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Abstract

Atmospheric escape is an important process, which significant attention has been
given to the last decades because it is necessary to understand characteristics of the
different layers of an atmosphere, such as the thermosphere, the ionosphere or the
exosphere.

Historically, studies of atmospheric escape were done using analytic models, for
example Jeans theory or hydrodynamic escape. However, these techniques fail to
correctly simulate the higher altitude layers where the particles’ density is low and
their velocity distribution begin to depart from a Maxwellian distribution so that
the atmosphere can no longer be described as a fluid. More recently, kinetic mod-
eling of escape have arisen and now simulations are commonly performed using the
direct simulation Monte-Carlo (DSMC), which better describes the transition from
collisional to collisionless regions of the atmosphere.

For the present work, we have considered a different kinetic technique, called the
Discrete Velocity Method (DVM), that has not been as often used to address atmo-
spheric escape problems. We have reproduced the DVM model of Merryfield and
Shizgal (1994) and applied it to an idealised Earth-like neutral single component
atmosphere. DVM is shown to be an effective technique and also time saving with
respect to its statistical equivalent DSMC, when simulating atmospheric escape. In
this manuscript, we first present a relevant scientific background on general atmo-
spheric escape processes. Then, we explain the theory behind Boltzmann equation,
the central equation to be solved. Finally we present a short section on numerical
computation.

Then, we detail how we have built the complete model based on a step by step
development where we go form a one-dimensional to a complete four-dimensional
problem. Along this process, we investigate different combinations of finite differ-
ence schemes and features used to solve the Boltzmann equation and discuss why we
decided to keep working with some particular combinations for the complete model.

Finally, we present the results from a series of simulations aimed at investigating a
new lower boundary condition. Then, we compare them to fluid-Jeans and DSMC
results. By doing so, we wish to qualify the technique and emphasize the consistency
and relevance of DVM as well as the computation time saving it allows. The model
we developed simulates a neutral hard sphere single component atmosphere. It is
the basic form of the problem and it could be expanded by considering, for example,
variable hard spheres, multiple components, external heating, photochemistry or
taking into account ions and electrons.
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Résumé

Durant les quelques dernières décennies, une certaine attention a été portée sur
l’échappement atmosphérique. C’est en effet un procédé important car il permet de
mieux comprendre les caractéristiques des différentes couches dans une atmosphère,
telles que la thermosphère, l’ionosphère ou encore l’exosphère.

Historiquement, les simulations de l’échappement atmosphérique étaient réalisées
à l’aide de modèles analytiques, comme la théorie de Jeans ou bien des modèles
d’échappement hydrodynamique. Cependant, ces techniques ne simulent pas cor-
rectement les plus hautes couches atmosphériques là où les densités de particules sont
basses et divergent d’une distribution maxwellienne, de telle sorte que l’atmosphère
ne peut plus être décrite comme un fluide. Plus récemment, de nouvelles façons de
faire ont été développées dans le cadre de l’échappement atmosphérique. Désormais,
les simulations sont exécutées tout en utilisant une méthode kinétique appelée sim-
ulation directe de Monte-Carlo (DSMC). Cette technique permet de mieux décrire
la transition entre les régions atmosphériques dominées par les collisions entre les
particules et les régions où les collisions sont absentes.

Dans ce présent travail, nous avons considéré une technique kinétique appelée la
méthode de vitesse discrète (DVM), qui n’a pas souvent été sollicitée en modélisation
de problèmes liés à l’échappement atmosphérique. Nous avons reproduit le modèle
de DVM de Merryfield and Shizgal (1994) et nous l’avons appliqué à une atmosphère
terrestre neutre idéalisée et composée d’un type de particule. La DVM est démontrée
efficace et apporte un gain de temps par rapport à la DSMC, son équivalent statis-
tique, lorsqu’il est question de simulation d’échappement atmosphérique. Dans cet
écrit, nous commençons par un rappel théorique concernant les concepts généraux
des procédés d’échappement atmosphérique. Ensuite, nous expliquons la théorie
utilisée dans l’équation de Boltzmann, qui est l’équation centrale du problème. En-
fin, nous parlons brièvement d’un concept de calcul numérique utilisé.

Par la suite, nous détaillons la façon dont nous avons construit le modèle complet,
basé sur un développement par étape où nous partons du problème à une seule di-
mension, pour arriver au problème complet à quatre dimensions. Au cours de ce
procédé, nous avons investigué sur différentes combinaisons de schémas de différences
finies ainsi que sur des astuces pour résoudre l’équation de Boltzmann. Nous y dis-
cutons également des diverses raisons de notre choix de continuer à travailler avec
certaines combinaisons pour le modèle complet. Nous expliquons aussi comment
nous avons résolu le problème en appliquant des schémas d’intégration spécifiques.

Finalement, nous présentons des résultats d’une série de simulations ayant pour but
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d’investiguer sur l’utilisation d’une nouvelle condition de bord inférieure et ensuite
nous comparons ceux-ci aux résultats de simulations fluid-Jeans et DSMC. En faisant
ces comparaisons, nous voulons qualifier la technique de DVM et mettre l’accent sur
sa pertinence ainsi que sur le gain de temps de calcul qu’elle permet d’atteindre.
Le modèle développé simule une atmosphère neutre, composée d’un seul type de
particules sphères dures. Il est la version de base du problème d’échappement atmo-
sphérique et pourrait être étendu en considérant, par exemple, des particules sphères
dures variables, une composition de plusieurs types de particules, un échauffement
externe de l’atmosphère considérée, la photochimie ou bien en prenant en compte
les ions et électrons.
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Chapter 1

Introduction

When observing a planetary body in space, most of us probably wonder about the
past of this body and also about its future. What did it look like one billion years
ago and what will it look like in one billion years? Many factors must be taken
into account when trying to answer these seemingly modest questions. Indeed, the
evolution of a planetary body is very complex and requires many disciplines to join
in order to be understood as fully as possible, as its influences range from its inner
activity to its host star’s activity, if it has any. Many scientific fields thus focus
on describing each process individually and then assemble to make a continuously
improving description of the universe’s planetary bodies.
We, as many others, want to contribute to this goal by working on modeling the up-
per atmospheres. More precisely, we decided to work on atmospheric escape, which
is the process by which an atmosphere is gradually loosing particles to outer space.
This phenomenon can have a significant impact over a long duration of time. By
modeling this process accurately we could better understand the time evolution of
the atmosphere of a planet. For example, why has Mars apparently lost most of
its water and why is its atmosphere so teneous? But it could also help predict how
Earth’s atmosphere is going to evolve and if it will ever look like Mars’ or any other
planet’s.

Atmospheric escape was first mentioned in the late 19th century by John James
Waterson and James C. Maxwell who were pioneers in the kinetic theory of gases as
explained in Chamberlain (1963). Since then, atmospheric escape has been more in-
tensively investigated and it is nowadays generally classified into two different types
of escape. The first category is the non-thermal escape which contains subcategories
such as photochemical, ion or impact erosion escape, but we will not describe this
category further in this work1.

The second one is the thermal escape. This category has two limiting cases: evapora-
tive escape and hydrodynamic escape. The cases differ mainly because of the upper
boundary they require as will be discussed later.
Hydrodynamic escape has been thoroughly described by Parker (1964). The theory

1 Remark: Other effects can come into place when considering ionised particles and the process
of escape can become different, although, we focused this work on neutral particles and shall not
discuss non neutral effects even though they can be non negligible as particles can interact on long
range without colliding.
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CHAPTER 1: Introduction

was developed for the solar corona and explains that for particular conditions, an
atmosphere can expand with a bulk velocity of the order of the speed of sound and
thus most particles may eventually escape.
Evaporative escape has been pioneered by Jeans (1916) and later reworked by Cham-
berlain (1963). This atmospheric escape process states that above the exobase where
the mean free path of particles is greater than the scale height, particles do not un-
dergo collisions anymore. Some of the particles presenting a velocity greater than
the escape velocity at the considered altitude are then assumed to escape and a flux
or escape rate can be derived. Chamberlain (1963) considered that particles could
enter different kinds of orbits related to their velocity after crossing the exobase
boundary. Thus, particles can follow an orbit that will not reenter the planetary
body’s atmosphere. His work also adapted the definition of the number density that
was used by Jeans (1916). This process is slower than the hydrodynamic process,
although it can have a significant impact over a certain duration of time.

Investigation of the different macroscopic variables profiles of an atmosphere and its
escaping rate most commonly call upon the steady-state Navier-Stokes fluid equa-
tions, where viscosity is neglected, considering a spherically symmetric atmosphere
and a non-rotating frame of reference. Following Erwin et al. (2012), these equations
include the conservation of mass equation

4πr2nu = φ (1.1)

where r is the radius, n is the number density, u is the bulk velocity, the equation
of conservation of momentum

nm
∂

∂r
(
1

2
u2) +

∂p

∂r
= −nmg(r) (1.2)

where m is the mass of a particle, p is the pressure and g is the planetray body’s
gravitational acceleration and the equation of conservation of energy without heating

∂

∂r
(φ(CpT +

1

2
mu2 − U(r))− 4πr2κ(T )

∂T

∂r
) = 0 (1.3)

where Cp is the specific heat at constant pressure, T is the temperature, U(r) is the
gravitational energy and κ is the conductivity.

However, these fluid equations are only valid for lower layers of atmospheres where
the velocity distribution of particles is sufficiently close to a Maxwellian. In higher
layers, where collisions begin to be less frequent, they fail at accurately describing
the atmosphere and therefore the escape rate. One way to get around this limita-
tion that has been used over the past decades calls upon the non-linear Boltzmann
equation which describes the fluid at the microscopic level. This equation contains a
collision term and allows a more precise description of the regions where the transi-
tion between collision dominated regime to collisionless regime takes place. In other
words, using the non-linear Boltzmann equation allows to study the atmospheric
profile from below the exobase up to high exospheric altitudes. More details about
the non-linear Boltzmann equation and its usage will be given in the following chap-
ter.

2



CHAPTER 1: Introduction

The most commonly used technique to solve this problem is the Direct Simulation
Monte Carlo (DSMC) . Unfortunately, DSMC suffers from statistical noise and be-
comes slow when it comes to simulating denser and lower parts of atmospheres. A
potentially attractive alternative to overcome the short comings of DSMC is the
Discrete Velocity Method (DVM). DVM is a numerical technique often used in rar-
efied gas dynamics to solve the Boltzmann equation (Broadwell, 1964; Cabannes,
1976; Gatignol, 1975). The technique discretises the velocity space and solves the
underlying PDE using finite difference schemes. With this technique, the number
of equations in the system to be solved can become quite large. However, the use
of finite difference, allows to characterise the error in our solution on the basis of
standard numerical error analysis, as opposed to DSMC which can be affected by
statistical noise.
Our main objective was to reproduce the model presented in the paper ”Discrete
velocity model for an escaping single-component atmosphere” by Merryfield and Shiz-
gal (1994) and eventually find possible improvements in order to have a more efficient
model. Moreover, we contrasted these results with those obtained using DSMC and
provided to us by Dr. Orenthal J. Tucker from NASA Goddard Space Flight Center,
in order to show advantages of using discrete velocity method, such as computation
time gain and numerical error reduction. Finally, we applied it to the atmosphere
of an other planetary body to illustrate scientific relevance regarding planetary at-
mospheres in general.

3





Chapter 2

Scientific Backround

This chapter describes a few key theoretical concepts and specific notions used
throughout this work.

2.1 Earth’s Upper Atmosphere

Here we present common knowledge about the atmosphere to introduce the context
of the work. We base the explanations on Figure 2.1 which displays the different
classifications of the Earth’s atmosphere depending on the considered characteristic.
We focus our depiction on the upper parts of the atmosphere, that is above 100 km,
as the model will simulate these regions.

2.1.1 Exosphere

This project uses the non-linear Boltzmann equation, which considers collisions be-
tween particles to describe atmospheric escape. The most important regions for us
are those related to the collisional nature of the atmosphere, which is the barosphere
and exosphere. The exosphere is the region where it is assumed that there are rare
collisions between particles and that they approximately follow a free molecular flow
or ballistic trajectories. It is separated from the barosphere, where collisions domi-
nate, by the exobase. The exobase is an imaginary limit where the mean free path
of a particle is equal to the local scale height. To determine the exobase location,
generally, we look at the altitude where the Knudsen number is equal to 1. The
Knudsen number is given by

Kn(r) =
l(r)

H(r)
(2.1)

where l(r) is the mean free path of the considered particles and is equal to

l(r) =
1

n(r)σ
√

2
(2.2)

where σ is the particle’s collisional cross section. H(r) is the local scale height

H(r) =
kbTr

2

GMm
(2.3)

where G is the gravitational constant, M is the mass of the host body and kb the
Boltzmann constant.
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CHAPTER 2: Scientific Backround

Figure 2.1: Different classifications of the vertical structure of the Earth’s atmo-
sphere (Grodent, 2019)

Actually, the transition between the two subregions is smooth and not strict. Be-
low the exobase, at high altitude the velocity distribution function of the particles
already deviates from a Maxwellian and far above the exobase collisions can still oc-
cur, although they become rarer. This smooth transition is due to the fact that the
number density decreases with r. A good description of escape is one that follows
and takes this gradual transition into account (Banks and Kockarts, 1973; Schunk
and Nagy, 2000; Krasnopolsky, 2019) .

2.1.2 Thermosphere

The thermosphere is the upper subregion characterised by the evolution of the tem-
perature in the atmosphere. In this region the temperature gradient is positive and
higher in lower parts to become isothermal above. Temperatures typically range
from ∼ 300 K to more than 1 000 K. The heating source in this region mainly comes
from the EUV radiation absorption, such as by molecular oxygen. The heat sink
comes from heat conduction to the region below called the mesopause. In the lower
parts of the thermosphere a smaller amount of EUV photons arrives and tempera-
ture thus decreases. At higher altitudes, collisions become rare, hence temperature
cannot be described macroscopically anymore. Some other conventions therefore
use the exobase as the thermosphere’s upper boundary, contrary to what is shown
in Figure 2.1. (Banks and Kockarts, 1973; Schunk and Nagy, 2000; Krasnopolsky,
2019)

6



CHAPTER 2: Scientific Backround

Figure 2.2: Thermal structure of the Earth’s atmosphere. (Silber, 2018)

2.1.3 Heterosphere

The heterosphere is the region of the atmosphere characterised by non-homogeneity
in its composition in contrast to the homosphere where eddy diffusion and molecular
collisions mixe all the major components to have a uniform relative composition and
allows the mean molecular mass to stay constant. As the density decreases higher in
this region, the effects of turbulent mixing and molecular diffusion become inefficient
and the particles are no more homogeneously redistributed. Above this, species tend
to follow their individual scale heights, which depend on their masses. Because of
this, lighter species such as hydrogen, helium and oxygen become enhanced and
therefore the mean molecular mass decreases as can be seen in Figure 2.3 a. (Banks
and Kockarts, 1973; Schunk and Nagy, 2000; Krasnopolsky, 2019)

2.1.4 Ionosphere

The ionosphere is the region characterised by the ionised nature of its components.
It describes how ions and electrons are distributed in the atmosphere and it is
influenced by the magnetic field of the Earth. The main albeit not unique source of
formation of the ions is the photoionization of neutral particles by EUV and X-ray
radiations, as well as cosmic rays. It spreads from about 60 km up to 1 000 km, it is
present at all latitudes although it is sensitive to the Sun’s activity and therefore, its
exact composition and range vary on a day-night cycle. Above this region around
the geomagnetic equator, is the plasmasphere which originates from the ionosphere
and is a high ion density region located inside the closed magnetic field lines. These
very complicated regions are influenced by many phenomenona that regulate their
properties and the study of ionospheric processes is a whole individual field. Number
density profiles of a series of ions are shown in Figure 2.3 b. (Banks and Kockarts,
1973; Schunk and Nagy, 2000; Krasnopolsky, 2019)

7
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(a) (b)

Figure 2.3: (a) pressure, number density for different neutral component and mean
molecular mass as function of altitude in Earth’s atmosphere, (Grodent, 2019). (b)
number density of positive ions and the electrons for a daytime ionosphere at solar
minimum as function of altitude in Earth’s atmosphere, (Banks and Kockarts, 1973).

Obviously all these regions have been defined from conventions and are in fact all
existing together within the atmosphere of the Earth, meaning that they interact
and influence each other. For example, the neutral particles often interact with
charged particles, which eventually change the composition of their own regions.
However, when trying to model one of these regions we are often restricted to make
assumptions to simplify and neglect their interactions with one another, in order to
have a reasonably fair model.

2.2 Thermal Escape

Here we detail the two limiting cases of thermal escape which are hydrodynamic
escape and evaporative escape. Hydrodynamic escape is considered to be a fast
escape rate, whereas evaporative escape is a slower, molecule by molecule escape
process. The two regimes are shown in Figure 2.4 from (Volkov et al., 2011). Our
description is mainly based on (Parker, 1964) for the former and on (Chamberlain,
1963) for the latter.

2.2.1 Hydrodynamic Escape

Parker (1964), with the goal to study the stellar coronal expansion, proposed to
solve the system of equations formed by the hydrodynamic momentum equation
and the equation of conservation of mass, using specific conditions.
First, he assumes a polynomial form for the temperature profile in the stellar corona
as followed

T (r) = T0

[
N(r)

N0

]α−1

(2.4)

8
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Figure 2.4: Representation of the limiting cases of thermal escape rate with respect
to the Jeans parameter. Hydrodynamic escape rate is considered below λ0 = 2 and
evaporative escape rate (Jeans-like) above λ0 = 6. These results were computed
using DSCM model.

where N(r) is the number density, T0 is the temperature at the lower boundary of
the corona and N0 the number density at this boundary too, and is limited to the
range of α ∼= 1.1− 1.2.
He then argues the choice for the boundary conditions, which are that the expan-
sion velocity at the lower boundary is small compared to the thermal velocity; the
hydrostatic pressure tends to zero at infinity and the temperature decreases with
increasing radial distance.
Together with these conditions, the non-linear system of equations yields solutions
containing what is called a critical point. This point appears because of the compe-
tition between the thermal expansion term that decreases as 1

r
and the gravitational

term that decreases as 1
r2

. Therefore, above a critical radius, the thermal expansion
dominates, (Clette, 2018). This critical point can be seen when plotting the velocity
with respect to the radius and different regions can be observed. In order for that
point to exist, Parker has found that the temperature profile must decrease less
rapidly than a

r
, where a is the altitude at the base of the corona and that the grav-

itational field must be sufficiently intense. Therefore, this hydrodynamic expansion
does not apply to every star or planetary body, but only in specific cases.
He also proved that the only solution for the corona to reach supersonic expansion
is that its bulk velocity profile must cross the critical point, otherwise contradic-
tions arise in solving the fluid equations and therefore subsonic velocity expansion
solutions would not be allowed.
Finally, it is worth mentioning that hydrodynamic escape remains an approximation
and that it fails at correctly describing the escape process at high altitude as the
atmosphere cannot be considered as a fluid anymore because collisions become too
rare (Catling and Kasting, 2017).

9
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Figure 2.5: Plot of the the velocity with respect to the altitude scaled to the altitude
of the base of the corona. It represents the solutions to the equations of conservation
of mass and momentum from (Parker, 1964).

2.2.2 Evaporative Escape

The approximation of escape flux is given by the Jeans escape relationship which
can be derived by integrating the Maxwell-Boltzmann distribution

f(~v) =

(
m

2πTkb

) 3
2

exp

(
−m~v.~v

2Tkb

)
(2.5)

over the velocity space. ~v represents the velocity of a particle in this equation.
It basically describes how particles are distributed in the velocity space and how
they are affected by temperature. At higher temperature particles can more easily
reach greater velocities. The tails of the distribution contain the faster moving
ones, the particles that can reach values greater than the escape velocity given by

vesc(r) =
√

2GM
r

.

In order to get the flux, we need to integrate over the velocity space and multiply
by the number density and the z component of velocity as follows

F =

∫
nvzf(~v)dv3 (2.6)

In spherical coordinates the relation is

FJ =

∫ π
2

0

∫ 2π

0

∫ ∞
vesc

nv cos θf(~v)v2 sin θ dv dφ dθ (2.7)

where we integrate from escape velocity to infinity for velocity, to get an escape flux.
The result of these actions gives the flux in Equation 2.8 and the details are given
in Appendix C.

FJ = n

√
kbT

2mπ
(1 + λe) exp(−λe) (2.8)

where λe is the Jeans parameter at the exobase and represents the competition
between gravitational potential energy and thermal energy

λ =
GMm

kbTr
(2.9)

10



CHAPTER 2: Scientific Backround

Figure 2.6: The two thermal mechanisms (Shizgal and Arkos, 1996).

This relation is an approximation saying that at an altitude where the mean free
path of the particles is equal to the local scale height, a strict limit exists between
collision dominated and collisionfree atmosphere. This limit is called the exobase
and below, the standard fluid equations are applicable. Any particle crossing the
exobase while bearing an upward velocity greater than the local escape velocity is
assumed to escape from the atmosphere following open trajectories as it will not
undergo collisions anymore.
Chamberlain (1963) studied three different trajectories for particles crossing the
exobase. The first one is called the ballistic orbit, for which particles return. The
second one is the satellite orbit, for which particles orbit the body, but do not enter
back. The last one is the escaping orbit. He shows what the form of the partition
function should be, depending on the different trajectories. This partition function
multiplies the barometric density to solve a paradox of a finite density at r → ∞
as well as an infinite mass for the atmosphere. His approach in deriving the escape
relation is slightly different than the one we introduced.
Therefore, the knowledge of the number density and the temperature at a given alti-

tude, would allow to compute the total escape rate of an atmosphere using Equation
2.8 and multiplying by the total spherical surface at this altitude

Φ = FJ4πr2
e (2.10)

where re is the radius at the altitude of the exobase.
In a multi-component atmosphere the Jeans escape model tends to overestimate
the escape as it considers an isothermal temperature (Pierrard, 2003). Indeed, if
particles escape, then high velocity particles do not return to the atmosphere and
thus energy is lost and temperature decreases. The Jeans escape flux is better suited
in cases where λ >> 1, so that the escaping atmosphere only has a small impact
on the lower layers of atmosphere. On the other hand, as shown by Merryfield and
Shizgal (1994), Jeans escape can underestimate the escape rate in a single component
atmosphere. Anyway, the outward moving flux of particles in an atmosphere can
also be expressed as the product of the number density and the bulk velocity of
the atmosphere. We can thus relate the Jeans escape flux to the outward moving
flux by saying that the escape flux is the value of the outward moving flux at the
exobase. This note brings us to the next point. As showed in (Erwin et al., 2012)
we can couple the Jeans flux relation to the fluid equations addressed earlier in
the introduction, to better estimate the escape flux. This method is known as the
fluid-Jeans model.
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2.2.3 Fluid-Jeans Model

We describe this method based on the paper by Erwin et al. (2012). The fluid-
Jeans model considers an atmosphere in one dimension being the spatial radial
dimension, it allows to obtain different radial profiles for variables such as the bulk
velocity, the number density, the pressure and the temperature. The model uses
the Jeans flux and the steady-state Navier-Stokes fluid equations, where viscosity is
neglected, considering a spherically symmetric atmosphere and a non-rotating frame
of reference.
One can start by using the following equation

∂p(r)

∂r
= −nmg(r) (2.11)

which considers the atmosphere to be hydrostatic and isothermal meaning that the
temperature is constant throughout the atmosphere and that there is no general
movement or no bulk velocity from particles. This relation considers that the grav-
itational attraction of the planet depends on the distance with r.
The integration of this equation yields

dp(r)

p(r)
= −R

2

r2

mg0

kbT
dr∫ p

p0

dp(r)

p(r)
=

∫ r

R

−R
2

r2

mg0

kbT
dr

ln
p(r)

p0

=

(
1

r
− 1

R

)
R2mg0

kbT

p(r) = p0 exp

(
R2r

r.r

mg0

kbT
−Rmg0

kbT

)
p(r) = p0 exp

(
r

H(r)
− R

H(R)

)
(2.12)

where g0 is the gravitational acceleration at R the radius of the considered body.
The density is computed with the barometric law derived from the previous relation
and given by

n(r) = n0 exp(
GMm

kbTr
− GMm

kbTR
) (2.13)

where n0 is the the number density at R. From the previous equation, the number
density can be obtained if we know the temperature, which is initially assumed to
be constant and also the number density at the surface. The pressure is derived
in the same way using Equation 2.12 . Jeans’s parameter is easily derived and by
getting the value at the exobase we can derive Jeans escape flux using Equation 2.8.
A more realistic model would require including the bulk velocity, i.e. the global
motion of the atmosphere. This can be done by using the conservation of momentum
equation

nm
∂

∂r
(
1

2
u2) +

∂p

∂r
= −nmg(r) (2.14)

where we only suppose that the atmosphere is isothermal. The as yet unknown bulk
velocity can then be derived from the momentum equation written as in (Erwin
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et al., 2012)

p(r) = p0 exp

(
−
∫ r

r0

1
2
mdu2

dr
+mg(r)

kbT
dr

)
. (2.15)

Using a simple numerical integration scheme we can solve the integral and obtain
the radial pressure profile. The density profile can then be obtained by using the
perfect gas law. Furthermore, we can compute the Jeans escape flux at the exobase.
Once the flux is determined we use Equation 2.10 and equal it to the mass equation
given by

4πr2n(r)u(r) = φ(r) (2.16)

which represents the molecular escape rate. Then we isolate the unknown u and
obtain the bulk velocity profile from

FJ4πr2
e = 4πr2n(r)u(r)

u(r) =
r2
e

r2

FJ
n(r)

(2.17)

As the unknown in Equation 2.17 is used to solve Equation 2.15, we need to iterate
between both several times to reach a steady result. Indeed our initial guess is a
bulk velocity of 0. We thus use the computed value to recompute the results until
the solution converges. Generally, five iterations are sufficient to reach convergence
up to the eighth digit for our calculations.
Finally, even in the absence of external heating, the escape will cool the atmosphere
and therefore the model will become non-isothermal. The equation used for this
model is given by

4πr2nCv
∂T

∂t
+

∂

∂r
(φ(CpT +

1

2
mu2 − U(r))− 4πr2κ(T )

∂T

∂r
) = 0 (2.18)

where Cv is the specific heat at constant volume, Cp is the specific heat at constant
pressure. U is the gravitational potential energy, κ is the conductivity.
This partial differential equation is solved numerically by using an implicit discreti-
sation scheme to derive the value of the temperature after each iteration. After each
time step we can recompute the solution of Equation 2.15 along with Equation 2.17
and Jeans escape, until reaching steady state for all the macroscopic variables.
In Figure 2.7 we show the radial profile of some macroscopic variables derived using
the three model previously described. We can see that for the number density, the
fluid-Jeans is the only model to significantly depart from the barometric solution
and thus it is able to describe a more realistic number density. The fluid-Jeans
also describes a decreasing temperature, which is expected as we consider escape
and no heating. It also becomes constant at high altitudes due to the assumed
conduction in the model, which transfers energy through collisions and tends to
homogenise temperature. For the bulk velocity, the non-hydrostatic models show
a non zero value at all altitudes, which is expected. As temperature stays higher
for the isothermal case, the bulk velocity exhibits higher values than the complete
fluid-Jeans model. For the outward molecular rates, the first model is zero which
agrees with an hydrostatic model. The two other models show a non zero constant
value which is consistent Equation 2.16. The greater value of isothermal case is a
consequence of the higher value of bulk velocity.
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We also show an other application where we derived the temperature profile using
the fluid-Jeans for different initial temperatures. We find that too low a temperature
makes that the atmosphere stays isothermal. On the other hand above a certain
temperature, we find that the temperature decreases with r, which means that the
initial temperature was high enough to trigger escape and that therefore the at-
mosphere looses energy and thus the temperature decreases. This exercise helps
to know what minimum initial temperature to use if we want to simulate escape
in a model and it justifies the temperature of 1 000 K chosen in (Merryfield and
Shizgal, 1994) . However, the increase of temperature also expands the atmosphere
and therefore, the exobase altitude moves upward. Increasing the temperature too
much can move the exobase above the upper boundary of the problem. A way to
check if the exobase is included in the model is to look at the altitude at which the
Knudsen number equals one and compare it to the upper boundary value. In our
simulation we were limited to around 1 200 K and we show the results in Figure 2.8.

The previous short description shows how this model is straightforward and allows to
derive relevant results such as temperature and density profiles and an escape rate.
However, as the model uses the fluid equations, it is not relevant to model high
altitude atmosphere, where the collisions start to rarefy and where the distribution
of velocity is no more a Maxwellian. What has been developed are other techniques
that consider the evolution of the collisions throughout the atmosphere and model
better the transition through the exobase. One of these techniques is called the
discrete velocity method and is the one we use in this work.

2.3 Kinetic Methods

Using the Navier-Stokes equations is most valid when considering the atmosphere
as fluid-like. It means that the density is high enough for the particles’ velocity
distribution to be considered Maxwellian. For these equations to be applied to the
escape problem we must consider the atmosphere to be continuous up to the exobase
as described above. However, number density decreases with altitude and the dis-
tribution of particles deviates from a Maxwellian making the use of these equations
unjustified. Hopefully, other techniques can be applied, by solving the Boltzmann
equation, to the entire atmosphere. This equation takes into account the simul-
taneous evolution of the distribution and the collisions. It can thus describe both
continuum and rarefied flows.
As presented in Figure 2.9, we see how solving the Boltzmann equation is bet-
ter suited for simulating high altitude atmosphere where even above the exobase
collisions can still occur. In the past decades, the more common technique used
to simulate the atmospheric escape in these different regimes has been the DSMC
method, thoroughly explained in (Bird, 1994). This statistical method has been
used because it is well suited for simulating rarefied gas dynamics. DSMC allows
deriving properties of the atmosphere similar to the fluid-Jeans method, but by con-
sidering the atmosphere at the molecular level and not as a continuum. It uses the
probability of the post-collision redistribution of particles’ velocities to simulate the
evolution of the layers of the atmosphere using values as the number density, the
relative velocity between particles along with their probabilistic cross section etc.
However, DSMC becomes slow when simulating denser regions of the atmosphere
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(a) (b)

(c) (d)

Figure 2.7: Plots of the macroscopic variables derived from the fluid-Jeans model for
an initial temperature of 1 000 K, a surface number density of 1.417× 108cm−3 and
the parameters corresponding to an Earth-like planet with an hydrogen atmosphere.
The upper boundary was set at 16 400 km and we iterated until steady state with a
time step of one day for the complete fluid-Jeans part.
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Figure 2.8: Temperature profile cut at the exobase altitude for different initial tem-
peratures derived using the complete fluid-Jeans model.

Figure 2.9: Different mathematical descriptions of fluids and their domain of appli-
cation with respect to the Knudsen number. From Palharini (2014).
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because it becomes computationally expensive. Furthermore, as it is a statistical
method it uses a large number of particles, which inevitably introduces statistical
noise into the calculations, (Bird, 1994).

An alternative technique to solve the Boltzmann equation is the Discrete Velocity
Method (DVM). It is a numerical technique often used in rarefied gas dynamics.
To our best knowledge, it has only rarely been used to simulate dynamics of the
atmosphere, for example Merryfield and Shizgal (1994) have applied DVM to the
planetary escape problem, but mostly in particular rarefied flows related situations,
for example (Gatignol, 1975; Cabannes, 1976; Broadwell, 1964). As already ex-
plained earlier, the main aspect of this technique is to discretise the velocity space
and solve a partial differential equation using finite difference schemes.

2.4 Non-Linear Boltzmann’s Equation

Here we explain a bit more the foundations of the non-linear Boltzmann’s equation,
following the development by (Schunk and Nagy, 2000).
This equation deals with the particles’ velocity distribution function. This distri-
bution is characterised by three independent variables: the position in space, the
position in the velocity space and time. The two first variables form what we call the
phase space. The distribution describes the amount of one type of particles that can
be found in a specific volume element around the position in space and that have a
specific range of velocities in a velocity space element around the velocity position at
a specific time. With the non-linear Boltzmann equation we look at the time evolu-
tion of the distribution in this phase space under collisions and external forces. The
collisions will act in the production or loss of particles in the distribution. Indeed,
after a collision, a particle can change velocity and therefore change the number of
particles possessing a certain velocity and thus the distribution. After a collision a
particle can also leave the space element and therefore deplete the distribution. The
evolution with time of the velocity distribution of particles 1, called f1 is given by

df1

dt
= lim

∆t→0

f1(~r + ∆~r,~v1 + ∆~v1, t+ ∆t)− f1(~r,~v1, t)

∆t
(2.19)

where ~r is the position in space and ~v1 is the position in velocity space.
When considering the limit, the first term of the numerator can be expanded and
we have

df1

dt
= lim

∆t→0

1

∆t

[
f1(~r,~v1, t) +

∂f1

∂t
∆t+ ∆~r · ∇f1 + ∆~v1 · ∇vf1 + ...− f1(~r,~v1, t)

]
(2.20)

When taking the limit we have

df1

dt
=
∂f1

∂t
+ ~v1 · ∇f1 + ~a1 · ∇vf1. (2.21)

The right-hand side of the above equation represents the left-hand side of the non-
linear Boltzmann equation. If collisions are not taken into account, then the latter
becomes zero and we have df1

dt
= 0, the equation is now called Vlasov equation.

On the other hand, if we consider collisions then the right-hand side of the non-linear
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Figure 2.10: The relative velocities before and after the collision are g12 and g′12,
respectively, b is the impact parameter, ε is the azimuthal angle that defines the
plane of the collision, and θ is the scattering angle. The cross-hatched area is bdbdε.
Taken from (Schunk and Nagy, 2000).

Boltzmann equation is non-zero and it is called the collision integral. Therefore, we
have

df1

dt
≡ δf1

δt
=
δf+

1

δt
− δf−1

δt
(2.22)

where δf1
δt

represents the change of the distribution due to collisions and where the
first term of the right-hand side is the production or change of the distribution due
to particles acquiring a velocity in the velocity space element defined earlier. The
second term of the right hand side is the loss or change of the distribution due to
particles acquiring a velocity outside the velocity space element defined earlier. We
describe the collision between different types of particles by starting with the loss
term as it was done in the reference book (Schunk and Nagy, 2000). For collisions
to happen the particles have to be in the same spatial volume element dr3 as we
consider only binary elastic collisions between neutral particles. Therefore, particles
1 will face a flux formed by particles 2 having a velocity volume element dv3

2. In the
interval of time dt this flux covers a spatial volume of

g12.dt.b db.dε (2.23)

where g12 is the relative velocity between the two types of particles before the col-
lision, b is the impact parameter and ε the collision plane from Figure 2.10. The
number of collisions that occur in this volume in the time dt between the flux of
particles 2 and the number of particles 1 is:

f1.dv
3
1 dr

3.f2.dv
3
2.g12.dt.b db.dε (2.24)

It corresponds to the number of particles 1 that will be scattered out of the velocity
volume element dv3

1 . Now, to get the total number of scattered particles 1, we
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need to consider all velocities of particles 2, all impact parameters and all angles of
collision. We derive it by integrating as follows

f1.dv
3
1dr

3.dt

∫ ∫ ∫
f2.g12.b dv

3
2 db dε (2.25)

We retrieve
δf−1
δt

by dividing the relation by dv3
1 dr

3 dt

δf−1
δt

=

∫ ∫ ∫
f1f2.g12.b dv

3
2 db.dε (2.26)

Now we describe the production term
δf+1
δt

, which represents particles 1 inside the
volume element dr3 and outside the velocity element dv3

1 that acquire a velocity
belonging in the velocity element dv3

1 after a collision with particles 2 from a velocity
element dv3′

2 .Schunk and Nagy (2000) call this an inverse collision. As we consider
binary elastic collisions we are allowed to say that the inverse collision is symmetric
with respect to the initial collision. This means that a particle 2 is in the same
impact parameter range and the same collision plane range as in the first case for
the loss term. Therefore, particles 1 in dv3′

1 will face a flux formed by particles 2
having a velocity volume element dv3′

2 . During a time interval dt this flux covers a
spatial volume

g
′

12.dt.b db.dε (2.27)

The number of collisions that occur during dt between the flux of particles 2 in this
volume and the number of particles 1 is:

f
′

1.dv
3′

1 dr
3.f

′

2.dv
3′

2 .g
′

12.dt.b db.dε (2.28)

It corresponds to the number of particles 1 scattered into the velocity volume element
dv3

1 . Now, to get the total number we need to consider all the velocities of particles
2, all the impact parameters and all angles of collision. We derive it by integrating
as follow:

f
′

1.dv
3′

1 dr
3.dt

∫ ∫ ∫
f
′

2.g
′

12.b dv
3′

2 db.dε (2.29)

A few considerations have to be mentioned. In a binary elastic collision the relative
velocity between two types of particles are equal for the cases of inverse collision and
its counterpart. Then, to link both velocity volume elements, we use the Jacobian

of the change of variables,1 |J | = ∂(~v
′
1,~v
′
2)

∂(~v1,~v2)
= 1, as follows

dv3′

1 dv
3′

2 = dv3
1dv

3
2|J | (2.30)

By applying it to Equation 2.29 we obtain

f
′

1.dv
3
1dr

3.dt

∫ ∫ ∫
f
′

2.g12.bdv
3
2db.dε (2.31)

We retrieve
δf+1
δt

by dividing the previous relation by dv3
1 dr

3.dt

δf+
1

δt
=

∫ ∫ ∫
f
′

1f
′

2.g12.bdv
3
2db.dε (2.32)

1 Please see theory on binary elastic collision to know how to derive the value of the Jacobian,
e.g. (Schunk and Nagy, 2000)
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Then, Equation 2.22 becomes

δf1

δt
=

∫ ∫ ∫
(f
′

1f2
′ − f1f2).g12.bdv

3
2db.dε (2.33)

The form used in (Merryfield and Shizgal, 1994) is derived by linking a differential
cross section to the impact parameter and collision plane as

db dε b =σ12(g12, θ) sin θdθdε

=σ12(g12, θ)dΩ (2.34)

where Ω is the solid angle in the colliding particles center of mass reference frame,
θ is the scattering angle of the center of mass, σ is the differential scattering cross
section. The complete non-linear Boltzmann equation is given by

∂f1

∂t
+ ~v1 · ∇f1 + ~a1 · ∇vf1 =

∫ ∫
(f
′

1f2
′ − f1f2).g12σ12(g12, θ)dv

3
2dΩ (2.35)

2.5 Solving a PDE; the CFL Condition

In numerical analysis, when using finite differences for solving differential equations,
care has to be given to the lengths of the integration steps chosen. Indeed, choosing
too large a value can induce instability to the solution. Let us take the example
of hyperbolic partial differential equations and the case of the advection equation,
which is relevant to our problem as they share the first two terms

∂f(t, r)

∂t
+ a

∂f(t, r)

∂r
= 0 (2.36)

where a is a positive constant and may be associated to the vertical velocity compo-
nent of our problem, t is a temporal coordinate and r a spatial coordinate, (Morton
and Mayers, 2005). Now by developing the equation with finite difference using a
first-order upwind scheme for the spatial derivative and a first order forward differ-
ence scheme for the time derivative we get

f(t+ 1, r)− f(t, r)

∆t
+ a

f(t, r)− f(t, r − 1)

∆r
= 0 (2.37)

for positive values of a and

f(t+ 1, r)− f(t, r)

∆t
+ a

f(t, r + 1)− f(t, r)

∆r
= 0 (2.38)

for negative values of a, meaning particles going downward in our model. The values
of ∆t and ∆r must not be randomly chosen. They must comply to a condition called
the Courant–Friedrichs–Lewy or CFL condition to yield a stable solution over time
when using an explicit scheme for solving hyperbolic partial differential equations.
The condition is written as such

C = a
∆t

∆r
(2.39)

with C the Courant number. This number generally takes a value that depends on
the whole partial differential equation. For the first-order upwind scheme, described
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above, it must be less or equal to 1 for stability (Hirsch, 2007) and the condition
becomes

∆t ≤ ∆r

a
(2.40)

The condition can be understood as followed. If we take the highest value of velocity
for a and the lowest value of ∆r we get the maximum value of ∆t. This means
that particles with the highest velocities must not in an interval ∆t travel a greater
distance than ∆r, otherwise they would fall outside the stencil of the finite difference
in r and we would get a wrong solution for this time step, which will reverberate
in the next time step solution and so on. We then see the importance to respect
the condition if we want to obtain a stable solution over time, see also (Arnst, 2018;
Isaacson and B. Keller, 1994). Although, in our model, the upwind scheme was
of second order, variable coefficients were present and the right-hand side was non-
linear. This means we had to try several different combinations of ∆t with ∆r based
on the case introduced above because the derivation of the exact CFL condition for
our model is beyond the scope of our work.
For example, if we take the value of vmax = a = 12km.s−1 and our smallest r grid
space which is 211.8km for twenty spatial points and 101.5km for fourty spatial
points, we have that ∆t ≤ 17.6s and ∆t ≤ 8.44 s respectively. We thus made the
simulations using a time step of 10s and 5s to be safe. However, we had to go to
2.5 s for the fourty spatial points to avoid numerical oscillations. This shows that
the CFL condition is a rough upper limit for stability. For the velocity derivatives
of the Boltzmann equation, we also used this condition, but the condition on the
spatial derivative was, in all the simulations, stronger. We therefore relied on the
values given by the condition on the spatial derivative for the different simulations
done.
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Chapter 3

Description of the Problem

In this chapter, we describe our modus operandi for solving the central question
of this work, alongside with an explanation on the different pieces that compose
this question. Eventually, we present a series of representative results that, in our
opinion, are most relevant for comprehension and visualisation.
The model of Merryfield and Shizgal (1994) aims at simulating atmospheric escape
from a planetary body and does so by solving the non-linear Boltzmann equation

∂f

∂t
+ (~c · ∇r)f + (~a · ∇c)f =

∫ ∫
[f
′

1f
′

2 − f1f2]σ(g,Ω)g dΩ dc2 (3.1)

using the discrete velocity method.

To use discrete velocity method on the non-linear Boltzmann equation, we used
the form for spherically symmetric atmosphere with Cateisan velocity derived in
(Merryfield and Shizgal, 1994) and given as

∂f

∂t
+ vz

∂f

∂r
− 1

r

[
vxvz

∂f

∂vx
+ vyvz

∂f

∂vy
− (v2

x + v2
y)
∂f

∂vz

]
− GM

r2

∂f

∂vz
= C[f ] (3.2)

where we used finite difference schemes on the derivatives to work with the discre-
tised form. C[f ] is the non-linear Boltzmann collision integral expressed in Cartesian
velocity components and is given by

C[f ] =

p∑
j=1

∑
k,l

Aklij (fkfl − ffj) ·∆v3 (3.3)

with Aklij coefficient being equal to

Aklij = σ0|vi − vj|/Cij (3.4)

with Cij being the number of outcomes from the collision between particles i and j
and σ0 the total momentum collisional cross section of a particle given as

σ0 = πd2 (3.5)

where d is the collisional diameter of the considered particles.
The description on how to go from Equation 3.1 to Equation 3.2 is given in Appendix
B. For the Discrete Velocity method a discrete velocity space is adopted in which we

23



CHAPTER 3: Description of the Problem

consider that particles can have a certain finite number of different velocity vectors.
Generally, we choose a discrete velocity space with ten to twenty values. The range
is chosen such that the escape velocity

vesc(r) =

√
2GM

r
(3.6)

is encompassed and that the standard deviation of the Maxwell distribution

vt =

√
kbT0

m
(3.7)

is greater than the velocity space resolution and is at least covered three times,
where T0 is the initial temperature of the atmosphere. This ensures we resolve the
Maxwellian distribution, as well as the escaping tail.
Basically, we had to solve a first order partial differential equation with four dimen-
sions, which are: one for space and one for each of the three velocity components
in cartesian coordinates. The results derived when solving for the distribution of
particules allow us to compute macroscopic variables that can be used to derive
atmospheric properties, such as the number density

n(t, r) =
∑
i

f(t, vi, r)(∆v)3 (3.8)

the temperature

T (t, r) =
m

3kb

[
1

n

∑
i

f(t, vi, r)~v
2
i (∆v)3 − ~u(t, r)2

]
(3.9)

the bulk velocity component

~u(t, r) =
1

n

∑
i

f(t, vi, r)~vi(∆v)3 (3.10)

the heat flux

~q(t, r) =
m

2

∑
i

f(t, vi, r)~vi(~vi − ~u(t, r))2(~vi − ~u(t, r))(∆v)3 (3.11)

or the escape flux

Fesc(t, r) =
∑
i

vif(t, vi, r)(∆v)3 (3.12)

for the molecular escape flux, the sum is performed only for particles having a ve-
locity magnitude equal or greater than the escape velocity and directed upwards.

To tackle down the problem, we divided it into one part for each of the two sides
of the equation. The left-hand side represents a free molecular flow under a gravi-
tational field, given by the third term, where the particles are free to move between
different layers of the space dimension, given by the second term, and do not expe-
rience collisions. The right-hand side is called the collision integral and represents
the collisions that the particles experience through their motion in time. These col-
lisions eventually affect the motion of the particles in the atmosphere when coupled
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with terms of left-hand side. We thus chose to start to work on the left hand side;
to be cautious and not to rush into an overwhelming problem, we decided to build a
model step by step going up with the dimensions. This way, we could easily identify
and go back to any source of mistake when adding content to the code.
Then, we worked on the right-hand side of the equation. This piece of the model was
complex and required some time to implement in a code. This is due to the complex-
ity of using discrete velocity method which appeared when trying to compute the
collision integral of the non-linear Boltzmann equation. We needed to compute the
number of outcomes, from a collision between two particles, that fall on the velocity
space grid as well as the redistribution of the velocity vectors of these particles. This
complex task is also detailed in the following section. We eventually coupled this
discrete collision term with the four-dimensional model and we were able to start
comparing our results to those presented in (Merryfield and Shizgal, 1994).

3.1 Development of the Model: a step-by-step

process

Here we detail each development step along with the trials we experimented during
this building process that helped us decide which techniques we used for the complete
problem, from the one-dimensional free molecular flow model to the full model
comprising the four dimensions and collisions.

3.1.1 One-Dimensional Free Molecular Flow Model

We started from the one-dimensional case of the Boltzmann equation, which we
took to be the radial spatial dimension, using the Maxwell-Boltzmann distribution
as the initial condition

∂f

∂t
+ vz

∂f

∂r
− GM

r2

∂f

∂vz
= 0 (3.13)

Where we need to use the exact solution of the derivative with respect to vz which
allows to have

∂f

∂t
+ vz

∂f

∂r
− GMmvz

kTr2
f = 0 (3.14)

Choosing a constant value for vz gives us an equation in one dimension. Furthermore,
we integrate the equation over vz to obtain the equation as a function of the number
density and not the velocity distribution using the relation∫

f(~r,~c, t)d~c = n(~r, t) (3.15)

We then obtain
∂n

∂t
+ vz

∂n

∂r
− GMmvz

kTr2
n = 0 (3.16)

This equation is representative of the hydrostatic relation for a single velocity com-
ponent and we use it solely to illustrate the effects of upwind schemes and radial
resolution.
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(a) (b)

Figure 3.1: Number density as a function of r after 16 400s with vz = 1.0 km .
s−1. The figures show eight different cases described in the plots’ legends. Where
NR is the number of points in the r grid: Figure (a) is scaled to the barometric
solution. Figure (b) is on a logarithmic scale for the number density. SOUS stands
for second-order upwind scheme and FOUS for first-order upwind scheme.

Upwind Scheme

To solve this partial differential equation we used finite difference for the derivative
in r. We specifically used an upwind scheme, which uses information from positions
where the particles come from in their upward/downward motion. This means that
for particles going upwards we will use information from positions below, so we need
to use a backward difference scheme, as when particles come from above, we will use
forward difference scheme. The formulas for approximating the r derivatives using
these schemes are as follows (Inamuro and Sturtevant, 1990)

∂f(rs)

∂r
≈ f(rs)− f(rs−1)

∆r
, for vz > 0

∂f(rs)

∂r
≈ f(rs+1)− f(rs)

∆r
, for vz < 0

(3.17)

to first order and
∂f(rs)

∂r
≈ 3f(rs)− 4f(rs−1) + f(rs−2)

2∆r
, for vz > 0

∂f(rs)

∂r
≈ −3f(rs+2) + 4f(rs+1)− f(rs)

2∆r
, for vz < 0

(3.18)

to second order, where ∆r is the constant interval in radial space between consecutive
radial grid points and s is a subscript representing a radial grid point.

Non-homogeneous Spatial Grid

Merryfield and Shizgal (1994) adopted an uneven grid spacing for the spatial dimen-
sion. Using the following relation

λ(r) =
r

H(r)
(3.19)
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if we wish to have a grid distributed uniformely with respect to the Jeans parameter,
we have to use the inverse of the variable r. It is introduced in order to have an r
spacing that increases as the local scale height increases. Indeed, at low altitudes
as the atmosphere changes faster than at higher altitudes because of the smaller
scale height, a finer grid is more appropriate, which means more points in order to
evaluate the derivatives more accurately. As the scale height increases with altitude
and thus properties change more slowly, less grid points are required. Using the
inverse r definition to have an uneven grid, permits it. Although, the definition of
the upwind scheme needs to be adapted as follows



∂f(rs)

∂r
≈

(2hs−1hs−2 + h2
s−2)f(rs)− (hs−1 + hs−2)2f(rs−1) + h2

s−1f(rs−2)

hs−1hs−2(hs−1 + hs−2)
,

for vz > 0

∂f(rs)

∂r
≈
−(2hshs+1 + h2

s+1)f(rs) + (hs + hs+1)2f(rs+1)− h2
sf(rs+2)

hshs+1(hs + hs+1)
,

for vz < 0
(3.20)

for second order. First order is the same as even grid except the denominator is
not constant. Where hs, hs+1 and hs−1 are the non-constant intervals in radial space
and defined as

rs+1 = rs + hs, rs+2 = rs + hs + hs+1, for vz < 0

rs−1 = rs − hs−1, rs−2 = rs − hs−1 − hs−2, for vz > 0

and s is a subscript representing a radial grid point.

For this case we used backward upwind scheme as we had a constant positive vz.
Results of this model can be found in Figure 3.1. We compare different combinations,
with the number of points in r being twenty or fourty and also either using even or
uneven grid in r. We used as a reference, the barometric number density solution
given by

n(r) = n0 exp

[
r

H(r)
− R

H(R)

]
(3.21)

for which the repartition of particles does not change with time for free molecular
flow. n0 is the number density at altitude 0 in the simulated atmosphere and was
chosen to be 1.417× 108cm−3, R is the radius at altitude 0 and is equal to Earth’s
radius and H is the scale height. From Figure 3.1 a, we can clearly state that the
use of the second-order upwind scheme is much more consistent with respect to the
barometric solution. The use of the fourty points in r also helped to reach a better
accuracy. Finally, the use of the uneven grid improves the model at low altitudes
as expected and is only a little bit less efficient at high altitudes with respect to the
even case.
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3.1.2 Two-Dimensional Free Molecular Flow Model

For the following step, we used a two-dimensional case where we let unchanged the
derivative with respect to vz in order to solve it numerically.

∂f

∂t
+ vz

∂f

∂r
− GM

r2

∂f

∂vz
= 0 (3.22)

Boundary Conditions

Concerning the boundary conditions, we separated the velocity space in two differ-
ent classifications: one where the particles have a vz < 0 and one where the particles
have a vz > 0.
For the lower boundary in r , particles going upwards have the value of the Maxwell
distribution, because we considered below this level all particles have this distribu-
tion

f(rmin, vz, t) = feq(rmin, vz), for vz > 0 (3.23)

First, the simulations were done with a single boundary condition on the parti-
cles having a negative z component, without considering escape; that is specular
reflections

f(rmax,−vz, t) = f(rmax, vz, t), for vz > 0 (3.24)

Which means that the particles that were going upward would come back with a
velocity of the same magnitude, but with opposite direction. Henceforth, populating
the distribution made of the particles with negative component in z. Therefore, the
information will propagate from the lower boundary with upward moving particles
due to the upwind. Once it gets to the upper boundary, the information propagates
back with the downard moving particles down to the lower boundary.

For this two-dimensional case we tried three different options.
The first one tried to solve the equation using the upwind scheme as before and cen-
tered difference for the derivative with respect to vz. However, this method produced
unrealistic results. In Figure 3.2, we compare numerical derivative and analytical
derivative of Maxwell distribution with respect to vz. We clearly see a large error in
the numerical derivative. This is due to the large variation in f with vz. This error
has an impact strong enough to make the solution wrong after a few integration
time steps.

To compensate for this, Merryfield and Shizgal (1994) introduced a prefactor in
order to obtain more reasonable results. It is defined by writing

f = fpfeq (3.25)

The actual distribution is written in terms of a deviation from the equilibrium
distribution, defined in Appendix A, through a prefactor which was equal to 1.0
at time t = 0s. In this option, we used this form only for the term containing
the velocity derivative. We applied the product rule, obtaining a derivative in vz
over fp and one over feq of which we can derive the exact derivative to use for the
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Figure 3.2: Comparison between the analytical derivative and
the centered difference approximation of Maxwell’s distribution
at ground level.

computation of the partial differential equation as follows

∂f

∂t
+ vz

∂f

∂r
− GM

r2

∂feq
∂vz

fp −
GM

r2
feq

∂fp
∂vz

= 0

∂f

∂t
+ vz

∂f

∂r
+
GM

r2

mvz
kT

fpfeq −
GM

r2
feq

∂fp
∂vz

= 0 (3.26)

Part of the equation is thus expressed with an exact analytical solution and allows
to reduce total numerical errors.
The third option was by using this prefactor on all three terms of the equation.
Figure 3.3 shows results where we simulated the case with uneven r grid, fourty r
points, second-order upwind scheme for the previously described second and third
option. The improved accuracy of using the prefactor in the distribution for each
term is clearly visible. Indeed, for the free molecular flow, the evolution with time
of a Maxwellian distribution should stay close to a Maxwellian. We see that when
we compare our solution f with the equilibrium distribution feq it is not greatly
diverging from 1.0 when we use the prefactor. We thus consider the use of this
prefactor to be efficient.

Escape Boundary Conditions

In order to simulate the escape, we applied the same boundary condition as earlier,
except that for particles going up with a velocity component in z having a velocity
magnitude greater than the escape velocity, we applied a different condition as
follows

f(rmax,−vz, t) = α(t)f(rmax, vz, t), for vz > 0, v ≥ |~vesc| (3.27)
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(a) (b)

Figure 3.3: Distributions f(vz, r) scaled to feq(vz, r) as a function of r and vz scaled
to vmax after 16 400s with 40 grid points in r and 12 in vz for the two-dimensional
model with α = 1. Both use uneven r grid and second-order upwind scheme, (a)
prefactor only in the derivative with respect to vz;(b) prefactor used in all terms.

f(rmax,−vz, t) = f(rmax, vz, t), for vz > 0, v < |~vesc| (3.28)

with

α(t) =
1

2

[
1− tanh

(
t

2000
− 3

)]
(3.29)

which means that the distribution of particles with a negative z velocity component
with a magnitude greater than the escape velocity, will not be replenished at the
upper boundary anymore. This effect is observed in Figure 3.6 for example, where
the distribution for negative value of vz starts to have values equal to zero.
The role of α is to activate gradually this second boundary condition. Indeed, as
time goes the value of α tends to zero. The reason for having this gradual change to-
wards zero is explained by Merryfield and Shizgal (1994) by the fact that turning the
boundary condition 3.27 immediatly on, would induce an artificial phenomenon of
transient acoustic waves in the results. They thus found that this value of α allows to
avoid the phenomenon in the results and we decided to apply it as well in the model.

Finally, the introduction of the escape condition induced some oscillations in the
results. They come from the presence of the discontinuity between the depleted part
of the velocity distribution and the part non affected by the condition. The second-
order centered scheme probably uses too few points and instability is generated
because of the values being too extreme in this region. In an attempt to reduce the
peaks of these oscillations, we tried approximating the derivative with respect to vz
using fourth-order centered differences but only for the option of the second two-
dimensional case using the prefactor in all the terms. See Figure 3.4. The impact of
the fourth-order was to flatten the peaks, but also to increase their number, we chose
to use the second-order centered difference as the fourth-order did not substantially
change results. An other possibility that should be investigated is the use of virtual
viscosity, that could smooth out the peaks although we have not taken time for this
option.
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(a) (b)

Figure 3.4: Distributions f(vz, r) scaled to feq(vz, r) as a function of r and vz scaled
to vmax after 16 400s with 40 grid points in r and 12 in vz for the two-dimensional
model using the prefactor and with α activated. Both figures use uneven r grid
and second-order upwind scheme: (a) second-order and (b) fourth-order centered
difference on the derivative with respect to vz. The third axis is the r axis and is
the same as for the others, the picture is oriented this way for more clarity.

3.1.3 Choice of Solving Schemes for the Derivatives

During the development of the model, we tested a series of options for the finite
difference schemes that we used to approximate the derivatives in order to find out
which combinations were more accurate for solving. To do so, we used a series of
variables which were: even or uneven grid in r, number of points for the spatial
coordinate as well as the order for the upwind scheme. The finite difference scheme
used for the derivatives with respect to v was set to the centered second-order as
explained earlier, as higher orders did not change the results in a significant way.
The results of these different combinations are showed in the different plots in this
section. The one-dimensional case is given in Figure 3.1 where we notice the effect
of the order of the upwind scheme on the solution. The first-order cases show a
significant departure from the barometric value compared to the second-order cases.
Uneven r grids and increased number of points seem to also produce solutions that
are closer to the barometric solution.
Figures 3.3, 3.5 and 3.6 confirm these choices and the better performance of second-
order upwind scheme in combination with uneven r grids.
As noted above, the use of the prefactor in each term improves the accuracy of
the results and this is why, from then on, we chose to use exclusively these specific
parameters for the next development steps of the model.

3.1.4 Four-Dimensional Model

For this stage the x and y components of the velocity are also taken into consid-
eration. Accordingly, our model is now based upon the following four-dimensional
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(a) (b)

(c)

Figure 3.5: Different macroscopic variables computed for four different cases after
16 400s with 40 grid points in r and 12 in vz for the two-dimensional model using
the prefactor and with α activated: (a) bulk velocity; (b) temperature. (c) number
density along with the barometric solution. SOUS stands for second-order upwind
scheme and FOUS for first-order upwind scheme.
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(a) (b)

(c) (d)

Figure 3.6: Distributions f(vz, r) scaled to feq(vz, r) as a function of the radius and
vz scaled to vmax after 16 400s with 40 grid points in r and 12 in vz for the two-
dimensional model using the prefactor and with α activated: (a) uneven r grid and
second-order upwind scheme; (b) uneven r grid and first-order upwind scheme; (c)
eve, r grid and second-order upwind scheme; (d) even r grid and first-order upwind
scheme.
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Figure 3.7: Distribution after 16 400s scaled to the equilib-
rium distribution. We used second-order upwind scheme for
the derivatives with respect to r with fourty grid points on an
uneven grid. α is activated.

equation

∂f

∂t
+ cz

∂f

∂r
− 1

r

[
cxcz

∂f

∂cx
+ cycz

∂f

∂cy
− (c2

x + c2
y)
∂f

∂cz

]
− GM

r2

∂f

∂cz
= 0 (3.30)

For this case we also applied the factorisation f = fp.feq on all the terms. We still
used second-order centered differences for the derivatives with respect to velocity
and the second-order upwind scheme for the derivative with respect to r. The
solution to the use of the prefactor in the full four-dimensional equation can be
found in Appendix A. In Figure 3.7 we display the result of the four-dimensional free
molecular flow model solved with uneven grid for r and the parameters mentioned
at the end of the previous subsection. The effect of α is clearly visible in the lower
half of the vz component where the distribution has been depleted as a result of the
particles’ escape and the boundary condition 3.27.

3.1.5 Discretised Collision Term

In order to complete the model, we needed to work on the last step which was
to add the collisions to the four-dimensional free molecular flow model. First, we
have worked on the collision integral separately and when computed we eventually
added it to the model. The main sources of our understanding on how to build
this discretised collision integral come from (Inamuro and Sturtevant, 1990) and
(Merryfield and Shizgal, 1994).
The collision integral of the non-linear Boltzmann equation is given as∫ ∫

[f
′

1f
′

2 − f1f2]σ(g,Ω)gdΩdc2 (3.31)
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In its discretised form, it is written as

p∑
j=1

∑
k,l

Aklij (fkfl − fifj) ·∆v3. (3.32)

It actually translates the collisions between pairs of identical particles and considers
them as hard spheres. For more details regarding the derivation of the discretised
form, please refer to Appendix B. Here, we detail how to implement each term of
this formula.
The terms inside parantheses are the production and loss term; as described in
the section about Boltzmann collision integral in Chapter 2, a test particle having
random velocity vector i, from the velocity space, can collide with any other particle
presenting a velocity vector denoted by index j from the chosen velocity space. The
sum over j bears this information by summing over the number p of velocity vectors
forming the space minus the vector i 1. This finite number p is the total number of
discrete velocities. Therefore, if NVx, NVy, NVz are the number of points along the
x, y and z velocity axes respectively, then the number of possible velocity vectors
in the space is equal to NVx · NVy · NVz. In our model we chose to give each
coordinate the same number of points to facilitate the computations. We tried the
same combinations as in (Merryfield and Shizgal, 1994), that is either 12, 14 or 16
points along each velocity axis.
As mentioned before, the number of points along with the range of velocity will
determine the resolution of our velocity space. This resolution is given by ∆v, the
velocity step. As we had to resolve the Maxwell distribution, that is having a step
smaller than its standard deviation given in Equation 3.7 and equal to 2.87 km.s−1,
if we choose T0 = 1 000K, we decided to choose the same value as in (Merryfield
and Shizgal, 1994) for our maximum velocity which is vmax = 12 km.s−1. In this
way, our largest step is when we consider 12 points and thus equals 2 km.s−1, the
distribution is then fairly resolved. In the meantime, following again the values from
Merryfield and Shizgal (1994), the escape velocity given in Equation 3.6 is equal to
9.4 km.s−1 at the exobase and 7.0 km.s−1 at the maximum altitude of the model,
chosen to be 16 400 km. Thus, the value 12 km.s−1 for the maximum velocity allows
to cover the escape velocity and therefore assure that certain particles will display
a velocity greater than the escape velocity.
We can visualise this discrete space as a three-dimensional grid directed by the
axis of the Cartesian velocity coordinates. Each grid node represents a velocity
vector composed of three coordinates. To help visualise this space we show a two-
dimensional representation of the velocity space in Figure 3.8 that we adapted from
(Dimarco and Pareschi, 2014). Furthermore, this grid is placed in such a manner
that it is staggered with respect to the Cartesian axes and falls on an half integer
value of a coordinate. This choice has been justified by Inamuro and Sturtevant
(1990) based upon the fact that it helps avoiding errors at the boundaries of the
spatial grid.
Moreover, we neglect internal energy, which implies that when two particles collide
there is conservation of mass, momentum and also energy. Therefore, the magnitude

1It is assumed that a particle with a velocity vector i cannot collide with an other particle with
the same velocity vector. Furthermore, this choice was encouraged by the fact that the collision
integral would be zero as the coefficient Akl

ij = 0.
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Figure 3.8: Two-dimensional representation of the velocity grid
or discrete velocity space with a sketch of a velocity pair of
particles and its collision outcomes. Each pair is centered on
the center of momentum of the colliding particles, (Dimarco
and Pareschi, 2014).

of the relative velocity between the two outcome particles is the same as between vi
and vj and these two new vectors must have their center of momentum corresponding
to the pre-collision center of momentum. We thus obtain a sphere drawn by the
redistribution of the outcomes around this center of momentum. However, only
the pairs of outcomes falling on one intersection between the sphere and the grid
are considered for the model. This is shown in Figure 3.8 where we see that the
pair (vi, vj) has eight outcomes meeting the requirements in this considered plane,
since permutations (k, l) and (l, k) are in fact different outcomes. The first term in
paranthesis represents the velocity distribution functions of one possible outcome of
the collision between particle i and j, this is why we need to sum over k and l to take
into account all the outcomes. Although, we talk about this term as representing
outcomes, but as explained in Chapter 2, this is in fact the inverse collision of i and
j so this term is formed by the velocity distribution functions of pairs of velocity
vectors which could form the initial (i, j) pair after a collision.
The most complicated part was to record for each velocity vector combinations,
their respective number of outcomes, which appears in the coefficient Aklij as Cij, as
well as their identity ( to compose a correct distribution). This part of the code is
also the most time consuming as we need to loop through NV 6−NV 3 combinations
in order to record all the outcomes. This required between 2 984 256 and 16 773 120
combinations. Fortunately, this action is performed once at the beginning of the
run, however, we stil had to loop through NV 3 steps to account for each velocity
element of the distribution in order to thoroughly investigate the whole velocity
distribution. Finally, this latter loop had to be performed for each slab in atlitude,
we can thus multiply by the number of points on the spatial coordinate. In total,
for each time step, we needed to compute the time dependent solution of Equation
3.2 between 34 560 and 81 920 times for twenty spatial points and between 69 120
and 163 840 times for fourty spatial points.
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3.2 Solving the Equation

A few tricks were used to solve the equation of the complete model and they are
described in this section .
Let us start with the following relation derived in the Appendix A were we used the
prefactor in the velocity distribution function:[

∂fp
∂t

+ vz
∂fp
∂r
− 1

r

[
vxvz

∂fp
∂vx

+ vyvz
∂fp
∂vy
− (v2

x + v2
y)
∂fp
∂vz

]
− GM

r2

∂fp
∂vz

]
=

C[f ]

feq
(3.33)

First, we rewrite the right-hand side as

C[f ] = P [f ]− L[f ] (3.34)

where,

P [f ] =

p∑
j=1

∑
k,l

Aklijfkfl ·∆v3 (3.35)

L[f ] =

p∑
j=1

∑
k,l

Aklijfifj ·∆v3. (3.36)

We also write the terms with velocity derivatives as

~d · ∇vf (3.37)

where,

~d =

{
vxvz
r
,
vyvz
r
,
−(v2

x + v2
y)

r
+
GM

r2

}
. (3.38)

Formally, Equation 3.33 becomes

∂fp
∂t

+ vz
∂fp
∂r
− ~d · ∇vfp =

P [f ]− L[f ]

feq
. (3.39)

Merryfield and Shizgal (1994) used a combination of two integration schemes to
solve this equation. The first one was the second-order implicit Crank-Nicolson
scheme on the second term of the collision part. For the remaining terms an explicit
second-order Adams-Bashford was adopted. Accordingly Equation 3.39 becomes

fp(t+ ∆t)− fp(t)
∆t

+
1

2

L[f(t+ ∆t)]

feq
+

1

2

L[f(t)]

feq
=

3

2
S(t)− 1

2
S(t−∆t) (3.40)

where,

S(t) = −vz
∂fp(t)

∂r
+ ~d · ∇vfp(t) +

P [f(t)]

feq
(3.41)

The terms in the sum of Equation 3.36 do not directly depend on the indices k and
l, thus the sum becomes

L[f ] = Cij

p∑
j=1

Aklij (fifj) ·∆v3 (3.42)
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where Cij is the number of outcomes from the collision between particles of velocity
vectors i and j and whose value depends on each different pairs. Further, the term
fi can be factored out, we therefore have

L[f ] = fi.A = fiCij

p∑
j=1

Aklijfj ·∆v3 (3.43)

We thus only obtain a vector of size NV 3 and not a matrix of size NV 3 × NV 3.
We rewrite 3.40 as

Ifp(t+ 1)

∆t
− Ifp(t)

∆t
+

1

2

A(t+ 1)fi(t+ 1)

feq
+

1

2

A(t)fi(t)

feq
=

3

2
S(t)− 1

2
S(t− 1)

Ifp(t+ 1)

∆t
+

1

2

A(t+ 1)fi(t+ 1)

feq
=
Ifp(t)

∆t
− 1

2

A(t)fi(t)

feq
+

3

2
S(t)− 1

2
S(t− 1)

(3.44)

where I is the vector identity and A a vector of size NV 3. As mentioned in Section
3.1.3, the derivatives with respect to r are evaluated using second-order upwind
schemes and the derivatives with respect to v with second-order centered difference
scheme. We rearrange the terms to obtain(

I +
∆t

2
A(t+ 1)

)
fp(t+ 1) =

(
I − ∆t

2
A(t)

)
fp(t) + ∆t

3

2
S(t)−∆t

1

2
S(t− 1)

(3.45)

Nevertheless, the loss term is a product of the distributions fi and fj. Also we want
to solve only for fi and not for fj and thus need information on the value of fj(t+1),
which is not known. Therefore, Merryfield and Shizgal (1994) used a first step using
A(t+ 1) = A(t) to compute an approximation to fi(t+ 1). These values are used to
update A(t+ 1) and another step is performed to compute fi(t+ 1).
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Results and Discussions

In this section we present the results of a series of simulations where we show the
radial profiles of some relevant macroscopic variables, discuss the time evolution and
sensitivity to parameters change. Later, we compare the results of the DVM method
to the fluid-Jeans method and the DSMC method shared by Dr. Orenthal J. Tucker
(for example (Tucker and Johnson, 2009)).

As showen in Merryfield and Shizgal (1994), we have done four principal simulations
as followed: the first one used twelve velocity points with twenty radial points, the
second one used fourteen velocity points with twenty radial points, the third one
used sixteen velocity points with twenty radial points and the last one used twelve
velocity points and fourty radial points. These simulations are named DVM 1, DVM
2, DVM 3 and DVM 4, respectively, hereafter.

The model uses a lower boundary condition given as

f(rmin, vz, t) = f(rmin,−vz, t), for vz > 0 (4.1)

we call it specular condition. It considers that particles going downward at the
lower boundary experience specular reflection. It also imposes that there is no bulk
velocity in the atmosphere at the lower boundary.

For this specular condition, the CFL condition allowed us to use a 5 sec time step
for the first three simulations and a time step of 2.5 sec for DVM 4 in order to have
stable solutions. As in Merryfield and Shizgal (1994), the simulation time was 16 000
sec, we thus needed 3 200 and 6 400 steps, respectively, to reach the same time of
integration. All the results were simulated for an Earth-like atmosphere meaning
we chose to use a mass of 5.97237× 1027 g for the host body, a radius of 6 370× 105

cm for the radius of the host body, an atmosphere composed of hydrogen molecules,
a lower boundary number density of 1.417× 108cm−3 and an initial temperature of
1 000 K. This placed us in the region of low Jeans parameters, indeed at this lower
boundary, Equation 2.9 gives λ0 ∼ 7.57.
The computation time for the simulations on the high performance computer from
BIRA - IASB were recorded for each run. The DVM 1 simulations took an average
of 10 hours 20minutes; the DVM 2, an average of 28 hours; the DVM 3, an average
of 69 hours and DVM 4, an average of 40 hours. For the longest run, we achieved
a reduction in the computation time of a factor more than ten, with respect to

39



CHAPTER 4: Results and Discussions

the computation time achieved by Merryfield and Shizgal (1994). Moreover, this
computation time could be more reduced by using the presence of symmetry in the
computation of the sphere of collision outcomes (Merryfield and Shizgal, 1994). This
feature reduced their computation time by about a factor of two. Furthermore, by
applying parallelization to the code previously to running it on the hpc, time could
also be saved. These features, however, have not been implemented in this work
and the code was run in a single thread on the hpc.

4.1 Comparison to Merryfield and Shizgal (1994)

We start by comparing our results to those presented in (Merryfield and Shizgal,
1994) with the macroscopic variables derived from the different simulations. These
macroscopic variables are computed using the previously introduced formulas

n(t, r) =
∑
i

f(t, vi, r)(∆v)3 (4.2)

for the number density,

T (t, r) =
m

3kb

[
1

n

∑
i

f(t, vi, r)~v
2
i (∆v)3 − ~u(t, r)2

]
(4.3)

for the the temperature,

~u(t, r) =
1

n

∑
i

f(t, vi, r)~vi(∆v)3 (4.4)

for the bulk velocity component. The outward molecular rate was computed using
the following relation

φout(t, r) = 4πr2nu (4.5)

Results for the different simulations are presented in Figure 4.1. All the orders of
magnitudes match with those from (Merryfield and Shizgal, 1994) and the values are
really consistent with each others. We are confident in saying that we reproduced
the model correctly.
From Figure 4.1 a, we see that all the number densities are similar, which suggests
that the grids are sufficiently fine. We also observe that they are lower than the
barometric solution. This is coherent with the decrease of temperature due to es-
cape and the non-isothermal aspect of DVM. At high altitudes where collisions are
rare, the hydrostatic equilibrium can no longer be assumed, thus, we can expect
a departure from the barometric solution. In Figure 4.1 b, temperature decreases,
which is indicative of an ongoing escape cooling the atmosphere. In Figure 4.1 c,
we see that the atmosphere has acquired a bulk velocity of about 15 000 cm . s−1

at the upper boundary. However, negative values are present below the exobase,
located at about 2 500 km in altitude. Merryfield and Shizgal (1994) exlpain this
phenomenon as a consequence of the atmosphere’s cooling and its tendency to be
close to hydrostatic equilibrium in regions below the exobase. In Figure 4.1 d, the
outward molecular rate reaches values larger than the Jeans escape rate. Indeed,
in our case Jeans escape rate is about 3.38× 1029 s−1 while the outward molecular
rate for DVM 1 is about 4.98× 1029 s−1, meaning that even above the exobase, the
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(a) (b)

(c) (d)

Figure 4.1: Profiles of macroscopic variables vs altitude. Computed after 16 000 s
and using the specular condition.

outward rate keeps increasing. This suggests that Jeans assumption on the escape
rate might underestimate the true value.

We can also observe the velocity distribution of the particles at the end of the sim-
ulation at the different radial levels. We have scaled the velocity distribution to the
Maxwell-Boltzmann distribution computed using the value of the temperature de-
rived at the end of the simulation and multiplied by the value of the number density
at this time. We name this distribution fs for scaling distribution function. This
allows to see the departure from a Maxwell-Boltzmann distribution and to visualise
what is happening at the boundaries, such as we did in Chapter 3. We show results
for 10 030; 5 225; 2 598 and 941 km of altitude in Figure 4.2. However, we used the
first positive value of the vy component, i.e. vy = 0.8 km s−1 for the DVM 3 and
not vy = 0km s−1 as in Merryfield and Shizgal (1994). The extreme values at the
corners and some negative values are an apparent consequence of the finite differ-
ence schemes inducing numerical errors, in addition with the fact that we divide
by really small values of the scaling distribution in these regions. Furthermore, the
peaks seen in the negative half of the vz axis can be attributed to the presence of
the discontinuity induced by the upper boundary condition propagating to lower
altitudes before being dissipated by collisional relaxation, (see Section 3.1.3). In-
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(a) (b)

(c) (d)

Figure 4.2: Three dimensional velocity distribution function as a function of vz and
vx for vy = 0.8 km s−1 for DVM 3 specular condition after t = 16 000 s. The function
is scaled using the scaling distribution. Velocities are scaled to the maximum velocity
of the domain which is 12 km . s−1.
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Figure 4.3: Profiles of macroscopic variables and α vs time
at the upper boundary for specular condition. The vari-
ables have been scaled to their maximum values.

deed, we have used a second-order centered finitie difference scheme to evaluate the
derivatives with respect to the velocity. This scheme probably uses too few points
and instability is generated because of the values being too extreme in this region.
As noted in (Merryfield and Shizgal, 1994) this model cannot reach steady state.
Therefore, it is interesting to run simulations for a longer time than the time we
used for all the first runs in order to see the long term evolution. In these runs we
simulated for 64 000 seconds instead of the 16 000 seconds used in (Merryfield and
Shizgal, 1994). In Figure 4.3 we confirm that the variables do not reach steady state.
This is due to energy leaving the atmosphere with escaping particles and to the fact
that the lower boundary is not replenished by new particles. The atmosphere slowly
evaporates and cannot reach equilibrium.

4.2 New Lower Boundary Condition

The inconvenience of not reaching a steady state forced us to introduce an alternative
lower boundary condition. We call it the fixed boundary condition and it considers
that the velocity distribution at the lower boundary is the equilibrium distribution
as explained in Chapter 3. The fixed condition is given by

f(rmin, vz, t) = feq(rmin, vz), for vz > 0 (4.6)

and states that the part of the atmosphere above the lower boundary will always
be replenished from below as the velocity distribution of particles is held constant
there.
The CFL condition allowed to use a 10 sec time step for DVM 1, 2 and 3 and a
time step of 2.5 sec for DVM 4. Using the exact same parameters as for the other
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(a) (b)

(c) (d)

Figure 4.4: Profiles of macroscopic variables vs altitude. Computed after 16 000 s
and using both conditions.

condition, the computation time for the simulations on the high performance com-
puter were equal in average to: 5 hours 25 minutes for DVM 1; 14 hours for DVM
2; 36hours for DVM 3 and 40 hours for DVM 4. The difference with respect to the
first condition is due to the value of the time step.

First, we compare the macroscopic variables computed with the two conditions and
this is displayed in Figure 4.4, where we only plotted for DVM 1 and 3 for purposes of
visibility. We can see that the results are consistent with each other and in the same
range with some interesting exceptions. In Figure 4.4 a, the density derived with
the fixed condition show a great consistence with those from Merryfield and Shizgal
(1994). In Figure 4.4 b, the temperatures are similar at the upper boundary, but
the values at the lower boundary stayed much closer to T0, which is more realistic
and expected from the condition. In Figure 4.4 c, the values of bulk velocity are
less negative, which is also more realistic. The values at high altitudes are similar to
the specular condition values. However, at lower boundary, the values are still not
consistent with an escaping atmosphere, as we would expect that an atmosphere’s
bulk velocity at lower boundary to be non-zero. In Figure 4.4 d, DVM 3 shows less
negative rates and the values at upper boundary are similar.
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Figure 4.5: Profiles of macroscopic variables and α vs time
at the upper boundary for fixed condition. The variables
have been scaled to their maximum values.

Now, we can look at the values derived from fixed condition after 64 000 s. From
Figure 4.5 it is clear that steady state can be reached when using the fixed condition.
In fact, this condition reaches steady state after about 20 000 s, we can thus use the
results obtained after 64 000 s in order to be as close to steady state as possible
and have more reliable results. In Figure 4.6 a, the densities barely evolved in
steady state. In Figure 4.6 b, temperatures have decreased further in steady state
as expected. In Figure 4.6 c, the bulk velocity has slightly decreased at the upper
boundary compared to the non steady state values. In Figure 4.6 d, the outward rate
reaches an almost constant value at the upper boundary, which is consistent with
conservation of mass. Indeed, a positive gradient in the outward rate would mean
that there should be creation of matter somewhere in the atmosphere below. The
rates are not constant at all altitudes because at the lower boundary, the condition
forces the atmosphere to be hydrostatic, i.e. u = 0.
It is also worth comparing the velocity distribution functions computed using the

two conditions. Figure 4.7 shows that the upper tail of the velocity distribution in
z is always greater for the fixed than for specular condition, meaning that there are
more particles that can escape in the same amount of time. This is consistent with
the values of the outward rates displayed in Figure 4.4 d.

4.2.1 Upper Boundary Value

One other interesting feature to consider is the effect of increasing the value of the
upper boundary on the results of the simulations. Lifting the upper boundary means
that we consider the limit at which particles will no longer experience collisions to
be at a higher altitude. This also increases the value of the Knudsen number at
the upper boundary, thus placing us closer to free molecular flow conditions and
the results of the escape process will obviously be altered by this action. We have
increased the upper boundary to 39 057.3 km in order to at least double its value.
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(a) (b)

(c) (d)

Figure 4.6: Profiles of macroscopic variables vs altitude. Computed using the fixed
condition. The results for steady state are compared to the other runs of 16 000 s.
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(a) (b)

(c) (d)

Figure 4.7: Three dimensional velocity distribution function as a function of vz and
vx for vy = 0.8 km . s−1 for DVM 3 fixed condition after t = 16 000 s. The function is
scaled using the scaling distribution. Velocities are scaled to the maximum velocity
of the domain which is 12 km . s−1.

47



CHAPTER 4: Results and Discussions

Figure 4.8: Outward molecular rate as a function of alti-
tude for DVM 1 and DVM R at different times. Shows the
effect of increasing the value of upper boundary.

We chose this non usual value for rmax to have an integer number of radial points
and in order to have the same radial grid spacing at the lower boundary as in DVM
1 with rmax = 16 400 km. The simulation had twenty-seven points in r and twelve
points in v, we call it DVM R. Figure 4.8 shows the outward molecular rates at
steady state computed from DVM R. For DVM R the value at the former upper
boundary is increased by 20% relative to DVM 1. The value of vesc being smaller at
higher altitude, the upper boundary condition would therefore let a greater part of
the velocity distribution be in the escaping range.

4.3 Comparison to fluid-Jeans Model and DSMC

4.3.1 Comparing to fluid-Jeans model

We start by comparing the results of DVM 3 at steady state using the fixed condition
to the results from the fluid-Jeans presented earlier. Figure 4.9 a shows that num-
ber density of DVM is consistent with the complete fluid-Jeans result. They both
simulate a more appropriate number density than the barometric solution. Figure
4.9 b shows the temperature in DVM decreases more than the complete fluid-Jeans
which becomes constant at high altitude. It becomes constant due to the assumed
conduction at all altitude, which transfers energy through collisions and tends to
homogenise temperature. Volkov et al. (2011) also shows that the Fourier law used
for conduction in fluid-Jeans is an overestimate of the real conduction law and thus
gives an overestimate of the temperature. Figure 4.9 c, shows that both the fluid-
Jeans and the isothermal solutions have a small positive bulk velocity at the lower
boundary as we expect from an escaping armosphere. Again, DVM has u = 0 at the
lower boundary as a consequence of the choice of the lower boundary. In Figure 4.9
d, the reason for the zero escape rate of the lower boundary for DVM is the same
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(a) (b)

(c) (d)

Figure 4.9: Profiles of macroscopic variables vs altitude. DVM 3 simulations with
the fixed condition and fluid-Jeans simulation.

as for bulk velocity. At high altitude, the outward rate of DVM is larger than the
complete fluid-Jeans rate. This is consistent with the enhanced escape with respect
to Jeans escape at low λ (Volkov et al., 2011). Indeed, Jeans model is a correct
approximation for slow escape process that happen at higher values of λ as shown
in (Volkov et al., 2011).

4.3.2 Comparing to DSMC model

Let us now compare our results to those computed by Dr. Orenthal J. Tucker using
a model of DSMC with the same parameters as we used.
Figure 4.10 a, shows number densities perfectly matching to each other. In Figure
4.10 b we see that the temperatures are relatively in good agreement. The DSMC
result shows a temperature at lower boundary that has decreased with respet to
T0, while DVM is still close to T0. In Figure 4.10 c, we see that DSMC has small
issues at the boundaries. However, the bulk velocity trends are consistent and the
values close to each others. Figure 4.10 d shows that DSMC has reach steady state
and therefore, the value of its outward molecular rate is constant as expected for
conservation of mass. The value computed for DVM is approaching the value of
DSMC, while we can recall that the specular condition value could not reach steady
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(a) (b)

(c) (d)

Figure 4.10: Profiles of macroscopic variables vs altitude. DVM simulations with
the fixed condition and DSMC simulation. In Figure d, the x axes was croppped at
−2× 1029 s−1 .

state. This supports our choice for the use of fixed condition. DSMC boundary
issues are still visible here. There is noise present in the lower altitudes and extremes
values at the lower boundary. Finally, we look at the velocity distribution functions
of both methods. We compute the one-dimensional distribution as a function of vz
as the DSMC data were only available in this form. In Figure 4.11 we clearly see
that the velocity distribution at different altitudes are in good agreement for the
two methods. The noise in DSMC is more apparent, particularly at sextreme value
of velocity. However, we also see the DVM oscillations that were already discussed
earlier. Even if the different noises are not in similar regions, the trends for both
methods are consistent. Finally, both models show similar escaping and depleted
tails, which would mean that they predict similar escape profiles.
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(a) (b)

(c) (d)

Figure 4.11: One dimensional velocity distribution function as a function of vz
for DVM 3 fixed condition after t = 32 000 s; DVM 3 specular condition after
t = 16 000 s and DSMC at different altitudes. The function is scaled using the
scaling distribution. Velocities are scaled to the maximum velocity of the domain
which is 12 km . s−1.
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4.4 DVM on Pluto’s Atmosphere

We have applied the DVM model to Pluto’s amtopshere and we show the results here.
We just had to replace the parameters and tune the grid to reach a stable solution.
We chose to use a mass of 1.314× 1025 g for the host body, a radius of 1 450× 105

cm for the radius of the host body, an atmosphere composed of nitrogen molecules,
a lower boundary number density of 4.0 × 1012cm−3 and an initial temperature of
88.2 K. These values are similar to the values used by Erwin et al. (2012).
Furthermore, as seen in the DVM 1 model for Earth we had to resolve the Maxwellian
distribution. Therefore, we had to encompass the escape velocity at upper boundary,
which was equal to vesc(rmax) = 0.55 km . s−1, we thus chose a value of vmax = 0.8
km . s−1. This allowed us to have velocity grid spacing of ∆v = 0.14545 km . s−1

while the thermal velocity was vt = 0.22882 km . s−1. We also chose an upper
boundary altitude of 5 800 km such that the lower boundary radial spacing was
smaller than the scale height.
In Figure 4.12 we present the radial profiles of the macroscopic variables computed
using the DVM 1 for Pluto’s atmosphere. Even if a decrease in temperature and a
non zero value can be seen for the bulk velocity, the model has no reach steady state.
We actually see that the lower parts of the atmosphere, have not yet been altered by
escape. We think that this is due to the value of the initial number density, which is
four orders of magnitude larger than the one used for simulations on Earth. Indeed,
the effects of the particles that have escaped have not had the time to influence the
dense lower regions. This can be seen in Figure 4.13 c. We plotted the temperature
radial profile at different times and we see that the lower regions have not been
affected even after 32 000 sec. In Figure 4.13 a and b, we plotted one-dimensional
velocity distributions at two different altitudes, we can see that in the lower parts
the distribution has not departed from a Maxwellian because the effects of escape
have not reached these altitudes.
In ongoing work, we will work on a longer time of simulations, or choose a higher
lower boundary altitude in order to start with a less dense amtosphere. We will
also investigate on combining the fluid model with DVM, choosing the later as an
upper boundary to the former. We will base our work on a similar model that was
developed for DSMC by Tucker et al. (2012) and Erwin et al. (2012).
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(a) (b)

(c) (d)

Figure 4.12: Profiles of macroscopic variables vs altitude. DVM 1 simulations with
the fixed condition for Pluto’s atmosphere.
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(a) (b)

(c)

Figure 4.13: Temperature profile for different times and one-dimensional velocity
distributions at two different altitudes. DVM 1 simulations with the fixed condition
for Pluto’s atmosphere.
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Conclusion

The purpose of this master’s thesis was to work on atmospheric escape by revisiting
an uncommonly used method in this context called the discrete velocity method
rather than the usual direct simulation Monte-Carlo method. To do so, we repro-
duced the model presented in (Merryfield and Shizgal, 1994) who, to our knowledge,
are the first to have applied discrete velocity to the problem of atmospheric escape.
It is understandable that in the 90’s when it took Merryfield and Shizgal (1994)
an average of one month of computation time to obtain results, that the technique
was somehow left aside for DSMC. However, even though this method is complex
to implement, it is a straightforward and strong technique that has shown to be
efficient as can be seen in the results presented here.

Indeed, even with the basic assumptions that we have done, we were able to produce
results comparable in quality to fluid-Jeans and DSMC results. In addition, we have
shown that the basic use of the method gives an insight into the properties of an
atmosphere, while being more than three times as fast as usual DSMC simulations.
We have also introduced a new lower boundary condition that works comparably to
the one used in (Merryfield and Shizgal, 1994), but which, in our opinion, simulates
a more realistic atmosphere. The DVM model does not present the statistical noise
asssociated to DSMC, although still suffers from issues such as extreme values that
do not seem to get smoothed out by a finer discretisation. as mentioned in the
work. One could potentially consider virtual viscosity or other numerical techniques
to reduce the peaks in the solutions. Furthermore, we could improved the realism of
the model even more by using a drifting Maxwellian velocity distribution as a lower
boundary. The model we have developed is, however, a basic model which considers
an ideal atmosphere. It could be further improved in order to achieve better accu-
racy, i.e. by considering more complex atmospheres. The central equation, namely
Boltzmann partial differential equation coupled to a non-linear collision integral, are
still valid, but with some modifications. For example, using variable hard sphere or
soft sphere particles would change the collision cross section term; considering ions
and electrons would require to consider more interactions between particles through
the acceleration term; considering multiple components would change the collision
integral term.

It is easy to imagine the big, though interesting, challenge lying ahead and the very
promising future of discrete velocity method regarding atmospheric escape problems.
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Investigations should also be carried more deeply on the numerical methods used
for the problem to improve the stability, robustness and efficiency of the method.
Indeed, this method relies on solving a four-dimensional partial differential equation.
This makes it very sensitive to the fineness of the discretization of the different
dimensions, through the stability of the solutions and the computation time. Finally,
we have solved the problem as Merryfield and Shizgal (1994) had written it, but there
are probably other ways to circle the question and that might be more efficient.
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Appendix A

Factorisation of the Velocity
Distribution Function

As an initial condition for the velocity distribution of particles we chose to refer to
(Merryfield and Shizgal, 1994). We thus have a distribution written as such

feq(r, vx, vy, vz) = n(r)fmb(vx, vy, vz) (A.1)

where n(r) is the barometric number density, and fmb the Maxwell-Boltzmann dis-
tribution. They are respectively given by

n(r) = n0 exp

[
r

H(r)
− R

H(R)

]
(A.2)

and

fmb =

(
m

2πkbT

) 3
2

exp

(
−
m(v2

x + v2
y + v2

z)

2kbT

)
(A.3)

where n0 is the number density at the surface of the planet, R is the radius of the
planet and H is the scale height and is given by

H(r) =
kbTr

2

GMm
(A.4)

where G is the gravitational constant, M the mass of the chosen planet, m the mass
of a particle, kb the Boltzmann constant, T the temperature and r the radius where
we consider the collision.
Now we introduce a prefactor, fp, that takes the value by which our function is
multiplied after an iteration. The distribution then becomes

f(r, vx, vy, vz, t) = fp(r, vx, vy, vz, t)feq(r, vx, vy, vz) (A.5)

Now we can introduce this distribution in the form of the Boltzmann equation
introduced in Equation 3.2

∂f

∂t
+ vz

∂f

∂r
− 1

r

[
vxvz

∂f

∂vx
+ vyvz

∂f

∂vy
− (v2

x + v2
y)
∂f

∂vz

]
− GM

r2

∂f

∂vz
= C[f ] (A.6)
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As a consequence of the use of the prefactor, the derivatives are transformed as
follows

∂f

∂t
=
∂feq.fp
∂t

=
∂feq
∂t

fp + feq
∂fp
∂t

= 0 + feq
∂fp
∂t

(A.7)

where the second term is evaluated numerically in the simulations. The spatial
derivative is transformed as

∂f

∂r
=
∂feq.fp
∂r

=
∂feq
∂r

fp + feq
∂fp
∂r

=
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)
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∂fp
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=

(
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kbr2T
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)
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∂fp
∂r

(A.8)

where the second term is evaluated numerically in the simulations. The derivative
with respect to vx is transformed as

∂f

∂vx
=
∂feq.fp
∂vx

=
∂feq
∂vx

fp + feq
∂fp
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(A.9)

where the second term is evaluated numerically in the simulations. The derivative
with respect to vy is transformed as

∂f

∂vy
=
∂feq.fp
∂vy
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(A.10)
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where the second term is evaluated numerically in the simulations. The derivative
with trspect to vz is transformed as

∂f

∂vz
=
∂feqfp
∂vz

=
∂feq
∂vz
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(A.11)

where the second term is evaluated numerically in the simulations. Accordingly,
Equation A.6 can be rewritten as an equation in fp
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Non-Linear Boltzmann Equation

B.1 Right-Hand Side of the Non-Linear Boltz-

mann Equation

Following personal discussions and notes from Dr. Justin Erwin and refering to
(Schunk and Nagy, 2000) here we detail how to discretise the continuous collision
integral ∫ ∫

[f
′

if
′

j − fifj]σij(gij,Ω)gijdΩdv3
j (B.1)

as
p∑
j=1

∑
k,l

Aklij (fkfl − fifj) ·∆v3 (B.2)

which may also be written as

p∑
j=1

∑
k,l

σklij |vi − vj|(fkfl − fifj) ·∆v3 (B.3)

First, the integral over the velocity space is replaced by the sum over j, leading to∫
dv3

j ⇒
p∑
j=1

∆v3 (B.4)

Then, the relative velocities are also identical and it is a matter of notations

gij ⇒ |vi − vj| (B.5)

Furthermore, concerning the distributions f , they are also replaced and the ′ are
replaced by l and k. They represent the production terms of an (i, j) pair of particles,
whereas fifj with a minus sign incarnate the loss of a pair of particles possessing
velocity vectors vi and vj. Please refer to Section 2.4 for thorough explanations
about the derivation of the collision integral.
We are left with the last remaining term which is not a straightforward replacement.
Indeed, from (Schunk and Nagy, 2000, Chapter 4), we have

QT (gij) =

∫
σij(gij,Ω)dΩ (B.6)
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which represents the total scattering cross section and is equal to πd2 for a hard
sphere particle, where d denotes the collisional diameter. Moreover, we consider
that the outcomes of the collisions are all equally probable and that they only lie
on a continuous sphere of diameter equal to g the relative velocity between the
two particles and centered on the center of momentum of the colliding particles.
The integration over Ω actually covers all the angles between pre- and post-collision
velocity vectors and thus covers the whole sphere. So we can normalise the cross
section with the surface of this sphere and we obtain the differential cross section,

σij(gij,Ω) =
πd2

πg2
ij

(B.7)

If we take the discretised form, we consider that every outcome will lie on a single
point of the sphere. These single points are the result of the intersection between the
continuous sphere and the discretised three-dimensionnal velocity space. Therefore
these outcomes do not cover the entire surface. However, we can normalise the cross
section by summing over the number of post collision pairs of particles that lie on
the sphere and we obtain the discrete differential cross section from

QT (gij) =
∑
k,l

σklij (B.8)

which leads to

σklij =
πd2

Cij
(B.9)

with Cij the total number of outcomes from the collision between particles with
velocity vector i and j that lie on the previously defined sphere. Thus, the full form
is as follows

p∑
j=1

∑
k,l

πd2

Cij
|vi − vj|(fkfl − fifj) ·∆v3 (B.10)

B.2 Left-Hand Side of the Non-Linear Boltzmann

Equation

Following personal discussions and notes from Dr. Guy Munhoven, here we detail
how to express the general expression

∂f

∂t
+ (~v · ∇r)f + (~a · ∇v)f (B.11)

in a coordinate system using spherical coordinates for the spatial components and a
local Cartesian system for the velocity components, assuming azimuthal symmetry
for the velocity components in this Cartesian system.

∂f

∂t
+ vz

∂f

∂r
− 1

r

[
vxvz

∂f

∂vx
+ vyvz

∂f

∂vy
− (v2

x + v2
y)
∂f

∂vz

]
− GM

r2

∂f

∂vz
(B.12)

First, we start by setting the azimuthal symmetry of a function f with respect to ~v.
This symetry involves

∂f

∂φ
= 0 (B.13)
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Figure B.1: Cartesian coordinates system.

Furthermore, a general vector ~v can be written with Cartesian coordinates as

~v = vx ~ex + vy ~ey + vz ~ez (B.14)

with its components being the projection of v, the norm of the vector, on the axes
in Figure B.1 such as

vx = v cosφ sin θ (B.15)

vy = v sinφ sin θ (B.16)

vz = c cos θ (B.17)

The term in the left-hand side of Equation B.13 can be written in an other way

∂f

∂φ
=

∂f

∂vx

∂vx
∂φ

+
∂f

∂vy

∂vy
∂φ

+
∂f

∂vz

∂vz
∂φ

=
∂f

∂vx
v(− sinφ) sin θ +

∂f

∂vy
v cosφ sin θ +

∂f

∂vz
· 0

=
∂f

∂vx
(−vy) +

∂f

∂vy
vx (B.18)

Azimuthal symmetry thus translates to

∂f

∂φ
= 0⇔ ∂f

∂vx
vy =

∂f

∂vy
vx (B.19)

Now, the time derivative in Equation B.11 stays unchanged and the last term can
be developed and we get

~a(r) =− GM

r2
~ρ (B.20)

∇vf =
∂f

∂vx
~φ− ∂f

∂vy
~θ +

∂f

∂vz
~ρ (B.21)

Since ~ρ ⊥ ~φ ; ~θ ⊥ ~ρ, we obtain

~a(r) · ∇vf = −GM
r2

~ρ · ∂f
∂vz

~ρ

= −GM
r2
· ∂f
∂vz

(B.22)
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Figure B.2: Spherical coordinates system from (Mishchenko and Travis, 2003)

To derive the remaining term, we need to introduce the system of coordinate from
Figure B.2, which is a coordinate system showing a fixed Cartesian system of axes
represented by ( ~X, ~Y , ~Z) coupled to a mobile Cartesian system of axes represented by

(~ρ, ~θ, ~φ) and linked to the transformation of the fixed Cartesian coordinate system to
a fixed spherical coordinate system. In this Figure, the vector v is the one pointing in
the direction of the vector n. In the mobile system, the x coordinate is taken positive
eastwards (following ~φ), the y coordinate is taken positive northwars (following −~θ)
and the z coordinate is taken positive away from the center (following ~ρ). The
former can be expressed as follows in the mobile system

~v = vx · ~φ− vy · ~θ + ~vz · ~ρ (B.23)

and as follows in the fixed system

~v = VX ~eX + VY ~eY + VZ ~eZ (B.24)

Furthermore, we project the unit vectors of the system on the other axes, which
gives us:

~eX = sin θ cosφ ~ρ+ cos θ cosφ ~θ − sinφ ~φ (B.25)

~eY = sin θ sinφ ~ρ+ cos θ sinφ ~θ + cosφ ~φ (B.26)

~eZ = cos θ ~ρ− sin θ ~θ (B.27)

Then, we introduce Eqns. B.25–B.27 into Equation B.24 and group the terms
according to the unit vectors to obtain

~v =(VX sin θ cosφ+ VY sinφ sin θ + VZ cos θ)~ρ

+ (VX cos θ cosφ+ VY sinφ cos θ − VZ sin θ)~θ

+ (−VX sinφ+ VY cosφ)~φ (B.28)
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We apply the same manipulations to the other unit vectors

~ρ = sin θ cosφ ~eX + sin θ sinφ ~eY + cos θ ~eZ (B.29)

~θ = cos θ cosφ ~eX + cos θ sinφ ~eY − sin θ ~eZ (B.30)

~φ =− sinφ ~eX + cosφ ~eY (B.31)

and derive

~v =(vx (− sinφ)− vy cosφ cos θ + vz sin θ cosφ) ~eX

+ (vx cosφ− vy sinφ cos θ + vz sin θ sinφ) ~eY

+ (vy sin θ + vz cos θ)) ~eZ (B.32)

Therefore, we can define the components from each system as follows, using Equa-
tions B.24 and B.32

VX =vx (− sinφ)− vy cosφ cos θ + vz sin θ cosφ (B.33)

VY =vx cosφ− vy sinφ cos θ + vz sin θ sinφ (B.34)

VZ =vy sin θ + vz cos θ (B.35)

and using Equations B.23 and B.28

vx =− VX sinφ+ VY cosφ (B.36)

vy =− VX cos θ cosφ− VY sinφ cos θ + VZ sin θ (B.37)

vz =VX sin θ cosφ+ VY sinφ sin θ + VZ cos θ (B.38)

As they will be needed, we derive the derivatives with respect to φ and θ of Equations
B.36, B.37 and B.38

∂vx
∂φ

=− VX cosφ− VY sinφ

=(vy − VZ sin θ)/ cos θ

=(vy − vy sin2 θ − VZ sin θ cos θ)/ cos θ

=(vy cos2 θ − VZ sin θ cos θ)/ cos θ

=vy cos θ − vz sin θ (B.39)

∂vy
∂φ

=VX cos θ sinφ− VY cosφ cos θ = − cos θvx (B.40)

∂vz
∂φ

=− VX sin θ sinφ+ VY cosφ sin θ + VZ cos θ = sin θvx (B.41)

∂vx
∂θ

=0 (B.42)

∂vy
∂θ

=VX sin θ cosφ+ VY sinφ sin θ + VZ cos θ = vz (B.43)

∂vz
∂θ

=VX cos θ cosφ+ VY sinφ cos θ − VZ sin θ = −vy (B.44)

We can derive the second term of Equation B.11, i.e. the gradient is given in
spherical coordinates as

∇rf =
∂f

∂r
~ρ+

1

r sin θ

∂f

∂φ
~φ+

1

r

∂f

∂θ
~θ (B.45)
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Combining with the definition B.23 we have

~v · ∇rf = (vx · ~φ− vy · ~θ + ~vz · ~ρ)

(
∂f

∂r
~ρ+

1

r sin θ

∂f

∂φ
~φ+

1

r

∂f

∂θ
~θ

)
= vx

1

r sin θ

∂f

∂φ
− vy

1

r

∂f

∂θ
+ vz

∂f

∂r

= vz
∂f

∂r
+ vx

1

r sin θ

[
∂f

∂vx

∂vx
∂φ

+
∂f

∂vy

∂vy
∂φ

+
∂f

∂vz

∂vz
∂φ

]
− vy

1

r

[
∂f

∂vx

∂vx
∂θ

+
∂f

∂vy

∂vy
∂θ

+
∂f

∂vz

∂vz
∂θ

]
= vz

∂f

∂r
+ vx

1

r sin θ

[
∂f

∂vx
(vy cos θ − vz sin θ)

+
∂f

∂vy
(− cos θvx)

+
∂f

∂vz
sin θvx

]
− vy

1

r

[
∂f

∂vx
· 0 +

∂f

∂vy
vz −

∂f

∂vz
vy

]
where we used the fact that the function f depends on θ and φ only through vx, vy
and vz and where we used Equations B.39 - B.44

= vz
∂f

∂r
+ vx

1

r sin θ

[ (
∂f

∂vx
vy −

∂f

∂vy
vx

)
︸ ︷︷ ︸
=0. Azimuthal symmetry

cos θ − vz sin θ
∂f

∂vx
+
∂f

∂vz
sin θ

]

− vy
1

r

[
∂f

∂vy
vz −

∂f

∂vz
vy

]
= vz

∂f

∂r
+

1

r

[
−vxvz

∂f

∂vx
+ v2

x

∂f

∂vz
− vzvy

1

r

∂f

∂vy
+ v2

y

∂f

∂vz

]
= vz

∂f

∂r
− 1

r

[
vxvz

∂f

∂vx
+ vyvz

∂f

∂vy
− (v2

x + v2
y)
∂f

∂vz

]
(B.46)

Finally, we inject Equations B.22 and B.46 in Equation B.11 to retrieve Equation
B.12

∂f

∂t
+ vz

∂f

∂r
− 1

r

[
vxvz

∂f

∂vx
+ vyvz

∂f

∂vy
− (v2

x + v2
y)
∂f

∂vz

]
− GM

r2

∂f

∂vz
(B.47)
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Appendix C

Jeans Escape Flux Formula

From integrating the statistical Maxwell-Boltzmann distribution over the velocity
space we can derive the Jeans escape flux of particles given as

FJ = n

√
kbT

2mπ
(1 +

GMm

kbTr
) exp(−GMm

kbTr
) (C.1)

The distribution is written as

f(~v) =

(
m

2πTkb

) 3
2

exp

(
m~v.~v

2Tkb

)
(C.2)

In order to get the flux we need to integrate over the velocity space and multiply by
the number density and the z component of velocity as follows

F =

∫
nvzf(~v)dv3 (C.3)

Now, using the spherical coordinates, the escape flux is derived as the integral of
the number of particles with vz > 0 and v > vesc.

FJ =

∫ π
2

0

∫ 2π

0

∫ ∞
vesc

nv cos θf(~v)v2 sin θ dv dφ dθ (C.4)

Since vz = v cos θ this requires that 0 < θ < π
2

and v > vesc . Integrating over the
angles allows to derive

FJ =n

∫ π
2

0

cos θ sin θdθ

∫ 2π

0

dφ

∫ ∞
vesc

f(~v)v3dv

=nπ

∫ ∞
vesc

f(~v)v3dv (C.5)

We denote the thermal velocity
√

2kbT
m

by vt and introduce the change of variable

x =
v

vt
→ dx =

dv

vt
dx · vt = dv
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Since x→∞ as v →∞

and x→ vesc
vt

as v → vesc

Equation C.5 becomes

FJ =

(
m

2πTkb

) 3
2

v4
t nπ

∫ ∞
vesc
vt

exp(−x2)x3dx (C.6)

The integral can be integrated by parts following∫ b

a

u(x)v′(x)dw = uv|ba −
∫ b

a

u′(x)v(x)dx (C.7)

with

u(x) = x2

v′(x) =
−1

2
− 2x exp(−x2)

Hence∫ ∞
vesc
vt

exp(−x2)x3dx =
−1

2

[
x2 exp(−x2)

−2x

−2x
|∞vesc
vt

−
∫ ∞
vesc
vt

2x exp(−x2)dx

]

⇔ −1

2

(
0− v2

esc

v2
t

exp

(
vesc
vt

)2
)

+
−1

2

∫ ∞
vesc
vt

2x exp(−x2)dx

⇔ 1

2

v2
esc

v2
t

exp

(
vesc
vt

)2

− 1

2
exp(−x2)|∞vesc

vt

⇔ 1

2

(
v2
esc

v2
t

+ 1

)
exp

(
vesc
vt

)2

(C.8)

Equation C.6 finally becomes

FJ =

(
m

2πTkb

) 3
2

v4
t nπ

1

2

(
v2
esc

v2
t

+ 1

)
exp

(
vesc
vt

)2

=

(
m

2πTkb

) 3
2
(

2kbT

m

)2

nπ
1

2

(
v2
esc

v2
t

+ 1

)
exp

(
vesc
vt

)2

=

√
Tkb
2πm

n

(
1 +

GMm

rkbT

)
exp

(
−GMm

rkbT

)
(C.9)
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