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Introduction

Suppose you are interested in estimating the mean θ of a Gaussian law and dispose, to
this end, of a single random Gaussian variable X (which, as the Gaussian law is sum-
stable, could itself be the sample mean of a large number of independent Gaussian random
variables). Given the symmetry of the normal distribution, our intuition tells us that
looking at X itself is the best way to estimate θ. To assess the quality of our intuitive
estimator, the square error loss function and its associated risk, the mean square error, are
the most common evaluation criterion. There are many reasons behind this popularity:
convenience, elegance, mathematical tractability... In our case, an additional reason is
its intrinsic link with the Gaussian law. Indeed, for the normal distribution, taking the
maximum likelihood estimator is the same as minimizing the mean square error, and the
estimator obtained this way is X, confirming our intuition. To further assess the quality
of an estimator, there exists other ways: two important ones to set up the premises of this
work are given in the following definitions.

Definition. An estimator δ∗ of a parameter θ ∈ Θ is minimax with respect to a risk
function R(θ, δ) if

sup
θ∈Θ

R(θ, δ∗) = inf
δ

sup
θ∈Θ

R(θ, δ)

Intuitively, an estimator is minimax if it is "the best in the worst case".

Definition. An estimator δ∗ of a parameter θ ∈ Θ is admissible with respect to a risk func-
tion R(θ, δ) if no other estimator dominates it, meaning there does not exist an estimator
δ such that R(θ, δ) ≤ R(θ, δ∗) for all θ and R(θ, δ) < R(θ, δ∗) for at least some θ.

In one dimension, the estimator X is minimax and admissible (see [12] and references
in it), and at first glance, nothing seems to indicate that it should be any different in higher
dimensions. In fact, the estimator X, for a variable whose mean is the vector θ, is minimax
in any dimension and if the dimension is p and the covariance is σ2I (we look at this case
for simplicity as it is equivalent to looking at p independent one dimensional Gaussian
variables and it makes computations easy), then the mean square error, E [‖X − θ‖2], is
equal to pσ2. It has also been shown to be admissible for p = 2 (see [12]), but in 1956,
Charles Stein found estimators that dominate X as soon as p is greater or equal to 3. More
precisely, he exhibited a biased estimator of the form X + g(X), with g a certain function,
that is also minimax: its risk is p minus a term proportional to 1

‖X‖2 so it becomes equal
to that of X when the norm of θ goes to infinity, but with lower risk for all finite θ. One
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could say it exploits the weakness in the definition of a minimax estimator. This somewhat
paradoxical result, stating in essence that combined information on unrelated events could
bring better results overall than looking at each individually, came as a big surprise when
first presented, but soon led to a plethora of research. This thesis aims to explore some of
this research.

In Chapter 1, the first result by Stein is presented: starting from the simple case of iden-
tity covariance matrix and working our way step by step to the most direct generalizations.
This is mostly taken from [12, 13, 14].

In Chapter 2, the estimators are extended to different probability laws. The link be-
tween mean square error and the Gaussian law comes from the presence of a (x− θ)2 term
in the density function. This term appears in other laws, called elliptically symmetric laws,
so it is natural that those laws behave similarly. This is taken from [6].

In our world filled with data, the case of high dimension and low sample size is getting
more and more common and brings new kinds of problems. This is explored in Chapter 3.
The main result is from [2].

Finally, the results are illustrated through simulations in Chapter 4 and some technical
side results used are proved in the Appendix.



Chapter 1

Stein’s original result

The James-Stein estimator is an estimator for the mean θ of a normal distribution which, at
the price of a bias, dominates the usual estimator under mean square error: E

[
‖θ̂ − θ‖2

]
,

where θ̂ is our estimator.
The result is based on a simple lemma, proved using Fubini’s theorem.

Lemma 1.1. Let X be a real random variable following a standard Gaussian law N (0, 1)
and g : R → R an absolutely continuous function such that g′ is integrable. Then, if
E |g′(X)| <∞,

E [g′(X)] = E [Xg(X)] .

Proof. The density function φ(x) of the standard Gaussian law, as it will be noted from
now on, is such that φ′(x) = −xφ(x).

Note also how, using
∫
R yφ(y)dy = 0,∫ x

−∞
−yφ(y)dy =

∫ +∞

x

yφ(y)dy ∀x ∈ R

We then have

E [g′(X)] =

∫
R
g′(x)φ(x)dx

=

∫
R
g′(x)

(∫ x

−∞
(−yφ(y))dy

)
dx

=

∫ +∞

0

g′(x)

(∫ +∞

x

yφ(y)dy

)
dx−

∫ 0

−∞
g′(x)

(∫ x

−∞
yφ(y)dy

)
dx

=

∫ +∞

0

yφ(y)

(∫ y

0

g′(x)dx

)
dy −

∫ 0

−∞
yφ(y)

(∫ 0

y

g′(x)dx

)
dy

=

∫
R
yφ(y)(g(y)− g(0))dy

= E [Xg(X)]− g(0)E[X] = E [Xg(X)]
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The result can be extended to any Gaussian random variable Y ∼ N (µ, σ2) by writing

Y = σX + µ where X ∼ N (0, 1) and h(y) = g

(
y − µ
σ

)
. We then obtain

E [h′(Y )] =
1

σ
E
[
g′
(
Y − µ
σ

)]
=

1

σ
E [g′(X)] =

1

σ
E [Xg(X)]

=
1

σ
E
[
Y − µ
σ

g

(
Y − µ
σ

)]
= E

[
Y − µ
σ2

h(Y )

]
.

The result then needs to be extended to any dimension. To remain as general as
possible, we will use the following definition.

Definition 1.1. A function h : Rp → R is called almost differentiable if there exists a
function ∇h : Rp → Rp such that, for all a ∈ Rp,

h(x+ a) = h(x) +

∫ 1

0

a · ∇h(x+ ta)dt.

The function ∇h is essentially the vector of partial derivatives, which is why we will
use the following notations from now on. For a function f : Rp → R,

• ∇f = (∂1f, ..., ∂pf)′

• div(f) =
∑p

i=1 ∂if(X)

• ∆f =
∑p

i=1 ∂
2
i f(X).

Lemma 1.2. Let X be a p-dimensional random variable following a standard Gaussian law
with mean θ and the identity as covariance matrix, and h : Rp → R an almost differentiable
function. If E |∇h(X)| <∞, then

E [∇h(X)] = E [(X − θ)h(X)] .

Proof. For all i ∈ {1, ..., p}, write X = (Xi, X−i), meaning that we decompose X between
its ith component and all the others. Because X is normal, Xi and X−i are independent
and therefore, we find that, using Lemma 1.1,

E [∂ih(X)|X−i] = E [(Xi − θi)h(X)|X−i] ,

and then, taking the expectation,

E [∂ih(X)] = E [(Xi − θi)h(X)] ,

whence the conclusion.
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For what follows, we first consider X to be a p-dimensional random variable following
a standard Gaussian law with mean θ and the identity as covariance matrix.

Theorem 1.1. For an almost differentiable function g : Rp → Rp (meaning that all its
components are almost differentiable), such that

E

[
p∑
i=1

|∂igi(X)|

]
<∞, (A)

we have
E
[
‖X + g(X)− θ‖2

]
= p+ E

[
‖g(X)‖2 + 2div(g(X))

]
. (1.1)

Proof. Using Lemma 1.2, we have

E
[
(Xi + gi(X)− θi)2

]
= E

[
(Xi − θi)2 + 2(Xi − θi)gi(X) + g2

i (X)
]

= 1 + 2E [∂igi(X)] + E
[
g2
i (X)

]
and we get the result by summing over i.

This theorem gives an expression for the MSE of any estimator of the form X + g(X)
by decomposing it between the error of the usual estimator E [‖X − θ‖2] = p and a term
that depends on the function g. The goal will be to make this term negative. With this in
mind, we concentrate in (1.1) on functions g : Rp → Rp of the form

g = ∇ log f =
∇f
f

with f such that this is well defined. This leads to a modified version of Theorem 1.1.

Theorem 1.2. Let f : Rp → R+
0 be a almost differentiable function such that ∇f is also

almost differentiable,

E

[
1

f(X)

p∑
i=1

|∂2
i f(X)|

]
<∞ (A’)

and
E
[
‖∇logf(X)‖2

]
<∞.

Then

E
[
‖X +∇logf(X)− θ‖2

]
= p+ E

[
2
∇2f(X)

f(X)
− ‖∇f(X)‖2

f 2(X)

]
= p+ 4E

[
∇2
√
f(X)√
f(X)

]
.

Remark. Note that condition A’ is simply the rewriting of condition A with our particular
choice of g and the other conditions ensure that the final expression is finite.
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Proof. Using

div(∇logf) =
∆f

f
− ‖∇f‖

2

f 2
.

we directly get from 1.1

E
[
‖X +∇logf(X)− θ‖2

]
= p+ E

[
‖∇f‖2

f 2
+ 2

(
∆f

f
− ‖∇f‖

2

f 2

)]
= p+ E

[
2

∆f

f
− ‖∇f‖

2

f 2

]
.

Finally, as

∆
(√

f
)

= div(∇f) = div

(
∇f
2
√
f

)
=

∆f

2
√
f
− ‖∇f‖

2

4f
3
2

,

we can replace ‖∇f‖2 by
2f(∆f)− 4f

3
2 (∆

√
f)

to get the desired result.

From this, it follows that if we can find a function f satisfying the assumptions of the
theorem and such that ∆

(√
f(x)

)
≤ 0, then we have an estimator, X +∇logf(X), that

dominates the usual estimator X. Indeed, in that case,

E
[
‖X +∇logf(X)− θ‖2

]
≤ p = E

[
‖X − θ‖2

]
The famous James-Stein estimator is obtained by choosing f(x) =

(
1

‖X‖2

)b
(see [15]

for more details).
We have

∇f(X) = −b
(

1

‖X‖2

)−(b+1)

2X

so
∇logf(X) =

∇f(X)

f(X)
=
−2b

‖X‖2
X

and the estimator is
(

1− 2b

‖X‖2

)
X. As we have

∆
(√

f(X)
)

= −b(p− 2− b)
‖X‖b+2

,

this estimator dominates X for 0 ≤ b ≤ (p − 2) (when p > 2). Its risk is equal to

p − 4E
[
b(p− 2− b)
‖X‖2

]
. The improvement is therefore maximal for b = p−2

2
, whence the

following definition.
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Definition 1.2. The usual James-Stein estimator for X ∼ Np(θ, I) is(
1− p− 2

‖X‖2

)
X. (1.2)

Its risk is equal to p− (p− 2)2 E
[

1

‖X‖2

]
.

It is interesting to note that the degree of the improvement depends on the value of
‖X‖2: the closer X is to 0, the bigger the improvement will be. On the other hand, if X is
big, the James-Stein estimator will be very close to the actual value X. This means that
the estimator is much more useful when X ∼ Np(θ, I) with ‖θ‖ small. It may therefore
be useful to modify the estimator, by centering the data first. This will be studied by
simulations, in Section 4.

We will now work by steps to generalize this result to any covariance matrix.
Let’s first look at the case where the covariance matrix is a multiple of the identity,

i.e. X ∼ Np(θ, σ2I). This is the case if we consider a sample of p independent normally
distributed variables as a vector of size p.

If σ2 is known, looking at
X

σ
and applying previous results, the James-Stein estimator

for X takes the form (
1− (p− 2)σ2

‖X‖2

)
X (1.3)

and its risk is
σ2

(
p− (p− 2)2 E

[
1

‖X‖2

])
.

If σ2 is unknown, it needs to be estimated and we assume we have at our disposal
a variable s ∼ σ2χ2

n, independent of X. This would typically be obtained through a
sample of n + 1 independent normally distributed variables vi (vi ∼ N (µ, σ2)), by taking
s =

∑n+1
i=1 (vi − v̄)2.

Remark. The notation s is used for readability purposes, but be careful that it does not
denote the standard deviation. In our example, it denotes n times the sample variance.

Setting

Y =
X

σ
, η =

θ

σ
, s∗ =

s

σ2
(1.4)

and looking at estimators of the form
(

1− c(p− 2)s

‖X‖2

)
X, with c a constant to be deter-

mined, we get

E

[∥∥∥∥X − c(p− 2)s

‖X‖2
X − θ

∥∥∥∥2
]
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= σ2 E

[∥∥∥∥Y − c(p− 2)s∗

‖Y ‖2
Y − η

∥∥∥∥2
]

= σ2 E
[(

(Y − η)− c(p− 2)s∗

‖Y ‖2
Y

)′(
(Y − η)− c(p− 2)s∗

‖Y ‖2
Y

)]
= σ2 E

[
‖Y − η‖2 − 2c(p− 2)s∗

(Y − η)′Y

‖Y ‖2
+ c2(p− 2)2s∗2

1

‖Y ‖2

]
= σ2

(
p− 2c(p− 2)E [s∗]E

[
(Y − η)′Y

‖Y ‖2

]
+ c2(p− 2)2 E

[
s∗2
]
E
[

1

‖Y ‖2

])
= σ2

(
p− 2c(p− 2)nE

[
(Y − η)′Y

‖Y ‖2

]
+ c2(p− 2)2n(n+ 2)E

[
1

‖Y ‖2

])
using the independence of Y and s∗ and the expression for the moment of a χ2

n law.
The middle term can easily be computed by integration by parts, but, because Y ∼

Np(η, I), we can also write

E

[∥∥∥∥Y − (p− 2)

‖Y ‖2
Y − η

∥∥∥∥2
]

= E
[
‖Y − η‖2 − 2(p− 2)

(Y − η)′Y

‖Y ‖2
+ (p− 2)2 1

‖Y ‖2

]
= p+ (p− 2)2 E

[
1

‖Y ‖2

]
− 2(p− 2)E

[
(Y − η)′Y

‖Y ‖2

]
and, as we know that the first term is also equal to p− (p− 2)2 E

[
1

‖Y ‖2

]
, we find that

E
[

(Y − η)′Y

‖Y ‖2

]
= (p− 2)E

[
1

‖Y ‖2

]
Wrapping up, this gives us

E

[∥∥∥∥X − c(p− 2)s

‖X‖2
X − θ

∥∥∥∥2
]

=σ2

(
p− n(p− 2)2(2c− c2(n+ 2))E

[
1

‖Y ‖2

])
.

Since c is arbitrary, we can choose it so as to minimize 2c − c2(n + 2), which is done by
taking c = 1

n+2
.

Definition 1.3. The James-Stein estimator for X ∼ Np(θ, σ2I), with σ2 unknown esti-
mated through s ∼ σ2χ2

n, is (
1− (p− 2)s

(n+ 2)‖X‖2

)
X. (1.5)

Its risk is equal to σ2

(
p− n

n+2
(p− 2)2 E

[
1

‖X‖2

])
.
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Note how estimating σ2 only caused a loss of precision by a proportion of 2
n+2

compared
to the case of σ2 known.

Taking c =
1

n
is another possibility. While less optimal, it yields the estimator(

1− (p− 2)s

n‖X‖2

)
X, (1.6)

where
s

n
appears. As

s

n
is such that E

[ s
n

]
= σ2, this is simply the estimator (1.3) where

σ2 has been replaced by its estimation.
The same kind of transformation as in (1.4) can be done if the covariance is of the

form Σ = diag(σ2
1, ..., σ

2
p). If X ∼ Np(θ,Σ) and S = diag(s1, ..., sp) with si ∼ σ2

i χ
2
ni

for
i ∈ {1, ..., p}, denoting

√
Σ = diag(σ1, ..., σp) , we would define

Y =
√

Σ
−1
X, η =

√
Σ
−1
θ, s∗ = Σ−1S

Each component of our James-Stein estimator would then be
(

1− (p− 2)si
ni‖X‖2

)
Xi.

As an example, imagine p independent samples Vi1, ..., Vi(ni+1) are available, where
Vij ∼ N (µi, σ

2
i ), for i ∈ {1, ..., p} and j ∈ {1, ..., (ni + 1)}. Compute V̄i = 1

ni+1

∑ni+1
j=1 Vij

and s2
i = 1

ni

∑ni+1
j=1 (Vij − V̄i)2, the sample means and variances of each sample. As we are

in the normal case, V̄i and s2
i are independent for all i and s2

i ∼
σ2
i

ni
χ2
ni
. We now consider

X = (V̄1, ..., V̄p)
′ and S = diag(s2

1, ..., s
2
p). Clearly, X ∼ Np(θ,Σ) with θ = (µ1, ..., µp)

′ and

Σ = diag(
σ2
1

n1
, ...,

σ2
p

np
). So if we take the estimator X̂JS with(

X̂JS

)
i

=

(
1− (p− 2)s2

i

ni‖X‖2

)
V̄i, for i ∈ {1, ..., p},

we know that
E
[
‖X̂JS − θ‖2

]
≤ E

[
‖X − θ‖2

]
.

For more applied examples, the article [4], "Stein’s Paradox in Statistics" by Efron and
Morris is a great read.

Finally, we consider the general case X ∼ Np(θ,Σ) with Σ an unknown positive semi-
definite matrix. Here we assume having at our disposal S, a Wishart matrix with n degrees
of freedom (S ∼ Wp(n,Σ)). Similarly as before, this means for example a sample of size
n, V1, ..., Vn, (Vi ∼ Np(0,Σ)) is available and S =

∑
ViV

′
i . The loss function we use in this

case takes the slightly different form of

E
[
(θ̂ − θ)′Σ−1(θ̂ − θ)

]
.

We assume S is invertible and consider estimators of the form(
1− c(p− 2)

X ′S−1X

)
X. (1.7)
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We have

Eθ,Σ
[((

1− c(p− 2)

X ′S−1X

)
X − θ

)′
Σ−1

((
1− c(p− 2)

X ′S−1X

)
X − θ

)]
= Eθ∗,I

[((
1− c(p− 2)

Y ′S∗−1Y

)
Y − θ∗

)′((
1− c(p− 2)

Y ′S∗−1Y

)
Y − θ∗

)]
,

by applying the transformationX → PDX = Y , whereD is a matrix such thatDΣD′ = I,
and P is an orthogonal matrix with its first row proportional to Dθ, so that PDX =
Y ∼ Np(θ∗, I), with θ∗ = (

√
θ′Σ−1θ, 0, ..., 0)′ and S∗ = PDSD′P ′ (so that S∗−1 =

P ′−1D′−1S−1D−1P−1) following a Wishart Wp(n, I).

As the conditional distribution of Y ′S∗−1Y given Y is that of
Y ′Y

Q
where Q ∼ χ2

n−p+1

(see the appendix for more details), we find ourselves in the same situation as for the case
of σ2 unknown. Thus, the optimal choice for c is 1

n−p+3
and the James-Stein estimator is(

1− p− 2

(n− p+ 3)X ′S−1X

)
X, (1.8)

its risk being

p− n− p+ 1

n− p+ 3
(p− 2)2 E

[
1

‖X‖2

]
. (1.9)



Chapter 2

First generalization: elliptically
symmetric laws

The next natural step is to see if similar estimators exist for other probability laws than
the Gaussian. We will imagine having at our disposal n random p-dimensional variables,
X and V1, ..., Vn−1, whose joint density is of the form

f

(
(X − θ)′Σ−1(X − θ) +

n−1∑
j=1

V ′jΣ
−1Vj

)
, (2.1)

with f : R→ R+ a Lebesgue integrable function.
Both θ and Σ are unknown. The Vj will be used to estimate Σ through

S =
n−1∑
j=1

VjV
′
j ,

so that we can look at estimators of θ of the form δ(X,S) = X + g(X,S) under the loss

E
[
(δ(X,S)− θ)′Σ−1(δ(X,S)− θ)

]
.

The matrix S is again assumed to be invertible.
All the distributions defined this way are elliptically symmetric. Taking f(R2) pro-

portional to exp(−1
2
R2) yields the multivariate normal, while taking it proportional to(

1 + 1
ν
R2
)−(ν+p)/2 gives the multivariate t-distribution.

As before, we will look at

E
[
(X + g(X,S)− θ)′Σ−1(X + g(X,S)− θ)

]
= E

[
(X − θ)′Σ−1(X − θ)

]
+ E

[
(2g(X,S)′Σ−1(X − θ)

]
+ E

[
g(X,S)′Σ−1g(X,S)

]
,

and make it so that the last two terms are negative for the estimator to dominate X.

14
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The result depends on two lemmas allowing us to express the two terms we’re interested
in using expectation E∗, which will denote the expectation with respect to the distribution

C−1F

(
(X − θ)′Σ−1(X − θ) +

n−1∑
j=1

V ′jΣ
−1Vj

)

where F is defined by

F (t) =

∫ +∞

t

f(s)ds (2.2)

and C−1 is a normalizing constant, i.e.

C =

∫
Rp×...×Rp

F

(
(x− θ)′Σ−1(x− θ) +

n−1∑
j=1

v′jΣ
−1vj

)
dxdv1...dvn−1.

This is in contrast to the standard expectation E, with respect to the f in (2.1).

Before jumping into the results, we can try to get some intuition as to where this F
comes from. In the multinormal case, i.e. f(R2) ∝ exp(−1

2
R2), we have F = f and

therefore E∗ = E. Considering dimension 1 for simplicity, the result in Lemma 1.1 in
Chapter 1 is based on the fact that φ′(x) = −xφ(x) for the normal density function. For
variables with density of the form f(x2), this can be generalized by writing

(F (x2))′ = −2xf(x2).

The following lemma is therefore simply a generalization of Stein’s Lemma 1.2 in Chap-
ter 1, coinciding with it in the multinormal case.

Lemma 2.1. If g(x, .) is a differentiable function, then

E
[
g(X,S)′Σ−1(X − θ)

]
= C E∗ [divX(g(X,S))] . (2.3)

Lemma 2.2. Let T (X,S) be a function from Rp×Rp×p to Rp×p. Then we have

E
[
tr
(
T (X,S)Σ−1

)]
= 2C E∗

[
D∗1/2(T (X,S))

]
+ C(n− p− 2)E∗

[
tr(S−1T(X, S)

]
with

D∗1/2(T (X,S)) =

p∑
i=1

∂Tii(X,S)

∂Sii
+

1

2

∑
i 6=j

∂Tij(X,S)

∂Sij
.

This D∗1/2 can be seen as a generalization of divergence for matrices, with the
1

2
being

a symptom of the symmetry of S.
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Remark. Notation tr(A) is used for the trace of a p× p matrix,

tr(A) =

p∑
i=1

Aii,

and
∂

∂Aij
denotes the derivative with respect to the component (i, j) of the matrix A (or

vector in some cases).

Before proving these lemmas, we will see how they can be used, as it is quite direct.

Theorem 2.1. If E [X ′X] <∞ and E [g′(X,S)g(X,S)] <∞, then

E
[
(X + g(X,S)− θ)′Σ−1(X + g(X,S)− θ)

]
− E

[
(X − θ)′Σ−1(X − θ)

]
= E

[
(2g(X,S)′Σ−1(X − θ)

]
+ E

[
g(X,S)′Σ−1g(X,S)

]
= C E∗

[
2divX(g(X,S)) + (n− p− 2)g′(X,S)S−1g(X,S) + 2D∗1/2(g(X,S)g′(X,S))

]
.

(2.4)

Proof. Using Lemma 2.1 on the first term of the difference gives

E
[
2g(X,S)′Σ−1(X − θ)

]
= C E∗ [2divX(g(X,S))] .

Lemma 2.2, with T (X,S) = g(X,S)g′(X,S), on the second gives

E
[
g(X,S)′Σ−1g(X,S)

]
= E

[
tr
(
g(X,S)′Σ−1g(X,S)

)]
= E

[
tr
(
Σ−1g(X,S)g(X,S)′

)]
= 2C E∗

[
D∗1/2(g(X,S)g(X,S)′)

]
+ C(n− p− 2)E∗

[
tr(S−1g(X, S)g(X, S)′

]
.

The results follows immediately.

In the light of equation (2.4), we are in a similar position as after Theorem 1.1 in
Chapter 1. Following the same heuristic, it will be our objective to identify functions
g : Rp×Rp×p → Rp such that (2.4) is negative, hereby yielding domination in terms of
MSE. This will be performed in Corollary 2.2, at the end of this chapter.

The proofs of the two lemmas rely on an integration by slice result, as well as a corollary
involving Stokes Theorem, that can be derived from [5](Theorem 3.2.12). This divides Rp

into ellipsoids and allows the same kind of "integration by parts" generalization as in Stein’s
Lemma 1.1.

Lemma 2.3. For any r ∈ R and any continuously differentiable function φ defined on Rp,
let [φ = r] be the submanifold in Rp associated with φ. Then, for any Lebesgue integrable
function f , we have ∫

Rp

f(x)dx =

∫
{r∈R |[φ=r]6=∅}

∫
[φ=r]

f(x)

‖∇φ(x)‖
dσrdr,

where σr is the area measure defined on [φ = r].
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Corollary 2.1. If g is a function defined on Rp such that ∇φ · g is integrable, then∫
Rp

∇φ(x) · g(x)dx =

∫
{r∈R |[φ=r]6=∅}

∫
Br

div(g(x))dxdr,

where Br is the set with boundary [φ = r] corresponding, for any x ∈ [φ = r], to the outward
normal vector ∇φ(x).

We now prove the two lemmas.

Proof of Lemma 2.1. We want to compute

E
[
(g(X,S)′Σ−1(X − θ)

]
=

∫
Rp×...×Rp

∫
Rp

g(x, s)′Σ−1(x− θ)f

(
(x− θ)′Σ−1(x− θ) +

n−1∑
j=1

v′jΣ
−1vj

)
dxdv1...dvn−1

We define φ(x) =
√

(x− θ)′Σ−1(x− θ) to use Lemma 2.3 and Corollary 2.1 on the
inner integral. We have

∇φ(x) =
Σ−1(x− θ)√

(x− θ)′Σ−1(x− θ)

and therefore, setting R =
√

(x− θ)′Σ−1(x− θ),∫
Rp

g(x, s)′Σ−1(x− θ)f

(
(x− θ)′Σ−1(x− θ) +

n−1∑
j=1

v′jΣ
−1vj

)
dx

=

∫ +∞

0

f

(
R2 +

n−1∑
j=1

v′jΣ
−1vj

)∫
[φ=R]

g(x, s)′Σ−1(x− θ)
‖∇φ(x)‖

dσrdR

=

∫ +∞

0

f

(
R2 +

n−1∑
j=1

v′jΣ
−1vj

)∫
[φ=R]

g(x, s)′
√

(x− θ)′Σ−1(x− θ) ∇φ(x)

‖∇φ(x)‖
dσrdR

=

∫ +∞

0

Rf

(
R2 +

n−1∑
j=1

v′jΣ
−1vj

)∫
[φ=R]

g(x, s)′
∇φ(x)

‖∇φ(x)‖
dσrdR

=

∫
Rp

Rf

(
R2 +

n−1∑
j=1

v′jΣ
−1vj

)
∇φ(x) · g(x)dx

(using Lemma 2.3 backwards so that we can now use Corollary 2.1)

=

∫ +∞

0

Rf

(
R2 +

n−1∑
j=1

v′jΣ
−1vj

)∫
[φ≤R]

divx(g(x, s))dxdR
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=

∫
Rp

divx(g(x, s))

∫ +∞

√
(x−θ)′Σ−1(x−θ)

Rf

(
R2 +

n−1∑
j=1

v′jΣ
−1vj

)
dRdx

=

∫
Rp

divx(g(x, s))
1

2

∫ +∞

(x−θ)′Σ−1(x−θ)
f

(
r +

n−1∑
j=1

v′jΣ
−1vj

)
drdx

=

∫
Rp

divx(g(x, s))F

(
(x− θ)′Σ−1(x− θ) +

n−1∑
j=1

v′jΣ
−1vj

)
dx.

Replacing this into the first expression gives the desired result in (2.3).

Proof of Lemma 2.2. First develop the term in the expectation:

tr(T (X,S)Σ−1) = tr(T (X,S)Σ−1SS−1

= tr(T (X,S)Σ−1

n−1∑
i=1

ViV
′
i S
−1

=
n−1∑
i=1

tr(V ′i S
−1T (X,S)Σ−1Vi)

=
n−1∑
i=1

V ′i S
−1T (X,S)Σ−1Vi.

Then, mimicking the proof of Lemma 2.1 done just before, with Vi instead of X − θ and
g(Vi, S) = T (X,S)S−1Vi, we get (with Slm denoting S−1

lm )

E
[
tr(T (X,S)Σ−1)

]
= C

n−1∑
i=1

E∗
[
divVi(T (X,S)S−1Vi)

]
= C

n−1∑
i=1

E∗
[

p∑
j=1

∂

∂Vij

(
p∑

m=1

p∑
l=1

Tjl(X,S)SlmVim

)]
= C E∗ [A1 + A2 + A3] , (2.5)

and

A1 =
n−1∑
i=1

p∑
j=1

p∑
m=1

p∑
l=1

(
∂

∂Vij
Vim

)
Tjl(X,S)Slm,

A2 =
n−1∑
i=1

p∑
j=1

p∑
m=1

p∑
l=1

Vim

(
∂

∂Vij
Tjl(X,S)

)
Slm,

and A3 =
n−1∑
i=1

p∑
j=1

p∑
m=1

p∑
l=1

VimTjl(X,S)

(
∂

∂Vij
Slm
)
.
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We then compute A1, A2 and A3 separately. First,

A1 =
n−1∑
i=1

p∑
j=1

p∑
m=1

p∑
l=1

δjmTjl(X,S)Slm

= (n− 1)

p∑
j=1

p∑
l=1

Tjl(X,S)Slj

= (n− 1)tr(T (X,S)S−1).

For A2, because S is symmetric, we first get

A2 =
n−1∑
i=1

p∑
j=1

p∑
m=1

p∑
l=1

VimS
lm

(∑
q≤r

∂Tjl(X,S)

∂Sqr

∂Sqr
∂Vij

)
.

Using the definition of S =
∑n−1

i=1 ViV
′
i , we have

∂Sqr
∂Vij

=
∂

∂Vij
(ViqVir) = Viqδjr + Virδjq

and then
n−1∑
i=1

(Viqδjr + Virδjq)Vim = Smqδjr + Smrδjq.

The following is immediate from the definition of the inverse, but it is reminded because
it will be used several times:

p∑
m=1

SamSmb = δab. (2.6)

We now get

A2 =

p∑
j=1

p∑
m=1

p∑
l=1

Slm

(∑
q≤r

∂Tjl(X,S)

∂Sqr
Smqδjr + Smrδjq

)

=

p∑
j=1

p∑
l=1

∑
q≤r

∂Tjl(X,S)

∂Sqr
(δlqδjr + δlrδjq) (thanks to (2.6))

=

p∑
j=1

p∑
l=1

∑
q≤r

(
∂Tjl(X,S)

∂Slj
δlqδjr +

∂Tjl(X,S)

∂Sjl
δlrδjq

)

=

p∑
j=1

p∑
l=1

∑
q≤r

∂Tjl(X,S)

∂Slj
(δlqδjr + δlrδjq).

Finally noting that ∑
q≤r

(δlqδjr + δlrδjq) =

{
2 if j = l,
1 if j 6= l,
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we get

A2 = 2

(
p∑
j=1

∂Tjj(X,S)

∂Sjj
+

1

2

∑
j 6=p

∂Tjl(X,S)

∂Sjl

)
= 2D∗1/2(T (X,S)).

The last term left is A3. Starting the same way as for A2, we can get

A3 =

p∑
j=1

p∑
l=1

Tjl(X,S)

p∑
m=1

∑
q≤r

∂Slm

∂Sqr
(Smqδjr + Smrδjq). (2.7)

To compute
∂Slm

∂Sqr
, we use (2.6) again and take the derivative on both sides to find

p∑
j=1

(
∂Slj

∂Sst
Sjn + Slj

∂Sjn
∂Sst

)
= 0.

As S is symmetric, if q 6= r,
∂Sjn
∂Sqr

= δjqδnr + δjrδnq, which leads to

p∑
j=1

∂Slj

∂Sqr
Sjn = −

p∑
j=1

Slj(δjqδnr + δjrδnq)

= −Slqδnr − Slrδnq.

We now multiply this by Snm and sum over n to get
p∑

n=1

p∑
j=1

∂Slj

∂Sqr
SjnS

nm =

p∑
n=1

(
−Slqδnr − Slrδnq

)
Snm.

Killing a sum thanks to (2.6) again, this gives us
p∑
j=1

∂Slj

∂Sqr
δjm =

∂Slm

∂Sqr
= −SlqSrm − SlrSqm.

The case q = r is treated similarly, as
∂Sjn
∂Sqq

= δjqδnq, to get

∂Slm

∂Sqr
=

{
−SlqSrm − SlrSqm if q 6= r,
−SlqSqm if q = r.

(2.8)

In (2.7), the second half becomes
p∑

m=1

∑
q≤r

∂Slm

∂Sqr
(Smqδjr + Smrδjq)
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= −
p∑

m=1

(∑
q=r

2SmqδjqS
lqSqm +

∑
q<r

(Smqδjr + Smrδjq)(S
lqSrm + SlrSqm)

)

= −
p∑

m=1

(
2SmjS

ljSjm +
∑
q<r

(Smqδjr + Smrδjq)(S
lqSrm + SlrSqm)

)
.

Placing this last expression into the one for A3 in (2.7), after using once again that S and
S−1 are symmetric and (2.6), we obtain

A3 = −
p∑
j=1

p∑
l=1

Tjl(X,S)

(
2Slj +

∑
q<r

(δjrS
lr + δjqS

lq)

)

= −
p∑
j=1

p∑
l=1

Tjl(X,S)Slj

(
2 +

∑
q<r

(δjr + δjq)

)

= −
p∑
j=1

p∑
l=1

Tjl(X,S)Slj(2 + (p− 1))

= −(p+ 1)tr
(
T (X,S)S−1

)
.

Substituting the expressions found for A1,A2 and A3 in (2.5), we get the announced result.

As anticipated, we can now find estimators that dominate X.

Corollary 2.2. Let r : R→ R be a nondecreasing positive function bounded by
2(p− 2)

n− p+ 2
.

If E [X ′X] <∞ and E
[

X ′X

(X ′S−1X)2

]
<∞, then the estimator

(
1− r(X ′S−1X)

X ′S−1X

)
X (2.9)

dominates X under mean square error.

Remark. The function r replaces the constants in the estimators from Chapter 1 (the c in
(1.7) more specifically) and the bounds on r are reminiscent of those on those constants.

Proof. We apply Theorem 2.1 with g(X,S) = −r(X
′S−1X)

X ′S−1X
X and show that

C E∗
[
2divX(g(X,S)) + (n− p− 2)g(X,S)′S−1g(X,S) + 2D∗1/2(g(X,S)g(X,S)′)

]
≤ 0.
(2.10)

For the first term of (2.10), we need to compute

divX(g(X,S)) = −divX

(
r(X ′S−1X)

X ′S−1X
X

)
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= −
(

divX(X)
r(X ′S−1X)

X ′S−1X
+X ′∇X

(
r(X ′S−1X)

X ′S−1X

))
.

As divX(X) = p and

∇X

(
r(X ′S−1X)

X ′S−1X

)
=

(
2
r′(X ′S−1X)X ′S−1X − r(X ′S−1X)

(X ′S−1X)2
S−1X

)
,

this gives the expression

divX(g(X,S)) = −
(

(p− 2)
r(X ′S−1X)

X ′S−1X
+ 2r′(X ′S−1X)

)
.

The second term in (2.10) is direct:

g(X,S)′S−1g(X,S) =
r2(X ′S−1X)

X ′S−1X
.

Finally, for the last term, we have

D∗1/2(g(X,S)g(X,S)′)

= D∗1/2

(
r2(X ′S−1X)

(X ′S−1X)2
X ′X

)
=

p∑
i=1

∂

∂Sii

(
r2(X ′S−1X)

(X ′S−1X)2

)
X2
i +

1

2

∑
i 6=j

∂

∂Sij

(
r2(X ′S−1X)

(X ′S−1X)2

)
XiXj.

As

∂

∂Sij

(
r2(X ′S−1X)

(X ′S−1X)2

)
=

(
2(X ′S−1X)2r(X ′S−1X)r′(X ′S−1X)− 2(X ′S−1X)r2(X ′S−1X)

(X ′S−1X)4

)
∂

∂Sij
(X ′S−1X)

and, using (2.8),

∂

∂Sij
(X ′S−1X) =

∑
l,m

X ′l
∂Slm

∂Sij
Xm

= −(2− δij)(X ′S−1)i(X
′S−1)j,

it follows that

D∗1/2(g(X,S)g′(X,S))

=

(
2(X ′S−1X)2r(X ′S−1X)r′(X ′S−1X)− 2(X ′S−1X)r2(X ′S−1X)

(X ′S−1X)4

)
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×

(
p∑
i=1

∂

∂Sii
(X ′S−1X)X2

i +
1

2

∑
i 6=j

∂

∂Sij
(X ′S−1X)XiXj

)

= −2

(
(X ′S−1X)2r(X ′S−1X)r′(X ′S−1X)− (X ′S−1X)r2(X ′S−1X)

(X ′S−1X)4

)
×

(
p∑
i=1

(X ′S−1)2
iX

2
i +

1

2

∑
i 6=j

2(X ′S−1)i(X
′S−1)jXiXj

)
︸ ︷︷ ︸

=(X′S−1X)2

= −2

(
r(X ′S−1X)r′(X ′S−1X)− r2(X ′S−1X)

X ′S−1X

)
.

Finally putting everything back together in the expression (2.10), we obtain

C E∗
[
2divX(g(X,S)) + (n− p− 2)g(X,S)′S−1g(X,S) + 2D∗1/2(g(X,S)g(X,S)′)

]
=C E∗

[
2

(
(p− 2)

r(X ′S−1X)

X ′S−1X
+ 2r′(X ′S−1X)

)
+ (n− p− 2)

r2(X ′S−1X)

X ′S−1X

− 4

(
r(X ′S−1X)r′(X ′S−1X)− r2(X ′S−1X)

X ′S−1X

)]

=C E∗
[
r(X ′S−1X)

X ′S−1X

(
−2(p− 2) + (n− p− 2)r(X ′S−1X)

)
− 4r′(X ′S−1X)

(
1 + r(X ′S−1X)

) ]

which, given the definition of r, is negative as required.

Choosing r constant and equal to
(p− 2)

n− p+ 2
(n became n− 1 given how we considered

the problem in this section) gives the James-Stein estimator. This means that the estimator
(1.8) found in the normal case also works in the multivariate Student case: simulations
will be used to compare them in Chapter 4.



Chapter 3

Second generalization: high dimension

An implicit assumption for the previous results was for the dimension p to be smaller than
the sample size n in order for the estimated covariance matrix to be non-singular. Indeed,
if, given a sample Y1, ..., Yn, we compute a matrix S as before by S =

∑n
j=1 YjY

′
j , then

rk(S) ≤ min(n, p). It is easier to see by writing S = Y ′Y , with Y the n× p matrix whose
rows are our observations Yi. As the Yi are usually independent and, in the cases that
interest us, from a continuous distribution, the rank of S is actually equal to min(n, p)
almost surely. Therefore, when p > n, S is a p × p matrix of rank n and is almost
surely singular. To illustrate this, let’s look at 3 observations (rounded to the nearest
hundredth for readability) from a 4-dimensional normal with mean 0 and covariance matrix
the diagonal matrix with 1, 2, 3, 4 on the diagonal. The 3 vectors are

X1 = (0.43,−0.45,−1.59,−2.96)′

X2 = (−0.78,−0.89,−3.46, 3.15)′

X3 = (−1.29,−0.15,−0.47,−1.91)′

and the matrix S obtained, along with its singular value decomposition to show its singu-
larity and also anticipating on what is to come, is

S =


1.56 −0.12 −0.41 −2.19
−0.12 0.28 1.12 −2.05
−0.41 1.12 4.56 −8.46
−2.19 −2.05 −8.46 21.39

 = U


25.27 0 0 0

0 2.52 0 0
0 0 0 0
0 0 0 0

V ′

where U and V are two unitary matrices. For the exact values, the R code used is in the
appendix.

When matrices are singular like here, generalization of the inverse exists, with diverse
properties. One of the most popular ones, due to its uniqueness, is the Moore-Penrose
pseudoinverse and the focus of this section will be to show how to use it to obtain new
forms of the James-Stein estimator.

We put ourselves back in the situation where X is a p-dimensional variable normally
distributed with mean θ and covariance matrix Σ and we would like to estimate θ, knowing

24
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that we have at our disposal a random matrix S, independent of X, following a Wishart
distribution Wp(n,Σ). By definition of the Wishart, this means S = Y ′Y , where Y =

(Y1, ..., Yn) with Yi
iid∼ Np(0,Σ).

When p ≤ n, we obtained earlier the estimators (1.8) and (2.9). As they involve S−1,
they can not be used when p > n because S is singular. Instead, the Moore-Penrose
pseudoinverse of S, noted S+, will be used to form the estimator(

I − r(X ′S+X)SS+

X ′S+X

)
X (3.1)

with r : R→ R, a positive bounded differentiable real function. This will be proved to dom-
inate the usual estimator X under the same loss as in Chapter 2, E

[
(θ̂ − θ)′Σ−1(θ̂ − θ)

]
.

This estimator is a direct extension of (2.9), as a property of the Moore-Penrose inverse
is to coincide with the actual inverse when the matrix is invertible.

3.1 Reminders on the Moore-Penrose inverse
Before jumping into the proof of the domination of the estimator (3.1), the definition of the
Moore-Penrose generalized inverse, along with some simple properties that will be useful,
are reminded here. Some proofs are skipped and more details can be found in the appendix.

Definition 3.1. For a matrix A ∈ Rm×n, the Moore-Penrose inverse is the matrix A+ ∈
Rn×m such that

• AA+A = A

• A+AA+ = A+

• (AA+)′ = AA+

• (A+A)′ = A+A

This matrix exists and is unique.

It can be computed using the singular value decomposition. If A = UMV ′ where U
and V are two square unitary matrices of sizes m and n respectively, andM is a matrix the
same dimensions as A with non negative real numbers on the diagonal and zeros everywhere
else, then A+ = VM+U ′. The Moore-Penrose inverse of M is simply its transpose where
every diagonal element is replaced by its inverse. Looking back at our earlier example, the
Moore-Penrose inverse of S is

S+ =


0.22 −0.05 −0.18 −0.06
−0.05 0.01 0.04 0.01
−0.18 0.04 0.15 0.04
−0.06 0.01 0.04 0.05

 = V


1

25.27
0 0 0

0 1
2.52

0 0
0 0 0 0
0 0 0 0

U ′
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with U and V the matrices from the singular value decomposition of S.
Looking at symmetric matrices, as will be the case with S, a few additional properties

will be useful.
If S is symmetric, its pseudoinverse is also symmetric, as we can see on the example.

This observation comes naturally by looking at the transpose of the conditions in the
definition: (S+)′ is also a pseudoinverse of S and it follows from uniqueness that S+ is
symmetric. It then follows from the definition that SS+ = S+S and that

S(I − SS+) = (I − SS+)S = S+(I − SS+) = (I − SS+)S+ = 0. (3.2)

The formula for the derivative will also be used, which can be found in [7] (Theorem
4.3).

Proposition 3.1. For A(t) a differentiable matrix function of constant rank, we have

∂A+

∂t
= −A+∂A

∂t
A+ + (I − A+A)

∂A′

∂t
(A+)′A+ + A+(A+)′

∂A′

∂t
(I − AA+).

In the symmetric case, this becomes

∂S+

∂t
= −S+∂S

∂t
S+ + (I − SS+)

∂S

∂t
S+S+ + S+S+∂S

∂t
(I − SS+) (3.3)

Finally, it will be interesting to note that, as S = Y ′Y , the pseudoinverse of Y is S+Y ′.
A proof of this is in the appendix. From this, looking at

SS+Y ′ = Y ′Y Y + =
(
(Y ′Y Y +)′

)′
=
(
(Y Y +)′Y

)′
=
(
(Y S+Y ′)′Y

)′
=
(
Y S+Y ′Y

)′ (because S+ is symmetric)

=
(
Y Y +Y

)′
= Y ′,

we can show that
SS+Y ′ = Y ′ ⇔ (I − SS+)Y ′ = 0. (3.4)

We can now move onto the main result.

3.2 The main result
Theorem 3.1. Let min(p, n) ≥ 3 and r : R→ R be a differentiable function. The estimator
(3.1) dominates X if

• r is between 0 and
2(min(n, p)− 2)

n+ p− 2min(n, p) + 3
,

• r is nondecreasing,
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• r′ is bounded.

This covers both the case p > n and p ≤ n, as when p ≤ n, then S+ = S−1 and the
estimator (3.1) is equal to the estimator in the previous section.

Proof. Several technical results will be used along the way, whose proofs will be given later,
in Section 3.3, for clarity.

Without originality, we will again look at the difference of risk between our estimator,
which will be written X + g(X,S) with g defined appropriately, and X:

∆θ = E
[
(X + g(X,S)− θ)′Σ−1(X + g(X,S)− θ)

]
− E

[
(X − θ)′Σ−1(X − θ)

]
= 2E

[
g(X,S)′Σ−1(X − θ)

]
+ E

[
g(X,S)′Σ−1g(X,S)

]
, (3.5)

and show that this is nonpositive. The function g is defined as

g(X,S) = −r(X
′S+X)SS+X

X ′S+X
.

Using Lemma (2.1) from the previous section, the first part in (3.5) is equal to

2E [divX(g(X,S))] ,

which is in turn, using Lemma 3.3, equal to

2E
[
2r′(X ′S+X) + r(X ′S+X)

tr(SS+)− 2

X ′S+X

]
.

Thanks to Lemma 3.4, for the second term on the right hand of (3.5), we find

E
[
g(X,S)′Σ−1g(X,S)

]
= E

[
tr

(
Σ−1Sr2(X ′S+X)

S+XX ′S+S

(X ′S+X)2

)]
= E

[
n tr

(
r2(X ′S+X)

S+XX ′S+S

(X ′S+X)2

)
+ tr

(
Y ′∇Y

(
r2(X ′S+X)

SS+XX ′S+

(X ′S+X)2

))]
.

The assumption needed for Lemma 3.4 is proved in Theorem 3.2.
Pursuing our developments, with the help of Lemma 3.2, we reap

E
[
g(X,S)′Σ−1g(X,S)

]
= E

[
n
r2(X ′S+X)

X ′S+X
− 4r(X ′S+X)r′(X ′S+X) + r2(X ′S+X)

p− 2 tr(SS+) + 3

X ′S+X

]
= E

[
r2(X ′S+X)

n+ p− 2 tr(SS+) + 3

X ′S+X
− 4r(X ′S+X)r′(X ′S+X)

]
.
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Plugging these expressions in (3.5), we obtain

∆θ = E
[
r2(X ′S+X)

n+ p− 2 tr(SS+) + 3

X ′S+X

− 2r(X ′S+X)
tr(SS+)− 2

X ′S+X

− 4r′(X ′S+X)
(
1 + r(X ′S+X)

)] (3.6)

As r is nonnegative and nondecreasing, we know that −4r′(X ′S+X)
(
1 + r(X ′S+X) ≤ 0.

To finish, if r(X ′S+X) 6= 0, we have

r2(X ′S+X)
n+ p− 2 tr(SS+) + 3

X ′S+X
− 2r(X ′S+X)

tr(SS+)− 2

X ′S+X
≤ 0

⇔ r(X ′S+X) ≤ 2 tr(SS+)− 2

n+ p− 2 tr(SS+) + 3
=

2(min(n, p)− 2)

n+ p− 2(min(n, p)− 2) + 3
,

which corresponds to our assumptions on r. We therefore have, as desired, that ∆θ ≤ 0.

We have already stated that in the n ≥ p case, the estimator (3.1) coincides with (2.9).
In the n < p case that interests us, the roles of p and n are simply reversed in the bound
on the function r. The estimator still has the form(

I − r(X ′S+X)SS+

X ′S+X

)
X

with r a nondecreasing differentiable function, but the bounds on r are

0 ≤ r ≤ 2(n− 2)

p− n+ 3
.

The generalization of the standard James-Stein estimator (1.8), which corresponds to a
choice of r constant, is therefore (

I − aSS+

X ′S+X

)
X

with
0 ≤ a ≤ 2(n− 2)

p− n+ 3
.

To stay consistent with previous results, a will be chosen equal to
n− 2

p− n+ 3
for simu-

lations.
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3.3 Technical results
In this section, we will write F = X ′S+X to shorten notations. For (Yij) (i ∈ {1, ..., n}, j ∈
{1, ...., p}), we will also denote ∇Y the matrix with components (∇Y )ij = ∂

∂Yij
.

The first result simply looks at derivatives that will be useful in other proofs.

Lemma 3.1. Reinstating the notations used previously, Y is an n × p matrix, S = Y ′Y
and X is a vector of size p. We have

(i)
(
∂S

∂Yαβ

)
kl

= δβkYαl + δβlYαk;

(ii)
∂F

∂Yαβ
= −2(X ′S+Y ′)α(S+X)β + 2(X ′S+S+Y ′)α((I − SS+)X)β;

(iii)
∂(S+XX ′SS+)kl

∂Yαβ

=(S+S+Y ′)kα((I − SS+)XX ′SS+)βl

− S+
kβ(Y S+XX ′SS+)αl − (S+Y ′)kα(S+XX ′SS+)βl

+ (I − SS+)kβ(Y S+S+XX ′SS+)αl

+ (S+XX ′)kβ(Y S+)αl + (S+XX ′Y ′)kα(S+)βl

+ (S+XX ′S+Y ′)kα(I − SS+)βl

− (S+XX ′SS+)kβ(Y S+)αl − (S+XX ′SS+Y ′)kα(S+)βl.

Proof. Showing (i) is quick:(
∂S

∂Yαβ

)
kl

=
∂

∂Yαβ
Skl =

∂

∂Yαβ

∑
j

YjkYjl = δβkYαl + δβlYαk.

We can now use it, along with what (3.3) and (3.4), to prove (ii). We have

∂F

∂Yαβ
= X ′

∂S+

∂Yαβ
X

= −
∑
k,l

(X ′S+)k

(
∂S

∂Yαβ

)
kl

(S+X)l

+
∑
k,l

(X ′S+S+)k

(
∂S

∂Yαβ

)
kl

((I − SS+)X)l

+
∑
k,l

(X ′(I − SS+))k

(
∂S

∂Yαβ

)
kl

(S+S+X)l

= −
∑
k,l

(X ′S+)k (δβkYαl + δβlYαk) (S+X)l
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+
∑
k,l

(X ′S+S+)k (δβkYαl + δβlYαk) ((I − SS+)X)l

+
∑
k,l

(X ′(I − SS+))k (δβkYαl + δβlYαk) (S+S+X)l

= −
∑
l

(X ′S+)βYαl(S
+X)l −

∑
k

(X ′S+)kYαk(S
+X)β

+
∑
l

(X ′S+S+)βYαl((I − SS+)X)l +
∑
k

(X ′S+S+)kYαk((I − SS+)X)β

+
∑
l

(X ′(I − SS+))βYαl(S
+S+X)l +

∑
k

(X ′(I − SS+))kYαk(S
+S+X)β

= −2(X ′S+Y ′)α(S+X)β + 2(X ′S+S+Y ′)α((I − SS+)X)β.

Before proving (iii), see that thanks to (i), for any matrices A and B with appropriate
dimensions, we have (

A
∂S

∂Yαβ
B

)
kl

=
∑
i,j

Aki

(
∂S

∂Yαβ

)
ij

Bjl

=
∑
i,j

Aki(δβiYαj + δβjYαi)Bjl

= Akβ(Y B)αl + (AY ′)kαBβl.

Now for (iii), recalling (3.4) several times, we have

∂(S+XX ′SS+)kl
∂Yαβ

=

(
S+S+ ∂S

∂Yαβ
(I − SS+)XX ′SS+

− S+ ∂S

∂Yαβ
S+XX ′SS+ + (I − SS+)

∂S

∂Yαβ
S+S+XX ′SS+

+ S+XX ′
∂S

∂Yαβ
S+ + S+XX ′SS+S+ ∂S

∂Yαβ
(I − SS+)

− S+XX ′SS+ ∂S

∂Yαβ
S+ + S+XX ′S(I − SS+)

∂S

∂Yαβ
S+S+

)
kl

= (S+S+Y ′)kα((I − SS+)XX ′SS+)βl

− S+
kβ(Y S+XX ′SS+)αl − (S+Y ′)kα(S+XX ′SS+)βl

+ (I − SS+)kβ(Y S+S+XX ′SS+)αl

+ (S+XX ′)kβ(Y S+)αl + (S+XX ′Y ′)kα(S+)βl

+ (S+XX ′S+Y ′)kα(I − SS+)βl

− (S+XX ′SS+)kβ(Y S+)αl − (S+XX ′SS+Y ′)kα(S+)βl.
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Given these premises, we are now in position to state the three lemmas that were used
in the proof of Theorem 3.1.

Lemma 3.2. Under the assumptions of Theorem 3.1, we have

tr

(
Y∇Y

(
r2(X ′S+X)

SS+XX ′S+

(X ′S+X)2

))
= −4r(X ′S+X)r′(X ′S+X) + r2(X ′S+X)

p− 2 tr(SS+) + 3

X ′S+X
.

Proof. We have (
Y∇Y

(
r2(F )

SS+XX ′S+

F 2

))
ij

=
∑
α,β

(Y ′)iα
∂

∂Yαβ

(
r2(F )

(SS+XX ′S+)βj
F 2

)
= 2

∑
α,β

(Y ′)iαr(F )r′(F )
∂F

∂Yαβ

(SS+XX ′S+)βj
F 2

(3.7)

+
∑
α,β

(Y ′)iαr
2(F )

∂(SS+XX ′S+)βj
∂Yαβ

1

F 2
(3.8)

+
∑
α,β

(Y ′)iαr
2(F )

(−2)

F 3

∂F

∂Yαβ
(SS+XX ′S+)βj. (3.9)

Lemma 3.1(ii) gives us∑
α,β

(Y ′)iα
∂F

∂Yαβ
(SS+XX ′S+)βj

= −2
∑
α,β

(X ′S+Y ′)αYαi(S
+X)β(SS+XX ′S+)βj

+ 2
∑
α,β

(X ′S+S+Y ′)αYαi(S
+XX ′SS+)βj((I − SS+)X)β

= −2(X ′S+Y ′Y )i(S
+XSS+XX ′S+)j + 2(X ′S+S+Y ′Y )i((S

+XX ′S S+(I − SS+)︸ ︷︷ ︸
=0

X)j

= −2X ′S+X(SS+XX ′S+)ij = −2F (SS+XX ′S+)ij.

This simplifies (3.7) into

2
∑
α,β

(Y ′)iαr(F )r′(F )
∂F

∂Yαβ

(SS+XX ′S+)βj
F 2

= −4r(F )r′(F )
(SS+XX ′S+)ij

F
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and (3.9) into ∑
α,β

(Y ′)iαr
2(F )

(−2)

F 3

∂F

∂Yαβ
(SS+XX ′S+)βj

= 4r2(F )
(SS+XX ′S+)ij

F 2
.

For (3.8), Lemma 3.1(iii) is first used to get∑
α,β

(Y ′)iα
∂(SS+XX ′S+)βj

∂Yαβ

=
∑
α,β

(Y ′)iα
∂(S+XX ′SS+)jβ

∂Yαβ

=
∑
α,β

(
(S+S+Y ′)jαYαi((I − SS+)XX ′SS+)ββ

− S+
jβ(Y ′)iα(Y S+XX ′SS+)αβ

− (S+Y ′)jαYαi(S
+XX ′SS+)ββ

+ (I − SS+)jβ(Y ′)iα(Y S+S+XX ′SS+)αβ

+ (S+XX ′)jβ(Y ′)iα(Y S+)αβ + (S+XX ′Y ′)kα(S+)ββ

+ (S+XX ′S+Y ′)jαYαi(I − SS+)ββ

− (S+XX ′SS+)jβ(Y ′)iα(Y S+)αβ

− (S+XX ′SS+Y ′)jαYαi(S
+)ββ

)
= (S+XX ′SS+(I − SS+))ij

− (SS+XX ′S+)ij − tr(S+XX ′SS+)(SS+)ij

+ tr((I − SS+)XX ′SS+)(S+)ij

+ (SS+XX ′S+)ij + tr(S+)(SXX ′S+)ij

+ tr(I − SS+)(SS+XX ′S+)ij

− (SS+XX ′S+)ij − tr(S+)(SXX ′S+)ij

=
(
p− tr(SS+)− 1

)
(SS+XX ′S+)ij − (X ′S+X)(SS+)ij.

That gives us the following expression∑
α,β

(Y ′)iαr
2(F )

∂(SS+XX ′S+)βj
∂Yαβ

1

F 2

=
(
p− tr(SS+)− 1

)
r2(F )

(SS+XX ′S+)ij
F 2

− r2 (SS+)ij
F

Combining the three expressions obtained completes the proof, as we have

tr

(
Y∇Y

(
r2(X ′S+X)

SS+XX ′S+

(X ′S+X)2

))
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=
∑
i

(
− 4r(F )r′(F )

(SS+XX ′S+)ii
F

+
(
p− tr(SS+)− 1

)
r2(F )

(SS+XX ′S+)ij
F 2

− r2 (SS+)ii
F

+ 4r2(F )
(SS+XX ′S+)ii

F 2

)
= −4r(F )r′(F ) + r2(F )

p− 2 tr(SS+) + 3

F

because tr(SS+XX ′S+) = tr(X ′S+X) = X ′S+X = F .

Lemma 3.3. Under the assumptions of Theorem 3.1, we have

divX
r(X ′S+X)SS+X

X ′S+X
= 2r′(X ′S+X) + r(X ′S+X)

tr(SS+)− 2

X ′S+X
.

Proof. We simply compute

divX

(
r(F )

SS+X

F

)
=
∑
i

∂

∂Xi

(
r(F )

(SS+X)i
F

)
=
∑
i

(
r′(F )

∂F

∂Xi

(SS+X)i
F

+ r(F )
∂(SS+X)i

∂Xi

1

F
− r(F )

1

F 2

∂F

∂Xi

(SS+X)i

)
=
∑
i

(
r′(F )

(
∂

∂Xi

∑
k,l

XkXlS
+
kl

)
(SS+X)i

F

+
r(F )

F

∂ (
∑

k(SS
+)ikXk)

∂Xi

− r(F )

F 2

∂
(∑

k,lXkXlS
+
kl

)
∂Xi

(SS+X)i

)

=
∑
i

(
r′(F )

(
(X ′S+)i + (X ′S+)i

)(SS+X)i
F

+ r(F )
(SS+)ii
F

− r(F )

(
(X ′S+)i + (X ′S+)i

)
(SS+X)i

F

)
= 2r′(F ) + r(F )

tr(SS+)− 2

F

which is what was announced.
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Lemma 3.4. Using the notations from the beginning of section 3, let Y be a normal matrix
Nn×p(0, I ⊗Σ), so that S = Y ′Y follows a Wishart Wp(n,Σ). Let G(S) be a p× p random
matrix depending on S and, with A the symmetric positive definite square root of Σ, define
Ỹ = Y A−1 and H = AGA−1. Then under the condition

E
[
| divvec(Ỹ ) vec(Ỹ H)|

]
<∞, (3.10)

we have
E
[
tr(Σ−1SG)

]
= E [n tr(G) + tr(Y ′∇YG

′)] .

Proof. Notice that Ỹ ∼ Nn×p(0, In⊗Ip), which means that vec(Ỹ ) ∼ Nnp(0, Inp). Denoting
S̃ = Ỹ ′Ỹ = A−1SA−1, we can write

E
[
tr(S̃H)

]
= E

[∑
α,i,j

ỸαiỸαjHji

]
= E

[
vec(Ỹ ) · vec(Ỹ H)

]
Now using Lemma 2.1, we find that

E
[
vec(Ỹ ) · vec(Ỹ H)

]
= E

[
divvec(Ỹ ) vec(Ỹ H)

]
= E

[∑
α,i,j

∂

∂Ỹαi
ỸαjHji

]

= E

[∑
α,i,j

(
δijHji + Ỹαj

∂Hji

∂Ỹαi

)]

= E

[
n
∑
i

Hii + Ỹαj
∂Hji

∂Ỹαi

]
.

In matrix notation, this means that

E
[
tr(S̃H)

]
= E

[
n tr(H) + tr((Ỹ ′∇Ỹ )′H)

]
.

This concludes the proof, as

E [tr(H)] = E
[
tr(AGA−1)

]
= E [tr(G)] ,

E
[
tr(S̃H)

]
= E

[
tr(A−1SGA−1)

]
= E

[
tr(Σ−1SG)

]
,

E
[
tr((Ỹ ′∇Ỹ )′H)

]
= E

[
tr(A(Y ′∇Y )′GA−1)

]
= E [tr((Y ′∇Y )′G)] .

Finally, we look at the theorem needed to verify the condition for Lemma 3.4.
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Theorem 3.2. Let Y ∼ Nn×p(0, I ⊗ Σ) and Ỹ = Y A−1 with A the symmetric positive
definite square root of Σ. With a differentiable function r : R→ [0, C1] such that |r′| ≤ C2

(with C1, C2 ∈ R+
0 ), define

G = r2(X ′S+X)
S+XX ′S+S

(X ′S+X)2

and H = AGA−1. Then, for all p and n,

E
[
| divvec(Ỹ ) vec(Ỹ H)|

]
<∞. (3.11)

Proof. We begin by looking at divvec(Ỹ ) vec(Ỹ H). We have

divvec(Ỹ ) vec(Ỹ H)

=
∑
α,i,j

∂

∂Ỹαi
(ỸαjHj,i)

= n
∑
i

Hii +
∑
α,i,j

Ỹαj
∂Hj,i

∂Ỹαi

= n
∑
i

Hii +
∑
α,i,j

Ỹαj
∑
β

∂Yαβ

∂Ỹαi

∂(AGA−1)j,i
∂Yαβ

= n
∑
i

Hii +
∑
α,β,i,j

ỸαjAβi
∂

∂Yαβ

(
r2(F )

(AS+XX ′SS+A−1)ji
(F )2

)
= n

∑
i

Hii +
∑
α,β,i,j

ỸαjAβi

×
(

2r(F )r′(F )
∂F

∂Yαβ

(AS+XX ′SS+A−1)ji
(F )2

(3.12)

+
r2(F )

F 2

∑
k,l

Ajk
∂(S+XX ′SS+)kl

∂Yαβ
A−1
li (3.13)

− r2(F )(AS+XX ′SS+A−1)ji2
1

F 3

∂F

∂Yαβ

)
. (3.14)

We now develop each part separately.
First, for (3.12), we use Lemma 3.1(2) to get

2
∑
α,β,i,j

ỸαjAβir(F )r′(F )
∂F

∂Yαβ

(AS+XX ′SS+A−1)ji
(F )2

= 4
r(F )r′(F )

F 2

×
∑
α,β,i,j

(
− (X ′S+Y ′)αỸαj(AS

+XX ′SS+A−1)jiAiβ(S+X)β
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+ (X ′S+S+Y ′)αỸαj(AS
+XX ′SS+A−1)jiAiβ((I − SS+)X)β

)
= −4

r(F )r′(F )

F 2
(X ′S+Y ′Y A−1AS+XX ′SS+A−1AS+X)

+ 4
r(F )r′(F )

F 2
(X ′S+S+Y ′Y A−1AS+XX ′SS+A−1A(I − SS+)X)

= −4
r(F )r′(F )

F 2
(X ′S+SS+XX ′S+SS+X)

+ 4
r(F )r′(F )

F 2
(X ′S+S+SS+XX ′S S+(I − SS+)︸ ︷︷ ︸

=0

X)

= −4r(F )r′(F ).

Similarly, for (3.14), we get∑
α,β,i,j

ỸαjAβir
2(F )(AS+XX ′SS+A−1)ji2

1

F 3

∂F

∂Yαβ

= 4
r2(F )

F 3

∑
α,β,i,j

(X ′S+Y ′)αỸαj(AS
+XX ′SS+A−1)jiAiβ(S+X)β

= 4
r2(F )

F 3
(X ′S+Y ′Y A−1AS+XX ′SS+A−1AS+X)

= 4
r2(F )

F 3
(X ′S+SS+XX ′S+SS+X)

= 4
r2(F )

F
.

The last part left is (3.13). Using Lemma 3.1(3) this time, we have∑
α,β,i,j

ỸαjAβi
r2(F )

F 2

∑
k,l

Ajk
∂(S+XX ′SS+)kl

∂Yαβ
A−1
li

=
r2(F )

F 2

∑
α,β,i,j,k,l

ỸαjAβiAjkA
−1
li

×
(

(S+S+Y ′)kα((I − SS+)XX ′SS+)βl

− S+
kβ(Y S+XX ′SS+)αl

− (S+Y ′)kα(S+XX ′SS+)βl

+ (I − SS+)kβ(Y S+S+XX ′SS+)αl

+ (S+XX ′)kβ(Y S+)αl

+ (S+XX ′Y ′)kα(S+)βl

+ (S+XX ′S+Y ′)kα(I − SS+)βl

− (S+XX ′SS+)kβ(Y S+)αl
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− (S+XX ′SS+Y ′)kα(S+)βl

)
=
r2(F )

F 2

∑
α,β,i,j,k,l

(
Ajk(S

+S+Y ′)kαỸαjAiβ((I − SS+)XX ′SS+)βlA
−1
li

− Ỹ ′jα(Y S+XX ′SS+)αlA
−1
li AiβS

+
βkAkj

− Ajk(S+Y ′)kαỸαjAiβ(S+XX ′SS+)βlA
−1
li

+ Ỹ ′jα(Y S+S+XX ′SS+)αlA
−1
li Aiβ(I − SS+)βkAkj

+ Ỹ ′jα(Y S+)αlA
−1
li Aiβ(XX ′S+)βkAkj

+ Ajk(S
+XX ′Y ′)kαỸαjAiβ(S+)βlA

−1
li

+ Ajk(S
+XX ′S+Y ′)kαỸαjAiβ(I − SS+)βlA

−1
li

− Ỹ ′jα(Y S+)αlA
−1
li Aiβ(SS+XX ′S+)βkAkj

− Ajk(S+XX ′SS+Y ′)kαỸαjAiβ(S+)βlA
−1
li

)
=
r2(F )

F 2

(
tr(AS+S+Y ′Y A−1) tr(A(I − SS+)XX ′SS+A−1)

− tr(A−1Y ′Y S+XX ′SS+A−1AS+A)

− tr(AS+Y ′Y A−1) tr(AS+XX ′SS+A−1)

+ tr(A−1Y ′Y S+S+XX ′SS+A−1A(I − SS+)A)

+ tr(A−1Y ′Y S+A−1AXX ′S+A)

+ tr(AS+XX ′Y ′Y A−1) tr(AS+A−1)

+ tr(AS+XX ′S+Y ′Y A−1) tr(A(I − SS+)A−1)

− tr(A−1Y ′Y S+A−1ASS+XX ′S+A)

− tr(AS+XX ′SS+Y ′Y A−1) tr(AS+A−1)
)

=
r2(F )

F 2

(
tr(S+SS+) tr(S+(I − SS+)XX ′S)

− tr(X ′ SS+S+SS+︸ ︷︷ ︸
=S+

X)

− tr(S+S) tr(X ′S+SS+X)

+ tr(SS+S+XX ′SS+(I − SS+))

+ tr(X ′S+SS+X)

+ tr(X ′SS+X) tr(S+)

+ tr(S+XX ′S+Y ′Y ) tr(A(I − SS+)A−1)

− tr(X ′ S+SS+SS+︸ ︷︷ ︸
=S+

X)

− tr(X ′SS+SS+X) tr(S+)
)



CHAPTER 3. SECOND GENERALIZATION: HIGH DIMENSION 38

=
r2(F )

F 2

(
−X ′S+X − tr(SS+)X ′S+X +X ′S+X +X ′SS+X tr(S+)

+X ′S+X(p− tr(SS+))−X ′S+X −X ′SS+X tr(S+)
)

=
r2(F )

F
(p− 2 tr(SS+)− 1).

We can finally put everything back into the expression for divvec(Ỹ ) vec(Ỹ H), that we
need to bound:

E
[
| divvec(Ỹ ) vec(Ỹ H)|

]
= E

[∣∣∣∣n tr(H) + 4
r2(F )

F
+ (p− 2 tr(SS+)− 1)

r2(F )

F
− 4r(F )r′(F )

∣∣∣∣]
≤ C2

1

∣∣3 + p− 2 tr(SS+) + n
∣∣E [ 1

F

]
+ 4C1C2. (3.15)

For the bound to be finite, we still need to show that E
[

1
F

]
< ∞. As S ∼ Wp(n,Σ),

we can define T ∼ Wp(n, I) such that S = ATA. Let the spectral decomposition of T be
T = H ′DH with D = diag(λi). Writing the eigenvalues of T+ as λ+

i , and λ+
min for the

smallest nonzero one, we have that D−1 = diag(λ+
i ). We will need the following identity

on Moore-Penrose inverses of products, following from [16] (Thm 1.1, equations (1.2) and
(1.4)) and symmetry of T (more details in the appendix):

(ATA)+ = (T+TA)+T+(AT+T )+.

With this, we find

X ′S+X = X ′(ATA)+X = X ′(T+TA)+T+(AT+T )+X

=
∑
k

(
X ′(T+TA)+H ′

)2

k
λ+
k

≥ λ+
minX

′(T+TA)+H ′H(AT+T )+X

= λ+
minX

′(T+TA)+(AT+T )+X

This can be bounded using the Cauchy-Schwarz inequality:

X ′(T+TA)+(AT+T )+X ≤ X ′(T+TA)+(AT+T )+XX ′(AT+T )(T+TA)X.

⇔ X ′AT+TAX

X ′(T+TA)+(AT+T )+X
≥ 1

X ′(T+TA)+(AT+T )+X

We then have

1

F
=

1

X ′S+X
≤ 1

λ+
min

1

X ′(T+TA)+(AT+T )+X
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≤ 1

λ+
min

X ′AT+TAX

X ′(T+TA)+(AT+T )+X
.

Writing Q = AT+TA and R = (T+TA)+(AT+T )+ to shorten notations, the bound in
(3.15) becomes

C2
1

∣∣3 + p− 2 tr(SS+) + n
∣∣E [ 1

λ+
min

X ′QX

X ′RX

]
+ 4C1C2. (3.16)

To finish, we will split what is inside the expectation using some independence results.
When n ≥ p, we are in the standard Wishart case, T has full rank and is invertible and

therefore Q = R = I. The independence between λ+
min and

X ′QX

X ′RX
then follows directly

from the independence between S and X. When n < p, T is a singular Wishart matrix.
In this case, results [11] show that T can be written as T = H ′1D1H1, where H1 is semi-
orthogonal (H1H

′
1 = I) and D is a diagonal matrix with only the positive eigenvalues of

T , and provide the joint density of H1 and D1 = diag(di):

fH1,D1(H1, D1)

= K(p, n)|D1|(n−p−1)/2

[
etr

(
−1

2
D1

)][∏
i<j

(di − dj)

]
gn,p(H1)

with K(p, n) a constant, gp,n a function and where etr(A) denotes the exponential of the
trace of A. This means that H1 and D1 are independent. As λ+

min is a function of D1 and

we can write T+T = H ′1H1 (because T+ = H ′1D
−1
1 H1), λ+

min and
X ′QX

X ′RX
are independent

in this case too.
From how the Moore-Penrose pseudoinverse can be obtained through singular value

decomposition, as was explained in Section 3.1, it is easy to see that the nonzero eigenvalues
of T+ are the inverses of the nonzero eigenvalues of T , as the spectral decomposition is a
singular value decomposition in our case. Therefore, denoting λmax the largest eigenvalue

of T , we have λmax =
1

λ+
min

and (3.16) now gives the bound

C2
1 |3 + p− 2 tr(SS+) + n|E [λmax]E

[
X ′QX

X ′RX

]
+ 4C1C2. (3.17)

As T is positive semi-definite, E [λmax] ≤ E [tr(T )]. When n ≥ p, the trace of a Wishart
matrix follows a Chi-square distribution. More precisely, tr(T ) ∼ χ2

pn (See in the appendix
for results about Wishart matrices). When n < p, by definition of Wishart matrices, we
can still write T = Z ′Z with Z ∼ Nn×p(0, In ⊗ Ip). We can then switch their places
and ZZ ′ ∼ Wn(p, In) so that we also get tr(T ) = tr(ZZ ′) ∼ χ2

pn. So, in both cases,
E [λmax] ≤ E [tr(T )] = pn <∞.

We only need to check that the other expectation in (3.17) is also finite. Let r =
rk(R) = rk(Q) = rk(S). We write the spectral decomposition of (T+TA) as UΛU ′ with Λ =



CHAPTER 3. SECOND GENERALIZATION: HIGH DIMENSION 40

diag(L, 0(p−r)), where L is a vector containing the r nonzero eigenvalues of (T+TA). We
get that R = (T+TA)+(AT+T )+ = Udiag(1(r), 0(p−r)). We define E = U

[
0(p−r)×rI(p−r)

]′,
a p × (p − r) matrix such that RE = 0 and E has full column rank p − r. We also have
that QE = AT+TAU

[
0(p−r)×rI(p−r)

]′
= AUΛU ′U

[
0(p−r)×rI(p−r)

]′
= 0. Along with the

fact that R and Q are symmetric and positive semidefinite, this allows us to use a result
in [10](Theorem 1(i)) to conclude that

E
[
X ′QX

X ′RX

]
<∞.

The proof is now complete.



Chapter 4

Simulations

The simulations were done with R (the code is in the appendix) and explore the different
situations studied up to here. Before presenting the results, we introduce a simple modi-
fication that can be made to the James-Stein estimators we’ve encountered. For example,
looking at the first form of the estimator (1.2) from Chapter 1,(

1− p− 2

‖X‖2

)
X, (4.1)

when ‖X‖2 is small, the term that multiply X can be negative which seems to cause the
estimator to behave badly. A simple workaround is to force the coefficient to be positive,
by restricting it to its positive part. This is further justified by the following result.

Proposition 4.1. Suppose θ = E [X] is estimated by h(X)X, where P (h(X) < 0) >
0. Under the additional assumption that E [Xk|h(X) < 0] has the same sign as θk for
all k ∈ {1, ..., p} (p = dim(X)), taking instead the estimator h+(X)X, where h+(X) =
max(0, h(X)), we have MSE(h+(X)X) ≤ MSE(h(X)X).

Proof. To see this, let us look at the contribution of h(X) in the MSE. We have, looking
at components individually,

E
[
(h(X)Xk − θk)2] = E

[
h2(X)X2

k

]
− 2θk E [h(X)Xk] + θ2

k. (4.2)

We can ignore the θ2
k term and focus on the rest. Conditioning with respect to the sign of

h(X), we have

E
[
h2(X)X2

k

]
− 2θk E [h(X)Xk]

=
(
E
[
h2(X)X2

k |h(X) ≥ 0
]
− 2θk E [h(X)Xk|h(X) ≥ 0]

)
P (h(X) ≥ 0)

+
(
E
[
h2(X)X2

k |h(X) < 0
]
− 2θk E [h(X)Xk|h(X) < 0]

)
P (h(X) < 0).

As we propose to replace h(X) by h+(X), the only difference occurs when h(X) < 0, so
we only have to look at the second part. First, we have

E
[
h2(X)X2

k |h(X) < 0
]
≥ 0. (4.3)

41
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Now we use the additional assumption that E [Xk|h(X) < 0] has the same sign as θk, to
see, by conditioning, that

−2θk E [h(X)Xk|h(X) < 0] > 0,

which means that (4.2) would be smaller if we replaced h(X) by 0 whenever it is negative,
whence the domination of the estimator h+(X)X.

In the case of our simple James-Stein estimator (4.1), h(X) =

(
1− b

‖X‖2

)
and the

additional assumption is verified. Indeed,

E [Xk|h(X) < 0] = E
[
Xk

∣∣‖X‖2 < b
]

= E

[
E
[
Xk|X2

k

] ∣∣∣∑
i 6=k

X2
i < b−X2

k

]

= E

[
|Xk|P

(
Xk > 0|X2

k

)
− |Xk|P

(
Xk < 0|X2

k

) ∣∣∣∑
i 6=k

X2
i < b−X2

k

]
.

(4.4)

This has the same sign as θk because, if θk > 0, then P (Xk > 0|X2
k) > P (Xk < 0|X2

k) and
therefore (4.4) is also positive. Similarly, if θk < 0, (4.4) is also negative.

This yields the following estimator, commonly called positive-part James-Stein estima-
tor, (

1− p− 2

‖X‖2

)
+

X. (4.5)

Simulations will show that the improvement it brings can be quite substantial.
To follow the same order as the presented results, we start by looking at the multinormal

case with the identity as the covariance matrix. For each graphs, a sample of size 50000
was generated in order to estimate the MSE.

The first figure represents the case where the mean vector is equal to 0, with p that
varies. As expected, the observed value X has an MSE equal to the dimension. In this
case, the James-Stein estimator completely cancels the linear increase of the MSE to give
a constant value of about 2.5, and even slightly better for the positive-part version.
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Figure 4.1: MSE when the dimension increases, with the mean equal to (0, ..., 0)

While the improvement is quite amazing, it is also pretty natural, as the James-Stein
estimator can be seen as a "shrinkage" towards the origin, so when the mean is also at the
origin, this improvement was to be expected. Figure 4.2 illustrates this: a vector of size 20
(above) is compared to its James-Stein estimator (below). The reasons for the improvement
are clear. This also explains in parts the bad behaviour when the multiplicative term is
negative: if ‖X‖2 gets too small, it can become greater than 1 in absolute value, and we
no longer have a shrinkage.

Figure 4.2: Shrinkage towards the origin
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The result become more paradoxical when the mean does not coincide with the origin
because, as the Gaussian law is distributed symmetrically, shrinking everything towards
the origin feels unnatural, but the following graph shows that when the mean is (1, ..., 1),
the improvement is still substantial, even if less important.

Figure 4.3: MSE when the dimension increases, with the mean equal to (1, ..., 1)

Doing the same as in Figure 4.2 in this case gives Figure 4.4, where we can see that
almost all the values in the James-Stein estimator are below the actual mean.

Figure 4.4: Shrinkage towards the origin
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On Figure 4.3, we also see that the positive-part and normal estimator almost coincide
because differences only occur when the norm of X is really small, which is less often the
case here. The greater improvement when X is close to the origin can still be exploited,
as it was evoked in Chapter 1, by "centering" the data. Typically, if you have a sample of
n observations,x1, ..., xn, that you treat as a vector X, you could subtract the mean of the
sample, x̄, to each component, then taking the James-Stein estimator. Doing so, we lose
one degree of freedom and the estimator becomes(

1− p− 3

‖X − ν‖2

)
(X − ν) + ν

where ν denotes the vector (x̄, ..., x̄)′. Instead of shrinking towards the origin, we are now
shrinking towards ν. This estimator will be called the centered James-Stein estimator.
This will bring improvement when the mean is close to a multiple of (1, ..., 1)′, or to stay in
the situation we just described, when all the observations in our sample have similar means.
However, depending on the form of the mean, this can sometimes give worse results.

We will now fix the dimension to be equal to 20 to focus on the influence of the norm
and the form of the mean vector.

Figure 4.5: MSE when the norm of the mean increases, with the mean a multiple of
(1, ..., 1)
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Figure 4.6: MSE when the norm of the mean increases, with the mean a multiple of
(1, 2, ..., 20)

Figure 4.7: MSE when the norm of the mean increases, with the mean a multiple of
(−1, ...,−1, 1, ..., 1)
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In each graph, the MSE of the usual estimator gets closer and closer to 20, the MSE
of X, as the norm of mean gets larger, but the evolution is the same no matter the type
of mean. The form of the mean, only influences the centered estimator: when the mean
is a multiple of (1, ..., 1)′, the centered version gives the same results as if the mean was
0, which was to be expected, and the positive-part version is even better ; when the mean
is a multiple of (1, 2, ..., 20)′ the centered version still gives better results by a significant
margin. The next figure shows that the centered estimator is not always a good solution to
the mean being different from 0: the means is a multiple of (0, ..., 0, 1) and, as the difference
appears more clearly in this case, the dimension is lowered to only 5.

Figure 4.8: MSE when the norm of the mean increases, with the mean a multiple of
(0, ..., 0, 1)

Let us now get to the case where the covariance matrix is an unknown multiple of the
identity: X ∼ Np(θ, σ2I). We will look at the estimators (1.5) and (1.6) from Chapter 1.
A low value of n = 10 was chosen to show that choosing the denominator equal to n+2 was
indeed better than n, but even here, there is only a small improvement. If n gets bigger,
the difference becomes negligible. The dimension is still set to 20, the mean is equal to
(1, ..., 1) and it is σ2 that varies. The s found in the estimators studied would usually be
obtained through a sample, but for easier simulations, it was directly generated as a σ2χ2

n

variable.
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Figure 4.9: MSE when the variance increases

In Chapter 2, we saw that the James-Stein estimator was also usable for the multivariate
Student distribution. The next two figures (4.10 and 4.11) look at the differences compared
to the normal case. The mean was set to 0 for Figure 4.10 and to a multiple of (1, ..., 1)′

for Figure 4.11. The covariance is the identity matrix in both cases. The results are very
similar. The MSE of the James-Stein estimator follows the same evolution as the MSE of
the true value when the degrees of freedom increases. The degree of improvement is also
about the same as in the normal case.
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Figure 4.10: MSE in the Student and normal cases as the degrees of freedom of the
Student increase

Figure 4.11: MSE in the Student and normal cases as the norm of the mean increases
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Finally, we go back to the normal case to look at the case of unknown covariance and
compare when p > n and p ≤ n. The studied estimators are(

1− p− 2

(n− p+ 3)X ′S−1X

)
X

when p ≤ n, and (
I − (n− 2)SS+

(p− n+ 3)X ′S+X

)
X

when p > n. The MSE is estimated on a sample of size 5000 and for each observation in
this sample, a sample of size n + 1 is generated to compute S, so that this one follows a
Wishart with n degrees of freedom. At first, the same matrix S was used for each of the
5000 observations, but the estimator was found to be quite unstable, which was fixed by
generating a new one each time, the downside being a huge time loss on the simulations
due to the drastic increase in computations required.

We begin by looking at the effect of the form of the covariance matrix. The dimension
is fixed to 50 and the mean is (1, ..., 1)′. three types of covariance matrix are studied:

• Spiked: a diagonal matrix with 1 in the first half and 5 in the second.

• Block: a block diagonal matrix formed of 2× 2 blocks(
1 0.5

0.5 1

)
• Regressive: with ρ = 0.5, a matrix of the form

1 ρ ρ2 ρ3 · · ·
ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1
... . . .


As a reminder, the loss used here is E

[
(θ̂ − θ)′Σ−1(θ̂ − θ)

]
where θ̂ is the estimator, so

the MSE of the trivial estimator X will be equal to the dimension, no matter the form of
the covariance matrix.
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Figure 4.12: MSE when n increases for spiked covariance

Figure 4.13: MSE when n increases for block covariance
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Figure 4.14: MSE when n increases for regressive covariance

There are no significant difference depending on the matrix, apart from slightly better
results in the regressive covariance case. What is interesting is the peak when n gets close
to p. This is not too surprising looking at the expression for the risk when p ≤ n (1.9),
where, when n−p is really small, the term n−p+1

n−p+3
gets small and the improvement is worse.

If we ignore this peak, the improvement gets better and better as the size of the sample
used to estimate S increases, which does not come as a surprise. The last two graphs will
look at the effect of the dimension and of the norm of the mean, when n = p−1 and n = p

2
,

with block covariance.
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Figure 4.15: MSE when the dimension p increases, with the mean equal to (1, ..., 1)′

Figure 4.16: MSE when the norm of the mean (a multiple of (1, ..., 1)′) increases, with
p = 50
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For both, the evolution is similar to what was observed in Figures 4.3 and 4.5, in the
case of identity covariance matrix.



Appendix A

Appendix: Technical results

A.1 Results on Wishart matrices
The two results on Wishart matrices are easily proved using the Bartlett decomposition.
We therefore begin by reminding it. Various proofs of this exist: we look at one from [8].

Proposition A.1. Let S be a Wishart matrix Wp(n, I). Then S can be written as BB′,
with

B =


c1 0 0 . . . 0
n21 c2 0 . . . 0
n31 n32 c3 . . . 0
...

...
... . . . ...

np1 np2 np3 . . . cp


where c2

i ∼ χ2
n−i+1 and nij ∼ N (0, 1), all independent.

Proof. We know S can be written as X ′X, where X is a n× p matrix whose elements are
all independent N (0, 1) variables. The columns of X are denoted Xi (i ∈ {1, ..., p}). We
then build iteratively Y1 = X1 and

Yi = Xi − b∗i1Y1 −−b∗i2Y2 − ...− b∗i,i−1Yi−1 (i ∈ {2, ..., p}),

where the b∗ir are chosen so that Y ′i Yj = 0 for all i 6= j. This means that b∗ir =
Y ′rXi

Y ′rYr
. Now

defining

bir = (Y ′rYr)
1
2 b∗ir =

Y ′rXi

(Y ′rYr)
1
2

for i ∈ {2, ..., p} and r ∈ {1, ..., i− 1}, we can verify that

X ′iXi = Y ′i Yi +
i−1∑
r=1

b2
ir

55
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and

X ′iXj =
i−1∑
r=1

birbjr + bji(Y
′
i Yi)

1
2 for j > i.

As Sij = X ′iXj, this gives us the matrix announced

B =


(Y ′1Y1)

1
2 0 0 . . . 0

b21 (Y ′2Y2)
1
2 0 . . . 0

b31 b32 (Y ′3Y3)
1
2 . . . 0

...
...

... . . . ...
bp1 bp2 bp3 . . . (Y ′pYp)

1
2

 .

For all i ∈ {2, ..., p}, fix X1, ..., Xi−1. Then the bir (r ∈ {1, ..., i − 1}) are orthogonal
(because Y ′i Yj = 0) combinations of the independent variables xi1, ..., xin. We have

E [bir] = 0

and V (bir) =
Y ′rYr
Y ′rYr

= 1.

The bir are therefore also independent N (0, 1) variables. From this and Fisher’s Lemma,
we have that

Y ′i Yi = X ′iXi −
i−1∑
r=1

b2
ir

follows a χ2
n−(i−1) law, independent of the bir. As this is true for all i, this concludes the

proof.

We can now look at the distribution of Y ′S−1Y given Y a p-vector, where S follows a
Wishart Wp(n, I) (n ≥ p). There exists an orthogonal matrix A such that Y ∗ = AY has
its p − 1 first components equal to 0. Then Y ′S−1Y = (Y ∗)′S∗−1Y ∗ , where S∗ = ASA′

still follows a Wishart Wp(n, I). This means that Y ′S−1Y = (Y ′Y )(S−1)pp. Denoting
by S(p−1) the matrix S deprived of its last row and column, we have that (S−1)pp =
det(S(p−1))

det(S)
= Y ′pYp, where Yp is the one from the proof of the proposition. This means

that the distribution of Y ′S−1Y given Y is that of
Y ′Y

cp
where cp is a χ2

n−p+1 variable.

From Proposition A.1, we can also get the distribution of the trace of a Wishart matrix.
If S ∼ Wp(n, I), then, using the notations of the proposition,

tr(S) = tr(BB′) =

p∑
i=1

c2
p +

∑
i>j

n2
ij

and this follows a χ2 law with
∑p

i=1(n− i+ 1) +
∑

i>j 1 = np degrees of freedom.
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A.2 Results on the Moore-Penrose Inverse
We only consider real matrices.

Proposition A.2. The Moore-Penrose inverse of a matrix A is unique.

Proof. We suppose A has two Moore-Penrose inverse, B and C. Then, using the definition,
we write

AB = ACAB = (AC)′(AB)′ = C ′(ABA)′ = C ′A′ = (AC)′ = AC.

Similarly, we get that BA = CA. Therefore

B = BAB = BAC = CAC = C.

Proposition A.3. For any matrix A, A+ = (A′A)+A′.

Proof. We need two small intermediate results. First, note that if A′A = 0, then A = 0.
This follows easily from

0 = tr(A′A) =
∑
i

(A′A)ii =
∑
i,j

(A′)jiAij =
∑
i,j

A2
ij

which mean that Aij = 0∀i, j. From this, we get that if A′AB = 0, then AB = 0, as

A′AB = 0

⇒ B′A′AB = 0

⇒ (AB)′(AB) = 0

⇒ AB = 0.

Now, for the actual proof of the proposition, we just have to check that D = (A′A)+A′

verifies the definition of the Moore-Penrose inverse. Start by looking at

A′A = A′A(A′A)+A′A

⇔ A′A = A′ADA

⇔ 0 = A′A(DA− I)

⇔ 0 = A(DA− I)

⇔ A = ADA.

To show that DAD = D, just look at (A′A)+ = (A′A)+A′A(A′A)+ and multiply both
side by A′ on the right.

Finally we have (AD)′ = (A(A′A)+A′)′ = A((A′A)+)′A′ = A(A′A)+A′ = AD, because
the pseudoinverse of a symmetric matrix is also symmetric, and DA = (A′A)+A′A, which
is symmetric by definition of the Moore-Penrose pseudoinverse .

Thus we have that D = A+



APPENDIX A. APPENDIX: TECHNICAL RESULTS 58

Proposition A.4. We have, for A invertible and T symmetric,

(ATA)+ = (T+TA)+T+(AT+T )+ (A.1)

Proof. These are proved using equations (1.2) and (1.4) in [16], reminded here:

(AB)+ = (A+AB)+(ABB+),

(ABC)+ = (A+ABC)+B(ABCC+)+.

Then,

(ATA)+ = (A+ATA)+T (ATAA+)+

= (TA)+T (AT )+

= (T+TA)+(TAA+)+T (A+AT )+(ATT+)+

= (T+TA)+T+TT+(ATT+)+

= (T+TA)+T+(ATT+)+.

This gives (A.1).



Appendix B

Appendix R code

The code for the example on singular matrices and Moore-Penrose in Chapter 3.
###########################################
## Example for the Moore -Penrose inverse ##
###########################################

set.seed(12)

# 3 normal vectors of size 4
X <- mvrnorm(n=3,mu = c(0,0,0,0),Sigma = diag(1:4))
round(X,digits = 2)

#
S <- 2*cov(X)

round(S,digits = 2)

det(S)

# singular value decomposition
SVD_S <- svd(S)
D <- SVD_S$d
U <- SVD_S$u
V <-SVD_S$v

round(SVD_S$d,digits = 2)
round(U,digits = 2)
round(V,digits = 2)

round(U%*% diag(D)%*%t(V),digits = 2) #We get S back

round(U%*%t(U),digits = 2) #UU’ = I
round(V%*%t(V),digits = 2) #VV’ = I

# Moore -Penrose inverse
SP <- ginv(S)
round(SP ,digits = 2)

round(SP%*%S,digits = 2) #not the identity , but...
round(S%*%SP%*%S,digits = 2) #We get S back
round(SP%*%S%*%SP ,digits = 2) #We get SP back

# SVD of the Moore -Penrose inverse
Dinv <- c(1/D[1],1/D[2],0,0) #We take the inverse of the non -zero values in the SVD of S

round(V%*% diag(Dinv)%*%t(U),digits = 2) #We get SP, using the same U and V as for S

59
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The code for the graphs in Chapter 4. It is advised to run each part of the code one
by one and to maybe adjust the sample sizes if reasonable computation times are desired.
### Required libraries ###
library(MASS)

### Sample size ###
N=50000

### Useful functions ###
max0 <- function(x){return(max(0,x))} #returns the max between 0 and x
normsq <- function(x){return(sum(x^2)) } #returns the square norm of x

#returns the square error of Y dependind on the mean m and he covariance A
err_sigma <- function(Y,m,A){

return(as.numeric ((t(Y-m)%*%A)%*%(Y-m)))
}

#creates a block matrix of size p (p must be even)
sigma_block <- function(p){

SB <- diag(p)

for(i in 2*(1:(p/2))){
SB[i,i-1] <- 0.5
SB[i-1,i] <- 0.5

}
return(SB)

}
# returns a "regressive" type matrix of size p
regressive_sigma <- function(p){

SB <- diag(p)
rho <- 0.5
for(i in 1:(p-1)){

for(j in (i+1):p){
SB[j,j-i] <- rho^i
SB[j-i,j] <- rho^i

}
}
return(SB)

}

#######################################
### When Covariance is the identity ###
#######################################

# A function that will compute and plot the MSE for different types of James -Stein
estimator

# with the mean equal to the parameter "mu" multiplied by the coefficients in "range"
Stein_estimator_Id <- function(mu,range){

#Dimension , based on the length of the mean
p <- length(mu)

#Vectors that will contain the MSE
E_X_err <- NULL
E_XS_err <- NULL
E_XSC_err <- NULL
E_XSC2_err <- NULL
#Vector that will contain the norm of the mean , for use in the plot
Norm_mu <- NULL



APPENDIX B. APPENDIX R CODE 61

for(i in range){

X <- mvrnorm(n = N, i*mu ,diag(p)) #N samples of dim d
XS <- X-(p-2)*(X/rowSums(X^2)) #Stein ’s estimator

X_temp <- X-rowMeans(X) #Centered
XS_temp <- X_temp -(p-3)*(X_temp/rowSums(X_temp^2)) #Centered Stein ’s estimator
XS_temp2 <- sapply(1 -(p-3)/rowSums(X_temp^2),max0)*X_temp #Centered Stein ’s estimator

+

XSC <- XS_temp + rowMeans(X) # "Un-centering"
XSC2 <- XS_temp2 + rowMeans(X) # "Un-centering"

#Square error
X_err <- colSums ((t(X)-i*mu)^2)
XS_err <- colSums ((t(XS)-i*mu)^2)
XSC_err <- colSums ((t(XSC)-i*mu)^2)
XSC2_err <- colSums ((t(XSC2)-i*mu)^2)

#Mean square error
E_X_err <- c(E_X_err ,mean(X_err))
E_XS_err <- c(E_XS_err ,mean(XS_err))
E_XSC_err <- c(E_XSC_err ,mean(XSC_err))
E_XSC2_err <- c(E_XSC2_err ,mean(XSC2_err))

#Squared norm of mu (for the x-coordinates in the plot)
Norm_mu <- c(Norm_mu,normsq(i*mu))

}

#Plot the MSE as a function of the norm of the mean
plot(Norm_mu,E_X_err , lty=1, type = "l", ylim = c(0,p+1),

main = NULL ,ylab = "MSE",xlab = "||mu||^2")
lines(Norm_mu ,E_XS_err , lty=2)
lines(Norm_mu ,E_XSC_err , lty=3)
lines(Norm_mu ,E_XSC2_err , lty=4)
legend("bottomright", legend=c("Observed value", "Stein ’s estimator","Centered Stein ’s

estimator","Centered Stein ’s estimator +"),
lty = 1:4,cex = 0.8)

}

##################################################
## Mean = 0: error depending on the dimension ##
##################################################

E_X_err <- NULL
E_XS_err <- NULL
E_XSP_err <- NULL

dimensions <- 3:20

for(i in dimensions){

mu <- rep(1,i)

X <- mvrnorm(n = N, mu ,diag(i)) # N samples of dim d
XS <- X-(i-2)*(X/rowSums(X^2)) #Stein ’s estimator
XSP <- sapply(1 -(i-2)/rowSums(X^2),max0)*X

#Square error
X_err <- colSums ((t(X)-mu)^2)
XS_err <- colSums ((t(XS)-mu)^2)
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XSP_err <- colSums ((t(XSP)-mu)^2)

#Mean square error

E_X_err <- c(E_X_err ,mean(X_err))
E_XS_err <- c(E_XS_err ,mean(XS_err))
E_XSP_err <- c(E_XSP_err ,mean(XSP_err))

}

plot(dimensions ,E_X_err , lty=1, type = "l",ylim=c(0,21),
main = NULL ,ylab = "MSE",xlab = "Dimension")

lines(dimensions ,E_XS_err , lty=2)
lines(dimensions ,E_XSP_err , lty=3)
legend("topleft", legend=c("Observed value", "Stein ’s estimator","Stein ’s estimator +"),

lty = 1:3,cex = 0.8)

###########################################
## When the norm of the mean increases ##
###########################################

p=20 #dimension

##################
## Mean = m*1 ##
##################

mu <- rep(1,p) #mean vector

#while(normsq(m_max*mu)<100){m_max = m_max+0.1}

range <- sqrt(0:100/10) #multiplicator of the mean vector

Stein_estimator_Id(mu ,range)

######################
## Mean = m*(1:p) ##
######################

mu <- 1:p
range <- sqrt (((0:100)/1400))

Stein_estimator_Id(mu ,range)

#############################
## Mean = m*(0 ,...,0,1) ##
#############################

p=5

mu <- rep(0,p-1)
mu <- c(mu,1)
range <- sqrt(0:20)

Stein_estimator_Id(mu ,range)

####################################
## Mean = m*(-1 ,...,-1,1 ,...,1) ##
####################################

p=20

mu <- rep(-1,p/2)
mu <- c(mu,rep(1,p/2))
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range <- sqrt(0:100/10)

Stein_estimator_Id(mu ,range)

##################################
## Mean = m*(0 ,...,0,1 ,...,1) ##
##################################

mu <- rep(0,p/2)
mu <- c(mu,rep(1,p/2))
range <- sqrt(0:200/10)

Stein_estimator_Id(mu ,range)

######################################
## When Cov = k*Id with k unknown ##
######################################

E_X_err <- NULL
E_XS_err <- NULL
E_XS2_err <- NULL

p = 20
n = 10
N = 50000
mu <- rep(1,p)

variance <- (1:20)/10

for(v in variance){

#The estimations for k, following a sigma^2 chi -squared
s <- v*rchisq(n = N, df = n)

X <- mvrnorm(n = N, mu ,v*diag(p)) #N samples of dim p

XS <- X-(p-2)*(s/n)*(X/rowSums(X^2)) #Stein ’s estimator
XS2 <- X-(p-2)*(s/(n+2))*(X/rowSums(X^2))

#Square error
X_err <- colSums ((t(X)-mu)^2)
XS_err <- colSums ((t(XS)-mu)^2)
XS2_err <- colSums ((t(XS2)-mu)^2)

#Mean square error

E_X_err <- c(E_X_err ,mean(X_err))
E_XS_err <- c(E_XS_err ,mean(XS_err))
E_XS2_err <- c(E_XS2_err ,mean(XS2_err))

}

plot(variance ,E_X_err , lty=1, type = "l",ylim=c(0,max(E_X_err)),
main = NULL ,ylab = "MSE",xlab = "Variance")

lines(variance ,E_XS_err , lty=2)
lines(variance ,E_XS2_err , lty=3)
legend("topleft", legend=c("Observed value", "Stein ’s estimator with c=1/n", "Stein ’s

estimator with c=1/(n+2)"),
lty = 1:3,cex = 0.8)

#######################################
## Example to show the "shrinkage" ##
#######################################
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library(ggplot2)

p=20

### Mean = 0 ###

set.seed(6) #example 1: the coefficient is positive

X <- rnorm(p,0,1) #one normal vector of size 20
XS <- X-(p-2)*(X/normsq(X))

height <- c(rep(1,p),rep(0,p)) #this is to put the true obs on top and the stein
estimation below

pairing <- c(1:p,1:p) #this allows to draw a line between corresponding observations

data <- data.frame( x= c(X,XS), height ,pairing) #data frame as it is required by ggplot

ggplot(data , aes(x=x,y=height , group = pairing))+
ylim(-0.3,1.3)+
geom_point()+
geom_line()+ #add the lines between the obs
annotate("text",x=0,y=c(-0.1,1.1),label = c("Stein ’s estimator", "Observed value"))+
theme_bw()+ #set the background white
theme(axis.title.y=element_blank(),

axis.title.x=element_blank(), #removes unecessary axis annotations
axis.text.y=element_blank(),
axis.ticks.y=element_blank())+

geom_point(aes(x= 0, y = 1),pch = 8,size = 4)+ #add two stars to locate the mean
geom_point(aes(x= 0, y = 0),pch = 8,size = 4)

#example 2: the coefficient is negative and the result is bad
set.seed(100)

X <- rnorm(p,0,1) #one normal vector of size 20
XS <- X-(p-2)*(X/normsq(X))

height <- c(rep(1,p),rep(0,p)) #this is to put the true obs on top and the stein
estimation below

pairing <- c(1:p,1:p) #this allows to draw a line between corresponding observations

data <- data.frame( x= c(X,XS), height ,pairing) #data frame as it is required by ggplot

ggplot(data , aes(x=x,y=height , group = pairing))+
ylim(-0.3,1.3)+
geom_point()+
geom_line()+ #add the lines between the obs
annotate("text",x=0,y=c(-0.1,1.1),label = c("Stein ’s estimator", "Observed value"))+
theme_bw()+ #set the background white
theme(axis.title.y=element_blank(),

axis.title.x=element_blank(), #removes unecessary axis annotations
axis.text.y=element_blank(),
axis.ticks.y=element_blank())+

geom_point(aes(x= 0, y = 1),pch = 8,size = 4)+ #add two stars to locate the mean
geom_point(aes(x= 0, y = 0),pch = 8,size = 4)

### Mean = 1 ###
set.seed(123)
X <- rnorm(p,1,1)
XS <- X-(p-2)*(X/normsq(X))

height <- c(rep(1,p),rep(0,p)) #this is to put the true obs on top and the stein
estimation below

pairing <- c(1:p,1:p) #this allows to draw a line between corresponding observatyion
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data <- data.frame( x= c(X,XS), height ,pairing) #data frame as it is required by ggplot

ggplot(data , aes(x=x,y=height , group = pairing))+
ylim(-0.3,1.3)+
geom_point()+
geom_line()+ #add the lines between the obs
annotate("text",x=1,y=c(-0.1,1.1),label = c("Stein ’s estimator", "Observed value"))+
theme_bw()+ #set the background white
theme(axis.title.y=element_blank(),

axis.title.x=element_blank(), #removes unecessary axis annotations
axis.text.y=element_blank(),
axis.ticks.y=element_blank())+

geom_point(aes(x= 1, y = 1),pch = 8,size = 4)+ #add two stars to locate the mean
geom_point(aes(x= 1, y = 0),pch = 8,size = 4)

#################################################
#### Comparison between normal and student ####
#################################################

library(mvtnorm)

p=20 #dimension
Sigma <- diag(p)

###################################
## Degrees of freedom increase ##
###################################

mu <- rep(0,p)

#degrees of freedom of the student
df_range <- 3:10

#Vectors that will contain the MSE
E_Xn_err <- NULL
E_XnS_err <- NULL
E_Xt_err <- NULL
E_XtS_err <- NULL

for(df in df_range){

Xn <- mvrnorm(n=N,mu = mu,Sigma = Sigma) #Multinormal sample of size N to estimate the
MSE

XnS <- Xn -(p-2)*(Xn/rowSums(Xn^2))

Xt <- rmvt(n=N,sigma = Sigma ,df = df) #Multivariate t sample of size N
XtS <- Xt -(p-2)*(Xt/rowSums(Xt^2))

Xn_err <- colSums(t(Xn)^2) #Vector of the errors of the observed value for the normal
case

XnS_err <- colSums(t(XnS)^2) #Vector of the errors of Stein ’s estimator for the normal
case

Xt_err <- colSums(t(Xt)^2) #Vector of the errors of the observed value for the student
case

XtS_err <- colSums(t(XtS)^2) #Vector of the errors of Stein ’s estimator for the student
case

#MSE
E_Xn_err <- c(E_Xn_err ,mean(Xn_err))
E_XnS_err <- c(E_XnS_err ,mean(XnS_err))
E_Xt_err <- c(E_Xt_err ,mean(Xt_err))
E_XtS_err <- c(E_XtS_err ,mean(XtS_err))
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}

plot(df_range ,E_Xn_err , lty=1, type = "l",ylim = c(0,55),
main = NULL ,ylab = "MSE",xlab = "Degrees of freedom")

lines(df_range ,E_XnS_err , lty=2)
lines(df_range ,E_Xt_err , lty=3)
lines(df_range ,E_XtS_err , lty=4)
legend("topright", legend=c("Normal: Observed value" ,"Normal: Stein ’s estimator","Student

: Observed value" ,"Student: Stein ’s estimator"),
lty = 1:4,cex = 0.8)

#######################
#### Mean increases ###
#######################

#covariance matrix
Sigma <- diag(p)

#multiplicator of the mean
range <- sqrt(0:50/10)

#Vectors that will contain the MSE
E_Xn_err <- NULL
E_XnS_err <- NULL
E_Xt_err <- NULL
E_XtS_err <- NULL

#Vector that will contain the norm of the mean , for use in the plot
Norm_mu <- NULL

for(m in range){

mu <- m*rep(1,p) #Mean vector

Xn <- mvrnorm(n=N,mu = mu,Sigma = Sigma) #Multinormal sample of size N to estimate the
MSE

XnS <- Xn -(p-2)*(Xn/rowSums(Xn^2))

Xt <- rmvt(n=N,delta=mu,sigma = Sigma ,df = 6) #Multivariate t sample of size N
XtS <- Xt -(p-2)*(Xt/rowSums(Xt^2))

Xn_err <- colSums ((t(Xn)-mu)^2) #Vector of the errors of the observed value for the
normal case

XnS_err <- colSums ((t(XnS)-mu)^2) #Vector of the errors of Stein ’s estimator for the
normal case

Xt_err <- colSums ((t(Xt)-mu)^2) #Vector of the errors of the observed value for the
student case

XtS_err <- colSums ((t(XtS)-mu)^2) #Vector of the errors of Stein ’s estimator for the
student case

#MSE
E_Xn_err <- c(E_Xn_err ,mean(Xn_err))
E_XnS_err <- c(E_XnS_err ,mean(XnS_err))
E_Xt_err <- c(E_Xt_err ,mean(Xt_err))
E_XtS_err <- c(E_XtS_err ,mean(XtS_err))

#Squared norm of mu (for the x-coordinates in the plot)
Norm_mu <- c(Norm_mu,normsq(mu))

}

plot(Norm_mu,E_Xn_err , lty=1, type = "l",ylim = c(0,30),
main = NULL ,ylab = "MSE",xlab = "||mu||^2")
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lines(Norm_mu ,E_XnS_err , lty=2)
lines(Norm_mu ,E_Xt_err , lty=3)
lines(Norm_mu ,E_XtS_err , lty=4)
legend("bottomright", legend=c("Normal: Observed value" ,"Normal: Stein ’s estimator","

Student: Observed value" ,"Student: Stein ’s estimator"),
lty = 1:4,cex = 0.8)

##########################
## General covariance ##
##########################

#########################
## p=50 and n varies ##
#########################

p=50
N=5000

#Vectors that will contain the MSE
E_X_err <- NULL
E_XS_err <- NULL

#Mean
mu <- rep(1,p)

## The different types of covariance matrix ##
Sigma <- diag(c(rep(1,p/2),rep(5,p/2)))
#Sigma <-sigma_block(p)
#Sigma <- regressive_sigma(p)

#inverse of the covariance matrix
Sigma_inv <- solve(Sigma)

### n < p: the Moore -Penrose inverse is used ###

nrange_smaller <- c(seq(5,45,by=5),49)

for(n in nrange_smaller){

#Sample of size N to estimate the MSE
X <- mvrnorm(n=N,mu = mu,Sigma = Sigma)

#Vectors that will contain the errors
X_err <- NULL
XS_err <- NULL

for(j in 1:N){
#Sample of size n to compute S, so the mean is set to 0
V <- mvrnorm(n=n+1,mu = rep(0,p),Sigma = Sigma)

S <- n*cov(V)
S_MP <- ginv(S) #Moore -Penrose inverse

# Stein ’s estimator
denom <- as.numeric ((t(X[j,]) %*%S_MP)%*%X[j,])
coef <- (n-2)/((p-n+3)*denom)
XSj <- (diag(p)- coef*(S%*%S_MP))%*%X[j,]

#Square errors
X_err <- c(X_err ,err_sigma(X[j,],mu,Sigma_inv))
XS_err <- c(XS_err ,err_sigma(XSj ,mu,Sigma_inv))

}
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#MSE
E_X_err <- c(E_X_err ,mean(X_err))
E_XS_err <- c(E_XS_err ,mean(XS_err))

}

### p <= n: the real inverse can be used ###

nrange_bigger <- c(50,51,seq(55,100,by=5))

for(n in nrange_bigger){

#Sample of size N to estimate the MSE
X <- mvrnorm(n=N,mu = mu,Sigma = Sigma)

#Vectors that will contain the errors
X_err <- NULL
XS_err <- NULL

for(j in 1:N){

#Sample of size n to compute S, so the mean is set to 0
V <- mvrnorm(n=n+1,mu = rep(0,p),Sigma = Sigma)

S <- n*cov(V)
S_inv <- solve(S) #Inverse of S

# Stein ’s estimator
denom <- as.numeric ((t(X[j,]) %*%S_inv)%*%X[j,])
coef <- (p-2)/((n-p+3)*denom)
XSj <- (1- coef)*X[j,]

#Square errors
X_err <- c(X_err ,err_sigma(X[j,],mu,Sigma_inv))
XS_err <- c(XS_err ,err_sigma(XSj ,mu,Sigma_inv))

}

#MSE
E_X_err <- c(E_X_err ,mean(X_err))
E_XS_err <- c(E_XS_err ,mean(XS_err))

}

plot(c(nrange_smaller ,nrange_bigger),E_X_err , lty = 1 , type = "l",ylim = c(0,55),
main = NULL ,ylab = "MSE",xlab = "n")

lines(c(nrange_smaller ,nrange_bigger),E_XS_err , lty=2)
abline(v=50)
legend("bottomleft", legend=c("Observed value" , "Stein ’s estimator"),

lty = c(1,3),cex = 0.8)

######################
### When p varies ###
######################

#Takes quite some time ...
N=5000

#Dimensions
prange <- seq(10,80,by=10)

#Vectors that will contain the MSE
E_X_err <- NULL
E_XS1_err <- NULL
E_XS2_err <- NULL
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for(p in prange){

n1 <- p-1
n2 <- p/2
mu <- rep(1,p)

Sigma <- sigma_block(p) #Block covariance

Sigma_inv <- solve(Sigma)

X <- mvrnorm(n=N,mu = mu,Sigma = Sigma) #Sample of size N to estimate the MSE

X_err <- NULL #Vector that will contain the errors of the observed value
XS1_err <- NULL #Vector that will contain the errors of Stein ’s estimator using S1 (n=p-

1)
XS2_err <- NULL #Vector that will contain the errors of Stein ’s estimator using S2 (n=p/

2)

for(j in 1:N){

#Sample of size n1 = p-1 to compute S, so the mean is set to 0
V1 <- mvrnorm(n=n1+1,mu = rep(0,p),Sigma = Sigma)

S1 <- n1*cov(V1)
S1_MP <- ginv(S1)

#Sample of size n2 = p/2 to compute S, so the mean is set to 0
V2 <- mvrnorm(n=n2+1,mu = rep(0,p),Sigma = Sigma)

S2 <- n2*cov(V2)
S2_MP <- ginv(S2)

# Stein ’s estimators
denom1 <- as.numeric ((t(X[j,]) %*%S1_MP)%*%X[j,])
coef1 <- (n1-2)/((p-n1+3)*denom1)

denom2 <- as.numeric ((t(X[j,]) %*%S2_MP)%*%X[j,])
coef2 <- (n2-2)/((p-n2+3)*denom2)

XS1j <- (diag(p)- coef1*(S1%*%S1_MP))%*%X[j,]
XS2j <- (diag(p)- coef2*(S2%*%S2_MP))%*%X[j,]

#Square error
X_err <- c(X_err ,err_sigma(X[j,],mu,Sigma_inv))
XS1_err <- c(XS1_err ,err_sigma(XS1j,mu,Sigma_inv))
XS2_err <- c(XS2_err ,err_sigma(XS2j,mu,Sigma_inv))

}

#MSE
E_X_err <- c(E_X_err ,mean(X_err))
E_XS1_err <- c(E_XS1_err ,mean(XS1_err))
E_XS2_err <- c(E_XS2_err ,mean(XS2_err))

}

plot(prange ,E_X_err , lty=1, type = "l",
main = NULL ,ylab = "MSE",xlab = "Dimension")

lines(prange ,E_XS1_err , lty=2)
lines(prange ,E_XS2_err , lty=3)
legend("topleft", legend=c("Observed value" ,"Stein with n=p-1", " Stein with n=p/2"),

lty = 1:3,cex = 0.8)

##########################
## p=50 and mean vary ##
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##########################

N=5000

#Dimension and sample sizes for the estimation of S
p=50
n1 <- p-1
n2 <- p/2

#Vectors that will contain the MSE
E_X_err <- NULL
E_XS1_err <- NULL
E_XS2_err <- NULL

Sigma <-sigma_block(p)

Sigma_inv <- solve(Sigma)

range <- sqrt(0:40/10)

Norm_mu <- NULL

for(m in range){

mu <- m*rep(1,p) #Mean vector

X <- mvrnorm(n=N,mu = mu,Sigma = Sigma) #Sample of size N to estimate the MSE

X_err <- NULL #Vector that will contain the errors of the observed value
XS1_err <- NULL #Vector that will contain the errors of Stein ’s estimator using S1 (n=p-

1)
XS2_err <- NULL #Vector that will contain the errors of Stein ’s estimator using S2 (n=p/

2)

for(j in 1:N){

#Sample of size n1 = p-1 to compute S, so the mean is set to 0
V1 <- mvrnorm(n=n1+1,mu = rep(0,p),Sigma = Sigma)

S1 <- n1*cov(V1)
S1_MP <- ginv(S1) #Moore -Penrose inverse

#Sample of size n2 = p/2 to compute S, so the mean is set to 0
V2 <- mvrnorm(n=n2+1,mu = rep(0,p),Sigma = Sigma)

S2 <- n2*cov(V2)
S2_MP <- ginv(S2)

# Stein ’s estimators
denom1 <- as.numeric ((t(X[j,]) %*%S1_MP)%*%X[j,])
coef1 <- (n1-2)/((p-n1+3)*denom1)

denom2 <- as.numeric ((t(X[j,]) %*%S2_MP)%*%X[j,])
coef2 <- (n2-2)/((p-n2+3)*denom2)

XS1j <- (diag(p)- coef1*(S1%*%S1_MP))%*%X[j,]
XS2j <- (diag(p)- coef2*(S2%*%S2_MP))%*%X[j,]

#Square error
X_err <- c(X_err ,err_sigma(X[j,],mu,Sigma_inv))
XS1_err <- c(XS1_err ,err_sigma(XS1j,mu,Sigma_inv))
XS2_err <- c(XS2_err ,err_sigma(XS2j,mu,Sigma_inv))

}

#MSE
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E_X_err <- c(E_X_err ,mean(X_err))
E_XS1_err <- c(E_XS1_err ,mean(XS1_err))
E_XS2_err <- c(E_XS2_err ,mean(XS2_err))

#Squared norm of mu (for the x-coordinates in the plot)
Norm_mu <- c(Norm_mu,normsq(mu))

}

plot(Norm_mu,E_X_err , lty=1, type = "l",ylim = c(10,55),
main = NULL ,ylab = "MSE",xlab = "||mu||^2")

lines(Norm_mu ,E_XS1_err , lty=2)
lines(Norm_mu ,E_XS2_err , lty=3)
legend("bottomright", legend=c("Observed value" ,"Stein with n=p-1", " Stein with n=p/2"),

lty = 1:3,cex = 0.8)
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