
http://lib.uliege.be https://matheo.uliege.be

Master thesis : machine learning under resources constraints

Auteur : Greffe, Nathan

Promoteur(s) : Geurts, Pierre

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2018-2019

URI/URL : http://hdl.handle.net/2268.2/6798

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège

Faculty of Applied Sciences

Machine Learning under resource
constraints

Author
Nathan Greffe

Supervisors
Prof. Pierre Geurts
Jean-Michel Begon

Master thesis submitted for the degree of MSc in Computer Science and Engineering

Jury Members: Prof. Quentin Louveaux, Prof. Gilles Louppe, Prof. Louis Wehenkel

Academic Year 2018-2019

2

Abstract

Nowadays, Machine learning on embedded devices, for example smartphones, is a popular
topic. This arises from the growing concern of the public for data privacy and the general
usefulness of running a service without the need of an external server.

Many methods exist to reduce the inference time of different algorithms but they are
not often compared together or combined. The goal of this thesis is thus to offer a review
of some of these methods. The scope of this work is limited to image classification using
Convolutional Neural Networks on a Raspberry Pi 3B. CIFAR-10 was used as a dataset
and out of the many benefits of embedded devices friendly CNNs, we limited ourselves to
inference time. In other words, our goal was to classify images on CIFAR-10 as accurately
as possible for a given inference time.

The methods investigated and our main conclusions are the following:

• We compared different architectures between each other and modified them to in-
crease their performances. There, we managed to improve the error rates by adding
Squeeze-and-Excitation blocks to existing MobileNetv1/v2 and MnasNet architec-
tures.

• Based on recent works [Crowley et al., 2018, Liu et al., 2018], we modified several
pruning algorithms to adapt architectures by changing the number of channels per
layer. This did not show promising results in our case. We suspect, however, that
this is related to the dataset we used and might be worthwhile on bigger datasets
like ImageNet.

• We used knowledge distillation on the architectures obtained from our search. Knowl-
edge distillation takes profit of the predictions of a big network to help training a
smaller one. This pushes the accuracies of some networks appreciably further.

• We tried to use Tensorflow’s quantization to decrease the inference time of the pre-
vious architectures at moderate costs in accuracy. However, these methods are not
mature as of now and did not give any result.

In conclusion, our initial objective of reviewing many methods and testing their in-
teraction has been completed. Some of these methods showed rather shy results in our
experiments on the CIFAR-10 dataset and the Raspberry Pi 3B. We believe, however,
that more significant improvements could be obtained in different settings, as shown in
several publications. Our breadth-first study also allowed to highlight several directions
that would deserve deeper exploration.

3

Acknowledgments

I want to express my gratitude towards the persons that helped me throughout this
thesis here:
• First, both of my supervisors, Pierre Geurts and Jean-Michel Begon, who helped
me a lot during these 4 months. For all our meetings, their pointers towards the
papers we built this work upon, their many pieces of advice and their very useful
and thorough feedback.

• All of the people involved in the elaboration of the alan cluster, for the 833+ gpu-
hours I consumed there. Especially to Joeri Hermans that let me run a few experi-
ments in priority towards the end of my thesis.

• My friend Maxime Noirhomme that helped me with the correction of the writing of
this thesis.

To all of them, a huge thank you.

4

Contents

1 Introduction 7

2 Concepts and Methodology 9
2.1 Nomenclature . 9
2.2 Scheme conventions . 10
2.3 Performance measurement setup . 11
2.4 Code . 12

3 Model Architectures 13
3.1 Introduction . 13
3.2 Base Building Blocks . 14

3.2.1 Tensor addition and concatenation 14
3.2.2 Bottleneck . 15
3.2.3 Depthwise separable convolutions . 15
3.2.4 Grouped convolutions . 15
3.2.5 Channel shuffling . 16
3.2.6 1-D convolutions . 17
3.2.7 Squeeze-and-Excitation . 17

3.3 Complete Architectures . 18
3.3.1 (Wide)ResNet . 18
3.3.2 DenseNet . 18
3.3.3 CondenseNet . 20
3.3.4 EffNet . 22
3.3.5 SqueezeNet and SqueezeNext . 23
3.3.6 MobileNetv1/v2 . 24
3.3.7 ShuffleNetv1/v2 . 25
3.3.8 NASNet . 27
3.3.9 MnasNet . 28

3.4 Comparison . 30
3.4.1 Implementation details . 30
3.4.2 Results . 33
3.4.3 Conclusion . 37

4 Channel Pruning 39
4.1 Introduction . 39
4.2 Pruning Mechanisms . 40

4.2.1 Weight norms . 40
4.2.2 Activation based metrics . 40
4.2.3 Taylor-based approaches . 40

5

6 CONTENTS

4.2.4 Importance-based metrics . 42
4.2.5 Batchnorm-based metrics . 42

4.3 Pruning as an architecture search . 42
4.4 Fisher pruning modifications . 48

4.4.1 Full Retrain at some steps during pruning 48
4.4.2 Improvements on Fisher pruning . 49

4.5 Real inference time look-up tables . 50
4.5.1 Introduction . 50
4.5.2 Implementation . 50

4.6 NetAdapt . 54
4.6.1 Implementation . 54
4.6.2 Variations . 56
4.6.3 Retraining from scratch . 57

4.7 MorphNet . 59
4.8 Comparison . 59
4.9 Conclusion . 60

5 Knowledge distillation and quantization 63
5.1 Introduction . 63
5.2 Knowledge distillation . 63

5.2.1 Method . 63
5.2.2 Implementation . 65
5.2.3 First results and improvements . 66

5.3 Quantization . 69
5.3.1 Method . 69
5.3.2 Implementation . 71

5.4 Conclusion . 71

6 Final Conclusion and perspectives 73
6.1 Conclusion . 73
6.2 Perspectives . 73

Chapter 1

Introduction

Nowadays, deep neural networks are omnipresent in computer vision and natural language
processing. Several applications in these fields require or would benefit from embedding on
mobile devices (face identification on a picture on a smartphone, semantic segmentation of
the video input of a drone or a car, digital assistants,...). A metric of primary importance
in this regard is inference time. However, what architecture/training procedure to use
in order to get the optimal performance/inference time tradeoff remains unknown. The
corresponding literature also often uses abstract metrics (number of parameters, number
of FLOPS – floating point operations) that are not always well correlated with inference
time on real devices [Ma et al., 2018, Tan et al., 2018, Yang et al., 2018]. Additionally,
several techniques (creating new architectures from scratch, pruning architectures at run-
time, quantizing/binarizing weights and possibly activations) exist but are not compared
between one another.

The goal of this work is to review and inspect the state-of-the-art and to compare
different approaches. Additionally to the accuracy of the network, we mostly consider
the inference time as the metric of interest. We choose to measure inference time on a
Raspberry Pi 3B, to have a device that was both representative of the embedded world
and well known. The scope of this thesis is also limited to image classification problems.

The body of this work is divided into several chapters, with the idea of splitting different
techniques between different chapters:

In Chapters 1 and 6, we respectively introduce this work and draw a conclusion.
In Chapter 2, we present the nomenclature used throughout this work as well as some

details on the methodology.
In Chapter 3, we introduce several popular architectures to perform efficient inference

as well as their main building blocks. We then compare those between each other and
modify them to increase their performances.

In Chapter 4, we modify several pruning algorithms to find the number of channels
to allocate to each layer of a WideResNet. Pruning algorithms consists in modifying a
wide, pretrained, network and to iteratively prune it while updating its weights. The idea
developped here is to use the architecture discovered by pruning, while diregarding the
obtained weights. Thus, performing some sort of architecture search.

In Chapter 5, we use two different techniques to improve further the architectures
obtained from the previous chapters. The first technique is knowledge distillation which
consists in using the predictions of a bigger network to help a smaller one training. The
second one is quantization, which consists in reducing the representational power of the

7

8 CHAPTER 1. INTRODUCTION

weights of the network, for example, to use 8-bit integers instead of 32-bit floating-points
to perform faster inference. We use Tensorflow to perform quantization.

We realized this work to give a broad exploration of the fascinating topic of inference
time efficient deep learning image classification. This was chosen over an in-depth overview
to test as many different approaches as possible. This means we opened several doors for
improvements and deeper analyses in future works.

Chapter 2

Concepts and Methodology

This chapter describes the nomenclature used in the present report as well as the test
settings used throughout the thesis.

2.1 Nomenclature
To avoid confusions between different neural networks parts, we will define some nomen-
clature used in the rest of this thesis. Although we redefine the nomenclature to avoid
confusions, the basic working of a neural network is assumed to be known:

• A neural network is composed of several subnetworks, these subnetworks handle
tensors having the same width and height and are a repetition of blocks having the
same structure.

• A block is composed of several layers, the most simple example is the Bottleneck block
which corresponds to a 1 × 1 convolutional layer followed by a 3 × 3 convolutional
layer (see Section 3.2.2 for more details).

• A layer is either a linear operation, for example, a convolution or a matrix multipli-
cation (fully-connected layer) or a pooling operation (pooling layer). Layers often
come with activations, batch normalization and/or dropout.

Mathematically, a fully-connected layer takes as input a 1-D tensor x and returns
y = W × x + b, where W is a 2-D tensor and b a 1-D tensor with the same shape
as y. A convolution layer is an operation taking as input a 3-D tensor of shape
Tensorw × Tensorh × NumChannelsin and computing its cross-correlation (con-
volution is an abuse of language actually) with NumChannelsout tensors of shape
Convw × Convh ×NumChannelsin.

• Activations are non-linear operations, for example applying a Relu activation to a
tensor will output another tensor with the same shape where all the elements smaller
than 0 in the first tensor are replaced by 0’s.

• Batch Normalization is an operation consisting in normalizing its input with respect
to the rest of the batch, i.e. subtracting the per-component mean and dividing by
the per-component variance of the batch of data.

• Dropout is an operation consisting in randomly zeroing out a proportion of its input
at training time.

9

10 CHAPTER 2. CONCEPTS AND METHODOLOGY

• tensors are the successive transformations that are made to the input data by con-
volutional layers. They usually are 4-dimensional, in which case their dimensions
are batch size, number of channels, width and height. The batch size is sometimes
omitted for simplification.

• A batch is a group of images (or more generally tensors) that are processed together.

• A channel is the third dimension of an image, for example an RGB image is composed
of 3 channels (Red, Green and Blue). The number of channels increases in the
network and tensors can contain several hundreds of those.

Figure 2.1 presents a schematic illustration of these concepts.

3

Conv 3×3

BN-Relu Conv 3×3

x

BN-Relu

x

+

Conv 3×3

x

x

x
Block()

Block(out_ch, s)

BN-Relu

Conv 3×3

x

BN-Relu

out_ch

+

Conv 3×3

out_ch

x

x

Stride s×s Conv 1×1

Stride s×s

 out_ch

BN-Relu

Block()

16

Block()

Block(32, 1)

Block()

32

Block()

Block(64, 2)

Block()

64

Block()

Block(128, 2)

Avg-Pool 8*8

128

FC Layer

10

128

n
e
u
r
a
l

n
e
t
w
o
r
k

s
u
b
n
e
t
w
o
r
k
s

blocks

layers

L
a
y
e
r

(s)

Input tensor of size :
batch_size ×
n_channels_in ×
height × width

Output tensor of size :
batch_size ×
n_channels_out ×
height × width

Figure 2.1: Illustration of the nomenclature used on a WideResNet-22-2 on CIFAR-10
[Crowley et al., 2018]
See Figure 2.2 for the meaning of the elements of this scheme

2.2 Scheme conventions

To make that document as clear and understandable as possible, we made the network
block diagrams ourselves. Figure 2.2 shows the conventions we used for the different
blocks.

2.3. PERFORMANCE MEASUREMENT SETUP 11

name m×n

layer with a filter of size m×n
x input channels and
y output channels
name can stand for : Conv, G-Conv
(grouped convolution), D-Conv
(depthwise separable convolution),
L-Conv (learned convolution), Max
Pool,...

x

y

name Activation function,
name can be : Relu, LRelu
(LeakyRelu), Relu6.
BN means we apply batchnorm as
well

op

x

z

y

Tensor operation, op can be :
+ for tensor addition (x = y = z)
[,] for channel-wise
concatenation (z = x + y)

Stride s×s

BN

name

Stride s×s, when unspecified, a layer
has a stride of 1×1

Batch normalization layer

Channel reordering layer, name can
stand for : Ch shuffle, Ch index or
Ch split

Figure 2.2: The conventions used in the schemes

2.3 Performance measurement setup

As explained in the Introduction, the goal of this work is to build models that are as
efficient as possible while remaining accurate. To do so, we used Tensorflow lite 1.13.1 on
a Raspberry Pi 3B. Tensorflow lite is a part of the Tensorflow deep learning framework
that is dedicated to perform inference on embedded devices. The Tensorflow lite version
running on the Raspberry Pi was cross-compiled using Docker.

The Raspberry Pi 3B is a lightweight and cheap (≈ 40 e) computer designed to be
affordable to anyone. The card posses a Quad Core 1.2GHz Broadcom BCM2837 CPU
(ARM) processor (OS running on 32 bits) and 1GB of RAM.

The inference time measurement given in the rest of this work come from tf-lite files
executed on the Raspberry Pi. We used a C++ benchmark program that came alongside
tf-lite and a small bash script we coded ourselves that wrapped around the C++ program.

To compute the inference time of a network, our script report the average time over 3
requests to the C++ program. We computed the inference time for several networks at a
time and the relative order of the networks was randomly changed between each of the 3
runs. To avoid overheating the CPU, the process sleeps for 10 seconds between each call
to the benchmark tool.

To compute the inference time, the C++ program makes warming up predictions for
a second and then report the average inference time over 50 runs (each inference predicts
only one image).

We launched our script 2 times on around 20 networks and the maximal relative dif-
ference between the 2 predictions (rel pred diff = 2 × ‖pred 1−pred 2‖

pred 1+pred 2) was of 2%. We
thus decided to consider the inference time as a deterministic signal in the other chapters.

To train our networks, we used Tensorflow 1.13.1 and PyTorch 1.0.2, which were the
most recent versions of these libraries when we started this Master Thesis. They both
run on top of CUDA 10.1 and cuDNN 7.4. The hardware used for training was a desktop
computer with a GTX 970 graphics card, an Intel i5 4670 and 16 GB of RAM in addition
to Montefiore’s Arya and later Alan clusters (GTX 1080Ti and later RTX 2080Ti).

We limited ourselves to the CIFAR-10 [Krizhevsky, 2009] dataset. An interesting
extension would be to perform the same experiments on more complex datasets like Ima-
geNet [Russakovsky et al., 2015]. CIFAR-10 is a well-known dataset that is often used to
evaluate pruning techniques. It consists of 50.000 training and 10.000 testing RGB images

12 CHAPTER 2. CONCEPTS AND METHODOLOGY

of size 32× 32× 3. Each images is to be assigned to one of 10 different classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck). The main disadvantage of
this dataset is that the minimal size of its input images is not very realistic, i.e. there are
few computer vision problems in which we have to classify 32× 32 images.

The data augmentation we used throughout this project was straightforward, at both
training and testing time, we normalized each image (normalize each of the 3 channels
with respect to the training dataset statistics). Additionally, we performed padding of 4
pixels in every spatial dimension by reflecting the borders of the image and then took a
32 × 32 random crop in the resulting 40 × 40 image. Finally, with a probability of 50%,
we flip the image horizontally.

2.4 Code
The code is also available on Github1. Regarding the separation between what we imple-
mented and did not, the contents of the folders CondenseNet, morph net, PyTorch-prunes
were initially cloned from other repositories (https://github.com/ShichenLiu/CondenseNet,
https://github.com/Tensorflow/models/tree/master/research, and
https://github.com/BayesWatch/PyTorch-prunes respectively). CondenseNet was barely
modified, morph net did not contain the training code (data loading, optimizer, model
architecture,...), which we added and we experienced on PyTorch-prunes quite a lot. We
implemented the contents of NetAdapt and training from scratch entirely ourselves.

1https://github.com/NatGr/Master Thesis

https://github.com/ShichenLiu/CondenseNet
https://github.com/Tensorflow/models/tree/master/research
https://github.com/BayesWatch/PyTorch-prunes
https://github.com/NatGr/Master_Thesis

Chapter 3

Model Architectures

3.1 Introduction

The simplest way to have a Convolutional Neural Network that is accurate while being
reasonably fast and lightweight is to design it from scratch by paying attention to its
resource consumption. Initially, the only goal was to perform as well as possible on Im-
ageNet [Lin et al., 2014]. AlexNet [Krizhevsky et al., 2012] and VGG [Simonyan and
Zisserman, 2014] are good examples of that approach. On the other hand, GoogLeNet
[Szegedy et al., 2015] was designed while taking his computational budget into account
and SqueezeNet [Iandola et al., 2016] was created to stay as accurate as possible while
diminishing the number of parameters. Recently, some works on reinforcement-learning
based architecture search (for example [Zoph et al., 2018, Tan et al., 2018]) have been able
to produce lightweight architectures. However, these require an immense amount of GPU
time for the architecture search and are thus only affordable to big companies.

There are several advantages to use small and optimized architectures, the first one
that drew attention was the memory footprint, an example of that focus is SqueezeNet
[Iandola et al., 2016] that was explicitly built to reduce model size. A smaller network
is also faster to train for the researcher that builds it as well as faster to predict while
consuming less energy for the final user. Finally, it can be expected to generalize better
(assuming it is not too small) due to the well known bias-variance tradeoff, although recent
works go in the opposite direction [Belkin et al., 2018].

In this work, we only focus on the inference time.

Initially, the number of FLOPS, or even worse, the number of parameters, was consid-
ered as a proxy for inference time. [Wong, 2018] used a metric based on both FLOPS and
parameters. The number of FLOPS was shown to be proportional to the inference time by
[Canziani et al., 2016]. This analysis is, however, mostly based on classical architectures
and does not hold for more recent and original choices.

More recent works like [Sandler et al., 2018, Tan et al., 2018, Ma et al., 2018] use
inference times on real devices to compare different models, [Gholami et al., 2018] discussed
the implications of their design on real hardware.

Finally, most architectures are based on the repetition of a given block in the same
fashion as ResNets [He et al., 2016a]. The search problem thus reduces into the problem
of finding the best block. Doing so is simpler but also suboptimal since blocks at different
depths operate on different tensors having different spatial resolutions (width and height).

13

14 CHAPTER 3. MODEL ARCHITECTURES

Thus, the optimal block at depth i might not be the same as the optimal block at depth
j. A notable exception is [Tan et al., 2018], a network search approach that designed its
search space so as to allow using different types of blocks at different depths. Section 3.2
sums up the different building blocks used to build more efficient CNNs, while Section 3.3
presents different architectures of interest based on the blocks.

3.2 Base Building Blocks

3.2.1 Tensor addition and concatenation

In basic neural network architectures, the input of block i is simply the output of block
i − 1, the latter being the result of a single convolution operation. As demonstrated by
ResNets [He et al., 2016a], introducing skip connections, i.e. giving the outputs of block
i− 1 and i− 2 as inputs to block i (see Figure 3.1), can help the model converge. Based
on the success of the later, [Huang et al., 2017] introduced DenseNets in which the input
of a block inside of a subnetwork is connected to the output of all the previous blocks
(these outputs are concatenated). Tensor concatenation (on the number of channels axis)
was also used in Inception [Szegedy et al., 2015] but this time, to combine the outputs of
different convolutions operations (see Figure 3.2). A constraint of these operations is that
the tensors need to have the same width and height, in the case of addition, they must
also have the same number of channels.

+

Relu

Relu

Conv

Conv

Figure 3.1: A skip connection (number of channels not specified), as used in ResNets [He
et al., 2016a]

[,]

Relu

Conv 1×1 Conv 1×1 Max Pool 3×3Conv 1×1

Conv 3×3 Conv 5×5 Conv 1×1

Relu Relu Relu

Relu Relu Relu

inceptionFigure 3.2: An inception module (number of channels not specified), see [Szegedy et al.,
2015]

3.2. BASE BUILDING BLOCKS 15

3.2.2 Bottleneck

The bottleneck structure is very intensively used, among others by [Szegedy et al., 2015, He
et al., 2016a, Huang et al., 2017, Iandola et al., 2016, Zagoruyko and Komodakis, 2016,
Gholami et al., 2018, Sandler et al., 2018]. The idea is to reduce the number of channels
by using the first convolution before performing a second convolution that restores the
number of channels to its original size. This idea is similar to embeddings, where a low
dimensional embedding can keep much information about a larger space [Szegedy et al.,
2015]. The computational price of a convolutional layer being given by

Tensorw × Tensorh × Convw × Convh ×NumChannelsin ×NumChannelsout

where w and h subscripts mean width and height. Thus, dividing the number of channels
inside of the bottleneck by n is n times less costly than not having a bottleneck.

There exist many different flavours of bottlenecks, the first convolution is usually of
size 1 × 1 and the second 3 × 3 or 5 × 5, which would be denoted B(1, 3) and B(1, 5)
respectively. There are also variants with 3 layers, for example, B(1, 3, 1) in [He et al.,
2016a] which has the advantage to be much cheaper since the 3× 3 convolution that is 9
times more resource consuming than an equivalent 1 × 1 has a smaller number of input
and output channels. For example, the 2 middle columns of Figure 3.2 are B(1, 3) and
B(1, 5) respectively.

3.2.3 Depthwise separable convolutions

The idea behind depthwise separable convolutions is to only use the channel at depth i
of the input to compute the channel at depth i of the output. Figure 3.3 illustrates that
approach. This choice makes depthwise convolutions NumChannelsin times cheaper to
compute than their classical equivalent. The different channels are then recombined by
regular 1 × 1 Convolutions (called pointwise convolutions) in most cases. This approach
is used by [Chollet, 2017, Howard et al., 2017, Zhang et al., 2018, Freeman et al., 2018,
Sandler et al., 2018].

On the other hand, [Gholami et al., 2018] argued that depthwise separable convolutions
had weak hardware performance because of their poor ratio of computing to memory
operations. Indeed, in depthwise convolutions, an element of the input is only used in
Convw × Convh computations whereas it is used Convw × Convh × NumChannelsout
times in the classical convolution. One mitigation to that problem could be to use the
same tensors for several depthwise separable convolutions and then add/concatenate the
outputs.

Whether there are activations or not vary between the different works, [Chollet, 2017]
(Xception) do not put any after the depthwise separable convolution, [Sandler et al., 2018]
(MobileNetv2) do not put any after the pointwise convolution and [Howard et al., 2017]
(MobileNetv1) put them after both the depthwise separable and pointwise convolution.

3.2.4 Grouped convolutions

Grouped convolutions are a less extreme variant of depthwise convolutions where the input
and output tensors are divided into g independent groups, i.e. the output in one of these
group does not depend on the input of the other groups. This is illustrated in Figure
3.4, additionally depthwise separable convolutions can be seen as grouped convolutions
where g = NumChannelsin. Grouped convolutions reduce the cost of the convolution by
a factor g since we perform g convolutions that are g2 times less costly instead of one.

16 CHAPTER 3. MODEL ARCHITECTURES

(a) Classical convolution (b) Depthwise convolution

Figure 3.3: Depthwise convolution, figures taken from eli.thegreenplace.net

These convolutions are used by CondenseNets and ShuffleNetv1 [Huang et al., 2018, Zhang
et al., 2018]. It was also used by AlexNet [Krizhevsky et al., 2012] where it was to be able
to train on 2 GPUs rather than to optimize inference time.

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and
output channels are fully related when GConv2 takes data from different groups after GConv1; c) an equivalent implementation to b) using
channel shuffle.

cent work [46] employs reinforcement learning and model
search to explore efficient model designs. The proposed
mobile NASNet model achieves comparable performance
with our counterpart ShuffleNet model (26.0% @ 564
MFLOPs vs. 26.3% @ 524 MFLOPs for ImageNet clas-
sification error). But [46] do not report results on extremely
tiny models (e.g. complexity less than 150 MFLOPs), nor
evaluate the actual inference time on mobile devices.

Group Convolution The concept of group convolution,
which was first introduced in AlexNet [21] for distribut-
ing the model over two GPUs, has been well demon-
strated its effectiveness in ResNeXt [40]. Depthwise sep-
arable convolution proposed in Xception [3] generalizes the
ideas of separable convolutions in Inception series [34, 32].
Recently, MobileNet [12] utilizes the depthwise separa-
ble convolutions and gains state-of-the-art results among
lightweight models. Our work generalizes group convolu-
tion and depthwise separable convolution in a novel form.

Channel Shuffle Operation To the best of our knowl-
edge, the idea of channel shuffle operation is rarely men-
tioned in previous work on efficient model design, although
CNN library cuda-convnet [20] supports “random sparse
convolution” layer, which is equivalent to random channel
shuffle followed by a group convolutional layer. Such “ran-
dom shuffle” operation has different purpose and been sel-
dom exploited later. Very recently, another concurrent work
[41] also adopt this idea for a two-stage convolution. How-
ever, [41] did not specially investigate the effectiveness of
channel shuffle itself and its usage in tiny model design.

Model Acceleration This direction aims to accelerate in-
ference while preserving accuracy of a pre-trained model.
Pruning network connections [6, 7] or channels [38] re-
duces redundant connections in a pre-trained model while
maintaining performance. Quantization [31, 27, 39, 45, 44]
and factorization [22, 16, 18, 37] are proposed in litera-
ture to reduce redundancy in calculations to speed up in-
ference. Without modifying the parameters, optimized con-
volution algorithms implemented by FFT [25, 35] and other
methods [2] decrease time consumption in practice. Distill-
ing [11] transfers knowledge from large models into small
ones, which makes training small models easier.

3. Approach

3.1. Channel Shuffle for Group Convolutions

Modern convolutional neural networks [30, 33, 34, 32,
9, 10] usually consist of repeated building blocks with the
same structure. Among them, state-of-the-art networks
such as Xception [3] and ResNeXt [40] introduce efficient
depthwise separable convolutions or group convolutions
into the building blocks to strike an excellent trade-off
between representation capability and computational cost.
However, we notice that both designs do not fully take the
1 ⇥ 1 convolutions (also called pointwise convolutions in
[12]) into account, which require considerable complex-
ity. For example, in ResNeXt [40] only 3 ⇥ 3 layers are
equipped with group convolutions. As a result, for each
residual unit in ResNeXt the pointwise convolutions occupy
93.4% multiplication-adds (cardinality = 32 as suggested in
[40]). In tiny networks, expensive pointwise convolutions
result in limited number of channels to meet the complexity
constraint, which might significantly damage the accuracy.

To address the issue, a straightforward solution is to ap-

Figure 3.4: An illustration of grouped convolutions, figure taken from [Zhang et al., 2018]

3.2.5 Channel shuffling

When a network uses grouped convolutions, it can be interesting to reorder the channels
in order to avoid having several groups of channels that are independent throughout the
network, i.e. the first quarter of channels never interact with the last quarter of channels.
This alternative is way less powerful than a fully interacting option. A solution to this
problem, used by [Huang et al., 2018, Zhang et al., 2018, Ma et al., 2018], is to reshuffle
the channels inside each block. This means that the channels are reordered after a grouped
convolution as shown in figure 3.5.

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

3.2. BASE BUILDING BLOCKS 17

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and
output channels are fully related when GConv2 takes data from different groups after GConv1; c) an equivalent implementation to b) using
channel shuffle.

cent work [46] employs reinforcement learning and model
search to explore efficient model designs. The proposed
mobile NASNet model achieves comparable performance
with our counterpart ShuffleNet model (26.0% @ 564
MFLOPs vs. 26.3% @ 524 MFLOPs for ImageNet clas-
sification error). But [46] do not report results on extremely
tiny models (e.g. complexity less than 150 MFLOPs), nor
evaluate the actual inference time on mobile devices.

Group Convolution The concept of group convolution,
which was first introduced in AlexNet [21] for distribut-
ing the model over two GPUs, has been well demon-
strated its effectiveness in ResNeXt [40]. Depthwise sep-
arable convolution proposed in Xception [3] generalizes the
ideas of separable convolutions in Inception series [34, 32].
Recently, MobileNet [12] utilizes the depthwise separa-
ble convolutions and gains state-of-the-art results among
lightweight models. Our work generalizes group convolu-
tion and depthwise separable convolution in a novel form.

Channel Shuffle Operation To the best of our knowl-
edge, the idea of channel shuffle operation is rarely men-
tioned in previous work on efficient model design, although
CNN library cuda-convnet [20] supports “random sparse
convolution” layer, which is equivalent to random channel
shuffle followed by a group convolutional layer. Such “ran-
dom shuffle” operation has different purpose and been sel-
dom exploited later. Very recently, another concurrent work
[41] also adopt this idea for a two-stage convolution. How-
ever, [41] did not specially investigate the effectiveness of
channel shuffle itself and its usage in tiny model design.

Model Acceleration This direction aims to accelerate in-
ference while preserving accuracy of a pre-trained model.
Pruning network connections [6, 7] or channels [38] re-
duces redundant connections in a pre-trained model while
maintaining performance. Quantization [31, 27, 39, 45, 44]
and factorization [22, 16, 18, 37] are proposed in litera-
ture to reduce redundancy in calculations to speed up in-
ference. Without modifying the parameters, optimized con-
volution algorithms implemented by FFT [25, 35] and other
methods [2] decrease time consumption in practice. Distill-
ing [11] transfers knowledge from large models into small
ones, which makes training small models easier.

3. Approach

3.1. Channel Shuffle for Group Convolutions

Modern convolutional neural networks [30, 33, 34, 32,
9, 10] usually consist of repeated building blocks with the
same structure. Among them, state-of-the-art networks
such as Xception [3] and ResNeXt [40] introduce efficient
depthwise separable convolutions or group convolutions
into the building blocks to strike an excellent trade-off
between representation capability and computational cost.
However, we notice that both designs do not fully take the
1 ⇥ 1 convolutions (also called pointwise convolutions in
[12]) into account, which require considerable complex-
ity. For example, in ResNeXt [40] only 3 ⇥ 3 layers are
equipped with group convolutions. As a result, for each
residual unit in ResNeXt the pointwise convolutions occupy
93.4% multiplication-adds (cardinality = 32 as suggested in
[40]). In tiny networks, expensive pointwise convolutions
result in limited number of channels to meet the complexity
constraint, which might significantly damage the accuracy.

To address the issue, a straightforward solution is to ap-

Figure 3.5: A channel shuffle layer inside of a ShuffleNetv1 block, see [Zhang et al., 2018]

3.2.6 1-D convolutions

Until now, convolutions always had the same width and height, the idea here is to de-
compose a n × n convolution into a n × 1 and a 1 × n convolution. By doing so, the
number of FLOPS is reduced by n2

2n = n
2 . It is thus more interesting the more significant

the filter gets. Since activations are introduced between the n × 1 and 1 × n layers, it
can also be argued to increase the depth of the network. That property might, however,
be undesirable since it reduces parallelism (thinner and deeper networks). This approach
was used in Inception-v2/v3 [Szegedy et al., 2016b] and Inception-v4/ResNet [Szegedy
et al., 2016a] in 2016 as well as EffNet [Freeman et al., 2018] and SqueezeNext [Gholami
et al., 2018] in 2018. Inception variants used it on 7× 7 and 3× 3 filters while EffNet and
SqueezeNext used it on 3× 3 filters.

3.2.7 Squeeze-and-Excitation

Squeeze-and-Excitation blocks [Hu et al., 2018] are an improvement that can be added on
top of every type of convolutional layers. The idea consists of learning a weight for each of
the output channels of a block. These blocks allow giving more importance to specific chan-
nels depending on the input image. To give a crude example, the Squeeze-and-Excitation
block might learn that horizontal edge detectors are essential for classification when many
vertical edges are detected. Thus when channel x that detects vertical edges has a sig-
nificant average value, channel y that detect horizontal edges is given substantial weight,
whereas it won’t be the case if channel x’s average value is low.

The design is explained on Figure 3.6, in the case that interests us, the Squeeze-and-
Excitation blocks are placed after a convolution operation. We first use average pooling to
compute the average value of each channel, these are called statistics about each channel
(we could use something else than average pooling of course). Then, we compute the
weights through a two fully connected layers network, more formally,

weight = Sigmoid(W2 ×Relu(W1 × statistics)) (3.1)

whereW2 ∈ IRC×C/r andW1 ∈ IRC/r×C , r being an hyperparameter > 1 called reduction
factor and C the number of channels. This design was shown to improve results at a little
cost since the Squeeze-and-Excitation block is much less computationally hungry than the
convolution operation that precedes it.

18 CHAPTER 3. MODEL ARCHITECTURES

This design can be used on any network by simply adding Squeeze-and-Excitation
blocks after the last convolution of the base network’s blocks.

2

Fig. 1. A Squeeze-and-Excitation block.

As a consequence, the benefits of the feature recalibration
performed by SE blocks can be accumulated through the
network.

The design and development of new CNN architectures
is a difficult engineering task, typically requiring the se-
lection of many new hyperparameters and layer configura-
tions. By contrast, the structure of the SE block is simple and
can be used directly in existing state-of-the-art architectures
by replacing components with their SE counterparts, where
the performance can be effectively enhanced. SE blocks are
also computationally lightweight and impose only a slight
increase in model complexity and computational burden.

To provide evidence for these claims, in Sec. 4 we de-
velop several SENets and conduct an extensive evaluation
on the ImageNet 2012 dataset [10]. We also present results
beyond ImageNet that indicate that the benefits of our
approach are not restricted to a specific dataset or task.
By making use of SENets, we ranked first in the ILSVRC
2017 classification competition. Our best model ensemble
achieves a 2.251% top-5 error on the test set1. This repre-
sents roughly a 25% relative improvement when compared
to the winner entry of the previous year (top-5 error of
2.991%).

2 RELATED WORK

Deeper architectures. VGGNets [11] and Inception mod-
els [5] showed that increasing the depth of a network could
significantly increase the quality of representations that
it was capable of learning. By regulating the distribution
of the inputs to each layer, Batch Normalization (BN) [6]
added stability to the learning process in deep networks
and produced smoother optimisation surfaces [12]. Building
on these works, ResNets demonstrated that it was pos-
sible to learn considerably deeper and stronger networks
through the use of identity-based skip connections [13], [14].
Highway networks [15] introduced a gating mechanism to
regulate the flow of information along shortcut connections.
Following these works, there have been further reformula-
tions of the connections between network layers [16], [17],
which show promising improvements to the learning and
representational properties of deep networks.

An alternative, but closely related line of research has
focused on methods to improve the functional form of
the computational elements contained within a network.
Grouped convolutions have proven to be a popular ap-
proach for increasing the cardinality of learned transforma-
tions [18], [19]. More flexible compositions of operators can

1. http://image-net.org/challenges/LSVRC/2017/results

be achieved with multi-branch convolutions [5], [6], [20],
[21], which can be viewed as a natural extension of the
grouping operator. In prior work, cross-channel correlations
are typically mapped as new combinations of features, ei-
ther independently of spatial structure [22], [23] or jointly
by using standard convolutional filters [24] with 1 ⇥ 1
convolutions. Much of this research has concentrated on the
objective of reducing model and computational complexity,
reflecting an assumption that channel relationships can be
formulated as a composition of instance-agnostic functions
with local receptive fields. In contrast, we claim that provid-
ing the unit with a mechanism to explicitly model dynamic,
non-linear dependencies between channels using global in-
formation can ease the learning process, and significantly
enhance the representational power of the network.

Algorithmic Architecture Search. Alongside the works
described above, there is also a rich history of research
that aims to forgo manual architecture design and instead
seeks to learn the structure of the network automatically.
Much of the early work in this domain was conducted in
the neuro-evolution community, which established methods
for searching across network topologies with evolutionary
methods [25], [26]. While often computationally demand-
ing, evolutionary search has had notable successes which
include finding good memory cells for sequence models
[27], [28] and learning sophisticated architectures for large-
scale image classification [29]–[31]. With the goal of reduc-
ing the computational burden of these methods, efficient
alternatives to this approach have been proposed based on
Lamarckian inheritance [32] and differentiable architecture
search [33].

By formulating architecture search as hyperparameter
optimisation, random search [34] and other more sophis-
ticated model-based optimisation techniques [35], [36] can
also be used to tackle the problem. Topology selection
as a path through a fabric of possible designs [37] and
direct architecture prediction [38], [39] have been proposed
as additional viable architecture search tools. Particularly
strong results have been achieved with techniques from
reinforcement learning [40]–[44]. SE blocks can be used as
atomic building blocks for these search algorithms, and
were demonstrated to be highly effective in this capacity
in concurrent work [45].

Attention and gating mechanisms. Attention can be in-
terpreted as a means of biasing the allocation of available
computational resources towards the most informative com-
ponents of a signal [46]–[51]. Attention mechanisms have
demonstrated their utility across many tasks including se-

Figure 3.6: Squeeze-and-Excitation block, figure taken from [Hu et al., 2018]
Ftr denotes a transfer operation (e.g. convolution), Fsq a squeeze operation that gets global
channel statistics (e.g. average pooling), Fex a non linear learnable mapping between the
statistics and the weights of each channel and Fscale a scaling operation involving the channels
weights (e.g. element-wise product)

3.3 Complete Architectures

This Section introduces many architectures built upon the blocks illustrated previously.
Those will later be compared to see which ones are performing better for our problem.
An excpetion is DenseNet that is introduced here because it is needed to understand
CondenseNet. It is also used in Chapter 4.

3.3.1 (Wide)ResNet

ResNets [He et al., 2016a] introduced the concept of skip connection that we mentionned in
Section 3.1. Although this architecture is pretty old relatively to the others, it is still very
often used as a baseline. This is because of the groudbreaking impact [He et al., 2016a] had.

WideResNet [Zagoruyko and Komodakis, 2016] are an adaptation of ResNets [He et al.,
2016a] that simply consists in multiplying the number of channels at each layer by a
constant. For example, WideResNet-40-2 denotes a ResNet of depth 40 where the number
of channels is two times bigger at each layer. [Zagoruyko and Komodakis, 2016] shows
that it is more interesting to have wider ResNets than excessively deep ones both in
terms of achievable accuracy and in terms of computational cost. WideResNets were also
used extensively for the pruning chapter and are a hard to beat baseline for the other
architectures. A WideResNet-40-2 architecture with inputs of size 32 × 32 is shown in
Figure 3.7.

3.3.2 DenseNet

DenseNet [Huang et al., 2017] takes the idea of residual connections from [He et al., 2016a]
even further by connecting the input of layer i of a subnetwork to the outputs of layers
0, ..., i−1 of the same subnetwork as illustrated in Figure 3.8. The channels to use as input
are concatenated together rather than added. This is a fascinating idea because it reuses
channels and allows to use the tensors of different depth, i.e. that represent information
at a different level of coarseness in the same layer. The problem with this approach is

3.3. COMPLETE ARCHITECTURES 19

Conv 3×3

x

BN-Relu

x

+

Conv 3×3

BN-Relu

x

x

x

3

Conv 3×3

BN-Relu

16

Res_3_3

Stride s×s

Skip_3_3(s, y)

128

Avg-Pool 8×8

128

FC Layer

10

Conv 3×3

x

BN-Relu

y

+

Conv 3×3

BN-Relu

y

y

 x
x

Stride s×s

Conv 1×1

y

Skip_3_3(1, 32) No width/height reduction

Res_3_3 ×5

32

Skip_3_3(2, 64)

64

Res_3_3 ×5

Skip_3_3(2, 128)

128

Res_3_3 ×5

Figure 3.7: WideResNet-40-2 network (on CIFAR-10), see [Zagoruyko and Komodakis,
2016]
[Zagoruyko and Komodakis, 2016] chose to put the skip connection before applying batchnorm
and activation, this was not done for other networks which is why the figure might look
unfamiliar but is a detail

that concatenation is not efficiently implemented in current deep learning frameworks. As
advocated by [Pleiss et al., 2017], DenseNet and its variations could be much more efficient
if tensors were represented in Channel first order, i.e. mem buffer[0..x] for channel 1,
mem buffer[x..2x] for channel 2 and so on... but they are represented with the batch
size as the first dimension (because that is the way cuDNN chose). Indeed, in a Channel
first ordering, one would have to allocate a large buffer and then to put the output of each
layer next to another in memory which would perform the desired concatenation for free.

DenseNets have several hyperparameters, namely:

1. Growth Rate: If we denote the number of channels of the output of a layer by k,
it follows that the ith layer of a subblock has k0 + k× (i− 1) input channels, thus k
can be small (e.g. k = 12), this parameter is denoted as growth rate.

2. Bottleneck layers: Since the number of input channels of a layer is much larger
than its number of output channels, it is computationally interesting to introduce
B(1, 3) bottlenecks (1 × 1 convolution before the 3 × 3 convolution). The number
of middle channels can for example be 4 times the output size, which is small with
respect to the input.

3. Compression Rate: To reduce the size of the network, a good idea is to reduce
the number of channels at transition blocks (between two subnetworks - when we

20 CHAPTER 3. MODEL ARCHITECTURES

Densely Connected Convolutional Networks

Gao Huang⇤

Cornell University
gh349@cornell.edu

Zhuang Liu⇤

Tsinghua University
liuzhuang13@mails.tsinghua.edu.cn

Laurens van der Maaten
Facebook AI Research

lvdmaaten@fb.com

Kilian Q. Weinberger
Cornell University
kqw4@cornell.edu

Abstract

Recent work has shown that convolutional networks can
be substantially deeper, more accurate, and efficient to train
if they contain shorter connections between layers close to
the input and those close to the output. In this paper, we
embrace this observation and introduce the Dense Convo-
lutional Network (DenseNet), which connects each layer
to every other layer in a feed-forward fashion. Whereas
traditional convolutional networks with L layers have L
connections—one between each layer and its subsequent
layer—our network has L(L+1)

2 direct connections. For
each layer, the feature-maps of all preceding layers are
used as inputs, and its own feature-maps are used as inputs
into all subsequent layers. DenseNets have several com-
pelling advantages: they alleviate the vanishing-gradient
problem, strengthen feature propagation, encourage fea-
ture reuse, and substantially reduce the number of parame-
ters. We evaluate our proposed architecture on four highly
competitive object recognition benchmark tasks (CIFAR-10,
CIFAR-100, SVHN, and ImageNet). DenseNets obtain sig-
nificant improvements over the state-of-the-art on most of
them, whilst requiring less computation to achieve high per-
formance. Code and pre-trained models are available at
https://github.com/liuzhuang13/DenseNet.

1. Introduction

Convolutional neural networks (CNNs) have become
the dominant machine learning approach for visual object
recognition. Although they were originally introduced over
20 years ago [18], improvements in computer hardware and
network structure have enabled the training of truly deep
CNNs only recently. The original LeNet5 [19] consisted of
5 layers, VGG featured 19 [29], and only last year Highway

⇤Authors contributed equally

x0

x1
H1

x2
H2

H3

H4

x3

x4

Figure 1: A 5-layer dense block with a growth rate of k = 4.
Each layer takes all preceding feature-maps as input.

Networks [34] and Residual Networks (ResNets) [11] have
surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new research
problem emerges: as information about the input or gra-
dient passes through many layers, it can vanish and “wash
out” by the time it reaches the end (or beginning) of the
network. Many recent publications address this or related
problems. ResNets [11] and Highway Networks [34] by-
pass signal from one layer to the next via identity connec-
tions. Stochastic depth [13] shortens ResNets by randomly
dropping layers during training to allow better information
and gradient flow. FractalNets [17] repeatedly combine sev-
eral parallel layer sequences with different number of con-
volutional blocks to obtain a large nominal depth, while
maintaining many short paths in the network. Although
these different approaches vary in network topology and
training procedure, they all share a key characteristic: they
create short paths from early layers to later layers.

1

ar
X

iv
:1

60
8.

06
99

3v
5

 [c
s.C

V
]

28
 Ja

n
20

18

Figure 3.8: An illustration of a DenseNet subnetwork, figure taken from [Huang et al.,
2017]

reduce the tensors spatial size). A good possibility is to reduce the number of layers
by a factor of 2, here 2 would be called the compression rate.

A DenseNet with both compression and bottlenecks is referred to as DenseNet-BC.
As we can see from figure 3.9, which uses the average absolute filter weight as a

metric of input importance, the output of some layers is more used than others. A basic
modification to be done to DenseNets would thus be to severe some of the intermediary
connections, for example, having the input of layer i be only the output of layers i − 1,
i − 2 and i − 3 or i − 1, i − 2, i − 4 and i − 8. This idea was explored in [Hu et al.,
2017] and gave birth to Log-DenseNet; it also inspired [Ma et al., 2018] to introduce their
channel-split layer.

tween the surrounding layers. As the pooling layers are
never dropped, the network results in a similar connectiv-
ity pattern as DenseNet: there is a small probability for
any two layers, between the same pooling layers, to be di-
rectly connected—if all intermediate layers are randomly
dropped. Although the methods are ultimately quite dif-
ferent, the DenseNet interpretation of stochastic depth may
provide insights into the success of this regularizer.

Feature Reuse. By design, DenseNets allow layers ac-
cess to feature-maps from all of its preceding layers (al-
though sometimes through transition layers). We conduct
an experiment to investigate if a trained network takes ad-
vantage of this opportunity. We first train a DenseNet on
C10+ with L = 40 and k = 12. For each convolutional
layer ` within a block, we compute the average (absolute)
weight assigned to connections with layer s. Figure 5 shows
a heat-map for all three dense blocks. The average absolute
weight serves as a surrogate for the dependency of a convo-
lutional layer on its preceding layers. A red dot in position
(`, s) indicates that the layer ` makes, on average, strong use
of feature-maps produced s-layers before. Several observa-
tions can be made from the plot:

1. All layers spread their weights over many inputs within
the same block. This indicates that features extracted
by very early layers are, indeed, directly used by deep
layers throughout the same dense block.

2. The weights of the transition layers also spread their
weight across all layers within the preceding dense
block, indicating information flow from the first to the
last layers of the DenseNet through few indirections.

3. The layers within the second and third dense block
consistently assign the least weight to the outputs of
the transition layer (the top row of the triangles), in-
dicating that the transition layer outputs many redun-
dant features (with low weight on average). This is in
keeping with the strong results of DenseNet-BC where
exactly these outputs are compressed.

4. Although the final classification layer, shown on the
very right, also uses weights across the entire dense
block, there seems to be a concentration towards final
feature-maps, suggesting that there may be some more
high-level features produced late in the network.

6. Conclusion
We proposed a new convolutional network architec-

ture, which we refer to as Dense Convolutional Network
(DenseNet). It introduces direct connections between any
two layers with the same feature-map size. We showed that
DenseNets scale naturally to hundreds of layers, while ex-
hibiting no optimization difficulties. In our experiments,

Dense Block 1

S
ou

rc
e

la
ye

r (
s)

Dense Block 2

9

1

Dense Block 3

Target layer (A)

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Transition layer 1 Transition layer 2 Classification layer

1

3

5

7

2 4 6 8 10 12

Target layer (A)Target layer (A)

1

3

5

7

9

11

1

3

5

7

9

11

2 4 6 8 10 12 2 4 6 8 10 12

Figure 5: The average absolute filter weights of convolutional lay-
ers in a trained DenseNet. The color of pixel (s, `) encodes the av-
erage L1 norm (normalized by number of input feature-maps) of
the weights connecting convolutional layer s to ` within a dense
block. Three columns highlighted by black rectangles correspond
to two transition layers and the classification layer. The first row
encodes weights connected to the input layer of the dense block.

DenseNets tend to yield consistent improvement in accu-
racy with growing number of parameters, without any signs
of performance degradation or overfitting. Under multi-
ple settings, it achieved state-of-the-art results across sev-
eral highly competitive datasets. Moreover, DenseNets
require substantially fewer parameters and less computa-
tion to achieve state-of-the-art performances. Because we
adopted hyperparameter settings optimized for residual net-
works in our study, we believe that further gains in accuracy
of DenseNets may be obtained by more detailed tuning of
hyperparameters and learning rate schedules.

Whilst following a simple connectivity rule, DenseNets
naturally integrate the properties of identity mappings, deep
supervision, and diversified depth. They allow feature reuse
throughout the networks and can consequently learn more
compact and, according to our experiments, more accurate
models. Because of their compact internal representations
and reduced feature redundancy, DenseNets may be good
feature extractors for various computer vision tasks that
build on convolutional features, e.g., [4, 5]. We plan to
study such feature transfer with DenseNets in future work.

Acknowledgements. The authors are supported in part by
the NSF III-1618134, III-1526012, IIS-1149882, the Of-
fice of Naval Research Grant N00014-17-1-2175 and the
Bill and Melinda Gates foundation. GH is supported by
the International Postdoctoral Exchange Fellowship Pro-
gram of China Postdoctoral Council (No.20150015). ZL
is supported by the National Basic Research Program of
China Grants 2011CBA00300, 2011CBA00301, the NSFC
61361136003. We also thank Daniel Sedra, Geoff Pleiss
and Yu Sun for many insightful discussions.

References
[1] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and

S. Yang. Adanet: Adaptive structural learning of artificial
neural networks. arXiv preprint arXiv:1607.01097, 2016. 2

Figure 3.9: DenseNet connectivity diagram, Figure taken from [Huang et al., 2017]
The color highlights the importance of the output of source layer s for target layer l, there is one
map per subnetwork

3.3.3 CondenseNet

CondenseNet [Huang et al., 2018] is an improvement over DenseNet that can be seen as
a form of connections pruning. The main idea is to use grouped convolutions instead of
the classical convolutions in a DenseNet, but instead of separating the channels based on

3.3. COMPLETE ARCHITECTURES 21

their offsets which would result in independent groups of channels trained separately, the
mapping between channels and groups is learned. Connections between several blocks are
also pruned.

We first define some hyperparameters and architecture specifications.
G denotes the number of groups in the grouped convolutions. A each group in a

grouped convolution can use 1
C of the input channels, The parameter C is called con-

densation factor. In standard group convolutions, C = G and this is the value used in
practice since doing other renders the implementation more difficult, but the authors let
the possibility to do otherwise.

The base DenseNet architecture was also modified in two ways: First, the growth rate
increases exponentially, i.e. a channel at depth i (starting from 0) has 2ik0 output chan-
nels, where k0 is a constant. Second, the dense connectivity is not limited to a subnetwork
anymore, i.e. layers from different subnetworks are directly connected as well (difference
in tensors width and height are handled through average pooling).

A CondenseNet block is composed of a learned group convolution followed by a shuffling
block and then a grouped convolution (see Figure 3.10). Initially, the learned convolu-
tions are separated into G groups, each being connected to all of the input channels. The
training occurs in C steps, at the end of each of the first C − 1 steps, NumChannelsin/C
channels are removed from each group, such that ultimately only NumChannelsin× (1−
(C − 1)/C) = NumChannelsin/C remains. The removed channels are the ones whose
associated filters have the smallest L1 norm, and group lasso is introduced to encourage
groups to use the same subset of input channels. This training procedure is illustrated in
figure 3.11. After training, the learned group convolution can be replaced by an index (re-
order the channels with repetition) and a normal group convolution layer. By its nature,
this approach might seem quite unstable, i.e. different runs would result in different con-
nections being pruned, but this was shown not to be the case in the paper. CondenseNet
works also way better than traditional pruning approach applied on DenseNets [Liu et al.,
2017].

k

G-Conv 1×1Conv 1×1

G-Conv 3×3Conv 3×3 G-Conv 3×3

BN-Relu

Ch shuffle

Ch index

Ch shuffle

2i×k
0

2i×k
0

k×mult

k×mult

k×mult

k×mult

k×mult

BN-Relu

BN-Relu

BN-Relu

BN-Relu

BN-Relu

L-Conv 1×1

Figure 3.10: DenseNet block (left) - CondenseNet block during training (middle) - Con-
denseNet block after training (right), see [Huang et al., 2018]
mult is the bottleneck channel multiplier, usually, mult = 4, k denotes the growth factor, i the
depth of the block and k0 a constant

22 CHAPTER 3. MODEL ARCHITECTURES

12
11
10
9
8
7
6
5
4
3
2
1

group 2

group 3

group 1

group 2

group 3

group 1

12
11
10
9
8
7
6
5
4
3
2
1

12
11
10
9
8
7
6
5
4
3
2
1

group 2

group 3

group 1

group 2

group 3

group 1

11
8
6
5

12
10
5
1

12
9
7
3

12
11
10
9
8
7
6
5
4
3
2
1

Index Layer

Condensing Stage 1 Condensing Stage 2 Optimization Stage Testing

G
roup

C
onvolution

Sparsified
C

onvolution

Sparsified
C

onvolution

C
onvolution

Input
Features

Output
Features

Input
Features

Output
Features

Input
Features

Output
Features

Input
Features

Output
Features

Selected and
Rearranged Features

Figure 3. Illustration of learned group convolutions with G = 3 groups and a condensation factor of C = 3. During training a fraction of
(C�1)/C connections are removed after each of the C � 1 condensing stages. Filters from the same group use the same set of features,
and during test-time the index layer rearranges the features to allow the resulting model to be implemented as standard group convolutions.

a convolutional filter (one per output) over all R input fea-
tures, leading to a computational cost of R⇥O. In compari-
son, group convolution (right illustration) reduces this com-
putational cost by partitioning the input features into G mu-
tually exclusive groups, each producing its own outputs—
reducing the computational cost by a factor G to R⇥O

G .

3. CondenseNets

Group convolution works well with many deep neural
network architectures [43, 46, 47] that are connected in a
layer-by-layer fashion. For dense architectures group con-
volution can be used in the 3⇥3 convolutional layer (see
Figure 1, left). However, preliminary experiments show
that a naı̈ve adaptation of group convolutions in the 1⇥1
convolutional layer leads to drastic reductions in accuracy.
We surmise that this is caused by the fact that the inputs to
the 1⇥1 convolutional layer are concatenations of feature
maps generated by preceding layers. Therefore, they dif-
fer in two ways from typical inputs to convolutional layers:
1. they have an intrinsic order; and 2. they are far more
diverse. The hard assignment of these features to disjoint
groups hinders effective re-use of features in the network.
Experiments in which we randomly permute input feature
maps in each layer before performing the group convolu-
tion show that this reduces the negative impact on accuracy
— but even with the random permutation, group convolu-
tion in the 1⇥1 convolutional layer makes DenseNets less
accurate than for example smaller DenseNets with equiva-
lent computational cost.

It is shown in [19] that making early features available
as inputs to later layers is important for efficient feature re-
use. Although not all prior features are needed at every sub-
sequent layer, it is hard to predict which features should
be utilized at what point. To address this problem, we de-
velop an approach that learns the input feature groupings
automatically during training. Learning the group structure
allows each filter group to select its own set of most rel-

evant inputs. Further, we allow multiple groups to share
input features and also allow features to be ignored by all
groups. Note that in a DenseNEt, even if an input feature is
ignored by all groups in a specific layer, it can still be uti-
lized by some groups At different layers. To differentiate it
from regular group convolutions, we refer to our approach
as learned group convolution.

3.1. Learned Group Convolution

We learn group convolutions through a multi-stage pro-
cess, illustrated in Figures 3 and 4. The first half of the
training iterations comprises of condensing stages. Here,
we repeatedly train the network with sparsity inducing reg-
ularization for a fixed number of iterations and subsequently
prune away unimportant filters with low magnitude weights.
The second half of the training consists of the optimization
stage, in which we learn the filters after the groupings are
fixed. When performing the pruning, we ensure that filters
from the same group share the same sparsity pattern. As a
result, the sparsified layer can be implemented using a stan-
dard group convolution once training is completed (testing
stage). Because group convolutions are efficiently imple-
mented by many deep-learning libraries, this leads to high
computational savings both in theory and in practice. We
present details on our approach below.
Filter Groups. We start with a standard convolution of
which filter weights form a 4D tensor of size O⇥R⇥W⇥H ,
where O, R, W , and H denote the number of output chan-
nels, the number of input channels, and the width and the
height of the filter kernels, respectively. As we are focusing
on the 1⇥1 convolutional layer in DenseNets, the 4D tensor
reduces to an O⇥R matrix F. We consider the simplified
case in this paper. But our procedure can readily be used
with larger convolutional kernels. Before training, we first
split the filters (or, equivalently, the output features) into G
groups of equal size. We denote the filter weights for these
groups by F1, . . . ,FG; each Fg has size O

G ⇥R and Fg
ij

corresponds to the weight of the jth input for the ith output

Figure 3.11: CondenseNet training procedure, figure taken from [Huang et al., 2018]
Please note that several groups can take the same channels as input

A weak point of this technique is that, although it is very efficient in terms of FLOPS, it
suffers the same memory allocation problem as DenseNets. Worse, the efficient approach
used for vanilla DenseNets would not work since the order of the different channels is
perturbed at each block.

3.3.4 EffNet

EffNet [Freeman et al., 2018] structure is based on the idea that bottlenecks with a huge
channel-reduction factor can be harmful when applied to thin networks because it creates
a bottleneck in the number of floats that flow through the network at a certain point. The
authors thus designed their architecture with the idea of having a monotonically decreas-
ing number of floats per layer.

It was decided to use 1-D, depthwise separable convolutions to reduce the number of
FLOPS. They also consider using a stride of two to be too aggressive, and, rather than
reducing the height and width of tensors at the same layer, they do it at two different
layers of the same block by using max-pooling 2×1 and a stride of 1×2 (see Figure 3.12).
They also use LeakyRelu as activation for the first and last layer of the block. LeakyRelu
are a variation of Relu whose equation is:

out =
{
α× in if in < 0
in otherwise (3.2)

where α is a hyperparameter whoose typical value is 0.3.

Residual connections, although very popular, were also shown by [He et al., 2016a] not
to be interesting on smaller models and were thus not used here.

The aforementioned design choices were justified by experiments. A downside of the
paper is, however, that the model was benchmarked in a shallow depth regime with only 3
blocks throughout the entire network. These benchmarks are thus not really of interest to
us since it produces very inaccurate networks. The authors also do not provide inference
time measurements on which 1-D convolutions might be less attractive than they are in
terms of FLOPS due to the considerable optimization of 3× 3 convolutions by libraries.

3.3. COMPLETE ARCHITECTURES 23

Conv 1×1

x

kx/2

BN-LRelu

D-Conv 1×3

kx/2

BN-Relu

D-Conv 3×1

BN-Relu

kx/2

(a) Stride-less block

Conv 1×1

x

kx/2

BN-LRelu

D-Conv 1×3

kx/2

BN-Relu

Max-Pool 1×2

D-Conv 3×1

BN-Relu

kx/2

Conv 2×1

BN-LRelu

Stride 2×1

2x

kx/2

Stride 1×2

effnet_block(b) Strided block, see [Freeman et al., 2018]

Figure 3.12: EffNet blocks
For the first layer of the network, a Relu is used instead of a LeakyRelu, k is a hyperparameter
called expansion ratio, it is usually > 2.
(a) [Freeman et al., 2018] only designed the strided blocks, we inferred this block structure from
the strided one. The number of input channels is kx/2 and not x if the block was preceded by a
stride-less block.

3.3.5 SqueezeNet and SqueezeNext

SqueezeNet [Iandola et al., 2016] was one of the early works in efficient image classifi-
cation. The paper focused on reducing the number of parameters as much as possible
and made much noise by claiming AlexNet’s accuracy with 50× fewer parameters (510×
under compression). The main idea of the paper is the use of bottleneck blocks whose
second 3× 3 convolution is replaced by a 1× 1 and a 3× 3 convolution whose outputs are
concatenated. The first layer of the bottleneck was called squeeze layer, and this is where
the name of the architecture comes.

More recently the SqueezeNext [Gholami et al., 2018] architecture was proposed. Its
main building block is a bottlenecked block with several 1× 1 conv layers, a 3× 1 and a
1 × 3 layers, the 1 × 1 conv layers are used so that both input and output of the 1 × 3
and 3 × 1 layers have a reduced number of channels. A skip connection is also used (see
Figure 3.13). Whether the 1× 3 conv or the 3× 1 conv comes first alternates throughout
the network.

The authors proposed to incorporate a final bottleneck layer to the network to reduce
the number of parameters in the fully connected layer.

The network design was validated by simulating its performance on a hypothetical
hardware accelerator with a large number of processing elements. This allowed the au-
thors to experiment with several variations of their architecture. First, as this is often
the case, the authors proposed deeper/wider modifications of the base design, denoted
width mult-SqNxt-depth. In a second time, several new versions of the meta-architecture
were proposed by varying the number of blocks per subnetwork, see table 3.1 for more
details.

24 CHAPTER 3. MODEL ARCHITECTURES

Conv 1×1

x

x/2

BN-Relu

Conv 1×1

x/4

BN-Relu

Conv 1×3

BN-Relu

x/2

Conv 1×1

BN-Relu

x

Conv 3×1

BN-Relu

 x/2

+
x

(a) without stride

Conv 1×1

x

x

BN-Relu

Conv 1×1

x/2

BN-Relu

Conv 1×3

BN-Relu

x

Conv 1×1

BN-Relu

2x

Conv 3×1

BN-Relu

 x

+
2x

Stride 2×2

Conv 1×1

BN-Relu

Stride 2×2

2x

(b) with stride

Figure 3.13: SqueezeNext block, see [Gholami et al., 2018]

subnetwork offset 2 3 4 5
subnetwork tensors width/height 55 55 28 14

subnetwork nbr of channels 64 32 64 128
version 1 & 2 6 6 8 1
version 3 4 8 8 1
version 4 2 10 8 1
version 5 2 4 14 1

Table 3.1: Number of blocks per subnetwork in SqueezeNext architecture variations (on
ImageNet’s 227× 227 input size)
From v2 onward, the first conv layer is of size 5× 5 instead of 7× 7, only main subnetworks are
shown

3.3.6 MobileNetv1/v2

MobileNetsv1 [Howard et al., 2017] are another pioneer in efficient inference, their main
idea was to use 3× 3 depthwise separable convolutions followed by 1× 1 pointwise convo-
lutions. A MobileNetv1 block is shown in Figure 3.14a. To balance accuracy and latency,
the authors proposed to use a width multiplier and a resolution multiplier (using a lower
resolution than 224× 224 for the input).

One year later, the second version of this network came out [Sandler et al., 2018]. The
network is still based on depthwise separable convolutions, but the structure of the block
has changed (see Figure 3.14b).

A particularity of this design is that bottleneck blocks have a bigger number of inter-
mediate channels while their inputs/outputs have less (the authors have a much bigger
discussion about the architecture, see [Sandler et al., 2018]).

The authors also used Relu6 instead of Relu because they argue it performs better
with low-precision computations ([Krishnamoorthi, 2018] advocates the contrary based on
experiences on MobileNetv1). Relu6 equation is:

out =


6 if in > 6
in if 0 ≤ in ≤ 6
0 otherwise

(3.3)

3.3. COMPLETE ARCHITECTURES 25

Finally, they did not put an activation after the last layer of each block because this
layer has a huge number of input channels (see paper for more details). Mobilenetv2 also
use width and resolution multipliers (although width multipliers smaller than 1 do not
affect the last convolutional layer).

D-Conv 3×3

x

BN-Relu

x

Conv 1×1

BN-Relu

x

(a) MobileNetv1 block, see
[Howard et al., 2017]

Conv 1×1

x

BN-Relu6

kx

+D-Conv 3×3

BN-Relu6

Conv 1×1

BN

x kx

x

x

(b) MobileNetv2 block, see [Sandler et al., 2018]

Figure 3.14: Mobilenet Blocks
Stride might be used in the depthwise separable convolution in which case the skip connection is
omitted for MobileNetv2, k is called expansion ratio and is > 1

Another idea developed in the paper is a way to trade inference speed for inference
maximal memory consumption. In MobileNetv2 blocks, the biggest tensors are the ones
produced inside of the feature blocks. Thus by avoiding the storage of the bottlenecks inter-
mediate tensors, we can reduce the maximal memory consumption during inference. This
improvement is possible since the intermediate tensors are depthwise separable. Indeed, if
we denote the output of the block by F(x) (not taking the skip connection into account), we
have that F(x) = B(N (A(x))), withN = Relu6(BatchNorm(DepthwiseConv(Relu6())))
being a per-channel non-linear operation, A = BatchNorm(Conv()) and B = BatchNorm(Conv())
being linear operators, the whole operation is factorizable channel-wise, i.e. if we group
the intermediate channels into t groups, F(x) =

∑t
i=1 Bi(N (Ai(x))). This idea reduces

the maximal memory consumption since we do not have to store the whole tensors but is
more computationally costly (more cache misses).

This will not be developed further in this work since we had no RAM consumption
problem and our main interest was inference time. It is however mentioned as we found
the idea interesting.

3.3.7 ShuffleNetv1/v2

ShuffleNetv1’s [Zhang et al., 2018] idea is that in a classical depthwise separable block,
the 1 × 1 pointwise convolutions accounts for the vast majority of the operations and is
thus a bottleneck. To solve that problem, the authors proposed to use 1 × 1 grouped
convolutions instead. To avoid the issue of having an output channel only depending on a
subset of the input channels, they use a channel shuffle layer, like CondenseNet (Section
3.3.3). The authors show the advantage of their design through experiments. The block
architecture is shown in Figure 3.15 alongside a ShuffleNetv2 block. We can see that they
do not use an activation function after the depthwise separable convolution, it was shown
in [Chollet, 2017] to be harmful, the latter argued it might be due to loss of information.
Width multipliers are used to change the accuracy/latency tradeoff. Same goes for v2.

26 CHAPTER 3. MODEL ARCHITECTURES

G-Conv 1×1

D-Conv 3×3

BN-Relu

BN

Ch shuffle

x/4

x/4

x/4

x

G-Conv 1×1

BN

+

Relu

x

x

G-Conv 1×1

D-Conv 3×3

BN-Relu

BN

Ch shuffle

x/4

x/4

x/4

x

G-Conv 1×1

BN

[,]

Relu

x

2x

Avg-Pool 3×3

Stride 2×2Stride 2×2

x

Conv 1×1

D-Conv 3×3

BN-Relu

BN

(1-r)x/2

(1-r)x/2

(1-r)x

Conv 1×1

BN-Relu

[,]
Ch shuffle

rx

x

x

Ch split

x

x

(1-r)x

Conv 1×1

D-Conv 3×3

BN-Relu

BN

x/2

x/2

x

Conv 1×1

BN-Relu

[,]
Ch shuffle

2x

x

Stride 2×2

D-Conv 3×3

BN

x

Conv 1×1

BN-Relu

Stride 2×2

x

x

Figure 3.15: ShuffleNetv1 base block (leftmost), ShuffleNetv1 transition block (left), Shuf-
fleNetv2 base block (right), ShuffleNetv2 transition block (rightmost); see [Zhang et al.,
2018, Ma et al., 2018]

The design of the second version of these networks [Ma et al., 2018] is based on a series
of design principles that are shown to hold on real hardware in the paper.

1. Equal channel width minimizes memory access costs (MAC):
An important player in the latency is the memory access costs, for a 1×1 convolution
(that accounts for most of the costs), the authors show that the MAC is minimized
(under NumChannelsin + NumChannelsout constant) when the number of input
and output channels are equal. This principle discourages the use of bottlenecks.

2. Excessive group convolution increases MAC:
As argued by [Gholami et al., 2018], the grouped convolutions have a large bandwidth
over compute ratio, thus, by fixing the number of FLOPS, the MAC increase with
the number of groups. In consequence, one should avoid using a too big number of
groups.

3. Network fragmentation reduces the degree of parallelism:
Network fragmentation is the idea to use several paths, like in the Inception archi-
tecture (Figure 3.2). Doing so is quite unoptimal for heavily parallelizable hardware
like GPUs but less for CPUs.

4. Element-wise operations (Relu, addTensor, addBias) are non-negligible:
This is because, although they have few FLOPS, they induce huge MAC (even
though some of these could be optimized, for example, doing the Relu right after
the convolution and not once the convolution is over).

The authors proposed thus several modifications to the ShuffleNetv1 architecture, their
base building block is presented in Figure 3.15. They introduce a new operation, channel
split, which consists in separating the number of channels into two groups of different sizes
that go along different paths. This idea is exciting because it allows feature reuse, if r
is the fraction of channels reused in the next block and x the number of channels, the
block i+ j reuses rj ×x channels of block i, this is analogous to feature reuse in DenseNet

3.3. COMPLETE ARCHITECTURES 27

and its variations (Section 3.3.2). There are only 2× fewer channels in the bottlenecks
than outside to follow principle 1; the 1 × 1 convolutions are no longer group-wise to
follow principle 2; one branch remains as identity following principle 3 and the operations
"concatenate", "channel shuffle" and "channel split" are done in place to reduce MAC and
follow principle 4.

3.3.8 NASNet

NASNet [Zoph et al., 2018] architectures are found through reinforcement learning [Zoph
and Le, 2016]. This consists of maintaining a probability distribution over the different
architectures, to sample one of the later and to update the probability distribution based
on its results. The problem with the previous approach is that it is incredibly resource
consuming, thus, the authors chose to use CIFAR-10 instead of ImageNet as dataset as-
suming that the result would transfer and to only search for a block architecture instead
of the full network architecture (the network architecture they use to combine the blocks
is inspired from ResNets [He et al., 2016a] and inception [Szegedy et al., 2015]). Two
different blocks must be found, one that changes the size of the tensors (transition block)
and one that does not.

The search space from which layers are sampled is called NASNet search space. The
investigated architectures are composed of 5 branches that are concatenated, each of those
is the result of either an add or concatenation operation from two of the layers of the
search space taking either this state or the previous one as input. The layers can be of
the following types:

• Identity

• 3 × 3, 5 × 5 or 7 × 7 depthwise separable convolutions followed by 1 × 1 plain
convolutions (repeated 2 times)

• 1× 7 into 7× 1 convolutions or 1× 3 into 3× 1 convolutions

• 3× 3, 5× 5, 7× 7 max-pooling or 3× 3 average pooling

• 1× 1, 3× 3 convolution or 3× 3 dilated convolution.

See Figures 3.16 and 3.17 for the discovered architecture. It is important to note that this
architecture did not take any of parameters, FLOPS or inference time into account for
its search. It only cared about accuracy which is an important difference with the next
approach.

The authors also developed a variation of DropPath [Larsson et al., 2016] to improve
the performance of NASNets, in DropPath, each path (output of a blue operation) is
dropped with a fixed probability during training. Their variation, called ScheduledDrop-
Path, consists of linearly increasing the probability of dropping a path throughout the
training.

28 CHAPTER 3. MODEL ARCHITECTURES

Block
i-1

 output

Block
i-2

 output

Avg-Pool 3×3

Conv 1×1

BN

5x

Conv 1×1

BN

5x

D-Conv 3×3

Relu

D-Conv 3×3

BN

BN-Relu

+

[,]

Relu

x

x

x

D-Conv 5×5

Relu

D-Conv 5×5

BN

BN-Relu

D-Conv 3×3

Relu

D-Conv 3×3

BN

BN-Relu

x

x

x

+ +
x x

x

x

Avg-Pool 3×3

+

x

x x

D-Conv 5×5

Relu

D-Conv 5×5

BN

BN-Relu

D-Conv 3×3

Relu

D-Conv 3×3

BN

BN-Relu

x x

+
xx

x x x x x

5x

Conv 1×1

Conv 1×1 Conv 1×1 Conv 1×1 Conv 1×1 Conv 1×1

Conv 1×1 Conv 1×1Conv 1×1 Conv 1×1

Figure 3.16: NASNet-A normal block see [Zoph et al., 2018]
In the case where the height/width of Blocki−2 output is not the same, its dimension must be
reduced, this is done by using an elaborate scheme (that the paper never specifies)

Block
i-1

 output

Conv 1×1

BN

5x

Block
i-2

 output

Conv 1×1

BN

5x

Max-Pool 3×3

Stride 2×2

D-Conv 5×5

Relu

D-Conv 5×5

BN

BN-Relu

Stride 2×2

D-Conv 7×7

Relu

D-Conv 7×7

BN

BN-Relu

Stride 2×2

+

2x

2x

2x

Max-Pool 3×3

Stride 2×2

Avg-Pool 3×3

Stride 2×2

D-Conv 7×7

Relu

D-Conv 7×7

BN

BN-Relu

Stride 2×2

D-Conv 5×5

Relu

D-Conv 5×5

BN

BN-Relu

Stride 2×2

+ +

2x 2x

2x

2x

2x

2x 2x 2x 2x

2x

D-Conv 3×3

Relu

D-Conv 3×3

BN

BN-Relu Avg-Pool 3×3

+ +

2x

2x

2x

2x

2x

[,]
Relu

6x

2x

2x

2x

2x

Conv 1×1 Conv 1×1

Conv 1×1Conv 1×1

Conv 1×1

Conv 1×1

Conv 1×1

Conv 1×1

Conv 1×1

Conv 1×1

Figure 3.17: NASNet-A transition block see [Zoph et al., 2018]
Same remark as in the normal block for the height/width

3.3.9 MnasNet

MnasNet [Tan et al., 2018] is a reinforcement learning approach as well, important differ-
ences with NASNet are that:

• they take the inference time (on a google pixel) into account and integrate it into a

3.3. COMPLETE ARCHITECTURES 29

mixed objective function

• they do not use CIFAR-10 as a proxy for ImageNet (it showed bad results) but
rather do not train until convergence

• they do not search for an optimal block structure but rather for the entire network

The network is divided into 7 subnetworks defined by the width and height of their
tensors (each subnetwork begins with a strided layer). Each of the following parameters
can vary inside of a subnetwork:

• the number of blocks

• the number of channels throughout the subnetwork

• the convolutional operation: regular convolution, depthwise convolution and inverted
bottlenecks with various ratios (as in MobileNetv2, see Figure 3.14b)

• the convolutional kernel size: 3× 3 or 5× 5

• the skip operation used for each block of the subnetwork: max-pooling, avg-pooling,
residual skip, no skip path

The final network is presented in Figure 3.18, interestingly, 5 × 5 convolutions are used,
and we can see variations between each layer.

The authors report better results by searching with different accuracy/latency tradeoffs
than scaling their architecture. Finally, experiments were performed to show that the
diversity between each subnetwork is important.

30 CHAPTER 3. MODEL ARCHITECTURES

Conv 1×1

x

BN-Relu6

kx

+

D-Conv s×s

BN-Relu6

Conv 1×1

BN

x

x

kx

x

3

Conv 3×3

BN-Relu6

Stride 2×2

32

D-Conv 3×3

BN-Relu6

Conv 1×1

16

Mob(s, k)

16

Conv 1×1

x

BN-Relu6

kx

D-Conv s×s

BN-Relu6

Conv 1×1

BN

out_ch

kx

Stride 2×2Mob(s, k, out_ch)

Mob(3, 3) ×2

Mob(3, 3, 24)

Mob(5, 3) ×2

Mob(5, 3, 40)

Mob(5, 6) ×2

Mob(5, 6, 80)

Mob(3, 6) ×1

Mob(3, 6, 96) No width/height reduction

Mob(5, 6) ×3

Mob(5, 6, 192)

Mob(3, 6, 320) No width/height reduction

Conv 1×1

1280

320

Avg-Pool 7×7

1280

FC Layer

1000

Figure 3.18: MnasNet network (on ImageNet), see [Tan et al., 2018]
Mob stands for Mobilenetv2 block

3.4 Comparison

3.4.1 Implementation details

Architecture

Since we are using the CIFAR-10 dataset as the benchmark, we had to reduce the size of
some networks that did not provide an implementation with inputs of size 32× 32. Below
are listed the implementation decisions we made for the networks we had to implement
(the modifications were tested on a validation set of 5,000 of the 50,000 training images
from CIFAR-10), we first tested many different combinations of the width and depth as
well as some network specific parameters to get networks performing well at different
accuracies:

• WideResNet [Zagoruyko and Komodakis, 2016]: we followed the CIFAR-10 imple-
mentation of the authors. We tried different width and depths with widen factors
between 1 (width = 16) and 2 (width = 32). Squeeze-and-Excitation blocks were

3.4. COMPARISON 31

also added.

Since it was adapted to many other networks below, we will detail the layout (agence-
ment of the different blocks) of WideResNets on CIFAR-10 here. First, we divide
the network into 3 subnetworks of equal size, a stride of 2 is applied in the first block
of the second and third subnetwork, and the number of channels is multiplied by
two each time the width and height are divided by two. Before applying the sub-
networks, we first use a plain 3× 3 convolution with 16 output channels. After the
subnetworks, the tensors go through an average pooling layer (of dimension 8 × 8)
followed by a final fully-connected layer.

Thus, if we want to build a network containing 12 blocks (referred to as depth for
all the other networks) with an initial width of 32, it would look like Figure 3.19

3

Conv 3×3

16 Avg-Pool 8*8

128

FC Layer

10

Block(32, 32)×3

Block(16, 32) Block(32, 64)

Block(64, 64)×3

Block(64, 128)

Block(128, 128)×3

32 64 128

Figure 3.19: Global network architecture

• CondenseNet [Huang et al., 2018]: we used the official implementation1 written
in PyTorch. Weights and optimization parameters for CIFAR-10 were provided on
GitHub.

We initially planned to convert this network from PyTorch to tf-lite through ONNX
(Open Neural Networks eXchange format), a library designed to exchange neural
networks files between several frameworks. Converting from PyTorch to ONNX
ran without problems but converting from ONNX to tf-lite (by using Tensorflow as
an intermediary step) is not currently supported. ONNX also provides a runtime
environment, but it does not work on 32 bits environments. We did not try to go
further and that approach was abandoned.

• EffNet [Freeman et al., 2018]: the base network has very few layers (achieves less
than 85% accuracy while we aim for 92 to 95%). We modified it ourselves to allow
more layers. The small network was trained with the parameters provided in the
paper. To increase the depth of the network, we just added the same number of
blocks in all subnetworks.

• SqueezeNext [Gholami et al., 2018]: while the block structure exactly follows the
paper, the layout of the blocks in networks for inputs of size 32×32 were unspecified.
We thus decided to copy the design of WideResNet.

• MobileNetv1 [Howard et al., 2017]: We followed the block structure and imple-
mented the network using the WideResNet layout.
Additionally, we implemented four modifications. First, we copied the kernel width

1https://github.com/ShichenLiu/CondenseNet

https://github.com/ShichenLiu/CondenseNet

32 CHAPTER 3. MODEL ARCHITECTURES

layout of MnasNet, i.e. we used 5 × 5 instead of 3 × 3 depthwise separable convo-
lutions in the same layers as our implementation of MnasNet (see details below).
Second, we added a skip connection to potentially improve the performances of deep
networks. Third, we added a dropout layer (drop rate of 20%) before the final fully-
connected layer. Fourth, we added Squeeze-and-Excitation blocks [Hu et al., 2018]
after each convolution in which case the reduction factor was another hyperparam-
eter to optimize.

• MobileNetv2 [Sandler et al., 2018]: We followed the block structure and imple-
mented the network using the WideResNet layout. We, however, made an exception
for the number of channels per block that, rather than being constant on a sub-
network, grows linearly because the number of channels per block grows by small
increments in the paper as well. To give an example, rather than having 32, 32 and
32 output channels for the blocks of the first subnetwork, we would have 32, 48 and
64. We also tested the network with the WideResNet layout.
We also explored the performances for different values of the expansion ratio and
tried variations that used dropout before the fully-connected layer and/or Squeeze-
and-Excitation blocks.

• ShuffleNetv1 [Zhang et al., 2018]: We followed the block structure and imple-
mented the network using the WideResNet layout.
We explored the performances for different number of groups in the 1 × 1 grouped
convolution layers.

• ShuffleNetv2 [Ma et al., 2018]: We followed the block structure and implemented
the network using the WideResNet layout.
We tried variations that used dropout before the fully-connected layer and/or Squeeze-
and-Excitation blocks, as well as additionnal skip connections.

• NASNet [Zoph et al., 2018]: We followed the block structure from the paper and the
official implementation (for what was not specified in the paper) and implemented
the network using the WideResNet layout.
This architecture was not even tested on the test set because the results it obtained
on the validation set were inferior. We did not tried to use ScheduledDropPath (see
Section 3.3.8) either.

• MnasNet [Tan et al., 2018]: Transferring the MnasNet layout to CIFAR-10 was
not simple because it optimizes the network layout based on existing blocks rather
than building a new block and using it throughout the network. We nevertheless
noticed a strong resemblance with MobileNetv2. Thus we decided to use our CIFAR-
10 version of MobileNetv2 with two modifications. First, we replaced the 3 × 3
depthwise separable convolutions by 5× 5 ones at all the blocks but the last one of
the 2nd and 3rd subnetworks. Second, the expansion factor is divided by two in the
first block of the first subnetwork.
We also tried variations that used dropout before the fully-connected layer and/or
Squeeze-and-Excitation blocks.

Optimizers

We also had to choose the optimizer to use, the different choices we tested are summa-
rized in Table 3.2. Surprisingly, the relative performances of the optimizers were nearly
independent of the choice of architecture. We can also see that weight decay is of prime

3.4. COMPARISON 33

importance here. Weight decay is an additional penalty term added to loss to reduce over-
fitting. It penalizes large weights in convolutions filters/batchnorm scaling factors/fully
connected filters. Since we deal with lightweight networks with few parameters here, it is
useful to use little weight decay (5× 10−4 is a typical value).

optimizer name init lr lr decay policy weight decay source relative accuracy
SGD with cosine lr .1 lr shrinks like a cos fct 10−4 [Huang et al., 2018] 0
multistep SGD .1 lr ×= 0.2 at epoch (60,120,160) 5× 10−4 [Crowley et al., 2018] −3%
multistep SGD .1 lr ×= 0.2 at epoch (60,120,160) 10−4 - a bit less

Adam 10−3 - 5× 10−4 [Freeman et al., 2018] −8%
Adam 10−3 - 10−4 - fails to converge

RMSprop 4.5× 10−2 lr ×= 0.99 at each epoch 4× 10−5 [Sandler et al., 2018] fails to converge

Table 3.2: Relative Performance with respect to SGD with cosine lr and characteristics of
the different optimizers
The performance is given in % of accuracy relative to the best (cosine learning rate), we always
trained for 200 epochs.
Adam is trained with β1 = .75, multistep SGD with a heavy-ball momentum of 0.9 and SGD
with cosine lr with a Nesterov momentum of 0.9

At the light of these results, we decided to use cosine learning rate [Loshchilov and
Hutter, 2017] by using the hyperparameters from [Huang et al., 2018].

3.4.2 Results

Now that we have defined our training settings, we still have to find good combinations
of the different hyperparameters. This is done in section 3.4.2. Next, we have to compare
the different architectures in terms of error as a function of the inference times on our
dataset and hardware. This is done in Section 3.4.2. Finally, we draw a short conclusion
about the results of this chapter.

Hyperparameter search

The final hyperparameters chosen for the networks used in Section 3.4.2 are shown in
Table 3.3. These hyperparameter settings are the result of 114 trainings on the validation
set. Since we want to cover an error range, networks of different size were trained, we
limited ourselves to 3 networks per architectures maximum.

Since CIFAR-10 is a relatively easy benchmark, we targeted low error rates between
8 and 5% ideally. We chose low error rates because networks that have bad accuracy,
although being extremely fast, are not precise enough to be used in practice.

An important thing to notice regarding the error achieved by the different networks
is that, at some point, increasing the depth/width did not improve the accuracy on the
validation set (or at the price of significant inference time increase). Thus, some archi-
tectures only covers a small error range and do not have 3 different sets of hyperparameters.

Some remarks concerning the hyperparameters we chose:

• ShuffleNetv1: A number of groups of 2 (2 groups in the 1 × 1 grouped convolu-
tions) achieved better results than one of 3. Using only one group would have been
interesting, but not respect the design (and grouped convolutions were removed in
ShuffleNetv2).

34 CHAPTER 3. MODEL ARCHITECTURES

architecture inference time (ms) number of blocks width others
WideResNet 48.9 9 16 -
WideResNet 100.8 9 24 -
WideResNet 235.4 12 32 -
SqueezeNext 52.7 9 48 -

EffNet 21.5 12 32 exp. ratio of 4
ShuffleNetv1 50.7 9 80 2 groups (in grouped convs)
ShuffleNetv2 44.1 12 64 -
ShuffleNetv2 93 18 80 -
MobileNetv1 22.6 15 32 -
MobileNetv1 52.8 12 64 -
MobileNetv1 150.1 15 100 -
MobileNetv2 27.2 9 16 exp. ratio of 4, dropout
MobileNetv2 50.3 9 24 exp. ratio of 4, dropout
MobileNetv2 107.7 12 24 exp. ratio of 6, dropout
MnasNet 30.7 9 16 exp. ratio of 4, dropout
MnasNet 64.4 12 16 exp. ratio of 6, dropout
MnasNet 121.2 12 24 exp. ratio of 6, dropout

Table 3.3: Chosen hyperparameters
The width reported here represents the width outside of the blocks in the first subnetwork, for
e.g. a width of 32 means 32, 64 and 128 for the first, second and third subnetworks respectively.
When using a Squeeze-and-Excitation block, the reduction factor was always set to 2

• ShuffleNetv2: Using dropout on the final layer did not have any significant influ-
ence on the results and was thus not used. Skip connections proved to be harmful
and were thus not used.

• MobileNetv1: The variations to include 5 × 5 convolutions and skip connections
were significantly worse, we thus stuck with the original architecture. The dropout
did not have any significant influence on the results and was thus not used.

• MobileNetv2: The structural variation of increasing the number of channels inside
of the subnetwork proved to be harmful, it was probably too aggressive, and a lighter
block size increase could have given better results but was not tested. We thus stuck
with WideResNet’s layout. Dropout also helped and was thus used.

• MnasNet: Like for MobileNetv2, dropout improved results and was used. Different
architectural adaptations (expansion ratio divided by 2 for the first subnetwork and
not only the first layer) would be interesting to test but were not due to lack of time.

• Squeeze-and-Excitation blocks: reduction factors of 1, 2 and 4 were tested for
all architectures but 2 always performed better.

Architecture comparisons

We can see in Figure 3.20 that ShuffleNetv1, EffNet and SqueezeNext perform very poorly,
both in term of accuracy and in terms of lowest possible error. If we go back to the archi-
tecture descriptions, we can see that EffNet and SqueezeNext are the only networks using
1-D convolutions (replacing a 3 × 3 convolution by a 3 × 1 and a 1 × 3) suggesting these
might work poorly in our desired error-range.

3.4. COMPARISON 35

50 100 150 200
measured inference time (ms)

5

6

7

8

9

10

er
ro

r (
%

)

architecture
wideresnet
mnasnet
mobilenetv2
mobilenetv1
shufflenetv2
shufflenetv1
effnet
squeezenext

Figure 3.20: Error vs inference time scatterplot for different network architectures without
Squeeze-and-Excitation blocks
The error point are the means over 3 trials. The errors bars show the standard derivation
computed over the 3 trials.

ShuffleNetv1 bad performances are harder to explain, they might come from the design
choices that reduce the complexity more aggressively than ShuffleNetv2 (grouped 1 × 1
convolutions and a smaller number of channels in bottlenecks). We can also note that
grouped convolutions are not first-class citizens in Keras, which probably causes them to
be slower. Indeed, since they do not exist explicitly in the API, we had to implement
them using num groups full convolutions, each using a fraction of the input tensor. The
outputs of these convolutions were later concatenated together. This probably results in
num groups useless tensor allocations (the outputs of the full convolutions) that are af-
terwards merged into a bigger tensor that must be allocated. Instead, directly allocating
the big tensor and writing the outputs of each group in place would be faster.

ShuffleNetv2 performs better than the 3 previous models both in terms of performances
and achievable error. It is, however, less attractive than WideResNet, MobileNetv1/v2
and MnasNet. Although its authors ([Ma et al., 2018]) report better results than Mo-
bileNetv1/v2, the tests they performed were based on a custom implementation that was
probably much more efficient in terms of management of memory (for example for the
tensors concatenations) than Tensorflow Lite. This could explain the performance gap
observed here.

WideResNets berforms a bit better than ShuffleNetv2 (and can achieve low errors). It
is surprising than such a simple baseline using plain convolutions performs so well.

36 CHAPTER 3. MODEL ARCHITECTURES

Finally, we can see that our best results are obtained by MobileNetv1, MobileNetv2
and MnasNet (which is heavily inspired by MobileNetv2). It is quite surprising that
MobileNetv1 performs as well as MobileNetv2 since the latter is the next version of the
former.

Squeeze-and-Excitation blocks

An improvement that can be added to all architectures are the Squeeze-and-Excitation
blocks (see Section 3.2.7 for a summary). We decided only to try those on ShuffleNetv2,
WideResNet, MobileNetv1/v2 and MnasNet. These are displayed in Figure 3.21. We can
still see the corresponding networks without SE blocks under a smaller alpha.

We can see that applying this block nearly always results in accuracy improvement,
while the increase in inference time is minimal for MobileNetv2 and MnasNet. We can also
notice that adding Squeeze-and-Excitation blocks to WideResNets is not an interesting
modification. There, we barely see error improvements and this even sometimes increases
the error (not much when taking the confidence intervals into account). This might be
due to the fact that SE blocks are much more interesting when using depthwise separable
convolutions but we lack experiments to suggest that rigorously.

SE blocks also have the benefit to push the best achievable loss boundary further.

50 100 150 200 250
measured inference time (ms)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

er
ro

r (
%

)

architecture
shufflenetv2
mobilenetv1
mobilenetv2
mnasnet
wideresnet

SE block
without
with

Figure 3.21: Error vs inference time scatterplot for different network architectures with
Squeeze-and-Excitation blocks
The error point/crosses are the means over 3 trials. The errors bars show the standard derivation
computed over the 3 trials. The same architectures without SE blocks are displayed as well for
comparison

The increase in inference time and, to a lesser extent, in accuracy is more critical for
MobileNetv1 and ShuffleNetv2. This is because we add a SE block at the end of each

3.4. COMPARISON 37

network block. Since MobileNetv1 blocks are simpler, MobileNetv1 are, for the same
accuracy, deeper and wider. As a consequence, there are more SE blocks, each bigger
than for WideResNet, MobileNetv2 And MnasNet. This result in a significant increase in
inference time.

When adding SE blocks to the picture, MobileNetv2 seems to perform better than the
others at a given error rate.

3.4.3 Conclusion

In this chapter, we introduced several architectures that we compared afterwards on our
benchmark. We also modified some of them by adding Squeeze-and-Excitation blocks.
The unmodified architectures can be split in three groups:

1. ShuffleNetv1, EffNet and SqueezeNext that performed poorly and could not achieve
low errors

2. ShuffleNetv2 and WideResNet that showed average results. ShuffleNetv2 was also
more limited than WideResNet in terms of lowest achievable error

3. MobileNetv1, MobileNetv2 and MnasNet that showed good performances and could
achieve small errors

Adding Squeeze-and-Excitation blocks to the networks of the last group have two ben-
efits. First, it improves the accuracy of the networks (at a given error rate), even though
this is not always noticeable. Second, it allows the netwoks to achieve lower errors while
retaining a low inference time.

We can conclude that MobileNets blocks are particularily interesting, especially when
adding SE blocks. The best performing network over all the architectures tested are Mo-
bileNetv2 with SE blocks, while MobileNetv1 and MnasNet (with SE blocks) fall shortly
behind.

In the next chapter, we will study a technique based on pruning algorithms that allows
to chose the number of channels in a more principled way than what we did until now. In
this chapter, we fixed the number of channels to be multiplied by two each time stride is
applied. Next, we will use a trained network and its error/loss to decide at which layers
to put more or less channels or even to decide in which subnetworks to put more or less
layers.

38 CHAPTER 3. MODEL ARCHITECTURES

Chapter 4

Channel Pruning

4.1 Introduction

Another popular method to reduce the resource consumption of neural networks is prun-
ing, i.e. removing elements of the networks in a way that has little impact on the accuracy.
Pruning can be performed at several levels. The most commons are weight and channel.
Weight pruning has received much attention (see [Frankle and Carbin, 2019, Lee et al.,
2018] for recent works). It performs better in terms of parameter reduction since it does
not constrain the choice of the parameters to prune. Unfortunately, sparse convolutions
are not efficiently leveraged by modern hardware [Turner et al., 2018], and weight-level
pruning will thus not be investigated in this work. Channel pruning [Molchanov et al.,
2017, Theis et al., 2018], on the other hand, produces networks that are as easily leveraged
as their unpruned counterparts since we only played on the number of channels of each
layer.

The main idea behind this chapter is using pruning as an architecture search procedure.
This means that we are not interested in the weight obtained through pruning but only
by the architectures (number of channels per layer) discovered.

This is faster than finding the best number of channels for each layer through rein-
forcement learning as well as potentially much more interesting than using hand-coded,
default, values. First, as pruning uses pieces of information from the dataset, we can adapt
our network for the given data. For example, a dataset depending on finer features (edges
are important for classification) would spare channels in the early layers while being more
aggressive towards later layers; On the other hand, a dataset depending on higher-level
features would spare channels in the last layers of the network. The same reasoning ap-
plies for differences in hardware; different devices might have different relative costs for the
channels of each layer. Finally, state-of-the-art networks all have a very regular number
of channels (e.g. 32 for x layers, then 64 for x layers, then 128 for x layers) but nothing
says that the optimal is not something fancier, like 18, 24, 24, 18, 32, 48, 64, 48,

The different criteria used for channel pruning are explained in Section 4.2. Section
4.3 explains why pruning should be used as an architecture search procedure rather than a
post-processing operation. Sections 4.4, 4.6 and 4.7 present different approaches we tested
and adapted. These were only tested on a WideResNet [Zagoruyko and Komodakis, 2016]
architecture with a depth of 40 and a widen factor of 2. That architecture is interesting
to prune since it uses skip connections. We chose only one due to the important training
times needed to prune an architecture. Finally, Section 4.8 compares the latter approaches.

39

40 CHAPTER 4. CHANNEL PRUNING

4.2 Pruning Mechanisms

There are two main types of pruning mechanisms. The first is to prune channels (or
weights) according to a given criteria associated with them. These criteria are obtained
from fully-trained networks and the channels with the smallest scores are pruned itera-
tively, either one at a time or several at once. This approach is taken by all the mechanisms
detailed here but the last one (Section 4.2.5).

Another possibility is to add a penalization term to the loss to enforce some sparsity
in the network. This is the approach taken by MorphNet [Gordon et al., 2018] (Section
4.7). In the following, we only refer to pruning channels, but the reasoning is the same for
pruning weights.

4.2.1 Weight norms

The simplest criterion to prune convolution layer’s channels is the L1 or L2 norm of the
weights that compose this channel. This metric has the advantage to be very straight-
forward to compute. Assuming the network is trained with weight decay, i.e. there
exists a penalty for high weights in the objective function, the norm of the weights can
be seen as a metric related with the variance of the weights inside the channel. Since
V ar{X} = E{X 2} −E{X}2, the square of the L2 norm and the variance are equal if not
for E{X}2 which is assumed to be small because of the weight decay. Channels with high
variance convey more information than others. So, keeping them makes sense intuitively
in the absence of more formal arguments. This, however, does not take the rest of the
network into account. Indeed, the output of a channel whose weights have a high variance
might not be used so much by the rest of the network. This technique does not performs
as well as others because of its simplicity [Hassibi and Stork, 1993, Molchanov et al.,
2017, Theis et al., 2018].

4.2.2 Activation based metrics

This technique looks a lot like weight-norm based pruning. The difference is that rather
than using norms of the weights of the channels, they use the norm of the tensors after the
activations. This makes sense since, after a Relu activation function, for example, half of
the elements of the tensors are zeroed-out. This approach works better than weight norm
[Molchanov et al., 2017, Theis et al., 2018] but is still not so well developed theoretically
and does not take the rest of the network into account.

4.2.3 Taylor-based approaches

There exist more sophisticated and theoretically motivated approaches. These are based
on approximations of the Taylor expansion of the loss when removing a channel from the
network. Both [Molchanov et al., 2017, Theis et al., 2018] use such approaches and end
up with nearly the same signal ([Molchanov et al., 2017] takes the absolute value of some-
thing as criterion instead of its square and uses normalization). Since [Theis et al., 2018]’s
approach, called Fisher pruning, is better motivated, we do not detail [Molchanov et al.,
2017] here nor use it in the rest of this work.

Fisher pruning (the following is just a rephrasing of the proof of [Theis et al., 2018])

4.2. PRUNING MECHANISMS 41

considers the case of a network trained to minimize a cross-entropy loss, denoted:

L(θ) = EP [−logQθ(z|I)] (4.1)

where θ are the parameters of the model, P is a data distribution, z are the outputs
of the model and I its inputs.
The effect of a change of parameters d on the loss can be approximated with a 2nd order
Taylor expansion, where g = ∇L(θ) and H = ∇2L(θ):

L(θ+ d)− L(θ) ≈ gTd+ 1
2d

THd (4.2)

And if d = −θkek, where ek is a unit vector:

L(θ − θkek)− L(θ) ≈ −gkθk + 1
2Hkkθ

2
k (4.3)

The network is assumed to be at a local optimum and the first term thus vanishes.
The diagonal of the Hessian can be approximated assuming that Qθ(z|I) is close to P (z|I)
(network trained to convergence):

Hkk ≈ EP [(∂

∂θk
logQθ(z|I))2] (4.4)

See annex of [Theis et al., 2018] for more details. The second term can be seen as an
empirical estimate of the Fisher information of θk. Hence the name "Fisher pruning".

If we use N data points (images), the increase in loss finally becomes

∆k = 1
2N θ2

k

N∑
n=1

g2
nk (4.5)

where gn is the gradient of the parameters with respect to the nth data point.
To prune an entire channel at a time, we can assume the presence of a binary mask

m ∈ {0, 1}K of size K (with one component for each channel we desire to prune in the
network) and denote by ankij the activation of the nth data point corresponding to channel
k at spatial indexes i, j.

We thus have: a′nkij = mkankij . Computing the gradients, gn, of equation 4.5 with
respect to the binary mask mk gives:

gnk = ∂

∂mk
− logQ(zn|In) (4.6)

= −
∑
ij

∂

∂a′nkij
(logQ(zn|In))

∂a′nkij
∂mk

chain rule (4.7)

= −
∑
ij

ankij
∂

∂ankij
logQ(zn|In) for channels not already pruned (4.8)

= −
∑
ij

ankij
∂

∂ankij
logQ(zn|In) (4.9)

The pruning signal thus being

∆k = 1
2N

∑
n

g2
nk = 1

2N
∑
n

(
∑
ij

ankij
∂

∂ankij
logQ(zn|In))2 (4.10)

42 CHAPTER 4. CHANNEL PRUNING

since θ2
k = 1 before pruning because θk is a boolean parameter of one of the masks.

∂
∂ankij

logQ(zn|In) is computed during the backward pass and is thus "free" to compute
which makes this criterion nearly as efficient as simpler ones like weight norm.

The variation in loss L(θ+ d)−L(θ) could also be computed explicitly. While being
more accurate, this approach would have a significant computational cost. Indeed, the
number of channels in a layer could be as high as 1000. So instead of one backward pass
(for n inputs), we would have to compute 1000 forward passes (for n inputs).

This approach links the pruning of a channel with an accuracy cost. However, it is
agnostic of the benefits we get in terms of performance for removing that channel. The
authors thus proposed to use the ratio ∆L

∆C , where C is the cost of the network in terms of
FLOPS as a criterion instead. [Yang et al., 2018] proposed to use real-time measurements
instead of FLOPS to weight the predicted decrease in accuracy in a different context.

4.2.4 Importance-based metrics

Another approach to prune channels that takes the whole network into account is to
prune the layers based on some importance metric related to the predictions of the net-
work. Taylor-based approaches can be seen as a particular case of this. The only example
we consider here is [Yu et al., 2018], where the importance is computed from the influence
of the channel to the second to last layer of the network. In the latter, the authors first
applied feature ranking on the inputs of the last layer. Once this is done, a fixed fraction
of channels is pruned at each layer to minimize the reconstruction error, this is formu-
lated as a binary integer optimization problem, and an upper bound of the corresponding
objective function is minimized. This results in having to minimize an importance score,
which is the product of the weights matrices of the following layers over the network. It
is computable in a single backward pass.

This algorithm was not inspected in the rest of this thesis because of a lack of time and
because we found out about it too late. It is nevertheless mentioned here for completeness
and would be interesting to test in a future work since it showed interesting results.

4.2.5 Batchnorm-based metrics

This approach is the only mechanism described in this work used as a penalization term
in the loss.
All of the recent neural network architectures make use of batch normalization [Ioffe and
Szegedy, 2015]. Since the batch normalization principle is to rescale each element of a
tensor separately, we can use the scaler associated with all of the outputs of a channel
to get an idea of the importance of that channel. These scaling factors are penalized in
the objective function so that the output of some channels are pushed towards 0 which is
equivalent to pruning them. Network-Slimming [Liu et al., 2017] and MorphNet [Gordon
et al., 2018] use that idea.

4.3 Pruning as an architecture search

Usually, pruning is considered as a three staged pipeline:

1. training an overparameterized network from scratch

4.3. PRUNING AS AN ARCHITECTURE SEARCH 43

2. pruning some channels based on a given criterion (with a bit of fine-tuning between
the consecutive prunings)

3. fine-tuning the pruned network obtained previously

However, both [Liu et al., 2018] and [Crowley et al., 2018] recently showed that the interest
in pruning a network does only come the structure (number of channels for each layer)
discovered through the pruning and not from the inherited weights. They showed that
fine-tuning the pruned network obtained at step 2 gave worse results than simply take
the structure and retrain the new network from scratch (from random weights). Both
pipelines are illustrated in Algorithms 1 and 2 respectively (only the last lines differs).

Algorithm 1: Illustration of the basic pruning pipeline with an algorithm pruning
a channel at a time
Input: the plain, pretrained network: network, the number of channels to prune:

num channels to prune
Output: the pruned network

1 pruned net = network
2 for i = 0 to num channels to prune - 1 do
3 pruned net = prune one channel(pruned net)
4 pruned net = retrain on few batches(pruned net)
5 end
6 pruned net = retrain on many batches(pruned net) /* optionnal but quite

common */
7 return pruned net

Algorithm 2: Illustration of the modified pruning pipeline that discards the pruning
weights with an algorithm pruning a channel at a time
Input: the plain, pretrained network: network, the number of channels to prune:

num channels to prune
Output: the pruned network, already retrained from scratch

1 pruned net = network
2 for i = 0 to num channels to prune - 1 do
3 pruned net = prune one channel(pruned net)
4 pruned net = retrain on few batches(pruned net)
5 end

/* we reinitialize the weights randomy in retrain from scratch */
6 pruned net = retrain from scratch(pruned net)
7 return pruned net

Both works compared the two pipelines and observed that the second yields better
results. This means that the networks obtained from the basic pipeline have weights that
achieves a local optimum due to the greedy training strategy that is worse than the local
optimum reached by training the pruned network from scratch.

[Liu et al., 2018] makes comparisons on VGG [Simonyan and Zisserman, 2014], ResNet
[He et al., 2016a], DenseNet [Huang et al., 2017] and PreResNet [He et al., 2016b] using
6 pruning channel or weight pruning algorithms including [Liu et al., 2017]. [Crowley

44 CHAPTER 4. CHANNEL PRUNING

et al., 2018] uses Fisher pruning and pruning based on the L1 norm of the weights on
WideResNet [Zagoruyko and Komodakis, 2016] and DenseNet [Huang et al., 2017]. Both
made experiments on ImageNet [Russakovsky et al., 2015] and CIFAR-10 [Krizhevsky,
2009] (CIFAR-100 was also used by [Liu et al., 2018]). Thus, we can see that their
conclusion is well motivated.

The main difference between both papers is that [Liu et al., 2018] seems to apply a fixed
learning rate for retraining from scratch and chose the number of epochs to have the same
computation time than the training of the unpruned network (i.e. a 2 times smaller model
would have 2 times more epochs). Whereas [Crowley et al., 2018] used an adaptive learn-
ing rate schedule and the same number of epochs for training the unpruned and pruned
networks from scratch. We chose the same approach as [Crowley et al., 2018] since we see
no reason to treat the (re)training of the pruned and unpruned networks in a different way.

Batchnorm-based approaches do not work exactly in the same way (the three steps
are merged into a single step with constraints), but the same reasoning holds: we can still
retrain the pruned architectures from scratch afterwards.

The following experiments were based on [Crowley et al., 2018]’s work and, like them,
we only pruned the layers inside of the bottlenecks (see Figure 4.1) and do not take the
cost (number of FLOPS) of a channel into account when pruning. Limiting the pruning
to the bottlenecked layers has the advantage to avoid having to come up with a solution
to prune several layers at once since both layers whose output are added (for example
after a skip connection) must have the same number of channels. However, when pruning
the network heavily, we end up with a disparity between the number of channels inside
and outside the bottlenecks, which is very likely not optimal. The effect of both of these
choices is further investigated in Section 4.4.2. The paper results are shown as a baseline
to compare with other approaches and to see how the networks are pruned.

Pruning neural networks: is it time to nip it in the bud?

In this work we focus on sequential pruning because it
produces a whole family of networks of different sizes, as
opposed to a single network with one-shot pruning, thus
providing many more comparison points. It has the added
bonus that it would allow for the deployment of pruned
networks on multiple devices with different compute ca-
pabilities without knowing exact specifications ahead of
time.

3.1. Pruning modular networks

In this work, we prune residual networks (He et al., 2016;
Zagoruyko & Komodakis, 2016) and DenseNets (Huang
et al., 2017). These feature modular blocks and skip connec-
tions, and are therefore representative of a large number of
commonly used modern networks. We avoid older networks
such as AlexNet (Krizhevsky et al., 2012) and VGG nets (Si-
monyan & Zisserman, 2015) as they have been shown to
be highly redundant (Springenberg et al., 2015) due to their
excessively large fully-connected layers. With this is mind,
we describe here how such modular networks are pruned.

Consider a standard block in a ResNet (Figure 1a) that
takes in an image representation with Ni channels and con-
tains two standard convolutional layers. Let us assume that
its convolutions use 3 × 3 kernels, and the cost of batch-
norm (Ioffe & Szegedy, 2015) is negligible. The first convo-
lution changes the number of channels of the representation
to No. It consists of No lots of Ni × 3× 3 filters and there-
fore uses 9NiNo parameters. The second convolution does
not change the number of channels. It consists of No lots of
No × 3× 3 filters and therefore uses 9N2

o parameters.

We prune this block by removing whole channels of the
activation between the two convolutions (see the red line
in Figure 1a). If we remove (No −Nm) of these channels
this has the effect of changing the number of intermediate
channels to Nm (Figure 1b). This allows us to throw away
filters in the first convolution (which reduces to Nm lots
of Ni × 3 × 3 filters) and decrease the filter channel size
in the second convolution (No lots of Nm × 3× 3 filters).
This decreases the number of parameters the block uses
by a factor of No/Nm. Note that when a whole network
consisting of j of these blocks is pruned, each block will
have a unique Nm value: Nmj .

DenseNets with bottleneck blocks also consist of two con-
volutional layers, so can be pruned in a similar manner. For
a DenseNet with growth rate k, the first convolution uses
1 × 1 kernels, and reduces the number of input channels
from Ni to 4k. The second convolution has 3× 3 kernels,
and reduces the number of channels down to k. This out-
put is then concatenated with the input and forms the input
to the next block. We can again zero out channels of the
intermediate activation to compress both convolutions.

conv1

conv2

+

Ni

No

No

(a)

conv1

conv2

+

Ni

Nm

No

(b)

Figure 1: (a) A residual block, consisting of two convolu-
tional layers (the first takes the input from Ni channels to
No channels, and the second from No channels to No chan-
nels), and a skip connection. In standard residual networks,
Ni ≤ No. Batch-norm + ReLU are omitted for simplicity.
The red line is where channels of the activation are pruned.
(b) A bottlenecked residual block where the intermediate
channel dimension isNm whereNm < No. Pruning has the
effect of transforming (a) to (b). Within a pruned network
the number of intermediate channels remaining Nm will
differ from block to block according to which channels are
deemed unimportant.

3.2. `1-norm based pruning

There are several methods that make use of `1-norms to
estimate channel saliency (Han et al., 2015; Li et al., 2016;
He et al., 2017).

Han et al. (2015) use the absolute values of individual
weights and prune the smallest to induce sparsity in the
weight tensors of their network. We do not give further
consideration to this method because it currently requires
specialised hardware to leverage tensor sparsity into infer-
ence speed improvements.

For ease of optimisation on general purpose hardware, Li
et al. (2016) propose pruning whole channels. Specifically,
they show that removing channel activations whose corre-
sponding filter’s weights have the smallest absolute sum is
superior to random or largest-sum pruning.

Consider a weight tensor consisting of No lots of Ni×K×
K filters. Each filter is applied to some Ni channel input
activation, producing one of No output activation channels.
The importance metric ∆c for each of these output channels
is just the sum of each of these filters.

We can then rank every channel in the model by ∆c, and

Figure 4.1: Pruning limited to bottlenecks, figure taken from [Crowley et al., 2018]
(a) represents one of the base blocks that compose the network; only the channels on the red line
will be diminished through pruning to be reduced to Nm finally (b). Thus, after heavy pruning,
Nm could be around 10 while Ni = No could be around 100 (since the corresponding tensors are
added at the end of the block, Ni and No must be equal)

Since we consider pruning as an architecture search, the result of interest of the pruning
algorithm is the number of channels that are kept for each layer. We display the results of
pruning 750 and 1000 layers (out of 1344) of a WideResNet [Zagoruyko and Komodakis,
2016] with a depth of 40 and a width-multiplier of 2 in Figure 4.2. As we can see on the
latter, the channels where stride is present are very lightly pruned, and the first channels
of the network are proportionally less pruned than the others.

4.3. PRUNING AS AN ARCHITECTURE SEARCH 45

1 3 5 7 9 11 13 15 17
block offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(a) 750 channels pruned

1 3 5 7 9 11 13 15 17
block offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(b) 1000 channels pruned

Figure 4.2: Number of channels per block (since we only prune inside of blocks) of a
WideResNet-40-2 after Fisher pruning
The error bars represent the min and max over two trials. The red colour is used to show tensors
spatial resolution reduction. The black borders show the initial number of channels

We then do the same for pruning 1500 and 2000 channels (out of 2304) of a DenseNet
[Huang et al., 2017] with a depth of 100, a growth rate of 12 and a reduction-factor of
0.5 (see Figure 4.3). Here, since we do not prune the strided layer directly, we do not
observe the same striding reduction, although there is a peak around block 32 after some
depression in the 10 previous blocks. We observe the same kind of phenomenon around
block 43.

We can also observe the error curves during pruning (see Figure 4.4). We can see that
Fisher pruning performs better than random pruning or pruning based on the L1 norm of
the weights and that we get much better results by retraining the network from scratch in
each case. Please note that random pruning is very close to uniform pruning (dividing the
number of channels per layers by a constant) since each channel has the same probability
of being removed.

Now that we have explained why we want to retrain architectures obtained through
pruning from scratch, we will introduce modifications to several pruning algorithms as
well as a method to compute the inference times of all the pruned variations of a network
efficiently.

46 CHAPTER 4. CHANNEL PRUNING

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
block offset

0

10

20

30

40

50

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(a) 1500 channels pruned

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
block offset

0

10

20

30

40

50

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(b) 2000 channels pruned

Figure 4.3: Number of channels per block (since we only prune inside of blocks) of a
DenseNet of depth 100, growth-rate 12 and reduction-factor 0.5 after Fisher pruning
There is no red here because the layers that reduce tensor spatial resolution are not pruned,
strides occur after blocks 16 and 32

4.3. PRUNING AS AN ARCHITECTURE SEARCH 47

0 .5 1 1.5 2

number of parameters (millions)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

te
st

 e
rr

o
r

(%
)

random pruning

fisher pruning

L1 pruning

scratch fisher 900 channels

scratch L1 900 channels

scratch random 900 channels

Figure 4.4: Evolution of the test error when {fisher, L1, random} pruning a WideResNet-
40-2
The points correspond to architectures obtained through pruning that were retrained from
scratch

48 CHAPTER 4. CHANNEL PRUNING

4.4 Fisher pruning modifications
We now investigate two modifications of the Fisher pruning algorithm.

4.4.1 Full Retrain at some steps during pruning

If we assume that pruning works as an architecture search, it means that the pruning
pipeline of Algorithm 2 could be improved because we pruned a network based on non-
optimal weights during the entire pruning. Indeed, since retraining from scratch after
having pruned k channels greedily gives better accuracy, we should benefit from retraining
from scratch after having pruned 1, ..., n − 1 channels since the weights used for pruning
decision would be "better".

This, however, does not scale at all since we have to train the network from scratch
several thousand times rather than fine-tuning it with a few batches each time. An in-
termediary approach is thus to retrain the network from scratch a few times during the
pruning process, which gives Algorithm 3. The bigger num retrain scratch, the slower
the pruning is and the more accurate it should be. In Figure 4.5, we observe improvements
on the pruning curve. However, when comparing the results obtained by both architec-
tures, i.e. when retraining from scratch, we do not see much difference. Additionally, even
with a few restart points, the training times become huge, and this method is thus not
usable in the frame of this work. We can see the produced architectures in Figure 4.6.
We still observe the weak pruning on the strided blocks but apart from that and the fact
that the number of channels is monotonically decreasing in the last layers, there is no
significant difference.

0 .5 1 1.5 2

number of parameters (millions)

6

8

10

12

14

16

18

te
st

 e
rr

o
r

(%
)

classical fisher pruning

modified fisher pruning

points from classical fisher
pruning retrained from
scratch

Figure 4.5: Comparison between classical and modified Fisher pruning of a WideResNet-
40-2
Training curves and retrained from scratch points are averaged on two runs.

4.4. FISHER PRUNING MODIFICATIONS 49

1 3 5 7 9 11 13 15 17
block offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(a) 750 channels pruned

1 3 5 7 9 11 13 15 17
block offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(b) 1000 channels pruned

Figure 4.6: Number of channels per block (since we only prune inside of blocks) of a
WideResNet-40-2 after Fisher pruning interleaved with retraining from scratch
The error bars represent the min and max over two trials. The red colour is used to show tensor
spatial resolution reduction. The black borders show the initial number of channels

Algorithm 3: Modified greedy pruning algorithm
Input: the plain, pretrained network: network, the number of channels to prune:

num channels to prune, the number of times the network is retrained
from scratch: num retrain scratch

Output: the pruned network, already retrained from scratch: pruned net
/* num retrain scratch is assumed to be a divider of

num channels to prune here */
1 pruned net = network
2 num consecutive greedy prune = num channels to prune/num retrain scratch
3 for i = 0 to num retrain scratch - 1 do
4 for j = 0 to num consecutive greedy prune - 1 do
5 pruned net = prune one channel(pruned net)
6 pruned net = retrain on few batches(pruned net)
7 end
8 pruned net = retrain from scratch(pruned net)
9 end

10 return pruned net

4.4.2 Improvements on Fisher pruning

The approach of [Crowley et al., 2018] can easily be improved by applying two modifica-
tions:

1. Allowing to prune layers that are connected with other layers through skip connec-
tions by pruning the channels with a given offset in all of those at the same time
(conv2 in Figure 4.2).

2. Using [Yang et al., 2018]’s look-up tables to compute the inference time cost of
pruning a channel. Look-up tables are a method that allows using real hardware
measurements to compute the inference time of a network (see Section 4.5). Instead
of pruning the channel that has the smallest influence on the loss, we can then prune
the channel that has the smallest ratio ∆fisher score

∆cost .

By using these improvements, we still notice that we are better off retraining the obtained
architectures from scratch rather than using the values of the weights coming from the
original model. By having a look at the pruned architectures on Figure 4.7, we can see that

50 CHAPTER 4. CHANNEL PRUNING

the layers of the second subnetwork are more pruned and the layer of the third subnetwork
are less pruned than with classical Fisher pruning. This makes sense since the layers of
the second subnetwork have a bigger cost than the layers of the third one, taking the cost
into account will thus benefit the latter and result in a more aggressive pruning of the
former. We can also notice that, as before, the layers applying stride are spared and that
this is also the case for the layer linked through skip connections.

1 3 5 7 9 11 13 15 17 19 21
layer offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(a) 600 prunings

1 3 5 7 9 11 13 15 17 19 21
layer offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(b) 750 prunings

Figure 4.7: Number of channels per layer of a WideResNet-40-2 after Fisher pruning all
layers using performance look-up tables
The error bars represent the min and max over three trials. The red colour is used to show tensor
spatial resolution reduction. The black borders show the initial number of channels. Since we
prune more layers than on Figure 4.6, we have new errors bars, (1) the leftmost blue layer is the
first layer of the network (taking the image as input), (2) the green layers each represents 6 layers
connected with a skip connection and thus sharing the same number of output channels

4.5 Real inference time look-up tables

4.5.1 Introduction

The layer-wise look-up tables are a promising idea to compute the inference time of all
the pruned variations of a network. Usually, inference time is measured through abstract
metrics (ex: number of FLOPS). Their main advantage is that they are straightforward to
compute: given the architecture and number of channels at each layer, a simple calculation
allows us to get the number of FLOPS or parameters. On the other hand, these metrics
are not always good proxies of the real inference time of the network on a given device.
Measuring inference time directly can be a solution [Tan et al., 2018] but is not affordable
for pruning since the number of measures to make increases exponentially with the depth
of the network. An important contribution of [Yang et al., 2018] was to introduce look-up
tables inference computations. The main idea is to factorize the inference time between
each layer of the network, i.e. to compute the total cost of the network as the sum of the
cost of each layer. The inference times of these layers can then be measured independently
(for several numbers of input and output channels) which makes the number of measures
increases linearly with the number of layers (if not less since we can reuse the measurements
made on two identical layers). Figure 4.8 illustrates how to compute the latency of a
network of two layers.

4.5.2 Implementation

The central part of the implementation is to perform the actual inference time measure-
ment on the Raspberry Pi. Initially, we tried to perform these measurements directly

4.5. REAL INFERENCE TIME LOOK-UP TABLES 51
NetAdapt 7

2 4 6 8

2 1 2 3 4

4 2 3 4 5

6 3 4 5 6

8 4 5 6 7

Channels

Fi

lte
rs

Layer 2

1 2 3

2 1 3 5

4 2 4 6

6 3 5 7

8 4 6 8

Channels

Fi

lte
rs

Layer 1

Latency
6 + 4 = 10 ms

4 Filters

6 Filters

Layer 1

Layer 2

Cat

Fig. 3. This figure illustrates how layer-wise look-up tables are used for fast resource
consumption estimation.

of filters that can satisfy the current resource constraint will be chosen. Note
that when some filters are removed from a layer, the associated channels in the
following layers should also be removed. Therefore, the change in the resource
consumption of other layers needs to be factored in.

Choose Which Filters This step chooses which filters to preserve based on
the architecture from the previous step. There are many methods proposed in
the literature, and we choose the magnitude-based method to keep the algorithm
simple. In this work, the N filters that have the largest `2-norm magnitude will
be kept, where N is the number of filters determined by the previous step. More
complex methods can be adopted to increase the accuracy, such as removing the
filters based on their joint influence on the feature maps [25].

Short-/Long-Term Fine-Tune Both the short-term fine-tune and long-
term fine-tune steps in NetAdapt involve network-wise end-to-end fine-tuning.
Short-term fine-tune has fewer iterations than long-term fine-tune.

At each iteration of the algorithm, we fine-tune the simplified networks with
a relatively smaller number of iterations (i.e., short-term) to regain accuracy, in
parallel or in sequence. This step is especially important while adapting small
networks with a large resource reduction because otherwise the accuracy will
drop to zero, which can cause the algorithm to choose the wrong network pro-
posal.

As the algorithm proceeds, the network is continuously trained but does not
converge. Once the final adapted network is obtained, we fine-tune the network
with more iterations until convergence (i.e., long-term) as the final step.

3.4 Fast Resource Consumption Estimation

As mentioned in Sec. 3.3, NetAdapt uses empirical measurements to determine
the number of filters to keep in a layer given the resource constraint. In theory,
we can measure the resource consumption of each of the simplified networks
on the fly during adaptation. However, taking measurements can be slow and
di�cult to parallelize due to the limited number of available devices. Therefore,
it may be prohibitively expensive and become the computation bottleneck.

Figure 4.8: Illustration of the look-up tables mechanism, figure taken from [Yang et al.,
2018]
In the notation used in the rest of this Thesis, "Filters" is called "output channels" and
"Channels" is called "input channels"

on our training machine and within the python interpreter as a proof of concept. Fig-
ure 4.9 displays inference times computed at that stage, as we can see on the graph, we
implemented several variants:

1. Since the bulk of the code was written in PyTorch, we decided to use PyTorch as
well on top of the python interpreter. The problem with this approach is that there
are huge spikes in some places (and, as we discovered later, the cost is significantly
higher than tf-lite)

2. To try to solve the pikes problem, we had the idea to run a prediction on a batch of
images of small size, this did not improve the results however

3. We then tried to use Tensorflow (still on top of python) thinking the problem might
come from the fact that PyTorch uses dynamic graphs, at this point the huge pikes
disappeared, but we still had a quite fuzzy graph

4. Using tf-lite inside of python did significantly speed-up the computation, but we still
had the fuzziness problem

We then proceed to try running tf-lite on the Raspberry Pi, at first, we compiled the
"models"1 to tf-lite files on the Raspberry Pi (which had the advantage of not to have to
store the whole pack of them at the same time) but was unfeasible in terms of time (it
needed one day to compute a small fraction of a table).

To solve that problem, we performed the compilation to .tflite files on a desktop com-
puter (this still took one full day) and ran the predictions on the Raspberry Pi with the
help of a small C++ benchmark program that comes alongside tf-lite and a tiny bash
script we coded ourselves. As we can see in Figure 4.10, there are still two types of pikes,
the first one is a tiny reduction of the inference times when the number of output channels
is a multiple of 4, we do not know what it is due to but it looks more like a consequence
of the library implementation than to measurement noise. On the other hand, there are
also positive pikes. We think these are due to measurement errors (for example, it could
be that the processor runs slower to cool down during some periods). Some observation
going in that direction is that the numbers of channels at which the spikes occur change
when we take the measurements a second time.

1for each layer type, each possible number of input channels and each possible number of output channels
of that layer, we need to make a measurement, i.e. build a trivial (one layer) model, we thus have thousands
of models to build

52 CHAPTER 4. CHANNEL PRUNING

(a) (b) same graph where signal intensities are normalized
(the average over the number of output channels of the
inference time is 1)

Figure 4.9: Inference times while varying the number of output channels for a convolution
layer as measured on a Desktop CPU with different frameworks inside of a python process.

A solution to this problem would be to take the mean over several measurements (this
is not too costly to compute, building the models takes a day on a desktop computer while
running the measurements on a Raspberry Pi only takes a few hours) and then to apply
2D Gaussian filtering to it. The results are displayed in Figure 4.11.

(a) (b)

Figure 4.10: Inference times while varying the number of output channels for a convolution
layer as measured on a Raspberry Pi 3B with tf-lite binaries

We can also draw several conclusions on the inference times of different layers on the
Raspberry Pi 3B from that figure. The number of FLOPS seems to be a good proxy on
the inference time on this hardware between different plain convolutional layers. All other
things being equal, 1× 1 conv seems much cheaper than 3× 3 (there should be a factor of
9). Reducing the tensor width and height by a factor of 2 seems to reduce the inference
time by a factor of 4. We can also see that Stride x and No Stride x have the same

4.5. REAL INFERENCE TIME LOOK-UP TABLES 53

(a) (b)

(c) (d)

Figure 4.11: Inference times while varying the number of channels for several convolution
layers as measured on a Raspberry Pi 3B with tf-lite binaries
Stride and No Stride are 3× 3 convolutions with or without f.m. resolution diminution, Skip
layers have 1× 1 filters and 1, 2 or 3 indicates the depth in the network (1 = 32× 32 output
tensors, 2 = 16× 16 output tensors, 3 = 8× 8 output tensors).
In (a) and (b), lines are a single prediction. In (c) and (d), lines are the application of 2D
Gaussian filtering on the average over 3 predictions.

inference times which is coherent with the number of FLOPS (Stride x has 2 times wider
and higher inputs, but a stride of 2 is applied). We can, however, notice a difference when
varying the number of channels, the FLOPS predict lines of an equation y = ax with a
bias of 0, whereas we observe a non-negligible bias here.

Lastly, we checked on all the pruned architectures we obtained in the following sections
that the predicted inference times were sufficiently precise. This is indeed the case, the
correlation is significant > 99%, and the scaling factor between prediction and reality
seems very close to 1. This is surprising considering the prediction do not take the skip
layers (i.e. tensor addition) into account. A scatterplot is shown in Figure 4.12. This is
excellent news. It shows that look-up tables are a great proxy for real-time inference (at
least in our use case).

54 CHAPTER 4. CHANNEL PRUNING

Figure 4.12: Jointplot between predicted and measured inference time for pruned WRN-
40-2

4.6 NetAdapt

NetAdapt [Yang et al., 2018] is a quite unorthodox pruning meta-algorithm. Additionally,
the authors introduced the look-up table mechanism detailed in Section 4.5. The paper’s
reported results also looked very promising, beating width multipliers.

The meta-algorithm consists in pruning the network several channels at a time. At
each step, we compute, for every layer 1 ≤ l ≤ L, how many channels cl should be pruned
to achieve a given inference-time reduction objective without pruning the others. Then,
we build L models, where model 1 ≤ i ≤ L is the original model where ci channels of
layer i have been pruned according to some criterion and fine-tune the pruned models on
a few batches of data. The authors use the L2 norm of the weights as criterion. Once
this is done for every layer, we compare the error increase of all the new networks on a
holdout set (data not used for training nor testing the accuracy of the network). We keep
the pruned network with the smallest error and use it as a baseline for another iteration
until some performance criterion is met. This is illustrated in more details in Algorithm
4.

4.6.1 Implementation

There was no implementation of NetAdapt available online. We thus had to implement
it ourselves. Due to the complexity of the task, we decided to implement that network
using the PyTorch framework since we are more familiar with and have a much better
user-experience using it. However, the only working solution to compute look-up tables
was to use tf-lite and thus, we had to use Tensorflow and PyTorch alongside each other
which introduced code repetition.

We wanted our network object to handle Fisher pruning (see Section 4.6.2).
We needed to be able to build a copy of a pruned model (to build the pruned models

online 7 in the algorithm).
We shared look-up tables between several layers having the same parameters (i.e. same

input resolution, no. of strides, ...) to avoid useless measurements.
To handle the parallel fine-tuning of several networks (inner loop on line 5). We had to
move models from GPU to CPU and the other way around, as well as destroying several

4.6. NETADAPT 55

Algorithm 4: NetAdapt pruning algorithm
Input: the plain, pretrained network with K layers: network and its initial cost

init cost, the inference cost target: objective cost, the inference cost
reduction achieved at the first step: first step cost red, the step-wise cost
reduction decay factor: step cost red dec

Data: a train set to perform fine tuning and a holdout set to pick the best
candidate

Output: the pruned network: pruned net
1 pruned net = network
2 cur cost = init cost
3 step cost red = first step cost red
4 while cur cost > objective cost do
5 for k = 0 to K - 1 do
6 num chank, res gainsk = choose num filters(pruned net, k, step cost red)

/* computes the number of channels to prune and the
corresponding inference gains, if it is impossible to
achieve step cost red by pruning this layer, it is skipped */

7 pruned net candidatek = prune(pruned net, k, num chank) /* prunes the
num chank channels whose weights have the smallest lL2norm
out of layer k */

8 pruned net candidatek = fine tune(pruned net candidatek, train set)
9 end

10 pruned net, res gains =
pick best network(pruned net candidate:, res gains:, holdout set)

11 cur cost = cur cost− res gains
12 step cost red = step cost red× step cost red dec
13 end
14 return pruned net

/* the function pick best network on line 10, takes the best network
according to both the performances gains and the accuracy losses,
the paper used a function called pick best accuracy (name which is
indicating that it only took the accuracy into account) which took
both the variation of accuracy and of performances as arguments.
This was not clarified in the paper, and we thus chose to take
both accuracy loss and performance gains into account. When
accuracy improved (which is possible), we only maximized the
accuracy. Otherwise, we minimized the positive ratio −∆acc

∆perfs */

models throughout the algorithm without causing memory leaks.
We wanted to prune layers linked by skip convolutions as well because skip-connections

are very common in state-of-the-art architectures ([Crowley et al., 2018] only pruned
convolutions in the bottleneck blocks, see Figure 4.1). This introduces a problem since,
to prune the kth channel of a given layer, we have to prune the kth channels of all the
layers it is linked to by skip convolutions. To do so we considered the n connected layers
as one, i.e. in function choose num filters (line 6), we used the sum of the inference costs
of the n tables (and the other tables affected by the pruning) and in prune (line 7) we
chose which offsets to prune based on all of the channels.
Finally, we also wanted to remove a channel from the network once it is pruned. There are

56 CHAPTER 4. CHANNEL PRUNING

two ways to handle pruning: 1) to add a binary mask after each layer and to zero-out the
outputs of pruned channels (the approach taken by [Crowley et al., 2018]) 2) to replace
the pruned layers by new objects having fewer channels but keeping the un-pruned weights
of the layer. The second technique is more efficient since once the network is half pruned,
we perform backpropagation on two times fewer parameters. It is also more complex to
design.

For the reasons mentioned above, the NetAdapt algorithm was quite complicated to
implement.

4.6.2 Variations

A variation that comes easily to mind after having looked at the previous sections is to
use Fisher pruning instead of L2 norm pruning to decide which channels to prune inside
of a layer.

According to Algorithm 4, we only prune channels inside of a layer if this allows us to
achieve the reduction objective for this iteration (see Line 6). This means that, if a layer
ends up having a few channels, the algorithm never prunes the last channels of that layer
because it does not give enough inference time reduction. [Yang et al., 2018] designed
their algorithm in this way because they tested it on MobileNetv1 [Howard et al., 2017].
The latter is a network without skip connections. This means that completely pruning
a channel is unthinkable because it would cut the network in half. We thus propose a
modification called allow small prunings where we prune the layer having the best ac-
curacy/cost ratio without limiting ourselves to the layers that can achieve the current
iteration’s reduction objective.

A comparison between the four combinations of these two modifications is shown in
Figure 4.13. We do not see any difference between the performances of these methods.
We did not notice any difference when looking at the number of channels pruned either.

The lack of influence of the quality of the pruning algorithm (Fisher vs L2 norm) can
be explained by the fact that NetAdapt performs several prunings in parallel and only
takes the pruning that performs better on a holdout set.

Regarding the adaptation to prune the last channels of a layer, it appears that hav-
ing a layer with only a few channels is not that problematic in our case. This seems to
contradict the lookup tables from which we can infer that extremely thin layers are much
more time consuming than others at an equivalent number of FLOPS (because of the bias
in the accuracy as a function of inference plots). A possible explanation for this would be
that channels of thin layers are much more useful to predict channels of wider layers.

A drawback of this algorithm is its important training times. A modification to mit-
igate that issue could be to randomly sample a proportion of the layers at each iteration
and only prune among these layers to create new networks. Due to the iterative nature
of the algorithm, skipping some layers which will be seen at a later stage might not prove
harmful while allowing for much faster training time. This idea was suggested by Jean-
Michel Begon during the end of the thesis and was thus not developed in this work. We
think it could be very useful to alleviate the training time problem.

4.6. NETADAPT 57

268 270 272 274 276 278 280 282
measured inference time (ms)

4.9

5.0

5.1

5.2

5.3

er
ro

r (
%

)

20% of inference time pruned
criterion
fisher
l2
fisher_AS
l2_AS

204 205 206 207 208 209 210
measured inference time (ms)

5.1

5.2

5.3

5.4

5.5

5.6

er
ro

r (
%

)

40% of inference time pruned

136 138 140 142 144
measured inference time (ms)

5.5

5.6

5.7

5.8

5.9

6.0

er
ro

r (
%

)

60% of inference time pruned

150 175 200 225 250 275
measured inference time (ms)

4.8

5.0

5.2

5.4

5.6

5.8

6.0

er
ro

r (
%

)

20, 40 and 60% of inference time pruned

Figure 4.13: Performance plots between the 4 variations of NetAdapt (networks retrained
from scratch), the bottom right graph shows all the data points, and the 3 others are
zooms over the latter
The acronym "AS" stands for "allows small prunings", i.e. the second adaptation of NetAdapt.
In this chapter, we show several points per run rather than the mean and std for x runs, this was
done because different runs ends up with lightly different architectures having inference time
differences

4.6.3 Retraining from scratch

The paper used the weights that resulted from pruning and fine-tuned them for an im-
portant number of epochs, i.e. they did not retrain the weights from scratch. Figure 4.14
shows the difference between the paper’s method and retraining from scratch (including
the 3 variations of Section 4.6.2), as we can see, it is preferable to retrain from scratch.
The results without retraining from scratch are also surprisingly less good than what was
announced in the paper. It could be explained by the fact we prune a different architecture
on a very different dataset measuring inference on different hardware.
We also hypothesized it could be due to an error from our part where we used too few
fine-tuning steps between each pruning iteration. We thus repeated a subset of the exper-
iment with eight times more fine tuning (purple points on Figure 4.14) but this did not
change anything to the fact retraining from scratch is better nor the accuracy of the base
method.

We can have a look at the channels pruned in Figure 4.15. We can directly notice that
it resulted from pruning important numbers of channels at a time due to the look of the
number of channels per layer and the large error bars. These also result from the fact
that NetAdapt is not extremely precise on the fraction of inference time pruned since the
algorithm only takes a lower bound as input. Regarding which layers were pruned, we can

58 CHAPTER 4. CHANNEL PRUNING

140 160 180 200 220 240 260 280 300
measured inference time (ms)

5.0

5.2

5.4

5.6

5.8

6.0

6.2
er

ro
r (

%
)

criterion
l2
fisher
fisher_AS
l2_AS
more_fine_tuning

training
long_term_fine_tune
retrain_scratch

Figure 4.14: Comparison between retraining from scratch and [Yang et al., 2018]’s ap-
proach (called "long term fine tune")
"AS" stands for "allow small prunings" (see Section 4.6.2), "more fine tuning" is "fisher AS" where
we applied 8× more fine-tuning

notice a preference for the two first sub-networks, this was also the case for Fisher pruning
with the help of performance tables (see Figure 4.7).

1 3 5 7 9 11 13 15 17 19 21
layer offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(a) 40% of inference time pruned

1 3 5 7 9 11 13 15 17 19 21
layer offset

0

20

40

60

80

100

120

nu
m

be
r o

f c
ha

nn
el

s l
ef

t

(b) 60% of inference time pruned

Figure 4.15: Number of channels per layer of a WideResNet-40-2 after pruning using the
NetAdapt Algorithm
The error bars represent the min and max over three trials. The red colour is used to show tensor
spatial resolution reduction. The black borders show the initial number of channels. Since we
prune more layers than on Figure 4.6, we have new errors bars, (1) the leftmost blue layer is the
first layer of the network, (2) the green layers each represents 6 layers connected with a skip
connection and thus sharing the same number of output channels

4.7. MORPHNET 59

4.7 MorphNet

We decided to consider MorphNet [Gordon et al., 2018] in our study because it has a
different approach to pruning. Indeed, instead of training the network from scratch and
then iteratively removing channels, the network is trained with a penalty that zero-out
some outputs of the layers, the pruned architecture can then be extracted from this
network. The penalty added to the loss (with a weight factor λ) takes the form of∑
all channels |costchannel × γchannel|, where costchannel is the cost in terms of FLOPS of

the channel and γchannel is the scaling factor associated with the channel in the next
batchnorm layer (this is the pruning criterion introduced in Section 4.2.5).

To handle the problems that layers combined by skip connections must have the same
number of channels, group LASSO using L∞ norm is introduced. For example, if a and b
are two channels that are added together in a skip connection; pruning neither a nor b does
not introduce a penalty from the group LASSO, pruning one of them or both introduces
a penalty from the group LASSO of the same magnitude. That encourages SGD to either
prune both a and b or neither of them.

The authors also introduced the possibility to, once a pruned network is trained to
convergence, multiply its number of channels by a constant factor and reapplying the
pruning procedure to the widened network. This is interesting since it allows a pruning
algorithm to give more channels to specific layers than they had in the initial network. On
the other hand, it is also more time consuming and did not induce significant improve-
ments in [Gordon et al., 2018]. We thus did not explore that approach.

MorphNet does not allow us to directly select the amount of inference-time gains we
would like to benefit from or the number of channels to prune. Instead, we have to modify
the weight λ of the penalty term in the loss function. This proved to be quite annoying in
practice since modifying λ leads to networks that might not converge or might not prune
any layer (although, as said in the paper, whether the network would converge or prune
anything was apparent after some epochs). We also had to fine-tune a threshold on the
batchnorm scaling factors under which we considered that the corresponding layer was
pruned.

Finally, we retrained the pruned-architecture from scratch after the pruning phase, as
suggested in Section 4.3.

We have now introduced all the variations to pruning algorithms we developed. In the
next section, we will compare their performances in terms of accuracy at a given error on
a WideResNet-40-2.

4.8 Comparison

All the previously described algorithms are compared on Figure 4.16. We also included
uniform pruning and the smaller WideResNets (without SE blocks) defined in the previous
chapter (Table 3.3) as a baseline. For all of the pruning algorithms, we started from a
plain WideResNet-40-2 and pruned so as to cover a wide range of latencies.

We can, unfortunately, see that there is not any noticeable difference between the
results of the pruning algorithms, although some pruning algorithms seemed much more
promising than others or uniform pruning and that the results in terms of number of
channels pruned per layer vary as well. We can also see that for large prunings (350 −→ 100

60 CHAPTER 4. CHANNEL PRUNING

50 100 150 200 250 300 350
measured inference time (ms)

5

6

7

8

9

10

11

er
ro

r (
%

)

method
NetAdapt
fisher_table
morphnet
unpruned
fisher_crowley
uniformly_pruned
smaller wideresnets

Figure 4.16: Comparison between all the pruning algorithms (with retraining from scratch)
presented in this section as well as uniform pruning and smaller architectures
"fisher crowley" is the basic fisher prunig as used by [Crowley et al., 2018], i.e. not including all
the modifications we discussed. For the smaller architectures, we display the error and std over 3
runs.

ms of inference), we get better results by performing grid search on different combinations
of width and depth. This makes sense for uniform pruning since we could end up with
too thin architectures. It is however disappointing to be the case for NetAdapt and
our variation of Fisher pruning using the performance tables since these allow to remove
entire layers and could thus have found the smaller architectures by themselves. It is also
important to remember that these results are only shown for WRN-40-2 on a Raspberry
Pi 3B using CIFAR-10 as the dataset. Things might be different with other networks,
datasets or hardware, but we did not get the chance to test it in this work.

4.9 Conclusion
In this chapter, we compared several pruning methods and made some modifications by
mixing them. All of these methods were modified to be retrained from scratch, assuming
it would improve accuracy. We studied the effect of retraining several times the network
from scratch during architecture search. Next, we extended the method of Fisher prun-
ing to handle correctly skip connections and take (some proxy of) the inference time into
account. Finally, we dwelled on a more sophisticated pruning algorithm, NetAdapt, and
analyzed how the different novelties impacted its performance.

We can draw several conclusions from this chapter:

1. Retraining from scratch, i.e. formulating the problem as an architecture search one,

4.9. CONCLUSION 61

yields better accuracies for all methods.

2. Although there are differences in the channels pruned by each algorithm. They all
spare the layers that reduce the spatial resolution of the tensors.

3. Estimating inference time from look-up tables works very well. The main difference
with FLOPS is the important bias when presenting the inference time as a function
of the number of input or output channels.

4. Unfortunately, there is no clear winner between all of those methods. They are also
less performant than a simple grid search on the width and depth of the networks
when the inference time reduction is important.

Initially, the main goal of this chapter was to use one of those pruning methods to
improve the architectures developed in the previous section. However, since it showed
unpromising results onWideResNet, we decided to focus on other approaches instead. This
bring us to the next chapter, that introduces methods to improve the accuracy/inference
time tradeoff once the architecture is fixed.

62 CHAPTER 4. CHANNEL PRUNING

Chapter 5

Knowledge distillation and
quantization

5.1 Introduction

Other than modifying the architecture used and its depth/width, we can also use training
time optimizations to improve the accuracy/inference time of our network. We explore
two very different methods that allow doing so in this chapter.

First, we use knowledge distillation [Hinton et al., 2015, Mirzadeh et al., 2019] to
improve the accuracies of our networks in Section 5.2. Second, we use quantization [Kr-
ishnamoorthi, 2018] to reduce the inference times of our networks while preserving the
accuracy as much as possible in Section 5.3.

5.2 Knowledge distillation

5.2.1 Method

Knowledge Distillation [Hinton et al., 2015, Mirzadeh et al., 2019] is a technique consist-
ing of using the predictions of a big network, the teacher, to help a smaller network, the
student, improve its accuracy. More specifically, instead of just training to reduce the
error with the true classes, we (partly) train to mimic the predictions of the teacher. Let
us first introduce some terminology before explaining what it exactly means.

Multilabel classification networks always use softmax as a final activation, this acti-
vation turns logits, which are unconstrained real numbers into so-called probabilities1 by
normalizing those according to:

probi = exp(logiti/T)∑
j exp(logitj/T) (5.1)

where T , the temperature, is conventionally set to 1. These probabilities are called soft
targets. Increasing T will result in a softer probability distribution.

This distribution gives an idea on how close several labels are, for example, we can
infer from a model giving a final score of 0.7 to "car", 0.2 to "plane" and 0.001 to "horse"

1These are not probabilities in the sense that the network considers there is a xi probability the correct
label is i

63

64 CHAPTER 5. KNOWLEDGE DISTILLATION AND QUANTIZATION

that a plane is closer from a car than a horse. This is hypothetized to be the reason why
the predictions of the teacher helps the student to train. Using a bigger temperature also
softens those probabilities, which help the knowledge distillation in practice.

The classical cross entropy loss for a signle labelled sample2 is given by

CE loss = Elabel(−log(prob)) (5.2)

= −
C∑
i

labeli log(probi) (5.3)

= −
C∑
i

labeli log(exp(logiti)∑
j exp(logitj)

) (5.4)

where label are the true labels of the C classes of the dataset (1 if the offset of the class
is i, otherwise 0) and prob denotes the output probabilities of the network (after softmax
activation).
Knowledge distillation consists in adding a new weighted term to this loss that we call
soft CE loss:

KD loss = λ CE loss+ (1− λ)T 2 soft CE loss (5.5)

= −λ
C∑
i

labeli log(exp(logiti)∑
j exp(logitj)

) (5.6)

− (1− λ)T 2
C∑
i

teacher soft targeti log(exp(logiti/T)∑
j exp(logitj/T))

where teacher soft target are the probabilities given by the teacher network while using
the temperature T . We can see that the second term corresponds to a cross-entropy com-
puted between the soft targets of the teacher and the student. The T 2 factor is there to
compensate that the gradient of the soft CE loss scales as 1/T 2.

Another use of Knowledge distillation introduced in [Hinton et al., 2015] is to train
specialists networks that focus on a subset of the classes, but we do not consider this
approach in more details here.

Very recently, [Mirzadeh et al., 2019] studied the impact of the difference in accuracy
between the teacher and the student. They showed that, given a fixed student architecture,
increasing the size (and thus accuracy) of the teacher decreases the performances of the
student model with knowledge distillation at some point. This is due to opposing effects.
On the one hand, the more accurate the teacher, the better the information transmitted
through its soft targets. On the other hand, a more accurate teacher, is more confident
about its predictions making its soft targets contain less information. In addition, a more
accurate teacher is harder to mimic.

To solve this problem, the authors introduced the usage of several teacher assistant
(TA) networks. These would be networks of intermediary size between the student and
the teacher that would learn from the teacher (or from more accurate TA networks) and
transmit knowledge to the student (or smaller networks). That approach shows promising

2we consider this case for simplicity

5.2. KNOWLEDGE DISTILLATION 65

results.

Another property of that algorithm is that increasing the number of TA networks
always increases the performances of the student. However, this also importantly increases
the training costs since each new TA networks is a new network to train. Additionally,
training networks must be done sequentially since we need the predictions of the teacher
to train the student. The authors also suggested empirically that, given a teacher and a
student, the best TA was the one with an accuracy equal to the mean of both teacher’s
and student’s accuracies.

5.2.2 Implementation

Since there is a tradeoff in the number of TA to have, we chose to use the MnasNets,
MobileNetsv1 and v2 with SE blocks of Figure 3.21, i.e. the same as in Chapter 3, as TA’s
and student. The teacher is a WideResNet of depth 40 and width factor 4 with Squeeze-
and-Excitation blocks (4.33% of error on the test set, averaged on 3 runs), to achieve
better accuracy than our most accurate networks. The knowledge distillation setup is
illustrated in figure 5.1. The goal of this experiment is to show the benefits KD could have
on the best performing networks of Chapter 3.

WRN-40-4-SE Mobv2-SE-large

Mobv1-SE-large

MNas-SE-large

Mobv2-SE-med

Mobv1-SE-med

MNas-SE-med

Mobv2-SE-small

Mobv1-SE-small

MNas-SE-small

15 blocks, width 100 12 blocks, width 64 15 blocks, width 32

12 blocks, width 24, e.r. 6 9 blocks, width 24, e.r. 4 9 blocks, width 16, e.r. 4

9 blocks, width 16, e.r. 412 blocks, width 16, e.r. 612 blocks, width 24, e.r. 6

Figure 5.1: trainer, TA, student setup for knowledge distillation
An arrow from A to B means we use A’s predictions to train B

Considering the two hyperparameters used in knowledge distillation, namely λ and
T in equation 5.5, we chose to set λ to 0.2 and T to 2. These results were chosen on
a grid search on λ ∈ {0.02, 0.1, 0.2} and T ∈ {2, 5, 10} on knowledge distillation from a
WideResNet of depth 40 and widen factor 4 with SE blocks (WRN-40-4-SE) to a large
MobileNetv1 (on the validation set). We could have performed a more thorough hyperpa-
rameter fine-tuning but were caught by time. Regarding the other hyperparameters used
for training, we used the exact same settings as in Chapter 3, only changing the loss to
add knowledge distillation.

Another practical problem of importance to perform knowledge distillation is the time
at which to compute the predictions of the teacher. When no knowledge distillation is
performed it is very interesting to memoize the outputs of the teacher since these do
not change durng the whole training. It results in num epochs times less computations.
Additionally, when performing the teacher predictions at inference, the teacher must often
run on CPU since the student already fills the GPU, which is much slower. Unfortunately,
when using data augmentation, the number of outputs to memoize increases exponentially.

In our case, since we use lightweight data augmentation, we "only" have 128 data aug-
mentation possibilities (2 horizontal flip× 8 x-axis random crop× 8 y-axis random crop).
Since we train for 200 epochs, memoization is more computationally interesting (128 ×
50, 000 predictions instead of 200× 50, 000), and we used that approach.

66 CHAPTER 5. KNOWLEDGE DISTILLATION AND QUANTIZATION

5.2.3 First results and improvements

As we can see in Figures 5.2a, 5.2b and 5.2c, knowledge distillation did not improve the
accuracies for networks from the pipeline of Figure 5.1. Indeed, although MobileNetv1
results seem overall positive (error decrease when using KD on 2 out of 3 cases). This
is not even the case for the other two networks. Additionally, results are generally small
both with respect to the standard derivations and in absolute to conclude a noticeable
difference in our opinion.

teacher large student medium student small student
network

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

er
ro

r (
%

)

KD pipeline
no KD
teacher

(a) KD on MobileNetv1

teacher large student medium student small student
network

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

er
ro

r (
%

)

KD pipeline
no KD
teacher

(b) KD on MobileNetv2

teacher large student medium student small student
network

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

er
ro

r (
%

)

KD pipeline
no KD
teacher

(c) KD on MnasNet

res-22 res-16 res-10
network

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

er
ro

r (
%

)

KD pipeline
no KD
teacher

(d) KD on resnets (for less accurate networks)

Figure 5.2: Error evolution when using knowledge distillation
Displays the mean and std computed on 3 runs. Teacher is displayed in green, TAs/students in
blue and the same networks retrained without KD in orange. Please note that Figure 5.2d has
higher error rates

This surprised us. Even though we use different networks and aim for higher accura-
cies, [Mirzadeh et al., 2019] reported accuracies improvements over the normal training
procedure. We decided to try our knowledge distillation on settings analogous to an ex-

5.2. KNOWLEDGE DISTILLATION 67

WRN-40-4 SE WRN-28-2 no SE WRN-28-1.5 no SE
network

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

er
ro

r (
%

)

KD with WRN-40-4-SE
no KD
teacher (WRN-40-4-SE)
KD without WRN-40-4-SE

Figure 5.3: Error (on the validation set) evolution when using knowledge distillation on
ResNet with and without WRN-40-4-SE as teacher
Displays the mean and std computed on 3 runs. Teacher is displayed in green, the networks
retrained without KD in orange and the TA/students in blue when using WRN-40-4-SE as a
teacher and red otherwise.

periment of [Mirzadeh et al., 2019]. As we can see in Figure 5.2d, using teaching assistant
knowledge distillation (teacher: ResNet of depth 22, TA: ResNet of depth 16) on ResNets
allows a significant accuracy improvement of about 1% on ResNet of depth 10. The ac-
curacy gains for the TA being of the order of 0.5%. We thus concluded that our KD
implementation was correct.

We thought about three explanations for the failure of knowledge distillation in the
previous experiment. First, it could be due to the architecture of the networks, for some
reason, knowledge distillation would fail on MobileNetv1, MobileNetv2 and MnasNet with
SE blocks. Second, it could be due to the error range, knowledge distillation fails to help
when our error is small (here between 5 and 8%). Third, it could be that the teacher,
WRN-40-4-SE cannot transfer knowledge, and, worse, corrupts its TA so that they are
not helpful for KD either. Unfortunately, we were urged by time while doing these exper-
iments, we thus did not run as much tests as we would have liked but we think they are
numerous enough to draw conclusions from them.

To test all of these hypotheses, we ran several experiments on our validation set. First,
we tried to distill knowledge to WideResNets using the WRN-40-4-SE as teacher. The
setting is the same as in Figure 5.1 except that we do not train small networks. The
WideResNets used are those from Table 3.3. We can see on Figure 5.3 that this technique
does now show any improvement. To test if the problem came from the WRN-40-4-SE,
we tried to distill the knowledge from a large WideResNet (without SE), trained without
KD from the WRN-40-4-SE, to a medium WideResNet (without SE). To our delight, we
found out that this reduces the error of the medium WideResNet of 0.22%. This is not
so important but is still appreciable, especially since the teacher is quite close in terms of
error to the student (∆ = 0.6%).

We can thus conclude that using WRN-40-4-SE is very harmful to the performances.
We decided to run additional experiments to test whether Squeeze-and-Excitation blocks

68 CHAPTER 5. KNOWLEDGE DISTILLATION AND QUANTIZATION

mobv1 with SE large mobv1 with SE medium
network

4.5

5.0

5.5

6.0

6.5

7.0

er
ro

r (
%

)

KD without WRN-40-4-SE
no KD
teacher

(a) KD on MobileNetv1 with SE without using WRN-
40-4-SE as teacher

mobv1 no SE large mobv1 no SE medium
network

4.5

5.0

5.5

6.0

6.5

7.0

er
ro

r (
%

)

KD without WRN-40-4-SE
no KD
teacher

(b) KD on MobileNetv1 without SE without using
WRN-40-4-SE as teacher

mobv2 with SE large mobv2 with SE medium
network

4.5

5.0

5.5

6.0

6.5

7.0

er
ro

r (
%

)

KD without WRN-40-4-SE
no KD
teacher

(c) KD on MobileNetv2 with SE without using WRN-
40-4-SE as teacher

mobv2 no SE large mobv2 no SE medium
network

4.5

5.0

5.5

6.0

6.5

7.0

er
ro

r (
%

)

KD without WRN-40-4-SE
no KD
teacher

(d) KD on MobileNetv2 without SE without using
WRN-40-4-SE as teacher

Figure 5.4: Experiments to determine the cause of the bad performances of knowledge
distillation. All graphs represent the error (on the validation set) evolution when using
knowledge distillation.
Displays the mean and std computed on 3 runs.

were to be incriminated or if the cause was more likely to be structural differences between
teacher and student(s). We decided to try knowledge distillation from a large MobileNetv1
to a medium one, both having SE blocks (Figure 5.4b) or not (Figure 5.4a). We can see
that the error decrease in both cases with the help of knowledge distillation. When using
SE blocks, the error falls from 5.87 to 5.47 (∆ = 0.4), when not, 6.35 to 5.79 (∆ = 0.56).
Both of these diminutions are appreciable (even though the standard derivations of the
errors are important as well). It would be interesting to test whether the difference between
both error diminutions comes from the SE blocks or from the fact that the SE networks
have a lower initial error.

We repeated the same experiment with MobileNetv2 (see Figures 5.4c and 5.4d). We

5.3. QUANTIZATION 69

20 30 40 50 60 70 80
measured inference time (ms)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

er
ro

r (
%

)

architecture & training
mobilenetv1
mobilenetv2
mnasnet
mobilenetv1 with KD
mobilenetv2 with KD

SE block
without
with

Figure 5.5: Error (on the test set) improvement when using knowledge distillation on
MobileNetv1/v2
Displays the mean and std computed on 3 runs.

can see that the benefits of knowledge distillation are much less visible for this network.
The error decrease is negligible (∆ = 0.01%) when using Squeeze-and-Excitation blocks.
When not using those, the error goes from 6.61 to 6.34 (∆ = 0.27%), with a smaller base
error, MobileNetv1 engaged benefits of 0.56% in similar settings which is much better. The
reason behind that difference remains unknown and would be an interesting extension to
investigate in future work.

Finally, we decided to use KD to improve MobileNetv1/v2 with/without SE blocks.
This is represented on Figure 5.5. As we could expect, Knowledge distillation is uninterest-
ing on MobileNetv2. On the other hand, MobileNetv1 + KD benefits from significant im-
provements and we can see that MobileNetv1 with KD are competitive with MobileNetv2
with KD (on the displayed error range). We can also notice that the inference time range
displayed here is quite limited (inference times < 80ms). This is because, lacking a more
accurate teacher, we did not perform KD on our large MobileNets, solving this issue is an
interesting direction for future work.

5.3 Quantization

5.3.1 Method

Quantizing a neural network consists in reducing the number of bits used for the weights
of a network (activations might be reduced as well). When quantizing the weights, the
"only" benefit is model size reduction. When quantizing both weights and activations

70 CHAPTER 5. KNOWLEDGE DISTILLATION AND QUANTIZATION

(i.e. tensors outputted by the different layers), all the computations can be done using
(for example) 8-bit integer multiplications that are faster to compute than floating-points
multiplications. This results in substantial speed gains, especially if the network is run on
custom hardware that is optimized to perform such operations.

Quantization can use, among others, 4 or 8 bits integers [Krishnamoorthi, 2018] or
even go up to binarizing the weights and/or activations [Rastegari et al., 2016].

Quantization is, for the moment, not well integrated into common deep learning frame-
works. A notable exception is Tensorflow that integrates 8-bits integer quantization [Kr-
ishnamoorthi, 2018]. Tensorflow’s quantization is, however, quite experimental, as we
learned while using it. For this work, we limited ourselves to the usage of Tensorflow’s
integrated quantization.

Tensorflow’s quantization [Krishnamoorthi, 2018] consists in quantizing weights and/or
activations to 4 or 8 bit integers. Without entering into details, [Krishnamoorthi, 2018]’s
approach consists in turning 32-bits floating-points weights, x into integers, xQ by applying
the following equation:

xQ = min(2nbr bits − 1,max(0, round(x∆) + z)) (5.7)

where ∆ and z are a scaling factor and an offset. Both of these are determined so that
the quantized range includes xmin, xmax and 0 (0 is needed so that zero-padding did not
generate quantization errors). The weight can then be converted back to floating point
precision by using:

xfloat = (xQ − z)∆ (5.8)

When using floating point activations, equation 5.8 is used to compute a floating point
weight back. With quantized activations, we can use the fact z and ∆ are common to
many different weights to speed things up. Activations are quantized on a per-tensor basis
(i.e. one z and one ∆ per tensor), while convolutions layers are quantized on a per-channel
basis (num out channels z and ∆ per convolution layer).

[Krishnamoorthi, 2018] proposes 3 different methods to perform quantization that are
implemented in Tensorflow:

• Post-training weight only quantization: This method consists in quantizing
only the weight of a pretrained network, this has the advantage to be easy to use but
do not offer any gains in performances and does generate nearly the same accuracy
degradation as Post-training weights and activations quantizations.

• Post-training weights and activations quantizations: This method consists in
quantizing both weights and activations of a pretrained network, it is easy to use as
well although calibration data are needed to compute the z and ∆ of the different
tensors.

• Weights and activations quantization aware training: This method consists
in quantizing both weights and activations at "training time" (fine tuning on an
already trained network while performing quantization). It gives better accuracy
than Post-training. However, it is more complex to perform.

5.4. CONCLUSION 71

5.3.2 Implementation

We tried the three approaches:

• post-training weight only quantization: We did manage to use this approach;
however, since it does not prune the activations, no performance gain is observed.
We only reduce the size of the tf-lite models (which were only on a few MB to start
with) at the cost of several percents of accuracy. It is thus not useful to us.

• Post-training weights and activations quantizations: We did manage to com-
pile a model using this approach by using the very last versions of Tensorflow (tf-
nightly). However, inference on both the Raspberry Pi and tf-lite interpreter failed.
This approach is not documented in Tensorflow. We found out about it by having a
look at recent commits. It is thus not so surprising it generates bugs but was worth
a try.

• Weights and activations quantization aware training: We did not manage
to train a model using this method, at the current time, this method should be
supported on Tensorflow’s lower level APIs. We tried several approaches, but all
failed when creating a tf-lite model.

5.4 Conclusion
In this chapter, we investigated two methods that were orthogonal to the previous ap-
proaches.

Knowledge distillation tries to leverage the predictions of a heavy model, the teacher,
to improve the training of a smaller model, the student. We tried a recent algorithm
that adds teaching assistant networks between the teacher and the student. By doing
so, knowledge distillation helps pushing further the accuracies of MobileNetv1, allowing
it to achieve extremely interesting results on the small and medium inference time range.
We also showed that using a teacher of different architecture can prove very harmful
for the performances. Finally, we think diving deeper into this method: trying other
KD methods, investigating the effects of the architecture of the teacher and finding a
substitute for WRN-40-2-SE, performing a more thorough hyperparameter search, and
inspecting the bad knowledge distillation performances of MobileNetv2 can be worthwhile
search directions for future works.

Quantization is a promising method that uses coarser representation of the weights
and elements of the tensors to reduce inference time. Tensorflow’s integrated quantization
does not seem to be reliably integrated into the main framework now. We expect this to
change in the following months with future releases.

72 CHAPTER 5. KNOWLEDGE DISTILLATION AND QUANTIZATION

Chapter 6

Final Conclusion and perspectives

6.1 Conclusion

The main goal of this thesis was to explore the topic of modern deep convolutional neural
networks in a constraint environment. More precisely, we tackle the task of minimizing in-
ference time on Raspberry Pi 3B while maintaining good predictive performances. Getting
networks to run fast on affordable, embedded devices is paramount to the development of
intelligent end devices.

To compare various methods, we relied on the CIFAR-10 dataset, sometimes referred
to as the smallest hard dataset for image classification. This dataset combines a non-trivial
challenge with affordable learning times. For this task, we targeted an error ranging from
8 to 5% with minimal inference times.

To do so, we investigated several architectures specifically designed for this (Chapter
3), as well as pruning (Chapter 4), knowledge distillation and quantization (Chapter 5).

Although the latter approach seems promising, it is not well integrated in popular
frameworks as of today. Knowledge distillation did show interesting results on Mo-
bileNetv1 and is a promising direction for a deeper inspection.

In chapter 4, we propose several extensions to existing pruning methods and use prun-
ing as an architecture search procedure. We noticed that formulating pruning as an ar-
chitecture search problem systematically improves the accuracy of the resulting network.
The discovered architectures are also interpretable and different between the modified
methods. On the other hand, these methods all give very similar results which are not
outperforming a grid search baseline. We suspect this might not (less) be the case on a
dataset with bigger image spatial resolutions.

In Chapter 3, we review the state-of-the-art architectures for constrained environments
and propose to combine them with Squeeze-and-Excitation blocks. When using those,
MobileNetv2 seems to be the best performing architecture, followed closely by MnasNet
and MobileNetv1. When adding the effect of knowledge distillation, MobileNetv1 shows
very interesting results for small to medium inference times as well.

6.2 Perspectives

This thesis raises many more questions than it answered. First is the question of how
the conclusions of this work can be extrapolated in other contexts. Indeed, changing
the dataset may change which networks perform the best in terms of accuracy for a
given inference time. On the other hand, changing the inference device might impact the

73

74 CHAPTER 6. FINAL CONCLUSION AND PERSPECTIVES

inference time of each model differently. In another context, using pruning algorithms,
like NetAdapt, might perform well on architecture search.

The question of quantization remains of great interest and exploring it further in several
months might show new interesting developments. We also think that exploring knowl-
edge distillation further, integrating other algorithms and performing a more throughout
hyperparameter search could be worthwhile. The two approaches could also be combined
[Mishra and Marr, 2018].

Implementing some architecture ourselves (ShuffleNetv2, for instance) instead of using
tf-lite would allow us to include custom optimizations, such as tensor concatenation on
the channel axis.

Additionally, during the last week of this thesis, we discovered two papers whose con-
tributions could be used to improve this work:

1. [Tan and Le, 2019]: In this paper, the authors introduced a simple and efficient way
to scale simultaneously the depth, width and resolution1 of a given network. The
authors showed that scaling the width, depth and resolution of a network by αφ,
βφ and γφ respectively gave much better results than only scaling one of these at a
time. φ is a factor depending on the performance we are willing to sacrifice in the
exchange of better accuracies. Given an initial network, α, β and γ are determined
by performing a grid search to find the best performing network under the constraint
α × β2 × γ2 ≈ 2. β and γ are here squared because the number of FLOPS scales
quadratically with width and resolution.

[Tan and Le, 2019] scaled their networks from medium-sized to big sized network,
achieving state-of-the-art results on ImageNet at a much smaller cost than other
approaches. It would be interesting to see how their approach performs in the small
to medium size scale with respect to our manual hyperparameter fine-tuning.

2. [Howard et al., 2019]: In this paper, MobileNetv3 was introduced. In addition to
comparing the architecture, they developed with the other ones that were investi-
gated in chapter 3 and other improvements they made. We noticed that, in parallel
to this work, they also used Squeeze-and-Excitation blocks and the NetAdapt algo-
rithm to prune pre-trained architectures. Like us, they also modified the NetAdapt
algorithm to retrain the final architecture from scratch and to use the ratio ∆acc

∆latency
instead of only ∆acc. This seems to show that although using NetAdapt to search
for new architectures did not show any good results on WideResNets on CIFAR-10
while using a Raspberry Pi 3B to perform inference, this might not be the case
for MnasNet-like architectures on ImageNet while performing inference on Google
Pixels.

1we did not mention input resolution here because it is not used on 32 × 32 CIFAR-10 but networks
trained on ImageNet often vary the height/width of their inputs to trade accuracy for performance

Bibliography

[Belkin et al., 2018] Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2018). Reconciling
modern machine learning and the bias-variance trade-off. arXiv:1812.11118 [cs, stat].
arXiv: 1812.11118.

[Canziani et al., 2016] Canziani, A., Paszke, A., and Culurciello, E. (2016). An Analysis of
Deep Neural Network Models for Practical Applications. arXiv:1605.07678 [cs]. arXiv:
1605.07678.

[Chollet, 2017] Chollet, F. (2017). Xception: Deep learning with depthwise separable
convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1800–1807.

[Crowley et al., 2018] Crowley, E. J., Turner, J., Storkey, A., and O’Boyle, M. (2018).
Pruning neural networks: is it time to nip it in the bud? arXiv:1810.04622 [cs, stat].
arXiv: 1810.04622.

[Frankle and Carbin, 2019] Frankle, J. and Carbin, M. (2019). The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. In ICLR 2019.

[Freeman et al., 2018] Freeman, I., Roese-Koerner, L., and Kummert, A. (2018). Effnet:
An efficient structure for convolutional neural networks. 2018 25th IEEE International
Conference on Image Processing (ICIP), pages 6–10.

[Gholami et al., 2018] Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., Zhao,
S., and Keutzer, K. (2018). Squeezenext: Hardware-aware neural network design. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, pages 1638–1647.

[Gordon et al., 2018] Gordon, A. D., Eban, E., Nachum, O., Chen, B., Yang, T.-J., and
Choi, E. (2018). Morphnet: Fast & simple resource-constrained structure learning of
deep networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 1586–1595.

[Hassibi and Stork, 1993] Hassibi, B. and Stork, D. G. (1993). Second order derivatives
for network pruning: Optimal Brain Surgeon. In Hanson, S. J., Cowan, J. D., and Giles,
C. L., editors, Advances in Neural Information Processing Systems 5, pages 164–171.
Morgan-Kaufmann.

[He et al., 2016a] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learn-
ing for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.

[He et al., 2016b] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in
deep residual networks. In ECCV.

75

76 BIBLIOGRAPHY

[Hinton et al., 2015] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531.

[Howard et al., 2019] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan,
M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H. (2019).
Searching for MobileNetV3. arXiv:1905.02244 [cs]. arXiv: 1905.02244.

[Howard et al., 2017] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., and Adam, H. (2017). MobileNets: Efficient Convolu-
tional Neural Networks for Mobile Vision Applications. arXiv:1704.04861 [cs]. arXiv:
1704.04861.

[Hu et al., 2017] Hu, H., Dey, D., Del Giorno, A., Hebert, M., and Bagnell, J. A. (2017).
Log-DenseNet: How to Sparsify a DenseNet. arXiv:1711.00002 [cs]. arXiv: 1711.00002.

[Hu et al., 2018] Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7132–
7141.

[Huang et al., 2018] Huang, G., Liu, S., van der Maaten, L., andWeinberger, K. Q. (2018).
Condensenet: An efficient densenet using learned group convolutions. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2752–2761.

[Huang et al., 2017] Huang, G., Liu, Z., and Weinberger, K. Q. (2017). Densely connected
convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2261–2269.

[Iandola et al., 2016] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J.,
and Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5mb model size. arXiv:1602.07360 [cs]. arXiv: 1602.07360.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift. In ICML.

[Krishnamoorthi, 2018] Krishnamoorthi, R. (2018). Quantizing deep convolutional net-
works for efficient inference: A whitepaper. arXiv:1806.08342 [cs, stat]. arXiv:
1806.08342.

[Krizhevsky, 2009] Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny
Images. Technical Report, page 60.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Commun. ACM, 60:84–90.

[Larsson et al., 2016] Larsson, G., Maire, M., and Shakhnarovich, G. (2016). Fractal-
Net: Ultra-Deep Neural Networks without Residuals. arXiv:1605.07648 [cs]. arXiv:
1605.07648.

[Lee et al., 2018] Lee, N., Ajanthan, T., and Torr, P. H. S. (2018). SNIP: Single-shot
Network Pruning based on Connection Sensitivity. arXiv:1810.02340 [cs]. arXiv:
1810.02340.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays,
J., Perona, P., Ramanan, D., Zitnick, C. L., and Dollár, P. (2014). Microsoft COCO:
Common Objects in Context. arXiv:1405.0312 [cs]. arXiv: 1405.0312.

BIBLIOGRAPHY 77

[Liu et al., 2017] Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017).
Learning efficient convolutional networks through network slimming. 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pages 2755–2763.

[Liu et al., 2018] Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2018). Rethinking
the Value of Network Pruning. arXiv:1810.05270 [cs, stat]. arXiv: 1810.05270.

[Loshchilov and Hutter, 2017] Loshchilov, I. and Hutter, F. (2017). Sgdr: Stochastic gra-
dient descent with warm restarts. In ICLR.

[Ma et al., 2018] Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet v2:
Practical guidelines for efficient cnn architecture design. In ECCV.

[Mirzadeh et al., 2019] Mirzadeh, S.-I., Farajtabar, M., Li, A., and Ghasemzadeh, H.
(2019). Improved Knowledge Distillation via Teacher Assistant: Bridging the Gap
Between Student and Teacher. arXiv:1902.03393 [cs, stat]. arXiv: 1902.03393.

[Mishra and Marr, 2018] Mishra, A. and Marr, D. (2018). Apprentice: Using knowledge
distillation techniques to improve low-precision network accuracy. In International Con-
ference on Learning Representations.

[Molchanov et al., 2017] Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
(2017). Pruning convolutional neural networks for resource efficient inference. In ICLR.

[Pleiss et al., 2017] Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., and Wein-
berger, K. Q. (2017). Memory-Efficient Implementation of DenseNets. arXiv:1707.06990
[cs]. arXiv: 1707.06990.

[Rastegari et al., 2016] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016).
Xnor-net: Imagenet classification using binary convolutional neural networks. In Euro-
pean Conference on Computer Vision, pages 525–542. Springer.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Bernstein, M. S., Fei-Fei, L., Berg, A. C., and Khosla,
A. (2015). Imagenet large scale visual recognition challenge. Springer US.

[Sandler et al., 2018] Sandler, M. B., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen,
L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4510–4520.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[Szegedy et al., 2016a] Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016a). Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov,
D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolu-
tions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–9.

[Szegedy et al., 2016b] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z.
(2016b). Rethinking the inception architecture for computer vision. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826.

78 BIBLIOGRAPHY

[Tan et al., 2018] Tan, M., Chen, B., Pang, R., Vasudevan, V., and Le, Q. V. (2018).
MnasNet: Platform-Aware Neural Architecture Search for Mobile. arXiv:1807.11626
[cs]. arXiv: 1807.11626.

[Tan and Le, 2019] Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Conference on Machine Learning,
pages 6105–6114.

[Theis et al., 2018] Theis, L., Korshunova, I., Tejani, A., and Huszár, F. (2018). Faster
gaze prediction with dense networks and Fisher pruning. arXiv:1801.05787v2.

[Turner et al., 2018] Turner, J., Cano, J., Radu, V., Crowley, E. J., O’Boyle, M., and
Storkey, A. (2018). Characterising across-stack optimisations for deep convolutional
neural networks. In 2018 IEEE International Symposium on Workload Characterization
(IISWC), pages 101–110. IEEE.

[Wong, 2018] Wong, A. (2018). NetScore: Towards Universal Metrics for Large-scale
Performance Analysis of Deep Neural Networks for Practical On-Device Edge Usage.
arXiv:1806.05512 [cs, stat]. arXiv: 1806.05512.

[Yang et al., 2018] Yang, T.-J., Howard, A. G., Chen, B., Zhang, X., Go, A., Sze, V.,
and Adam, H. (2018). Netadapt: Platform-aware neural network adaptation for mobile
applications. In ECCV.

[Yu et al., 2018] Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V. I., Han, X., Gao,
M., Lin, C.-Y., and Davis, L. S. (2018). Nisp: Pruning networks using neuron impor-
tance score propagation. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9194–9203.

[Zagoruyko and Komodakis, 2016] Zagoruyko, S. and Komodakis, N. (2016). Wide Resid-
ual Networks. arXiv:1605.07146 [cs]. arXiv: 1605.07146.

[Zhang et al., 2018] Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). Shufflenet: An
extremely efficient convolutional neural network for mobile devices. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6848–6856.

[Zoph and Le, 2016] Zoph, B. and Le, Q. V. (2016). Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578.

[Zoph et al., 2018] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning
transferable architectures for scalable image recognition. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8697–8710.

