit the number of comparisons. This parameter specifies the maximum number of mistakes
the model is "allowed" to make per person. More precisely, for a given set of pairs (P,Gij), once
the model has predicted t times 1, no new pair (P,Gik) is tested since the person i is directly
rejected.

5.4.2 Distance Approach

. A second way to compare the probe P to a gallery picture Gij is by computing the distance
between their feature representation - d(F(P),F(Gij)) - in order to rank the gallery people
according to.

To do so, first, several distance metrics d(x1,x2) have been experimented:

• the Manhattan distance |x1 − x2|

• the Euclidean distance
√

(x1 − x2)2

6Also referring to a voting approach based on the verification task
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• the Cosine distance x1 · x2
max(‖x1‖2 · ‖x2‖2, ε)

More precisely, once a distance has been evaluated between the probe and each picture of the
gallery, for each person i, the median of the distances d(F(P),F(Gij)) is computed over all the j
instances (related to one particular person) to get a single distance value di for each person in
the gallery. Finally, the predicted identity for the probe is the one corresponding to the gallery
person i whose di is the lowest. This can be translated through:

iP = argmin
i
{median

j
(d(F(P),F(Gij))}

where iP is the index of the final predicted person.

5.4.3 Gallery

Besides the 2 possible strategies that can support the classification algorithm, let’s now
describe deeper the gallery. First, the size is set between 10 and 400. This last choice can
be understood when seeing the results exposed in the chapter developing the experimentation
phase, showing that the model couldn’t perform well for larger sizes... In addition to this, a
balance restriction is imposed so that each person in the gallery has the same number of pictures.
Notice that this last condition is important when the classification is supported by the voting
system, especially if the Siamese Model the system relies on tends to output more False Positive
compared to False Negative. In that case, when employing an unbalanced gallery, a person being
represented by more pictures than the others is naturally more likely to be predicted. On the
contrary, relying on a Siamese model outputting more False Negative can be an issue as well
since the expected identity may be "missed" during the comparison process. Seeing that, it can
be said that the "way" the model learnt can directly be reflected during the classification phase,
when relying on a voting system. Knowing this, more formally, 2 important aspects have to be
carefully considered to ensure the classification to work well:

• The positive recall related to the Siamese model evaluated on the verification task has to
be "high enough". Indeed, if it’s not the case, for many probes, the model could miss the
matching with the person in the gallery while, on the contrary, if the positive recall is high
and the negative recall lower, it’s not such a big issue as before since the corresponding
gallery pictures are more likely to be matching, besides potential other mismatch that
should be overcome through the voting system (while it can’t for a low positive recall where
the score related to the correct identity may be too low).

• The number of pictures per person should be high enough (and sable, as mentioned before).
By imposing a number of pictures which is high enough, if the Siamese model has acceptable
performance, the final predictions are more likely to be correct since the voting (or ranking)
system would be more robust (because based on more comparisons).

Besides this, it has to be mentioned that each probe has to match with a person in the gallery
since no distractor is defined. However, a threshold is defined anyway to express the degree
of certainty of the final prediction. More precisely, for both approaches (based on a ranking),
the score difference between the 2 top people after having been sorted has to be large enough.
Otherwise, several identities are predicted.
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Chapter 6

Experiments

As a reminder, the global face recognition system implemented in this work is made up of 2
phases. First, the Siamese network is defined, whose performance can be evaluated on the face
verification task. Next, the face recognition task itself can be achieved over the classification
phase, based on the Siamese Network, whose performance relies on the prediction of the identity
of a probe.

In Section 6.1, the focus is on the performance of the Siamese Network. Next, once a model
performing well has been derived, the classification step is explored over Section 6.2.

6.1 Siamese Network Evaluation

6.1.1 Evaluation Metrics

As specified before, in the case of the Siamese Network approach, both training and testing
sets are naturally balanced because they are derived from the triplets definition 2 pairs (A,P )
and (A,N) can be derived from. Knowing this, the accuracy metric can be used in order to
correctly reflect the performance of the model.

Besides this, notice that the recall or the precision metrics can be interesting to highlight as
well, in order to understand better the model’s behavior. Typically, a Siamese model may tend
to predict most of the picture pairs as representing the same person and still reach acceptable
final results by doing so, while, in general, the expected behavior would be more to have balance
between the similarity recognition and the differentiation between faces. Of course, this aspect
depends on the final application of the face recognition system. If the aim is more on people
detection, maximizing the positive recall is preferred typically. But that remains a particular
case.

Considering this, in order to take into account those 2 last metrics and in the perspective of
potentially later defining unbalanced datasets (since much more pairs (A,N) could be defined
and exploited), the f1-measure is used all along the Siamese model evaluation. Moreover, in
this way, the same evaluation procedure can be applied in the case where a classification setting
is experimented (where each class is represented by one person).

6.1.2 Basic Conditions

When evaluating and comparing several Siamese models, the same training, validation
and testing sets are used, all based on the same images leading to the same triplets. This
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last restriction on the triplets could be omitted in the case of large datasets. However, here,
since it may happen that few data are employed, the triplets themselves may impact on the
performance since some pair of faces are naturally easier to differentiate (or assimilate) than others.

In particular, if there’s no specification, the databases the training and the validation sets
are built from are the LFW and all the "small" databases Aberdeen, Iranian, Pain Expressions,
Utrecht ECVP, Georgia Tech face, Yale face and Face94. By doing so, the diversity of both the
training and the validation sets is ensured.

Regarding the quantity of data, 81041 pictures support the training set and no synthetic
data are used, except if specified. From those 8104 pictures, 16000 triplets are generated (i.e.
more or less 2 triplets are related to each picture). That number of triplets can obviously be
increased but in practice, it has been observed that a too large number of triplets from an initial
quite small set of pictures leads the model to overfit.

Besides this, concerning the parameters setting related to the Siamese model itself, the
default architecture is the Basic Net, trained based on the triplet loss and pretrained with
an autoencoder.

6.1.3 Data discussion

Triplet Nature Impact

The impact of the triplets briefly discussed before is investigated here, by repeating the same
evaluation process 10 times on a model trained based on the same initial images, but having
led to different triplets. The f1- score average that is obtained is 86, 23% and the associated
standard deviation is 2,89%. From those quantitative observations, the reader can realize
the the impact of the image combination process is non-negligible.

Data Diversity Robustness

All over this work, it has been observed that the performance of a model are also strongly
dependent on how different the pictures are both over the training set and in the training
compared to the validation set, in terms of people and external conditions. That meets the
observation related to the impact of the randomness of the image combination process. This point
is important to study in order to get a real idea about the context where the models that are
built could be exploited and give good results. Indeed, for instance, for an application scanning
an ID picture and having to identify the person on, a model performing well only on pictures
belonging to the same database would be enough to support the application. However, in the
case where a face has to be recognize to unlock a phone for example, a model robust to the back-
ground, the face orientation and other external condition features is required to get reliable results.

Here in particular, 4 models are compared, all of them being trained on the same amount of
data:

1. The first one is trained on pictures belonging to the same database and is evaluated on a
testing set containing the same people (but obviously different instances). This refers to a
close set identification framework.

1This total number is smaller than the total quantity that can be computed from Table 5.1 since some pictures
contain people turning sideways or pictures of low quality that are then removed. Moreover, part of the pictures
are used to support the validation set.
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2. The second one is trained again on pictures belonging to the same databases and is evaluated
on a testing set containing different people picked in the same databases (meaning that the
external conditions on the pictures are pretty similar in the training and the testing set).

3. The last one is trained on pictures belonging to a mix of databases and is evaluated on a
testing set containing the different people picked in another database, the CASIA-WebFace,
whose face pictures are very diverse.

The corresponding resulting performances are illustrated in Table 6.1. From that Table, as
expected, it can be observed that the more different the training from the testing sets, the more
difficult the verification task. However, the seeing the limited quantity of data and quite simple
architecture that is used, the final f1-score evaluated in the conditions that are the closest to the
reality remains quite good.

Training and Testing sets f1-score
1) sharing databases and people in common 92.03 %
2) sharing only database in common 87.68 %
3) not sharing anything in common 77.44 %

Table 6.1: Performance depending on the nature
of the testing set, with respect to the training set

Is it better to have a large or a deep database ?

Regarding the data quantity, an interesting question that can be raised is if it’s more helpful
to increase the width or the depth of the database, where the width refers to the number of
different people and the depth to the number of pictures per person. The motivation behind this
question is that it can help relevantly setting the parameters of the data augmentation process
able to generate:

• synthetic people (i.e increasing the width of the database)

• synthetic instances related to real people (i.e increasing the depth of the database)

Intuitively, both are interesting since a wide database allows to better capture inter-class
variation while a deep database learns better intra-class variations are captured, making the
CNN model able to learn more robust features.

To answer this question, 2 datasets A and B are defined, both containing 5000 pictures.
The difference is that the dataset A is composed of 1000 different people with 5 corresponding
pictures while the second one consists in 500 different people with 10 corresponding pictures.
Once those 2 datasets have been defined, 2 modelsMA andMB are respectively trained on and
the final performance of each of those models is given through Figure 6.1. It can be observed that
training a model based on a deeper dataset seems to be slightly preferred, leading in this setting
to a f1-score 5% higher compared to the case where a wider dataset supports the training phase.
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Figure 6.1: f1 measure evaluated from a model trained on a wide and a deep dataset

Data Quantity and Synthetic Data Exploitation

A second interesting aspect to investigate is how significant the addition of synthetic data
into the dataset can be. After having noticed that a deeper training set could be more relevant
than a wider one and seeing that the limitation regarding the data are more on the instances
quantity rather than the people quantity, the focus is only on the synthetic instances generation
(meaning that no synthetic people are defined).

To evaluate the impact of those additional synthetic instances, they are first introduced into
the training dataset. Then, 2 scenarios are compared. A first one where the Siamese Network
is trained based on the dataset Dreal derived from data where people are represented by only
2 instances. And a second one where the training is supported by the dataset Dreal+s, where
this last dataset exactly contains the same people’s instances, augmented by 4 synthetic
instances of those existing people. The resulting f1-scores related to those 2 scenarios are
illustrated through Figure 6.2. This figure also allows to discuss the performance that can be
obtained according to the initial number of images feeding the training set. Moreover, notice
that the validation set is only composed of real data and the databases feeding those training
sets are the all ones given in Table 5.1, except the CASIA-WebFace, since training sets based on
larger face images sets are experimented here.

From Figure 6.2, it can be observed that the data augmentation process bring a slight
improvement, mainly when few face images are available at training time. From 4000 pictures,
the exploitation of synthetic data during the training phase doesn’t really increase the per-
formance anymore. Besides this, regarding the quantity of data, it’s interesting to mention
that the deep network benefits from the increasing size of the training set until about 15000
images and saturates thereafter, when evaluated on the verification task. Finally, from the Table
on the right, it’s interesting to notice that a small number of initial pictures can nevertheless
lead to a sufficient triplets quantity, as theoretically developed in the previous chapter. That’s
why, at least partially, the increase of the f1-score according to the size of the face images
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# of real
pictures

# of real
triplets

# Real
and syn-
thetic
triplets

500 1766 3432
1000 2766 5176
2000 4766 8670
4000 8766 15736
10000 14460 21615
15000 19203 26366
20000 23946 31107
25000 26144 34129

Figure 6.2: f1-score according to the quantity of real (and synthetic) images ;
Mapping between the number of pictures and the number of triplets

set supporting the training set is not huge. Another possible explanation is the quite simple
architecture of the Siamese Network that is less suitable to deal with a very large quantity of data.

Another very interesting scenario that has been experimented is to train a model based only
on synthetic data to see if they can be relevant enough to learn from. This last scenario was
explored based on 3435 synthetic pictures. That lead to a quite good model reaching a f1-score
of 76%.

Besides exploiting the synthetic images during the training phase, those can be used to
perform the classification task, by augmenting the probe. This scenario is experimented in
Section 6.2.

6.1.4 Network architecture

Now the data have been discussed, let’s move to the description of the Siamese Network itself.
First, a comparison of the different architectures using different losses is exposed Through Figure
6.3, where the f1-score is the highest one that was obtained over the 100 epochs supporting the
training phase (and the quantity of data is the default one, given in subsection 6.1.2).

Seeing those last results and here in a context where the target is leading a research work
on one-shot learning techniques (and not implementing an industrial tool reaching the highest
performance possible), the basic architecture is employed and the training is directed by the
triplet loss. This last choice regarding the loss can appear as inconsistent seeing Figure 6.3 that
shows that the basic architecture performs better when training is directed by the cross entropy
loss. However, let’s remind that the performance evaluated here are on the verification task,
while the final target is achieving good result on the face recognition task. That’s why the triplet
loss is selected, since it will appear later as providing better embeddings to support the second
phase where faces are compared and matched based on their feature representation.

Finally, notice that Figure 6.3 is exposed to get only a global idea about performance that
could be reached with other architectures and losses. Some of the 9 scenarios (the ones related to
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Figure 6.3: f1-score related to the face verification task, for different architectures and losses

the 4AlexNet and VGG16 Net typically) were only broadly optimized. Typically for instance, a
more complex architecture may require a higher learning rate. Or in the same way, the number
of final features should be higher or lower when using some specific loss with some specific
architecture. This kind of consideration wasn’t deeply investigated. Moreover, exploiting very
complex architectures where a limited quantity of data is available is potentially less relevant.

6.1.5 Loss Function

Here, the focus is on the triplet loss function tested in different conditions to try to improve
the learning process. On top of Table 6.2, the performance of the best scenario is illustrated,
simply consisting in employing the triplet loss where the distances are derived from the features
that have been normalized just before.

Regarding the best epoch piece of information, it can be relevant to get an idea about the learn-
ing process itself. Typically, here, a quite low best epoch shows how poor the learning process was.

It was also tried to be combined with the cross entropy loss function to see if those 2 losses
couldn’t be complementary. From Table 6.2, it can be observed that there’s no improvement
brought by this combination.

Besides this, the performance of the triplet loss defined from features that are not normalized
is illustrated as well to highlight how much the normalization can positively impact on the
performance. It’s also interesting to say that this improvement can be observed only when using
the basic architecture. A quantitative view of this improvement is illustrated in Table 6.2 (where
all scenarios were experimented in the same hyperparameters setting). Nevertheless, notice that
the performance illustrated here reflects both the quality of the final feature representation and
the quality of the strategy to derive the threshold supporting the verification task. Potentially,
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this low f1-score may mainly arise from an improper threshold definition.

Finally, another experimented procedure is considered. It consists in, once the feature
element-wise distance is computed, learning weights related to each element-wise distance and
finally derive the distance used in the triplet loss (or, in other words, adding a final linear layer).
Unfortunately, no improvement could be brought when including a last linear layer.

Loss f1 score Best Epoch
Triplet Loss 87.68% 64

Triplet Loss + Cross Entropy 81.52% 25
Triplet Loss without feature normalization 59.59% 6

Triplet Loss + Distance followed by a Linear Layer 80.99% 22

Table 6.2: Performance using the triplet loss in different conditions

6.1.6 Autoencoder Use

Finally, let’s have a look at how helpful the pretraining phase can be. When the quantity
of training images is very reduced (500 images typically), the model pretrained through an
autoencoder definitely performs better. However, when meeting the general conditions stated at
the beginning of this chapter, similar final performances are obtained when evaluating both the
nonpretrained and the pretrained model. This is quantitatively illustrated through Table 6.3.

Training Procedure 8000 images 500 images
Not Pretrained 86.68 % 68.78 %

Pretrained 86.71 % 73.72 %

Table 6.3: Performance comparison when using an autoencoder
to pretrained the embedding network

Besides this, when shifting the attention to the evolution of the loss and the f1-score on the
validation set during training, it can be observed that the pretrained model seems better only
at the beginning of the training process, which makes sense since it has already acquired some
knowledge about how to represent a face while the other model starts from scratch. This is
illustrated through Figures 6.4 and 6.5.
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Figure 6.4: Loss Evolution with and without
pretraining, on the validation set

Figure 6.5: f1-score Evolution with and
without pretraining, on the validation set

6.2 Classification Evaluation
Now the Siamese Network, responsible for deriving the best possible embedding, has been

deeply investigated and tested over different scenarios, let’s consider the last classification phase.
This last section is quite important since it reflects the performance of the final module whose
role is leading the face recognition task itself. Of course, that achievement is supported (and
then affected) by the modules implemented before, composing the face recognition system.

6.2.1 Basic Conditions

To handle all the experiments on the classification task, the Face Scrub Cropped, the cfp
and part of the CASIA-WebFace databases are used since their data were not exploited to
train the Siamese Network S that supports the classification task. In this way, those experimental
conditions are closer to the reality.

This Siamese Network selected here is a Basic Net that was trained based on a triplet
loss, with features normalization at the end and without any final linear layer after the feature
distance computation. The performance of this model on the face verification task is 87% once
evaluated on a testing set based on another identities than the ones that were used for training.

As briefly mention before, it could be noticed that the best performance on the verification task
that were evaluated over the Siamese Networks that were trained was reached when employing
the cross entropy loss. However, on the face recognition task, better accuracies were obtained
when using the distance-based ranking approach rather than the voting system, which doesn’t fit
well with a cross-entropy based model, as illustrated in Table 6.4.

This last table first shows how relevant the triplet loss is for the second phase relying on
people distance-based ranking and second how the distance-based ranking system performs better
compared to the voting system that is "less nuanced" since it relies on a boolean prediction rather
than a quantitative value.

Noticing this, despite slightly lower performance on the verification task for a triplet loss
based model, this last type of model is selected and exploited over a distance-based ranking
approach to lead the classification task.
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Voting System Distance-based System
Cross-entropy based Model [47, 53] % [27, 32] %
Triplet-loss based Model [44, 49] % [58, 64] %

Table 6.4: 1-Top accuracy on a gallery made up of 50 people and a
set of probes composed of 40 pictures

Besides this, regarding Table 6.4, the quite low results can appear as appealing. In front
of this, let’s highlight the fact that the evaluation metric employed here is the strictest one,
considering a single final prediction, which is hard for this current system. For later, other
evaluations metrics are employed.

Finally, regarding the parameters related to the classification task, in the cases where those
parameters are not discussed of course, the gallery is imposed to be balanced so that each person
has 8 picture instances. The size of the gallery is set to 50 and the number of probes
is 40. Moreover, each scenario is repeated 7 times, with different galleries and probes, to
derive a more reliable final performance result and to get an idea about the gap from one test to
another, in the same conditions.

6.2.2 Distance Ranking Approach

In the particular case where the classification task is based on a model whose training
was directed by a distance-based loss, it’s interesting to notice that in both distance ranking
and voting approaches, the embeddings of the 2 face images are computed and the distance
between them is derived. The difference is that in the distance ranking approach, this distance
itself supports the final ranking while in the voting system, the elements of the distance vector
are averaged and the result is compared to the threshold t that was computed at the end of
the training phase to output a boolean answer. Knowing this, it can be guessed that there’s
no advantage in using the voting system. Indeed, the threshold isn’t helpful here in a face
identification task since it just leads to loose information, turning a distance into a boolean value
resulting from a comparison. So directly using the distance is better.

6.2.3 Evaluation Metrics

Various approaches can be used to evaluate the performance over the classification task:

• The Top-1 accuracy-based where only the identity on top of the ranking resulting from
the comparisons (P,Gij) is predicted and valuable.

• The Top-N accuracy-based where the N first identities on top of the ranking are
predicted and checked so that the final predicted identity is marked as correct if the
expected identity is among the N top ones.

• A variant of the Top-N accuracy-based metric (the "Top-Multiple accuracy-based"),
where 2 differences can be highlighted compared to Top-N one:

– The N isn’t a priori fixed, it varies from one probe to another according to the
certainty of the ranking, evaluated based on a threshold. In particular, in the
voting approach, it may occur that K identities have the same score. Similarly, in the
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distance ranking approach, it may occur that the K smallest distances are very close,
closer than some threshold2. Then, N is set to K.

– When computing the performance itself over different probes, first the correctness
of the multi-prediction is checked. If it’s correct, the performance is increased by 1

N
(rather than 1 as in the 2 previous cases), so that the final performance reflects the
uncertainty of the algorithm.

The advantage of this last evaluation approach is that it brings more nuances compared to
the 2 first ones where the Top-1 accuracy-based may be too "strict" in some cases and the
"Top-N accuracy-based" may be to "broad" in some other cases where the gap between the
top identity and the other is significant. If there’s no specification, this last metric is used
to evaluation the algorithm performance.

At this step, notice that the Equal Error Rate isn’t finally used to evaluate the system since
finally the boolean approach isn’t employed at all.

6.2.4 Gallery Size

Now the conditions for the assessment of the face recognition system have been described,
let’s have a deeper look at the performance with respect to some parameters.

First, Figure 6.6 exposes the performance that can be reached for different gallery sizes.
To support this Figure, 2 scenarios were considered. A first one where the probe has a single
corresponding instance and a second one where there are 2 instances representing the probe, so
that more comparison are performed and better result can be obtained. Of course, in practice,
getting 2 instances per probe isn’t always affordable.

Figure 6.6: Top-multiple accuracy of the face identification
over galleries of different sizes

2This threshold is set to a proportion (0.3 typically) of the average of the gaps from one distance to another.
Imagine, for a given probe, you get {Luc:1, Paul:1.1, Lise:3, Sarah:7}, the average gap is 1.6, leading to a threshold
of 0.5. Seeing this, K = 2 and Luc and Paul are predicted.
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From Figure 6.6, as expected, it can be noticed that a second instance is very helpful,
especially for low gallery, increasing the accuracy from 3 to 12%. Besides this, regarding the
accuracy values themselves, they quickly drop when increasing the gallery size, encouraging to
consider the set of the Top-N identities as final prediction. From that point, the second Top-N
metric is used for galleries containing various number of people and the probe having a single
instance. The results are illustrated through Table 6.5. For each computed accuracy, their
standard deviation is mentioned to get an idea about the reliability of the those result.

Gallery
Size

Top-1 Top-3 Top-5 Top-10 Top-20

20 68 ±3.3% 86±4.4% 95±0% 100±0% 100±0%
50 60±2.5% 76±4.3% 84±2.5% 97±2.4% 100±0%
100 48±4% 66±1.9% 75±3.8% 90±3% 94±3.3%
200 36±2.6% 64±2.8% 69±3.8% 84±1.2% 93±1.4%
400 24±2.5% 40±2.5% 50±3.3% 65±3.3% 87±1.4%

Table 6.5: Top-N accuracies for different gallery sizes

From this last Table, much better results are depicted, compared to the previous ones.
Typically, reaching a top-10 accuracy for a gallery size of 200 when a limited quantity of data
has supported the training phase is acceptable. Of course, those results could be improved by
going back to the first phase to improve the feature representation.

6.2.5 Data Augmentation with synthetic instances

Finally, as briefly mentioned before, besides exploiting synthetic instances to augment the
training set, synthetic data can also be used during this second phase to augment the probe
and, in this way, reinforce the matching process. A similar strategy has been experimented and
illustrated in Figure 6.6, except that in that case only one real instance has been added. Here, 3
additional synthetic instances represent the probe and the resulting performance are illustrated
through Figure 6.7.

Master Thesis 51



6.2 – Classification Evaluation

Figure 6.7: Comparison of the Top-N accuracies when using or not
synthetic data, evaluated on a gallery made up of 100 people

From Figure 6.7, it can be observed that a slight improvement is brought by using synthetic
images to augment the probe. However, this improvement is still less significant than the ones
shown in Figure 6.6 when real instances augment the probe. This can be explained by the current
limited quality of the synthetic images that really could be improved in the future.

6.2.6 Style GAN Encoding Exploitation

In addition to this, the distance derived from the encodings z is also tested to be used to
support the ranking since it’s expected to represent, at least partially, the physionomic face
characteristics.

The resulting accuracy was around 37%, showing that, in some cases, the encoding z could
be relevant enough. However, the performance remain pretty bad, which makes sense since the
training process of the perceptual model deriving z wasn’t optimized to perform well on the face
identity differentiation.
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Chapter 7

Retrospective

Before concluding, some words are dedicated to put in perspective all that work, highlighting
the positive aspects, the difficulties that have been encountered, the weaknesses of the current
solution and some extra ideas that could be explored.

7.1 Helpful and Positive Points
First, let’s go through the main positive points related to this work:

• Concerning the subject whose start point was quite broad ("research on deep learning"), an
interesting and concrete application was selected to support this research work.

• Over all this work, there was always lots of freedom regarding the ways to explore and tech-
niques to investigate. Moreover, the face recognition problem is quite famous and has been
tackled over many works, offering a wide investigation area and possible documentations.

• Seeing that last point, it led to some diversity in the solution implementation. Many
different modules had to be designed over this work to tackle particular subtasks. It
includes the data processing, the network architecture optimization, the classification part,
the experimentation phase based on scenarios definition, the synthetic data generation...

• A final good global solution framework has been designed.

• That work was an experience in the research domain.

7.2 Difficulties and Points to Improve
Besides those positive points, let’s go now over the difficulties and all the points which could

have been improved:

• Related to that freedom mentioned before, the reverse side is that the clarification of the
objectives wasn’t straightforward. This phase was very progressive, and objectives were
(permanently) slightly adapted, namely in terms of performance expectation, seeing how
the effective work was going.
Typically, the initial target was designing a model competing with human performance
(but still based on few training data). That appeared as quite ambitious. Also, the
minimum affordable quantity of training face images was very difficult to estimate at the
very beginning of this work, without any experimentation phase.
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Moreover, new ideas were coming on way, bringing additional objectives (like the exploitation
of synthetic data typically).

• The huge quantity of (hyper)parameters and implementation choices can be also pointed
here, leading to face a very large number of possible scenarios. To deal with that, a very
good organization was required to keep track of all the parameter settings and the training
sets corresponding to each scenario. Related to that aspect, as briefly mentioned before,
the optimization process was focused around the BasicNet architecture, meaning that no
deep optimization process was led when using the AlexNet or the VGG16 Net, which could
nevertheless have been relevant in the perspective of reaching higher performance.

• Regarding the performance of the overall system, despite a long experimentation phase, it
remains limited for large galleries and could still be improved, by getting a better feature
representation basically. The easiest way would be to increase the quantity of training data
and using more complex network architectures but it would lead outside the boundaries
of the one-shot learning setting. In this setting, more investigation on the exploitation of
synthetic data would be the best approach.

• From an implementation point of view, the solution had to be implemented so that it could
ideally work running on both cpu and gpu to be tested locally and then on the machines of
the University.
Facing that, first, regarding the use of Pytorch exploiting cuda, some issues had to be
overcome.
Also, many versions incompatibilities were encountered, consuming time to solve that. The
fact of working on several machines (the local one and the ones of the university) was
sometimes quite tedious.

7.3 Future Work
Finally, this whole current solution could certainly be improved by cleanly completing the

implementation of the "Adversarial Siamese Network" (illustrated through 5.16) relying on
synthetic data generation.

Besides this some other points could have been relevant to investigate are listed here:

• The face recognition task could have been complexified by using pictures with lateral
positions for instance or with background including more disturbing elements.

• Despite the "In the Wild" characteristic claimed in some datasets exploited here and the
effort provided to maximize the diversity over the datasets supporting this work, those
remain quite specific, taken almost exclusively by professional photographers in well lit
environments. It could be very interesting to submit that current algorithm to very usual
pictures taken in a crude way.

• The face feature representation still could be improved in the perspective of the face
recognition task by:

– Experimenting different cuts in the network and exploiting the resulting embedding
representation

– Experimenting other architectures
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• Other methods to classify (i.e. recognize) a face could be studied, some relying on Support
Vector Machines or decision trees taking as input feature vector, typically.

• Again regarding the classification phase, it could be speed up and maybe improved in terms
of performance by computing the average (or the median) over the feature representations
related to each pictures j attached to each identity i in the gallery. In this way, each identity
in the gallery would be represented through a single embedding (expected as generalizing
at best the current person) and for each probe, only i comparison are performed.

• More investigation on the synthetic data generation could lead to better final performance,
as mentioned before. To do that, a more sophisticate method could be designed to find new
other latent direction w leading to consistent synthetic faces (i.e. where all the physionomic
features are preserved and the external ones altered). Typically, exploiting tagged data
can be very helpful for this purpose.

• It could be interesting to apply all that procedure to another task, like symbols recognition
typically and compare the performance that could be obtained.
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Chapter 8

Conclusion

To conclude, this work proposed a complete strategy to perform the face recognition task
by exploiting one-shot learning techniques so that good final performance can be reached while
using a limited quantity of data. More precisely, 3 sequential steps were defined. The first one
referred to the data management, including the data collection, the data processing and the
triplet definition, mainly. Next, deep convolutional Siamese Neural Networks were learnt and
evaluated on the verification task. The results related to that task were discussed in order to
finally select the best model for the last phase. During this last phase, the aim was to correctly
identify a probe, based on a gallery containing labeled instances. To do so, this probe has to be
compared to each gallery instance by computing the distance between their embeddings derived
from the Siamese Network. Following that, all the identities in the gallery are ranked according
to that distance and the predicted identity(ies) is/are the top one(s).

Regarding the performance that were obtained, first, the Siamese Network reached a f1-score
of 87% on the verification task when trained based on 8104 face images and directed by a triplet
loss function, with a basic architecture detailed in Table 5.2. Over this work and in this particular
setting, relying on a more complex architecture didn’t outperform much the current result, at
least when only a limited quantity of training data is exploited. In the same way, no significant
improvement could be brought when increasing a lot the size of the training set while remaining
working with a quite simple architecture.

Next, the classification could reach good results when many identities could be predicted. In
particular, for a gallery of 200 people, a top-10 accuracy of 84% could be obtained. However, for
larger gallery, containing 400 identities for instance, that accuracy dropped by 20%.

To try to help increasing those last results, some extra modules were being defined. The first
one implements an autoencoder used to initialize the weights of the Siamese Network. It looked
relevant especially when few triplets were available (based only on 200 people each with 8 face
instances typically) or when the number of epochs over which the Siamese Network was trained
was limited. The second extra module is the one defining synthetic face instances to raise the
training set and the probe. When increasing the training set, as before, it appeared useful only
when little training data was available. However, when used to reinforce the probe during the
last phase, the performance of the classification could be increased by 4% in the setting described
above.

Finally, it’s important to mention that many ways can still be explored, especially regarding
the data augmentation process based on synthetic data generation and the iterative improvement
process, where the main idea is retraining the Siamese Network based on synthetic images that
currently can’t be captured appropriately (referring to the Adversarial Siamese Network).
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