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“Sometimes it seems as though each new step towards Artificial Intelligence, rather than
producing something which everyone agrees is real intelligence, merely reveals what real
intelligence is not.”

Douglas Hofstadter
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Abstract
A multi-modal neural network exploits information from different channels and in differ-
ent terms (e.g., images, text, sounds, sensor measures) in the hope that the information
carried by each mode is complementary, in order to improve the predictions the neural
network. Nevertheless, in realistic situations, varying levels of perturbations can occur
on the data of the modes, which may decrease the quality of the inference process.
An additional difficulty is that these perturbations vary between the modes and on
a per-sample basis. This work presents a solution to this problem. The three main
contributions are described below.

First, a novel attention module is designed, analysed and implemented. This atten-
tion module is constructed to help multi-modal networks handle modes with perturba-
tions.

Secondly, two new regularizers are developed to improve the generalization of the
robustness gain on more intensive failing modes (relative to the training set).

Lastly, a unified multi-modal attention module is presented, combining the main
types of attention mechanisms in the deep learning literature with our module. We
suggest that this unified module could be coupled with a prediction model to enable the
latter face unexpected situations, and improve the extraction of the relevant information
in the data.
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Chapter 1

Introduction

1.1 Motivation

In recent years, tremendous progress has been made in the field of Artificial Intelli-
gence (AI), especially in Deep Learning (LeCun, Bengio, and Hinton, 2015; Fan, Ma,
and Zhong, 2019). Deep Learning has helped AI systems reach and sometimes surpass
human-level perception, mainly in computer vision (He et al., 2016) and natural lan-
guage processing (Wu et al., 2016). This has given rise to amazing industrial application
such as autonomous driving, early cancer detection, enhanced machine translation, etc.
In safety-critical contexts, a key concern of engineers is to make sure the trained mod-
els are error-free, which can be challenging if the input data does not hold sufficient
information to reduce the uncertainty on the predictions to an admissible level.

One possible solution researchers have been exploring is to use multiple modali-
ties1, which has largely been inspired by the often multi-modal nature of information
gathering processes in humans, i.e., we see objects, hear sound, feel the texture, smell
odours, and taste flavours. Multi-modal deep learning (MMDL) essentially consists in
exploiting information from different channels and in different forms in the hope that
the information carried by each mode is (partially) complementary, in order to improve
the predictive performance of deep learning models. For example, in (Caltagirone et al.,
2018) sensorial inputs from wide-angle cameras and LIDAR2 sensors are combined for
road detection. Cameras provide dense information over a long range under good illumi-
nation conditions and fair weather, whereas LIDARs are only marginally affected by the
external lighting conditions but have a limited range. Thus, merging the complemen-
tary information of the two sensors improves the accuracy of the road detection process.
Despite its improvements on the predictions, MMDL still suffers from a major draw-
back. Indeed, no systematic mechanisms exist to handle failing modes. In the present
report, a mode is said to be failing if a) it has a high noise to signal ratio, b) the data is
much different from the training data, c) the data is missing. Failing modes a) and b)
generally degrade the quality of the predictions because they introduce perturbations
in the neural network.

While a solution has not been found for neural networks, humans seem to handle
these situations robustly on a daily basis. Analysing human strategies and translating
them as much as possible into the framework of AI can provide interesting heuristics
to solve this crucial issue. A famous example showing this human ability is called the
cocktail-party effect (Cocktail party effect, 2010). It refers to the difficulty we sometimes

1The term modality, also called mode, is generally understood to mean "the way in which something
happened or is experienced" (Baltrušaitis, Ahuja, and Morency, 2019)

2Laser Detection and Ranging
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have understanding speech in noisy social settings. As a subconscious response, we tend
to look at the mouth of our interlocutor i.e. we shift some attention from the auditory to
the visual senses. Similarly, our attention is shifted from vision to touch when we are in
a room where the lights suddenly go out. These examples indicate that humans handle
modes with perturbations (first example) or missing information (second example) by
shifting their attention on to the other more relevant modes (Driver and Spence, 1998).

Inspired by this behaviour, this report presents a new approach to tackle failing
modes. More precisely, a novel attention mechanism3, dubbed Energy-based Multi-
Modal Attention (EMMA), is introduced. This mechanism determines how much atten-
tion to devote to each mode, so that the relevant information is kept while masking out
the perturbations. Additionally, this work offers some insight into how other attention
mechanisms in the deep learning literature resemble to the ones observed in humans.

Figure 1.1: Same environment, different modes (top: LIDAR view,
bottom: camera view).

1.2 Proposed solution

In essence, the EMMA module is placed in front of and coupled with the deep learning
model. The module multiplies each mode of the input sample by a weight so that the
modes with the most useful features are amplified, while the modes that are unnecessary
or contain too much perturbations are masked out. The amount of attention allocated
to each mode is determined based on its importance, which is defined in terms of three
intrinsically related properties, namely

• relevance: the intrinsic informativeness of the mode for the predictive task at
hand.

• failure intensity : the propensity of a mode to trigger undesirable activations in
the neural network.4

3"Attention mechanisms in deep learning aim to highlight specific regions of the input space"
(Chaudhari et al., 2019)

4We suggest that a mode of the input sample that is significantly different from the training distribu-
tion may cause undesired activations in the neural network, thereby negatively affecting the predictions.
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• coupling : the interdependencies between the modes, which describe the extent to
which the mode provide independent, complementary, redundant or conflicting
information.

The module is designed in such a way that it is able to learn these three properties (and
their interactions) for each mode. In other words, the module determines the attention
to allocate to each mode on its general predictive power, the amount of perturbations
it contains and the relationship it has with other modes. For example, this allows the
module to mask out a specific failing mode provided that another mode can compensate
for its failures. Let us stress that the determination of importance is done on a sample-
per-sample basis.

model

prediction

m
od

e 
1

m
od

e 
2
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od

e 
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od

e 
1
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od

e 
2
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3

model

EMMA

prediction

Figure 1.2: A multi-modal model with three input modes, without
EMMA (left), augmented with EMMA (right).

Software Implementation

All the implemented models and experiments are available at this5 repository, with a
wiki explaining how to run the experiments; PyTorch6 (Paszke et al., 2017) was the
main framework used for the Machine Learning part.

1.3 Contributions

The contributions of this Master thesis can be summarised as follows

Contribution 1: an attention module improving the robustness against fail-
ing modes. In Chapter 5, the design of a new attention mechanism based on
energy models (LeCun et al., 2006) is discussed, that can be added to any multi-
modal model.

Contribution 2: a simple yet powerful regularizer applying to attention
mechanisms. A common attention function is modified, establishing a link to
the concept of capacity of psychology (Kahneman, 1975), which pertains to the
amount of attention allocated among inputs. Subsequently, a new regularizer is

5https://github.com/Werenne/energy-based-multimodal-attention
6https://pytorch.org/

https://github.com/Werenne/energy-based-multimodal-attention
https://pytorch.org/
https://github.com/Werenne/energy-based-multimodal-attention
https://pytorch.org/
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introduced to control the capacity, whose purpose is to help generalise against
unexpected situation.

Contribution 3: a unified model for multi-modal attention. In Chapter 3, a
review of the literature on attention in humans helps us identify how to construct
a more complete multi-modal attention module.

1.4 Thesis Outline

The remainder of this work is organised as follows.

Chapter 2 explains the background (i.e. deep learning and energy models) this work
is based upon.

Chapter 3 reviews the literature on attention in psychology and deep learning, and
the similarities between them.

Chapter 4 describes a method for the estimation of the failure intensity of a mode.

Chapter 5 presents the ideas behind the architecture of the Energy-based Multi-
Modal Attention module (Contribution 1 & 2).

Chapter 6 presents an evaluation and analysis of the module outlined in Chapter 5
(Contribution 1 & 2).

Chapter 7 proposes a unified multi-modal attention module (Contribution 3).

Chapter 8 concludes this work and suggests possible directions for future research.
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Chapter 2

Background

2.1 Machine Learning

Machine Learning is a subfield of Artificial Intelligence (see Figure 2.1) concerned with
the design of algorithms that allow machines (e.g. computers, robots, embedded sys-
tems) to learn. For a task T, a performance measure P and an amount of data D, the
system is said to be learning if it improves its performance P at the task T by increas-
ing D (gain experience). Moreover, there are three main types of learning paradigms,
namely supervised, unsupervised and reinforcement learning. In supervised learning
(Loog, 2017), the model learns on a labeled dataset, providing an answer that the al-
gorithm can use to evaluate its accuracy on training data. An unsupervised model
(Ghahramani, 2004), on the contrary, extracts features and patterns from unlabelled
data. Lastly, reinforcement learning (Sutton and Barto, 1998) is typically used to train
agents in dynamic environments, where the agent is able to act upon the environment.
Reinforcement learning is best explained by an analogy. The learning algorithm is like
a dog trainer, which teaches the dog (agent) how to respond to specific signs, like a
whistle for example. Whenever the dog responds correctly, the trainer gives a reward to
the dog, reinforcing the correct behaviour of the dog. Based on these three paradigms,
several families of algorithms have been invented. Deep learning (Fan, Ma, and Zhong,
2019) is one of those families and is particularly powerful on perception tasks.

Artificial Intelligence

Machine Learning

Deep Learning

MMDL

Figure 2.1: Venn diagram of the Artificial Intelligence field.
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2.2 Deep Learning

Deep learning models, also called Deep Neural Networks, offer the significant advantage
of being able to learn their own feature representation for the completion of a given
task. A neural network is loosely inspired from our own brains, but can best be seen
as a series of stacked non-linear parametric functions, enabling the network to learn
multiple levels of representation with increasing abstraction. The parameters are tuned
by optimizing a loss function with Stochastic Gradient Descent (SGD) or one of its
many enhancements (Ruder, 2016). Let θ be the set of parameters, L the loss function,
y the groundtruth (labels) and ŷ the predictions. First, the SGD algorithm estimates
the gradient of the cost function on a randomly sampled batch of size N as

g =
1

N
∇θ

N∑
i=1

L(ŷ(i), y(i)) (2.1)

where the computation of the gradient itself is done using back-propagation (BP) (Chau-
vin and Rumelhart, 1995). The SGD algorithm then follows the estimated gradient
downhill, θ ← θ − εg where ε is the learning rate, in the hope of minimizing the loss.

Optimizing the parameters to represent all valid inputs of a task, where the data is
often very high-dimensional (e.g., images, sounds, text), may seem hopeless. However,
neural networks surmount this obstacle by assuming that these high-dimensional data
are lying along low-dimensional manifolds1 (Goodfellow, Bengio, and Courville, 2016).
An intuitive observation in favour of this claim is that uniform noise essentially never
resembles structured inputs from these tasks. More rigorous experiments supporting
the manifold hypothesis are (Cayton, 2005; Narayanan and Mitter, 2010; Weinberger
and Saul, 2006).

Multi-Modal Deep Learning

As a reminder, a modality refers to "the way in which something happened or is experi-
enced" (Baltrušaitis, Ahuja, and Morency, 2019). Multi-Modal Deep Learning (MMDL)
is simply the research area of neural networks using input samples consisting of multiple
modes. Baltrušaitis et al. identified five non-exclusive use-cases of MMDL,

• Representation: learning how to represent and summarize multi-modal data in a
way that exploits the complementarity and redundancy

• Translation: learning how to map data from one modality to another (e.g., image
captioning)

• Alignment : learning to identify the direct relationships between elements from
two or more different modalities (e.g. alignment of sound and video)

• Fusion: learning to join information from two or more modalities to perform
predictions

• Co-learning : learning to transfer knowledge between modalities and their respec-
tive predictive models (e.g., zero shot learning)

1A manifold designates a connected set of points that can be approximated well by considering only
a small numbers of degrees of freedom.
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The EMMA module is applied to multi-modal networks performing fusion. Further-
more, networks doing fusion can combine their modalities in three different ways: by
early-fusion, late-fusion and an hybrid of the first two. Early-fusion architectures have
uni-modal encoders extracting the features of each mode, the obtained features are
then concatenated altogether and fed into a common decoder making the predictions
(see Figure 2.2a). In contrast, late-fusion has uni-modal predictors for each mode, fol-
lowed by a decoder weighting the uni-modal predictions to compute the final prediction.

predictor

C
N
N

R
N
N

(a) Early-fusion

predictor

C
N
N

pr
ed
ic
to
r

pr
ed
ic
to
r

R
N
N

(b) Late-fusion

Figure 2.2: Fusion of images and sounds for a classification task with
a Convolutional Neural Network (CNN) (He et al., 2016), Recurrent

Neural Network (RNN) (Wu et al., 2016).

2.3 Physics meets Deep Learning

Modelling complex probability distributions by parametric functions such as deep learn-
ing models is a difficult task, because all the probabilities must be positive and sum up
to one. At its origins, many researchers in deep learning had an academic background in
physics, from which they regularly found inspiration to solve problems. An example of
this is the distribution of kinetic energies among molecules of gas, called the Boltzmann
distribution, and given by

p(Ei) =
1

Z
e−Ei/kBT with the partition function Z =

∫
e−Ej/kBT (2.2)

where Ei is the kinetic energy of molecule i, kB the Boltzmann constant and T the
temperature of the environment. The first thing to notice is that all the probabilities
are positive and sum up to one for any set of combinations of energies Ei. Another ob-
servation to make is that high values of energies are unlikely (Ei ∝ − log p(Ei)), unless
the temperature is sufficiently high enough. To sum it up, the Boltzmann distribution
can be used to normalize any function to a distribution, where the temperature T is a
parameter influencing the entropy of the distribution. The Boltzmann distribution has
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two major applications in deep learning. First, it corresponds to the soft-max activa-
tion function (Duan et al., 2003), employed commonly for the purpose of outputting
probabilities in multi-category classification tasks. Secondly, it was also used by deep
learning researchers to construct energy-based models (LeCun et al., 2006). These
types of neural networks optimize an energy function to be low on the data manifold
and high everywhere else (see Figure 2.3), which is the mapped to probabilities via the
Boltzmann distribution. A few examples of efficient energy-based models are Genera-
tive Adversarial Networks (GAN) (Goodfellow et al., 2014), Variational Autoencoders
(VAE) (Kingma and Welling, 2013) and Denoising Autoencoders (DAE) (Vincent et al.,
2008). The latter will be used in this work to measure the outlyingness of the data (see
Chapter 4).

Figure 2.3: The shape of the energy surface at four intervals. Along
the x-axis is the variable X and along the y-axis is the variable Y . The
shape of the surface at (a) the start of the training, (b) after 15 epochs
over the training set, (c) after 25 epochs, and (d) after 34 epochs. The
energy surface has attained the desired shape: the energies around the
training samples are low and energies at all other points are high. Image

and caption from (LeCun et al., 2006).
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Chapter 3

Literature Review

The purpose of this chapter is to review the state-of-the-art literature of multi-modal
attention. The first section describes attention in humans from both a psychological
and a neurological point of view. We argue this will give the reader more intuition
about attention in deep learning. The second part moves on to the different attention
mechanisms in deep learning, in particular self-attention and cross-modal attention.

3.1 Attention in Humans

"The most profound effect of attention is its capacity to bring the attended stimuli into
the forefront of our conscious experience while unattended stimuli fades into the back-
ground, increasing the processing efficiency at every stage of perception" (Watzl, 2017).
"A widely held assumption in the psychology literature is that the most fundamental
function of attention is selection. At the level of single neurons, neuroscientists typically
thought of attention in terms of selection between stimuli competing for the same neu-
ral receptive field" (Desimone and Duncan, 1995). Daniel Kahneman, an authorithy in
psychology and economy, investigated the way in which humans perform multi-tasking
(i.e., solve a multi-modal problem). Kahneman claimed that attention was more than
selection, that it could be viewed as a limited resource being shared among the different
modes, but he could not generalize his findings to the intra-modal level1. Moreover,
the selection theory has been vigorously challenged in recent years by the amplification
theory, where attention is an additional activity that interacts with built-in perceptual
mechanisms by amplifying some of the input signals (Fazekas and Nanay, 2018). Fur-
thermore, the absolute intensity of amplification is not important, in contrary it is the
relative intensity between the inputs that matters (the contrast effect). Notice that the
amplification theory generalizes the concept of capacity to the intra-modal level and
neural level. Interestingly, we will see that the basic principles of attention mechanisms
in deep learning has significant similarities with amplification.

Regarding multi-modal attention, three types can be distinguished: endogenous,
exogenous and cross-modal attention (Driver and Spence, 1998). "People orient their
attention endogenously whenever they voluntarily choose to attend to something, such
as when listening to a particular individual at a noisy cocktail party, or when concen-
trating on the texture of the object that they happen to be holding in their hands. By
contrast, exogenous orienting occurs when a person’s attention is captured reflexively
by the sudden onset of an unexpected event, such as when a mosquito suddenly lands

1Intra-modal attention manifests itself only in a subset of the mode, whereas inter-modal attention
is between modes.



10 Chapter 3. Literature Review

on our arm" (Driver and Spence, 1998). Lastly, cross-modal attention refers to the
interaction of attention between two or more modes such as using visual clues (e.g. lip
movements) to focus on the voice of a particular individual at a noisy cocktail party.

3.2 Attention in Deep Learning

"Attention mechanisms in deep learning aim to highlight specific regions of the input
space" (Chaudhari et al., 2019). The most common way to do this, is by multiplying the
input by an attention mask, where the attention mask consist of normalized continous
values between zero and one. Observe the similarity with the amplification theory
described in the previous section. In self-attention (Bahdanau, Cho, and Bengio, 2014),
the attention mask is computed from the same mode on which it is applied. Conversely,
for cross-modal attention mechanisms (Li et al., 2019), the attention mask is computed
from multiple modes.

Self-attention was first introduced in natural language processing (NLP) for machine
translation tasks by (Bahdanau, Cho, and Bengio, 2014). It helped the translation task
by enabling the model to automatically search for parts of a source sentence that are
relevant to predicting the next target work. With this approach, Bahdanau et al.
achieved a translation performance comparable to the existing state-of-the-art phrase-
based system on the task of English-French translation. Since then it has become a
prominent tool in NLP but has also been used in a variety of other tasks such as image
classification. (Hoogi et al., 2019) uses self-attention to learn to suppress irrelevant
regions in images and highlight salient features useful for the specific classification task.
The authors in (Hoogi et al., 2019) reduced the computation load and were able to
compensate the absence of a deeper network by using the self-attention, without having
a decreased classification performance. For a detailed review on this self-attention
mechanisms, see (Galassi, Lippi, and Torroni, 2019).

Turning now to cross-modal attention, (Ephrat et al., 2018) presents an audio-visual
model for isolating a single speech signal form a mixture of sounds such as other speakers
and background noise (see Figure 3.1). Cross-modal attention is used to focus on
certain parts of the audio with respect to an image of the desired speaker. The authors
showed superior results compared to state-of-the-art audio-only methods. Similar works
(Libovický, Helcl, and Mareček, 2018; Li et al., 2019; Wang, Wang, and Wang, 2018)
are using cross-modal attention and have attained impressive results. However, most
research using cross-modal attention has tended to focus on obtaining better predictions
rather than improving the robustness. A few exceptions are discussed below.

A work investigating how multimodal fusion can help against failing modes is (Afouras
et al., 2018). Their model fuses audio and video to obtain better speech-to-text. Inter-
estingly, Afouras et al. use a combination of self-attention mechanisms followed by a
cross-modal attention layer. The model was tested on thousands of natural sentences of
British television. Furthermore, they added babble noise with 0dB signal-to-noise ratio
to the audio streams, where the babble noise samples are synthesized by mixing the
signals of 20 different audio samples from the dataset. The audio-visual model achieved
a 13.7% word error rate (WER) on the dataset without noise, and a 33.5% WER on the
dataset with noise whereas the audio-only model only achieved 64.7% WER. Despite
obtaining great results, a major weakness with this experiment, however, is that their
test set is corrupted in the exact same manner as their training set. In our experiments2

2See Section 6.3.2
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Figure 3.1: The authors of (Ephrat et al., 2018) present a model for
isolating and enhancing the speech of desired speakers in a video. Their
model was trained using thousands of hours of video segments from our

new dataset, AVSpeech. Image from (Ephrat et al., 2018).

we will show that evaluating test data with the same noise as on the training data can
significantly overestimate the robustness of the model. Additionally, the attention mod-
ule in (Afouras et al., 2018) is presumably not able to detect and handle unseen samples.
To summarize, the model was not tested against realistic failing modes situations.

The work that is most relevant to our proposed method is the attentive context
proposed in (Shon, Oh, and Glass, 2018), which also incorporates attention on the
inter-modal level to explicitly filter perturbations out (see Figure 3.2). The model is
evaluated on a face-verification task, receiving a voice sound and a face image. The
attention mask [αv, αf ] is computed via a linear function, fatt = WT [ev, ef ]+b, on the
embeddings ev and ef . Several defects of the attention function fatt can be observed:

1. The function is unlikely to be expressive enough to capture complicated depen-
dencies between the modes, and to recognize out-of-distribution3 data.

2. A design constraint of this attention function is that all extracted embeddings
must be of the same size, which may be a significant constraint when combining
modes from low and high-dimensional data.

3. Similarly to (Afouras et al., 2018), the test set is corrupted in the same manner
as the training set.

Figure 3.2: Neural network based fusion approaches. ev : speaker
embedding, ef : face embedding. FC denotes a fully connected layer.

Image from (Shon, Oh, and Glass, 2018).

3Relative to the training data.
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Chapter 4

Energy Estimation

In the introduction we suggested that a mode of the input sample that is significantly
different from the training distribution may cause undesired activations in the neural
network, i.e. the failure intensity of a mode is correlated with its likelihood relative
to the training distribution. Moreover, in Section 2.3 we explained that the energy
function in energy-based models is proportional to the negative log-likelihood (NLL),
which could thus be used to evaluate the failure intensity of a mode. This chapter
discusses how to derive the energy function of a denoising autoencoder, which will be
used as a metric for the failure intensity (discussed in Chapter 1).

4.1 Autoencoders

Autoencoders (AE) are models trained to reproduce their inputs to their outputs. An
autoencoder is composed of two main parts, the encoder f and the decoder g. The
input x ∈ RL is passed through the encoder f : RL 7→ RU as f(x) = h(Wfx+bf ) = u,
where h(·) is an activation function applied element-wise and u represents the hidden
layer. The decoder g : RU 7→ RL is then in charge of reconstructing the input, g(u) =
Wgu + bg. The output is often called the reconstruction and is written r(x) = g(f(x))
with r : RL 7→ RL. Autoencoders are trained in an unsupervised manner, most of
the time using the mean-squared error between input and output as a loss function,
LMSE = ‖r(x)− x‖22. Training a model to copy its input may seem useless. To answer
this point, we need to distinguish two families of autoencoders, namely undercomplete
and overcomplete autoencoders.

(a) Undercomplete AE (b) Overcomplete AE

Figure 4.1: The architecture of the two families of autoencoders
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Undercomplete autoencoders

An autoencoder is said to be undercomplete when the size of the hidden layer u is
smaller than the size of the input/output layers, i.e. U < L (see Figure 4.1a). This
amounts to constructing a low-dimensional representation of the input, and information
is therefore lost in the process. It can be thought of as a non-linear principal component
analysis (Scholz, Fraunholz, and Selbig, 2008; Ladjal, Newson, and Pham, 2019) as the
values formed in the hidden layer are a non-linear representation in latent space of the
input. As can be seen in Figure 4.2, minimizing the mean squared error is similar to
minimizing the Euclidean norm of the vector r(x)− x.

manifold

data sample
reconstructed sample

training loss

Figure 4.2: Vectorial representation of an undercomplete reconstruc-
tion process.

Overcomplete autoencoders

Conversely, an overcomplete AE has more hidden units than its input/output layer,
i.e. U > L (see Figure 4.1b). Hence, the model could thus learn to perfectly copy its
input through the U hidden units and reproduce it at the output. However, the input
is corrupted before being passed through the encoder, whereas the decoder is forced to
reconstruct the original input, i.e. the model learns to denoise signals. This type of AE
is called a denoising autoencoder (DAE). More formally, the input is corrupted with
some small isotropic noise x̃ = x + ε where ε ∼ N (0, σ2), with the training loss

LMSE = ‖r(x̃)− x‖22 (4.1)

It is worth noticing the difference with the loss function of the undercomplete AE.
We verify in Figure 4.3 that minimizing the loss implies that the reconstruction error
r(x̃)− x̃ will converge to −(x̃−x) i.e. the model learns to invert the corruption process.

4.2 Energy in Autoencoders

The authors in (Alain and Bengio, 2012) found that the reconstruction error of a trained
denoising autoencoder is proportional to the score (gradient of log-likelihood)

r(x̃)− x̃ ∝ ∂ log p(x̃)

∂x̃
(4.2)
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manifold

data sample

reconstructed sample
corrupted sample

training loss
reconstruction error
corruption

Figure 4.3: Vectorial representation of an overcomplete reconstruction
process.

To put it differently, the reconstruction error points towards the corresponding most
likely datapoint. This result is not particularly suprising, as denoising a signal is es-
sentially equivalent to finding the most likely datapoint among nearby samples in the
distribution (see Figure 4.3). To illustrate Equation (4.2), we train a DAE on a gener-
ated circle manifold (more details about this experiment in Section 4.3). As we can see
below, the vector field of the reconstruction error does indeed point towards the data
manifold1. Alternatively, Figure 4.4 may be interpreted in terms of forces deriving from

Figure 4.4: Vector field of reconstruction error on circle manifold.
No corruption is applied at test time, the reconstruction error vector is
simply the output minus the input. The experimental setup is described

in Section 4.3.

potential fields as observed in physics. This interpretation can be useful to distinguish
the manifold since it acts as a sink in the vector field i.e., has a low potential energy.

A vector field is the gradient of a potential energy field if it satisfies a simple con-
dition called the integrability criterion2. In (Kamyshanska and Memisevic, 2014), the

1We refer broadly to a data manifold as a connected set of points that can be approximated well by
considering only a small numbers of degrees of freedom.

2See Appendix C.1
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authors found that using tied weights (Wf = W T
g = W ), produces an autoencoder

configuration whose reconstruction error field satisfies the aforementioned integrability
criterion. Indeed, one successively finds

∂(r(x̃)i − x̃i)
∂x̃j

=
∂
[
W Th(W x̃ + bf ) + bg

]
i

∂x̃j
− ∂x̃i
∂x̃j

=
∑
k

Wik
∂h(W x̃ + bf )

∂(W x̃ + bf )
Wjk − δij

=
∂(r(x̃)j − x̃j)

∂x̃i

(4.3)

where δij denotes the Kronecker delta. Hence, under this assumption, the reconstruc-
tion error can be expressed as the gradient of a scalar field, the potential energy −Ψ,
such that r(x̃)−x̃ = −∂Ψ(x̃)/∂x̃. Thereupon, the reconstruction process can be seen as
a gradient descent in the potential energy space (Kamyshanska and Memisevic, 2014).
A key insight to gain from these developments and Equation (4.2) is that the aforemen-
tioned potential energy is in fact proportional to the NLL,

∂Ψ(x̃)

∂x̃
∝ −∂ log p(x̃)

∂x̃
⇒ Ψ ∝ − log p (4.4)

Since the gradient of the potential energy can be expressed in terms of the reconstruction
error, the potential energy Ψ can be computed by integrating the latter,

Ψ(x̃) = −
∫

(r(x̃)− x̃)dx̃ (4.5)

Now, expressing r in terms of f = h(Wx + bf ) and g = W T f(x) + bg in (4.5), and
following the developments made in (Kamyshanska and Memisevic, 2014), we obtain

Ψ(x̃) = −
∫
f(x̃)dx̃ +

1

2
‖x̃ + bg‖22 + const (4.6)

In this work only the sigmoid will be used as an activation function h, so that the
expression of f can be written explicitly and

Ψ(x̃) = −
∑
k

log(1 + exp(W T
.k x̃ + bfk)) +

1

2
‖x̃− bg‖22 +���const ∝ − log p(x̃) (4.7)

where W T
.k is the kth column of W T , and bfk the kth entry of bf . All intermediate steps

between (4.5) and (4.7) are detailed in (Kamyshanska and Memisevic, 2014). It is worth
remarking that the potential energy can be negative by construction.

4.3 Experiment I

In this experiment, two simple data manifolds are generated, on which separate de-
noising autoencoders are trained. In order to evaluate the suitability of the potential
energy as a proxy for the NLL, the former is plotted on a grid for each of these autoen-
coders.. As a comparison, we also compute the reconstruction error, ‖r(x̃)− x̃‖22, which
is sometimes used in the Machine Learning community as a way to detect outliers.
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Manifolds

The manifolds maps a set of N scalar values {t1, . . . , tN} drawn uniformly at random in
[0, 2π] into a set of vectors {x1, . . . ,xN} ⊂ R2. The entries of these vectors are obtained
as

wave

{
xk1 = tk − π
xk2 = sin(tk)

circle

{
xk1 = 3 sin(tk)

xk2 = 3 cos(tk)

The resulting structures are illustrated in Figure 4.5.

(a) Wave (b) Circle

Figure 4.5: Manifold generation with 200 samples.

Setup

Each autoencoder has 8 hidden units, is trained for 25 epochs, with a batch size of 100,
a corruption noise σ = 0.008 and a learning rate of 1e−3. The optimizer used is Adam
(Kingma and Ba, 2014).

Results

As expected the vector fields of the reconstruction errors are directed towards the man-
ifolds (see Figure 4.6), the manifolds acting as sinks. Notably, observe the presence of
a source at the origin for the circle manifold (see Figure 4.6b).

The energy function and the norm of the reconstruction error are computed and
plotted onto heatmaps (see Figure 4.7). We can see that the two estimators have low
values in the neighbourhood of the manifold and are high everywhere else. However,
the norm of the reconstruction error has also low values at the origin, due to the source
in its vector field. This issue makes it difficult in general to use it as a robust criterion
to detect and quantify out-of-distribution samples.
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(a) Wave (b) Circle

Figure 4.6: Vector fields of the reconstruction error evaluated on a
mesh grid.

(a) Wave - Norm reconstruction error (b) Circle - Norm reconstruction error

(c) Wave - Potential energy (d) Circle - Potential energy

Figure 4.7: Estimators evaluated on wave (left) and circle (right) man-
ifolds.
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4.4 Limitations

Many interesting data structures are difficult to reproduce with shallow denoising au-
toencoders. For example, sequential data (e.g. sound) is better modelled with LSTM-
DAE3. Likewise, CNN-DAE4 are more appropriate to model spatial structures, such as
images. However, the integrability criterion for these models is not satisfied anymore,
and thus the negative log-likelihood cannot be estimated. Alternative methods to effi-
ciently learn energy functions for spatial or sequential data are presented in (Zhai et al.,
2016; Kim and Bengio, 2016)

3Long-Short Term Memory denoising autoencoder (Chen et al., 2018)
4Convolutional Neural Network denoising autoencoder (Turchenko, Chalmers, and Luczak, 2017)
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Chapter 5

Energy-based Multi-Modal
Attention

The literature review (Chapter 3) showed that previous research in MMDL has been
mostly focused on leveraging multi-modality to improve the accuracy of the predictions.
In this chapter, a new attention module is presented to increase the robustness against
failing modes: as long as at least one modality provides sufficient information for the
task at hand, the prediction network will be able to perform well. First, we start
by providing a conceptual general framework. Then, the design of each step of the
framework is described. Finally, the training of EMMA is discussed, along with two
novel regularizers.

5.1 General Framework

A typical multi-modal network (MMN) receives samples at its input, where each sample
is composed of multiple modes such as images and sounds. In real-world applications,
the relative informativeness of different modes may evolve over time, on a per sample
basis, e.g. as a result of perturbations or sensor malfunctions.

In order to address this problem, an attention module is proposed that pre-processes
each input sample and evaluates the relative informativeness, also referred to as impor-
tance, of each mode. More precisely, those modes deemed informative are assigned a
high weight, typically close to 1, whereas the modes considered too uninformative are
assigned a weight close to 0. The weighted modes are then fed to the MMN.

The interpretation of the role of EMMA is twofold. First, EMMA can be seen
as a sort of gate filtering out perturbations. Indeed, failing modes can provoke high
activations in the MMN, thus affecting its predictive performance negatively. Masking
the failing modes allows to diminish these activations, thereby improving predictions
quality. Another way to view it is to understand that the MMN model is able to extract
the multiplied weight from the original input. The model can then learn to make more
robust predictions based on the extra information provided by that weight. Notice that
even tough the internal architecture of the MMN is often structured as a many-to-one
encoder-decoder as discussed in Section 2.2, the EMMA module can be fitted to any
MMN architecture.

The key concept on which EMMA relies to produce scores for different modes is
that of modal importance. As a reminder, the modal importance is defined in terms of
three intrinsic and related properties of each mode, namely
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• relevance: the intrinsic informativeness of the mode for the predictive task at
hand.

• failure intensity : the propensity of a mode to trigger undesirable activations in
the neural network.

• coupling : the interdependencies between the modes, which describe the extent to
which the mode provide independent, complementary, redundant or conflicting
information.

The EMMA module will essentially try to learn the relationships between these prop-
erties for a specific dataset.

step 1 step 2

step 4

step 3

step 5

Figure 5.1: Summary of main steps in EMMA (step 2, 3 and 4 are
detailed in the following sections, step 1 was explained in Chapter 4)

For the sake of clarity, making the exposition more formal is now in order. Let
DN = {(X1, y1), . . . , (XN , yN )} be a dataset of i.i.d. samples, where the input Xk is
composed of M modes {x1, . . . ,xM}. The MMN tries to make predictions ŷk as close
as possible to the groundtruth yk. The EMMA module computes the importance of
mode i starting with the failure intensity, which is measured by the potential energy
Ψi = Ψ(xi) (step 1 in Figure 5.1, previously motivated in the introduction of Chapter 4).
To capture the two other modal properties, namely the modal relevance and coupling,
two additional functions are introduced. On the one hand, the self-energy ei is designed
to spontaneously learn the relationship between the relevance and the failure intensity.
This comes as a result of the fact that it is a function of Ψi and its parameters are
optimised with respect to the loss on the predictions. On the other hand, shared energies
eij are designed to capture the optimal coupling between modes. Using these functions,
the modal energy Ei can be constructed such that it takes a low value if mode i is
important and a high value otherwise (step 2 in Figure 5.1, further discussed in Section
5.2). Next, the modal energies are normalized via the Boltzmann distribution1 to form
importance scores αi, which are scalar values between zero and one, with more important
modes corresponding to higher values (step 3 in Figure 5.1, further discussed in Section
5.3). From each importance score, the model then determines an attention score βi,
which is representative of the amount of attention that should be paid to each mode by
the MMN (step 4 in Figure 5.1, further discussed in Section 5.4). Finally, each mode
is multiplied by its respective attention score (step 5 in Figure 5.1). Section 5.4 will
clarify why the modes are not directly multiplied by the importance scores instead. A
high-level view of the attention module EMMA is illustrated in Figure 5.2. The next
sections detail the form and specificities of each function introduced previously.

1See Section 2.3
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MMN

EMMA

…

…

Figure 5.2: High-level view of a Multi-Modal Network with the EMMA
module.

5.2 From Potential to Modal energies (step 2)

The self-energy is defined as an affine function of the potential energy,

ei = wiΨi + bi with wi, bi ∈ R+, (5.1)

where the parameters wi and bi are trained via a loss function on the predictions.
Therefore, the model is able to capture both the relevance and failure via the self-energy.
The second advantage of this transformation is that it helps the module to handle
potentials on different numerical scales. Indeed, Equation (4.7) only guarantees being
proportional to the NLL, thus potentials of different modes may not be on comparable
scales. The reason the parameters are constrained to be positive will be justified below.
Additionally, it will be shown below that self-energies are guaranteed to be positive at
the end of this section.

After computing the self-energies, the shared energies can be determined. The
expression eij denotes the shared energy of mode j on i and is constructed from the
self-energies as follows

eij = wije
γij
i e

1−γij
j with wij ∈ [−1,+1], γij ∈ [0, 1] (5.2)

where the parameter γij learns the degree of coupling in the spectrum from strongly
coupled (γij = 0) to independent (γij = 1). Indeed, if the model learns a value of γij
close to zero, mode j will influence mode i much more than for a γij close to unity.
Equally important is the direction of coupling between mode i and j, determined by
the weights wij and wji. We verify that an increase/decrease of the self-energy ej leads
to an increase/decrease of the modal energy Ei for a positive weight wij , and a de-
crease/increase of Ei for a negative weight wij . This is valid since self-energies are
guaranteed to be positive (see next paragraph). The direction of coupling is useful to
distinguish modes with redundant or conflicting information from those with comple-
mentary information. Notice that the degree and direction of coupling are asymmetric
(γij 6= γji, wij 6= wji). This asymmetry is justified by the following example: take a
multi-modal problem with three modes A, B and C. We want the model to learn that
if mode A is failing, it is optimal that mode B "takes over". And if mode B is failing,
it is optimal for C to "take over". This example can only be modelled with asymmetry.
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In conclusion, the model has the ability, through the use of shared energies, to discover
the different interdependencies between the modes.

A consequence of the design of Equation (5.2) is that the evaluation of the gradient
during the backpropagation step now involves taking the logarithm of ei2, which is
undefined for negative values. As the weights in Equation (5.1) are positive, we only
have to make sure the values of the potential energy are positive. The latter is done by
lowering the potential Ψi to Euler’s number e as

Ψi ← max(e,Ψi −Ψ
(min)
i + e) (5.3)

where Ψ
(min)
i denotes the lowest value of Ψi in the training set. This correction avoids

undefined values (Ψi ≥ 0), exploding gradient3 (Ψi ≥ e) and guarantees self-energies
to be positive. The reason a max-operator is used is because lower energy values than
Ψ

(min)
i can occur during inference. Clearly, this correction step (5.3) must be performed

prior to the computation of self-energies (5.1).

5.3 From Modal energies to Importance scores (step 3)

The importance scores are computed from the modal energies via the Boltzmann dis-
tribution:

αi =
1

Z
e−ρEi with the partition function Z =

M∑
j=1

e−ρEj (5.4)

This guarantees the scores are normalized and sum up to one. A mode i will be said to
be important if its score is close to one (low modal energy Ei). The hyperparameter ρ
represents the coldness, the inverse of the temperature. It controls the entropy of the
importance scores distribution. At high temperature (ρ→ 0) the distribution becomes
more uniform, and at low temperature (ρ→ +∞) the importance scores corresponding
to the lowest energy tends to 1, while the others approach 0. As can be observed
in Figure 5.3, the coldness has a significant influence on the overall behaviour of the
attention module. Hence, careful tuning of ρ is required.

5.4 From Importance to Attention scores (step 4)

The attention scores are given by

βi = max[0, tanh(gaαi − ba)] with ga > 0, ba ∈ [0, 1] (5.5)

The hyperbolic tangent adds non-linearity while the gain ga and bias ba enable the
model to control the threshold and capacity (see Figure 5.4). Those two concepts are
detailed below.

2See Appendix C.2
3Exploding gradients are very large gradients, which in turn results in large updates of the network

weights, resulting in an unstable network. A good overview on this subject can be found in (Philipp,
Song, and Carbonell, 2017)
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Figure 5.3: Input-output of Boltzmann distribution for two different
temperatures, low temperature (ρ = 0.1) and high temperature (ρ =

0.001)

Figure 5.4: Attention function (the max-operator generalizes the at-
tention function to cases where α ∈ R)

Energy threshold

The module will let the information of mode i pass by, only if gaαi − ba > 0

⇔ log(αi) > log(ba/ga)

⇔ Ei ≤
log(ga/ba)− log(Z)

ρ
= Ethreshold

(5.6)

where Ethreshold represents the maximum energy level for mode i to be taken into account
(see Figure 5.4). We deduce that the learned gain and bias control this threshold.
Notably, the threshold is varying on a per-sample basis due to the partition function
Z. For example, an increase of the overall perturbation level on the entire input results
in a reduction of the partition function, leading to a higher threshold Ethreshold. It can
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thus be deduced that EMMA becomes less selective if the overall quality of the sample
decreases.

Capacity

A more common way to write the attention function would be tanh(Wα+b), whereas
we have tanh(gaIα − ba1), where I is the identity matrix. We argue the latter better
mimics human’s attention, permitting us to introduce the concept of capacity, which
in psychology is viewed as the amount of resource that can be allocated (Kahneman,
1975). If we look at Figure 5.4, this can be translated as,

capacity ,
∫ 1

0
tanh(gaα− ba)dα (5.7)

Define the auxiliary variable u = gaα− ba. Now using

du

dα
= ga ⇔ dα =

1

ga
du (5.8)

we can write

capacity =
1

ga

∫ ga−ba

−ba
tanh(u)du

=
1

ga
log[cosh(u)]

∣∣∣∣ga−ba
−ba

+(((((constant

=
1

ga
log

[
cosh(ga − ba)

cosh(−ba)

] (5.9)

When the capacity is too low, no sufficient amount of information is passed to the MMN,
leading to wrong predictions. Similarly, if the capacity is too high, the perturbations
of the failing modes will pass and cause a decrease in performances. It is expected
that the model learns the optimal trade-off. However, if we want the attention module
to be robust against failing situations it was not trained on, we suggest minimizing
capacity would result in appealing properties for the system as a whole. The reasons for
minimizing the capacity are two-fold: it forces the module to mask out more information,
which may be sub-optimal on the training set but useful to generalize against more
intensive failing modes. The second reason is to avoid the extreme case where the
module leaves all the inputs unchanged (maximal capacity) and instead it is the MMN
who learns to suppress perturbations. The ideal method for controlling the capacity,
would be to add the derived expression (5.9) as a regularizer to the loss function, but this
could potentially lead to instabilities4 during training. A less precise but more stable
way is to introduce the expression ga − ba instead in the loss function. We verify that
minimizing this expression will minimize the gain while maximizing the bias, i.e. lead
to a decrease of the capacity. Nevertheless, Equation (5.9) can still be used to compute
the learned capacity of the module. Notice that the concept of capacity can also be
applied to tanh(Wα + b), but in this case each mode would have his own capacity,
making the importance scores less meaningful.

4The gradient of Equation (5.9) can become very large for certain values of its weights ga and ba.
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5.5 Training & Regularization

The training of the attention module and the prediction model is performed in two
stages (see Figure 5.5). First, each mode is assigned a separate autoencoder, which is
trained on the mode to learn the potential energy function. Once trained, the weights
of the autoencoders are frozen. In the second phase, EMMA is inserted in front of the
MMN and is trained end-to-end on both normal and corrupted data. By corrupted
data, we mean samples on which a corruption process is applied in order to simulate
one or more failing modes. Notably, the computational overload induced by the training
of EMMA in the second stage is often negligible with respect to the MMN, provided
that the number of parameters of EMMA5 is in most cases far less than the number of
parameters of the MMN.

Additionally, two regularizers are introduced in the loss function, written as

L̃ = L(y, ŷ)+λc(ga−ba)−λeΩ with Ω =

M∑
k=1

ξk log(αk) and ξk =

{
ξ− = −1 if xk is corrupted
ξ+ = +1 otherwise

(5.10)
with λc and λe being positive real numbers used to set the relative importance of each
regularizer, and the ξk vector being manually encoded. The first regularizer minimizes
the capacity, where a higher λc pushes the module to let less information pass through
in general (i.e., to be more "cautious"). The second regularizer (λeΩ), which we call
the energy regularizer, controls the trade-off between on the one hand the coupling
and on the other hand the failure intensity. In use-cases with complex asymmetric
interactions between the modes, the shared energies could potentially cause large dis-
crepancies between modal energies Ei and their original potential energies Ψi. A major
drawback of having such discrepancies is that this leads to a reduction of the influence
of the failure intensity in the computation of the attention scores. This may result in
poor generalization to samples with more intensive failing modes. We show that these
discrepancies can be reduced to a certain degree by the use of the energy regularizer.
Indeed, as an effect of this regularizer, modal energies with low/high potential energies
(uncorrupted/corrupted modes) will be decreased/increased. Although the energy reg-
ularizer is relatively straightforward, we will demonstrate below that some care needs
to be taken regarding the corruption process.

Energy regularization

Let θ = {θ1 . . .θM} be the set of all the parameters of the second step6 of the atten-
tion module, where θi = {[γij , wij ]Mj=1, wi, bi} are the parameters composing the modal
energy Ei. The effect of the energy regularizer in the SGD algorithm is isolated and
written

θ ← θ + ελe∇θΩ (5.11)

Remember that the objective is to update the parameters such that for low/high po-
tential energies Ψi the modal energies Ei are decreased/increased. To verify this let us

5The number of parameters of EMMA scales up quadratically with the number of modes.
6See Section 5.2
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compute7 ∇θΩ,

∇θΩ =
M∑
k=1

ξk∇θ log(αk) (5.12)

The gradient of the logarithm can be developed as

∇θ log(αk) = ∇θ log

[
e−ρEk

Z

]
= ∇θ(−ρEk)−∇θ log

M∑
l=1

e−ρEl

= −ρ∇θEk −
∑M

l=1∇θe
−ρEl∑M

l=1 e
−ρEl

= −ρ∇θEk + ρ

∑M
l=1 e

−ρEl∇θEl∑M
l=1 e

−ρEl

= ρ

[
−
(
1− e−ρEk

Z

)
∇θEk +

M∑
l 6=k

e−ρEl

Z
∇θEl

]

= ρ

[
−
(
1− αk

)
∇θEk +

M∑
l 6=k

αl∇θEl

]

We go further by expressing the equation above with respect to the subset of pa-
rameters θi:

∇θi log(αk) =

{
−ρ(1− αi)∇θiEi, if i = k

ραi∇θiEi, if i 6= k
(5.13)

The gradient of the regularizer can now be computed by plugging Equation (5.13)
into the summation (5.12). Let M ′ be the number of uncorrupted modes. We obtain
for an uncorrupted mode i,

∇θiΩ = ξ+
[
− ρ(1− αi)∇θiEi

]
+
[
(M ′ − 1)ξ+ + (M −M ′)ξ−

]
αiρ∇θiEi (5.14)

and for a corrupted mode i,

∇θiΩ = ξ−
[
− ρ(1− αi)∇θiEi

]
+
[
M ′ξ+ + (M −M ′ − 1)ξ−

]
αiρ∇θiEi (5.15)

We can summarize Equations (5.14) and (5.15) as

∇θiΩ = −
[
(M − 2M ′)αi + ξi

]
ρ∇θiEi (5.16)

Adding the constraint that M ′ = bM+1
2 c, two cases can be distinguished. If the

total number of modes M is even, then we have

θi ← θi − ελeρξi∇θiEi with λe ∈ R+ (5.17)
7The batch is assumed to only contain one sample for the sake of simplicity. However, the demon-

stration can be generalized to any batch size.



5.6. Advantages 29

The value of the modal energy function for the updated parameters can be developed
with a first-order Taylor series approximation around the prior-to-update parameter set
θ
(0)
i , with a fixed input xi:

Ei
(
xi;θi

)
≈ Ei

(
xi;θ

(0)
i

)
+
(
θi − θ

(0)
i

)T∇θiEi (5.18)

Substituting the updated parameters (5.17) into our approximation, we obtain

Ei
(
xi;θ

(0)
i − ελeρξi∇θiEi

)
≈ Ei

(
xi;θ

(0)
i

)
− ελeρξi

(
∇θiEi

)T∇θiEi (5.19)

where the left-hand side corresponds to the energy value with the updated parameters,
and the first term of the right-hand side corresponds to the energy value before the
parameter update. Using the fact that ξi is negative (resp. positive) for a corrupted
(resp. uncorrupted mode), it can be concluded from the equation above that the regu-
larizer will update the parameters such that the values of the modal energy function Ei
increases (resp. decreases) for a same sample of the corrupted (resp. uncorrupted mode)
i.

In analogy, if M is odd we have

θi ←

{
θi − ελeρ(1− αi)∇θiEi, if i is uncorrupted
θi + ελeρ(1 + αi)∇θiEi otherwise

(5.20)

The principle is the same as in the even case with an additional effect: the correction
will be proportional to the error. To put it in another way, high energies that must
be low and low energies that have to be high will have stronger gradients than their
counterparts. This is similar to the positive and negative phase in the optimization of
Restricted Boltzmann Machines.

To conclude, let us notice that some undesired effects can appear if we do not add
the constraint M ′ = bM+1

2 c. As an illustration, take M ′ = bM+1
2 c+ 1, Equation (5.11)

becomes
θi ← θi − ελeρ(αi + ξi)∇θiEi (5.21)

which is unstable for uncorrupted modes leading to a collapse where all energies tend
to decrease.

5.6 Advantages

The key advantages of using EMMA are:

• The generic design of EMMA permits it to be easily added to any type of archi-
tecture of a multi-modal model, without modifying nor EMMA nor the MMN.

• The burden on the MMN is reduced, it only has to learn to make good predictions
from the received information. The MMN does not need anymore to learn to
distinguish failing modes.

• Our attention module improves the interpretability of the overall model in two
ways. First, it can be verified on a per-sample basis which modes are failing
and important. Secondly, the total energy,

∑
iEi, provides us with an approxi-

mate measure of the uncertainty on the predictions (see Section 6.3.2). A useful
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concrete application, would be to use these interpretable clues to trigger spe-
cific hardware/software recovery systems (e.g., luminosity calibration of camera
in self-driving cars).

MMN

Decoder

Encoder

…

MMN

…

Step 1

Step 2 & 3

Step 4 & 5

Stage 1
Stage 2

forward pass

backward pass of capacity regularizer

backward pass of energy regularizer

backward pass of prediction loss

Figure 5.5: Summary of end-to-end training.
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Chapter 6

Experiments & Results

This chapter experimentally verifies the main ideas discussed in the previous chapters
4 and 5. In chapter 4, the derivation of the potential energy from an autoencoder was
shown, with the potential energy being proportional to the log-likelihood. We claimed
that this metric could be used to distinguish normal samples from failing ones. On
the other hand, chapter 5 discussed the design of the attention module constructed to
change the allocation of attention in the face of varying levels of perturbations, and
thus improving the robustness of the MMN.

6.1 Pulsar Stars

For the following experiments, our models will be trained on the HTRU2 dataset1,
containing features describing radio emissions measured on Earth. The positive class
corresponds to radio emissions of pulsars, which are a rare type of Neutron star that pro-
duce radio emissions detectable here on Earth, whereas the negative class corresponds
to the other radio emissions. Pulsars are of considerable scientific interest as probes of
gravitational theories and time-keeping systems in spacecraft. A short summary of the
seminal work of (Lyon, 2016) on this subject can be found in Appendix A.

The models will learn to distinguish pulsars from other radio emissions. The dataset
consists of two modes:

• integrated profile (IP): each pulsar produces a unique pattern of pulse emissions.
The integrated profile is an average of these patterns over many thousands of ro-
tations (further details in Appendix A). The mode contains four features, namely
the mean, standard deviation, excess kurtosis2 and skewness of the integrated
profile.

• dispersion measure (DM): the amount of dispersive smearing3 a signal receives is
proportional to a quantity called the dispersion measure, which is the integrated
column density of free electrons between an observer and a pulsar (further details
in Appendix A). Similarly, the mode contains four features, namely the mean,
standard deviation, excess kurtosis and skewness of the dispersion measure.

An additional difficulty of this dataset is that it is skewed, there are approximately
ten time less positive samples than negative ones (17.898 total samples, 1.639 positive

1The dataset can be found here, and was collected by (Keith et al., 2010)
2Kurtosis refers to the size of the tails of a distribution. Excess kurtosis is a measure of how prone

the distribution is to extreme outcomes.
3See Appendix A.

https://archive.ics.uci.edu/ml/datasets/HTRU2
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positive negative total
train 1.098 10.894 11.992

validation 270 2.683 2.953
test 271 2.682 2.953
total 1.639 16.259 17.898

Table 6.1: Number of samples per split/class of the pulsar dataset.

samples, 16.259 negative samples). This issue was handled by imposing a penalty in
the loss function to fight the class imbalance (explained below).

In the experiments, the dataset will be split into training, validation and test sets
(see Table 6.1). The validation set is used for tuning purposes, and to implement an
Early Stopping4 algorithm. Usually, the model is then retrained for a few iterations
on both the combined training and validation set. In the case at hand, for the sake of
simplicity, the model is not retrained on the combined sets. Prior to the training, the
data is standardized for the purpose of having the same noise-to-signal ratio corruption
effect on all features, since all their variances are equal to one. To avoid information
leakage, the statistics (i.e., mean and variance) for the standardization are computed
from the training set instead of the entire dataset, and applied to the three data subsets.

6.2 Experiment I

To verify whether the potential energy is a good measure of failure intensity, one au-
toencoder per mode was trained on the training set. Next, these autoencoders were
evaluated on the test set, which partially contained noisy or out-of-distribution sam-
ples. The objective is to assess whether a clear difference in the potential energy values
is recorded for the failing modes compared to that of regular ones. Notably, missing
values are implicitly solved by replacing them by zeros5. With this in mind, we did not
evaluate missing modes.

Noisy values

To simulate noise, Gaussian white noise N ∼ (0, σ2corruption) is added to the test
set. Then, the mean and variance of potential energies obtained for all samples are
computed. This process is then repeated for different noise intensities. The results
for each mode are shown in Figure 6.1, which confirms that the potential energy can
capture the noise in test data, relative to training samples.

Out-of-distribution samples

Since only two classes are considered in this experiment, the conventional procedure
whereby autoencoders are trained on all samples is altered, such that the training set

4Early stopping (Prechelt, 1998) is a form of regularization to avoid overfitting, where the error
on the validation set is used in determining when overfitting has begun i.e., when the validation error
starts increasing.

5β · 0 = 0, ∀β ∈ R
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(a) IP mode (b) DM mode

Figure 6.1: Potential energy measured on noisy test samples (the mean
corresponds to the black line, whereas the interval of two times the

standard deviation error is displayed in red).

only includes positive samples. In this case, negative samples can therefore be considered
as being out-of-distribution. As can be seen from Figure 6.2, the potential energies
computed on the test set (containing both positive and negative samples) allow to
distinguish fairly well between positive and negative samples. Indeed, in most cases,
the potential energies of likely data (positive samples) are noticeably lower than that of
unlikely data (negative samples). This pattern is consistent with energy-based models
described in Section 2.3.

(a) IP mode (b) DM mode

Figure 6.2: Potential energy measured on positive and negative sam-
ples, derived from autoencoders only trained on positive samples.
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6.3 Experiment II

6.3.1 Description

The motivation of this experiment is to show the effect of the attention module on
the inputs, and its effectiveness in improving the robustness of the MMN. To this end,
failing modes are simulated by adding white noise. The predictions of the model fitted
with EMMA are compared with the predictions of models having the same architecture
but without EMMA. The reason only noisy failing types are tested is two-fold. First,
conventional models are generally not able to spontaneously learn to detect out-of-
distribution samples. Secondly, it is straightforward to control the intensity of the
failing mode by changing the noise-to-signal ratio.

To asses the extent to which fitting EMMA to a standard MMN can improve its
predictive performance and robustness, the performance of the coupled models is com-
pared with that of i) a stand-alone MMN ii) a stand-alone MMN trained via a standard
data augmentation technique, which consists in adding noisy samples to the training
set in the hope that the MMN learns to suppress the noise by itself. In summary, three
types of models are evaluated:

• base-model is the MMN optimized on the training set (stage 1). Thus, without
added noise neither using EMMA.

• model-without is the model initialized with the weights of the base-model, and
finetuned on a mix of corrupted and uncorrupted samples of the training set (data
augmentation technique).

• model-with is the combined base-model with the attention module EMMA. This
model is trained end-to-end on a mix of corrupted and uncorrupted data (stage
2).

The corruption process is applied as follows to each data subset separately: 50% of the
samples stay uncorrupted, 25% of the samples are corrupted only on the IP mode and
for the remaining samples only the DM mode is corrupted. In particular, the samples
are corrupted by adding Gaussian white noise with a σcorruption = 0.5.

The chosen loss function is the binary cross-entropy with an imbalance penalty6.
Moreover, the three types of models are trained for 30 epochs with Early Stopping,
implemented in the following way: at each epoch the state of the current model is saved
as the new optimal one if the validation error is lower than the previous minimum.
Furthermore, the optimal classification threshold is determined on the validation set
using the receiver operating characteristic (ROC) curve. Lastly, the F1-score is used as
the criterion to evaluate the performance on the test set.

6.3.2 Results

Table 6.2 shows the F1-scores of the three types of models on both corrupted and uncor-
rupted samples of the test set. For the model-with, 125 combinations of hyperparam-
eters were trained, from which the fifteen best ones were extracted and shown in Table
6.2. As expected, the base-model performs badly on samples with a noisy mode, since

6The imbalance penalty weights the loss of each sample with respect to the proportion of its corre-
sponding class in the dataset
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Hyperparameters F1-score

ρ λc λe uncorrupted IP noisy DM noisy

base 0.8830 0.6441 0.6569

without 0.8671 0.7097 0.7683

with 10−4 10−3 10−2 0.8881 0.7333 0.8077

with 10−4 0 10−2 0.8849 0.7285 0.8183

with 10−4 10−4 10−2 0.8945 0.7333 0.8182

with 10−3 10−3 0 0.8809 0.7347 0.8186

with 10−4 10−2 10−3 0.8736 0.7383 0.7848

with 10−1 10−2 0 0.8826 0.7467 0.7925

with 10−4 10−3 0 0.8786 0.7190 0.7826

with 10−3 10−1 10−2 0.8800 0.7432 0.8344

with 10−4 0 10−4 0.8723 0.7051 0.7853

with 10−4 10−4 10−3 0.8794 0.7053 0.7853

with 10−3 10−3 10−4 0.8641 0.7347 0.8129

with 1 10−1 10−1 0.8683 0.7237 0.8052

with 10−3 10−2 10−4 0.8705 0.7105 0.8205

with 10−4 0 10−3 0.8693 0.7051 0.7901

with 10−3 10−1 0 0.8817 0.7049 0.8129

Table 6.2: F1-scores of the top-15 trained model-with (the models are
ranked by their weighted average F1-score) along with base-model and

model-without.

it was only trained on uncorrupted data. Furthermore, the results of model-without
indicate that using data augmentation indeed improves the performance on noisy data,
whereas the performance on uncorrupted samples slightly decreases. Moreover, it can
be seen that the models equipped with the attention module (model-with) consistently
outperform model-without and base-model on noisy data by a significant margin.
Somewhat surprisingly, using the attention module appears to slightly improve the F1-
score on uncorrupted data as well compared to the base-model. A possible explanation
could be that EMMA is able to capture a certain spectrum of quality about the data,
which would then be used by the MMN to improve the predictions. Nevertheless, fur-
ther investigation is required to validate this hypothesis. Lastly, it is worth noticing
that the models seems to be more robust against one failing mode (DM) then the other
(IP). Since the noise-to-signal ratios are uniform across modes, it could be hypothesized
that the latter mode is more informative.

Attention allocation and shifts

A key feature of EMMA is to allocate its attention toward the most important modes.
The validity of this claim can be ascertained by monitoring the change in allocation
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under various circumstances. As a reminder, the importance and attention scores in-
troduced in Section 5.1 can be leveraged allowing us to evaluate the attention change.
These scores are reported in Figure 6.3 for two levels of noise, and clear changes in allo-
cation can be observed as a result of the application of noise onto the different modes.
Interestingly, it can be seen in Figure 6.3a that for low levels of noise applied to the IP
mode, it still receives more attention than the DM mode. This is consistent with the
aforementioned observation that the IP-mode seems to be more informative. In con-
trast, if the noise level on this mode is sufficiently increased (Figure 6.3c), an attention
shift occurs and the other mode becomes more important. A more complete view of the
attention scores for varying levels of noise applied to different modes is given in Figure
6.4.

(a) importance, noise σ = 0.5 (b) attention, noise σ = 0.5

(c) importance, noise σ = 2 (d) attention, noise σ = 2

Figure 6.3: Importance and attention scores for the 1st ranked
model-with (ρ = 10−4, λe = 10−3, λc = 10−2), on two different lev-

els of noises (σ = 0.5 and σ = 2).

To gain a better understanding of the attention allocation, it is worth further in-
vestigating the role of the coldness hyperparameter (ρ, see Section 5.3). A simple way
of doing so consists in comparing the importance scores of models trained with signif-
icantly different temperatures as displayed in Figure 6.5a and 6.5c. As expected, the
values of the importance scores are more uniformly distributed for the one with a high
temperature (Figure 6.5a), permitting the module to stay more stable for higher levels
of noise (Figure 6.5b). Indeed, it was proved that an increase of the overall perturbation
level makes the module more selective (see the energy threshold explained in Section
5.4) On the contrary, the model trained with a lower temperature has more pronounced
attention shifts (Figure 6.5c). As a result, the corrupted mode will be masked very
rapidly, and discarded altogether for high levels of noise (seen in Figure 6.5d). Another
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(a) β-ip

(b) β-dm

Figure 6.4: 3D visualization of attention scores on varying levels of
noises between the modes of the same model as Figure 6.3. The axis
in the horizontal plane represent the variance of noise on each modes,

whereas the vertical axis corresponds to the attention score.

view of the same example is given in Figure 6.6, where instead the attention scores are
visualised on a continuum of noise intensities. It can be seen that the model with the
high temperature (Figure 6.6a and 6.6b) is able to learn a richer attention profile than
the one with the low temperature (Figure 6.6c and 6.6d). Indeed, the crossing-point
in Figure 6.6a corresponding to the attention shift, may be interpreted as the trade-off
between the relevance and failure intensity. In contrast, the other module having a low
temperature is naturally more biased towards the uncorrupted mode, limiting the train-
ing process and making it more difficult to learn the interactions between the modes.
These results also visually confirm the utility of multiplying the modes by attention
scores instead of importance scores. Indeed, in Figure 6.6c and 6.6d the module learns
to allocate a high attention to both modes for low levels of noise and is still able to
mask out the corrupted mode if the noise-to-signal ratio increases. This behaviour can
not be modelled if we multiply the modes by the attention scores, since they sum up to
one.
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(a) importance, ρ = 10−4, noise σ = 0.5 (b) importance, ρ = 10−4, noise σ = 2

(c) importance, ρ = 10−1, noise σ = 0.5 (d) importance, ρ = 10−1, noise σ = 2

Figure 6.5: Importance scores comparison of models with different
temperatures: model-with (ρ = 10−4, λe = 10−2, λc = 10−3) and

model-with (ρ = 10−1, λe = 10−2, λc = 10−3).
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(a) attention, ρ = 10−4, noise on IP (b) attention, ρ = 10−4, noise on DM

(c) attention, ρ = 10−1, noise on IP (d) attention, ρ = 10−1, noise on DM

Figure 6.6: Attention scores comparison of models with different
temperatures: model-with (ρ = 10−4, λe = 10−2, λc = 10−3) and
model-with (ρ = 10−1, λe = 10−2, λc = 10−3). The learned capac-

ity7 for these models are respectively 0.49 and 0.63.
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Total Energy

As mentioned in Chapter 5, one of the key advantages of the attention module is to facil-
itate/promote results interpretability. In particular, a quantity named the total energy,
which can be computed as the sum of all modal energies of a given sample, provides
readily interpretable clues pertaining to the workings of the model. By construction,
the total energy captures the overall amount of perturbation in a given sample, and can
thus serve as a good proxy for quantifying the uncertainty on the predictions at test
time.

In order to evaluate the veracity of this claim, the following experiment is carried
out. Firstly, both modes are corrupted in the test set. Then, the total energy and
F1-score are computed for each sample, and averaged over the entire test set. This
process is then repeated for increasing noise intensities. The results are shown in Figure
6.8. A significant correlation can indeed be observed between the total energy and the
F1-score. Remarkably, this pattern is observed for all the modules, independently of
the chosen set of hyperparameters. Hence, the total energy could indeed be used as a
proxy for uncertainty on the predictions.

Figure 6.7: Total energy for model-with (ρ = 10−4, λe = 10−3, λc =
10−2).

Robustness Generalisation

As discussed in Chapter 3, the robustness of a model is often evaluated under the same
conditions as the training. This approach appears somewhat questionable. Indeed, the
conditions under which the model will be deployed cannot, in most cases, be specified
exactly in advance. In particular, the nature and occurrence of failing modes may be
unknown a priori. As a result, it appears very likely that such an evaluation method
provides an overly optimistic assessment of model robustness.

In this study, in order to carry out a more realistic robustness assessment of the
combined model (model-with), the quality of the predictions is evaluated on test sets
with varying levels of noises. In particular, only one mode of the test set is corrupted
with a specific intensity of noise on which the model is evaluated. This process is then
repeated for increasing noise intensity. The results of the robustness analysis of the 1st

ranked model are shown In Figure 6.9. When the noise is applied on the DM-mode
(Figure 6.9b), he performance of the model-with remain more stable than that of the
other models. The masking of the noise by the attention module is verified in Figure
6.9d (blue line). Concerning, the results when the other mode (IP) is noisy (Figure
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6.9a) are less convincing. However, the performance seems to stabilize for high noise
levels (Figure 6.9a, from σ ≈ 1.35). In fact, it can be shown that this high noise level
corresponds to the attention switch in Figure 6.9c. This may indicate that the capacity
was regularized too strongly, and as result does not let sufficient information pass. To
support this claim, results for a module with a higher capacity are displayed in Figure
6.10. It can indeed be observed that the global amount of allocated attention (capacity)
is higher, as the sum of the area under the curves of the attention scores is higher. In
consequence, the module can instead learn to shift the attention sooner (Figure 6.10c
and 6.10d), leading to a more consistent and stable performance (Figure 6.10a compared
to Figure 6.9a).

Finally, it must be stated that the capacity regularizer requires careful tuning. In-
deed, an extreme case in which the capacity was regularized too heavily is reported
in Figure 6.11. Strikingly, the model performance deteriorates significantly, and the
stand-alone MMN with data augmentation training outperforms the combined models
over a wide range of noise intensities.

(a) F1-score, noisy IP-mode (b) F1-score, noisy DM-mode

(c) attention score, noisy IP-mode (d) attention score, noisy DM-mode

Figure 6.8: Noise generalisation of model-with (ρ = 10−4, λe =
10−3, λc = 10−2). The learned capacity is 0.19.

6.4 Results discussion

In the preceding sections, a set of numerical experiments was carried out in order to
evaluate the performance of a novel module (EMMA) specifically designed to tackle the
problem of failing modes in multi-modal deep learning approaches.
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The experiments made use of a real dataset drawn from the field of astrophysics, and
each sample comprised two distinct modes. Encouraging results were observed and re-
ported, as MMN models fitted with the attention module displayed improved predictive
performance, robustness, interpretability and consistently outperformed i) a traditional
stand-alone MMN ii) a stand-alone MMN trained via a standard data augmentation
technique. The influence of custom regularizers and related hyperparameters was also
investigated.

The main objective of this work was to develop ideas and a new framework to tackle
the problem of failing modes in multi-modal data. In this chapter, we believe to have
verified to validity of certain of the ideas outlined in Chapter 5. Indeed, it was shown
that EMMA improves the robustness against failing modes by masking them out, these
inputs were then fed to an MMN who was then able to make more stable predictions. In
addition, the impact of some of the hyperparameters were discussed. However, all these
results must be interpreted with caution as no general rigorous analysis was performed
on a real-case dataset. Furthermore, interpreting the effect of the hyperparameters is
difficult since their influence are not isolated. A limitation of the experiments that
can be noticed is that the dataset only contains two modes. As a result, no complex
dependencies between the modes had to be learn, minimizing the impact of the shared
energies which could thus not be studied.

(a) F1-score, noisy IP-mode (b) F1-score, noisy DM-mode

(c) attention score, noisy IP-mode (d) attention score, noisy DM-mode

Figure 6.9: Noise generalisation of model-with (ρ = 10−4, λe =
10−2, λc = 10−3). The learned capacity is 0.49.
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(a) F1-score, noisy IP-mode (b) F1-score, noisy DM-mode

(c) attention score, noisy IP-mode (d) attention score, noisy DM-mode

Figure 6.10: Noise generalisation of model-with (ρ = 10−4, λe =
10−1, λc = 10−1). The learned capacity is 0.04.
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Chapter 7

A Unified Model for Multi-Modal
Attention

The purpose of using EMMA is to help the multi-modal network (MMN) to handle
failing modes, and more generally, to figure out the relative emphases to be placed on
the different modes depending on their general contributions to the predictions. The
literature review1 discussed self-attention and cross-modal attention mechanisms, used
to highlight information inside a specific mode, such as certain regions in an image
or a set of frequencies in a sound. The difference between these two mechanisms is
that self-attention only relies on information from the mode itself as a context, whereas
cross-modal attention uses information from all the available modes. Now that we have
EMMA, we claim to have all the ingredients to construct a complete multi-modal net-
work like humans. As a reminder, human’s complete multi-modal attention consists
of three different components: exogenous, endogenous and cross-modal attention. The
endogenous component of attention stems from a conscious, voluntary process, whereby
a human elects to focus on a particular object (Driver and Spence, 1998). In contrast,
the exogenous attention is triggered by the sudden onset of an unexpected event, and
can thus be viewed as a reaction to an external stimulus (Driver and Spence, 1998). One
way of constructing an endogenous module would be as a block of M self-attentions,
where each self-attention is dedicated to one specific mode. On the other hand, the at-
tention module developed in this work can be interpreted as reproducing the exogenous
attention used by humans to robustly handle abnormal situations.

With this in mind, we present a unified model (see Figure 7.1) combining all the
strengths of each type of attention. First, the attention masks βi computed by the
exogenous model, and the attention masks mi computed by the endogenous module,
are combined to obtain the resulting masks βimi. These mask will highlight the most
important modes, and on an intra-modal level attend to the most relevant regions.
The masks βimi are then applied to the input sample, which is passed through the
cross-modal module. Finally, the processed input {x′′1 ...x′′M} is forwarded to the MMN.
In addition, the complete module can further be refined by inserting feedback loops
from the previously predicted output to the separate modules, as it is often done in
the literature (Afouras et al., 2018; Vaswani et al., 2017; Bahdanau, Cho, and Bengio,
2014). For example, in a self-driving system, the attention module could improve its
focus to different regions of the input image depending on the previously detected cars.
It is worth mentioning that the proposed architecture is only a generalization of current
attention modules such as in (Afouras et al., 2018), supplemented with an exogenous
component.

1See Chapter 3
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exogenous

crossmodal

endogenous

combine

Figure 7.1: A possible architecture for a unified multi-modal attention.



47

Chapter 8

Conclusion

The primary objective of this work was to develop a deep learning module whose task
is to pre-process multi-modal inputs to reduce the amount of perturbations. In the
experiments, it was indeed shown that a masking of the perturbations actually occurs.
As a result, the performance of the prediction model on samples with failing modes was
improved. Additionally, we experimentally verified that this pre-processing step enables
the performance gain on more intensive failing modes to remain stable. In contrast,
models trained only with standard data augmentation experienced a decrease of the
performance on modes containing more perturbations than in the training set. Despite
these promising results, caution must be taken because we were unable to investigate
the performance of the module on more realistic and complex datasets. Nevertheless, we
believe that the ideas detailed in Chapter 5 are sufficiently general to be considered as
a starting framework for the construction of more robust multi-modal neural networks.

Another main insight was to translate the concept of capacity from psychology to
deep learning. This led to the idea of a regularizer forcing the module to limit the
amount of extracted information from the input. The concept of capacity and its
corresponding regularizer could eventually be applied in deep learning models with a
limited amount of processing power as in embedded systems.

The last contribution proposed an architecture for a unified multi-modal attention,
combining the two main types of attention mechanisms found in deep learning (i.e., self
and crossmodal) with our attention module.

8.1 Future work

Our results are encouraging but should be validated on more complex datasets contain-
ing images, text, sounds, etc. Several points would need to be addressed such as finding
efficient methods to approximate the log-likelihood of those data structures1. Another
point is on which level to apply the attention masks, on the raw input data or on the
features extracted by the encoders?

An idea that came up during this thesis but was not tested, is based on the following
observation: the transition between the first and second stage of the training can be
quiet "brutal" for the MMN. Indeed, weights of the MMN at the start of the second
stage are optimal for uncorrupted modes. However, these weights will have to adapt
immediately to weighted inputs, as an effect of EMMA. A smoother approach to consider
is inspired from the process of annealing in metallurgy; "Annealing is a process in which

1Several alternatives were proposed in Chapter 5
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a solid is first heated until all particles are randomly arranged in a liquid state, followed
by a slow cooling process. At each cooling temperature enough time is spend for the
solid to reach thermal equilibrium."2 Applying this idea to our case, we could divide
the weights of the first layer of the MMN by tanh(1/M) at the start of the second stage,
and set the temperature high enough to obtain a uniform distribution of importance
scores (αi ≈ 1/M, ∀i). As a consequence, the effect of EMMA on the inputs of the
MMN would be non-existent3, keeping the latter in its local minima. Subsequently,
a cooldown schedule would be applied to the temperature leading smoothly to more
pronounced attention shifts on the input data. This guided approach has no guarantee
to improve the results but in our opinion can be worth trying. Moreover, instead of fixing
a final temperature4 by tuning, a similar approach to Early Stopping could be used:
the cooldown would be stopped when the validation error stops decreasing significantly.

2Explanation from here
3This assumption is only guaranteed if the parameters ga and ba are intialized as ga = 1 and ba = 0.
4Temperature at which the cooling schedule is stopped.

http://www.iue.tuwien.ac.at/phd/binder/node87.html
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Appendix A

Dataset

This part of the thesis provides a brief overview of what pulsar stars are. It then goes on
to explain the two modes of the dataset used for their detection: the integrated profile
(IP) and dispersion measure (DM). The most part of this chapter is a direct summary
of the background chapter in the doctoral thesis (Lyon, 2016)1 . Some parts of the text
are barely changed from (Lyon, 2016), nevertheless, many details have been voluntary
ignored for the sake of simplicity as it is not the focus of this work.

"A star is a luminous ball of gas, mostly hydrogen and helium, held together by its
own gravity. The nearest star of Earth is the Sun. Most mass is in the core, at the
center of the star. Gravitational forces are by consequence directed inwards. During the
majority of a star’s life, it will fuse hydrogen to helium, generating an outwards pres-
sure, balancing the gravity (Ghosh, 2007). By the time the hydrogen amounts become
insufficient, the star starts to use other elements in the surrounding layers of the core
as a fuel. As those elements diminish, the star’s energy output drops rapidly, causing
gravity to overcome the forces which had previously maintained the stars structure.
The core of the star than undergoes a rapid and violent collapse (Ghosh, 2007). The
collapse can lead to a number of potential evolutionary outcomes for the leftover core
(see Figure A.1), depending on the stars birth mass measured in solar masses (M⊙).
Intuitively, the heavier the birth mass, the greater the inwards gravitational force are
and the harder the collapse. The first outcome applies to low mass stars, which typi-
cally become white dwarfs following their collapse. Within white dwarfs, densely packed
electrons are able to resist gravitational compression. Our own sun is likely to one day
become a white dwarf star. Then there are stars between 8-20 M⊙ at birth, electron
degeneracy pressure can no longer prevent collapse as in white dwarfs, but they are not
massive enough to undergo complete gravitational collapse, preventing the formation
of a black hole. Instead the intense conditions within these stars cause electrons to
combine with protons forming neutrons who resist against pressure; These stars are
called neutron stars. The last evolutionary outcome applies to large stars with masses
greater than 20 M⊙. These stars can, under the right conditions, undergo complete
gravitational collapse. This results in the formation of a black hole singularity otherwise
known as a stellar mass black hole."

"A pulsar is a unique form of neutron star that retained most of its angular momen-
tum of their progenitor star during collapse. Complex interactions between the surfaces
of pulsars and their strong magnetic fields, helps to produce their defining feature, the
emission of radio waves. The radio emission produced by pulsars originates from their
magnetospheres (Ghosh, 2007). This is the area of space surrounding a pulsar in which
charged particles are influenced by a co-rotating magnetic field, which has both open

1(Lyon, 2016) can be accessed here

http://www.scienceguyrob.com/wp-content/uploads/2016/12/WhyArePulsarsHardToFind_Lyon_2016.pdf
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Figure A.1: Common evolutionary endpoints for main sequence stars.
In a) electron degeneracy pressure prevents gravitational collapse, lead-
ing to the formation of a white dwarf star. In b) electron degeneracy
pressure is no longer enough to counteract the inward force of gravity,
however the gravitational pressure is insufficient to overcome neutron
degeneracy pressure, allowing a Neutron star to form. Finally in c) the
force of gravity is so great that gravitational collapse cannot be halted,
resulting in the formation of a black hole. The depictions of the grav-
itational sinks above are based on diagrams by (Treat and Stegmaier,

2014). Image and caption copied from (Lyon, 2016).

and closed field lines (D.R. and M., 2005) (see Figure A.2). To maintain this co-rotation
property, the velocity of the field lines must increase as they move further away from
the pulsar. Eventually the distance becomes so great, that to maintain co-rotation, the
velocity of the field lines must be greater than or equal to the speed of light c. This
is not possible, thus the field lines are unable to close where the required velocity is c.
The abstract cylinder aligned with the rotation axis, that synchronously rotates with
the pulsar at a velocity c, is known as the light cylinder (see Figure A.2). The particles
extracted from the surface are then believed to be accelerated along the co-rotating
magnetic field lines of the magnetosphere (Lorimer, 2008), which endows the particles
with increased energy. This additional energy causes the particles to emit radiation
(Lorimer, 2008) to be emitted along the open field lines near a pulsar’s magnetic pole.
A pulsar’s magnetic axis is usually inclined with respect to its rotational axis. There-
fore each time a pulsar rotates, the radiation beam produced near the magnetic poles,
is swept at an angle across the sky. If the beam crosses the line of sight of an observer
here on Earth, the pulsar becomes detectable as a rise and fall in broadband radio emis-
sion. This pattern repeats periodically with each rotation of the pulsar. This is known
as the lighthouse model of emission (Lorimer, 2008), because the beam of radiation is
analogous to a lighthouse warning light rotating very quickly."
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Figure A.2: Simplification of the lighthouse model of a radio pulsar,
the pulsar is surrounded by a strong magnetic field comprising of open
and closed field lines unable to close at the light cylinder. The light
cylinder is an imaginary cylinder aligned with the pulsars rotational
axis, that synchronously rotates with the pulsar at the speed of light.
As the magnetic field cannot rotate at this velocity, the field lines cannot
close at the light cylinder leading to open field lines. Radio pulses are
emitted from the open field lines at a region near the magnetic poles
in the pulsar’s magnetosphere. Image and caption copied from (Lyon,

2016).

"Each pulsar produces a unique pattern of pulse emission known as its pulse profile
(Lorimer, 2008). Two such profiles are shown in Figure A.3. However whilst pulsar
rotational periods are extremely consistent, their profiles can deviate from one-period
to the next. Whilst such changes in the pulse profile provide clues to what is happening
in and around the pulsar, they make pulsars hard to detect. This is because their
signals are non-uniform and not entirely stable overtime. However these profiles do
become stable, when averaged over many thousands of rotations."

Figure A.3: Example pulse profiles of two separate pulsars. These
profiles were adapted from those originally presented in (D.R. and M.,

2005). Image and caption copied from (Lyon, 2016).

"Signals travelling through the interstellar medium (ISM) are affected, the most
significant effect is known as dispersion. As pulsar signals travel through the ISM
towards the Earth, they interact with charged particles (free electrons) on route. These
interactions delay the arrival of the signal here on Earth. The low frequency components
of the signal are delayed more than the corresponding high frequency counterparts.
This has a dispersive effect that causes pulsar signals to become smeared in time. This
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makes it difficult to detect pulsars, as their pulses become less pronounced as shown in
Figure A.4. Manifesting itself as a reduction in the signal-to-noise ratio of a detected
pulse. The amount of dispersive smearing a signal receives is proportional to a quantity
called the dispersion measure (DM) (D.R. and M., 2005). The DM is the integrated
column density of free electrons between an observer and a pulsar (Lorimer, 2008).
The true column density, and thus the precise degree to which a signal is dispersed,
cannot be known a priori. A number of dispersion measure tests or "DM trials", must
therefore be conducted to determine this value as accurately as possible. An accurate
DM can be used to undo the dispersive smearing, allowing the signal-to-noise ratio of a
detected signal to be maximised (D.R. and M., 2005). For a single dispersion trial, each
frequency channel is shifted by an appropriate delay. Subsequent trials increment the
delay in steps, until a maximum DM is reached. This maximum will vary according to
the region of sky being surveyed, the observing frequency, and bandwidth. The process
produces one ’de-dispersed’ time series per frequency channel. These are then summed
to produce a single de-dispersed time series per trial (as shown at the bottom plot of
Figure A.4 a). In total de-dispersion produces a number of time series equal to the total
number of DM trials."

Figure A.4: An example of signal dispersion. Based upon diagrams
originally presented in (D.R. and M., 2005). Plot a) shows how a signal
is dispersed in time. Dispersion hides the true pulse shape and causes
a lowering of the detected signal-to-noise. Plot b) shows the application
of DM corrections to a dispersed signal. The DM correction is different
in each frequency channel, since dispersion is proportional to frequency.

Image and caption copied from (Lyon, 2016).

"By precisely measuring the timing of such pulses, astronomers can use pulsars for
unique experiments at the frontiers of modern physics. Indeed, pulsars exist in strong-
field gravitational environments due to their enormous mass. It is impossible to study
such environments within Earth-based laboratories, or even within the confines of our
own solar system which is lightweight by comparison. In the strong-field environment
provided by pulsars, their immense gravitational fields directly affect the arrival times
on Earth of the signals they produce, via special and general-relativistic effects. By
studying these effects, tests of many gravitational theories can be accomplished. An-
other application of measuring the arrival time of pulses is that they are effective time
keeping system, rivalling atomic clocks for accuracy. Such clocks are useful for spacecraft
navigation and timekeeping here on Earth."
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Appendix B

Experimental setups

B.1 Experiment of Chapter 4

Each autoencoder was constructed as in 4.1, with L = 4 and 12 hidden units. The
training details are listed below

• number of epochs: 30

• batch size: 64

• σ noise denoising: 0.01 (to not be confused with corruption process to simulate
noisy modes)

• Adam optimizer, with learning rate: 0.001
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Appendix C

Miscellaneous

C.1 Integrability criterion

The integrability criterion (Santilli, 1982) is a sufficient condition for a vector field to
be a gradient field as well. It states that for some open, simple connected set U , a
continuously differentiable function F : U → RL defines a gradient field if and only if

∂Fj(x)

∂xi
=
∂Fi(x)

∂xj
, ∀i, j = 1...L (C.1)

In other words, integrability follows from the symmetry of the partial derivatives.

C.2 Gradient with respect to gamma

The gradient of the loss with respect to the coupling parameter γij is computed with
the chain rule:

∂L̃
∂γij

=
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+
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In particular,
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(C.3)

As we can see, the gradient with respect to γij does indeed involve a natural logarithm
of self-energies ei and ej . Thus, self-energies must be constrained to positive values.
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