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Machine learning for image-based wavefront sensing

University of Liège - Faculty of Applied Sciences

Pierre-olivier Vanberg

Abstract: Astronomical images are often degraded by the disturbance of the Earth’s
atmosphere. Indeed, light propagating to ground-based telescopes is distorted by the
random motions of the turbulent atmosphere. Adaptive Optics (AO) partly solves this
problem by flattening in real time the wavefront. The role of AO is first to acquire infor-
mation about the distortions and then to adjust a deformable mirror to compensate these
optical aberrations. Notwithstanding the efficiency of AO systems, some intrinsic lim-
itations remain. In particular, the presence of unseen aberrations called Non-Common
Path Aberrations (NCPA) still represent a real challenge for extreme AO observation
tasks such as exoplanet direct imaging.

Image-based wavefront sensing methods are specifically designed algorithms dedicated
to estimate the wavefront from science camera intensity measurements. This approach
is particularly desirable as it requires no additional components and solely depends on
the observed images. This thesis thus proposes to improve image-based wavefront sens-
ing techniques using machine learning algorithms. Deep convolutional neural networks
(CNN) have been trained to estimate the wavefront using one or multiple intensity mea-
surements. The efficiency of state-of-the art architectures is reviewed and compared on
two different data sets: 20 Zernike modes and 100 Zernike modes. In both configuration,
the direct pixel-wise estimation of the phase map has been shown to outperform the
modal phase reconstruction.
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Abbreviations

AO Adaptive optics

WFS Wavefront sensor

PSF Point spread function

OTF Optical transfer function

NCPA Non-common path aberrations

DFT Discrete Fourier transform

FFT Fast Fourier transform

IFFT Inverse fast Fourier transform

DNN Deep neural network

CNN Convolutional neural network

MLP Multilayer perceptron

RMSE Root mean squared error
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Chapter 1

Introduction

Astronomical images are often degraded by the disturbance of the Earth’s atmosphere.

Since the invention of the first telescopes in the 1600s, it has been known that light prop-

agating to ground-based telescopes is affected by the random motions of the atmospheric

turbulence. These disturbances lead to small changes in the refractive index of the air

and alter optical waves as they pass through the atmosphere. In 1730, Isaac Newton

wrote:

“If the Theory of making Telescopes could at length be fully brought into

Practice, yet there would be certain Bounds beyond which Telescopes could

not perform. For the Air through which we look upon the Stars, is in perpet-

ual Tremor; as may be seen by the tremulous Motions of Shadows cast from

high Towers, and by the twinkling of the fix’d Stars.”

Isaac Newton, Opticks, 1730.

By these few lines, Newton predicted that a turbulent atmosphere would ultimately lim-

its the resolution and the contrast of optical systems. The resolution of ground-based

telescope is primarily determined by its optical components (R ∼ λ/D): the observing

wavelength and the aperture diameter. Increasing the diameter of optical elements thus

improve the achievable resolution up to a given threshold whereby the image quality

starts to depend on the atmospheric condition. Since the 1950s, such limitations have

been reached and the astronomers have investigated two main solutions: avoid the atmo-

sphere by going into space or directly compensate the atmospheric disturbances on the

ground. Among the first category, one of the best-known example is the Hubble Space

Telescope which provides extremely high-resolution images of unprecedented quality.
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The second category focuses on the correction of the distorted wavefront thanks to a

deformable mirror. This technique is known as Adaptive Optics (AO) and intends to

flatten in real time the wavefront. The role of AO is first to acquire information about

the distortions and then adjust a deformable mirror to compensate these optical aber-

rations. The phase profile of the wave is typically estimated with a wavefront sensor

(WFS) based on light intensity measurements. The retrieved information is then passed

to a control system which maintains the mirror shape as close as possible to the optimal

configuration. Over the years, AO has reinvented ground-based astronomy and improved

the imaging quality up to the diffraction limit.

Notwithstanding the efficiency of AO systems, some intrinsic limitations remain. In

particular, the presence of unseen aberrations called Non-Common Path Aberrations

(NCPA) still represent a real challenge for extreme AO observation tasks such as exo-

planet direct imaging. Indeed to achieve the best level of correction, the wavefront sensor

must be positioned as close as possible to the science camera in order to avoid optical

path differences. Moreover as those aberrations are introduced after the beam splitting

between the WFS and the imaging plane, they are not directly sensed and need a proper

correction. Among the most efficient tools, image-based wavefront sensing has proven to

be one of the most efficient and reliable technique. This method measures the wavefront

error using a parameterized physical model and science camera intensity measurements.

This approach is particularly desirable as it requires no additional components and solely

depends on the observed images.

This thesis thus proposes to improve image-based wavefront sensing techniques using

machine learning algorithms. Since 2000s, deep learning has indeed been proven to

generalize well on numerous classification and regression tasks. In this perspective, deep

convolutional neural networks (CNN) have been trained to estimate the wavefront error

using one or multiple intensity measurements.
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Chapter 2

Background

In this first chapter, the ground-based telescope imaging theory is briefly reviewed. The

main results are presented and limiting factors are discussed. A special attention is

given to differentiate external phenomena (atmospheric turbulence, NCPA) and funda-

mental limits imposed by physics (diffraction limit). In the second part of this chapter,

deep learning optimization theory and convolution neural networks will be succinctly

introduced.

2.1 Imaging theory

In the following section, light will be described as an electromagnetic wave governed by

the Maxwell equations. The quantum properties of light will be discarded until the noise

section. Starting then from the electromagnetism description, light is expressed as a

complex wave.

U(r, t) = U0(r) exp
(
i(k · x− ωt)

)
(2.1)

where r indicates the spatial coordinate, k the wave vector and ω the frequency.

2.1.1 Fresnel-Kirchhoff diffraction

In a wide range of configurations, the propagation of light can be described using the

Fresnel-Kirchhoff diffraction theory. The equation follows from the Maxwell equations

and the Kirchhoff integral theorem for monochromatic waves.
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The Fresnel diffraction integral is expressed as

U(x, y) =

∫ ∫
A(x′, y′)U(x′, y′) exp

[
ik

(
x′2 − 2x′x

2z
+
y′2 − 2y′y

2z

)]
dx′dy′ (2.2)

x′, y′ indicate the pupil plane coordinates, x, y the image plane coordinates and z the

distance between the two planes. A(x′, y′) is a one-zero function describing the pupil

aperture.

Figure 2.1: Geometry of imaging, pupil and image planes.

This expression can then be simplified using the Fraunhofer approximation:

z � k(x′2 + y′2)max
2

∀x′, y′ ∈ entrance aperture (2.3)

and by applying a first order approximation ignoring the quadratic terms.

U(x, y) =

∫ ∫
A(x′, y′)U(x′, y′) exp

[
− ik

z

(
x′x+ y′y

)]
dx′dy′ (2.4)

= F
[
A(x′, y′)U(x′, y′)

]
(2.5)

It is thus recognized that the Fresnel-Kirchhoff diffraction theory results in direct a 2D

Fourier transform. The field in the image plane is Fourier transform of the field in the

aperture with the corresponding spatial frequencies: fx = kx
z and fy = ky

z .

2.1.2 Point spread function

The point spread function (PSF) is the 2D irradiance profile in the image plane of an

astronomical point source. It can be viewed as the impulse response of an optical system
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with circular aperture.

PSF(x, y) = |h(x, y)|2 (2.6)

with h(x, y) the Fourier transform of the complex electromagnetic field,

h(x, y) = F
[
A(x′, y′) exp

(
iθ(x′, y′)

)]
(2.7)

A(x′, y′) is a zero-one function corresponding to the pupil function while θ(x′, y′) repre-

sent the wavefront phase over the entrance pupil.

Figure 2.2: Airy disk. [1] Figure 2.3: PSF(x, y), point spread function.

The PSF for a perfect and unaberrated optical system with circular aperture is known

as the «Airy pattern» and follow:

PSF (u) =
1

(1− ε2)2

[
2J1(u)

u
− ε2 2J1(εu)

εu

]
(2.8)

where u =
π

λ
Dθ is the dimensionless distance from the optical axis, D is the primary

aperture diameter, θ is the angular radius, J1 is the first order Bessel function of the

first kind and ε is the fractional obscured radius (0 in the previous figures). The first

minimum of the Airy pattern is commonly referred as the airy disk and contains about

86% of the total light. Its diameter is given by:

Airy diameter = 1.22
λz

D
(2.9)

It establishes a physical limit to the resolution power of optical instrument. The Rayleigh

criterion states that two point source objects must be separated by at least half the di-

ameter of the airy disk to be fully distinguishable.
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Figure 2.4: Illustration of the Rayleigh criterion. Left: Fully distinguishable objects
Right: Objects separated by half their airy diameter. (resolution limit)

Up to now only perfect PSF has been considered. Nevertheless, a phase aberration

θ(x′, y′) 6= 0 tends to flatten the PSF peak and thus reduces even more the resolution

power.

2.1.3 Zernike polynomials

The phase aberration θ(x′, y′) can be described in several manners. One of the most

commonly used methods consists in decomposing the wavefront phase onto an orthogonal

basis called the Zernike basis.

θ(x′, y′) =
∞∑
i=0

ciZi(x
′, y′) (2.10)

where ci are the Zernike expansion coefficients. The Zernike polynomials Zi are defined

on the unit circle and are particularly well suited to characterize optical aberrations: tip,

tilt, coma... Many normalizations and labeling currently exist for defining the Zernike

polynomials, along this thesis the Noll convention has been chosen. [2] For convenience,

they are expressed in polar coordinates as the product of angular functions and radial

polynomials.

Zi(r, ϕ) =
√
n+ 1Rn0 (r) m = 0

Zi(r, ϕ) =
√
n+ 1Rnm(r)

√
2 cos(mϕ) m 6= 0, i even

Zi(r, ϕ) =
√
n+ 1Rnm(r)

√
2 sin(mϕ) m 6= 0, i odd

(2.11)
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where

Rmn (r) =

n−m
2∑

k=0

(−1)k (n− k)!

k!
(
n+m

2 − k
)
!
(
n−m

2 − k
)
!
rn−2 k (2.12)

n corresponds to the radial order and m to the azimuthal order. m,n are positive

integer satisfying m ≤ n and n − |m| = even. The index i is a mode ordering number

depending on m and n. One of the main characteristic of the Zernike polynomials is

their orthogonality property. It allows to express any continuous function by a unique

set of coefficients as in (3.11).

1

π

∫ 1

0

∫ 2π

0
Zi(r, ϕ)Zj(r, ϕ)drdϕ = δi,j (2.13)

2.1.4 Strehl ratio

The Strehl ratio is a measure of the performances of an optical system. The Strehl ratio

(S) is defined as the ratio of the peak intensity of a measured PSF to the peak intensity

of a perfect, diffraction-limited PSF. [3]

S =
I(x, y)

P (x0, y0)
(2.14)

where x0, y0 is the position of the maximum of the diffraction limited PSF and x, y is the

position of the maximum of the measured PSF. The Strehl ratio quantifies the amount

of light contained within the Airy disk as a ratio of the theoretical maximum that would

have been contained in a diffraction limited Airy disk. The main advantage of the Strehl

ratio is the fact that it asses the optical quality in terms of the theoretical performances

and within a single number. Furthermore, the Strehl ratio can be related to the wavefront

errors via the Maréchal approximation. [4]

S ≈ | < exp
[
i(θ− < θ >)

]
> |2 (2.15)

where θ is the wavefront phase over the pupil aperture.
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Figure 2.5: Color map diagram of the Zernike polynomials up to the 4th order. [5]

j n m Zj Name

1 0 0 1 Piston

2 1 -1 2r cos(ϕ) Tilt

3 1 1 2r sin(ϕ) Tilt

4 2 0
√

3(2r2 − 1) Defocus

5 2 2
√

6r2 sin(2ϕ) Astigmatism

6 2 -2
√

6r2 cos(2ϕ) Astigmatism

7 3 -1
√

8(3r3 − 2r) sin(ϕ) Coma

8 3 1
√

8(3r3 − 2r) cos(ϕ) Coma

9 3 3
√

8r3 sin(3ϕ)Ttrefoil

10 3 -3
√

8r3 cos(3ϕ) Trefoil

Table 2.1: Zernike polynomials up to third radial order, Noll (1976).
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2.2 Phase retrieval

Nowadays, most of the light detectors consist of charge-coupled devices (CCD) or closely

related equipment. Such devices convert the light intensity into electrical charges which

can then be easily manipulated. Nonetheless, light has not only an amplitude but also

phase, see equation (2.1). All the information about the phase is therefore systemati-

cally lost in the measurement. The way in which light interacts with matter therefore

introduces a fundamental limit.

2.2.1 Mathematical description

Wavefront sensing by phase retrieval is the process of algorithmically retrieving the wave-

front, i.e. the phase θ(x′, y′) from one or multiple intensity measurements. For instance

along this thesis, phase retrieval consists in extracting the entrance pupil phase distortion

θ(x′, y′) from PSF (x, y) images.

PSF(x, y) = |h(x, y)|2 (2.16)

The presence of the modulus indicates that all phase information related to h(x, y) have

been lost. The inverse Fourier transform is thus not sufficient to uniquely reconstruct

the wavefront.

H(x′, y′) = F−1
[
h(x, y)

]
(2.17)

= A(x′, y′) exp
(
iθ(x′, y′)

)
(2.18)

H(x′, y′) represents here the coherent transfer function of the system and must not be

confused with the optical transfer function (OTF) which is the direct Fourier trans-

form of the point spread function. As previously mentioned, A(x′, y′) is often known

(e.g. entrance aperture), the problem therefore becomes equivalent to finding θ(x′, y′) or

equivalently H(x′, y′) from

|h(x, y)| =
√

PSF(x, y) (2.19)

and
|H(x′, y′)| = A(x′, y′) (2.20)

Overall, the phase retrieval problem consists in recovering the phase of a complex function

from its modulus in two Fourier conjugated planes.
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Several extensions may also be considered. For instance the problem can easily be pro-

longed to noisy measurement n(x, y) or extended sources o(x, y).

p(x, y) = (PSF ∗ o)(x, y) + n(x, y) (2.21)

where ∗ denotes the standard convolution product.

2.2.2 Algorithms

In 1971, R. W. Gerchberg and W. O. Saxton [6] have proposed the first algorithm for

solving the phase problem using a space-frequency approach. Subsequently, many im-

provements were gradually proposed: Gonsalves [7], Devaney [8], Fienup [9]. In this

section, the main algorithms are reviewed and their limitations are discussed.

First it is important to mention that in practice, one deals with discrete data. Typically,

the point spread functions are sampled using a regular grid, xi = 0, 1, ..., N − 1 and

yj = 0, 1, ..., N − 1. The sampling may arise from the light capturing devices or simply

for numerical considerations. Naturally, one also uses the discrete Fourier transform

(DFT).

H(x′i, y
′
j) = F

[
h(xn, ym)

]
(2.22)

=

N−1∑
n=0

N−1∑
m=0

h(xn, ym) exp

[
− i2π

N

(
xnx

′
i + ymy

′
j

)]
(2.23)

and its inverse

h(xi, yj) =
1

N2

N−1∑
n=0

N−1∑
m=0

H(x′n, y
′
m) exp

[
− i2π

N

(
x′nxi + y′myj

)]
(2.24)

Figure 2.6: Left: Initial point spread function. Right: Sampled point spread func-
tion over 40× 40 pixels.
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2.2.2.1 Gerchberg-Saxton

The Gerchberg-Saxton algorithm [6] [9] is an iterative algorithm designed to reconstruct

the phase θ(u) from conjugated intensity measurements: |h(x)| and |H(x)|. After the

k − th iteration, hk(x), Hk(u) and θk(u) are respectively the estimate of h(x), H(u)

and θ(u). The GS algorithm consists of 4 main steps:

1. Fourier transform the object estimation

Hk(u) = |Gk(u)|eiθk(u) = F [hk(x)] (2.25)

2. Replace the modulus of the estimation by the measured one

H ′k(u) = |H(u)|eiθk(u) (2.26)

The prime notation indicates a temporary variable.

3. Inverse Fourier transform of the constrained estimation

h′k(x) = |h′k(x)|eiφk(x) = F−1[H ′k(u)] (2.27)

4. Replace the modulus of the estimation by the measured one

hk+1(x) = |h(x)|eiφk(x) (2.28)

The initial choise of θk(u) is problem dependant. A good practice consists in starting

from randomly distributed values. By iterating back and forth between the Fourier

spaces, on can then demonstrate that the estimated object will in fine satisfy the object

domain constraint. [9]

E2
k =

1

N2

∑
u

|hk(u)− h′k(u)|2 (2.29)

or equivalently the Fourier domain constraint

E2
k =

1

N2

∑
u

|Hk(u)−H ′k(u)|2 (2.30)

The algorithm convergence may also be demonstrated

E2
k+1 ≤ E2

k (2.31)

12



Background

2.2.2.2 Error-reduction

The error-reduction algorithm proposed by J. R. Fienup in 1982 [9] is the direct general-

ization of the Gerchberg-Saxton. The three first steps are identical while the fourth step

becomes:

hk+1(x) =

h′k(x) x /∈ Ω

0 x ∈ Ω
(2.32)

where Ω is the space region in which h′k(x) violates the object domain constraint. For

example, one can enforce a compact support or a non-negativity requirement. It is the

direct generalization of the GS algorithm to single intensity measurement.

2.2.2.3 Hybrid Input-Output

The error-reduction algorithm however exhibits slow convergence in multiple configu-

ration. [9][10] One improvement therefore consists in introducing feedback information

from the previous iteration.

hk+1(x) =

h′k(x) x /∈ Ω

hk(x)− βh′k(x) x ∈ Ω
(2.33)

β is the feedback factor ∈ [0, 1]. This formulation also reduces the probability of stagna-

tion.

2.2.2.4 Limitations

The previously presented algorithms have been demonstrated to be globally efficient

methods for the phase reconstruction. Nevertheless, these implementations may stagnate

under some circumstances.

• First, the algorithm may stagnates due to the twin-image problem. It results from

the fact that an object h(x) and its complex conjugated counterpart h(−x) have the

same Fourier modulus. Starting from random initial guess, the iterative algorithm

has equal probability of reconstructing one of these two objects. However, in some

cases, the features of both images may become equally important and the algorithm

may stagnate trying to reconstruct simultaneously both images. Experimentally,

this mode of stagnation has been significantly encountered when the object support

is centrosymmetric.
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• The second possible mode of stagnation is characterized by the appearance of a

superimposed pattern of stripes. This pattern follows a sinusoidal perturbation in

a given direction while remaining constant in the orthogonal direction. It can be

interpreted as being stuck in a strong local minimum of the error metric.

• A third possible stagnation problem may arises from inconsistent support con-

straint. In particular, if the reconstructed object is translated, the algorithm will

partially cut the image. Subsequently, the algorithm has a tendency to stagnate.

• Finally, the algorithm may stagnates in local minimum due to inadequate initial-

ization. This problem is know as the «capture range problem». If the starting

guess is too far apart from the true solution, the likelihood of stagnation rapidly

becomes significant. One can demonstrate that: «the probability of stagnation is

related to the ratio of the surface area of the hypersphere cap for which all points

are within the capture range to the total surface area of the hypersphere. This

probability decreases as approximately 1/Rn+1 , where n is the dimensionality of

our hypersphere and R is its radius». [11] The radius R is proportional to the RMS

wavefront error while n can be related to the number of Zernike modes. When deal-

ing with a large number of Zernike polynomials (for example 100), the probability

of finding a random guess in the capture range is thus particularly low. The same

problem occurs with high wavefront aberrations (RMS WFE ≈ 1 rad or greater)

leading to large value of R and low converging probability.

2.2.3 Phase diversity

As previously mentioned, the wavefront reconstruction from a single focused image does

not ensure the uniqueness of the solution. Phase diversity [7][12] thus intends to remove

this indetermination by adding additional information. The idea is to collect two or more

images perturbed by an additional known phase. For instance, a simple translation of

the detector along the optical axis can be used to introduce a known amount of defocus

ϕ(x′, y′). In this case, it is assumed that nor the aberrations nor the object evolve

during the translation. For this reason, phase diversity is often used to characterize

static aberrations such as NCPA.

h1(x, y) = F−1
[
A(x′, y′) exp

(
iθ(x′, y′)

)]
(2.34)

h2(x, y) = F−1
[
A(x′, y′) exp

(
iθ(x′, y′) + iϕ(x′, y′)

)]
(2.35)

Alternatively phase diversity can be introduced using a beam splitter and two detectors.
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Figure 2.7: Phase diversity principle. [13]

The goal of phase diversity algorithms is then to identify a phase aberration combination

θ(x′, y′) that is consistent with all the intensity measurement |h1(x, y)| and |h2(x, y)|. In
particular, for point source objects.

PSF1(x, y) = |h1(x, y)|2 (2.36)

PSF2(x, y) = |h2(x, y)|2 (2.37)

One of the classical optimization strategy consists in using a Joint Maximum A Posteriori

(JMAP) approach. [13]

θ̂JMAP = arg max
θ

p
(
|h1|, |h2|, θ

)
(2.38)

where p
(
|h1|, |h2|, θ

)
is the joint probability density function. Moreover, to reduce the

dimensionality of optimization space, the phase function is expanded onto the k first

Zernike polynomials.

θ(x′, y′) =
k∑
i=0

ciZi(x
′, y′) (2.39)

The JMAP can then be expressed as

ĉJMAP = arg max
c

p
(
|h1|, |h2|, c

)
(2.40)

One can finally demonstrate that the maximization a posteriori is equivalent to the min-

imization of the negative log-likelihood. [12] Under its minimization form, the problem

can then be iteratively solved using classical gradient descent algorithms. (Conjugate

Gradient, Fast Gradient Method, ...)
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Over the years, phase diversity has been proven to be efficient and reliable. It requires

none or minimal extra optical hardware making it easily implementable. The aberration

parameters have been successfully estimated in a wide range of configurations. [7][12]

For example, it has been used to calibrate the NAOS-CONICA instruments of the very

large telescope. [13]

2.3 Machine learning

Machine learning is a subset of artificial intelligence focused on the supervised or un-

supervised learning of algorithms. On the contrary to classical algorithms, the training

task relies on pattern and features identification without explicit instructions. The al-

gorithms are iteratively trained based on sample data and their internal parameters are

progressively tuned to achieve high level of performance. In this section, the theoretical

background related to one class of machine learning algorithms, called artificial neu-

ral networks are introduced and the current state-of-the-art applications to wavefront

sensing are reviewed.

2.3.1 Neural networks

2.3.1.1 Description

Neural networks or artificial neural networks were initially proposed to mimic the neural

function of the human brain. In 1943, Warren McCulloch andWalter Pitts introduces one

of the first modelling nowadays famously known as the threshold logic unit. [14] More

than 10 years later, in 1957, Frank Rosenblatt proposes in turn a second pioneering

architecture called the perceptron. [15]

Figure 2.8: Computational graph of an artificial neuron. [14]
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An artificial neuron k receives m inputs variables denoted xi ∀x = 1, ...,m. These in-

puts variables are modulated using internal parameters wk,i called weights. The inputs

and weights are then summed and fed to an activation function ϕ.

yk = ϕ

( m∑
i=0

wk,ixi

)
(2.41)

The weights are trainable parameters which are carefully tuned to achieve the desired

output. These single units can then be arranged in parallel to form layers and the layers

can themselves be arranged in a series to create a fully-connected multilayer neural

network, also called multilayer perceptron (MLP). It typically includes an input layer,

one or multiple hidden layers and an output layer. Such neural networks are called fully-

connected due to the fact that each neuron is connected to every units in the previous

and the nex layers, see figure 2.9. It enables a great neuronal connectivity but can easily

becomes very computational expensive.

Figure 2.9: Fully-connected multilayer neural network.

One can also demonstrates that a feedforward network with single layer is a universal

function approximator (assuming that the layer is large enough). [16] This property is

partially due to the non-linearities introduced by the activation functions. Among the

most popular ones:
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Sigmoid activation function:

ϕ(x) =
1

1 + exp(−x)
(2.42)
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Rectified linear unit (ReLU):

ϕ(x) = max(0, x) (2.43)
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0
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2.3.1.2 Application to wavefront sensing

Since 1990s, neural networks have been used to estimate wavefront aberrations. Angel et

al. [17] first trained a fully connected neural network to perform multiple telescope array

correction. They showed that using a pair of in-focus and out-of-focus images, a neural

network could infer the wavelength path variations and the wavefront tilt between the

array elements. The neural network architecture was fairly simple with a single layer of

hidden nodes and sigmoid activation functions. Nevertheless, this first step showed that

the neural-net approach could be used for atmospheric compensation or alignment error

sensing.

Shortly after this first successful use of neural network, multiple researches were initiated.

Among the most notable, Sandler et al. [18] reiterates the experiment based on a real star.

The network was this time train to estimate the first 10 Zernike modes of the wavefront.

The objective function was the squared error between the real and estimated Zernike

coefficients. A illustration of the neural network architecture is given in the figure 2.11.

The neural network performance was also compared to conventional Hartmann sensor.

Finally, artificial neural networks have also been used to estimate the optical aberration of

space telescopes. In 1993, Barret et al. [19] used a similar network architecture to recover
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Figure 2.10: Schematic representation of the operation of the artificial neural network
used to recover the phase. The first layer of neurons takes the intensity (camera data)

from the two focal planes. [18]

the static aberrations in the Hubble Space Telescope (HST) primary mirror. Identically

to Sandler et al. the network was trained to estimate the first Zernike coefficients and

optimized with respect to the mean squared error. They thus successfully recovered

phase distortion within only a small residual error.

2.3.2 Convolutional neural networks

2.3.2.1 Description

Regular fully-connected neural networks do not scale well to high dimension images. For

example, let us consider a fully-connecteded network with a single layer composed of

k nodes. For an input image of 128 × 128 × 2, the number of interconnections (and

weights) is given by k × 128 × 128 × 2. If k is small it may not be a problem but it

highly limits the representation capacity of the network, therefore large values of k are

often needed and cause fully-connected networks to be particularly inefficient to process

images. Furthermore, fully-connected networks do not preserve the spatial organization

of the images through the network. They are therefore difficult to deal with and to

interpret.
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Convolutional neural network (CNN or ConvNet) considers another approach, they take

advantage of the hierarchical pattern in the images. The idea behind CNN is inspired by

a biological concept: the receptive field. The receptive field a portion of sensory space

which can trigger the activation of neuronal cell. It basically acts as a detector sensitive

to a particular type of stimuli. For instance, an edge or a color. Convolutional neural

networks approximates this biological function using the convolution operation.

Figure 2.11: Example of convolution operation for input data x ∈ R1×5×5 and a
convolution kernel u ∈ R1×3×3. [Li Yin, Computer vision blog]

Let us consider an input x of size RC×H×W (e.g. 2 × 128 × 128) and a convolution

kernel u of receptive field RC×h×w (e.g. 2× 3× 3). The convolution operation consists

in sliding the kernel across the input image and sum the element-wise product between

the overlapping input elements and the kernel weights (u, b).

oi,j = bi,j +

C−1∑
c=0

(uc ∗ xc)[i, j] = bi,j +

C−1∑
c=0

N−1∑
n=0

M−1∑
m=0

uc,n,mxc,n+i,m+j (2.44)

The output o has the dimension RC×(H−h+1)×(W−ω+1). A multilayer convolutional neu-

ral network can then be built by repeating the convolution operation on the output.

Pooling layers

Along with the standard convolution layers, pooling layers are often used to down-sample

the feature map. It is mainly used to reduce the input dimension while preserving the

spatial organization. Considering an input tensor x ∈ RC×(rh)×(sw) and pooling filter of
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size h× w, the max pooling operation is defined as

oi,j = max
n<h,m<w

xc,ri+n,sj+m (2.45)

The output o has the dimension RC×r×s. Pooling layers also tends to decrease potential

over-fitting effects.

Figure 2.12: Max-pooling operation (kernel 2x2, stride 2x2) [20]

Batch normalization layers

Batch normalization layers [21] are also often used to control the output of the convolution

layers. During the training, the distribution of the activations is constantly changing

and tends to slow down the training as the layers must adapt themselves to changing

distributions. Batch normalization layers solve this issue by normalizing the input of

each layer. First the mean and the variance of the layers are computed over a batch

µB =
1

B

B∑
b=1

xb (2.46)

σ2
B =

1

B

B∑
i=b

(xb − µB)2 (2.47)

Then, the input x is normalized, scaled and shifted

ob = γ
xb − µB√
σ2
B + ε

+ β (2.48)

γ and β are parameters optimized during the learning.

21



Background

Optimization

Neural networks performances are assessed with respect to a given metric L(θ), for

example the root mean squared error (RMSE). This metric depends on the network

parameters θ and is typically computed over a small subset of the data called a batch,

L(θ) =
1

B

N∑
b=1

`
(
yb, f(xb; θ)

)
(2.49)

where xb represents the network input, yb the label and f the network function. The

goal of the training is to minimize the error between yb and the network output value

f(xb; θ). The network parameters are thus carefully tuned by batch gradient descent

∇L(θ) =
1

B

N∑
b=1

∇θ`
(
yb, f(xb; θ)

)
(2.50)

θt+1 = θt − γ∇L(θ) (2.51)

where γ is called the learning rate. The learning rate defines the step length taken in the

inverse direction the gradient. A high learning rate enables to train the model faster but

increase the probability of missing some optimum. At opposite, a small learning rate has

higher probability of converging to an adequate minimum but results in slower training.

Furthermore, if the slope of the optimization landscape varies too much along different

directions, a constant learning rate is often inappropriate and yield poor training perfor-

mances. To counteract this problem, different flavours of the stochastic gradient descent

algorithms have been proposed: SGD with momentum, Adaptive Moment Estimation

(Adam), RMSProp...

2.3.2.2 State-fo-the-art architecture

VGG-16

VGG is a very deep convolutional network appeared in 2014 after reaching the second

place of the ILSVRC 2015 challenge. It achieved 92.7% top-5 test accuracy in ImageNet, a

data set containing more than 14 millions of images belonging to 1000 different classes. It

was proposed by Simonyan and Zisserman from the university of Oxford. [22] It consists

of successive 3 × 3 convolutional layers followed by max pooling layers and regularly

repeated. In this thesis, the same architecture is used, only the last fully connected

layers are removed and replaced to perform regression instead of classification. The
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training of the network will also take advantages of the pretrained weights of the model

on Imagenet to speed-up the training.

Figure 2.13: VGG-16 architecture. [22]

Resnet

About a year later in 2015, Residual Neural Network (ResNet) [23] appeared and in-

troduced an innovative architecture based on skip connections and systematic batch

normalization. One of the motivations of this architecture is the vanishing gradient

problem. In very deep neural networks, the intensity of gradients may decrease from lay-

ers to layers during the backpropagation steps. To overcome this issue, the introduction

of skip connections ensure the smooth and easy flow of the gradients. This architecture

enables to create very deep networks with up to 152 successive layers.

Figure 2.14: Resnet-34 architecture. [23]

Inception v3

The inception v3 architecture [24] proposes an alternative to the assembly conventional

layers: instead of creating very deep networks which are particularly difficult to optimize,

the idea is to make the network wider instead of deeper. The solution is to use at the

same level multiple filters of different sizes and shapes. For example, 1×1, 3×3 and 1×7

convolution kernels are applied to the same feature map and each one detects specific

patterns depending on its receptive field properties. Secondly, it also uses an auxiliary
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classifier as regularizer. The architecture is shown in the Figure 2.15. For this project, a

input convolutional layer and a pooling layer have been added at the start of the network.

It ensure that the input features map contains 3 channels (as in standard RGB images).

The last fully connected layers have also been modified to perform regression.

Figure 2.15: Adapted Inception v3 architecture used to predict Zernike coefficients.
The layers flow from left to right, where the input is fed to the furthest left convolutional

block, and the output comes from the furthest right fully connected block. [11]

Unet

The U-Net is a convolutional neural network initially proposed to perform biomedical

image segmentation. Its name come from the U-shaped geometry of its architecture. It

can be divided in three parts: the contraction, the bottleneck and the expansion. First,

the contraction part is made of successive 3 × 3 convolution layers followed 2 × 2 max

pooling layers. The operation is repeated multiple times to progressively downsample

the feature map. Secondly from the extracted features contained in the bottleneck, the

expansion part progressively upsamples the data using unpooling layers and skip con-

nections. At the end, a image of the same size than the input image is recovered. In this

project, to perform regression instead of segmentation, the last Softmax layer has been

removed.

Figure 2.16: Unet architecture.
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2.3.2.3 Application to wavefront sensing

One of the first use of deep neural networks to the phase problem was performed in 2017

by A. Sinha et al. [25] They demonstrated for the first time in computational imaging

that a deep neural network (DNN) can be trained to solve inverse problem. Using raw

intensity images, they showed that their network architectures was able to recover the

phase object. Even thought this research is not directly focused on astronomical images,

it suggests new opportunities for image-based wavefront sensing.

Following this idea in march 2018, S. Paine and J. R. Fienup applied deep conventional

neural networks to estimate the Zernike coefficients from aberrated PSFs. [11] Using

256× 256 px input images, they successfully trained a state-of-the-art CNN architecture

called Inception V3. They showed that convolutional neural networks could be used in

collaboration with iterative algorithms to solve the «capture range problem» and produce

initial guess close enough to the exact solution.

Finally in January 2019, Y. Nishizaki et al. presented a new class of wavefront sensors

based on conventional neural networks. [26] Using different preconditioners: overexpo-

sure, defocus or scattering, they showed that the estimation of the Zernike coefficients

from point spread function could be improved. Furthermore, they expanded the method

to extended sources and demonstrated that despite a small accuracy drop, the Zernike

coefficients were still well estimated.
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Simulations

In this chapter, we will start by introducing the data set, the data simulation methods

and the data preprocessing. Then, the performance of several deep convolution neural

network architectures (CNN) on this specific data set are reviewed. Two configurations

are investigated. First, the estimation of the Zernike coefficients from distorted point

spread functions (Resnet, Inception, ...) and secondly the direct estimation of the cor-

responding phase without decomposition on a modal basis (Unet). Finally, the overall

accuracy and robustness of CNNs are investigated and their performance is compared

with conventional iterative algorithms.

3.1 Data description

The data consists of a set of numerically simulated and aberrated PSF pairs: in-focus and

out-of-focus. The two images are then concatenated along the Z-axis and form an input

feature map of size 128× 128× 2. Each pair is labelled by the corresponding phase map,

i.e. the wavefront aberrations. Two distinct data set of 100, 000 images are constituted.

The first one encompasses only the first 20 Zernike modes while the second has been

extended up to 100 Zernike modes. In both situations, the piston mode is discarded.

Concerning the physical parameters, the observation wavelength λ has been chosen in

the near-infrared at 2.2µm and the telescope diameter has been set to 10m. This is

for example representative of existing instruments such as NIRC-2 at Keck Observatory

which operates in-between 1 and 5µm with a primary mirror of 10m. The pixel scale

of the science camera is fixed to 0.01 arcseconds per pixel. It ensures that the sampling

rate is slightly greater than the Nyquist sampling, i.e. several pixels cover the main PSF

peak. The number of phase points across the pupil is also set to 128
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3.1.1 Simulation process

The numerical generation of the data set is performed in Python (v3.7). To begin, the

first n (20 or 100) Zernike polynomials are computed using the Aotools1 library. The

pupil mask is also sampled over 128×128 pixels. The choice of the pupil size results from

the trade-off between a good pupil modelling (Figure 3.1) and a reasonable computation

time.

Figure 3.1: Pupil shape discretized over respectively 8, 32, 128 and 256 pixels. [13]

Secondly, to numerically reproduce non-common path aberrations, the phase map must

reflect typical errors of conventional optics. This is achieved by randomly generating

the Zernike coefficients and dividing each coefficient by its radial order (Figure 3.2).

This procedure approximates a power spectral density profile, S ≈ 1/f2 (where f is the

spatial frequency). Such profile is for instance frequently produced by polishing errors.

[27] The phase map θ(x′, y′) can then be constructed as a linear combination of the

Zernike polynomials.

θ(x′, y′) =

∞∑
i=0

ciZi(x
′, y′) (3.1)

Figure 3.2: Example of randomly generated Zernike coefficients following a 1/f2 PSD.

1https://github.com/AOtools/aotools
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And the corresponding power spectral density profile is illustrated in the Figure 3.3.

Figure 3.3: Power Spectral Density profile, Left: slice Right: Azimutal averaging

Once the phase map obtained, the optical aberrations are numerically propagated through

the optical system. The point spread functions were thus obtained using a Monte-Carlo

adaptive optics simulation toolkit, called Soapy2. Illustrations of the generated point

spread functions and the corresponding phase maps are available in the Table 3.1 (20

Zernike modes) and in the Table 3.2 (100 Zernike modes). The extension to 100 Zernike

polynomials introduces higher order modes which creates more rapidly varying phase

maps.
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Figure 3.4: First data set, 20 Zernike modes. Left: Root mean squared wavefront
error (RMS WFE) of the phase map Right: Strehl ratio of the in-focus PSF.
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Figure 3.5: Second data set, 100 Zernike modes. Left: Root mean squared wavefront
error (RMS WFE) of the phase map Right: Strehl ratio of the in-focus PSF.

2https://github.com/AOtools/soapy
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To characterize the generated data set, the root mean squared wavefront error (RMS

WFE) distribution of the phase map and the distribution of the strehl ratio (in-focus

PSF) are computed. It indicates us that the optical aberrations in both data set extend

from 290 to 400 nm RMS and roughly follow a Gaussian distribution. Also note that

both distributions can be related using the Maréchal approximation (Eq 2.15).

3.1.2 Noise

Finally, noise is added to the point spread functions. The noise encountered in astronom-

ical images may be split into various contributions. First assuming that a only fraction

of the incoming photons is converted into electrons the total number of electrons Ntot

collected at a given site (i.e. pixels) can be expressed as [28]

Ntot = N +NS +NDC +NR (3.2)

• N , corresponds to the number of electrons generated by light at a given site. It

corresponds to a fraction η of the number of photons. The ratio electron/photon

η is called the quantum efficiency.

• NS , the shot noise results from the quantum properties of light and express an

uncertainty in the number of electrons stored at a collection site. It is a fundamental

limit and cannot be removed. In practice, the number of electrons follows a zero-

mean Poisson distribution P (counting process). In particular, its variance equals

its mean N .

P (k) =
Nke−k

N !
(3.3)

Assuming then N >> 1, the Poisson distribution tends towards a Gaussian distri-

bution with a mean of N , and a standard deviation of σ =
√
N ,

P (k) =
1√

2πσ2
e−(k−N)2/2σ2

(3.4)

Therefore if we detect N photons per second from a star, it will ultimately remains

a fundamental uncertainty of
√
N. As this uncertainty scale as the square root of

the number of photons, it will mainly affect low intensity measurements.

• NDC , is the dark-current noise. It originates from the thermal ionization of the

detector itself.

• NR, corresponds to the read noise. It is associated to the electronics of the detec-

tors. More precisely, the output amplifier transforms the charges collected into a
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measurable voltage. During this process, a Gaussian zero mean read noise may be

generated. Moreover, this noise is independent of the number of collected electrons.

In this project, we consider the cases of bright astronomical objects such as stars. This

particular regime is dominated by the shot noise while the other noise sources remain

negligible.

Ntot ≈ N +NS + 0 + 0 (3.5)

Furthermore, assuming long enough exposure time, the signal-to-noise ratio (SNR) has

been adjusted to match an average value of 100 over the main PSF peak.

SNRpeak =
Signal
Noise

≈ 100 (3.6)

As illustrated in Figure 3.6, the noise effects are much more noticeable in peripheral and

low intensity regions. The point spread functions, the phase map and the corresponding

Zernike coefficients are then stored under the fits format (Flexible Image Transport Sys-

tem3) with a float 32 precision.
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Figure 3.6: Left: Noise free aberrated PSF Right: Noisy aberrated PSF (shot noise)

3.1.3 Preprocessing

Finally, before being fed to the convolutional neural networks, the point spread functions

will be preprocessed. The first step consists in normalizing the in-focus and out-of-focus

PSFs independently. The simulated PSFs may indeed records varying intensity, the
3https://fits.gsfc.nasa.gov/fits_documentation.html
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normalization therefore ensure the uniformity of the input data.

PSF ′i =
PSFi −min(PSF )

max(PSF )−min(PSF )
(3.7)

Alternatively the standardization of the inputs may also be consider, in the particular

case of this data set, both methods exhibited similar performances. Then, a stretching

operation is also applied to the PSFs. Its main goal is to improve the number of infor-

mative pixels and by consequences improve the ability of the CNN to identify important

features.

Stretching functions:

PSF ′i = PSFi (3.8)

PSF ′i =
√
PSFi (3.9)

PSF ′i = log (PSFi) (3.10)

Note that the square root preserves the
norm [0, 1]→ [0, 1].
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Figure 3.7: No stretching
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Figure 3.8: Square root stretching
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Figure 3.9: Logarithmic stretching

To preserve a good signal-to-noise ratio while improving the number of informative pixels,

the square root stretching was chosen. The phase map and the Zernike coefficients have

also been expressed in radians [−λ, λ] → [−π, π]. The standard error functions such as

the mean square error are scale sensitive, the range of each target pixels can thus affect

the neural network learning. By imposing a physically meaningful scaling, the relative

importance of each pixel is therefore constrained.
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Input feature map

In-focus PSF Out-of-focus PSF Phase map
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Table 3.1: Data set samples randomly drawn from the 100,000 available PSF pairs.
The phase map is generated from the 20 first Zernike polynomials (piston excluded).

Average Strehl ratio: in-focus 0.4679 out-of-focus 0.0908
Average rms wfe: in-focus 349.18 nm out-of-focus 638.98 nm (λ/4 defocus)

The pairs of point spread functions constitute the input of the CNN. The phase map
is the estimation objective, the networks are trained to minimize the error between the

exact and the estimated phase map.
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Input feature map

In-focus PSF Out-of-focus PSF Phase map
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Table 3.2: Data set samples randomly drawn from the 100,000 available PSF pairs.
The phase map is generated from the 20 first Zernike polynomials (piston excluded).

Average Strehl ratio: in-focus 0.5019 out-of-focus 0.1870
Average rms wfe: in-focus 308.77 nm out-of-focus 517.14 nm (λ/4 defocus)

The pairs of point spread functions constitute the input of the CNN. The phase map
is the estimation objective, the networks are trained to minimize the error between the

exact and the estimated phase map.

33



Simulations

3.2 Results 20-Zernike

3.2.1 Introduction

In this section, the different networks architectures are compared on the first data set. As

reminder, the first data set is generated from 20 Zernike coefficients and an average rms

wavefront error of 349.18 nm. The data set is respectively split as 90, 000 training images,

5, 000 test images and 5, 000 validation images. The training is performed using the

Pytorch library (v1.1) and the networks are trained using 2 GTX 1080. Two approaches

are considered. First, convolutional neural networks are used to estimated the Zernike

coefficients and the phase map is reconstructed as linear combinations of the estimated

coefficients.

θ(x, y) =
∞∑
i=0

ciZi(x, y) (3.11)

The networks are trained with respect to root mean squared error (RMSE) between the

exact (ci) and the estimated (c′i) coefficients.

RMSE =

√∑20
i=1(ci − c′i)2

20
(3.12)

The state-of-the-art architectures considered are: VGG-16, Resnet-50 and Inception-V3.

Secondly, a particular CNN architecture, Unet is trained to directly estimate the phase

map. Instead of estimating the Zernike coefficients and then reconstructing the phase,

this network will directly provide a pixel-wise estimation of the phase. The Zernike

coefficients can then be recovered by projecting the phase onto the Zernike orthogonal

basis.

ci =
< θ(x, y), Zi(x, y) >

< Zi(x, y), Zi(x, y) >
(3.13)

This network is trained with respect to pixel-wise root mean squared error (RMSE)

between the exact (θ) and the estimated (θ′) phase map.

RMSE =

√
1

N(Ω)

∑
i,j∈Ω

(θ(xi, yi)− θ′(xj , yj))2 (3.14)

where Ω is the sampled pupil aperture and N(Ω) is the total number of pixels within

the pupil. For each architecture, the training curve, the error on the estimated Zernike

coefficients and rms wavefront error is presented.
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3.2.2 Models

3.2.2.1 VGG-16

The VGG architecture has been

trained over 300 epochs using the

Adam optimizer. The batch size

has been fixed to 128 and the learn-

ing rate has been set to 10−5. The

learning rate is kept constant, de-

creasing it or increasing the num-

ber of epochs do not improved the

results. Also, note that the train-

ing do not show characteristics of

overfitting even though no regular-

ization was applied. The network is

initialized using Imagenet [29] pre-

trained weights.
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Figure 3.10: VGG-16 validation and training
learning curve of the RMSE over the Zernike
coefficients. Optimizer=Adam, Learning rate

= 10−5 and batch size=128
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Figure 3.11: Comparison between the exact and the estimated Zernike coefficients
from in-focus and out-of-focus PSF using VGG-16.

The final rms error over the Zernike coefficients and the phase map are computed using

Monte Carlo simulations over the test set.

RMSE Unit RMSE Unit

Coefficients 0.0107± 0.0018 [Rad] 3.746± 0.630 [nm]

Phase 0.0387± 0.0059 [Rad] 13.505± 1.815 [nm]

Table 3.3: Root mean squared error over the Zernike coefficients and the phase map
for the VGG-16 architecture.
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3.2.2.2 Inception v3

The Inception architecture has

been trained over 350 epochs

using the SGD optimizer with

momentum=0.9. The training of

this network is a bit more tricky,

the training is first performed from

scratch. The batch size has been

fixed to 64 and the learning rate

has been set to 10−4 for the convo-

lution layers and 10−3 for the fully

connected layers. The learning rate

is kept constant along the epochs.

The most noticeable difference with

the VGG is the higher variability of

the validation error.
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Figure 3.12: Inception v3 validation and
training learning curve of the RMSE over the
Zernike coefficients. Optimizer=SGD, momen-
tum = 0.9, Learning rate = 10−4 (Conv) and

10−3 (FC), batch size=128
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Figure 3.13: Comparison between the exact and the estimated Zernike coefficients
from in-focus and out-of-focus PSF using Inception v3.

The final rms error over the Zernike coefficients and the phase map are computed using

Monte Carlo simulations over the test set.

RMSE Unit RMSE Unit

Coefficients 0.0094± 0.0030 [Rad] 3.293± 1.054 [nm]

Phase 0.0240± 0.0051 [Rad] 8.432± 1.816 [nm]

Table 3.4: Root mean squared error over the Zernike coefficients and the phase map
for the Inception architecture.
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3.2.2.3 Resnet-50

The Resnet-50 architecture was

trained over 400 epochs us-

ing the SGD optimizer with

momentum=0.9. The weights have

been initialized from pretrained

values on Imagenet. Neverthe-

less, no difference in term of the

convergence speed nor in term of

final accuracy were noticed when

training from scratch. The batch

size has been fixed to 64 and the

learning rate has been initially set

to 10−4. After the 300 first itera-

tions the learning rate is lowered to

10−5, it results in a direct accuracy

gain.
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Figure 3.14: Resnet-50 validation and train-
ing learning curve of the RMSE over the
Zernike coefficients. Optimizer=SGD, momen-
tum = 0.9, Learning rate = 10−4 (then 10−5),

batch size=128
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Figure 3.15: Comparison between the exact and the estimated Zernike coefficients
from in-focus and out-of-focus PSF using Resnet-50.

The final rms error over the Zernike coefficients and the phase map are computed using

Monte Carlo simulations over the test set.

RMSE Unit RMSE Unit

Coefficients 0.0058± 0.0021 [Rad] 2.030± 0.735 [nm]

Phase 0.0187± 0.0039 [Rad] 6.543± 1.365 [nm]

Table 3.5: Root mean squared error over the Zernike coefficients and the phase map
for the Resnet-50 architecture.
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3.2.2.4 Unet

The Unet network was trained over

300 epochs using the SGD opti-

mizer with momentum=0.9. The

best results were achieved using

Xavier initialization. [30] The

batch size has been fixed to 64 and

the learning rate has been set to

10−3. As previously mentioned, the

network is directly trained with re-

spect to the pixel-wise RMSE be-

tween the exact and the estimated

phase.
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Figure 3.16: Unet validation and training
learning curve of the RMSE over the phase
map. Optimizer=SGD, momentum = 0.9,

Learning rate = 10−3 , batch size=128
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Figure 3.17: Comparison between the exact and the estimated Zernike coefficients
from in-focus and out-of-focus PSF using Unet.

The final rms error over the Zernike coefficients and the phase map are computed using

Monte Carlo simulations over the test set.

RMSE Unit RMSE Unit

Coefficients 0.0040± 0.0018 [Rad] 1.400± 0.630 [nm]

Phase 0.0132± 0.0019 [Rad] 4.621± 0.665 [nm]

Table 3.6: Root mean squared error over the Zernike coefficients and the phase map
for the Unet architecture.
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3.2.3 Comparison

The previous results first confirmed that convolutional neural networks may indeed be

used to perform wavefront sensing. In each cases, the wavefront has been successfully

estimated within 10 nm RMS error. A performance gap is however noticeable between

the investigated architectures. For instance, the Resnet-50 almost reduce by a factor 2

the phase error with respect to the VGG-16 architecture. This is probably due to the

inherent simplicity of the VGG architecture while the residual network is built upon a

more complex pattern and skip connections. In summary, the final performance of each

CNN is shown in the following figure.
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Figure 3.18: RMS wavefront error between the exact and the estimated phase map
for the different architectures explored.

The network performances may also be compared in term of memory consumption, in-

ference time and in term of the total number of internal parameters.

Architecture Nbr of
parameters Size (MB) Inference time (s)

VGG-16 51, 713, 757 886.86 0.3469s

Inception V3 25, 153, 253 322.69 0.1954s

Resnet-50 23, 712, 941 378.78 0.2093s

Unet 27, 395, 265 484.22 0.2793s

Table 3.7: Average values of the network characteristics for a single input (batch size
= 1). The inference time (forward pass) is calculated on CPU, Intel Xeon e3-1230v5.
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It is shown that reconstructing directly the phase with a neural net (Unet) outper-

forms reconstructed phase from estimated Zernike coefficients. One may however have

feared that the projection of pixel-wise approximation introduces high order frequency

variations. Experimentally, the phase map reconstructed using Unet have shown great

smoothness and small pixel to pixel variation. To illustrate these remarks, an example is

provided. Let us consider the initially aberrated PSF and the corresponding wavefront.
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Figure 3.19: Left: Aberrated in-focus PSF Right: Corresponding phase map

Then, using our two best approaches (Unet and Resnet), the previous PSFs (in- and out-

of-focus) are fed to the networks and the phase map is estimated. The residual phase

map θ − θ′ is finally compared using the two approaches.
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Figure 3.20: Residual phase map Left: Resnet-50 Right: Unet. The colorbar is
expressed in [Rad].

First, we notice that both networks provide completely different residual errors. Even

though, the networks have been trained using the exact same data, the learning process

is closely related to the architecture. Similar results were observed with the remaining

architectures (VGG, Inception). Secondly, we also notice that the residual phase map

obtained with Unet suffers from pixels-to-pixels discontinuities and a lack of smoothness.

Nevertheless due to the small range of the discontinuities in comparison of the initial

wavefront, the discontinuities may be considered negligible and are hardly noticeable.
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Figure 3.21: Estimated phase map Left: Resnet-50 Right: Unet.

Finally, assuming that we could perfectly apply the estimated phase to correct the wave-

front, the point spread functions converge towards the diffraction limits.
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Figure 3.22: Corrected PSF Left: Resnet-50, strehl ratio=0.9907 Right: Unet,
strehl ratio=0.9934.

3.3 Results 100-Zernike

3.3.1 Introduction

In this section, the network robustness is evaluated on a more complex data set. The

number of Zernike polynomials has been extended up to 100. The piston mode is still

not considered. The average RMS wavefront error is kept similar with the previous data

set at an average value of 308.77 nm. The data set is respectively split as 90, 000 training

images, 5, 000 test images and 5, 000 validation images. As demonstrated, in the first

part, the VGG-16 model is slow and comparatively inefficient, we therefore removed it

from the list of investigated architectures. Then, to explore even more the capability

of deep neural network to directly infer the wavefront map. A slightly modified and

improved version of Unet naturally called Unet++ is also considered. [31]
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3.3.2 Models

3.3.2.1 Resnet-50
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Figure 3.23: Resnet-50 validation and training learning curve of the RMSE over the
phase map. Optimizer=SGD, momentum = 0.9, batch size=128

The Resnet-50 architecture was trained over 450 epochs using the SGD optimizer with

momentum=0.9 (Nesterov). The weights have been initialized from pretrained values

on Imagenet. The batch size has been fixed to 64 and the learning rate has be initially

set to 10−3. After the 280 first iterations, the learning rate is lowered to 10−4 and 80

iterations later again divided by 10. This update technique is known as step learning

rate. [23] At start the learning rate is high allowing a fast training of the network. Then

the network reaches a point where the optimization landscape requires smaller steps to

converge. By reducing progressively the learning rate, we therefore improve the final

performance and ensure the convergence to, at least, a local optimum.
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Figure 3.24: Comparison between the exact and the estimated Zernike coefficients
from in-focus and out-of-focus PSF using Resnet-50.
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The estimation of the Zernike coefficients is much more difficult with this second data

set. Nonetheless, the order of magnitude of the original ones is well recovered. We

also notice that the first coefficients are better estimated than the latest. The larger

magnitude of the first coefficients (1/f2 law) increases their visible effects on the PSFs.

By consequences, the network recognizes more easily the low order modes.

RMSE Unit RMSE Unit

Coefficients 0.1978± 0.0387 [10−3Rad] 0.0665± 0.0105 [nm]

Phase 0.114± 0.0133 [Rad] 39.916± 4.689 [nm]

Table 3.8: Root mean squared error over the Zernike coefficients and the phase map
for the Resnet architecture.

Note that as the number of Zernike coefficients has been increased from 20 to 100, the

RMSE metric over the Zernike coefficients is not comparable to the previous data set.

The higher order modes have smaller norm, they thus lower the error value while the

coefficients are on average less accurately estimated than in the first data set. The

relevant comparison metric is the RMSE over the phase map.

3.3.2.2 Unet

The Unet network was trained over

300 epochs using the SGD opti-

mizer with momentum=0.9. Other

optimizers such as Adam have also

been tested and yield similar re-

sults. The network weights were

initialized using Xavier initializa-

tion. The batch size has been

fixed to 64 and the learning rate

has be set to 10−3. As previously

mentioned, the network is directly

trained with respect to the pixel-

wise RMSE between the exact and

the estimated phase.
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Figure 3.25: Unet validation and training
learning curve of the RMSE over the phase
map. Optimizer=SGD, momentum = 0.9,

Learning rate = 10−3 , batch size=64
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Once again, the direct estimation of the phase map (Unet) outperformed the modal basis

reconstruction (Resnet). The projection of the phase map on the Zernike basis allows

the estimation of the coefficients without issues.
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Figure 3.26: Comparison between the exact and the estimated Zernike coefficients
from in-focus and out-of-focus PSF using Unet.

As the results between Unet and Unet++ are very close and the training method is

similar, the final accuracy is expressed together.

Unet RMSE Unit RMSE Unit

Coefficients 0.1123± 0.0210 [10−3Rad] 0.0350± 0.0077 [nm]

Phase 0.097± 0.0109 [Rad] 33.963± 3.816 [nm]

Unet++ RMSE Unit RMSE Unit

Coefficients 0.1091± 0.0223 [10−3Rad] 0.0382± 0.0078 [nm]

Phase 0.094± 0.0133 [Rad] 32.910± 4.551 [nm]

Table 3.9: Root mean squared error over the Zernike coefficients and the phase map
for the Unet and the Unet++ architecture.

Both architectures are essentially deep encoder-decoder networks. Unet++ simply

differs by the introduction of a series of nested, dense skip pathways between the

encoder and the decoder. The number of filters is also identical in both networks

([64, 128, 256, 512]). This similarity explain the close results. The slightly improvement

of Unet++ is mainly due to two factors: 1) the skip connections which improves the

gradient flow [31] 2) the higher number of trainable parameters, see Table 3.10. The
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number of parameters and especially the memory consumption of the nested architecture

(Unet++) is much more important. There is thus a trade-off between the accuracy gain

and the training time/model size.

Architecture Nbr of
parameters Size (MB) Inference time (s)

Unet 27, 395, 265 484.22 0.2793s

Unet++ 34, 829, 505 2444.22 0.413s

Table 3.10: Average values of the network characteristics for a single input (batch size
= 1). The inference time (forward pass) is calculated on CPU, Intel Xeon e3-1230v5.

3.3.3 Comparison

This extended set of data first demonstrated that convolutional neural networks can be

trained to estimate a large number of Zernike coefficients. This extension has however

a non negligible cost, it reduces significantly the network performances. In both data

set, the direct pixel-wise wavefront estimation (Unet) exhibited increased performances.

Finally, it can be noticed that the Inception architecture performs slightly better than the

Resnet architecture on the second data set (100 Zernike) while the opposite behaviour is

observed on the first data set. (20 Zernike) The exact reason is still unclear and further

investigations may be conducted.
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Figure 3.27: RMS wavefront error between the exact and the estimated phase map
for the different architectures explored.
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Example

To illustrate the network performances, let us consider a randomly sampled in-focus and

out-of-focus PSFs. It constitutes the input of our neural network.

Figure 3.28: Left: In-focus PSF (Strehl=0.63) Right: Out-of-focus PSF
(Strehl=0.44) randomly drawn from the validation set with 100 Zernike modes.

From these inputs, we compare the estimated phase map θ′ recovered by Unet with the

exact phase map θ.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

/2

0

/2

0 20 40 60 80 100 120

0

20

40

60

80

100

120
0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 3.29: Left: Estimated phase map θ′ Right: Residual phase map: (θ − θ′)
obtained with Unet.

From the residual phase map (Figure 3.36),

it is noticed that the regions at the edges of

the map constitute the main source of error.

It indeed corresponds to the higher order

modes which are more likely to be mises-

timated. Overall, as shown in the Figure

3.30, the point spread function after cor-

rection is close to the diffraction limit. (i.e.

generated from the residual phase) Figure 3.30: Recovered PSF (Strehl
0.963) after correction with a perfect

AO system.
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3.3.4 Influence of the training size

The number of training samples also affects the final accuracy. Figure 3.31 clearly shows

that a larger training set improves the final network performances. Nevertheless, after

100, 000 examples, increasing furthermore the training size results in minimal accuracy

gain while requiring significantly longer training time. There is thus a trade-off between

the final performance and the training time. Finally, note that the network inference

time (i.e. time required to perform a prediction) is independent of the training size and

always requires the same time. It indeed solely relies on the number of parameters and

the network architecture.
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Figure 3.31: Unet metrics as function of the training data set size. Left: RMS
wavefront error between the exact and the estimated phase map (100 Zernike modes)

Right: Training time for 400 epochs in hours.

3.3.5 Influence of the phase diversity

Phase diversity has been shown to be particularly useful for conventional iterative

algorithms but what about neural networks? To asses the impact of the phase diversity

we have trained Unet with only in-focus PSFs then with only out-of-focus PSFs and

finally with both as in the previous configurations.

First, Figure 3.32 clearly shows that the simultaneous use of in-focus and out-of-focus

images improves significantly the final accuracy. We also notice that when working with

a single intensity measurement, it is preferable to use out-of-focus images rather than

in-focus images. This joins the observations of Y. Nishizaki et al. [26] which showed

that the use of a defocus preconditioner may be exploited to improve the final accuracy

of convolutional networks. It indeed increases the number of informative pixels and

highlights the PSF distortions. Finally, unlike iterative algorithms (GS, HIO, ...) neural

networks do not seem to suffer from the twin-images problem even from single intensity

measurements.
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Figure 3.32: Training curve of Unet with 100, 000 in-focus PSFs, out-of-focus PSFs
and both simultaneously. Optimizer=SGD, momentum = 0.9, Learning rate = 10−3,

batch size=64.

3.3.6 Robustness

The network performances may also be evaluated for different ranges of simulated wave-

front. First, let us compare a network trained with RMS wavefront errors extending

from 0.71 to 1.28 [Rad]. This is exactly the results of the previous sections, the net-

work is simply evaluated this time with aberrations of lower and higher magnitudes than

encountered in the training set. Then, the same network (Unet) is trained with PSFs

generated from phase maps extending from 0.23 to 1.95 [Rad]. The data set has exactly

the same size in both configurations: 100, 000 in-focus and out-of-focus PSF pairs.
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Figure 3.33: Residual RMS wavefront error as function of the input RMS wavefront
error. The green curve and green area correspond to the first training region (0.71 to
1.28 Rad) while the blue curve and the blue area correspond to the extended training
region (0.23 to 1.95 Rad). The network architecture is Unet and the training data set

contains 100, 000 images for each region.
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From Figure 3.33, we first notice that the error rapidly increases when exiting the training

area. The figure also shows that extending the training area improves the network

accuracy on a wider RMS range while preserving a relatively close accuracy.

3.3.7 Improvements

As previously demonstrated, training the same network on a wider training region does

not improve the final accuracy of the network. Moreover, it does not enable the same

network to correct simultaneously high and small wavefront errors. In this section, we

will therefore train a second network to correct the predictions of the first network and

achieve in fine better accuracy. The second network is trained from the 100, 000 corrected

in-focus and out-of-focus point spread functions of the first network (100 Zernike modes).

Phase Correction (θ−θ′)

Network 2

Network 1

Figure 3.34: Illustration of the iterative application of the two neural networks. The
input of the second neural network are the corrected in-focus and out-of-focus PSFs by

the first network.
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Figure 3.35: Second Unet network validation and training learning curve of the RMSE
over the phase map. Optimizer=SGD, momentum = 0.9, Learning rate = 10−5, batch

size=128

Both network architectures are identical (Unet) and are trained using similar procedure.

The only difference is the preprocessing of the second network input PSFs. As the

aberrations have already been partially corrected, the distortions are barely visible, a

logarithmic stretching is therefore preferred to the square root stretching. The Figure

3.35 illustrates that the training of a second network may be used to improve the

prediction. Both networks correct very different range of wavefront errors: ≈ 1Rad for

the first network and 0.1Rad for the second network. By combining both networks, a

final accuracy of 0.0334± 0.00451 Rad RMSE is reached. This is close to the correction

level achieved with a single network on 20 Zernike coefficients.

As example, let us consider a randomly selected phase map and let us evaluate the

residual phase map after the first and the second network corrections.
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Figure 3.36: Residual phase map: (θ − θ′) Left: First network Right: First and
second network.
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Conclusion

In this thesis, a new approach to wavefront sensing based on deep convolutional neural

networks have been proposed. Two procedures have been considered. First, the phase

map has been projected onto an orthogonal basis, the Zernike basis and deep neural

networks have been trained to estimate the coefficients of the phase expansion. (VGG,

Inception v3, Resnet) Secondly, instead of estimating the Zernike coefficients and then

reconstructing the phase map, neural networks (Unet, Unet++) have been trained to

directly provide a pixel-wise estimation of the phase map.

Two distinct data sets have been considered. The first one encompasses the first 20

Zernike modes while the second has been extended up to 100 Zernike modes. In both

configurations, the direct phase map estimation has been shown to outperform the

modal phase reconstruction. Secondly, it is highlighted that the extension to a large

number of Zernike modes reduces significantly the network performances. Nonetheless,

it is shown that a second neural network can be trained to correct the predictions and

to reach the same level of performances than obtained with 20 Zernike modes. Finally,

phase diversity has been shown to improve the CNN final accuracy without being a

necessary requirement.

Finally, future works may consider different levels of optical aberrations, different noise

realizations or even extended sources. Neural networks may also be trained using exper-

imental data rather than simulated data.
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VGG-16 architecture

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d -1 [-1, 3, 128, 128] 9

AdaptiveMaxPool2d -2 [-1, 3, 256, 256] 0

Conv2d -3 [-1, 64, 256, 256] 1,792

BatchNorm2d -4 [-1, 64, 256, 256] 128

ReLU -5 [-1, 64, 256, 256] 0

Conv2d -6 [-1, 64, 256, 256] 36,928

BatchNorm2d -7 [-1, 64, 256, 256] 128

ReLU -8 [-1, 64, 256, 256] 0

MaxPool2d -9 [-1, 64, 128, 128] 0

Conv2d -10 [-1, 128, 128, 128] 73 ,856

BatchNorm2d -11 [-1, 128, 128, 128] 256

ReLU -12 [-1, 128, 128, 128] 0

Conv2d -13 [-1, 128, 128, 128] 147 ,584

BatchNorm2d -14 [-1, 128, 128, 128] 256

ReLU -15 [-1, 128, 128, 128] 0

MaxPool2d -16 [-1, 128, 64, 64] 0

Conv2d -17 [-1, 256, 64, 64] 295 ,168

BatchNorm2d -18 [-1, 256, 64, 64] 512

ReLU -19 [-1, 256, 64, 64] 0

Conv2d -20 [-1, 256, 64, 64] 590 ,080

BatchNorm2d -21 [-1, 256, 64, 64] 512

ReLU -22 [-1, 256, 64, 64] 0

Conv2d -23 [-1, 256, 64, 64] 590 ,080

BatchNorm2d -24 [-1, 256, 64, 64] 512

ReLU -25 [-1, 256, 64, 64] 0

MaxPool2d -26 [-1, 256, 32, 32] 0

Conv2d -27 [-1, 512, 32, 32] 1,180 ,160

BatchNorm2d -28 [-1, 512, 32, 32] 1,024

ReLU -29 [-1, 512, 32, 32] 0

Conv2d -30 [-1, 512, 32, 32] 2,359 ,808

BatchNorm2d -31 [-1, 512, 32, 32] 1,024

ReLU -32 [-1, 512, 32, 32] 0

Conv2d -33 [-1, 512, 32, 32] 2,359 ,808

BatchNorm2d -34 [-1, 512, 32, 32] 1,024

ReLU -35 [-1, 512, 32, 32] 0

MaxPool2d -36 [-1, 512, 16, 16] 0
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Conv2d -37 [-1, 512, 16, 16] 2,359 ,808

BatchNorm2d -38 [-1, 512, 16, 16] 1,024

ReLU -39 [-1, 512, 16, 16] 0

Conv2d -40 [-1, 512, 16, 16] 2,359 ,808

BatchNorm2d -41 [-1, 512, 16, 16] 1,024

ReLU -42 [-1, 512, 16, 16] 0

Conv2d -43 [-1, 512, 16, 16] 2,359 ,808

BatchNorm2d -44 [-1, 512, 16, 16] 1,024

ReLU -45 [-1, 512, 16, 16] 0

MaxPool2d -46 [-1, 512, 8, 8] 0

AdaptiveAvgPool2d -47 [-1, 512, 7, 7] 0

Linear -48 [-1, 4096] 34 ,764 ,544

ReLU -49 [-1, 4096] 0

BatchNorm1d -50 [-1, 4096] 8,192

Linear -51 [-1, 1024] 4 ,195,328

ReLU -52 [-1, 1024] 0

BatchNorm1d -53 [-1, 1024] 2,048

Linear -54 [-1, 20] 20 ,500

================================================================

Total params: 121 ,713 ,757

Trainable params: 51 ,713 ,757

Non -trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.12

Forward/backward pass size (MB): 422.43

Params size (MB): 464.30

Estimated Total Size (MB): 886.86

----------------------------------------------------------------
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Inception-v3 architecture

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d -1 [-1, 3, 128, 128] 9

AdaptiveMaxPool2d -2 [-1, 3, 299, 299] 0

Conv2d -3 [-1, 32, 149, 149] 864

BatchNorm2d -4 [-1, 32, 149, 149] 64

BasicConv2d -5 [-1, 32, 149, 149] 0

Conv2d -6 [-1, 32, 147, 147] 9,216

BatchNorm2d -7 [-1, 32, 147, 147] 64

BasicConv2d -8 [-1, 32, 147, 147] 0

Conv2d -9 [-1, 64, 147, 147] 18,432

BatchNorm2d -10 [-1, 64, 147, 147] 128

BasicConv2d -11 [-1, 64, 147, 147] 0

Conv2d -12 [-1, 80, 73, 73] 5,120

BatchNorm2d -13 [-1, 80, 73, 73] 160

BasicConv2d -14 [-1, 80, 73, 73] 0

Conv2d -15 [-1, 192, 71, 71] 138 ,240

BatchNorm2d -16 [-1, 192, 71, 71] 384

BasicConv2d -17 [-1, 192, 71, 71] 0

Conv2d -18 [-1, 64, 35, 35] 12,288

BatchNorm2d -19 [-1, 64, 35, 35] 128

BasicConv2d -20 [-1, 64, 35, 35] 0

Conv2d -21 [-1, 48, 35, 35] 9,216

BatchNorm2d -22 [-1, 48, 35, 35] 96

BasicConv2d -23 [-1, 48, 35, 35] 0

Conv2d -24 [-1, 64, 35, 35] 76,800

BatchNorm2d -25 [-1, 64, 35, 35] 128

BasicConv2d -26 [-1, 64, 35, 35] 0

Conv2d -27 [-1, 64, 35, 35] 12,288

BatchNorm2d -28 [-1, 64, 35, 35] 128

BasicConv2d -29 [-1, 64, 35, 35] 0

Conv2d -30 [-1, 96, 35, 35] 55,296

BatchNorm2d -31 [-1, 96, 35, 35] 192

BasicConv2d -32 [-1, 96, 35, 35] 0

Conv2d -33 [-1, 96, 35, 35] 82,944

BatchNorm2d -34 [-1, 96, 35, 35] 192

BasicConv2d -35 [-1, 96, 35, 35] 0

Conv2d -36 [-1, 32, 35, 35] 6,144
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BatchNorm2d -37 [-1, 32, 35, 35] 64

BasicConv2d -38 [-1, 32, 35, 35] 0

InceptionA -39 [-1, 256, 35, 35] 0

Conv2d -40 [-1, 64, 35, 35] 16,384

BatchNorm2d -41 [-1, 64, 35, 35] 128

BasicConv2d -42 [-1, 64, 35, 35] 0

. .

. .

. .

Conv2d -279 [-1, 384, 8, 8] 786 ,432

BatchNorm2d -280 [-1, 384, 8, 8] 768

BasicConv2d -281 [-1, 384, 8, 8] 0

Conv2d -282 [-1, 384, 8, 8] 442 ,368

BatchNorm2d -283 [-1, 384, 8, 8] 768

BasicConv2d -284 [-1, 384, 8, 8] 0

Conv2d -285 [-1, 384, 8, 8] 442 ,368

BatchNorm2d -286 [-1, 384, 8, 8] 768

BasicConv2d -287 [-1, 384, 8, 8] 0

Conv2d -288 [-1, 448, 8, 8] 917 ,504

BatchNorm2d -289 [-1, 448, 8, 8] 896

BasicConv2d -290 [-1, 448, 8, 8] 0

Conv2d -291 [-1, 384, 8, 8] 1,548,288

BatchNorm2d -292 [-1, 384, 8, 8] 768

BasicConv2d -293 [-1, 384, 8, 8] 0

Conv2d -294 [-1, 384, 8, 8] 442 ,368

BatchNorm2d -295 [-1, 384, 8, 8] 768

BasicConv2d -296 [-1, 384, 8, 8] 0

Conv2d -297 [-1, 384, 8, 8] 442 ,368

BatchNorm2d -298 [-1, 384, 8, 8] 768

BasicConv2d -299 [-1, 384, 8, 8] 0

Conv2d -300 [-1, 192, 8, 8] 393 ,216

BatchNorm2d -301 [-1, 192, 8, 8] 384

BasicConv2d -302 [-1, 192, 8, 8] 0

InceptionE -303 [-1, 2048, 8, 8] 0

Linear -304 [-1, 20] 40 ,980

Inception3 -305 [[-1, 20], [-1, 1000]] 0

Phase2DLayer -306 [-1, 128, 128] 0

================================================================

Total params: 25 ,153 ,253

Trainable params: 25 ,153 ,253

Non -trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.12

Forward/backward pass size (MB): 226.62

Params size (MB): 95.95

Estimated Total Size (MB): 322.69

----------------------------------------------------------------
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Resnet-50 architecture

----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d -1 [-1, 3, 128, 128] 9

AdaptiveMaxPool2d -2 [-1, 3, 224, 224] 0

Conv2d -3 [-1, 64, 112, 112] 9,408

BatchNorm2d -4 [-1, 64, 112, 112] 128

ReLU -5 [-1, 64, 112, 112] 0

MaxPool2d -6 [-1, 64, 56, 56] 0

Conv2d -7 [-1, 64, 56, 56] 4,096

BatchNorm2d -8 [-1, 64, 56, 56] 128

ReLU -9 [-1, 64, 56, 56] 0

Conv2d -10 [-1, 64, 56, 56] 36,864

BatchNorm2d -11 [-1, 64, 56, 56] 128

ReLU -12 [-1, 64, 56, 56] 0

Conv2d -13 [-1, 256, 56, 56] 16,384

BatchNorm2d -14 [-1, 256, 56, 56] 512

Conv2d -15 [-1, 256, 56, 56] 16,384

BatchNorm2d -16 [-1, 256, 56, 56] 512

ReLU -17 [-1, 256, 56, 56] 0

Bottleneck -18 [-1, 256, 56, 56] 0

Conv2d -19 [-1, 64, 56, 56] 16,384

BatchNorm2d -20 [-1, 64, 56, 56] 128

ReLU -21 [-1, 64, 56, 56] 0

Conv2d -22 [-1, 64, 56, 56] 36,864

BatchNorm2d -23 [-1, 64, 56, 56] 128

ReLU -24 [-1, 64, 56, 56] 0

Conv2d -25 [-1, 256, 56, 56] 16,384

BatchNorm2d -26 [-1, 256, 56, 56] 512

ReLU -27 [-1, 256, 56, 56] 0

Bottleneck -28 [-1, 256, 56, 56] 0

Conv2d -29 [-1, 64, 56, 56] 16,384

BatchNorm2d -30 [-1, 64, 56, 56] 128

ReLU -31 [-1, 64, 56, 56] 0

Conv2d -32 [-1, 64, 56, 56] 36,864

BatchNorm2d -33 [-1, 64, 56, 56] 128

ReLU -34 [-1, 64, 56, 56] 0

Conv2d -35 [-1, 256, 56, 56] 16,384

BatchNorm2d -36 [-1, 256, 56, 56] 512
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ReLU -37 [-1, 256, 56, 56] 0

Bottleneck -38 [-1, 256, 56, 56] 0

Conv2d -39 [-1, 128, 56, 56] 32,768

BatchNorm2d -40 [-1, 128, 56, 56] 256

ReLU -41 [-1, 128, 56, 56] 0

Conv2d -42 [-1, 128, 28, 28] 147 ,456

BatchNorm2d -43 [-1, 128, 28, 28] 256

ReLU -44 [-1, 128, 28, 28] 0

Conv2d -45 [-1, 512, 28, 28] 65,536

BatchNorm2d -46 [-1, 512, 28, 28] 1,024

Conv2d -47 [-1, 512, 28, 28] 131 ,072

BatchNorm2d -48 [-1, 512, 28, 28] 1,024

ReLU -49 [-1, 512, 28, 28] 0

Bottleneck -50 [-1, 512, 28, 28] 0

. .

. .

. .

ReLU -160 [-1, 512, 7, 7] 0

Conv2d -161 [-1, 2048, 7, 7] 1 ,048,576

BatchNorm2d -162 [-1, 2048, 7, 7] 4,096

ReLU -163 [-1, 2048, 7, 7] 0

Bottleneck -164 [-1, 2048, 7, 7] 0

Conv2d -165 [-1, 512, 7, 7] 1 ,048,576

BatchNorm2d -166 [-1, 512, 7, 7] 1,024

ReLU -167 [-1, 512, 7, 7] 0

Conv2d -168 [-1, 512, 7, 7] 2 ,359,296

BatchNorm2d -169 [-1, 512, 7, 7] 1,024

ReLU -170 [-1, 512, 7, 7] 0

Conv2d -171 [-1, 2048, 7, 7] 1 ,048,576

BatchNorm2d -172 [-1, 2048, 7, 7] 4,096

ReLU -173 [-1, 2048, 7, 7] 0

Bottleneck -174 [-1, 2048, 7, 7] 0

AdaptiveAvgPool2d -175 [-1, 2048, 1, 1] 0

Linear -176 [-1, 100] 204 ,900

ResNet -177 [-1, 100] 0

Phase2DLayer -178 [-1, 128, 128] 0

================================================================

Total params: 23 ,712 ,941

Trainable params: 23 ,712 ,941

Non -trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.12

Forward/backward pass size (MB): 288.20

Params size (MB): 90.46

Estimated Total Size (MB): 378.78

----------------------------------------------------------------
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Unet architecture
----------------------------------------------------------------

Layer (type) Output Shape Param #

================================================================

Conv2d -1 [-1, 64, 128, 128] 1,216

BatchNorm2d -2 [-1, 64, 128, 128] 128

ReLU -3 [-1, 64, 128, 128] 0

Conv2d -4 [-1, 64, 128, 128] 76,928

BatchNorm2d -5 [-1, 64, 128, 128] 128

ReLU -6 [-1, 64, 128, 128] 0

double_conv -7 [-1, 64, 128, 128] 0

inconv -8 [-1, 64, 128, 128] 0

MaxPool2d -9 [-1, 64, 64, 64] 0

Conv2d -10 [-1, 128, 64, 64] 143 ,856

BatchNorm2d -11 [-1, 128, 64, 64] 256

ReLU -12 [-1, 128, 64, 64] 0

Conv2d -13 [-1, 128, 64, 64] 347 ,584

BatchNorm2d -14 [-1, 128, 64, 64] 256

ReLU -15 [-1, 128, 64, 64] 0

double_conv -16 [-1, 128, 64, 64] 0

down -17 [-1, 128, 64, 64] 0

MaxPool2d -18 [-1, 128, 32, 32] 0

Conv2d -19 [-1, 256, 32, 32] 595 ,168

BatchNorm2d -20 [-1, 256, 32, 32] 512

ReLU -21 [-1, 256, 32, 32] 0

Conv2d -22 [-1, 256, 32, 32] 1,090 ,080

BatchNorm2d -23 [-1, 256, 32, 32] 512

ReLU -24 [-1, 256, 32, 32] 0

double_conv -25 [-1, 256, 32, 32] 0

down -26 [-1, 256, 32, 32] 0

MaxPool2d -27 [-1, 256, 16, 16] 0

Conv2d -28 [-1, 512, 16, 16] 2,180 ,160

BatchNorm2d -29 [-1, 512, 16, 16] 1,024

ReLU -30 [-1, 512, 16, 16] 0

Conv2d -31 [-1, 512, 16, 16] 4,359 ,808

BatchNorm2d -32 [-1, 512, 16, 16] 1,024

ReLU -33 [-1, 512, 16, 16] 0

double_conv -34 [-1, 512, 16, 16] 0

down -35 [-1, 512, 16, 16] 0

MaxPool2d -36 [-1, 512, 8, 8] 0

Conv2d -37 [-1, 512, 8, 8] 4,359 ,808

BatchNorm2d -38 [-1, 512, 8, 8] 1,024
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ReLU -39 [-1, 512, 8, 8] 0

Conv2d -40 [-1, 512, 8, 8] 4,359 ,808

BatchNorm2d -41 [-1, 512, 8, 8] 1,024

ReLU -42 [-1, 512, 8, 8] 0

double_conv -43 [-1, 512, 8, 8] 0

down -44 [-1, 512, 8, 8] 0

Upsample -45 [-1, 512, 16, 16] 0

Conv2d -46 [-1, 256, 16, 16] 4,359 ,552

BatchNorm2d -47 [-1, 256, 16, 16] 512

ReLU -48 [-1, 256, 16, 16] 0

Conv2d -49 [-1, 256, 16, 16] 1,090 ,080

BatchNorm2d -50 [-1, 256, 16, 16] 512

ReLU -51 [-1, 256, 16, 16] 0

double_conv -52 [-1, 256, 16, 16] 0

up -53 [-1, 256, 16, 16] 0

Upsample -54 [-1, 256, 32, 32] 0

Conv2d -55 [-1, 128, 32, 32] 589 ,952

BatchNorm2d -56 [-1, 128, 32, 32] 256

ReLU -57 [-1, 128, 32, 32] 0

Conv2d -58 [-1, 128, 32, 32] 347 ,584

BatchNorm2d -59 [-1, 128, 32, 32] 256

ReLU -60 [-1, 128, 32, 32] 0

double_conv -61 [-1, 128, 32, 32] 0

up -62 [-1, 128, 32, 32] 0

Upsample -63 [-1, 128, 64, 64] 0

Conv2d -64 [-1, 64, 64, 64] 347 ,520

BatchNorm2d -65 [-1, 64, 64, 64] 128

ReLU -66 [-1, 64, 64, 64] 0

Conv2d -67 [-1, 64, 64, 64] 76,928

BatchNorm2d -68 [-1, 64, 64, 64] 128

ReLU -69 [-1, 64, 64, 64] 0

double_conv -70 [-1, 64, 64, 64] 0

up -71 [-1, 64, 64, 64] 0

Upsample -72 [-1, 64, 128, 128] 0

Conv2d -73 [-1, 64, 128, 128] 73 ,792

BatchNorm2d -74 [-1, 64, 128, 128] 128

ReLU -75 [-1, 64, 128, 128] 0

Conv2d -76 [-1, 64, 128, 128] 36 ,928

BatchNorm2d -77 [-1, 64, 128, 128] 128

ReLU -78 [-1, 64, 128, 128] 0

double_conv -79 [-1, 64, 128, 128] 0

up -80 [-1, 64, 128, 128] 0

Conv2d -81 [-1, 1, 128, 128] 577

outconv -82 [-1, 1, 128, 128] 0

================================================================

Total params: 27 ,395 ,265

Trainable params: 27 ,395 ,265

Non -trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.12

Forward/backward pass size (MB): 433.00

Params size (MB): 51.10

Estimated Total Size (MB): 484.22

----------------------------------------------------------------
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