

METAHEURISTIC APPLICATONS ON

ELECTRIC VEHICLE
TRAVELING SALESMAN PROBLEM

Jury: Dissertation by
Promoter: Gökberk YAMAK
Sabine LIMBOURG For a Master of Science
Readers: in Business Engineering
Maud BAY Academic year 2018/2019
Bart SMEULDERS

 i

Abstract

Metaheuristic Applications on Electric Vehicle Traveling Salesman Problem

Gökberk Yamak

HEC Liège

Master of Science in Business Engineering

Focus in Supply Chain Management and Business Analytics

Promoter: Pr. Sabine Limbourg

August, 2019

65 Pages

The energy consumption behaviors of the vehicles with electric motors are different

compared to traditional internal combustion engines. As a result of regenerative braking

systems, electric vehicles also have the possibility to recover energy during the journey. This

feature causes a considerable variation in consumption functions, especially on negative slopes.

This study focuses on finding the optimal or near-optimal TSP tours for electric vehicles on

real-time fed data with the consideration of the road grades, transported loads, the speed of the

vehicle, and acceleration-deceleration. These conditions mean that much more complexity in a

traveling salesman problem, whose exact methods are already requiring a significant amount

of computation time. The ultimate aim was obtaining high-quality solutions using efficient

steepest ascent and simulated annealing metaheuristics while reducing the computation times.

Key words: electric vehicles, traveling salesman problem, energy minimization,

battery management, metaheuristic, simulated annealing, steepest ascent

 ii

Acknowledgements

Throughout the writing of this dissertation, I have received comprehensive guidance

and support from my supervisors. First, I would like to thank Professor Sabine Limbourg, who

is the promoter of this dissertation, and Professor Maud Bay for their invaluable supervision

and expertise during the whole study.

I would like to extend my gratitude and thanks to all of my professors and academic

staff of the Center for Quantitative Methods and Operations Management (QuantOM), for their

contributions to my professional development.

 I would specially thank my colleague and partner Begüm Şekercan, for her priceless and

extraordinary support during not only this study, for the last four years.

 Then, I would like to thank my parents, my mother Eda Yamak and my father Gürol

Yamak, for their invaluable support to me, regardless of distances and beyond the borders.

Moreover, I would like to extend my thanks for my aunt Hülya Yamak, my grandparents Nermin

Yamak and Halil İbrahim Yamak, and my brother Göktürk Keleş, whose contributions to my

whole education life could not be ignored.

 Last but not least, I would also like to thank Professor Hande Küçükaydın and Professor

Yasemin Arda, for their extensive contributions to my professional skills, and their all supports

during my higher education.

 iii

Table of Contents

Abstract ... i

Acknowledgements ... ii

Table of Contents ... iii

List of Figures ... v

List of Tables.. vi

1 Introduction ... 1

2 Literature Review ... 3

3 Problem Description ... 9

4 Implementation ... 15

4.1 Implementation Environment ... 15

4.1.1 External Libraries .. 15

4.2 Gathering Inputs .. 16

4.2.1 Vehicle Parameters .. 16

4.2.2 Physical Environment .. 18

4.2.3 Test Instances .. 18

4.2.4 Directions Calculation ... 19

4.2.5 Elevation Data ... 21

4.3 Fast Computation of the Objective Function ... 22

4.4 Upper Bound Calculation ... 22

4.5 Initial Solution Generation ... 24

4.5.1 Heuristic 1: Descending Loads ... 25

4.5.2 Heuristic 2: Descending Road Grades .. 25

4.5.3 Heuristic 3: Ascending Road Grades .. 26

4.5.4 Heuristic 4: Nearest Neighbor .. 27

4.5.5 Optimal Tour on Distances .. 27

 iv

4.6 Neighborhood and Neighbors ... 28

4.7 Metaheuristic Applications... 29

4.7.1 Steepest Ascent .. 29

4.7.2 Simulated Annealing.. 30

5 Results and Analyzes.. 36

5.1 Arc Type Evaluation .. 36

5.2 Upper Bounds .. 37

5.3 Performance Analysis of Solution Generation Methods .. 38

5.4 Analysis of Steepest Ascent Metaheuristic Application .. 41

5.5 Analysis of Simulated Annealing Metaheuristic Application .. 44

5.6 Comparison of TSP Results and ETSP Results ... 49

6 Project Management ... 55

6.1 Project Initiation .. 55

6.2 Planning and Execution.. 55

6.2.1 Defining the Scope of Project .. 56

6.2.2 Time Management ... 56

6.2.3 Resource Management ... 56

6.2.4 Cost Management .. 57

6.2.5 Risks Management .. 57

6.3 Monitoring and Controlling .. 57

6.4 Closing Project .. 58

7 Conclusion .. 59

Bibliography .. 61

Appendix A: Test Instances .. a

Appendix B: Comparison of TSP and ETSP Solutions on Instance 4 .. d

 v

List of Figures

Figure 1: Graph Representation of the Problem ... 10

Figure 2: Visual Representation of Simple Arcs .. 19

Figure 3: Visual Representation of High-Resolution Arcs (D = 11) ... 20

Figure 4: Visual Representation of Real-Time Arcs .. 21

Figure 5: Geometric Cooling Schedule ... 31

Figure 6: Instance 1 - Simulated Annealing Iteration to Objective Function Value Chart 45

Figure 7: Instance 2 - Simulated Annealing Iteration to Objective Function Value Chart 46

Figure 8: Instance 3 - Simulated Annealing Iteration to Objective Function Value Chart 47

Figure 9: Instance 4 – S. Annealing Iteration to Objective F. Value Chart (𝑡𝑚𝑎𝑥 = 30 s) 48

Figure 10: Instance 4 – S. Annealing Iteration to Objective F. Value Chart (𝑡𝑚𝑎𝑥 = 1 min) 49

Figure 11: Instance 1 - Tour Representations on Map (left: TSP, right: ETSP) 50

Figure 12: Instance 1 - TSP & ETSP Battery Levels Comparison .. 51

Figure 13: Instance 2 - Tour Representations on Map (left: TSP, right: ETSP) 52

Figure 14: Instance 2 - TSP & ETSP Battery Levels Comparison .. 52

Figure 15: Instance 3 - Tour Representations on Map (left: TSP, right: ETSP) 53

Figure 16: Instance 3 - TSP & ETSP Battery Levels Comparison .. 54

Figure 17: Instance 4 - TSP & ETSP Battery Levels Comparison .. d

 vi

List of Tables

Table 1: Vehicle Parameters .. 18

Table 2: Environmental Parameters ... 18

Table 3: Simulated Annealing Parameter Set ... 35

Table 4: Instance 1 - Steepest Ascent Results on Arc Types ... 36

Table 5: Instance 1 - Simulated Annealing Results on Arc Types .. 36

Table 6: Calculated Upper Bounds and Associated Solutions ... 37

Table 7: Instance 1 - Results of Initial Solution Generation Methods 38

Table 8: Instance 2 - Results of Initial Solution Generation Methods 39

Table 9: Instance 3 - Results of Initial Solution Generation Methods 39

Table 10: Instance 4 - Results of Initial Solution Generation Methods 40

Table 11: Instance 1 - Steepest Ascent Metaheuristic Results... 41

Table 12: Instance 2 - Steepest Ascent Metaheuristic Results... 42

Table 13: Instance 3 - Steepest Ascent Metaheuristic Results... 42

Table 14: Instance 4 - Steepest Ascent Metaheuristic Results... 43

Table 15: Instance 1 - Simulated Annealing Metaheuristic Results .. 44

Table 16: Instance 2 - Simulated Annealing Metaheuristic Results .. 45

Table 17: Instance 3 - Simulated Annealing Metaheuristic Results .. 46

Table 18: Instance 4 - Simulated Annealing Metaheuristic Results (𝑡𝑚𝑎𝑥 = 30 s) 47

Table 19: Instance 4 - Simulated Annealing Metaheuristic Results (𝑡𝑚𝑎𝑥 = 1 min) 48

Table 20: Instance 1 - TSP & ETSP Results Comparison ... 50

Table 21: Instance 2 - TSP & ETSP Results Comparison ... 51

Table 22: Instance 3 - TSP & ETSP Results Comparison ... 53

Table 23: Test Instance 1 (6 Customers) .. a

Table 24: Test Instance 2 (6 Customers) .. a

Table 25: Test Instance 3 (10 Customers) ... b

Table 26: Test Instance 4 (14 Customers) .. c

Table 27: Instance 4 - TSP & ETSP Results Comparison ... d

 1

1 Introduction
The development of modern automobiles with internal combustion engines is a super

important keystone in the history of the human being. This key technology allows us to

transport people, goods, and services to far distances in a relatively short amount of time. In the

last few decades, the automobile industry has developed quite rapidly, and as a consequence of

decreasing car-owning costs, the number of vehicles in use has increased dramatically. In the

Europe including European Free Trade Association (EFTA) countries, which is a geopolitically

important area for several modes of transportation, the total number of vehicles in use increased

by approximately 16 million between the years 2012 and 2016, according to a recent report

published by European Automobile Manufacturers Association (ACEA, 2018). Moreover, this

growing number of vehicles running with petroleum-based fuels have caused and are causing

severe health and environmental problems such as greenhouse gas (CO2, CH4, N2O) emissions,

local air quality, noise pollution, and oil dependency.

In the Transport White Paper published by the European Commission, the European

Union (EU) provides a roadmap for a more sustainable European transport (European

Commission, 2011). One of the most significant aims of the EU is to reach CO2 free city

logistics in major cities by 2030. It is intended to reach this goal by developing and using new

and sustainable fuels and propulsion systems. The slow but steady phasing out of traditional

vehicles from the urban neighborhood enables to decrease oil dependence, greenhouse gas

emissions, and the other issues mentioned above. In order to satisfy European air quality

requirements, some important European cities have created low-emission zones where access

to metropolitan regions is barred to trucks that fulfill specific emissions. Today, the market

share of electric vehicles is increasing due to the discontinuation of the use of diesel and then

gasoline vehicles in the next few years.

This leads to a change in the dynamics of vehicle routing, one of the major research

areas of computer science and combinatorial optimization. The main reason for this is that the

fuel consumption functions of conventional vehicles with an internal combustion engine often

converge to average fuel consumption values in mixed-use. Also, the extensive network of gas

stations and fast fueling result in an almost uninterrupted ride. This allows time-sensitive work

to be carried out without problems. On the other hand, the fuel consumption values of the

currently developed electric vehicles are not so correlated with the distance taken. Thanks to

the regenerative braking systems applied to the brake discs of electric vehicles, these vehicles

also have the opportunity to gain energy, unlike traditional vehicles.

 2

Due to this fact, in classical routing optimization studies conducted to date, travel costs

are mostly accepted as proportional to the distance taken. However, now, this approach needs

to be updated for electric vehicles. In this study, it is aimed to present a solution approach on

the optimization of routing of electric vehicles which have become a popular research topic

recently. In doing so, some of the parameters affecting the result, such as road slope, vehicle

speed, acceleration, and deceleration factors, were taken into consideration. Besides, in the case

examined, it was assumed that the vehicles were used for load distribution and the routes to

return to the warehouse with the maximum battery capacity possible without charging during

the journey were investigated.

This study consists of seven main sections, including this introduction. In the second

section, a broad literature review has been done on the topics covered. In section three, the

problem has been introduced in detail, within a mathematical framework. In the fourth section,

the implementation process has been widely described from the development phase to the

algorithms used to solve. In section five, the results of the study and analyzes were shared. In

section six, the used project management approach, and its subprocesses have been told. So

finally, in the last section, the whole study is concluded.

 3

2 Literature Review
 The question of finding the shortest possible tour, which starts and ends at a given origin

point, and visits each location in a given set once, where a set of locations and distances or

traveling costs between them are known leads to the traveling salesman problem (TSP). The

origin of this key combinatorial optimization problem and the research field of operations

research and theoretical computer science is unclear. However, the problem was primarily

promoted by Hassler Whitney in 1934, and the first mathematical consideration of TSP is done

by Merill M. Flood in 1937 to find optimal routes for school buses (Flood, 1956).

 Traveling salesman problem has been studied extensively for more than seventy years,

has many applications, subproblems, and extensions due to specific cases emerged from

different applications’ requirements. Transportation and logistics purposes do not limit TSP's

application area. It is used for optimizing wiring scheme of computer boards by determining

the shortest possible path that wire connects each circuit elements and closes the circuit, which

allows computers faster processing capabilities (Lenstra & Rinnooy Kan, 1975). Other well-

known applications of TSP are wallpaper cutting (Garfinkel, 1977), hole punching (Reinelt,

1992), crystallography (Bland & Shallcross, 1989), and dartboard design (Blazewicz, Eiselt,

Gerd, Laporte, & Weglarz, 1991). TSP applications and extensions are widely surveyed many

times (Eiselt & Sandblom, 2000; Laporte, 1992; Reinelt, 1994).

This problem is usually defined on a complete graph with a set of nodes that indicates

locations, a set of arcs that indicates connections between locations and traveling costs

associated with arcs. TSP can be split into two. The classical TSP model, which is also known

as symmetric traveling salesman problem (STSP), assumes that each distance or traveling cost

between two location points are same in each opposite direction and it can be described in a

complete undirected graph. On the other hand, the asymmetric traveling salesman problem

(ATSP) can be described in a complete digraph and has to consider two different distance values

between each pair of locations. Since most of the proposed algorithms to solve TSP applications

are developed for STSPs so far, in 1983 Jonker and Volgenant has introduced a way to

transform ATSP to STSP, and showed that an asymmetric TSP with 𝑛 nodes is actually

equivalent to symmetric TSP with 2𝑛 nodes, in the worst case (Jonker & Volgenant, 1983).

The algorithms to solve ATSP are also broadly surveyed (Roberti & Toth, 2012).

 TSP can be modeled as an integer linear programming (ILP) program. Besides many

approaches, two of them are quite notable, which are known as Miller-Tucker-Zemlin (MTZ)

formulation (C. E. Miller, Tucker, & Zemlin, 1960) and Dantzig-Fulkerson-Johnson (DFJ)

 4

formulation (Dantzig, Fulkerson, & Johnson, 1954). For both ILPs, during a solver execution,

linear programming (LP) relaxations are done on the constraint set regarding integrality, in

most of the cases; and DFJ formulation produces a stronger LP relaxation compared to MTZ

formulation that leads to a higher objective function value on relaxation (Wong, 1980). Because

of that fact, for larger instances of asymmetric TSP, DFJ formulation is more in use

(Velednistsky, 2017).

 Traveling salesman problem’s 𝒩𝒫-hardness is proven (Karp, 1972), even for the

distances on a plane that satisfies triangular inequality, which leads to Euclidian TSP (Garey,

Graham, & Johnson, 1976). In some specific cases of TSP, couple of time-efficient algorithms

can be used as an exact method to solve problem (Burkard, Deineko, Dal, Veen, & Woeginger,

1998), however for the most prominent cases, exact methods come with an exponential time

complexity, and computation time versus solution quality tradeoff emerges.

 The brute-force method to solve TSPs can be described as examining all possible

solutions for a given graph, and it is very impractical because, for symmetric TSPs, number of

different tours will be (𝑛 − 1)!/2, where the number of locations has to be visited denoted by

𝑛. This number will reach to (𝑛 − 1)! if the problem instance constructs an ATSP. A well-

known dynamic programming algorithm reduces the worst-case running time to 𝑂(𝑛021), but

it is still too high to solve mid-size and large-size instances (Held & Karp, 1962).

 In addition to them, many researchers have introduced branching algorithms, which are

widely used as an exact method to solve. The branch-and-bound (B&B) algorithms’ logic lay

on problem relaxation, and relaxing the constraint set regarding sub tour elimination produces

an assignment problem (AP), which can be solved in polynomial time (Carpaneto, Martello, &

Toth, 1988). On this basis, Carpaneto and Toth proposed their well-known B&B algorithm, and

they succeeded by solving a TSP with randomly generated 240 vertices, under a minute time

(Carpaneto & Toth, 1980). Besides, they stated that their algorithm is CPU time-efficient;

however, comes up with a memory leak problem. Other B&B approaches are also available in

the literature (Balas & Christofides, 1981; D. L. Miller & Pekny, 1991; Smith, Srinivasan, &

Thompson, 1977). Also, an overview of branch-and-cut (B&C) algorithms can be seen (Naddef,

2007).

 Because of the TSP is an 𝒩𝒫-hard problem, it is quite natural that approximation

algorithms, in other words, heuristic approaches, are broadly investigated. In the literature, TSP

heuristics mainly classified under two streams: construction heuristics and metaheuristics

(Gutin, 2009). The logic lays under construction heuristics is building a complete feasible

 5

solution from scratch, while metaheuristics are seeking to improve solution quality by starting

from an already constructed tour, and improving it iteratively.

 According to the needs of different specific problems, various heuristics has developed

and used as construction heuristics. However, some well-known heuristics used in many pieces

of research and their computational performances are experienced. One of the most known and

most apparent TSP heuristics is called nearest neighbor (NN) algorithm. In NN, the algorithm

starts with a random selection of a vertex on the graph as the origin point if it is not stated, then

adds the nearest unvisited location into the tour in each step, until all vertices become visited,

and at the end returns to the chosen origin point. NN also has a variant called repetitive nearest

neighbor (RNN) algorithm, which returns the tour with best objective function value, after

repeating the NN algorithm starting from each vertex on the graph.

 Another most known approximation algorithm is greedy heuristic (GH). On a directed

graph, all arcs in the set are sorted according to their lengths or costs, and they are added into

solution considering feasibility conditions of TSP, accordingly. NN, RNN, and GH algorithms

are widely examined in the literature; however, their exact origins are unclear. Excellent

performance analysis can be found for those algorithms (Gutin, Yeo, & Zverovich, 2002). Other

famous approximation guaranteed heuristic algorithm is known as Christodes algorithm, which

is dealing with Euclidian TSP and approximates the solution to the minimum spanning tree

(MST) of the graph with a guarantee of an objective function value at most 0.5 times higher

than the optimal value (Christofides, 1976). More extensive overviews of construction

heuristics can be referred (Johnson et al., 2002; Johnson & McGeoch, 2002).

 On the other hand, metaheuristics or improvement heuristics, which are mainly related

to this study, in general, are known to be typically faster than exact methods, and they usually

produce pretty good solutions that can be evaluated as near-optimal, by doing local-search,

global-search or following a hybrid strategy. Local search algorithms that use edge exchange

are the most studied TSP improvement algorithms in which a tour is improved by replacing k

with edges that are not in the solution. One of the earliest metaheuristic applications on the

traveling salesman problem was made using the well-known simulated annealing (SA)

algorithm (Kirkpatrick, Gelatt, & Vecchi, 1983). The same paper introduced the simulated

annealing algorithm as an optimization method by observing the analogy with the annealing

process. Other most common metaheuristic applications in the literature related to traveling

salesman problem are a genetic algorithm (GA) and iterated tabu search (ITS) methods. One of

the very first introductions to the genetic algorithm can be found in the refereed literature

 6

(Mitchell, 1996). Also, in the literature, there are many applications on TSP, and its extensions

can be found (Sze & Tiong, 2007).

Contrarily, ITS is a comparably newer approach whose one of the first TSP applications

is done after the millennium (Misevičius, 2004). Also, new generation approaches are becoming

increasingly popular (Antosiewicz, Koloch, & Kamiński, 2013). Two of these noticed

approaches’ details, which are harmony search and swarm optimization, can be found in the

literature (Geem, Kim, & Loganathan, 2001; Zhang, Sun, Wang, & Yang, 2007).

 Another related problem to TSP is vehicle routing problem (VRP). It has been a well-

studied problem where the objective is to create efficient vehicle routes between the depot and

a set of customers for deliveries while satisfying particular constraints. Different optimization

methods that are developed for the VRPs has immensely contributed to the lower costs also to

the reduction of congestion environment and noise pollution. However, aside from the benefits

of VRP optimization, today, one of the most important actors on the road to the -free city

logistics is the electric engines. It is found that electric vehicles (EV) are suitable for stop-and-

go movements due to its regenerative braking system (Pelletier, Jabali, & Laporte, 2014).

When considering a fleet that consists of EV’s for urban freight transport, the biggest

issue is that the fact that classical VRP and its variants consider that internal combustion engines

perform the routes. However, EV’s short driving ranges, long battery recharging times, and the

limited charging infrastructure; cannot be presented by the classical VRP and its variants. The

least energy consumption route is needed rather than the shortest one determined by the

classical VRPs. This is why new routing algorithms have to be developed for EV. In order to

develop these algorithms, the main factors in energy consumption which are the mass of the

vehicle and payload, engine efficiency, vehicle speed, drive pattern, road grade, and vehicle

rechargeability while driving has to be investigated (Baum, Dibbelt, Pajor, & Wagner, 2013;

Bektaş & Laporte, 2011; Kara, Kara, & Yetiş, 2007; Touati-Moungla & Jost, 2012).

Even though EVs are developed recently, there are few studies where finding the most

energy-efficient route was addressed. In another study, the routing of electric vehicles from a

graph-theory point of view is studied (Artmeier, Hasselmayr, Leucker, & Sachenbacher, 2010).

The energy-optimal routing problem is modeled as a shortest path problem where there are

constraints on the vehicle’s charge level so that it cannot be negative and cannot exceed the

maximum capacity of the battery. Weights of the edges are allowed to take negative values to

portray the recapturing of energy from the regenerative brake. Simple algorithms are given as

solution methods. Their results are improved by using Dijkstra’s algorithm to enable creating

routes for EVs on large networks (Eisner, Funke, & Storandt, 2011). In 2011, an idea was

 7

introduced to bound different forms of energy, which results in a consistent heuristic function

(Sachenbacher, Leucker, Artmeier, & Haselmayr, 2011). This heuristic improves the results of

related literature by order of magnitude with their 𝑂(𝑛0) algorithm (Artmeier et al., 2010).

Up to this point, none of these studies takes into account the recharging decisions at

nodes. Considering that the vehicle must recharge on its route, the problem of finding the

minimum cost of the path for this EV is modeled as a dynamic program (Sweda & Klabjan,

2012). The Green VRP (GVRP) where vehicle routes and recharging of vehicles at alternative

fuel stations are determined simultaneously is introduced. The GVRP is modeled as a mixed-

integer linear program. The objective is to find a set of vehicle tours with minimum distance.

Each vehicle in the problem, starts from the depot and visit a set of customers and returns to

the depot without exceeding the vehicle’s driving range. Tour can contain a stop at one or more

AFSs so that the vehicle can recharge. As a solution method, a modified Clarke and Wright

savings heuristic and a density-based clustering algorithm to create a set of feasible tours are

used. Afterward, a post-optimization phase takes place (Erdoğan & Miller-Hooks, 2012).

Different from the previous study, a MIP formulation for GVRP where multi depots and visit

to more than one AFS are allowed, is introduced (Taha, Fors, & Shoukry, 2014). In Alejandro

Montoya’s paper, they solved the GVRP with a modified multi-space sampling heuristic which

includes a set of three randomized heuristics, a tour partitioning procedure, and a set

partitioning formulation. A repair mechanism optimally inserts visits to refueling stations to

restore the feasibility of routes violating the vehicle’s fuel constraint (Montoya, Guéret,

Mendoza, & Villegas, 2016).

Another extension is studied on an electric VRP with time windows (EVRPTW)

(Schneider, Stenger, & Geoke, 2014). A linear charging rate and charging the batteries entirely

are the two assumptions made. They developed one of the earliest metaheuristic approaches

that combine variable neighborhood search (VNS) and iterative tabu search and have proposed

benchmark instances for EVRPTW. Building on the work of Michael Schneider’s, Keskin and

Çatay worked on EVRP that allows partial charging at charging stations. Their results on

Schneider’s benchmark instances showed that when the partial recharge option is modeled as a

continuous decision variable, it yielded better results (Keskin & Çatay, 2016).

Thus far, the charging functions were assumed to be linear, whereas they are nonlinear

in reality. A nonlinear charging function for EVRP is introduced, and a hybrid metaheuristic

which combines an iterated local search (ILS) and a heuristic concentration (HC) that tries to

build global optimum using parts of the local optima found during a heuristic search procedure

 8

is developed (Montoya, Guéret, Mendoza, & Villegas, 2017). Recently, the aspect of

capacitated charging stations is studied with a nonlinear charging function. The proposed

solution method is route-first, assemble-second metaheuristic (Froger, Mendoza, Jabali, &

Laporte, 2017). One most recent work is by Keskin, where EVRP with time windows including

queuing at charging stations is studied. They proposed a metaheuristic that combines adaptive

large neighborhood search and the solution of a MILP (Keskin, Laporte, & Çatay, 2019).

 In addition to all of the literature mentioned above, in the recent working paper of Bay

and Limbourg, they focused on ETSP, where cities are given the aim is finding the optimal

directed cycle with the introduced mixed-integer non-linear programming (MINLP) model,

which maximizes the level of available energy at the end of the tour (Bay & Limbourg, 2017).

Unlike most of the previous studies, the recharging operation was not taken into account in their

study; also the introduced objective function considers some of the critical factors of energy

consumption, which are the speed of the vehicle, road grades, transported load, and regeneration

ability, in addition to the distance traveled.

 This study is based mainly on Bay and Limbourg’s study. Thereon, in addition to

considered factors of energy consumption or regeneration functions used, the calculation is

developed by also considering the effect of acceleration and deceleration factors as proposed in

the relevant literature (Ehsani, Gao, Gay, & Emadi, 2005). Besides, by taking into consideration

the dramatically increasing CPU times of exact method depending on the size of the graphs,

this problem has been aimed to be solved by well-known local search methods, which are the

steepest ascent and simulated annealing metaheuristics. Also, considerations on a more accurate

collection of road slopes in real-life applications were discussed.

 9

3 Problem Description
 Traditional passenger cars, motorcycles, buses, trucks take power they need from

internal combustion engines (ICE). Vehicles that have been using gasoline, diesel, or liquid

petrol gas (LPG) are still in use with a very high ratio, and they are still dominating the vehicle

market. Depending on this fact so far, most of the researches in the field of vehicle routing

optimization and its sub-problems have been done considering the nature of traditional vehicles.

However, the fuel (energy) consumption performance of vehicles with ICEs is relatively less

affected by real-time changing environmental factors than vehicles with electric engines (EE)

currently being developed. Consequently, conventional parametric cost matrices, which are

used in previous studies, depending on distance, time, or composite factors, are not sufficient

for routing of electric vehicles.

 The energy consumption functions, of electric vehicles depend on many environmental

factors and are significantly affected by them. Against the continuous fuel consumption values

of the ICEs which do not deviate significantly from the average, there is the potential to gain

energy as a result of the braking used at stop-and-go moments or on the negative slopes of the

electric vehicles in addition to their energy consumptions. During these braking moments, a

large amount of heat is released on the brake discs, which tend to damp the vehicle’s current

momentum while trying to slow it, due to the loss of kinetic energy. This energy loss can be

recovered partially by an energy recovery mechanism called regenerative braking that converts

released heat to electric energy. Where applicable, this mechanism allows electric motors to

recover and store energy, limited by the vehicle’s battery capacity.

 The factors and related parameters, which are the inputs of energy consumption or

energy regeneration functions can be investigated under two main categories. The first category

is environmental factors, which depend on constant values assumed to be same in everywhere

on the planet Earth, such as gravitational acceleration (𝑔) and the density of air (𝜌), and

experimental coefficients such as rolling resistance on car tire (𝑐5) and drag resistance (𝑐6). On

the other hand, a second category can be mentioned called vehicle parameters, which heavily

depend on the vehicle’s itself, such as the mass of the vehicle (𝑀8), frontal surface area (𝐴) that

interacts with air resistance, regeneration coefficient (𝛼), overall gear reduction ratio (𝜀<), mass

factor (𝛿), auxiliary energy consumption rate (𝑝?@A) and battery capacity (𝐶C?A). In addition to

them, to calculate energy consumptions or regenerations in a dedicated time interval, a constant

acceleration (𝑎D) and deceleration (𝑎E) rates, and constant speed (𝑣) can be given into the

function as input parameters.

 10

 Within the context of this study, a TSP application for electric vehicles is examined with

a vehicle that has to distribute orders to customer nodes with sufficient loading capacity,

departing from a specified depot location and closing its tour at the same point. Since the energy

consumption or regeneration depends on the field profile and ascending-descending have an

essential effect on it, the problem becomes an asymmetric TSP. The electric vehicle traveling

salesman problem (ETSP) can be represented in a complete undirected graph 𝐺 = (𝑁, 𝐴),

where 𝑁 is the set of nodes indexed by 𝑖, 𝑗 ∈ {0, . . . , |𝑁| − 1}, and 𝐴 is the set of arcs defined

as 𝐴 = {(𝑖, 𝑗) ∶ 	𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}. A graph representation example with four nodes is as follows.

As can be seen in the above graph, on an arc between node 𝑖 and node 𝑗, energy

consumption or regeneration denoted as 𝑒WX in both directions, and each node except depot

location has a non-negative demand denoted 𝑞W. Considering this is a TSP application, and the

vehicle is obliged to visit all nodes in a single tour, the total demand of customers has to be load

on the vehicle at the beginning, and be distributed accordingly. Where the total load carried

between node 𝑖 and node 𝑗 is represented as 𝑚WX, on a non-negative slope 𝜃WX[< or during

acceleration with constant 𝑎D	at a particular time 𝑡, the energy consumption can be calculated

as follows (Ehsani et al., 2005).

𝑝WX\@] = 𝑣 ^_𝑀8 +𝑚WXa𝑔𝑠𝑖𝑛𝜃WX[< + 0.5𝑐6𝜌𝐴𝑣0 + 𝑐5_𝑀8 +𝑚WXa𝑔𝑐𝑜𝑠𝜃WX[< + _𝑀8 + 𝑚WXa𝛿𝑎De

 Conversely, on negative slopes 𝜃WXE or while decelerating with constant 𝑎E at a particular

time 𝑡, the energy regeneration (gain) will be as below.

D

1

2

3

𝑒f0
𝑒0g 𝑒0f

𝑒g0

𝑒<g

𝑒g<

𝑒<0 𝑒0<

𝑒f<
𝑒<f

𝑞f

𝑞0

𝑞g
𝑒fg

𝑒gf

Figure 1: Graph Representation of the Problem

 11

𝑝WXW1 = 𝛼𝑣 ^_𝑀8 + 𝑚WXa𝑔𝑠𝑖𝑛𝜃WXE + 0.5𝑐6𝜌𝐴𝑣0 + 𝑐5_𝑀8 +𝑚WXa𝑔𝑐𝑜𝑠𝜃WXE + _𝑀8 +𝑚WXa𝛿𝑎Ee

Regardless of the slope or acceleration-deceleration, each vehicle has a constant energy

consumption due to its auxiliary units, such as climate control, lights, radio, if applicable cooler,

and other similar parts. If the momentary energy consumption of the auxiliary units of the

vehicle (𝑝?@A) is added to the equation, the total energy consumption between node 𝑖 and node

𝑗 can be calculated with the following equation.

𝑒WX = h 𝑝WX\@]𝑑𝑡 +	h 𝑝WXW1	𝑑𝑡 + h𝑝?@A	𝑑𝑡
W1\@]

 In 2015, Bay and Limbourg proposed a mixed-integer non-linear programming model

(MINLP) to solve ETSP, which seeks to maximize the level of available energy at the end of

the tour, without any intermediate charging stations (CS) and considering variable speed,

loading and road grade parameters (Bay & Limbourg, 2015). They denoted the level of

available energy at each node 𝑗 ∈ 𝑁 with 𝐿X, and assumed the available energy level at the

beginning of the tour (𝐿<) is known. As a feasibility condition, they limited the upper bound of

𝐿X with the maximum capacity of the battery (𝐶C?A), even the energy recovery mechanism

captures more, and the lower bound with zero. Under these circumstances, where 𝑥WX is a binary

decision variable that takes the value of 1 if arc (𝑖, 𝑗) ∈ 𝐴 is traversed and 0 otherwise, the level

of energy can be calculated as follows.

𝐿X =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0,																																														𝑖𝑓	p _𝐿W − 𝑒WXa	𝑥WX

|q|E0

Wr<
≤ 0

𝐶C?A,																																								𝑖𝑓	p _𝐿W − 𝑒WXa	𝑥WX ≥ 𝐶C?A
|q|E0

Wr<

p _𝐿W − 𝑒WXa	𝑥WX
|q|E0

Wr<
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

They also limited the total travel time not to exceed 𝑇.	Bay and Limbourg updated their

MINLP approach in their working paper from 2017 by instead of using a variable speed, they

preferred to fix speed parameter to an optimal speed (𝑣∗) that minimizes energy consumption

(Bay & Limbourg, 2017). From this point of origin, their model can be developed to take into

 12

account acceleration-deceleration also, while calculating energy consumption or regeneration,

and the developed model can be stated as follows.

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒			𝐿|q|Ef (1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:

p 𝑥WX = 1
|q|Ef

Xrf

 ∀𝑖 ∈ 𝑁	 ∖ {|𝑁| − 1} (2)

p 𝑥WX = 1
|q|E0

Wr<

 ∀𝑗 ∈ 𝑁 ∖ {0} (3)

𝑢< = 1 (4)

𝑢|q|Ef = |𝑁| (5)

2 ≤ 𝑢W ≤ |𝑁| − 1 ∀𝑖 ∈ 𝑁 ∖ {0, |𝑁| − 1} (6)

𝑢W − 𝑢X + 1 ≤ (|𝑁| − 1)(1 − 𝑥WX) ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∖ {0} (7)

𝑚<X = 	 p 𝑞X

|q|Ef

Xrf

 ∀𝑗 ∈ 𝑁 ∖ {0} (8)

𝑚W,|q|Ef = 0 ∀𝑖 ∈ 𝑁 ∖ {|𝑁| − 1} (9)

𝑚X� = 𝑚WX − 𝑥WX𝑞X
∀𝑖 ∈ 𝑁 ∖ {|𝑁| − 1}

 𝑗, 𝑘 ∈ 𝑁 ∖ {0}, 𝑘 ≠ 𝑗
(10)

𝑀WX = 𝑀8 + 𝑚WX ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ∖ {0} (11)

𝑝WX\@] = 𝑀WX𝑔𝑣 sin θWX[< + 0.5𝑐6𝜌𝐴𝑣g

+ 𝑐5𝑀WX𝑔𝑣𝑐𝑜𝑠𝜃WX[< + 𝑀WX𝑣𝛿𝑎D
∀(𝑖, 𝑗) ∈ 𝐴 (12)

𝑝WXW1 = −𝛼(𝑀WX𝑔𝑣𝑠𝑖𝑛𝜃WXE + 0.5𝑐6𝜌𝐴𝑣g

+ 𝑐5𝑀WX𝑔𝑣𝑐𝑜𝑠𝜃WXE + 𝑀WX𝑣𝛿𝑎E)
∀(𝑖, 𝑗) ∈ 𝐴 (13)

𝑒WX = �h 𝑝WX\@]𝑑𝑡
\@]

− h 𝑝WXW1
W1

𝑑𝑡 + h𝑝?@A𝑑𝑡� ∀(𝑖, 𝑗) ∈ 𝐴 (14)

𝐿W ≤ 𝐶C?A ∀𝑖 ∈ 𝑁 (15)

𝐿X = 	 p _𝐿W − 𝑒WXa𝑥WX − 𝑠X

|q|E0

Wr<

 ∀𝑗 ∈ 𝑁 (16)

𝑥WX ∈ {0,1},					𝑒WX ∈ ℝ,					𝑚WX, 𝑝WX\@], 𝑝WXW1 ∈ ℝ[< ∀(𝑖, 𝑗) ∈ 𝐴 (17)

𝐿W ∈ ℝ[<,					𝑠X ∈ 	ℝ[<,						𝑢W ∈ ℕ ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑁 (18)

 13

 In the above mathematical formulation, the objective function (1) aims to maximize the

level of available energy at the end of the tour. Constraint set (2) states that the vehicle leaves

each node 𝑖 strictly once, while the constraint set (3)	ensures that the vehicle enters each node

𝑗 exactly once. Constraints (4) - (5) and constraint sets (6) - (7) are sub tour elimination

constraints proposed in MTZ formulation that uses integer variables 𝑢W, where 𝑖 ∈ 𝑁, to

determine the sequence number in each node 𝑖 is visited (C. E. Miller et al., 1960). Constraints

(4) and (5) indicate that starting node (𝑖 = 0) and ending node (𝑖 = |𝑁| − 1) are the depot

location. Constraint set (6) ensures that for each node 𝑖 except the starting and ending nodes,

the decision variable 𝑢W should be in a closed interval between 2 and |𝑁| − 1. Constraint set

(7) defines the order of each node by satisfying 𝑢X ≥ 𝑢W + 1, where 𝑥WX = 1 or by satisfying

𝑢W − 𝑢X ≤ |𝑁| − 3 in the case of 𝑥WX = 	0. Constraint set (8) indicates that the load carried

between the starting node 0 and each node 𝑗 excluding the starting node should be equal to the

total demand of all nodes in the graph, while constraint set (9) is stating that the load carried

between any node 𝑖 and the ending node |𝑁| − 1 should be equal to zero. Constraint set (10)

controls the load carried between all customer nodes by equalizing load carried between node

𝑗 and node 𝑘	(𝑚X�) to load carried between node 𝑖 and node 𝑗 (𝑚WX) minus the demand of node

𝑗 (𝑞X) if the arc between node 𝑖 and node 𝑗	is traversed. Constraint set (11) defines the total

mass moved on arc (𝑖, 𝑗) by adding the mass of vehicle and load carried on the arc. Constraint

set (12) defines the momentary energy consumption on each arc (𝑖, 𝑗), where ∀(𝑖, 𝑗) ∈ 𝐴, if the

road grade (𝜃WX[<) is non-negative, or if the vehicle is accelerating with constant 𝑎D. Similarly,

constraint set (13) controls the momentary energy regeneration (gain) on each arc (𝑖, 𝑗), where

regeneration coefficient (𝛼) is greater than zero, if the road grade (𝜃WXE) is negative, or if the

vehicle is decelerating with constant 𝑎E. Constraint set (14) calculates the total energy

consumption or regeneration on each arc (𝑖, 𝑗) by integrating the battery outputs and battery

inputs over the associated time interval and summing them up. As mentioned earlier, the

constraint set (15) bounds the available energy amount at each node 𝑖 with the maximum

battery capacity of the vehicle. In constraint set (16), the level of energy at node 𝑗 is equalized

to the level of energy at node 𝑖 minus energy consumption or regeneration occurred on arc (𝑖, 𝑗),

if arc (𝑖, 𝑗) is traversed (𝑥WX = 1). A non-negative slack variable 𝑠X holds the excess energy if

𝐿X tries to exceed the maximum allowed battery capacity. Lastly, constraint sets (17) - (18)

states the binary, integer, non-negative, and unrestricted conditions on decision variables. No

 14

constraint is introduced to limit the total travel time of the vehicle, which is not considered

within this study.

 Since the mathematical formulation of ETSP that considers road grade, weight, speed

and acceleration, leads to an MINLP model, which is 𝒩𝒫-hard and contains many

computational difficulties as a consequence of combining mixed integer programming (MIP)

that comes with a combinatorial difficulty of doing optimization over discrete decision

variables, and non-linear programming (NLP), which possibly comes with discontiguous

feasible regions that may contain the optimal solution anywhere inside it, exact methods’

computation times are quite high (Bay & Limbourg, 2017). Considering this fact, this study has

aimed to solve the defined problem with two metaheuristics’ applications to reduce

computation times while obtaining optimal or near-optimal solution sets. Implementation

details and obtained results can be found below under the following sections.

 15

4 Implementation
 Since this study is based on algorithm design and testing procedures, the backbone of

this study is the implementation process. This section is divided into seven subsections. In

subsection 4.1, the hardware and software, which were used during implementation, were

specified. Under 4.2, details of required inputs for implementation, and their collection

processes were discussed. In subsection 4.3, the way to compute the objective function value

of a given solution set was introduced. In subsections 4.4 and 4.5, the upper bound calculation

method and initial solution generating methods were told, respectively. In 4.6, the

neighborhood structure and neighbor selection processes, which are mandatory to execute local

search methods, were proposed. Finally, under 4.7, the metaheuristics, which are the main

subject of this study, were described in detail.

4.1 Implementation Environment
 The complete development related to this study has been done using Java™

programming language with Java™ SE Development Kit (JDK) 8, update 102 on Java™ SE

Runtime Environment (JRE) 8, update 121 (Oracle Corporation, 2014). There are several

reasons for this decision. First of all, Java™ programming language is an object-oriented (OO)

programming language which allows users to define classes of objects more precisely. This OO

nature also allows developing specific algorithms for creating classes and objects which are

derived from those classes. The second reason is, it is a well-documented computer language

and easy to manage. Last but not least, the third reason is, it comes with excellent memory

management, and it is working significantly faster than other interpreted languages in use.

For data storing and reading purposes, MongoDB Community Server 4.0.4 is used

(MongoDB Inc., 2018a). MongoDB is a NoSQL, documented-oriented database program that

allows storing files and mixed arrays, besides standard data types. Finally, as an integrated

development environment (IDE), IntelliJ IDEA CE 2018.3 is preferred (JetBrains s.r.o, 2018).

All developments and computations are done on a personal laptop computer running macOS

Mojave (10.14.3) with 2.7 GHz Intel Core i5 processor and 8 GB DDR3 memory.

4.1.1 External Libraries
 During the implementation phase, in addition to JDK 8u121’s internal libraries, three

external libraries are mainly used in the delivery of essential jobs. The first external library is

MongoDB Java Driver 3.9.1 to establish the synchronous interaction between the Java program

 16

and the MongoDB server (MongoDB Inc., 2018b). The other external library is the callable

library of Gurobi Optimizer 7.5.2 for Java™ programming language (Gurobi Optimization,

2017). Gurobi Optimizer is used to calculate upper bounds for objective functions, which will

be discussed in detail later in section 4.4. The last external library that used for this study is

JFreeChart 1.0.19, which is used to generate XY charts for objective function’s value changes

according to the number of iterations performed during metaheuristic algorithm runs (Object

Refinery Ltd., 2017).

4.2 Gathering Inputs
 Under this subsection, the ways of obtaining the required components to solve the

previously described problem are discussed. In subsection 4.2.1 the parameters related to the

vehicle, in 4.2.2 the parameters related to the physical environment, in 4.2.3 used test instances,

in 4.2.4 the method of calculating road grades and distances, and finally in 4.2.5, the way of

collecting nodes’ elevation information was presented.

4.2.1 Vehicle Parameters
 For this problem, the specifications of the vehicle affect the result dramatically. The

most affecting specifications can be parametrized and be introduced into the mathematical

formulation. According to the energy consumption or regeneration functions used in this study

the most prominent specifications are mass of the vehicle (𝑀8), maximum battery capacity

(𝐶C?A), momentary energy consumption of auxiliary units (𝑝?@A), frontal surface area (𝐴),

regeneration coefficient (𝛼) and mass factor (𝛿), which comes from Newton’s second law

(Ehsani et al., 2005). In addition to them the acceleration (𝑎D) or deceleration (𝑎E), and the

speed of the vehicle (𝑣) can be parametrized to simplify computations.

 Most of the vehicle parameters considered in this study are collected from the previous

studies (Bay & Limbourg, 2017; Ehsani et al., 2005). The used regeneration coefficient (𝛼)

value is the given value for the European Driving Cycle type ECE-1. The mass factor is

calculated with the below formula, where 𝜀< represents the overall gear reduction ratio, 𝛿f

represents the effect of the angular moment of wheels, and 𝛿0 represents the effect of the power

plant-associated rotating parts.

𝛿 = 1 + 𝛿f + 𝛿0 ∗ 𝜀<0

 17

 According to the studies mentioned above, 𝛿f and 𝛿0	values can be estimated as 0.04

and 0.0025, respectively. 𝜀< value is heavily depending on the considered vehicle’s gear

system, but for this study, it has been assumed as 3.8, which is reasonable. Acceleration (𝑎D),

deceleration (𝑎E), and speed (𝑣) parameters are supposed to be constant. 𝑎D and 𝑎E values are

user-defined constant parameters. On the other hand, 𝑣 value can be calculated to minimize the

energy consumption on any arc (𝑖, 𝑗) by doing the following differentiation.

�
𝜕
𝜕𝑣�

�_𝑝WX\@] − 𝑝WXW1 + 𝑝?@Aa ∗
𝑑WX
𝑣
�

= �
𝜕
𝜕𝑣�

�_𝑣_𝑀WX𝑔𝑠𝑖𝑛𝜃WX[< + 0.5𝑐6𝜌𝐴𝑣0 + 𝑐5𝑀WX𝑔𝑐𝑜𝑠𝜃WX[< + 𝑀WX𝛿𝑎Da

− 𝛼𝑣_𝑀WX𝑔𝑠𝑖𝑛𝜃WXE + 0.5𝑐6𝜌𝐴𝑣0 + 𝑐5𝑀WX𝑔𝑐𝑜𝑠𝜃WXE + 𝑀WX𝛿𝑎Ea + 𝑝?@Aa�
𝑑WX
𝑣 �

�

Differentiating above equations to zero leads to the solution below, where the optimal

value of speed denoted as 𝑣∗.

𝑣∗ = �
𝑝?@A

𝐴𝑐6𝜌 ∗ (1 − 𝛼)
�

 As can be seen above, the optimal speed is not depending on any property of any arc

(𝑖, 𝑗), which means that the speed parameter can be assumed constant over the complete

journey. All parameters related to the vehicle can be found in the following table.

𝑴𝒗 𝟐𝟐𝟎𝟎	𝒌𝒈

𝑪𝐦𝐚𝐱 24000	𝑊ℎ

𝒑𝒂𝒖𝒙 1000	𝑊

𝑨 3.2	𝑚0

𝜶 0.2587

 18

𝜹 1.0761

𝒂D 2	𝑚/𝑠0

𝒂E −2	𝑚/𝑠0

𝒗 9.510864	𝑚/𝑠

Table 1: Vehicle Parameters

4.2.2 Physical Environment
 Environmental factors are assumed to be constant at everywhere in the Earth, such as

the gravitational acceleration (𝑔), the density of air (𝜌), the rolling resistance (𝑐5) and the drag

resistance (𝑐6). 𝑐5 and 𝑐6 values are overall values used in literature, and they emerge from the

interaction between vehicle’s tires and the surface of roads. The environmental parameters used

in this study can be found below.

𝑔 9.81	𝑚/𝑠0

𝜌 1.225	𝑘𝑔/𝑚g

𝑐5 0.015

𝑐6 0.4

Table 2: Environmental Parameters

4.2.3 Test Instances
 During the conceptual design and following the testing process, four instance files have

been used. All locations in test instances are randomly selected locations around Liège,

Belgium. Two of these four instances contain 6 customer nodes plus the depot location. The

third file contains 10 customer nodes, and the fourth file contains 14 customers. The second

and the third instances are common instances with the study of Bay and Limbourg (2017),

which makes evaluation easier. In addition to coordinates of locations, instance files include a

Boolean field to indicate the location is depot or customer, and a field stores the demands of

locations. Test instances can be seen in Appendix A.

 19

4.2.4 Directions Calculation
 In order to calculate distances and directions between two nodes, three different

approaches can be discussed. As mentioned earlier in the problem description, while calculating

energy consumption or regeneration of electric vehicles, distance information is not enough

alone. The slope of the road, in other words, the field profile, has vital importance to do more

precise calculations. Since the distance between node 𝑖 and node 𝑗 is a property of the arc (𝑖, 𝑗),

in fact, the arc definitions can be done in these three different natures. The very first type of

arcs are called simple arcs, which only contain the beginning node and end nodes on it, and a

single slope value can be calculated among the arc with the elevation information of beginning

and end nodes. The visual representation of the simple arcs is following.

Figure 2: Visual Representation of Simple Arcs

The second proposed arc type is high-resolution arcs, which mean that by increasing the

number of nodes on an arc, the road grade and the distance information collected between node

𝑖 and node 𝑗 can be increased as well. With this kind of an approach, the intermediate nodes on

a straight line come with multiple slopes and coordinate information can represent the field

profile in more detail, compared to a simple arc. The resolution (𝐷), in other words, the number

of nodes on the arc, is an input of the user. Where resolution value is set to 2, the arc becomes

a simple arc. A visual representation of a high-resolution arc, with 11 nodes on it, can be found

in Figure 3, which is below.

Due to the feature of the used API method, the intermediate nodes chosen by the method

are equal distance apart. These equal distances correspond to the distance that calculated by

dividing the length of vector projection of the straight line between node 𝑖 and node 𝑗 to 𝐷 − 1.

 20

For the above arc types, the actual distances (𝑑WX), which is occurred because of the

shape of the Earth, between two nodes are directly calculated from longitudes and latitudes

thanks to the Haversine formula, where latitudes are 𝜑W and 𝜑X, longitudes are 𝜆W and 𝜆X, and

the Earth’s radius 𝑅, below.

Δ𝜑 = ®𝜑X − 𝜑W®

Δ𝜆 = ®𝜆X − 𝜆W®

𝑎 = sin0 �
Δ𝜑
2 � + cos

(𝜑W) ∗ cos_𝜑Xa ∗ sin0 �
Δ𝜆
2 �	

𝑐 = 2 ∗ atan2_√𝑎,√1 − 𝑎a

𝑑WX = 𝑅 ∗ 𝑐

The third and the last arc type is real-time arcs that are constructed by querying real-

time directions considering road closures and traffic, between beginning and end nodes by using

Google Maps Directions API (Google Inc., 2019a). Any request sent to Google Cloud returns

an answer with a JSON file that describes every action should have taken while traveling

between two nodes. This type of arcs has been programmed to include intermediate nodes that

created on each action point, which indicates the actions like turning left or right, exiting from

roundabouts and so on. Also, the real lengths of trajectories are directly calculated by parsing

JSON files, so which means the distances between demand nods and the depot, are as close as

Figure 3: Visual Representation of High-Resolution Arcs (D = 11)

 21

possible to the real-life. The aim of using these arc type getting real field profiles on arcs and

making more consistent decisions. A visual representation for the real-time arcs is as follows.

Among these three proposed arc types, the arc construction process time goes up,

respectively, because of the number of requests and answers processed. Besides, the real-time

arcs are not symmetric between two nodes; it results in doubled arc creation. Creation times are

quite reasonable for small instances, for example, the arc creation on a node-set with 10

customers, takes 1.5 minutes; however, for a larger set that includes around 20 nodes, the

construction time can increase up to 5 minutes. To avoid the repetition of this time-consuming

task, all nodes and constructed arcs are stored in a MongoDB database works on localhost,

following their initial creation.

4.2.5 Elevation Data
 With the purpose of collecting elevation data on a profile, Google Maps Platform’s

Elevation API service has been used (Google Inc., 2019b). Built-in API methods, provide users

the altitudes of given locations pointed by their latitudes and longitudes. After having the

directions information, the pre-determined breaking points’ coordinates are queried to collect

altitude data, which is used to calculate road grades between all specified nodes on an arc.

Where between any node 𝑖 and any node 𝑗, the road grade is denoted as 𝜃WX , the distance denoted

as 𝑑WX, and the altitudes are 𝛾W and 𝛾X, respectively, the road grade can be calculated in angular

units as follows.

Figure 4: Visual Representation of Real-Time Arcs

 22

𝜃WX = arctan �
𝛾X − 𝛾W
𝑑WX

�

As mentioned above, the calculated road grade (𝜃WX) is an essential input for energy

consumption or energy regeneration calculations.

4.3 Fast Computation of the Objective Function

 The value (𝑧) of the objective function, which is introduced in section 3, of a given

solution set can be calculated with the formula below.

𝑧 =

⎩
⎪
⎨

⎪
⎧
max¸𝐶C?A − 2.778 ∗ 10E¹ p p 𝑒WX𝑥WX

|q|Ef

Xrf

|q|E0

Wr<

, 0º , 𝑖𝑓	𝐿W > 0,					∀𝑖 ∈ 𝑁 ∖ {|𝑁| − 1}

0,																																																																																																	𝑖𝑓	𝐿W ≤ 0,					∃𝑖 ∈ 𝑁 ∖ {|𝑁| − 1}

 The objective function value calculation can be shown as an equation using cases. The

first case states that, if the available energy at any node 𝑖, except the end node, is above 0, can

be calculated with the function above. Since all calculations are based on Système International

(SI) unit system, the second term of the formula is multiplied by a conversion factor, where the

battery capacity is given as Watt-hour (𝑊ℎ), to convert Joule (𝐽) to Watt-hour (𝑊ℎ), a

conversion factor has been applied. Because of the objective function value, which has to

represent the level of energy at the endpoint (𝐿|q|Ef), cannot fall below 0, a maximum of

function has been used. In the second case, where there is at least one node visited with an

empty battery, the final available energy level is automatically forced to be 0, since the vehicle

cannot accelerate again. The developed software is programmed to exit and give infeasibility if

it is the case, instead of returning 0.

4.4 Upper Bound Calculation
 Bound calculations are important steps to assess the quality of the outcome. They are

used for estimating the distance between the found solutions’ objective function value to the

optimal solution set’s objective function value. Since this problem defined as a maximization

problem, an upper bound calculation is necessary in this case. Where the objective function

value of found solution set denoted as 𝑧, objective function value of optimal solution set

 23

denoted as 𝑧∗, and the upper bound value denoted as 𝑧̅, the relation between these values can

be depicted as follows.

𝑧 ≤ 𝑧∗ ≤ 𝑧̅

 Typically, bound calculations are done by relaxing a constraint or constraint set from

the complete model, and resulting objective function value is assumed as an upper bound or

lower bound for the problem. For this problem, an upper bound calculation is done by relaxing

the constraints related to the load carried on arcs. With this logic, each customer’s demand is

assumed as 0, and the only load carried on arcs is assumed as equal to the mass of the vehicle

(𝑀8), which is constant during the journey. Effect of total mass is included by both energy in

and energy out situations, and because of the regeneration coefficient (𝛼) is in a closed interval

[0,1], and a TSP solution set constructs a closed-loop tour, any additional load will lead to a

negative effect on objective function value, which means that the proposed upper bound

satisfies the above rule. When the carried additional load between node 𝑖 and node 𝑗 assumed

to be negligible, the energy consumption or regeneration functions will be like the followings.

𝑝WX\@]
Á = 𝑣(𝑀8𝑔𝑠𝑖𝑛𝜃WX[< + 0.5𝑐6𝜌𝐴𝑣0 + 𝑐5𝑀8𝑔𝑐𝑜𝑠𝜃WX[< +𝑀8𝛿𝑎D)

𝑝WXW1
Á = 𝛼𝑣(𝑀8𝑔𝑠𝑖𝑛𝜃WXE + 0.5𝑐6𝜌𝐴𝑣0 + 𝑐5𝑀8𝑔𝑐𝑜𝑠WXE + 𝑀8𝛿𝑎E)

𝑒WXÂ = 	h 𝑝WX\@]
Â𝑑𝑡 +	h 𝑝WXW1

Â𝑑𝑡 +	h𝑝?@A𝑑𝑡
	

	

	

W1

	

\@]

Then, a basic TSP model is optimally solved with a cost matrix contains possible energy

consumptions or regenerations instead of the distances or traveling costs between nodes.

Because of these cost matrices’ asymmetric nature, they have to be symmetrized. To do these

transformations, dummy nodes are introduced on all nodes in the set. For instance, node 𝑖 is

duplicated with name node 𝑖′, and the energy consumption between these two nodes is set to

−𝑀, where 𝑀 is a vast number and it actually results with an energy regeneration, which forces

to traverse arc (𝑖, 𝑖Â). With the introduced dummy nodes, links from node 𝑖 to node 𝑗 can be

represented with two different arcs such as arc (𝑖, 𝑗) and arc (𝑖Â, 𝑗) which are symmetric, and

their energy consumptions are equal in the cost matrix. For more detailed expression of the

 24

method, please see the related literature (Jonker & Volgenant, 1983). The optimal objective

value of the following integer programming model (IP), which is also known as DFJ

formulation, is used as an upper bound for the main problem.

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	pp𝑒WXÂ 𝑥WX
XW

 (1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:

 p 𝑥WX = 2
X,WÄX

 ∀𝑖 ∈ 𝑁Â (2)

 pp𝑥WX ≤ |𝑆| − 1
X∈ÆW∈Æ

 ∀𝑆 ⊆ 𝑁Â, |𝑆| ≥ 2 (3)

 𝑥WX ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴′ (4)

The objective function (1) aims to minimize the total energy consumption. The

constraint set (2) is known as degree-2 constraints, which ensures that the vehicle enters each

node once and leave once. The constraint set (3) is the sub tour elimination constraints, which

force the solution to return a single tour. The last constraint set (4) indicates the binary

restrictions on the decision variables. At the end of the tests, found that upper bound values are

close to the objective function values of best solutions obtained by metaheuristic applications.

4.5 Initial Solution Generation
 As mentioned above in section 2, metaheuristics, or other words, improvement

heuristics, are doing a local, global, or a combined search on the feasible region, starting from

a chosen solution set. This solution set can be determined in a completely random fashion, or

construction heuristics can be used to generate an initial solution. Due to the nature of many

metaheuristics, there is a possibility to reach a local optimum, which may be difficult to escape

and, in such situation, founding the global optimum is getting harder. In some cases, the result

of construction heuristics can lead to a solution close to a difficult-to-escape local optimum,

and the initial solution can affect the outcome. To avoid this possibility, five different initial

solution generation methods are proposed. The first three methods can be classified as list-

processing heuristics, which execute sorting mechanisms by using the properties affects the

traveling costs. The fourth heuristic approach is called nearest neighbor algorithm, which is a

well-known and widely used greedy heuristic. Besides them, the last and the fifth method

 25

constructs an initial solution by solving a basic TSP model considers the distances between the

nodes on a given graph. Details of methods and algorithms are given in the following

subsections.

4.5.1 Heuristic 1: Descending Loads
 The first proposed list-processing heuristic is sorting the nodes according to a load of

demands at nodes in descending order. First, the algorithm establishes a priority list, which is

denoted as 𝑇 in the following algorithm, that contains all nodes on the graph except depot

locations. Then elements in 𝑇 are sorted according to the nonincreasing order of customer

demands (𝑞W), and the arcs between them are getting activated respectively. If all feasibility

conditions are satisfied, such as the construction of a closed tour, the algorithm returns the

solution set. The mathematical expression of the algorithm can be seen below.

Algorithm 1: Descending Loads Heuristic

 Input: 𝐺 = (𝑁, 𝐴);	𝑞W,					∀𝑖 ∈ 𝑁

 Output: 𝑥WX∗ ,					∀(𝑖, 𝑗) ∈ 𝐴

1 Let list 𝑇 ⊆ 𝑁 ∖ {0, |𝑁| − 1} indexed by 𝑘 = {1, . . . , |𝑇|}	

2 Sort the elements of 𝑇 by nonincreasing value of 𝑞W, if 𝑞X ≥ 𝑞W then 𝑞X precedes 𝑞W in 𝑇

3 Let 𝑥WX∗ = 0,				∀(𝑖, 𝑗) ∈ 𝐴

4 Define method 𝑇(𝑘), returns the value of the 𝑘]É element in 𝑇

5 Set 𝑥<,Ê(f)
∗ = 1

6 Run through 𝑇, set 𝑥Ê(�),Ê(�Df)
∗ = 1	,			∀𝑘 ∈ 𝑇

7 Set 𝑥Ê(|Ê|),|q|Ef
∗ = 1

8 If the feasibility conditions are satisfied return 𝑥WX∗ ,				∀(𝑖, 𝑗) ∈ 𝐴

4.5.2 Heuristic 2: Descending Road Grades
 The second proposed list-processing heuristic is sorting the arcs according to their

nonincreasing order of slopes. Similarly, the algorithm starts with the creation of a priority list

(𝑇) that contains all arcs on the defined graph. Arcs are sorted according to road grades (𝜃WX) in

nonincreasing order. Then the algorithm starts to activate arcs, under feasibility conditions from

the beginning of priority list to the end. Once the activated arcs are constructed a closed-loop

tour, which is not a sub tour of the given graph, the feasibility condition is getting satisfied. At

 26

the end, the algorithm returns a solution set that is a result of heuristic approximation. The

expression of the algorithm as follows.

Algorithm 2: Descending Road Grades Heuristic

 Input: 𝐺 = (𝑁, 𝐴);	𝜃WX,					∀(𝑖, 𝑗) ∈ 𝐴

 Output: 𝑥WX∗ ,					∀(𝑖, 𝑗) ∈ 𝐴

1 Let list 𝑇 ⊆ 𝐴 indexed by 𝑘 = {1, . . . , |𝑇|}	

2 Sort the elements of 𝑇 by nonincreasing value of 𝜃WX , if 𝜃�Ë ≥ 𝜃WX, 𝜃�Ë precedes 𝜃WX in 𝑇

3 Let 𝑥WX∗ = 0,				∀(𝑖, 𝑗) ∈ 𝐴

4 Define method 𝑇(𝑘f) and 𝑇(𝑘0), return the first and second indices of the 𝑘]É arc in 𝑇

5 Run through 𝑇, set 𝑥Ê(�Ì),Ê(�Í)
∗ = 1,

if ∑ 𝑥Ê(�Ì),X
|q|Ef
X = 0, ∑ 𝑥W,Ê(�Í) = 0|q|E0

W , ∀(𝑘f, 𝑘0) ∈ 𝑇 	

6 If the feasibility conditions are satisfied return 𝑥WX∗ ,				∀(𝑖, 𝑗) ∈ 𝐴

4.5.3 Heuristic 3: Ascending Road Grades
 Ascending road grades heuristic has the same nature as the previous heuristic in section

4.5.2. Instead of sorting arcs in the priority list in nonincreasing order, the below algorithm

sorts them in nondecreasing order. The expressions of steps are below.

Algorithm 3: Ascending Road Grades Heuristic

 Input: 𝐺 = (𝑁, 𝐴);	𝜃WX,					∀(𝑖, 𝑗) ∈ 𝐴

 Output: 𝑥WX∗ ,					∀(𝑖, 𝑗) ∈ 𝐴

1 Let list 𝑇 ⊆ 𝐴 indexed by 𝑘 = {1, . . . , |𝑇|}	

2 Sort the elements of 𝑇 by nondecreasing value of 𝜃WX , if 𝜃�Ë ≤ 𝜃WX, 𝜃�Ë precedes 𝜃WX in 𝑇

3 Let 𝑥WX∗ = 0,				∀(𝑖, 𝑗) ∈ 𝐴

4 Define method 𝑇(𝑘f) and 𝑇(𝑘0), return the first and second indices of the 𝑘]É arc in 𝑇

5 Run through 𝑇, set 𝑥Ê(�Ì),Ê(�Í)
∗ = 1,

if ∑ 𝑥Ê(�Ì),X
|q|Ef
X = 0, ∑ 𝑥W,Ê(�Í) = 0|q|E0

W , ∀(𝑘f, 𝑘0) ∈ 𝑇 	

6 If the feasibility conditions are satisfied return 𝑥WX∗ ,				∀(𝑖, 𝑗) ∈ 𝐴

 27

4.5.4 Heuristic 4: Nearest Neighbor
 The nearest neighbor (NN) heuristic is a well-known greedy heuristic to solve TSP. It

aims to come up with a good solution by starting from a randomly chosen location and visiting

the closest unvisited node in each iteration. In this study, the starting point is indicated as a

depot location, and the following algorithm finds the closest nodes in each iteration and

activates the arc between them. In the end, the tour is closed by returning to the depot location.

If all feasibility conditions are satisfied, the algorithm returns the found solution set. The

mathematical expression of the algorithm can be found below.

Algorithm 4: Nearest Neighbor Heuristic

 Input: 𝐺 = (𝑁, 𝐴);	𝑑WX,					∀(𝑖, 𝑗) ∈ 𝐴

 Output: 𝑥WX∗ ,					∀(𝑖, 𝑗) ∈ 𝐴

1 Let 𝑢 = 0;	

2 Define method 𝐹(𝑢), returns the index of unvisited node 𝑠,

where 𝑑@Ð = min(𝑑@X, ∀𝑗 ∈ 𝑁 ∖ |𝑁| − 1)

3 Set 𝑥@,Ñ(@)
∗ = 1

4 Set 𝑢 = 𝑠, and repeat step 3 until 𝐹(𝑢) = ∅

5 Set 𝑥@∗ ,|q|Ef = 1

6 If the feasibility conditions are satisfied return 𝑥WX∗ ,				∀(𝑖, 𝑗) ∈ 𝐴

4.5.5 Optimal Tour on Distances
 The last method to generate an initial solution used in this study is, solving the traveling

salesman problem optimally according to the traveling cost, which is directly proportional to

distances between nodes. Since it is an asymmetric TSP application, the cost matrices have to

be symmetrized, as it is described in section 4.4. The DFJ formulation, which is used to find an

optimal tour on distances is below.

The objective function (1) aims to minimize the total distance traveled. The constraint

set (2) is degree-2 constraints, which imposes that the vehicle has to enter each node once and

leave once. The constraint set (3) is the sub tour elimination constraints proposed in DFJ, which

ensures that the solution constructs a single complete tour. Finally, the constraint set (4)

indicates the binary restrictions on the decision variables. The optimal solution found is

returned as the initial solution set to the program.

 28

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	pp𝑑WX	 𝑥WX
XW

 (1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:

 p 𝑥WX = 2
X,WÄX

 ∀𝑖 ∈ 𝑁 (2)

 pp𝑥WX ≤ |𝑆| − 1
X∈ÆW∈Æ

 ∀𝑆 ⊆ 𝑁, |𝑆| ≥ 2 (3)

 𝑥WX ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (4)

4.6 Neighborhood and Neighbors
 Local search methods used in combinatorial optimization aim to find an optimal or near-

optimal solution starting from a feasible initial solution, and moving to a close solution

iteratively, among the feasible region. To perform local search algorithms, the ranges of these

motions have to be well-structuralized, and the rule of movement has to be defined. The general

neighborhood structure is defined as a collection of subsets of all possible solutions’ set in the

space. Where the neighborhood of a solution 𝑥, denoted as 𝑁(𝑥), this relation can be shown as

𝑁(𝑥) ⊆ 𝑋, 𝑥 ∈ 𝑋. In the traveling salesman problem, since a solution can be thought as a

permutation of nodes and every permutation of the nodes corresponds to a feasible tour, the

following neighborhood definition can be proposed.

𝑁(𝑥) = {𝑥̅	|	permutation 𝑥̅ results from permutation 𝑥 by transposition of two nodes}

 With the above neighborhood definition, some of the neighbors in the defined

neighborhood of a given solution set 𝑥 = (𝑖f, 𝑖0, 𝑖g, 𝑖¹, 𝑖Ô, 𝑖Õ) will be as below.

𝑥̅f = (𝑖f, 𝑖g, 𝑖0, 𝑖¹, 𝑖Ô, 𝑖Õ)

𝑥̅0 = (𝑖f, 𝑖Õ, 𝑖g, 𝑖¹, 𝑖Ô, 𝑖0)

𝑥̅g = (𝑖Ô, 𝑖0, 𝑖g, 𝑖¹, 𝑖f, 𝑖Õ)

⋮

 In this study, the above definition of the neighborhood is considered. During the run of

local search algorithms, the neighbors are randomly drawn in each performed iteration from the

neighborhood of current solution. For further researches, alternatively, the number of

 29

transposed nodes can be increased, or if we examine the tours as a list of arcs instead of a list

of nodes as above, arcs activated between four nodes (𝑖, 𝑗) and (𝑘, 𝑙) can be exchanged to (𝑖, 𝑘)

and (𝑗, 𝑙). This definition called the 2-exchange neighborhood concept (Crama, 2018).

4.7 Metaheuristic Applications
 The ultimate aim of this study is obtaining near-optimal solutions for ETPS by using

well-known metaheuristics, instead of solving the problem optimally in long durations. Under

this subsection, the application of two local search methods is discussed. In subsection 4.7.1,

the application of steepest ascent metaheuristic is described. In 4.7.2, the application of

simulated annealing metaheuristic, which is comparably complicated than the steepest ascent,

is described. Also, the idea behind parameter selection is provided.

4.7.1 Steepest Ascent
 Steepest ascent metaheuristic is a very natural method for local searches. The idea

behind steepest ascent is moving from the current solution to the best solution that can be found

in its neighborhood until there is no further improvement. The algorithm starts with a selection

of the initial solution 𝑥f. Then, all neighbors in its neighborhood 𝑁(𝑥f) are evaluated, and the

neighbor with the highest objective function value (𝑥̅) is set as the current solution. This process

is repeated until there is no better solution can be found in the current solution’s neighborhood.

In the end the algorithm returns the best solution found set 𝑥∗, and the associated objective

function value 𝐹∗. The formal mathematical description of the algorithm is below.

Metaheuristic 1: Steepest Ascent

 Input: 𝑥f	

 Output: 𝑥	∗, 𝐹∗					

1 Select an initial solution 𝑥f ∈ 𝑋	

2 Set the best objective function value 𝐹∗ = 𝐹(𝑥f), where 𝐹(𝑥) is the objective value of 𝑥

3 Set the best solution 𝑥∗ = 𝑥f, and number of iterations 𝑘 = 1	

 Repeat:

4 Find the best solution 𝑥̅ ∈ 𝑁(𝑥�)

5 Set 𝐹(𝑥̅) = maxØ𝐹(𝑥): 𝑥 ∈ 𝑁_𝑥�aÙ

6 If 𝐹(𝑥̅) > 𝐹_𝑥�a set 𝑥�Df = 𝑥̅, 𝐹∗ = 𝐹(𝑥̅), 𝑥∗ = 𝑥̅, and 𝑘 = 𝑘 + 1; Else go step 7	

7 Return 𝑥∗ and 	𝐹∗

 30

 The trade-off with the steepest ascent metaheuristic is, it always searches for a local

maximum, and in most of the cases it returns a local optimum, if this local optimum is not the

global optimum at the same time; on the other hand, the required amount of time to run this

metaheuristic is quite low, compared to others. In order to escape from local maximum, some

additional actions can be taken; for example, an introduced method can replace the current

solution with a randomly chosen neighbor instead of the neighbor with the highest objective

function value at a random iteration of algorithm run. In this study, because of the simulated

annealing metaheuristic has been implemented with an escape method, the steepest ascent has

used as with its simple version. The results and the performance of steepest ascent application

will be discussed later in section 5.

4.7.2 Simulated Annealing
 Simulated annealing is a randomized algorithm, aiming to find the global optimum of

combinatorial optimization problems. It is technically a local search method, however, allows

to do searches in larger search spaces compared to steepest ascent metaheuristic by replacing a

current solution with a randomly chosen solution from its neighborhood, which is a smart way

to escape from the local maximum. Simulated annealing suggests doing these replacements

more systematically rather than randomly proposing replacements at any iteration.

 The idea behind simulated annealing comes from the annealing technique, which is used

in material science and metallurgy as a result of thermodynamics. It is a heat treatment process

to reduce materials hardness while increasing their ductility. In this process, first the materials

are heated up to their recrystallization temperatures after they keep their heats for a reasonable

amount of time, the materials are cooled slowly under a cooling schedule. The same logic is

used in simulated annealing by introducing an imaginary starting temperature 𝑇<, with a cooling

rate 𝛼, where 𝑎 ∈ (0,1). The simulated environment preserves its current temperature along 𝐿

iterations, which is also the length of plateaus, before cooling it by 𝛼. A geometric cooling

schedule is also visualized in Figure 5.

As with all local search methods, the simulated annealing algorithm starts with an initial

solution, too. The algorithm is initiated with setting the best solution found and current solution

to the initial solution, and the best solution found and current objective function values to the

objective function value of the initial solution. Then the number of iterations, which denoted as

𝑘, and current temperature 𝑇 are initiated. The initial temperature parameter 𝑇< is a user defined

value.

 31

Figure 5: Geometric Cooling Schedule

 After the initiation phase, the algorithm repeatedly draws a random neighbor from the

current solution’s neighborhood, compares its objective function values with the current one.

If the objective function value of the neighbor is better than the current, the algorithm

automatically updates the current solution with the neighbor. In the opposite case, a

probabilistic method is used to generate a random number from a standard uniform distribution

𝑈~[0,1], and compares it with a calculated threshold, which is called acceptance or transition

probability. If the generated random number is less than a calculated transition probability, the

current solution is replaced with the neighbor. This process is repeated until stopping conditions

become satisfied, which will be discussed below. If stopping conditions are satisfied, the

algorithm returns the best solution found set 𝑥∗ and the associated objective function value 𝐹∗.

The formal mathematical expression of the main body of simulated annealing metaheuristic is

Metaheuristic 2, which is below.

 As mentioned in line 5, in case of the chosen neighbor’s objective function value is

better than the current’s, the algorithm calls the AcceptMove(𝑥̅) method, which is formally

described in Method 1.

 32

Metaheuristic 2: Simulated Annealing

 Input: 𝑥f, 𝑇<, 𝛼, 𝐿, 𝐾, 𝜀, 𝑡C?A	

 Output: 𝑥	∗, 𝐹∗					

1 Select an initial solution 𝑥f ∈ 𝑋	

2 Set the best objective function value 𝐹∗ = 𝐹(𝑥f), where 𝐹(𝑥) is the objective value of 𝑥

3 Set the best solution 𝑥∗ = 𝑥f, number of iterations 𝑘 = 1, and current temperature 𝑇 = 𝑇<	

 Repeat:

4 Draw 𝑥̅ randomly from 𝑁_𝑥�a

5 If 𝐹(𝑥̅) > 𝐹_𝑥�a go method AcceptMove(𝑥̅); Else go method Toss_𝑥�, 𝑥̅a

6 Go method CheckStoppingConditions()

7 If 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑡𝑟𝑢𝑒, go step 8

8 Return 𝑥∗ and 	𝐹∗

Method 1: AcceptMove(𝑥̅)

1 Set 𝑥�Df = 𝑥̅	

2 If 𝐹(𝑥̅) > 𝐹(𝑥∗), set 𝐹∗ = 𝐹(𝑥̅), and 𝑥∗ = 𝑥̅

 On the same line, on the contrary situation algorithm calls Toss (𝑥�, 𝑥̅) method. This

method first calculates the difference between objective function values of the current solution

set, and the candidate solution set. Accordingly, an acceptance probability 𝑝� is calculated with

the below formula.

𝑝� = 𝑒E
ÝÑ
Ê

 Since the computation time of the above formulation is quite high in complexity terms,

an alternative and simpler formulation can also be used to calculate 𝑝� , which is following.

𝑝� = 1 −
Δ𝐹
𝑇

 The above formulation is indicated as 25 times faster than the standard formulation in

the literature (Oliveira & Ferreira, 1993). However, considering the capability of used hardware

 33

and the interpreter, and the observed solution quality of results, the first formulation is preferred

to calculate transition probabilities. The mathematical expression of the method is below.

Method 2: Toss(𝑥�, 𝑥̅)

1 Calculate Δ𝐹 = 𝐹(𝑥̅) − 𝐹(𝑥�)	

2 Calculate transition probability 𝑝� = 𝑒E
Þß
à

3 Draw a random number 𝑢, from a standard uniform distribution 𝑈~[0,1]

4 If 𝑢 ≤ 𝑝� set 𝑥�Df = 𝑥̅; Else continue;

 Following the update decision of the current solution, in each iteration, the stopping

conditions are getting checked. There are many approaches to decide terminating simulated

annealing algorithm or not. The most basic stopping criterion is comparing the elapsed time

with a user-defined time limit. Since the simulated annealing algorithm does its searching in a

greater space, depending on also other stopping criteria, termination can take a quite long time.

Another stopping criterion is checking the number of improvements on 𝐹∗, and the percentage

of accepted moves during the last 𝐾 plateaus, where 𝐾 is a user-defined threshold. If there is

no recorded improvement, and if fewer than 𝜀% of moves have been accepted, where 𝜀 is

another user-defined parameter, during the last 𝐾 successively performed plateaus, stopping

condition is assumed to be satisfied.

 In the same method, the decision of cooling is also given. The condition of the cooling

environment is if the algorithm will not be terminated at that point, and if the number of

performed iterations since the beginning of plateau is greater than or equal to the plateau length

𝐿, the temperature will be increased by cooling factor 𝛼. The formal explanation of the method

can be found in Method 3.

Another important of simulated annealing application is parameter selection. Unlike the

steepest ascent metaheuristic, the simulated annealing approach requires several user-defined

parameters, which have a direct effect on the outcome. As mentioned in the above explanation,

the required inputs are an initial temperature (𝑇<), a cooling factor (𝛼), a plateau length (𝐿), a

number of last plateaus getting checked (𝐾), a percentage threshold value for checking the

number of accepted moves in last 𝐾 plateaus. And additionally, a user-defined time limit (𝑡áâã)

can be introduced, which is optional.

 34

Method 3: CheckStoppingConditions()

 If the elapsed time is greater than or equal to the user defined time limit 𝑡C?A

1 Set 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑡𝑟𝑢𝑒	

 If the number of iterations since the last temperature decreasing is less than 𝐿:	

2 Set 𝑘 = 𝑘 + 1

3 Set 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑓𝑎𝑙𝑠𝑒

 If there is no improvement on 𝐹∗ ∧ less than 𝜀% moves have been accepted in last 𝐾 plateau

4 Set 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑡𝑟𝑢𝑒

 Else:

5 Set 𝑇 = 𝛼𝑇, 𝑘 = 𝑘 + 1

6 Set 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑓𝑎𝑙𝑠𝑒

 There is not an optimal method for choosing these parameters: it is usually done

empirically by trial-and-error adjustments. However, few ideas are introduced for some of the

parameters, which experimentally provide good results. One of them is for deciding on 𝑇<.

Previous researches and textbooks advice to calculate 𝑇<, with the following formula, where 𝛿

is an expected improvement amount in objective function value, and 𝑝< is the initial acceptance

probability.

𝑇< = 	−
𝛿

ln	(𝑝<)

 If 𝑝< is set to 0.5, which is widely recommended in the literature, the above formula

becomes 𝑇< ≈ 1.45 ∗ 𝛿. Because of this problem is dealing with the maximization of available

energy at the end of the tour, and the unit of the result is in Watt-hour (𝑊ℎ), an improvement

of 1000	𝑊ℎ	(= 1	𝑘𝑊ℎ), which is a reasonable amount for electric vehicles, can be expected

on average. In this case, if 𝛿 is set to 1000, the 𝑇< value becomes 1450. Another

recommendation in literature is for the plateau length 𝐿. The rule of choosing 𝐿 value stated as

this value has to be larger than the estimated size of a neighborhood to give a chance of being

created to each neighbor. The usual choice is calculated as follows.

𝐿 ≈ 10 × |𝑁(𝑥)|

 35

 Since one of the aims of this study is providing a well-working common parameter set

for simulated annealing application, instance size-independent parameters were looked for. To

achieve this, for all instances the neighborhood sizes |𝑁(𝑥)| are examined. Where the number

of nodes in an instance denoted as 𝑛, the calculation can be shown as |𝑁(𝑥)| = 𝐶(𝑛, 2). This

study is done on instances with 7, 11 and 15 nodes, whose neighborhood sizes are 21, 55 and

105, respectively. While setting the value of 𝐿, values from the interval [210,1050] is tested,

rather than using the number of neighbors from a single instance.

 Other parameters are chosen from reasonable intervals with the trial-and-errors

approach. 𝛼 is chosen from the interval [0.8, 1), 𝐾 is chosen from the interval [20,60], 𝜀 is

chosen from the interval (0, 0.05]. The user-defined time limit is set to 30.000	𝑚𝑠	(= 5	𝑚𝑖𝑛).

The final parameter set is as follows.

𝑇< 1,450

𝛼 0.998

𝐿 300

𝐾 50

𝜀 0.01

𝑡C?A 30,000	𝑚𝑠

Table 3: Simulated Annealing Parameter Set

The results and the performance of simulated annealing application will be discussed

later in section 5.

 36

5 Results and Analyzes
 Under this section, the outputs of the above implementation are handled and analyzed

from different angles. In subsection 5.1, the usages of different arc types, which were

introduced in 4.2.4, were analyzed. In 5.2, calculated upper bounds and associated solution sets

were given. Under subsection 5.3, performances of the introduced greedy heuristics and optimal

TSP solution on distances, which were used to generate initial solutions, were analyzed. In 5.4

and 5.5, the obtained results by using metaheuristics were presented, and comments were shared

about. Lastly, in 5.6, a comparison made between the classical TSP approach, which is mostly

aiming to minimize the total distance traveled, and the ETSP application.

5.1 Arc Type Evaluation
 As will be remembered, in subsection 4.2.4, three different types of arcs are proposed

to solve this problem on real-life data. Since the information carried on arc contain

mathematical components of energy consumption or energy regeneration calculation, its

importance for ETSP application has to be tested. To emphasize the effect of arc types, both

steepest ascent and simulated annealing applications are made on Instance 1 with mentioned

three types of arcs. Where 𝑥∗ indicates the best tour found and 𝐹∗ indicates the objective

function value, which is the available energy level at the end of the tour, results are shared in

Table 4 and Table 5.

Arc Type 𝒙∗ 𝑭∗	(𝑾𝒉) Tour Length (𝒎)

Simple Arcs D-1-6-2-3-5-4-D 21542.25 32181.85

High-Resolution Arcs (D = 10) D-6-1-2-5-3-4-D 18889.56 31931.88

Real-Time Arcs D-2-3-4-5-6-1-D 17107.80 46127.00

Table 4: Instance 1 - Steepest Ascent Results on Arc Types

Arc Type 𝒙∗ 𝑭∗	(𝑾𝒉) Tour Length (𝒎)

Simple Arcs D-1-6-2-3-5-4-D 21542.25 32181.85

High-Resolution Arcs (D = 10) D-6-1-2-5-3-4-D 18889.56 31931.88

Real-Time Arcs D-2-3-4-5-6-1-D 17107.80 46127.00

Table 5: Instance 1 - Simulated Annealing Results on Arc Types

 37

 As can be clearly seen above, the objective function values and the total distances

traveled differ significantly. Also, with these three different arc types, the resulting solution set,

which is the most vital component of the solution since it is also the recommended action to be

taken, are not the same. Despite arc construction is a complicated and time-consuming task for

more complex arcs such as real-time ones, results show us the spent time is worth it. In order

to provide more precise insights and results, the rest of the analyses are done with real-time

arcs, in the following subsections.

5.2 Upper Bounds
 As the upper bound calculation method was detailed in subsection 4.4, after relaxing

customer demand related constraints, an integer programming model solved optimally for all

instances on expected energy consumptions or regenerations on arcs. The objective function

values of these infeasible solutions are assumed as upper bound values which can be found in

the below table.

Instance 𝑼𝑩	(𝑾𝒉) 𝒙𝑼𝑩 𝑭𝑼𝑩	(𝑾𝒉) 𝑭𝑼𝑩
𝑼𝑩î

Instance 1 20943.89 D-2-3-4-5-6-1-D 17107.80 82%

Instance 2 19666.47 D-1-2-3-4-5-6-D 12413.96 63%

Instance 3 19202.53 D-2-1-4-5-7-6-8-9-10-3-D 11256.54 59%

Instance 4 18371.74
D-13-10-8-4-12-5-

11-14-6-1-9-2-3-7-D
10370.83 56%

Table 6: Calculated Upper Bounds and Associated Solutions

 Upper bounds are used to assess the final solution quality. If the convergence of upper

bound values to the optimal objective function values are getting higher, the quality assessments

can be done more precisely. According to the results obtained in the following subsections, the

described method is a natural and proper way to calculate it; however, it is evident that the

method is working better on smaller instances and instances with less customer demands.

 n addition to upper bound calculation, the associated solution sets’ real objective

function values are calculated to check if they provide comparably good solutions. While this

approach is providing the best solution found, for Instance 1, for other instances, better results

 38

were obtained. When the results are evaluated with the related instances side-by-side, the

correlation between the results and standard deviation of loads is clearly visible. In general, it

can be said that in case of customers’ demands are not deviate a lot from each other; the same

method has a possibility to provide optimal or near-optimal solution sets for the whole problem.

5.3 Performance Analysis of Solution Generation Methods
 As discussed earlier, in subsection 4.5, five different initial solution generation methods

were proposed. While the first four of them are construction heuristics, the latter method is

introduced to solve the problem optimally with a classical TSP point of view. This idea allows

us to compare a classical TSP approach, which is based on distance minimization, and its

extension for the electric vehicles; while still generating considerably good solutions. All of

these five methods can also be used to compute fast and good solutions without running an

additional search algorithm on them. Therefore, their performances need to be assessed for

future uses. The results coming from solution generation methods are provided for all instances

in Table 7, Table 8, Table 9, and Table 10, respectively.

Sol. Generation Methods 𝒙𝟏 𝑭𝟏	(𝑾𝒉) Tour Length (𝒎) 𝑭𝟏
𝑼𝑩î

Descending Loads D-5-1-3-2-4-6-D 13942.64 59843.00 67%

Ascending Road Grades D-6-1-4-5-3-2-D 15079.68 54486.00 72%

Descending Road Grades D-2-3-5-4-1-6-D 15236.87 58424.00 73%

Nearest Neighbor (NN) D-1-5-4-6-2-3-D 15304.99 53168.00 73%

Optimal Tour on Distances D-5-4-3-2-6-1-D 16365.95 45664.00 78%

Table 7: Instance 1 - Results of Initial Solution Generation Methods

 The results of Instance 1, shows that the optimal tour on distances has provided the best

result among all methods. The nearest candidate is nearest neighbor heuristic, which is a widely

used alternative of optimally solving TSP instances. Another key point is, there is a moderate

correlation between the tour lengths and objective function values. Its occurrence is natural

since the energy consumption is directly depended on the integrations on time, while speed is

not changing during the journey.

 39

Sol. Generation Methods 𝒙𝟏 𝑭𝟏	(𝑾𝒉) Tour Length (𝒎) 𝑭𝟏
𝑼𝑩î

Descending Loads D-5-1-2-3-4-6-D 10619.63 89985.00 54%

Ascending Road Grades D-3-5-4-1-2-6-D 9183.56 86065.00 71%

Descending Road Grades D-6-2-1-4-5-3-D 7771.07 84589.00 40%

Nearest Neighbor (NN) D-4-5-6-1-2-3-D 12898.55 65172.00 66%

Optimal Tour on Distances D-6-5-4-3-2-1-D 11657.62 62498.00 59%

Table 8: Instance 2 - Results of Initial Solution Generation Methods

 Instance 2’s results tell that the elevation differences between nodes are high in average,

since the difference between heuristic results coming from ascending road grades and

descending road grades, which are exact opposite algorithms, is significant. There is also an

effect of delivering the heaviest load at the earlier stages of the tour. On the other side the best

solution still delivered by nearest neighbor heuristic then optimal tour on distances.

Sol. Generation Methods 𝒙𝟏 𝑭𝟏	(𝑾𝒉) Tour Length (𝒎) 𝑭𝟏
𝑼𝑩î

Descending Loads
D-1-2-3-4-5-

6-7-8-9-10-D
7178.14 87355.00 37%

Ascending Road Grades
D-7-9-5-3-8-

6-1-2-4-10-D
4544.75 107544.00 24%

Descending Road Grades
D-10-4-2-1-6-

8-3-5-9-7-D
4336.25 110363.00 23%

Nearest Neighbor (NN)
D-3-5-1-2-4-

8-6-7-9-10-D
9222.41 78852.00 48%

Optimal Tour on Distances
D-3-1-2-4-5-

7-6-8-9-10-D
11185.75 61952.00 58%

Table 9: Instance 3 - Results of Initial Solution Generation Methods

 In Instance 3’s results, the best objective function values are coming from the optimal

tour on distances, and nearest neighbor heuristic, respectively. In spite of some of the nodes are

 40

same in Instance 2 and Instance 3, the same situation about road grades heuristics is not

observed. The possible reason behind is, an increase in the number of customer nodes result up

with more breakpoints that may decrease the deviation of arc slopes.

Sol. Generation Methods 𝒙𝟏 𝑭𝟏	(𝑾𝒉) Tour Length (𝒎) 𝑭𝟏
𝑼𝑩î

Descending Loads

D-6-10-5-9-

12-8-11-4-13-3

-1-7-2-14-D

𝐼𝑛𝑓. 175343.00 0%

Ascending Road Grades

D-9-5-2-7-8-

14-11-10-12-

13-6-1-3-4-D

𝐼𝑛𝑓. 143773.00 0%

Descending Road Grades

D-4-3-1-6-13-

12-10-11-14-

8-7-2-5-9-D

𝐼𝑛𝑓. 137808.00 0%

Nearest Neighbor (NN)

D-13-5-14-1-

6-11-7-9-2-

3-12-4-10-8-D

8522.18 78254.00 46%

Optimal Tour on Distances

D-8-10-4-12-3-

7-2-9-1-6-

11-14-5-13-D

10011.78 71779.00 54%

Table 10: Instance 4 - Results of Initial Solution Generation Methods

 And, the last instance’s results table tells another story. During the algorithm runs on

Instance 4, many candidate solution sets had an infeasibility problem. Since a load of demands

are high on average compared to the other instances, and the graph is much more complicated,

the battery can become an empty situation in the earlier stages of a tour. The first three heuristic

methods, which do not consider the length of the tour, has generated infeasible results under

the rules of ETSP. Again, the optimal tour on distances has returned a good result by

minimizing total tour length, and similarly nearest neighbor has provided a good solution, too.

 On average, the specific heuristics proposed to generate initial solutions are seem like

 41

not as successful as the well-known nearest-neighbor heuristic and the exact method. On the

other hand, due to the nature of search algorithms, in some cases, worse initial solutions can

escape from local optimums and reach to better local optimums or global optimums easier.

Their impact on final solutions will be discussed in 5.4 and 5.5.

5.4 Analysis of Steepest Ascent Metaheuristic Application
 Steepest ascent (or for minimization problems steepest descent) is a very simple and

natural metaheuristic. The idea behind steepest ascent is simply keeping moving to a better

solution in the current neighborhood. It often runs very fast in the mean of computation;

however, the main trade-off about steepest ascent is that there is no introduced escape procedure

in its basic algorithm. In order to escape from local maximums or minimums, a few escape

procedures can be introduced as discussed in 4.7.1; however, in this study, the basic version is

considered. The final results obtained by applying steepest ascent metaheuristic can be found

in Table 11, Table 12, Table 13, and Table 14 for all instances, respectively.

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads D-1-5-3-4-6-2-D 16659.20 50251.00 80% 4022

Ascending Road Grades D-1-5-3-4-6-2-D 16659.20 50251.00 80% 4402

Descending Road Grades D-2-3-4-5-6-1-D 17107.80 46127.00 82% 3879

Nearest Neighbor (NN) D-1-5-6-2-3-4-D 16821.11 46185.00 80% 3841

Optimal Tour on Distances D-5-4-3-2-6-1-D 16365.95 45664.00 78% 120

Table 11: Instance 1 - Steepest Ascent Metaheuristic Results

 The steepest ascent results obtained on Instance 1, says that the best objective function

value is found by moving in descending road grades heuristic generated solution’s

neighborhood. If the best solution found is compared to the initial solution generated by this

algorithm, it is possible to see this prominent similarity, which means that these two solutions

are quite close in the solution space. Besides, steepest ascent cannot find a better solution in the

optimal tour on distances’ neighborhood. It shows that the optimal tour is a solution at a local

maximum in the space.

 42

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads D-1-5-2-3-4-6-D 12944.80 99193.00 66% 3833

Ascending Road Grades D-1-5-2-3-4-6-D 12944.80 99193.00 66% 3433

Descending Road Grades D-1-2-5-6-4-3-D 14032.33 76750.00 71% 4046

Nearest Neighbor (NN) D-4-5-6-1-2-3-D 12898.55 65172.00 66% 4308

Optimal Tour on Distances D-1-5-2-3-4-6-D 12944.80 99193.00 66% 4295

Table 12: Instance 2 - Steepest Ascent Metaheuristic Results

 In the above table, the best objective function value is obtained by starting from the

initial solution of descending road grades again. However, for Instance 2, descending road

grades heuristic has constructed a tour with the worst objective function among others. In this

scenario, the local search mechanism could find the best solution in the neighbor of a low-

quality solution. It is an example of the idea presented at the end of 5.3.

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads
D-2-1-4-5-7-

6-8-9-10-3-D
11256.54 65070.00 59% 3572

Ascending Road Grades
D-2-1-3-6-8-

7-5-4-9-10-D
11398.99 86703.00 59% 4751

Descending Road Grades
D-2-1-9-10-

8-6-3-5-4-7-D
11325.12 94441.00 59% 3620

Nearest Neighbor (NN)
D-3-5-1-2-4-

7-6-8-9-10-D
10962.90 69309.00 57% 3805

Optimal Tour on Distances
D-3-1-2-4-5-

7-6-8-9-10-D
11185.75 61952.00 58% 3812

Table 13: Instance 3 - Steepest Ascent Metaheuristic Results

 A similar example can be given on the application on Instance 3. As can be seen in 5.3,

despite the worst couple of solutions were descending road grades and ascending road grades,

 43

respectively, both steepest ascent results show that the improvements could be made easier in

their neighborhoods.

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads

D-6-10-5-9-

12-8-11-4-13-

3-1-7-2-14-D

𝑖𝑛𝑓. 175343.00 0% 320

Ascending Road Grades

D-13-5-11-6-

10-8-7-14-1-

4-12-3-2-9-D

9627.92 111473.00 52% 3668

Descending Road Grades

D-4-12-14-6-

10-5-11-1-8-

7-3-2-9-13-D

6668.10 138208.00 36% 4521

Nearest Neighbor (NN)

D-13-5-11-6-

1-14-7-3-2-

9-12-4-10-8-D

9464.94 82416.00 52% 3981

Optimal Tour on Distances

D-8-10-4-12-

7-3-2-9-1-6-

11-14-5-13-D

10354.75 72126.00 56% 3626

Table 14: Instance 4 - Steepest Ascent Metaheuristic Results

 And lastly, for Instance 4, all initial solution except the solution coming from

descending loads heuristic, are improved, and the best solution could be obtained with the

solution set of the optimal tour on distances. The first three algorithms have returned infeasible

solution sets at the beginning; however, in the neighbor of road grade related heuristics, good

solutions could be detected.

 An exciting outcome of steepest ascent metaheuristic application is, among these four

different instances, the initial solutions coming from the road grade related heuristics were

improved rapidly to quite good solutions. Optimal tours on distances are followed them in three

applications, and in the last application, it returned the best solution found with the steepest

ascent.

 44

5.5 Analysis of Simulated Annealing Metaheuristic Application
 Simulated annealing metaheuristic is another local search method like the steepest

ascent; however, it is a more complicated algorithm, which follows a randomized procedure.

The details of the algorithm, its auxiliary methods, and user-defined parameters were

introduced in 4.7.2, and all of the following results, which can be found in Table 15, Table 16,

Table 17 and Table 18, are generated by using same parameters. The only parameter change

has been done for the last instance, to test the algorithm within a wider time interval, whose

results are in Table 19. Since simulated annealing is a probabilistic method, in each run, it is

natural to see different outcomes. In light of this fact, each of the following tests is done five

times, and the best solution founds were recorded among all.

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads D-2-3-4-5-6-1-D 17107.79 46127.00 82% 30000

Ascending Road Grades D-2-3-4-5-6-1-D 17107.79 46127.00 82% 30000

Descending Road Grades D-2-3-4-5-6-1-D 17107.79 46127.00 82% 30000

Nearest Neighbor (NN) D-2-3-4-5-6-1-D 17107.79 46127.00 82% 30000

Optimal Tour on Distances D-2-3-4-5-6-1-D 17107.79 46127.00 82% 30000

Table 15: Instance 1 - Simulated Annealing Metaheuristic Results

 For the very first instance, all solutions were converged to the same solution set, which

is probably the global optimum. It can be expected because of the instance have few nodes,

which defines a less complicated computation environment. Each run was terminated because

of the violation of the time limit, after running 30 seconds. The objective function value to

upper bound ratio is not as high as expected; however, it is still a good ratio for a problem that

has such complexity. An XY chart can be seen in Figure 6Figure 2 that presents the change in

objective function value according to the number of iterations performed.

 As can be seen in Table 16 the same situation applies to it, too. It is a test done on the

same size instance, and the solutions resulted from all applications has converged to the same

solution set, which is obviously optimal. This time, the objective function value to upper bound

ratio is lower, as a result of a lot heavier total load compared to the first instance. All tests took

 45

30 seconds, without an earlier termination due to the stopping criteria defined in 4.7.2. Another

XY chart associated with Instance 2 can be seen in Figure 7.

Figure 6: Instance 1 - Simulated Annealing Iteration to Objective Function Value Chart

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads D-1-2-5-6-4-3-D 14032.33 76750.00 71% 30000

Ascending Road Grades D-1-2-5-6-4-3-D 14032.33 76750.00 71% 30000

Descending Road Grades D-1-2-5-6-4-3-D 14032.33 76750.00 71% 30000

Nearest Neighbor (NN) D-1-2-5-6-4-3-D 14032.33 76750.00 71% 30000

Optimal Tour on Distances D-1-2-5-6-4-3-D 14032.33 76750.00 71% 30000

Table 16: Instance 2 - Simulated Annealing Metaheuristic Results

 At the end of the application on Instance 3, which can be seen in Table 17, all methods

were again converged to the same optimal-likely solution. However, this time in two cases with

descending loads and nearest neighbor beginnings, the algorithm is terminated before the

introduced time limit, because no improvement could be recorded in last 𝐾 ∗ 𝐿 iterations, which

corresponds to 15,000 iterations. In Figure 8, following the finding of the best solution, it is

seen that the algorithm moved away from the best solution found.

 46

Figure 7: Instance 2 - Simulated Annealing Iteration to Objective Function Value Chart

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads
D-2-1-4-9-10-

3-5-7-8-6-D
12250.29 87461.00 64% 29367

Ascending Road Grades
D-2-1-4-9-10-

3-5-7-8-6-D
12250.29 87461.00 64% 30000

Descending Road Grades
D-2-1-4-9-10-

3-5-7-8-6-D
12250.29 87461.00 64% 30000

Nearest Neighbor (NN)
D-2-1-4-9-10-

3-5-7-8-6-D
12250.29 87461.00 64% 29680

Optimal Tour on Distances
D-2-1-4-9-10-

3-5-7-8-6-D
12250.29 87461.00 64% 30000

Table 17: Instance 3 - Simulated Annealing Metaheuristic Results

 In Table 18 and Table 19, the results of the application on Instance 4 are given. Since

Instance 4 is the largest instance among all instances, and due to the combinatorial difficulties

appears when the size increases, solving the problem is getting harder. As can be seen in the

first table, except descending road grades and optimal tour on distances initiations, all methods

resulted up with different solution sets. Additionally, the XY chart in Figure 9 shows that there

was a continuous improvement trend up to the end of the algorithm run. To investigate this

 47

situation and obtain a better solution, the time limit is increased to a minute, and results are

tabulated again in the second table.

Figure 8: Instance 3 - Simulated Annealing Iteration to Objective Function Value Chart

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads

D-13-10-8-4-

12-7-3-2-9-1-

6-11-14-5-D

10549.80 77000.00 57.42% 30000

Ascending Road Grades

D-13-10-8-4-

12-7-9-2-3-

14-11-6-1-5-D

10414.55 85331.00 56.69% 30000

Descending Road Grades

D-13-10-8-7-

14-11-6-1-4-

12-3-2-9-5-D

10498.08 98459.00 57.14% 30000

Nearest Neighbor (NN)

D-13-10-8-4-

12-14-11-6-1-

9-2-3-7-5-D

10382.44 85359.00 56.51% 30000

Optimal Tour on Distances

D-13-10-8-7-

14-11-6-1-4-

12-3-2-9-5-D

10498.08 98459.00 57.14% 30000

Table 18: Instance 4 - Simulated Annealing Metaheuristic Results (𝑡C?A = 30 s)

 48

Figure 9: Instance 4 – S. Annealing Iteration to Objective F. Value Chart (𝑡C?A = 30 s)

Sol. Generation Methods 𝒙∗ 𝑭∗	(𝑾𝒉) T. Length (𝒎) 𝑭∗
𝑼𝑩î 𝒕	(𝒎𝒔)

Descending Loads

D-13-10-8-4-

12-7-3-2-9-

1-6-11-14-5-D

10549.80 77000.00 57.4% 35980

Ascending Road Grades

D-13-10-8-4-

12-7-3-2-9-

1-6-11-14-5-D

10549.80 77000.00 57.4% 40582

Descending Road Grades

D-13-10-8-7-

14-11-6-1-4-

12-3-2-9-5-D

10498.08 98459.00 57.1% 32620

Nearest Neighbor (NN)

D-13-10-8-7-

14-11-6-1-4-

12-3-2-9-5-D

10498.08 98459.00 57.14% 36161

Optimal Tour on Distances

D-13-10-8-7-

14-11-6-1-4-

12-3-2-9-5-D

10498.08 98459.00 57.14% 37593

Table 19: Instance 4 - Simulated Annealing Metaheuristic Results (𝑡C?A = 1 min)

 The results in Table 19 shows that this time, all tests were terminated earlier as a result

of stopping criteria. The best solution found has not changed; however, significant

 49

improvements have been recorded on other tests. If the XY chart of objective function value

change to the number of iterations for the best solution found is examined in Figure 10, it can

be noticed that after obtaining the best solution, the search moved away.

Figure 10: Instance 4 – S. Annealing Iteration to Objective F. Value Chart (𝑡C?A = 1 min)

 Based on the all tests performed above, it can be said that the used parameter set

introduced in 4.7.2 is worked well for associated instances, and within this instance size interval

the same parameter set can be used in other similar studies. As a remark, to lengthen or shorten

the run time, adjusting the cooling factor 𝛼 has resulted in a better solution quality, instead of

changing plateau length 𝐿. Another adjustment can be made by making changes on the

parameter 𝐾, however, reducing it a lot or contrarily increasing the value causes an earlier

termination or long computation times. While increasing the value of 𝐾, the time limit has to

be adjusted accordingly.

5.6 Comparison of TSP Results and ETSP Results
 Electric vehicle traveling salesman problem (ETSP) is an extension of the classical

traveling salesman problem, which based on distances or traveling costs mainly. Basically, both

problems seek to construct a closed tour visited given number of locations, under feasibility

conditions. Classical TSP model is usually not considering the fuel level of a vehicle. The

reasoning behind it is, driving range of petroleum-based vehicles are high, gas stations are quite

common, and fuel acquisition times are negligible. On the other side, these conditions are not

applying to electric vehicles. Depending on the size of the battery, driving ranges are

 50

considerably short, charge stations are still not common, and charging durations are quite long.

When this is the case, ETSP needs to sustain the vehicles’ battery levels in order to accomplish

an uninterrupted tour. As it was repeatedly discussed above, the level of available energy can

be sustained by doing energy regeneration and adjusting vehicle routes accordingly. Under this

subsection, the differences of thought of the two problems having the same basis will be

examined numerically and visually. For all comparisons, the optimal TSP solutions based on

distances, and the best solutions found with metaheuristics for ETSP are considered. The

locations and the routes shown on maps represent the exact locations in instances and the real

routes between locations, which were collected during the arc creation process. Additionally,

battery level information at each node visit calculated with the developed software, which is a

component of this study.

 The first comparison is made between the optimal tour on distance and the possible

optimal solution of ETSP, for Instance 1. The results are shown in Table 20.

Problem 𝒙∗ 𝑭∗	(𝑾𝒉) Total Length (𝒎) 𝑭∗
𝑼𝑩î

TSP D-5-4-3-2-6-1-D 16365.95 45664.00 78%

ETSP D-2-3-4-5-6-1-D 17107.80 46127.00 82%

Table 20: Instance 1 - TSP & ETSP Results Comparison

Figure 11: Instance 1 - Tour Representations on Map (left: TSP, right: ETSP)

 51

 Both tours were represented on a map in Figure 11. In the best ETSP tour, the vehicle

first visits the location with the highest altitude with its all load. Contrarily, the optimal TSP

tour visits the same node in the fourth-order. If the vehicle’s battery level changes, which are

presented in Figure 12, are examined it can be clearly seen that the decrease in battery level

while climbing up to the location of customer 2, realized a bit costlier for TSP solution. At the

end of the tour, despite the total travel distance is slightly higher, the best solution found of

metaheuristic application can provide a higher level of available energy.

Figure 12: Instance 1 - TSP & ETSP Battery Levels Comparison

 In Table 21 and Figure 13, the difference is more apparent for Instance 2. The tour for

ETSP is significantly longer than the optimal tour length, while the differences in battery levels

are much higher than the TSP result. Also, as it can be seen in Figure 14, battery levels at each

visited location are better.

Problem 𝒙∗ 𝑭∗	(𝑾𝒉) Total Length (𝒎) 𝑭∗
𝑼𝑩î

TSP D-6-5-4-3-2-1-D 11657.62 62498.00 59%

ETSP D-1-2-5-6-4-3-D 14032.33 76750.00 71%

Table 21: Instance 2 - TSP & ETSP Results Comparison

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000

D 1 2 3 4 5 6 D

TSP-Optimal ETSP-Best

 52

Figure 14: Instance 2 - TSP & ETSP Battery Levels Comparison

 A similar situation applies for Instance 3. This time difference in objective function

values are not as high as the previous example’s; however, the difference in total tour length is

increased quite a lot. The results related to Instance 3 are presented in Table 22. Also, tour

representations can be found in Figure 15.

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000

D 1 2 3 4 5 6 D

TSP-Optimal ETSP-Best

Figure 13: Instance 2 - Tour Representations on Map (left: TSP, right: ETSP)

 53

Problem 𝒙∗ 𝑭∗	(𝑾𝒉) Total Length (𝒎) 𝑭∗
𝑼𝑩î

TSP
D-3-1-2-4-5-

7-6-8-9-10-D
11185.75 61952.00 58%

ETSP
D-2-1-4-9-10-

3-5-7-8-6-D
12250.29 87461.00 64%

Table 22: Instance 3 - TSP & ETSP Results Comparison

 According to the results provided in Figure 16, available energy levels are synchronized

at some nodes, moreover, at the middle of the tour, the preserved battery level is significantly

higher in TSP tour, however at the end the objective function value is higher in ETSP tour. A

comparison for Instance 4 is also made, and it can be found in Appendix B; however, map

representation of Instance 4, is preferred to be not included because of its visual complexity.

 Each quantitative outcome of the metaheuristic applications and its prerequisite

components were analyzed. Overall evaluation for the obtained results will be done briefly in

section 7.

Figure 15: Instance 3 - Tour Representations on Map (left: TSP, right: ETSP)

 54

Figure 16: Instance 3 - TSP & ETSP Battery Levels Comparison

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000

D 1 2 3 4 5 6 7 8 9 10 D

TSP-Optimal ETSP-Best

 55

6 Project Management
Project management is an essential component of the process for all projects carried out.

In the period following the education life, everyone who will create creative works in

professional life should be trained in project management. Such a vital process must be carried

out within specified standards. In this section, the management process of this project is

discussed over the standardized project management process model introduced by the Project

Management Institute. The detailed approach can be found in the guide published (Project

Management Institute, 2013). In subsection 6.1, the initiation phase of the project was

discussed. Under 6.2, the critical components of project planning and execution phases, which

are mainly project scope definition, time, resource cost, and risk management, were

investigated. In 6.3, the monitoring and controlling phase, and finally in 6.4, project closing

phases were examined.

6.1 Project Initiation
 During the initiation phase of the graduation project, multiple project options were

evaluated. These projects were evaluated in line with the personal study domain preferences,

unlike the projects in which the corporations had a revenue expectation. In addition, since this

study is a research project, the aim of contributing to the current literature was effective in the

evaluation process of the projects. As a result of this evaluation, it was decided that an operation

research application on electric vehicles, which is one of the most prominent and current topics

of today, is the most appropriate among all options.

This work was made possible by Professor Sabine Limbourg and Professor Maud Bay,

who had previously worked on the routing of electric vehicles under this institution, with their

willingness to supervise a study on the subject. This current research topic, which coincides

with HEC Liège's mission of providing lasting benefits to the broader society, and the

introduced 2019-2024 vision of strengthening the current position of the institution to become

an internationally recognized research center, has been outlined. Besides, since this is also a

graduation study, no team has been established, and the whole project has been carried out by

the author of this dissertation.

6.2 Planning and Execution
 The planning and execution phases represent the main body of this project. Although

these two phases are divided into different processes, they progress in parallel within the

 56

duration of the project. The most important parts of these two processes are examined under

this subsection.

6.2.1 Defining the Scope of Project
 The scope of the project means that the specified outer frame of tasks that will be carried

out during a project. It is essential to define requirements, road map, and development stages.

The issues that are unclear during the initiation phase are placed in a much clearer frame, and

the project is reduced to a more specific area. For this study, this process took place in two sub-

stages. First, the application deficiencies in the literature were examined, and the method of

operations research to be applied was outlined. It was decided to use a search method, taking

into account the computational times of the previous exact methods. Also, a simulated

annealing metaheuristic application was planned at this stage. In the second stage, the idea of a

second metaheuristic application with different features was approved to compare search

method performances, and the scope of the project was finalized.

6.2.2 Time Management
 At the point of time management, a road map was initially determined. However, delays

have arisen due to the lengthy implementation and development process of the project, and the

extensive literature of the traveling salesman problem, perhaps the most studied topic of

combinatorial optimization and computer science. As a result of these delays, the schedule was

reviewed and updated several times. Eventually, the total project implementation time was

extended by 1.5 months. With the experience gained during this project, time management of

a similar project can be realized with higher accuracy.

6.2.3 Resource Management
 During this project, a lot of technical resource needs emerged. These can be classified

as a small amount of published literature, due to the fact that the project is on a current topic

and hardware and software performance during the implementation phase. Besides, time was

the most prominent resource as mentioned in 6.2.2. During the collection of literature resources,

the abstract and citation databases of Web of Science, Elsevier Scopus and Google Scholar

were used. Then, a reference management software called Mendeley was used to manage

literature resources, and the feature of the software to propose resources similar to those added

was often utilized (Mendeley Ltd., 2019). It is aimed to reduce the computational power-related

 57

resource problems by using a development computer with up-to-date hardware, and a

programming language that is successful in memory management with a fast-running

interpreter.

6.2.4 Cost Management
 Since the vehicle-related parameters used in this project were collected from past

research, a real vehicle was not used for testing. Besides, one of the costs involved in this project

was the data collected from Google's cloud service using APIs. At this point, the cost of

€397.42, which was incurred at the end of this project, was met with the free credits given for

developers that provided by Google Cloud Platform. In order to prevent the increase of the

existing cost, the data collected was saved to the databases and reused. Another thing that may

be considered as the cost was spent time, whose management is already mentioned under 6.2.2.

6.2.5 Risks Management
 The most prominent risk in this project was to increase the amount of mathematical

detail to improve the quality of the outcome. Increased detail significantly increased both the

time spent on the implementation and computation times during the tests. At this point,

managing the risk taken was of great importance, and trade-offs were faced. Multiple initial

solution generation methods, three different arc types, four different instance files, and two

metaheuristic approaches resulted in 120 different individual test scenarios. In addition to this

number of scenarios, repetitive runs were taken with various different parameter sets. By

reducing the number of arc types used to reduce this number and fine-tune the parameter set at

reasonable intervals, the risk related to time constraint was tried to be reduced. One of the most

important reasons why the study could be completed without violating the deadline was the risk

management done there.

6.3 Monitoring and Controlling
 To monitor the process and to control the outputs, several meetings were held with the

supervisors of this study. The advice of the supervisors remedied the deficiencies found in the

conceptual issues, and the work took its present form. In addition, during the implementation

process of the software to monitor and control the process of optimization, a little application

of the spiral model in software development life cycle (SDLC) is preferred. This SDLC model

 58

allows to check the outcomes under requirements iteratively, makes it possible to develop more

on the same software base, if a new requirement arises.

6.4 Closing Project
 After the completion of the tasks within the scope of the project and checking the

outputs, the project entered the closing phase. The management of the project from the very

beginning to the very end was based on a standardized framework. If it is necessary to make

self-criticism, more successful process management could be done in time management and

risk management points. In contrast, cost management can be classified as successful. Success

in this methodology used in other studies following this study will likely increase.

 59

7 Conclusion
 This research aimed to show performances of two local search methods for an extension

of famous traveling salesman problem (TSP), called electric vehicle traveling salesman

problem (ETSP) considering road grade, load, speed and acceleration, which was introduced in

detail in earlier sections. The ultimate aim was solving the problem and observing the

performances of steepest ascent and simulated annealing metaheuristics, which were used to

obtain optimal or near-optimal results in a shorter time despite the long CPU times obtained

using exact methods in the previous studies. In addition, the results of the classical TSP

approach were compared with the results obtained by the application of search methods in order

to reveal the difference significantly.

 On the basis of the results obtained, it is possible to say that the quality of the

metaheuristic results that work for much shorter periods is entirely satisfactory despite the

optimal solutions provided by exact methods over long periods of time. At the end of tests with

different initial solution generation methods, it was observed that the best solution found for

the instances used, commonly converged to the same solutions. On the other hand, when

comparing the performance of the two search methods, it is possible to say that steepest ascent

metaheuristic provides good quality solutions in concise periods of time, but simulated

annealing metaheuristic with the used parameter set provides much higher quality solutions by

running a little longer.

Because of the nature of steepest ascent metaheuristic, it converges to a local optimum solution,

which is sometimes quite far from the global optimum. Conversely, by applying simulated

annealing, this problem seems to be easily avoided thanks to its randomized procedure. In

addition, an interesting observation about the steepest ascent shows that the low-quality initial

solutions can climb to good solutions more quickly. If one should be chosen between steepest

ascent, simulated annealing, and exact method to solve the introduced problem, simulated

annealing can be said to be a rational choice through solution quality and computation time

trade-off.

 Another observation is that as the number of customer nodes increases without

increasing the total distances to travel needed on maps, the number of infeasible results is

dramatically increased thanks to the problem’s combinatorial nature. Furthermore, when TSP

optimal results and the best ETSP results are compared, it is seen that the total traveled distance

is less important than the road grade as a result of the regenerative braking system. When

looking at the effect of customer demands on the results, it is seen that if the deviation between

 60

the quantities of the demands is large, the TSP results in much worse results in the context of

ETSP.

 Future research on this study may include a population-based global search method, such

as the genetic algorithm, or a combined approach, such as the memetic algorithm, in addition

to the local search methods used. As a further idea, in addition to the arc types introduced in

this study, a new method can be explored which would include more accurate slope and distance

information at the point of calculating more accurate energy consumption or gain.

 Moreover, in this study, it was assumed that acceleration and deceleration were

performed at only the beginning and the end of each arc and the maximum speed is always

equal to the optimal speed and constant over the journey. Instead, a more realistic consumption

calculation can be made with a new method that can dynamically adapt to real-time traffic

information and real speed limits of the roads used. As a final idea, a more realistic energy

consumption data can be obtained by using an on-board diagnostics (OBD) dongle by

connecting it to the OBD port of the vehicle, whose tour would be optimized.

 61

Bibliography

ACEA. (2018). ACEA Report Vehicles in use Europe 2018. European Automobile

Manufacturers Association, 1–18. Retrieved from

https://www.acea.be/uploads/statistic_documents/ACEA_Report_Vehicles_in_use-

Europe_2018.pdf

Antosiewicz, M., Koloch, G., & Kamiński, B. (2013). Choice of best possible metaheuristic

algorithm for the travelling salesman problem with limited computational time: quality,

uncertainty and speed. Journal of Theoretical and Applied Computer Science, 7(1), 46–

55.

Artmeier, A., Hasselmayr, J., Leucker, M., & Sachenbacher, M. (2010). The shortest path

problem revisited: Optimal routing for electric vehicles. KI 2010: Advances in Artificial

Intelligence, 309–316.

Balas, E., & Christofides, N. (1981). A restricted lagrangean approach to the traveling salesman

problem. Mathematical Programming, 21, 19–46.

Baum, M., Dibbelt, J., Pajor, T., & Wagner, D. (2013). Energy-optimal routes for electric

vehicles. Proceedings of the 21st ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, 54–63. ACM.

Bay, M., & Limbourg, S. (2015). TSP model for electric vehicle deliveries, considering speed,

loading and road grades. Sixth International Workshop on Freight Transportation and

Logistics. Ajaccio.

Bay, M., & Limbourg, S. (2017). A mixed-integer nonlinear programming model for electric

vehicle deliveries considering speed, loading and road grades.

Bektaş, T., & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part

B: Methodological, 45(8), 1232–1250.

Bland, R. G., & Shallcross, D. F. (1989). Large Travelling Salesman Problems Arising from

Experiments in X-Ray Crystallography: A Preliminary Report on Computation.

Operations Research Letters, 8(3), 125–128.

Blazewicz, J., Eiselt, H. A., Gerd, F., Laporte, G., & Weglarz, J. (1991). Scheduling Tasks and

Vehicles in a Flexible Manufacturing System. International Journal of Flexible

Manufacturing Systems, 4(1), 5–16.

Burkard, R. E., Deineko, V. G., Dal, R. van, Veen, J. A. A. van der, & Woeginger, G. J. (1998).

Well-solvable special cases of the Traveling Salesman Problem : a survey. SIAM Review,

 62

40(3), 496–546.

Carpaneto, G., Martello, S., & Toth, P. (1988). Algorithms and codes for the assignment

problem. FORTRAN Codes for Network Optimization, Annals of Operations Research, 13,

193–223.

Carpaneto, G., & Toth, P. (1980). Some new branching and bounding criteria for the

asymmetric travelling sales- man problem. Management Science, 26, 736–743.

Christofides, N. (1976). Worst-Case Analysis of a New Heuristic for the Travelling Salesman

Problem. Pittsburgh.

Crama, Y. (2018). Computational Optimization Lecture Notes.

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1954). Solution of a Large-Scale Traveling-

Salesman Problem. Operations Research, 2, 363–410.

Ehsani, M., Gao, Y., Gay, S. E., & Emadi, A. (2005). Modern Electric, Hybrid Electric & Fuel

Cell Vehicles: Fundamentals, Theory, and Design. Washington D.C.: CRC Press.

Eiselt, H. A., & Sandblom, C. L. (2000). Traveling Salesman Problems and Extensions. Integer

Programming and Network Models, 315–341.

Eisner, J., Funke, S., & Storandt, S. (2011). Optimal route planning for electric vehicles in large

networks. Proceedings of the Twenty-Fifth AAAI Conference on Arti?Cial Intelli- Gence,

1108–1113.

Erdoğan, S., & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation

Research Part E: Logistics and Transportation Review, 48(1), 100–114.

European Commission. (2011). Roadmap to a Single European Transport Area - Towards a

Competitive and Resource-Efficient Transport System. Brussels.

Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research, 4(1), 61–75.

Froger, A., Mendoza, J. E., Jabali, O., & Laporte, G. (2017). A Matheuristic for the Electric

Vehicle Routing Problem with Capacitated Charging Stations. Montéal.

Garey, M. R., Graham, R. L., & Johnson, D. S. (1976). Some NP-complete geometric problems.

Proceedings of the Eight Annual ACM Symposium on Theory of Computing, 10–22.

Garfinkel, R. S. (1977). Minimizing Wallpaper Waste, Part 1: A Class of Traveling Salesman

Problems. Operations Research, 25(5), 741–751.

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A New Heuristic Optimization

Algorithm: Harmony Search. Simulation, 2(76), 60–68.

Google Inc. (2019a). Google Maps Platform Directions API Developer Guide. Retrieved from

https://developers.google.com/maps/documentation/directions/intro

Google Inc. (2019b). Google Maps Platform Elevation API Developer Guide. Retrieved from

 63

https://developers.google.com/maps/documentation/elevation/intro

Gurobi Optimization. (2017). Gurobi Optimizer Reference Manual. Retrieved from

https://www.gurobi.com/documentation/

Gutin, G. (2009). Traveling Salesman Problem. In C. A. Floudas & P. M. Pardalos (Eds.),

Encyclopedia of Optimization (2nd ed., pp. 3935–3944). Springer.

Gutin, G., Yeo, A., & Zverovich, A. (2002). Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for the TSP. Discrete Applied Mathematics,

117, 81–86.

Held, M., & Karp, R. M. (1962). A Dynamic Programming Approach to Sequencing Problems.

Journal of the Society for Industrial and Applied Mathematics, 10(1), 196–210.

JetBrains s.r.o. (2018). IntelliJ IDEA Documentation. Retrieved from

https://www.jetbrains.com/idea/documentation/

Johnson, D. S., Gutin, G., McGeoch, L. A., Yeo, A., Zhang, W., & Zverovich, A. (2002).

Experimental Analysis of Heuristics for ATSP. In G. Gutin & A. Punnen (Eds.), The

Traveling Salesman Problem and Its Variations. Boston: Kluwer Academic Publishers.

Johnson, D. S., & McGeoch, L. A. (2002). Experimental Analysis of Heuristics for STSP. In

G. Gutin & A. Punnen (Eds.), The Traveling Salesman Problem and Its Variations. (pp.

369–443). Boston: Kluwer Academic Publishers.

Jonker, R., & Volgenant, T. (1983). Transforming asymmetric into symmetric traveling

salesman problems. Operations Research Letters, 2(4), 161–163.

Kara, İ., Kara, B. Y., & Yetiş, M. K. (2007). Energy Minimizing Vehicle Routing Problem.

COCOA 2007: Combinatorial Optimization and Applications, 62–71. Berlin: Springer.

Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of Computer

Computations, 85–103.

Keskin, M., & Çatay, B. (2016). Partial recharge strategies for the electric vehicle routing

problem with time windows. Transportation Research Part C: Emerging Technologies,

65, 111–127.

Keskin, M., Laporte, G., & Çatay, B. (2019). Electric Vehicle Routing Problem with Time-

Dependent Waiting Times at Recharging Stations. Computers & Operations Research,

107, 77–94.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.

Science, 220(4598), 671–680.

Laporte, G. (1992). The Traveling Salesman Problem: An overview of exact and approximate

algorithms. European Journal of Operational Research, 59, 231–247.

 64

Lenstra, J. K., & Rinnooy Kan, A. H. G. (1975). Some Simple Applications of the Travelling

Salesman Problem. Journal of the Operational Research Society, 26(4), 717–733.

Mendeley Ltd. (2019). Mendeley Reference Management System Guides. Retrieved from

https://www.mendeley.com/guides

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer Programming Formulation of

Traveling Salesman Problems. Journal of the ACM, 7(4), 326–329.

Miller, D. L., & Pekny, J. F. (1991). Exact solution of large asymmetric traveling salesman

problems. Science, 251, 754–761.

Misevičius, A. (2004). Using Iterated Tabu Search for the Traveling Salesman Problem.

INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS Informacinės Technologijos IR

Valdymas, 3(32), 29–40.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.

MongoDB Inc. (2018a). MongoDB Documentation. Retrieved from https://docs.mongodb.com

MongoDB Inc. (2018b). MongoDB Java Driver Documentation. Retrieved from

https://mongodb.github.io/mongo-java-driver/3.9/

Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2016). A multi-space sampling

heuristic for the green vehicle routing problem. Transportation Research Part C:

Emerging Technologies, 70, 113–128.

Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing

problem with nonlinear charging function. Transportation Research Part B:

Methodological, 103, 87–110.

Naddef, D. (2007). Polyhedral Theory and Branch-and-Cut Algorithms for the Symmetric TSP.

In G. Gutin & A. Punnen (Eds.), The Traveling Salesman Problem and Its Variations. (pp.

29–116). Boston: Springer.

Object Refinery Ltd. (2017). JFreeChart API Documentation. Retrieved from

http://www.jfree.org/jfreechart/api/javadoc/

Oliveira, J. F. C., & Ferreira, J. A. S. (1993). Algorithms for Nesting Problems. In Applied

Simulated Annealing (pp. 255–273). Berlin: Springer.

Oracle Corporation. (2014). Java Platform Standard Edition 8 Documentation. Retrieved from

https://docs.oracle.com/javase/8/docs/

Pelletier, S., Jabali, O., & Laporte, G. (2014). Goods Distribution with Electric Vehicles:

Review and Research Perspectives. Montéal.

Project Management Institute. (2013). Project Management Body of Knowledge (PMBOK

Guide) (5th ed.). Delaware, PA.

 65

Reinelt, G. (1992). Fast Heuristics for Large Geometric Traveling Salesman Problems. ORSA

Journal on Computing, 4(2), 206–217.

Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP Applications.

Berlin: Springer.

Roberti, R., & Toth, P. (2012). Models and algorithms for the Asymmetric Traveling Salesman

Problem: an experimental comparison. EURO Journal on Transportation and Logistics,

1(1–2), 113–133.

Sachenbacher, M., Leucker, M., Artmeier, A., & Haselmayr, J. (2011). Efficient energy-

optimal routing for electric vehicles. Proceedings of the Twenty-Fifth AAAI Conference

on Artificial Intelligence, 1402–1407.

Schneider, M., Stenger, A., & Geoke, D. (2014). The electric vehicle-routing problem with time

windows and recharging stations. Transportation Science, 48(4), 500–520.

Smith, T. H. C., Srinivasan, V., & Thompson, G. L. (1977). Computational performance of

three subtour elimination algorithms for solving asymmetric traveling salesman prob-

lems. Annals of Discrete Mathematis, 1, 495–506.

Sweda, T. M., & Klabjan, D. (2012). Finding minimum-cost paths for electric vehicles. Electric

Vehicle Conference (IEVC), 1–4. IEEE International.

Sze, S. N., & Tiong, W. K. (2007). A Comparison between Heuristic and Meta-Heuristic

Methods for Solving the Multiple Traveling Salesman Problem. International Journal of

Mathematical and Computational Sciences, 1(1), 13–16.

Taha, M., Fors, M. N., & Shoukry, A. A. (2014). An exact solution for a class of green vehicle

routing problem. International Conference on Industrial Engineering and Operations

Management, 7–9.

Touati-Moungla, N., & Jost, V. (2012). Combinatorial optimization for electric vehicles

management. Journal of Energy and Power Engineering, 6(5), 738–743.

Velednistsky, M. (2017). Short combinatorial proof that the DFJ polytope is contained in the

MTZ polytope for the Asymmetric Traveling Salesman Problem. Operations Research

Letters, 45(4), 323–324.

Wong, R. T. (1980). Integer programming formulations of the travelling salesman problem.

Proceedings of the IEEE International Conference on Circuits and Computers, 149–152.

Zhang, C., Sun, J., Wang, Y., & Yang, Q. (2007). An Improved Discrete Particle Swarm

Optimization Algo- rithm for TSP. Proceedings of Web Intelligence/IAT Workshops, 35–

38.

 a

Appendix A: Test Instances

𝒊 Is Depot? Latitude (𝝋𝒊) Longitude (𝝀𝒊) Demand (𝒒𝒊)

0	 1	 50.637167	 5.562959	 0	

1	 0	 50.640111	 5.575585	 50	

2	 0	 50.584279	 5.569376	 30	

3	 0	 50.655340	 5.477703	 40	

4	 0	 50.646746	 5.535289	 10	

5	 0	 50.652054	 5.577203	 60	

6	 0	 50.642572	 5.601972	 5	

Table 23: Test Instance 1 (6 Customers)

𝒊 Is Depot? Latitude (𝝋𝒊) Longitude (𝝀𝒊) Demand (𝒒𝒊)

0	 1	 50.609083	 5.558406	 0	

1	 0	 50.639576	 5.510341	 10	

2	 0	 50.662215	 5.552913	 10	

3	 0	 50.654815	 5.638744	 10	

4	 0	 50.599060	 5.627071	 10	

5	 0	 50.565924	 5.583126	 700	

6	 0	 50.562435	 5.525447	 10	

Table 24: Test Instance 2 (6 Customers)

 b

𝒊 Is Depot? Latitude (𝝋𝒊) Longitude (𝝀𝒊) Demand (𝒒𝒊)

0	 1	 50.609083	 5.558406	 0	

1	 0	 50.643060	 5.524074	 700	

2	 0	 50.639576	 5.510341	 7	

3	 0	 50.618233	 5.559093	 7	

4	 0	 50.662215	 5.552913	 7	

5	 0	 50.644801	 5.555660	 7	

6	 0	 50.602111	 5.643550	 7	

7	 0	 50.654815	 5.638744	 7	

8	 0	 50.599060	 5.627071	 7	

9	 0	 50.565924	 5.583126	 7	

10	 0	 50.562435	 5.525447	 7	

Table 25: Test Instance 3 (10 Customers)

 c

𝒊 Is Depot? Latitude (𝝋𝒊) Longitude (𝝀𝒊) Demand (𝒒𝒊)

0	 1	 50.592086	 5.581066	 0	

1	 0	 50.639576	 5.541240	 10	

2	 0	 50.641447	 5.613338	 5	

3	 0	 50.624976	 5.640804	 15	

4	 0	 50.579879	 5.617711	 25	

5	 0	 50.609083	 5.558406	 80	

6	 0	 50.639576	 5.510341	 110	

7	 0	 50.621283	 5.602352	 10	

8	 0	 50.551093	 5.558406	 40	

9	 0	 50.642189	 5.592365	 50	

10	 0	 50.565924	 5.583126	 90	

11	 0	 50.629124	 5.484935	 30	

12	 0	 50.599060	 5.627071	 45	

13	 0	 50.588163	 5.535060	 20	

14	 0	 50.621718	 5.526134	 5	

Table 26: Test Instance 4 (14 Customers)

 d

Appendix B: Comparison of TSP and ETSP Solutions on Instance 4

Problem 𝒙∗ 𝑭∗	(𝑾𝒉) Total Length (𝒎) 𝑭∗
𝑼𝑩î

TSP

D-8-10-4-12-3-

7-2-9-1-6-

11-14-5-13-D

10011.78 71779.00 54,50%

ETSP

D-13-10-8-4-

12-7-3-2-9-

1-6-11-14-5-D

10549.80 77000.00 57,42%

Table 27: Instance 4 - TSP & ETSP Results Comparison

Figure 17: Instance 4 - TSP & ETSP Battery Levels Comparison

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000
24000

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D

TSP-Optimal ETSP-Best

Executive Summary

 Conventional vehicles with internal combustion engines have caused and are causing

severe environmental and health problems such as greenhouse gas emissions, noise pollution,

and oil dependency. As a solution to this problem, many European Union countries have

introduced regulations for polluting vehicles into the city centers. They also plan to stop the use

of diesel vehicles and then gasoline vehicles in the next 15 years. Simultaneously with this

process, vehicles that are entirely powered by electric motors continue to be developed, and

their market shares increase regularly.

 The traveling salesman problem, which has been one of the most studied topics of

computer science and combinatorial optimization for many years, has been extended to many

different contexts but is developed in general with the logic of conventional vehicles. Contrary

to the average fuel consumption of conventional vehicles, and the possibility of fast refueling

from the extensive gas station network in the event that the fuel runs out; the energy

consumption, even regeneration, of electric vehicles is severely affected by many factors, and

in the event of a battery running-out, charging stations are not so common and the charging

times are too long.

 In this study, a problem aimed at optimizing the battery level at the end of the tour in an

urban load distribution case, without considering the recharging of the vehicles, was identified.

The energy consumption or regeneration of the vehicle is calculated by considering the road

slope, transported load, vehicle speed, and acceleration-deceleration parameters. Besides,

taking into account the high CPU times reported in the studies that form the basis of this study,

two different metaheuristic approaches have been applied on the problem to find high-quality

solutions with much shorter computation times.

 At the end of the testing process, good results have been achieved by running steepest

ascent and simulated annealing metaheuristics for a considerably short amount of time. When

compared these two metaheuristics, simulated annealing provided much better results, as

expected because of its randomized nature. Also, it was observed that different solution

generation methods used to initiate both metaheuristics had a significant effect on output

performance. In addition to all, the comparison of the distance-dependent classical TSP

approach’s results and the results of the proposed solution method showed that better battery

levels could be achieved by quite elongating the tour. These results show the importance and

applicability of the introduced approach.

